blob: c3b851b2da5aa689f340a92e878d4688e75f9649 [file] [log] [blame]
/*
* NAND Flash Controller Device Driver
* Copyright © 2009-2010, Intel Corporation and its suppliers.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <malloc.h>
#include <asm/io.h>
#include <linux/mtd/mtd.h>
#include <asm-generic/ioctl.h>
#include <config.h>
#include <common.h>
#include <command.h>
#include <asm/arch/nand.h>
#include <linux/mtd/nand.h>
#include "denali.h"
#include <asm/arch/lsp_crpm.h>
#include <boot_mode.h>
/* DEBUG */
#if DENALI_DEBUG
#define denali_debug(fmt,args...) printf (fmt ,##args)
#define denali_debugX(level,fmt,args...) if (DEBUG>=level) printf(fmt,##args);
#else
#define denali_debug(fmt,args...)
#define denali_debugX(level,fmt,args...)
#endif /* DEBUG */
/* We define a module parameter that allows the user to override
* the hardware and decide what timing mode should be used.
*/
#define NAND_DEFAULT_TIMINGS -1
//static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
/* We define a macro here that combines all interrupts this driver uses into
* a single constant value, for convenience. */
#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
INTR_STATUS__ECC_ERR | \
INTR_STATUS__PROGRAM_FAIL | \
INTR_STATUS__LOAD_COMP | \
INTR_STATUS__PROGRAM_COMP | \
INTR_STATUS__TIME_OUT | \
INTR_STATUS__ERASE_FAIL | \
INTR_STATUS__RST_COMP | \
INTR_STATUS__ERASE_COMP)
/* indicates whether or not the internal value for the flash bank is
* valid or not */
#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
/* This macro divides two integers and rounds fractional values up
* to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
/* this macro allows us to convert from an MTD structure to our own
* device context (denali) structure.
*/
//#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
/* These constants are defined by the driver to enable common driver
* configuration options. */
#define SPARE_ACCESS 0x41
#define MAIN_ACCESS 0x42
#define MAIN_SPARE_ACCESS 0x43
#define DENALI_READ 0
#define DENALI_WRITE 0x100
/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE 0
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
#define true 1
#define false 0
extern struct nand_flash_device_para nand_flash_para[];
extern struct mtd_info nand_info[];
extern struct nand_chip nand_chip[];
extern int flash_dmabuf_disable_flag;
struct denali_nand_info denali_info = {0};
struct denali_nand_info *g_denali = &denali_info;
struct nand_flash_device_para *g_nand_dev_info = NULL;
/* forward declarations */
//static void clear_interrupts(struct denali_nand_info *denali);
//static void denali_irq_enable(struct denali_nand_info *denali,
// uint32_t int_mask);
//static uint32_t read_interrupt_status(struct denali_nand_info *denali);
/* Certain operations for the denali NAND controller use
* an indexed mode to read/write data. The operation is
* performed by writing the address value of the command
* to the device memory followed by the data. This function
* abstracts this common operation.
*/
static void index_addr(struct denali_nand_info *denali,
uint32_t address, uint32_t data)
{
writel(address, denali->flash_mem);
writel(data, denali->flash_mem + 0x10);
}
/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
uint32_t address, uint32_t *pdata)
{
writel(address, denali->flash_mem);
*pdata = readl(denali->flash_mem + 0x10);
}
/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
denali->buf.head = denali->buf.tail = 0;
}
static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
denali->buf.buf[denali->buf.tail++] = byte;
}
/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
uint32_t status, addr;
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x70);
index_addr_read_data(denali,(uint32_t)addr | 2, &status);
write_byte_to_buf(denali, status);
}
/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
// uint32_t status_type = 0;
// uint32_t status_mask = INTR_STATUS__RST_COMP |
// INTR_STATUS__TIME_OUT;
// clear_interrupts(denali);
writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
while (!(readl(denali->flash_reg +
INTR_STATUS(denali->flash_bank)) &
(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
{
if (readl(denali->flash_reg + INTR_STATUS(denali->flash_bank)) &
INTR_STATUS__TIME_OUT)
{
debug("NAND Reset operation timed out on bank %d\n", denali->flash_bank);
}
}
}
/* Reset the flash controller */
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
{
uint32_t i;
for (i = 0 ; i < denali->max_banks; i++)
writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
for (i = 0 ; i < denali->max_banks; i++)
{
writel(1 << i, denali->flash_reg + DEVICE_RESET);
while (!(readl(denali->flash_reg +
INTR_STATUS(i)) &
(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))); //zhouqi fpga 4.27
if (readl(denali->flash_reg + INTR_STATUS(i)) &
INTR_STATUS__TIME_OUT)
debug("NAND Reset operation timed out on bank %d\n", i);
}
for (i = 0; i < denali->max_banks; i++)
writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
return PASS;
}
/* determines how many NAND chips are connected to the controller. Note for
* Intel CE4100 devices we don't support more than one device.
