| /* |
| * NAND Flash Controller Device Driver |
| * Copyright © 2009-2010, Intel Corporation and its suppliers. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program; if not, write to the Free Software Foundation, Inc., |
| * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| * |
| */ |
| #include <malloc.h> |
| #include <asm/io.h> |
| #include <linux/mtd/mtd.h> |
| #include <asm-generic/ioctl.h> |
| #include <config.h> |
| #include <common.h> |
| #include <command.h> |
| #include <asm/arch/nand.h> |
| #include <linux/mtd/nand.h> |
| #include "denali.h" |
| #include <asm/arch/lsp_crpm.h> |
| #include <boot_mode.h> |
| |
| |
| /* DEBUG */ |
| #if DENALI_DEBUG |
| #define denali_debug(fmt,args...) printf (fmt ,##args) |
| #define denali_debugX(level,fmt,args...) if (DEBUG>=level) printf(fmt,##args); |
| #else |
| #define denali_debug(fmt,args...) |
| #define denali_debugX(level,fmt,args...) |
| #endif /* DEBUG */ |
| |
| |
| |
| /* We define a module parameter that allows the user to override |
| * the hardware and decide what timing mode should be used. |
| */ |
| #define NAND_DEFAULT_TIMINGS -1 |
| |
| //static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; |
| |
| /* We define a macro here that combines all interrupts this driver uses into |
| * a single constant value, for convenience. */ |
| #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ |
| INTR_STATUS__ECC_ERR | \ |
| INTR_STATUS__PROGRAM_FAIL | \ |
| INTR_STATUS__LOAD_COMP | \ |
| INTR_STATUS__PROGRAM_COMP | \ |
| INTR_STATUS__TIME_OUT | \ |
| INTR_STATUS__ERASE_FAIL | \ |
| INTR_STATUS__RST_COMP | \ |
| INTR_STATUS__ERASE_COMP) |
| |
| /* indicates whether or not the internal value for the flash bank is |
| * valid or not */ |
| #define CHIP_SELECT_INVALID -1 |
| |
| #define SUPPORT_8BITECC 1 |
| |
| /* This macro divides two integers and rounds fractional values up |
| * to the nearest integer value. */ |
| #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) |
| |
| /* this macro allows us to convert from an MTD structure to our own |
| * device context (denali) structure. |
| */ |
| //#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) |
| |
| /* These constants are defined by the driver to enable common driver |
| * configuration options. */ |
| #define SPARE_ACCESS 0x41 |
| #define MAIN_ACCESS 0x42 |
| #define MAIN_SPARE_ACCESS 0x43 |
| |
| #define DENALI_READ 0 |
| #define DENALI_WRITE 0x100 |
| |
| /* types of device accesses. We can issue commands and get status */ |
| #define COMMAND_CYCLE 0 |
| #define ADDR_CYCLE 1 |
| #define STATUS_CYCLE 2 |
| |
| /* this is a helper macro that allows us to |
| * format the bank into the proper bits for the controller */ |
| #define BANK(x) ((x) << 24) |
| |
| #define true 1 |
| #define false 0 |
| |
| extern struct nand_flash_device_para nand_flash_para[]; |
| extern struct mtd_info nand_info[]; |
| extern struct nand_chip nand_chip[]; |
| extern int flash_dmabuf_disable_flag; |
| |
| |
| struct denali_nand_info denali_info = {0}; |
| struct denali_nand_info *g_denali = &denali_info; |
| struct nand_flash_device_para *g_nand_dev_info = NULL; |
| |
| /* forward declarations */ |
| //static void clear_interrupts(struct denali_nand_info *denali); |
| //static void denali_irq_enable(struct denali_nand_info *denali, |
| // uint32_t int_mask); |
| //static uint32_t read_interrupt_status(struct denali_nand_info *denali); |
| |
| /* Certain operations for the denali NAND controller use |
| * an indexed mode to read/write data. The operation is |
| * performed by writing the address value of the command |
| * to the device memory followed by the data. This function |
| * abstracts this common operation. |
| */ |
| static void index_addr(struct denali_nand_info *denali, |
| uint32_t address, uint32_t data) |
| { |
| writel(address, denali->flash_mem); |
| writel(data, denali->flash_mem + 0x10); |
| } |
| |
| /* Perform an indexed read of the device */ |
| static void index_addr_read_data(struct denali_nand_info *denali, |
| uint32_t address, uint32_t *pdata) |
| { |
| writel(address, denali->flash_mem); |
| *pdata = readl(denali->flash_mem + 0x10); |
| } |
| |
| /* We need to buffer some data for some of the NAND core routines. |
| * The operations manage buffering that data. */ |
| static void reset_buf(struct denali_nand_info *denali) |
| { |
| denali->buf.head = denali->buf.tail = 0; |
| } |
| |
| static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) |
| { |
| BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); |
| denali->buf.buf[denali->buf.tail++] = byte; |
| } |
| |
| /* reads the status of the device */ |
| static void read_status(struct denali_nand_info *denali) |
| { |
| uint32_t status, addr; |
| addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, (uint32_t)addr | 0, 0x70); |
| index_addr_read_data(denali,(uint32_t)addr | 2, &status); |
| write_byte_to_buf(denali, status); |
| } |
| |
| /* resets a specific device connected to the core */ |
| static void reset_bank(struct denali_nand_info *denali) |
| { |
| // uint32_t status_type = 0; |
| // uint32_t status_mask = INTR_STATUS__RST_COMP | |
| // INTR_STATUS__TIME_OUT; |
| |
| // clear_interrupts(denali); |
| |
| writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); |
| |
| while (!(readl(denali->flash_reg + |
| INTR_STATUS(denali->flash_bank)) & |
| (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) |
| { |
| |
| if (readl(denali->flash_reg + INTR_STATUS(denali->flash_bank)) & |
| INTR_STATUS__TIME_OUT) |
| { |
| debug("NAND Reset operation timed out on bank %d\n", denali->flash_bank); |
| } |
| } |
| } |
| |
| /* Reset the flash controller */ |
| static uint16_t denali_nand_reset(struct denali_nand_info *denali) |
| { |
| uint32_t i; |
| |
| for (i = 0 ; i < denali->max_banks; i++) |
| writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| denali->flash_reg + INTR_STATUS(i)); |
| |
| for (i = 0 ; i < denali->max_banks; i++) |
| { |
| writel(1 << i, denali->flash_reg + DEVICE_RESET); |
| while (!(readl(denali->flash_reg + |
| INTR_STATUS(i)) & |
