[Feature][T106]ZXW P56U09 code

Only Configure: Yes
Affected branch: master
Affected module: unknow
Is it affected on both ZXIC and MTK: only ZXIC
Self-test: No
Doc Update: No

Change-Id: I3cbd8b420271eb20c2b40ebe5c78f83059cd42f3
diff --git a/ap/os/linux/linux-3.4.x/fs/btrfs/disk-io.c b/ap/os/linux/linux-3.4.x/fs/btrfs/disk-io.c
new file mode 100644
index 0000000..7c23cd9
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/fs/btrfs/disk-io.c
@@ -0,0 +1,3687 @@
+/*
+ * Copyright (C) 2007 Oracle.  All rights reserved.
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU General Public
+ * License v2 as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public
+ * License along with this program; if not, write to the
+ * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
+ * Boston, MA 021110-1307, USA.
+ */
+
+#include <linux/fs.h>
+#include <linux/blkdev.h>
+#include <linux/scatterlist.h>
+#include <linux/swap.h>
+#include <linux/radix-tree.h>
+#include <linux/writeback.h>
+#include <linux/buffer_head.h>
+#include <linux/workqueue.h>
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+#include <linux/crc32c.h>
+#include <linux/slab.h>
+#include <linux/migrate.h>
+#include <linux/ratelimit.h>
+#include <asm/unaligned.h>
+#include "compat.h"
+#include "ctree.h"
+#include "disk-io.h"
+#include "transaction.h"
+#include "btrfs_inode.h"
+#include "volumes.h"
+#include "print-tree.h"
+#include "async-thread.h"
+#include "locking.h"
+#include "tree-log.h"
+#include "free-space-cache.h"
+#include "inode-map.h"
+#include "check-integrity.h"
+
+static struct extent_io_ops btree_extent_io_ops;
+static void end_workqueue_fn(struct btrfs_work *work);
+static void free_fs_root(struct btrfs_root *root);
+static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
+				    int read_only);
+static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
+static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
+static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
+				      struct btrfs_root *root);
+static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
+static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
+static int btrfs_destroy_marked_extents(struct btrfs_root *root,
+					struct extent_io_tree *dirty_pages,
+					int mark);
+static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
+				       struct extent_io_tree *pinned_extents);
+
+/*
+ * end_io_wq structs are used to do processing in task context when an IO is
+ * complete.  This is used during reads to verify checksums, and it is used
+ * by writes to insert metadata for new file extents after IO is complete.
+ */
+struct end_io_wq {
+	struct bio *bio;
+	bio_end_io_t *end_io;
+	void *private;
+	struct btrfs_fs_info *info;
+	int error;
+	int metadata;
+	struct list_head list;
+	struct btrfs_work work;
+};
+
+/*
+ * async submit bios are used to offload expensive checksumming
+ * onto the worker threads.  They checksum file and metadata bios
+ * just before they are sent down the IO stack.
+ */
+struct async_submit_bio {
+	struct inode *inode;
+	struct bio *bio;
+	struct list_head list;
+	extent_submit_bio_hook_t *submit_bio_start;
+	extent_submit_bio_hook_t *submit_bio_done;
+	int rw;
+	int mirror_num;
+	unsigned long bio_flags;
+	/*
+	 * bio_offset is optional, can be used if the pages in the bio
+	 * can't tell us where in the file the bio should go
+	 */
+	u64 bio_offset;
+	struct btrfs_work work;
+	int error;
+};
+
+/*
+ * Lockdep class keys for extent_buffer->lock's in this root.  For a given
+ * eb, the lockdep key is determined by the btrfs_root it belongs to and
+ * the level the eb occupies in the tree.
+ *
+ * Different roots are used for different purposes and may nest inside each
+ * other and they require separate keysets.  As lockdep keys should be
+ * static, assign keysets according to the purpose of the root as indicated
+ * by btrfs_root->objectid.  This ensures that all special purpose roots
+ * have separate keysets.
+ *
+ * Lock-nesting across peer nodes is always done with the immediate parent
+ * node locked thus preventing deadlock.  As lockdep doesn't know this, use
+ * subclass to avoid triggering lockdep warning in such cases.
+ *
+ * The key is set by the readpage_end_io_hook after the buffer has passed
+ * csum validation but before the pages are unlocked.  It is also set by
+ * btrfs_init_new_buffer on freshly allocated blocks.
+ *
+ * We also add a check to make sure the highest level of the tree is the
+ * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
+ * needs update as well.