*/
#if 0
static void find_valid_banks(struct denali_nand_info *denali)
{
uint32_t id[denali->max_banks];
int i;
denali->total_used_banks = 1;
for (i = 0; i < denali->max_banks; i++)
{
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
index_addr_read_data(denali,
(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
debug("Return 1st ID for bank[%d]: %x\n", i, id[i]);
if (i == 0)
{
if (!(id[i] & 0x0ff))
break; /* WTF? */
}
else
{
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
denali->total_used_banks++;
else
break;
}
}
debug( "denali->total_used_banks: %d\n", denali->total_used_banks);
}
#endif
/*
* Use the configuration feature register to determine the maximum number of
* banks that the hardware supports.
*/
static void detect_max_banks(struct denali_nand_info *denali)
{
//uint32_t features = readl(denali->flash_reg + FEATURES);
//denali->max_banks = 2 << (features & FEATURES__N_BANKS);
denali->max_banks = 1; //zhouqi for fpge 4.27 and for evb 7.19
}
static uint32_t detect_nand_bus_freq(void)
{
uint32_t clk_reg = 0;
clk_reg = readl(0x01306050);
clk_reg &= 0xffffcfff; /*MOD_CLK_SEL[13:12]=00,7520v2 NAND 104MHz*/
writel(clk_reg, 0x01306050);
if((((readl(0x01306050))>>12) & 0x3) == 0)
return 104;
else
return 26;
}
#if 0
static void detect_partition_feature(struct denali_nand_info *denali)
{
/* For MRST platform, denali->fwblks represent the
* number of blocks firmware is taken,
* FW is in protect partition and MTD driver has no
* permission to access it. So let driver know how many
* blocks it can't touch.
* */
if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
denali->fwblks =
((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
MIN_MAX_BANK__MIN_VALUE) *
denali->blksperchip)
+
(readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
MIN_BLK_ADDR__VALUE);
} else
denali->fwblks = SPECTRA_START_BLOCK;
} else
denali->fwblks = SPECTRA_START_BLOCK;
}
#endif
static void denali_nand_register_set(struct denali_nand_info *denali,
struct nand_flash_device_para * table)
{
writel(table->pages_per_block, denali->flash_reg + PAGES_PER_BLOCK);
writel(table->bus_num, denali->flash_reg + DEVICE_WIDTH);
writel(table->page_size, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
writel(table->oob_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
if(table->row_addr_num == 2)
writel(1, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
else
writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
writel(table->page_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
writel(table->oob_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
writel(1, denali->flash_reg + ECC_ENABLE);
}
static void denali_nand_timing_set(struct denali_nand_info *denali,
struct nand_flash_device_para * table)
{
uint32_t bus_freq;
struct nand_flash_timing * timing = NULL;
timing = &(table->nand_timeing);
bus_freq = detect_nand_bus_freq();
writel(((timing->Twhr * bus_freq)/1000+2) | (((timing->Trr1 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE);
writel(((timing->Tadl * bus_freq)/1000+2) | (((timing->Trr2 * bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA);
writel((timing->Trhw * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);
writel((timing->Trp * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT);
writel((timing->Treh * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT);
writel((timing->Tcs * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);
writel((timing->Trhz * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);
}
static void denali_set_intr_modes(struct denali_nand_info *denali,
uint16_t INT_ENABLE)
{
if (INT_ENABLE)
writel(1, denali->flash_reg + GLOBAL_INT_ENABLE);
else
writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
}
/* validation function to verify that the controlling software is making
* a valid request
*/
static inline uint32_t is_flash_bank_valid(int flash_bank)
{
return (flash_bank >= 0 && flash_bank < 4);
}
static void denali_irq_init(struct denali_nand_info *denali)
{
uint32_t int_mask = 0;
int i;
/* Disable global interrupts */
denali_set_intr_modes(denali, false);
int_mask = DENALI_IRQ_ALL;
/* Clear all status bits */
for (i = 0; i < denali->max_banks; ++i)
writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
}
#define BANK(x) ((x) << 24)
static uint32_t wait_for_ready(struct denali_nand_info *denali, uint32_t status_type)
{
uint32_t status = 0;
while (!(readl(denali->flash_reg +
INTR_STATUS(denali->flash_bank)) & status_type));
status = readl(denali->flash_reg + INTR_STATUS(denali->flash_bank));
#if 0
while (!(readl(0x1207410) & status_type));
status = readl(0x1207410);
#endif
if (status & INTR_STATUS__ECC_ERR )
{
printf (" Deanli Nand Failed: ECC Error\n");
}
if (status & INTR_STATUS__TIME_OUT)
{
printf (" Deanli Nand Failed: Time out\n");
}
if (status & INTR_STATUS__PROGRAM_FAIL)
{
printf (" Deanli Nand Failed: Program Fail\n");
}
writew(0xffff, denali->flash_reg + INTR_STATUS(denali->flash_bank));
return status;
}
/* This helper function setups the registers for ECC and whether or not
* the spare area will be transferred. */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, uint32_t ecc_en,uint32_t transfer_spare)
{
int ecc_en_flag = 0, transfer_spare_flag = 0;
#if ECC_TEST_VER
ecc_en_flag = 0;
#else
/* set ECC, transfer spare bits if needed */
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
#endif
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
/* Enable spare area/ECC per user's request. */
writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
writel(transfer_spare_flag,
denali->flash_reg + TRANSFER_SPARE_REG);
}
static void setup_ecc_the_end(struct denali_nand_info *denali, uint32_t ecc_en)
{
int ecc_en_flag = 0;
/* set ECC, transfer spare bits if needed */
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
/* Enable spare area/ECC per user's request. */
writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
}
/* sends a pipeline command operation to the controller. See the Denali NAND
* controller's user guide for more information (section 4.2.3.6).