| (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))); //zhouqi fpga 4.27 |
| |
| if (readl(denali->flash_reg + INTR_STATUS(i)) & |
| INTR_STATUS__TIME_OUT) |
| debug("NAND Reset operation timed out on bank %d\n", i); |
| } |
| |
| for (i = 0; i < denali->max_banks; i++) |
| writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| denali->flash_reg + INTR_STATUS(i)); |
| |
| return PASS; |
| } |
| |
| |
| /* determines how many NAND chips are connected to the controller. Note for |
| * Intel CE4100 devices we don't support more than one device. |
| */ |
| #if 0 |
| static void find_valid_banks(struct denali_nand_info *denali) |
| { |
| uint32_t id[denali->max_banks]; |
| int i; |
| |
| denali->total_used_banks = 1; |
| for (i = 0; i < denali->max_banks; i++) |
| { |
| index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); |
| index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); |
| index_addr_read_data(denali, |
| (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); |
| |
| debug("Return 1st ID for bank[%d]: %x\n", i, id[i]); |
| |
| if (i == 0) |
| { |
| if (!(id[i] & 0x0ff)) |
| break; /* WTF? */ |
| } |
| else |
| { |
| if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) |
| denali->total_used_banks++; |
| else |
| break; |
| } |
| } |
| debug( "denali->total_used_banks: %d\n", denali->total_used_banks); |
| } |
| #endif |
| /* |
| * Use the configuration feature register to determine the maximum number of |
| * banks that the hardware supports. |
| */ |
| static void detect_max_banks(struct denali_nand_info *denali) |
| { |
| //uint32_t features = readl(denali->flash_reg + FEATURES); |
| |
| //denali->max_banks = 2 << (features & FEATURES__N_BANKS); |
| denali->max_banks = 1; //zhouqi for fpge 4.27 and for evb 7.19 |
| } |
| |
| |
| static uint32_t detect_nand_bus_freq(void) |
| { |
| uint32_t clk_reg = 0; |
| |
| clk_reg = readl(0x01306050); |
| clk_reg &= 0xffffcfff; /*MOD_CLK_SEL[13:12]=00,7520v2 NAND 104MHz*/ |
| writel(clk_reg, 0x01306050); |
| if((((readl(0x01306050))>>12) & 0x3) == 0) |
| return 104; |
| else |
| return 26; |
| } |
| |
| #if 0 |
| static void detect_partition_feature(struct denali_nand_info *denali) |
| { |
| /* For MRST platform, denali->fwblks represent the |
| * number of blocks firmware is taken, |
| * FW is in protect partition and MTD driver has no |
| * permission to access it. So let driver know how many |
| * blocks it can't touch. |
| * */ |
| if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { |
| if ((readl(denali->flash_reg + PERM_SRC_ID(1)) & |
| PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { |
| denali->fwblks = |
| ((readl(denali->flash_reg + MIN_MAX_BANK(1)) & |
| MIN_MAX_BANK__MIN_VALUE) * |
| denali->blksperchip) |
| + |
| (readl(denali->flash_reg + MIN_BLK_ADDR(1)) & |
| MIN_BLK_ADDR__VALUE); |
| } else |
| denali->fwblks = SPECTRA_START_BLOCK; |
| } else |
| denali->fwblks = SPECTRA_START_BLOCK; |
| } |
| #endif |
| |
| static void denali_nand_register_set(struct denali_nand_info *denali, |
| struct nand_flash_device_para * table) |
| { |
| writel(table->pages_per_block, denali->flash_reg + PAGES_PER_BLOCK); |
| writel(table->bus_num, denali->flash_reg + DEVICE_WIDTH); |
| writel(table->page_size, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); |
| writel(table->oob_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| |
| if(table->row_addr_num == 2) |
| writel(1, denali->flash_reg + TWO_ROW_ADDR_CYCLES); |
| else |
| writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); |
| |
| writel(table->page_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); |
| writel(table->oob_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| writel(1, denali->flash_reg + ECC_ENABLE); |
| |
| |
| } |
| |
| |
| static void denali_nand_timing_set(struct denali_nand_info *denali, |
| struct nand_flash_device_para * table) |
| { |
| uint32_t bus_freq; |
| struct nand_flash_timing * timing = NULL; |
| |
| timing = &(table->nand_timeing); |
| bus_freq = detect_nand_bus_freq(); |
| writel(((timing->Twhr * bus_freq)/1000+2) | (((timing->Trr1 * bus_freq)/1000+2)<<8), |
| denali->flash_reg + WE_2_RE); |
| writel(((timing->Tadl * bus_freq)/1000+2) | (((timing->Trr2 * bus_freq)/1000+2)<<8), |
| denali->flash_reg + ADDR_2_DATA); |
| writel((timing->Trhw * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); |
| writel((timing->Trp * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); |
| writel((timing->Treh * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); |
| writel((timing->Tcs * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); |
| writel((timing->Trhz * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); |
| } |
| |
| static void denali_set_intr_modes(struct denali_nand_info *denali, |
| uint16_t INT_ENABLE) |
| { |
| if (INT_ENABLE) |
| writel(1, denali->flash_reg + GLOBAL_INT_ENABLE); |
| else |
| writel(0, denali->flash_reg + GLOBAL_INT_ENABLE); |
| } |
| |
| /* validation function to verify that the controlling software is making |
| * a valid request |
| */ |
| static inline uint32_t is_flash_bank_valid(int flash_bank) |
| { |
| return (flash_bank >= 0 && flash_bank < 4); |
| } |
| |
| static void denali_irq_init(struct denali_nand_info *denali) |
| { |
| uint32_t int_mask = 0; |
| int i; |
| |
| /* Disable global interrupts */ |
| denali_set_intr_modes(denali, false); |
| |
| int_mask = DENALI_IRQ_ALL; |
| |
| /* Clear all status bits */ |
| for (i = 0; i < denali->max_banks; ++i) |
| writel(0xFFFF, denali->flash_reg + INTR_STATUS(i)); |
| } |
| |
| #define BANK(x) ((x) << 24) |
| |
| static uint32_t wait_for_ready(struct denali_nand_info *denali, uint32_t status_type) |
| { |
| uint32_t status = 0; |
| |
| while (!(readl(denali->flash_reg + |
| INTR_STATUS(denali->flash_bank)) & status_type)); |
| status = readl(denali->flash_reg + INTR_STATUS(denali->flash_bank)); |
| |
| #if 0 |
| while (!(readl(0x1207410) & status_type)); |
| status = readl(0x1207410); |
| #endif |
| |
| if (status & INTR_STATUS__ECC_ERR ) |
| { |