+ */
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+# if BTRFS_MAX_LEVEL != 8
+#  error
+# endif
+
+static struct btrfs_lockdep_keyset {
+	u64			id;		/* root objectid */
+	const char		*name_stem;	/* lock name stem */
+	char			names[BTRFS_MAX_LEVEL + 1][20];
+	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
+} btrfs_lockdep_keysets[] = {
+	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
+	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
+	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
+	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
+	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
+	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
+	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
+	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
+	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
+	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
+	{ .id = 0,				.name_stem = "tree"	},
+};
+
+void __init btrfs_init_lockdep(void)
+{
+	int i, j;
+
+	/* initialize lockdep class names */
+	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
+		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
+
+		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
+			snprintf(ks->names[j], sizeof(ks->names[j]),
+				 "btrfs-%s-%02d", ks->name_stem, j);
+	}
+}
+
+void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
+				    int level)
+{
+	struct btrfs_lockdep_keyset *ks;
+
+	BUG_ON(level >= ARRAY_SIZE(ks->keys));
+
+	/* find the matching keyset, id 0 is the default entry */
+	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
+		if (ks->id == objectid)
+			break;
+
+	lockdep_set_class_and_name(&eb->lock,
+				   &ks->keys[level], ks->names[level]);
+}
+
+#endif
+
+/*
+ * extents on the btree inode are pretty simple, there's one extent
+ * that covers the entire device
+ */
+static struct extent_map *btree_get_extent(struct inode *inode,
+		struct page *page, size_t pg_offset, u64 start, u64 len,
+		int create)
+{
+	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
+	struct extent_map *em;
+	int ret;
+
+	read_lock(&em_tree->lock);
+	em = lookup_extent_mapping(em_tree, start, len);
+	if (em) {
+		em->bdev =
+			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+		read_unlock(&em_tree->lock);
+		goto out;
+	}
+	read_unlock(&em_tree->lock);
+
+	em = alloc_extent_map();
+	if (!em) {
+		em = ERR_PTR(-ENOMEM);
+		goto out;
+	}
+	em->start = 0;
+	em->len = (u64)-1;
+	em->block_len = (u64)-1;
+	em->block_start = 0;
+	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
+
+	write_lock(&em_tree->lock);
+	ret = add_extent_mapping(em_tree, em);
+	if (ret == -EEXIST) {
+		u64 failed_start = em->start;
+		u64 failed_len = em->len;
+
+		free_extent_map(em);
+		em = lookup_extent_mapping(em_tree, start, len);
+		if (em) {
+			ret = 0;
+		} else {
+			em = lookup_extent_mapping(em_tree, failed_start,
+						   failed_len);
+			ret = -EIO;
+		}
+	} else if (ret) {
+		free_extent_map(em);
+		em = NULL;
+	}
+	write_unlock(&em_tree->lock);
+
+	if (ret)
+		em = ERR_PTR(ret);
+out:
+	return em;
+}
+
+u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
+{
+	return crc32c(seed, data, len);
+}
+
+void btrfs_csum_final(u32 crc, char *result)
+{
+	put_unaligned_le32(~crc, result);
+}
+
+/*
+ * compute the csum for a btree block, and either verify it or write it
+ * into the csum field of the block.
+ */
+static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
+			   int verify)
+{
+	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
+	char *result = NULL;
+	unsigned long len;
+	unsigned long cur_len;
+	unsigned long offset = BTRFS_CSUM_SIZE;
+	char *kaddr;
+	unsigned long map_start;
+	unsigned long map_len;
+	int err;
+	u32 crc = ~(u32)0;
+	unsigned long inline_result;
+
+	len = buf->len - offset;
+	while (len > 0) {
+		err = map_private_extent_buffer(buf, offset, 32,
+					&kaddr, &map_start, &map_len);
+		if (err)
+			return 1;
+		cur_len = min(len, map_len - (offset - map_start));
+		crc = btrfs_csum_data(root, kaddr + offset - map_start,
+				      crc, cur_len);
+		len -= cur_len;
+		offset += cur_len;
+	}
+	if (csum_size > sizeof(inline_result)) {
+		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
+		if (!result)
+			return 1;
+	} else {
+		result = (char *)&inline_result;
+	}
+
+	btrfs_csum_final(crc, result);
+
+	if (verify) {
+		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
+			u32 val;
+			u32 found = 0;
+			memcpy(&found, result, csum_size);
+
+			read_extent_buffer(buf, &val, 0, csum_size);
+			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
+				       "failed on %llu wanted %X found %X "
+				       "level %d\n",
+				       root->fs_info->sb->s_id,
+				       (unsigned long long)buf->start, val, found,
+				       btrfs_header_level(buf));
+			if (result != (char *)&inline_result)
+				kfree(result);
+			return 1;
+		}
+	} else {
+		write_extent_buffer(buf, result, 0, csum_size);
+	}
+	if (result != (char *)&inline_result)
+		kfree(result);
+	return 0;
+}
+
+/*
+ * we can't consider a given block up to date unless the transid of the
+ * block matches the transid in the parent node's pointer.  This is how we
+ * detect blocks that either didn't get written at all or got written
+ * in the wrong place.