*/
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
uint32_t ecc_en,
uint32_t transfer_spare,
int access_type,
int op)
{
int status = PASS;
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, status_type = 0,
status_mask = 0;
if (op == DENALI_READ)
status_mask = INTR_STATUS__LOAD_COMP;
else if (op == DENALI_WRITE)
status_mask = 0;
else
BUG();
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
addr = BANK(denali->flash_bank) | denali->page;
if (op == DENALI_WRITE && access_type != SPARE_ACCESS)
{
cmd = MODE_01 | addr;
writel(cmd, denali->flash_mem);
}
else if (op == DENALI_WRITE && access_type == SPARE_ACCESS)
{
/* read spare area */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
cmd = MODE_01 | addr;
writel(cmd, denali->flash_mem);
}
else if (op == DENALI_READ)
{
/* setup page read request for access type */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
/* page 33 of the NAND controller spec indicates we should not
use the pipeline commands in Spare area only mode. So we
don't.
*/
if (access_type == SPARE_ACCESS)
{
cmd = MODE_01 | addr;
writel(cmd, denali->flash_mem);
}
else
{
index_addr(denali, (uint32_t)cmd,
0x2000 | op | page_count);
/* wait for command to be accepted
* can always use status0 bit as the
* mask is identical for each
* bank. */
status_type = wait_for_ready(denali, status_mask);
if (status_type == 0)
{
debug("cmd, page, addr on timeout "
"(0x%x, 0x%x, 0x%x)\n",
cmd, denali->page, addr);
status = FAIL;
}
else
{
cmd = MODE_01 | addr;
writel(cmd, denali->flash_mem);
}
}
}
return status;
}
/* helper function that simply writes a buffer to the flash */
static int write_data_to_flash_mem(struct denali_nand_info *denali,
const uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* verify that the len is a multiple of 4. see comment in
* read_data_from_flash_mem() */
BUG_ON((len % 4) != 0);
/* write the data to the flash memory */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
writel(*buf32++, denali->flash_mem + 0x10);
return i*4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
static int read_data_from_flash_mem(struct denali_nand_info *denali,
uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* we assume that len will be a multiple of 4, if not
* it would be nice to know about it ASAP rather than
* have random failures...
* This assumption is based on the fact that this
* function is designed to be used to read flash pages,
* which are typically multiples of 4...
*/
BUG_ON((len % 4) != 0);
/* transfer the data from the flash */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
*buf32++ = readl(denali->flash_mem + 0x10);
return i*4; /* intent is to return the number of bytes read */
}
/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = g_denali;
uint32_t status_type = 0;
uint32_t status_mask = INTR_STATUS__PROGRAM_COMP |
INTR_STATUS__PROGRAM_FAIL;
int status = 0, addr = 0x0, cmd = 0x0;
denali->page = page;
/* Modified by zhouqi for xxx, 2013/09/03 */
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_WRITE) == PASS)
{
write_data_to_flash_mem(denali, buf, mtd->oobsize);
/* wait for operation to complete */
status_type = wait_for_ready(denali, status_mask);
if (status_type & INTR_STATUS__PROGRAM_FAIL) //zhouqi
{
debug("OOB write failed\n");
status = -1;
}
}
else
{
debug("unable to send pipeline command\n");
status = -1;
}
/* Added by zhouqi for xxx, 2013/09/03 */
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
/* End added. zhouqi, 2013/09/03 */
return status;
}
/* reads OOB data from the device */
static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = g_denali;
uint32_t status_mask = INTR_STATUS__LOAD_COMP | INTR_STATUS__TIME_OUT, //zhouqi
status_type = 0, addr = 0x0, cmd = 0x0;
denali->page = page;
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == PASS)
{
read_data_from_flash_mem(denali, buf, mtd->oobsize);
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
status_type = wait_for_ready(denali, status_mask);
if (status_type & INTR_STATUS__TIME_OUT)
debug("page on OOB timeout %d\n",denali->page);
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
}
}
/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
uint32_t is_erased(uint8_t *buf, int len)
{
int i = 0;
for (i = 0; i < len; i++)
if (buf[i] != 0xFF)
return false;
return true;
}
#define ECC_SECTOR_SIZE 512
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
static uint32_t handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint32_t status_type)
{
int check_erased_page = 0;
uint32_t err_correction_value = 0;
uint32_t err_correction_info = 0;
#if 1
/*zx297520 use*/
if (status_type & INTR_STATUS__ECC_ERR)
{