| printf (" Deanli Nand Failed: ECC Error\n"); |
| } |
| if (status & INTR_STATUS__TIME_OUT) |
| { |
| printf (" Deanli Nand Failed: Time out\n"); |
| } |
| if (status & INTR_STATUS__PROGRAM_FAIL) |
| { |
| printf (" Deanli Nand Failed: Program Fail\n"); |
| } |
| |
| writew(0xffff, denali->flash_reg + INTR_STATUS(denali->flash_bank)); |
| return status; |
| } |
| |
| /* This helper function setups the registers for ECC and whether or not |
| * the spare area will be transferred. */ |
| static void setup_ecc_for_xfer(struct denali_nand_info *denali, uint32_t ecc_en,uint32_t transfer_spare) |
| { |
| int ecc_en_flag = 0, transfer_spare_flag = 0; |
| #if ECC_TEST_VER |
| ecc_en_flag = 0; |
| #else |
| /* set ECC, transfer spare bits if needed */ |
| ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; |
| #endif |
| transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; |
| |
| /* Enable spare area/ECC per user's request. */ |
| writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE); |
| writel(transfer_spare_flag, |
| denali->flash_reg + TRANSFER_SPARE_REG); |
| } |
| |
| |
| static void setup_ecc_the_end(struct denali_nand_info *denali, uint32_t ecc_en) |
| { |
| int ecc_en_flag = 0; |
| |
| /* set ECC, transfer spare bits if needed */ |
| ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; |
| |
| /* Enable spare area/ECC per user's request. */ |
| writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE); |
| } |
| |
| |
| /* sends a pipeline command operation to the controller. See the Denali NAND |
| * controller's user guide for more information (section 4.2.3.6). |
| */ |
| static int denali_send_pipeline_cmd(struct denali_nand_info *denali, |
| uint32_t ecc_en, |
| uint32_t transfer_spare, |
| int access_type, |
| int op) |
| { |
| int status = PASS; |
| uint32_t addr = 0x0, cmd = 0x0, page_count = 1, status_type = 0, |
| status_mask = 0; |
| |
| if (op == DENALI_READ) |
| status_mask = INTR_STATUS__LOAD_COMP; |
| else if (op == DENALI_WRITE) |
| status_mask = 0; |
| else |
| BUG(); |
| |
| setup_ecc_for_xfer(denali, ecc_en, transfer_spare); |
| |
| addr = BANK(denali->flash_bank) | denali->page; |
| |
| if (op == DENALI_WRITE && access_type != SPARE_ACCESS) |
| { |
| cmd = MODE_01 | addr; |
| writel(cmd, denali->flash_mem); |
| } |
| else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) |
| { |
| /* read spare area */ |
| cmd = MODE_10 | addr; |
| index_addr(denali, (uint32_t)cmd, access_type); |
| |
| cmd = MODE_01 | addr; |
| writel(cmd, denali->flash_mem); |
| } |
| else if (op == DENALI_READ) |
| { |
| /* setup page read request for access type */ |
| cmd = MODE_10 | addr; |
| index_addr(denali, (uint32_t)cmd, access_type); |
| |
| /* page 33 of the NAND controller spec indicates we should not |
| use the pipeline commands in Spare area only mode. So we |
| don't. |
| */ |
| if (access_type == SPARE_ACCESS) |
| { |
| cmd = MODE_01 | addr; |
| writel(cmd, denali->flash_mem); |
| } |
| else |
| { |
| index_addr(denali, (uint32_t)cmd, |
| 0x2000 | op | page_count); |
| |
| /* wait for command to be accepted |
| * can always use status0 bit as the |
| * mask is identical for each |
| * bank. */ |
| status_type = wait_for_ready(denali, status_mask); |
| |
| if (status_type == 0) |
| { |
| debug("cmd, page, addr on timeout " |
| "(0x%x, 0x%x, 0x%x)\n", |
| cmd, denali->page, addr); |
| status = FAIL; |
| } |
| else |
| { |
| cmd = MODE_01 | addr; |
| writel(cmd, denali->flash_mem); |
| } |
| } |
| } |
| return status; |
| } |
| |
| /* helper function that simply writes a buffer to the flash */ |
| static int write_data_to_flash_mem(struct denali_nand_info *denali, |
| const uint8_t *buf, |
| int len) |
| { |
| uint32_t i = 0, *buf32; |
| |
| /* verify that the len is a multiple of 4. see comment in |
| * read_data_from_flash_mem() */ |
| BUG_ON((len % 4) != 0); |
| |
| /* write the data to the flash memory */ |
| buf32 = (uint32_t *)buf; |
| for (i = 0; i < len / 4; i++) |
| writel(*buf32++, denali->flash_mem + 0x10); |
| return i*4; /* intent is to return the number of bytes read */ |
| } |
| |
| /* helper function that simply reads a buffer from the flash */ |
| static int read_data_from_flash_mem(struct denali_nand_info *denali, |
| uint8_t *buf, |
| int len) |
| { |
| uint32_t i = 0, *buf32; |
| |
| /* we assume that len will be a multiple of 4, if not |
| * it would be nice to know about it ASAP rather than |
| * have random failures... |
| * This assumption is based on the fact that this |
| * function is designed to be used to read flash pages, |
| * which are typically multiples of 4... |
| */ |
| |
| BUG_ON((len % 4) != 0); |
| |
| /* transfer the data from the flash */ |
| buf32 = (uint32_t *)buf; |
| for (i = 0; i < len / 4; i++) |
| *buf32++ = readl(denali->flash_mem + 0x10); |
| return i*4; /* intent is to return the number of bytes read */ |
| } |
| |
| /* writes OOB data to the device */ |
| static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = g_denali; |
| uint32_t status_type = 0; |
| uint32_t status_mask = INTR_STATUS__PROGRAM_COMP | |
| INTR_STATUS__PROGRAM_FAIL; |
| int status = 0, addr = 0x0, cmd = 0x0; |
| |
| denali->page = page; |
| |
| /* Modified by zhouqi for xxx, 2013/09/03 */ |
| if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| DENALI_WRITE) == PASS) |
| { |
| write_data_to_flash_mem(denali, buf, mtd->oobsize); |
| |
| /* wait for operation to complete */ |
| status_type = wait_for_ready(denali, status_mask); |
| |
| if (status_type & INTR_STATUS__PROGRAM_FAIL) //zhouqi |
| { |
| debug("OOB write failed\n"); |
| status = -1; |
| } |
| } |
| else |
| { |
| debug("unable to send pipeline command\n"); |
| status = -1; |
| } |
| |
| /* Added by zhouqi for xxx, 2013/09/03 */ |
| /* We set the device back to MAIN_ACCESS here as I observed |
| * instability with the controller if you do a block erase |
| * and the last transaction was a SPARE_ACCESS. Block erase |
| * is reliable (according to the MTD test infrastructure) |
| * if you are in MAIN_ACCESS. |
| */ |
| addr = BANK(denali->flash_bank) | denali->page; |