+ */
+static int verify_parent_transid(struct extent_io_tree *io_tree,
+				 struct extent_buffer *eb, u64 parent_transid,
+				 int atomic)
+{
+	struct extent_state *cached_state = NULL;
+	int ret;
+
+	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
+		return 0;
+
+	if (atomic)
+		return -EAGAIN;
+
+	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
+			 0, &cached_state);
+	if (extent_buffer_uptodate(eb) &&
+	    btrfs_header_generation(eb) == parent_transid) {
+		ret = 0;
+		goto out;
+	}
+	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
+		       "found %llu\n",
+		       (unsigned long long)eb->start,
+		       (unsigned long long)parent_transid,
+		       (unsigned long long)btrfs_header_generation(eb));
+	ret = 1;
+	clear_extent_buffer_uptodate(eb);
+out:
+	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
+			     &cached_state, GFP_NOFS);
+	return ret;
+}
+
+/*
+ * helper to read a given tree block, doing retries as required when
+ * the checksums don't match and we have alternate mirrors to try.
+ */
+static int btree_read_extent_buffer_pages(struct btrfs_root *root,
+					  struct extent_buffer *eb,
+					  u64 start, u64 parent_transid)
+{
+	struct extent_io_tree *io_tree;
+	int failed = 0;
+	int ret;
+	int num_copies = 0;
+	int mirror_num = 0;
+	int failed_mirror = 0;
+
+	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
+	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
+	while (1) {
+		ret = read_extent_buffer_pages(io_tree, eb, start,
+					       WAIT_COMPLETE,
+					       btree_get_extent, mirror_num);
+		if (!ret && !verify_parent_transid(io_tree, eb,
+						   parent_transid, 0))
+			break;
+
+		/*
+		 * This buffer's crc is fine, but its contents are corrupted, so
+		 * there is no reason to read the other copies, they won't be
+		 * any less wrong.
+		 */
+		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
+			break;
+
+		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
+					      eb->start, eb->len);
+		if (num_copies == 1)
+			break;
+
+		if (!failed_mirror) {
+			failed = 1;
+			failed_mirror = eb->read_mirror;
+		}
+
+		mirror_num++;
+		if (mirror_num == failed_mirror)
+			mirror_num++;
+
+		if (mirror_num > num_copies)
+			break;
+	}
+
+	if (failed && !ret)
+		repair_eb_io_failure(root, eb, failed_mirror);
+
+	return ret;
+}
+
+/*
+ * checksum a dirty tree block before IO.  This has extra checks to make sure
+ * we only fill in the checksum field in the first page of a multi-page block
+ */
+
+static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
+{
+	struct extent_io_tree *tree;
+	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
+	u64 found_start;
+	struct extent_buffer *eb;
+
+	tree = &BTRFS_I(page->mapping->host)->io_tree;
+
+	eb = (struct extent_buffer *)page->private;
+	if (page != eb->pages[0])
+		return 0;
+	found_start = btrfs_header_bytenr(eb);
+	if (found_start != start) {
+		WARN_ON(1);
+		return 0;
+	}
+	if (eb->pages[0] != page) {
+		WARN_ON(1);
+		return 0;
+	}
+	if (!PageUptodate(page)) {
+		WARN_ON(1);
+		return 0;
+	}
+	csum_tree_block(root, eb, 0);
+	return 0;
+}
+
+static int check_tree_block_fsid(struct btrfs_root *root,
+				 struct extent_buffer *eb)
+{
+	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
+	u8 fsid[BTRFS_UUID_SIZE];
+	int ret = 1;
+
+	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
+			   BTRFS_FSID_SIZE);
+	while (fs_devices) {
+		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
+			ret = 0;
+			break;
+		}
+		fs_devices = fs_devices->seed;
+	}
+	return ret;
+}
+
+#define CORRUPT(reason, eb, root, slot)				\
+	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
+	       "root=%llu, slot=%d\n", reason,			\
+	       (unsigned long long)btrfs_header_bytenr(eb),	\
+	       (unsigned long long)root->objectid, slot)
+
+static noinline int check_leaf(struct btrfs_root *root,
+			       struct extent_buffer *leaf)
+{
+	struct btrfs_key key;
+	struct btrfs_key leaf_key;
+	u32 nritems = btrfs_header_nritems(leaf);
+	int slot;
+
+	if (nritems == 0)
+		return 0;
+
+	/* Check the 0 item */
+	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
+	    BTRFS_LEAF_DATA_SIZE(root)) {
+		CORRUPT("invalid item offset size pair", leaf, root, 0);
+		return -EIO;
+	}
+
+	/*
+	 * Check to make sure each items keys are in the correct order and their
+	 * offsets make sense.  We only have to loop through nritems-1 because
+	 * we check the current slot against the next slot, which verifies the
+	 * next slot's offset+size makes sense and that the current's slot
+	 * offset is correct.