check_erased_page = 1;
}
else
{
switch(denali->flash_bank)
{
case 0:
err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B01);
err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B0;
break;
case 1:
err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B01);
err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B1)>>8;
break;
case 2:
err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B23);
err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B2;
break;
case 3:
err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B23);
err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B3)>>8;
break;
default:
break;
}
if(err_correction_value)
printk("correct %d bit errors on page %x.\n",err_correction_value,denali->page);
}
return check_erased_page;
#else
/* read the ECC errors. we'll ignore them for now */
uint32_t err_address = 0, err_correction_info = 0;
uint32_t err_byte = 0, err_sector = 0, err_device = 0;
uint32_t err_correction_value = 0;
denali_set_intr_modes(denali, false);
do
{
err_address = readl(denali->flash_reg +
ECC_ERROR_ADDRESS);
err_sector = ECC_SECTOR(err_address);
err_byte = ECC_BYTE(err_address);
err_correction_info = readl(denali->flash_reg +
ERR_CORRECTION_INFO);
err_correction_value =
ECC_CORRECTION_VALUE(err_correction_info);
err_device = ECC_ERR_DEVICE(err_correction_info);
if (ECC_ERROR_CORRECTABLE(err_correction_info))
{
/* If err_byte is larger than ECC_SECTOR_SIZE,
* means error happened in OOB, so we ignore
* it. It's no need for us to correct it
* err_device is represented the NAND error
* bits are happened in if there are more
* than one NAND connected.
* */
if (err_byte < ECC_SECTOR_SIZE)
{
int offset;
offset = (err_sector *
ECC_SECTOR_SIZE +
err_byte) *
denali->devnum +
err_device;
/* correct the ECC error */
buf[offset] ^= err_correction_value;
denali->mtd->ecc_stats.corrected++;
}
} else {
/* if the error is not correctable, need to
* look at the page to see if it is an erased
* page. if so, then it's not a real ECC error
* */
check_erased_page = true;
}
} while (!ECC_LAST_ERR(err_correction_info));
/* Once handle all ecc errors, controller will triger
* a ECC_TRANSACTION_DONE interrupt, so here just wait
* for a while for this interrupt
* */
while (!(read_interrupt_status(denali) &
INTR_STATUS__ECC_ERR))
clear_interrupts(denali);
denali_set_intr_modes(denali, false);
#endif
}
/* programs the controller to either enable/disable DMA transfers */
static void denali_enable_dma(struct denali_nand_info *denali, uint32_t en)
{
uint32_t reg_val = 0x0;
if (en)
reg_val = DMA_ENABLE__FLAG;
writel(reg_val, denali->flash_reg + DMA_ENABLE);
readl(denali->flash_reg + DMA_ENABLE);
}
/* setups the HW to perform the data DMA */
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
uint32_t mode = 0x0;
const int page_count = 1;
dma_addr_t addr = denali->buf.dma_buf;
mode = MODE_10 | BANK(denali->flash_bank);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
/* 2. set memory high address bits 23:8 */
index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes*/
//writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4
index_addr(denali, mode | 0x14000, 0x2400); //zhouqi not interrupt 0X40
}
static void denali_setup_dma_buffer(struct denali_nand_info *denali, int op,char* buffer)
{
uint32_t mode = 0x0;
const int page_count = 1;
dma_addr_t addr = buffer;
mode = MODE_10 | BANK(denali->flash_bank);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
/* 2. set memory high address bits 23:8 */
index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes*/
//writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4
index_addr(denali, mode | 0x14000, 0x2400); //zhouqi not interrupt 0X40
}
/* add by zhouqi */
#if 0
static void denali_setup_dma_derect(struct denali_nand_info *denali, int op,
dma_addr_t addr) /* add by zhouqi */
{
uint32_t mode = 0x0;
const int page_count = 1;
// dma_addr_t addr = denali->buf.dma_buf;
mode = MODE_10 | BANK(denali->flash_bank);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
/* 2. set memory high address bits 23:8 */
index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes*/
//writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4
index_addr(denali, mode | 0x14000, 0x2400); //zhouqi not interrupt 0X40
}
#endif
/* writes a page. user specifies type, and this function handles the
* configuration details. */
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, uint32_t raw_xfer)
{
struct denali_nand_info *denali = g_denali;
uint32_t status_type = 0;
uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP |
INTR_STATUS__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
* the spare area.