| cmd = MODE_10 | addr; |
| index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); |
| /* End added. zhouqi, 2013/09/03 */ |
| |
| return status; |
| } |
| |
| /* reads OOB data from the device */ |
| static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = g_denali; |
| uint32_t status_mask = INTR_STATUS__LOAD_COMP | INTR_STATUS__TIME_OUT, //zhouqi |
| status_type = 0, addr = 0x0, cmd = 0x0; |
| |
| denali->page = page; |
| |
| if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| DENALI_READ) == PASS) |
| { |
| read_data_from_flash_mem(denali, buf, mtd->oobsize); |
| |
| /* wait for command to be accepted |
| * can always use status0 bit as the mask is identical for each |
| * bank. */ |
| status_type = wait_for_ready(denali, status_mask); |
| |
| if (status_type & INTR_STATUS__TIME_OUT) |
| debug("page on OOB timeout %d\n",denali->page); |
| |
| /* We set the device back to MAIN_ACCESS here as I observed |
| * instability with the controller if you do a block erase |
| * and the last transaction was a SPARE_ACCESS. Block erase |
| * is reliable (according to the MTD test infrastructure) |
| * if you are in MAIN_ACCESS. |
| */ |
| addr = BANK(denali->flash_bank) | denali->page; |
| cmd = MODE_10 | addr; |
| index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); |
| } |
| } |
| |
| /* this function examines buffers to see if they contain data that |
| * indicate that the buffer is part of an erased region of flash. |
| */ |
| uint32_t is_erased(uint8_t *buf, int len) |
| { |
| int i = 0; |
| for (i = 0; i < len; i++) |
| if (buf[i] != 0xFF) |
| return false; |
| return true; |
| } |
| #define ECC_SECTOR_SIZE 512 |
| |
| #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) |
| #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) |
| #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) |
| #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE)) |
| #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) |
| #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) |
| |
| static uint32_t handle_ecc(struct denali_nand_info *denali, uint8_t *buf, |
| uint32_t status_type) |
| { |
| int check_erased_page = 0; |
| uint32_t err_correction_value = 0; |
| uint32_t err_correction_info = 0; |
| |
| #if 1 |
| /*zx297520 use*/ |
| if (status_type & INTR_STATUS__ECC_ERR) |
| { |
| check_erased_page = 1; |
| |
| } |
| else |
| { |
| |
| switch(denali->flash_bank) |
| { |
| case 0: |
| err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B01); |
| err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B0; |
| break; |
| |
| case 1: |
| err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B01); |
| err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B1)>>8; |
| break; |
| |
| case 2: |
| err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B23); |
| err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B2; |
| break; |
| |
| case 3: |
| err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B23); |
| err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B3)>>8; |
| break; |
| |
| default: |
| break; |
| |
| } |
| if(err_correction_value) |
| printk("correct %d bit errors on page %x.\n",err_correction_value,denali->page); |
| |
| |
| } |
| return check_erased_page; |
| #else |
| /* read the ECC errors. we'll ignore them for now */ |
| uint32_t err_address = 0, err_correction_info = 0; |
| uint32_t err_byte = 0, err_sector = 0, err_device = 0; |
| uint32_t err_correction_value = 0; |
| denali_set_intr_modes(denali, false); |
| |
| do |
| { |
| err_address = readl(denali->flash_reg + |
| ECC_ERROR_ADDRESS); |
| err_sector = ECC_SECTOR(err_address); |
| err_byte = ECC_BYTE(err_address); |
| |
| err_correction_info = readl(denali->flash_reg + |
| ERR_CORRECTION_INFO); |
| err_correction_value = |
| ECC_CORRECTION_VALUE(err_correction_info); |
| err_device = ECC_ERR_DEVICE(err_correction_info); |
| |
| if (ECC_ERROR_CORRECTABLE(err_correction_info)) |
| { |
| /* If err_byte is larger than ECC_SECTOR_SIZE, |
| * means error happened in OOB, so we ignore |
| * it. It's no need for us to correct it |
| * err_device is represented the NAND error |
| * bits are happened in if there are more |
| * than one NAND connected. |
| * */ |
| if (err_byte < ECC_SECTOR_SIZE) |
| { |
| int offset; |
| offset = (err_sector * |
| ECC_SECTOR_SIZE + |
| err_byte) * |
| denali->devnum + |
| err_device; |
| /* correct the ECC error */ |
| buf[offset] ^= err_correction_value; |
| denali->mtd->ecc_stats.corrected++; |
| } |
| } else { |
| /* if the error is not correctable, need to |
| * look at the page to see if it is an erased |
| * page. if so, then it's not a real ECC error |
| * */ |
| check_erased_page = true; |
| } |
| } while (!ECC_LAST_ERR(err_correction_info)); |
| /* Once handle all ecc errors, controller will triger |
| * a ECC_TRANSACTION_DONE interrupt, so here just wait |
| * for a while for this interrupt |
| * */ |
| while (!(read_interrupt_status(denali) & |
| INTR_STATUS__ECC_ERR)) |
| clear_interrupts(denali); |
| denali_set_intr_modes(denali, false); |
| #endif |
| } |
| |
| |
| |
| |
| /* programs the controller to either enable/disable DMA transfers */ |
| static void denali_enable_dma(struct denali_nand_info *denali, uint32_t en) |
| { |
| uint32_t reg_val = 0x0; |
| |
| if (en) |
| reg_val = DMA_ENABLE__FLAG; |
| |
| writel(reg_val, denali->flash_reg + DMA_ENABLE); |
| readl(denali->flash_reg + DMA_ENABLE); |
| } |
| |
| /* setups the HW to perform the data DMA */ |
| static void denali_setup_dma(struct denali_nand_info *denali, int op) |
| |
| { |
| uint32_t mode = 0x0; |
| const int page_count = 1; |
| dma_addr_t addr = denali->buf.dma_buf; |
| |
| mode = MODE_10 | BANK(denali->flash_bank); |
| |
| /* DMA is a four step process */ |
| |
| /* 1. setup transfer type and # of pages */ |
| index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| |
| /* 2. set memory high address bits 23:8 */ |
| index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); |
| |
| /* 3. set memory low address bits 23:8 */ |
| index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); |
| |
| /* 4. interrupt when complete, burst len = 64 bytes*/ |
| //writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4 |
| index_addr(denali, mode | 0x14000, 0x2400); //zhouqi not interrupt 0X40 |
| } |
| static void denali_setup_dma_buffer(struct denali_nand_info *denali, int op,char* buffer) |
| |
| { |
| uint32_t mode = 0x0; |
| const int page_count = 1; |
| dma_addr_t addr = buffer; |
| |
| mode = MODE_10 | BANK(denali->flash_bank); |
| |
| /* DMA is a four step process */ |
| |
| /* 1. setup transfer type and # of pages */ |
| index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| |
| /* 2. set memory high address bits 23:8 */ |
| index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); |
| |
| /* 3. set memory low address bits 23:8 */ |
| index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); |
| |
| /* 4. interrupt when complete, burst len = 64 bytes*/ |
| //writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4 |
| index_addr(denali, mode | 0x14000, 0x2400); //zhouqi not interrupt 0X40 |
| } |
| |
| |
| |
| /* add by zhouqi */ |
| #if 0 |
| static void denali_setup_dma_derect(struct denali_nand_info *denali, int op, |
| dma_addr_t addr) /* add by zhouqi */ |
| { |
| uint32_t mode = 0x0; |
| const int page_count = 1; |
| // dma_addr_t addr = denali->buf.dma_buf; |
| |
| mode = MODE_10 | BANK(denali->flash_bank); |
| |
| /* DMA is a four step process */ |
| |
| /* 1. setup transfer type and # of pages */ |
| index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| |
| /* 2. set memory high address bits 23:8 */ |
| index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); |
| |
| /* 3. set memory low address bits 23:8 */ |
| index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); |
| |
| /* 4. interrupt when complete, burst len = 64 bytes*/ |
| //writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4 |
| index_addr(denali, mode | 0x14000, 0x2400); //zhouqi not interrupt 0X40 |
| } |
| #endif |
| |
| /* writes a page. user specifies type, and this function handles the |
| * configuration details. */ |
| static void write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, uint32_t raw_xfer) |
| { |
| struct denali_nand_info *denali = g_denali; |
| |
| uint32_t status_type = 0; |
| uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP | |
| INTR_STATUS__PROGRAM_FAIL; |
| |
| /* if it is a raw xfer, we want to disable ecc, and send |
| * the spare area. |
| * !raw_xfer - enable ecc |
| * raw_xfer - transfer spare |
| */ |
| setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); |
| |
| /* copy buffer into DMA buffer */ |
| memcpy((void*)denali->buf.dma_buf, (void*)buf, mtd->writesize); |
| |
| if (raw_xfer) |
| { |
| /* transfer the data to the spare area */ |
| memcpy((void*)(denali->buf.dma_buf + mtd->writesize), |
| (void*)chip->oob_poi,mtd->oobsize); |
| } |
| |
| denali_enable_dma(denali, true); |
| |
| denali_setup_dma(denali, DENALI_WRITE); //zhouqi p779-p789 |
| |
| /* wait for operation to complete */ |
| status_type = wait_for_ready(denali, status_mask); |
| |
| if (status_type & INTR_STATUS__TIME_OUT) |
| { |
| debug("timeout on write_page (type = %d)\n", |
| raw_xfer); |
| denali->status = |
| (status_type & INTR_STATUS__PROGRAM_FAIL) ? |
| NAND_STATUS_FAIL : PASS; |
| } |
| |
| denali_enable_dma(denali, false); |
| |
| setup_ecc_the_end(denali, false); //zhouqi |
| |
| } |
| |
| //add by zhouqi |
| static void write_page_ops(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf) |
| { |
| int N,len,sector_size,ecc_bytes,i; |
| struct denali_nand_info *denali = g_denali; |
| |
| uint32_t status_type = 0; |
| uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP | |
| INTR_STATUS__PROGRAM_FAIL; |
| |
| /* if it is a raw xfer, we want to disable ecc, and send |
| * the spare area. |
| * !raw_xfer - enable ecc |
| * raw_xfer - transfer spare |
| */ |
| setup_ecc_for_xfer(denali, 1, 1); |
| memset((void *)(denali->buf.dma_buf),0xff,denali->mtd->writesize+denali->mtd->oobsize); |
| |
| sector_size = denali->nand->ecc.size; |
| ecc_bytes = denali->nand->ecc.bytes; |
| N = denali->mtd->writesize/(sector_size+ecc_bytes) + 1; |
| len = sector_size; |
| |
| for(i=0;i < N;i++) |
| { |
| if(i==N-1) |
| { |
| len = denali->mtd->writesize - (sector_size+ecc_bytes)*i; |
| } |
| |
| memcpy((void *)(denali->buf.dma_buf+(sector_size+ecc_bytes)*i), (void *)(buf+sector_size*i), len); ; |
| |
| } |
| |
| len = sector_size - len; |
| |
| memcpy((void *)(denali->buf.dma_buf + denali->mtd->writesize+2), (void *)(buf + sector_size*i -len), len); |
| memcpy((void *)(denali->buf.dma_buf+denali->mtd->writesize+2+len+ecc_bytes), (void *)(chip->oob_poi + 2+len+ecc_bytes), \ |
| denali->mtd->oobsize-2-len-ecc_bytes); |
| |
| denali_enable_dma(denali, true); |
| |
| denali_setup_dma(denali, DENALI_WRITE); |
| |
| /* wait for operation to complete */ |
| status_type = wait_for_ready(denali, status_mask); |
| |
| if (status_type & INTR_STATUS__TIME_OUT) |
| { |
| debug("timeout on write_page (type = )\n"); |
| denali->status = |
| (status_type & INTR_STATUS__PROGRAM_FAIL) ? |
| NAND_STATUS_FAIL : PASS; |
| } |
| |
| denali_enable_dma(denali, false); |
| setup_ecc_the_end(denali, false); //zhouqi |
| } |
| |
| /* NAND core entry points */ |
| |
| /* this is the callback that the NAND core calls to write a page. Since |
| * writing a page with ECC or without is similar, all the work is done |
| * by write_page above. |
| * */ |
| static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf, struct mtd_oob_ops *ops)//zhouqi add ops |
| { |
| struct denali_nand_info *denali = g_denali; |
| /* for regular page writes, we let HW handle all the ECC |
| * data written to the device. */ |
| int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION); |
| if((ops->oobbuf != NULL) && (ops->ooblen != 0)) |
| { |
| write_page_ops(mtd, chip, buf); |
| } |
| else |
| { |
| if(denali->page < 64) |
| { |
| writel(0x8, denali->flash_reg + ECC_CORRECTION); |
| } |
| write_page(mtd, chip, buf, false); |