* !raw_xfer - enable ecc
* raw_xfer - transfer spare
*/
setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
/* copy buffer into DMA buffer */
memcpy((void*)denali->buf.dma_buf, (void*)buf, mtd->writesize);
if (raw_xfer)
{
/* transfer the data to the spare area */
memcpy((void*)(denali->buf.dma_buf + mtd->writesize),
(void*)chip->oob_poi,mtd->oobsize);
}
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE); //zhouqi p779-p789
/* wait for operation to complete */
status_type = wait_for_ready(denali, status_mask);
if (status_type & INTR_STATUS__TIME_OUT)
{
debug("timeout on write_page (type = %d)\n",
raw_xfer);
denali->status =
(status_type & INTR_STATUS__PROGRAM_FAIL) ?
NAND_STATUS_FAIL : PASS;
}
denali_enable_dma(denali, false);
setup_ecc_the_end(denali, false); //zhouqi
}
//add by zhouqi
static void write_page_ops(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
int N,len,sector_size,ecc_bytes,i;
struct denali_nand_info *denali = g_denali;
uint32_t status_type = 0;
uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP |
INTR_STATUS__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
* the spare area.
* !raw_xfer - enable ecc
* raw_xfer - transfer spare
*/
setup_ecc_for_xfer(denali, 1, 1);
memset((void *)(denali->buf.dma_buf),0xff,denali->mtd->writesize+denali->mtd->oobsize);
sector_size = denali->nand->ecc.size;
ecc_bytes = denali->nand->ecc.bytes;
N = denali->mtd->writesize/(sector_size+ecc_bytes) + 1;
len = sector_size;
for(i=0;i < N;i++)
{
if(i==N-1)
{
len = denali->mtd->writesize - (sector_size+ecc_bytes)*i;
}
memcpy((void *)(denali->buf.dma_buf+(sector_size+ecc_bytes)*i), (void *)(buf+sector_size*i), len); ;
}
len = sector_size - len;
memcpy((void *)(denali->buf.dma_buf + denali->mtd->writesize+2), (void *)(buf + sector_size*i -len), len);
memcpy((void *)(denali->buf.dma_buf+denali->mtd->writesize+2+len+ecc_bytes), (void *)(chip->oob_poi + 2+len+ecc_bytes), \
denali->mtd->oobsize-2-len-ecc_bytes);
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE);
/* wait for operation to complete */
status_type = wait_for_ready(denali, status_mask);
if (status_type & INTR_STATUS__TIME_OUT)
{
debug("timeout on write_page (type = )\n");
denali->status =
(status_type & INTR_STATUS__PROGRAM_FAIL) ?
NAND_STATUS_FAIL : PASS;
}
denali_enable_dma(denali, false);
setup_ecc_the_end(denali, false); //zhouqi
}
/* NAND core entry points */
/* this is the callback that the NAND core calls to write a page. Since
* writing a page with ECC or without is similar, all the work is done
* by write_page above.
* */
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, struct mtd_oob_ops *ops)//zhouqi add ops
{
struct denali_nand_info *denali = g_denali;
/* for regular page writes, we let HW handle all the ECC
* data written to the device. */
int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION);
if((ops->oobbuf != NULL) && (ops->ooblen != 0))
{
write_page_ops(mtd, chip, buf);
}
else
{
if(denali->page < 64)
{
writel(0x8, denali->flash_reg + ECC_CORRECTION);
}
write_page(mtd, chip, buf, false);
writel(ecc_bits, denali->flash_reg + ECC_CORRECTION);
}
update_led_twinkle();
}
/* This is the callback that the NAND core calls to write a page without ECC.
* raw access is similar to ECC page writes, so all the work is done in the
* write_page() function above.