| writel(ecc_bits, denali->flash_reg + ECC_CORRECTION); |
| } |
| update_led_twinkle(); |
| } |
| |
| /* This is the callback that the NAND core calls to write a page without ECC. |
| * raw access is similar to ECC page writes, so all the work is done in the |
| * write_page() function above. |
| */ |
| static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| const uint8_t *buf) |
| { |
| /* for raw page writes, we want to disable ECC and simply write |
| whatever data is in the buffer. */ |
| write_page(mtd, chip, buf, true); |
| } |
| |
| static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page) |
| { |
| //printk(KERN_EMERG "[denali.c] denali_write_oob: page = 0x%0x\n",page); //zhouqi |
| return write_oob_data(mtd, chip->oob_poi, page); |
| } |
| |
| static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| int page, int sndcmd) |
| { |
| //printk(KERN_EMERG "[denali.c] denali_read_oob: page = 0x%0x\n",page); //zhouqi |
| read_oob_data(mtd, chip->oob_poi, page); |
| |
| return 0; /* notify NAND core to send command to |
| NAND device. */ |
| } |
| |
| |
| static int read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = g_denali; |
| |
| uint32_t status_type = 0; |
| // uint32_t status_mask = INTR_STATUS__ECC_ERR | |
| // INTR_STATUS__ECC_ERR; |
| uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP; |
| uint32_t check_erased_page = false; |
| |
| if (page != denali->page) |
| { |
| debug("IN %s: page %d is not" |
| " equal to denali->page %d, investigate!!", |
| __func__, page, denali->page); |
| BUG(); |
| } |
| |
| setup_ecc_for_xfer(denali, true, false); |
| |
| denali_enable_dma(denali, true); |
| |
| if(flash_dmabuf_disable_flag == 1) |
| { |
| denali_setup_dma(denali, DENALI_READ); |
| /* wait for operation to complete */ |
| status_type = wait_for_ready(denali, status_mask); |
| memcpy(buf, (void *)denali->buf.dma_buf, mtd->writesize); //zhouqi -p939 |
| } |
| else |
| { |
| denali_setup_dma_buffer(denali, DENALI_READ,buf); //zhouqi |
| /* wait for operation to complete */ |
| status_type = wait_for_ready(denali, status_mask); |
| } |
| |
| check_erased_page = handle_ecc(denali, buf, status_type); |
| //check_erased_page = 0; |
| denali_enable_dma(denali, false); |
| setup_ecc_the_end(denali, false); //zhouqi |
| |
| if (check_erased_page) |
| { |
| read_oob_data(denali->mtd, chip->oob_poi, denali->page); |
| |
| if (!is_erased(buf, denali->mtd->writesize)) |
| denali->mtd->ecc_stats.failed++; |
| if (!is_erased(chip->oob_poi, denali->mtd->oobsize)) |
| denali->mtd->ecc_stats.failed++; |
| } |
| return 0; |
| } |
| |
| |
| //add by zhouqi |
| static int read_page_ops(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page) |
| { |
| int N,len,sector_size,ecc_bytes,i; |
| struct denali_nand_info *denali = g_denali; |
| |
| uint32_t status_type = 0; |
| uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP; |
| uint32_t check_erased_page = false; |
| |
| if (page != denali->page) |
| { |
| debug("IN %s: page %d is not" |
| " equal to denali->page %d, investigate!!", |
| __func__, page, denali->page); |
| BUG(); |
| } |
| |
| setup_ecc_for_xfer(denali, 1, 1); |
| |
| denali_enable_dma(denali, true); |
| |
| denali_setup_dma(denali, DENALI_READ); |
| |
| /* wait for operation to complete */ |
| status_type = wait_for_ready(denali, status_mask); |
| |
| sector_size = denali->nand->ecc.size; |
| ecc_bytes = denali->nand->ecc.bytes; |
| N = denali->mtd->writesize/(sector_size+ecc_bytes) + 1; |
| len = sector_size; |
| |
| for(i=0;i < N;i++) |
| { |
| if(i==N-1) |
| { |
| len = denali->mtd->writesize - (sector_size+ecc_bytes)*i; |
| } |
| |
| memcpy((void *)(buf+sector_size*i),(void *)( denali->buf.dma_buf + (sector_size+ecc_bytes)*i),len); |
| |
| } |
| |
| len = sector_size - len; |
| memcpy((void *)(buf + sector_size*(N-1)+len), (void *)(denali->buf.dma_buf + denali->mtd->writesize +2), len); |
| |
| memset((void *)(chip->oob_poi), 0xFF, len +ecc_bytes+2); |
| memcpy((void *)(chip->oob_poi + len+ecc_bytes+2), (void *)(denali->buf.dma_buf + denali->mtd->writesize+len+ecc_bytes+2),\ |
| denali->mtd->oobsize-len -ecc_bytes-2); |
| |
| check_erased_page = handle_ecc(denali, buf, status_type); |
| //check_erased_page = 0; |
| denali_enable_dma(denali, false); |
| setup_ecc_the_end(denali, false); //zhouqi |
| |
| if (check_erased_page) |
| { |
| read_oob_data(denali->mtd, chip->oob_poi, denali->page); |
| |
| /* check ECC failures that may have occurred on erased pages */ |
| if (!is_erased(buf, denali->mtd->writesize)) |
| denali->mtd->ecc_stats.failed++; |
| if (!is_erased(chip->oob_poi, denali->mtd->oobsize)) |
| denali->mtd->ecc_stats.failed++; |
| } |
| return 0; |
| } |
| |
| //add by zhouqi |
| static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page, struct mtd_oob_ops *ops)//add by zhouqi |
| { |
| |
| struct denali_nand_info *denali = g_denali; |
| |
| int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION); |
| |
| if((ops->oobbuf != NULL) && ops->ooblen != 0) |
| { |
| //denali_debug("[denali.c]: read_page_ops: page = 0x%0x\n", page);//zhouqi |
| read_page_ops(mtd, chip, buf, page); |
| } |
| else |
| { |
| if(denali->page < 64) |
| { |
| writel(0x8, denali->flash_reg + ECC_CORRECTION); |
| } |
| //denali_debug("[denali.c]: read_page: page = 0x%0x\n", page);//zhouqi |
| read_page(mtd, chip, buf, page); |
| writel(ecc_bits, denali->flash_reg + ECC_CORRECTION); |
| } |
| update_led_twinkle(); |
| return 0; |
| } |
| |
| static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| uint8_t *buf, int page) |
| { |
| struct denali_nand_info *denali = g_denali; |
| |
| uint32_t status_type = 0; |
| uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP; |
| |
| if (page != denali->page) |
| { |
| debug("IN %s: page %d is not" |
| " equal to denali->page %d, investigate!!", |
| __func__, page, denali->page); |
| BUG(); |
| } |
| |
| setup_ecc_for_xfer(denali, false, true); |
| denali_enable_dma(denali, true); |
| |
| denali_setup_dma(denali, DENALI_READ); |
| |
| /* wait for operation to complete */ |