*/
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
/* for raw page writes, we want to disable ECC and simply write
whatever data is in the buffer. */
write_page(mtd, chip, buf, true);
}
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
//printk(KERN_EMERG "[denali.c] denali_write_oob: page = 0x%0x\n",page); //zhouqi
return write_oob_data(mtd, chip->oob_poi, page);
}
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
//printk(KERN_EMERG "[denali.c] denali_read_oob: page = 0x%0x\n",page); //zhouqi
read_oob_data(mtd, chip->oob_poi, page);
return 0; /* notify NAND core to send command to
NAND device. */
}
static int read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
struct denali_nand_info *denali = g_denali;
uint32_t status_type = 0;
// uint32_t status_mask = INTR_STATUS__ECC_ERR |
// INTR_STATUS__ECC_ERR;
uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP;
uint32_t check_erased_page = false;
if (page != denali->page)
{
debug("IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, true, false);
denali_enable_dma(denali, true);
if(flash_dmabuf_disable_flag == 1)
{
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
status_type = wait_for_ready(denali, status_mask);
memcpy(buf, (void *)denali->buf.dma_buf, mtd->writesize); //zhouqi -p939
}
else
{
denali_setup_dma_buffer(denali, DENALI_READ,buf); //zhouqi
/* wait for operation to complete */
status_type = wait_for_ready(denali, status_mask);
}
check_erased_page = handle_ecc(denali, buf, status_type);
//check_erased_page = 0;
denali_enable_dma(denali, false);
setup_ecc_the_end(denali, false); //zhouqi
if (check_erased_page)
{
read_oob_data(denali->mtd, chip->oob_poi, denali->page);
if (!is_erased(buf, denali->mtd->writesize))
denali->mtd->ecc_stats.failed++;
if (!is_erased(chip->oob_poi, denali->mtd->oobsize))
denali->mtd->ecc_stats.failed++;
}
return 0;
}
//add by zhouqi
static int read_page_ops(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
int N,len,sector_size,ecc_bytes,i;
struct denali_nand_info *denali = g_denali;
uint32_t status_type = 0;
uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP;
uint32_t check_erased_page = false;
if (page != denali->page)
{
debug("IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, 1, 1);
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
status_type = wait_for_ready(denali, status_mask);
sector_size = denali->nand->ecc.size;
ecc_bytes = denali->nand->ecc.bytes;
N = denali->mtd->writesize/(sector_size+ecc_bytes) + 1;
len = sector_size;
for(i=0;i < N;i++)
{
if(i==N-1)
{
len = denali->mtd->writesize - (sector_size+ecc_bytes)*i;
}
memcpy((void *)(buf+sector_size*i),(void *)( denali->buf.dma_buf + (sector_size+ecc_bytes)*i),len);
}
len = sector_size - len;
memcpy((void *)(buf + sector_size*(N-1)+len), (void *)(denali->buf.dma_buf + denali->mtd->writesize +2), len);
memset((void *)(chip->oob_poi), 0xFF, len +ecc_bytes+2);
memcpy((void *)(chip->oob_poi + len+ecc_bytes+2), (void *)(denali->buf.dma_buf + denali->mtd->writesize+len+ecc_bytes+2),\
denali->mtd->oobsize-len -ecc_bytes-2);
check_erased_page = handle_ecc(denali, buf, status_type);
//check_erased_page = 0;
denali_enable_dma(denali, false);
setup_ecc_the_end(denali, false); //zhouqi
if (check_erased_page)
{
read_oob_data(denali->mtd, chip->oob_poi, denali->page);
/* check ECC failures that may have occurred on erased pages */
if (!is_erased(buf, denali->mtd->writesize))
denali->mtd->ecc_stats.failed++;
if (!is_erased(chip->oob_poi, denali->mtd->oobsize))
denali->mtd->ecc_stats.failed++;
}
return 0;
}
//add by zhouqi
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page, struct mtd_oob_ops *ops)//add by zhouqi
{
struct denali_nand_info *denali = g_denali;
int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION);
if((ops->oobbuf != NULL) && ops->ooblen != 0)
{
//denali_debug("[denali.c]: read_page_ops: page = 0x%0x\n", page);//zhouqi
read_page_ops(mtd, chip, buf, page);
}
else
{
if(denali->page < 64)
{
writel(0x8, denali->flash_reg + ECC_CORRECTION);
}
//denali_debug("[denali.c]: read_page: page = 0x%0x\n", page);//zhouqi
read_page(mtd, chip, buf, page);
writel(ecc_bits, denali->flash_reg + ECC_CORRECTION);
}
update_led_twinkle();
return 0;
}
static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
struct denali_nand_info *denali = g_denali;
uint32_t status_type = 0;
uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP;
if (page != denali->page)
{
debug("IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, false, true);
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
status_type = wait_for_ready(denali, status_mask);
denali_enable_dma(denali, false);
memcpy(buf, (void*)denali->buf.dma_buf, mtd->writesize);
memcpy(chip->oob_poi, (void*)(denali->buf.dma_buf + mtd->writesize), mtd->oobsize);
return 0;
}
static uint8_t denali_read_byte(struct mtd_info *mtd)
{
struct denali_nand_info *denali = g_denali;
uint8_t result = 0xff;
if (denali->buf.head < denali->buf.tail)
result = denali->buf.buf[denali->buf.head++];
return result;
}
static uint16_t denali_read_word(struct mtd_info *mtd)
{
struct nand_chip *chip = mtd->priv;
uint16_t result = 0x0;
result = (uint16_t)(*(chip->oob_poi));
result = result << 8;
result |= (uint16_t)(*(chip->oob_poi + 1));
return result;
}
static void denali_select_chip(struct mtd_info *mtd, int chip)
{
struct denali_nand_info *denali = g_denali;
denali->flash_bank = chip;
}
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
struct denali_nand_info *denali = g_denali;
int status = denali->status;
denali->status = 0;
return status;
}
static void denali_erase(struct mtd_info *mtd, int page)
{
#if ECC_TEST_VER
return;
#endif
struct denali_nand_info *denali = g_denali;
uint32_t cmd = 0x0, status_type = 0;
/* setup page read request for access type */
cmd = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, (uint32_t)cmd, 0x1);
/* wait for erase to complete or failure to occur */
status_type = wait_for_ready(denali, INTR_STATUS__ERASE_COMP |
INTR_STATUS__ERASE_FAIL);
denali->status = (status_type & INTR_STATUS__ERASE_FAIL) ?
NAND_STATUS_FAIL : PASS;
update_led_twinkle();
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
{
struct denali_nand_info *denali = g_denali;
uint32_t addr, id;
int i;
switch (cmd) {
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
reset_buf(denali);
read_status(denali);
break;
case NAND_CMD_READID:
case NAND_CMD_PARAM:
reset_buf(denali);
/*sometimes ManufactureId read from register is not right
* e.g. some of Micron MT29F32G08QAA MLC NAND chips
* So here we send READID cmd to NAND insteand
* */
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x90);
index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++)
{
index_addr_read_data(denali,(uint32_t)addr | 2, &id);
write_byte_to_buf(denali, id);
}
break;
case NAND_CMD_READ0:
case NAND_CMD_SEQIN:
denali->page = page;
break;
case NAND_CMD_RESET:
reset_bank(denali);
break;
case NAND_CMD_READOOB:
reset_buf(denali); //zhouqi
denali_read_oob(mtd, mtd->priv, page, 0);
/* TODO: Read OOB data */
break;
default:
debug(": unsupported command"
" received 0x%x\n", cmd);
break;
}
}
/* stubs for ECC functions not used by the NAND core */
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code)
{
debug("denali_ecc_calculate called unexpectedly\n");
BUG();
return -1;
}
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
debug("denali_ecc_correct called unexpectedly\n");
BUG();
return -1;
}
static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
debug("denali_ecc_hwctl called unexpectedly\n");
BUG();
}
/* end NAND core entry points */
/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
uint32_t id_bytes[5], addr;
uint8_t i, maf_id, device_id, res_id;
struct nand_flash_device_para * table = nand_flash_para;
denali->flash_reg = (void __iomem *)NAND_FLASH_REG;
denali->flash_mem = (void __iomem *)NAND_FLASH_MEM;
detect_max_banks(denali); /* test the max banks support*/
denali_nand_reset(denali);
writel(0, denali->flash_reg + DMA_ENABLE); /* dma disable */
writel(0, denali->flash_reg + ECC_ENABLE); /* ecc disable */
writel(2, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
denali->bbtskipbytes = readl(denali->flash_reg +
SPARE_AREA_SKIP_BYTES);
writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
writel(0, denali->flash_reg + CHIP_ENABLE_DONT_CARE);
writel(1, denali->flash_reg + DEVICES_CONNECTED);
writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
/* Use read id method to get device ID and other */
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x90);
index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++)
index_addr_read_data(denali, addr | 2, &id_bytes[i]);
maf_id = id_bytes[0];
device_id = id_bytes[1];
res_id = id_bytes[2];
for (; table->manuf_id != 0; table++)
{
if ((maf_id == table->manuf_id) && (device_id == table->device_id)
&& (res_id == table->res_id) )
{
break;
}
}
g_nand_dev_info = table;
printf("maf_id=%x,dev_id=%x,res_id=%x\n",maf_id,device_id,res_id);
/* Should set value for these registers when init */
denali_nand_register_set(denali, table);
denali_nand_timing_set(denali, table);
//find_valid_banks(denali); //zhouqi for 7520 fpga
//detect_partition_feature(denali);
denali_irq_init(denali);
}
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
* but denali controller in MRST only support 15bit and 8bit ECC
* correction
* */
static struct nand_ecclayout g_nand_oob;
static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/* initialize driver data structures */
void denali_drv_init(struct denali_nand_info *denali)
{
/* indicate that MTD has not selected a valid bank yet */
denali->flash_bank = CHIP_SELECT_INVALID;
/* initialize our status_type variable to indicate no interrupts */
}
static int denali_nand_ecc_init(struct denali_nand_info *denali)
{
int i,eccpos_start;
denali->nand->ecc.mode = NAND_ECC_HW_SYNDROME;
denali->nand->ecc.size = g_nand_dev_info->ecc.sector_size;
denali->nand->ecc.steps = g_nand_dev_info->page_size/g_nand_dev_info->ecc.sector_size;
denali->nand->ecc.strength = g_nand_dev_info->ecc.strength;
switch (denali->nand->ecc.size) {
case 512:
denali->nand->ecc.bytes =
( denali->nand->ecc.strength * 13 + 15) / 16 * 2;
break;
case 1024:
denali->nand->ecc.bytes =
( denali->nand->ecc.strength * 14 + 15) / 16 * 2;