| status_type = wait_for_ready(denali, status_mask); |
| |
| denali_enable_dma(denali, false); |
| |
| memcpy(buf, (void*)denali->buf.dma_buf, mtd->writesize); |
| memcpy(chip->oob_poi, (void*)(denali->buf.dma_buf + mtd->writesize), mtd->oobsize); |
| |
| return 0; |
| } |
| |
| static uint8_t denali_read_byte(struct mtd_info *mtd) |
| { |
| struct denali_nand_info *denali = g_denali; |
| uint8_t result = 0xff; |
| |
| if (denali->buf.head < denali->buf.tail) |
| result = denali->buf.buf[denali->buf.head++]; |
| |
| return result; |
| } |
| |
| static uint16_t denali_read_word(struct mtd_info *mtd) |
| { |
| struct nand_chip *chip = mtd->priv; |
| uint16_t result = 0x0; |
| |
| result = (uint16_t)(*(chip->oob_poi)); |
| result = result << 8; |
| result |= (uint16_t)(*(chip->oob_poi + 1)); |
| |
| return result; |
| } |
| |
| static void denali_select_chip(struct mtd_info *mtd, int chip) |
| { |
| struct denali_nand_info *denali = g_denali; |
| |
| denali->flash_bank = chip; |
| } |
| |
| static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| { |
| struct denali_nand_info *denali = g_denali; |
| int status = denali->status; |
| denali->status = 0; |
| |
| return status; |
| } |
| |
| static void denali_erase(struct mtd_info *mtd, int page) |
| { |
| #if ECC_TEST_VER |
| return; |
| #endif |
| struct denali_nand_info *denali = g_denali; |
| |
| uint32_t cmd = 0x0, status_type = 0; |
| |
| /* setup page read request for access type */ |
| cmd = MODE_10 | BANK(denali->flash_bank) | page; |
| index_addr(denali, (uint32_t)cmd, 0x1); |
| |
| /* wait for erase to complete or failure to occur */ |
| status_type = wait_for_ready(denali, INTR_STATUS__ERASE_COMP | |
| INTR_STATUS__ERASE_FAIL); |
| |
| denali->status = (status_type & INTR_STATUS__ERASE_FAIL) ? |
| NAND_STATUS_FAIL : PASS; |
| update_led_twinkle(); |
| } |
| |
| static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, |
| int page) |
| { |
| struct denali_nand_info *denali = g_denali; |
| uint32_t addr, id; |
| int i; |
| |
| switch (cmd) { |
| case NAND_CMD_PAGEPROG: |
| break; |
| case NAND_CMD_STATUS: |
| reset_buf(denali); |
| read_status(denali); |
| break; |
| case NAND_CMD_READID: |
| case NAND_CMD_PARAM: |
| reset_buf(denali); |
| /*sometimes ManufactureId read from register is not right |
| * e.g. some of Micron MT29F32G08QAA MLC NAND chips |
| * So here we send READID cmd to NAND insteand |
| * */ |
| addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, (uint32_t)addr | 0, 0x90); |
| index_addr(denali, (uint32_t)addr | 1, 0); |
| for (i = 0; i < 5; i++) |
| { |
| index_addr_read_data(denali,(uint32_t)addr | 2, &id); |
| write_byte_to_buf(denali, id); |
| } |
| break; |
| case NAND_CMD_READ0: |
| case NAND_CMD_SEQIN: |
| denali->page = page; |
| break; |
| case NAND_CMD_RESET: |
| reset_bank(denali); |
| break; |
| case NAND_CMD_READOOB: |
| reset_buf(denali); //zhouqi |
| denali_read_oob(mtd, mtd->priv, page, 0); |
| /* TODO: Read OOB data */ |
| break; |
| default: |
| debug(": unsupported command" |
| " received 0x%x\n", cmd); |
| break; |
| } |
| } |
| |
| /* stubs for ECC functions not used by the NAND core */ |
| static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, |
| uint8_t *ecc_code) |
| { |
| debug("denali_ecc_calculate called unexpectedly\n"); |
| BUG(); |
| return -1; |
| } |
| |
| static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, |
| uint8_t *read_ecc, uint8_t *calc_ecc) |
| { |
| debug("denali_ecc_correct called unexpectedly\n"); |
| BUG(); |
| return -1; |
| } |
| |
| static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) |
| { |
| debug("denali_ecc_hwctl called unexpectedly\n"); |
| BUG(); |
| } |
| /* end NAND core entry points */ |
| |
| |
| /* Initialization code to bring the device up to a known good state */ |
| static void denali_hw_init(struct denali_nand_info *denali) |
| { |
| uint32_t id_bytes[5], addr; |
| uint8_t i, maf_id, device_id, res_id; |
| struct nand_flash_device_para * table = nand_flash_para; |
| |
| denali->flash_reg = (void __iomem *)NAND_FLASH_REG; |
| denali->flash_mem = (void __iomem *)NAND_FLASH_MEM; |
| |
| detect_max_banks(denali); /* test the max banks support*/ |
| denali_nand_reset(denali); |
| writel(0, denali->flash_reg + DMA_ENABLE); /* dma disable */ |
| writel(0, denali->flash_reg + ECC_ENABLE); /* ecc disable */ |
| writel(2, denali->flash_reg + SPARE_AREA_SKIP_BYTES); |
| denali->bbtskipbytes = readl(denali->flash_reg + |
| SPARE_AREA_SKIP_BYTES); |
| writel(0x0F, denali->flash_reg + RB_PIN_ENABLED); |
| writel(0, denali->flash_reg + CHIP_ENABLE_DONT_CARE); |
| writel(1, denali->flash_reg + DEVICES_CONNECTED); |
| |
| |
| writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER); |
| |
| |
| /* Use read id method to get device ID and other */ |
| addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| index_addr(denali, (uint32_t)addr | 0, 0x90); |
| index_addr(denali, (uint32_t)addr | 1, 0); |
| for (i = 0; i < 5; i++) |
| index_addr_read_data(denali, addr | 2, &id_bytes[i]); |
| maf_id = id_bytes[0]; |
| device_id = id_bytes[1]; |
| res_id = id_bytes[2]; |
| |
| for (; table->manuf_id != 0; table++) |
| { |
| if ((maf_id == table->manuf_id) && (device_id == table->device_id) |
| && (res_id == table->res_id) ) |
| { |
| break; |
| } |
| } |
| g_nand_dev_info = table; |
| printf("maf_id=%x,dev_id=%x,res_id=%x\n",maf_id,device_id,res_id); |
| /* Should set value for these registers when init */ |
| denali_nand_register_set(denali, table); |
| denali_nand_timing_set(denali, table); |
| //find_valid_banks(denali); //zhouqi for 7520 fpga |
| //detect_partition_feature(denali); |
| denali_irq_init(denali); |
| |
| } |
| |
| /* Althogh controller spec said SLC ECC is forceb to be 4bit, |
| * but denali controller in MRST only support 15bit and 8bit ECC |
| * correction |
| * */ |
| |
| static struct nand_ecclayout g_nand_oob; |
| |
| static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; |
| static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| |
| static struct nand_bbt_descr bbt_main_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 8, |
| .len = 4, |
| .veroffs = 12, |
| .maxblocks = 4, |
| .pattern = bbt_pattern, |
| }; |
| |
| static struct nand_bbt_descr bbt_mirror_descr = { |
| .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| .offs = 8, |
| .len = 4, |
| .veroffs = 12, |
| .maxblocks = 4, |
| .pattern = mirror_pattern, |
| }; |
| |
| /* initialize driver data structures */ |
| void denali_drv_init(struct denali_nand_info *denali) |
| { |
| /* indicate that MTD has not selected a valid bank yet */ |
| denali->flash_bank = CHIP_SELECT_INVALID; |
| |
| /* initialize our status_type variable to indicate no interrupts */ |
| } |
| |
| static int denali_nand_ecc_init(struct denali_nand_info *denali) |
| { |
| int i,eccpos_start; |
| denali->nand->ecc.mode = NAND_ECC_HW_SYNDROME; |
| denali->nand->ecc.size = g_nand_dev_info->ecc.sector_size; |
| denali->nand->ecc.steps = g_nand_dev_info->page_size/g_nand_dev_info->ecc.sector_size; |
| denali->nand->ecc.strength = g_nand_dev_info->ecc.strength; |
| |
| switch (denali->nand->ecc.size) { |
| case 512: |
| denali->nand->ecc.bytes = |
| ( denali->nand->ecc.strength * 13 + 15) / 16 * 2; |
| break; |
| case 1024: |
| denali->nand->ecc.bytes = |
| ( denali->nand->ecc.strength * 14 + 15) / 16 * 2; |
| break; |
| default: |
| printk("Unsupported ECC sector size\n"); |
| |
| BUG_ON(1); |
| return -1; |
| } |
| |
| denali->nand->ecc.total = denali->nand->ecc.bytes* denali->nand->ecc.steps; |
| if(g_nand_dev_info->oob_size >= (denali->nand->ecc.total+denali->bbtskipbytes + 8)) |
| { |
| |
| writel(g_nand_dev_info->ecc.strength, denali->flash_reg + ECC_CORRECTION); |
| g_nand_oob.eccbytes = denali->nand->ecc.total; |
| |
| eccpos_start = denali->bbtskipbytes; |
| |
| for (i = 0; i < g_nand_oob.eccbytes; i++) |
| { |
| g_nand_oob.eccpos[i] = eccpos_start + i; |
| } |
| |
| g_nand_oob.oobfree[0].offset = g_nand_oob.eccbytes+denali->bbtskipbytes; |
| g_nand_oob.oobfree[0].length = g_nand_dev_info->oob_size -(g_nand_oob.eccbytes+denali->bbtskipbytes); |
| denali->nand->ecc.layout = &g_nand_oob; |
| } |
| else |
| { |
| printk("Unsupported ECC strength,please check the id table\n"); |
| BUG(); |
| } |
| |
| |
| return 0; |
| } |
| |
| |
| /* driver entry point */ |
| int board_nand_init_denali(struct nand_chip *nand) |
| { |
| int ret = -1; |
| struct denali_nand_info *denali = g_denali; |
| |
| denali_hw_init(denali); |
| denali_drv_init(denali); |
| |
| denali->mtd = (struct mtd_info *)&nand_info; |
| denali->nand = (struct nand_chip *)&nand_chip; |
| denali->buf.dma_buf = (dma_addr_t)CONFIG_NAND_DMA_BUF_ADDR; |
| |
| /* register the driver with the NAND core subsystem */ |
| denali->nand->select_chip = denali_select_chip; |
| denali->nand->cmdfunc = denali_cmdfunc; |
| denali->nand->read_byte = denali_read_byte; |
| denali->nand->read_word = denali_read_word; |
| denali->nand->waitfunc = denali_waitfunc; |
| |
| /* scan for NAND devices attached to the controller |
| * this is the first stage in a two step process to register |
| * with the nand subsystem */ |
| |
| if (nand_scan_ident(denali->mtd, denali->total_used_banks, NULL)) |
| { |
| debug("nand ident: cant ident this nand device"); |
| return -1; |
| } |
| |
| /* MTD supported page sizes vary by kernel. We validate our |
| * kernel supports the device here. |
| */ |
| if (denali->mtd->writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) |
| { |
| ret = -1; |
| debug("Spectra: device size not supported by this version of MTD."); |
| return ret; |
| } |
| |
| /* support for multi nand |
| * MTD known nothing about multi nand, |
| * so we should tell it the real pagesize |
| * and anything necessery |
| */ |
| denali->devnum = readl(denali->flash_reg + DEVICES_CONNECTED); |
| denali->nand->chipsize <<= (denali->devnum - 1); |
| denali->nand->page_shift += (denali->devnum - 1); |
| denali->nand->pagemask = (denali->nand->chipsize >> denali->nand->page_shift) - 1; |
| denali->nand->bbt_erase_shift += (denali->devnum - 1); |
| denali->nand->phys_erase_shift = denali->nand->bbt_erase_shift; |
| denali->nand->chip_shift += (denali->devnum - 1); |
| denali->mtd->writesize <<= (denali->devnum - 1); |
| denali->mtd->oobsize <<= (denali->devnum - 1); |
| denali->mtd->erasesize <<= (denali->devnum - 1); |
| denali->mtd->size = denali->nand->numchips * denali->nand->chipsize; |
| denali->bbtskipbytes *= denali->devnum; |
| |
| /* second stage of the NAND scan |
| * this stage requires information regarding ECC and |
| * bad block management. */ |
| |
| /* Bad block management */ |
| denali->nand->bbt_td = &bbt_main_descr; |
| denali->nand->bbt_md = &bbt_mirror_descr; |
| |
| /* skip the scan for now until we have OOB read and write support */ |
| denali->nand->options |= NAND_USE_FLASH_BBT;//NAND_SKIP_BBTSCAN |
| |
| // init ecc |
| denali_nand_ecc_init(denali); |
| |
| /* Let driver know the total blocks number and |
| * how many blocks contained by each nand chip. |
| * blksperchip will help driver to know how many |
| * blocks is taken by FW. |
| * */ |
| denali->totalblks = denali->mtd->size >> denali->nand->phys_erase_shift; |
| denali->blksperchip = denali->totalblks / denali->nand->numchips; |
| |
| /* These functions are required by the NAND core framework, otherwise, |
| * the NAND core will assert. However, we don't need them, so we'll stub |
| * them out. */ |
| denali->nand->ecc.calculate = denali_ecc_calculate; |
| denali->nand->ecc.correct = denali_ecc_correct; |
| denali->nand->ecc.hwctl = denali_ecc_hwctl; |
| |
| /* override the default read operations */ |
| denali->nand->ecc.read_page = denali_read_page; |
| denali->nand->ecc.read_page_raw = denali_read_page_raw; |
| denali->nand->ecc.write_page = denali_write_page; |
| denali->nand->ecc.write_page_raw = denali_write_page_raw; |
| denali->nand->ecc.read_oob = denali_read_oob; |
| denali->nand->ecc.write_oob = denali_write_oob; |
| denali->nand->erase_cmd = denali_erase; |
| |
| if (nand_scan_tail(denali->mtd)) |
| { |
| ret = -1; |
| } |
| |
| return 0; |
| } |
| |