break;
default:
printk("Unsupported ECC sector size\n");
BUG_ON(1);
return -1;
}
denali->nand->ecc.total = denali->nand->ecc.bytes* denali->nand->ecc.steps;
if(g_nand_dev_info->oob_size >= (denali->nand->ecc.total+denali->bbtskipbytes + 8))
{
writel(g_nand_dev_info->ecc.strength, denali->flash_reg + ECC_CORRECTION);
g_nand_oob.eccbytes = denali->nand->ecc.total;
eccpos_start = denali->bbtskipbytes;
for (i = 0; i < g_nand_oob.eccbytes; i++)
{
g_nand_oob.eccpos[i] = eccpos_start + i;
}
g_nand_oob.oobfree[0].offset = g_nand_oob.eccbytes+denali->bbtskipbytes;
g_nand_oob.oobfree[0].length = g_nand_dev_info->oob_size -(g_nand_oob.eccbytes+denali->bbtskipbytes);
denali->nand->ecc.layout = &g_nand_oob;
}
else
{
printk("Unsupported ECC strength,please check the id table\n");
BUG();
}
return 0;
}
/* driver entry point */
int board_nand_init_denali(struct nand_chip *nand)
{
int ret = -1;
struct denali_nand_info *denali = g_denali;
denali_hw_init(denali);
denali_drv_init(denali);
denali->mtd = (struct mtd_info *)&nand_info;
denali->nand = (struct nand_chip *)&nand_chip;
denali->buf.dma_buf = (dma_addr_t)CONFIG_NAND_DMA_BUF_ADDR;
/* register the driver with the NAND core subsystem */
denali->nand->select_chip = denali_select_chip;
denali->nand->cmdfunc = denali_cmdfunc;
denali->nand->read_byte = denali_read_byte;
denali->nand->read_word = denali_read_word;
denali->nand->waitfunc = denali_waitfunc;
/* scan for NAND devices attached to the controller
* this is the first stage in a two step process to register
* with the nand subsystem */
if (nand_scan_ident(denali->mtd, denali->total_used_banks, NULL))
{
debug("nand ident: cant ident this nand device");
return -1;
}
/* MTD supported page sizes vary by kernel. We validate our
* kernel supports the device here.
*/
if (denali->mtd->writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
{
ret = -1;
debug("Spectra: device size not supported by this version of MTD.");
return ret;
}
/* support for multi nand
* MTD known nothing about multi nand,
* so we should tell it the real pagesize
* and anything necessery
*/
denali->devnum = readl(denali->flash_reg + DEVICES_CONNECTED);
denali->nand->chipsize <<= (denali->devnum - 1);
denali->nand->page_shift += (denali->devnum - 1);
denali->nand->pagemask = (denali->nand->chipsize >> denali->nand->page_shift) - 1;
denali->nand->bbt_erase_shift += (denali->devnum - 1);
denali->nand->phys_erase_shift = denali->nand->bbt_erase_shift;
denali->nand->chip_shift += (denali->devnum - 1);
denali->mtd->writesize <<= (denali->devnum - 1);
denali->mtd->oobsize <<= (denali->devnum - 1);
denali->mtd->erasesize <<= (denali->devnum - 1);
denali->mtd->size = denali->nand->numchips * denali->nand->chipsize;
denali->bbtskipbytes *= denali->devnum;
/* second stage of the NAND scan
* this stage requires information regarding ECC and
* bad block management. */
/* Bad block management */
denali->nand->bbt_td = &bbt_main_descr;
denali->nand->bbt_md = &bbt_mirror_descr;
/* skip the scan for now until we have OOB read and write support */
denali->nand->options |= NAND_USE_FLASH_BBT;//NAND_SKIP_BBTSCAN
// init ecc
denali_nand_ecc_init(denali);
/* Let driver know the total blocks number and
* how many blocks contained by each nand chip.
* blksperchip will help driver to know how many
* blocks is taken by FW.
* */
denali->totalblks = denali->mtd->size >> denali->nand->phys_erase_shift;
denali->blksperchip = denali->totalblks / denali->nand->numchips;
/* These functions are required by the NAND core framework, otherwise,
* the NAND core will assert. However, we don't need them, so we'll stub
* them out. */
denali->nand->ecc.calculate = denali_ecc_calculate;
denali->nand->ecc.correct = denali_ecc_correct;
denali->nand->ecc.hwctl = denali_ecc_hwctl;
/* override the default read operations */
denali->nand->ecc.read_page = denali_read_page;
denali->nand->ecc.read_page_raw = denali_read_page_raw;
denali->nand->ecc.write_page = denali_write_page;
denali->nand->ecc.write_page_raw = denali_write_page_raw;
denali->nand->ecc.read_oob = denali_read_oob;
denali->nand->ecc.write_oob = denali_write_oob;
denali->nand->erase_cmd = denali_erase;
if (nand_scan_tail(denali->mtd))
{
ret = -1;
}
return 0;
}