+	 */
+	for (slot = 0; slot < nritems - 1; slot++) {
+		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
+		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
+
+		/* Make sure the keys are in the right order */
+		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
+			CORRUPT("bad key order", leaf, root, slot);
+			return -EIO;
+		}
+
+		/*
+		 * Make sure the offset and ends are right, remember that the
+		 * item data starts at the end of the leaf and grows towards the
+		 * front.
+		 */
+		if (btrfs_item_offset_nr(leaf, slot) !=
+			btrfs_item_end_nr(leaf, slot + 1)) {
+			CORRUPT("slot offset bad", leaf, root, slot);
+			return -EIO;
+		}
+
+		/*
+		 * Check to make sure that we don't point outside of the leaf,
+		 * just incase all the items are consistent to eachother, but
+		 * all point outside of the leaf.
+		 */
+		if (btrfs_item_end_nr(leaf, slot) >
+		    BTRFS_LEAF_DATA_SIZE(root)) {
+			CORRUPT("slot end outside of leaf", leaf, root, slot);
+			return -EIO;
+		}
+	}
+
+	return 0;
+}
+
+struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
+				       struct page *page, int max_walk)
+{
+	struct extent_buffer *eb;
+	u64 start = page_offset(page);
+	u64 target = start;
+	u64 min_start;
+
+	if (start < max_walk)
+		min_start = 0;
+	else
+		min_start = start - max_walk;
+
+	while (start >= min_start) {
+		eb = find_extent_buffer(tree, start, 0);
+		if (eb) {
+			/*
+			 * we found an extent buffer and it contains our page
+			 * horray!
+			 */
+			if (eb->start <= target &&
+			    eb->start + eb->len > target)
+				return eb;
+
+			/* we found an extent buffer that wasn't for us */
+			free_extent_buffer(eb);
+			return NULL;
+		}
+		if (start == 0)
+			break;
+		start -= PAGE_CACHE_SIZE;
+	}
+	return NULL;
+}
+
+static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
+			       struct extent_state *state, int mirror)
+{
+	struct extent_io_tree *tree;
+	u64 found_start;
+	int found_level;
+	struct extent_buffer *eb;
+	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
+	int ret = 0;
+	int reads_done;
+
+	if (!page->private)
+		goto out;
+
+	tree = &BTRFS_I(page->mapping->host)->io_tree;
+	eb = (struct extent_buffer *)page->private;
+
+	/* the pending IO might have been the only thing that kept this buffer
+	 * in memory.  Make sure we have a ref for all this other checks
+	 */
+	extent_buffer_get(eb);
+
+	reads_done = atomic_dec_and_test(&eb->io_pages);
+	if (!reads_done)
+		goto err;
+
+	eb->read_mirror = mirror;
+	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
+		ret = -EIO;
+		goto err;
+	}
+
+	found_start = btrfs_header_bytenr(eb);
+	if (found_start != eb->start) {
+		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
+			       "%llu %llu\n",
+			       (unsigned long long)found_start,
+			       (unsigned long long)eb->start);
+		ret = -EIO;
+		goto err;
+	}
+	if (check_tree_block_fsid(root, eb)) {
+		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
+			       (unsigned long long)eb->start);
+		ret = -EIO;
+		goto err;
+	}
+	found_level = btrfs_header_level(eb);
+
+	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
+				       eb, found_level);
+
+	ret = csum_tree_block(root, eb, 1);
+	if (ret) {
+		ret = -EIO;
+		goto err;
+	}
+
+	/*
+	 * If this is a leaf block and it is corrupt, set the corrupt bit so
+	 * that we don't try and read the other copies of this block, just
+	 * return -EIO.
+	 */
+	if (found_level == 0 && check_leaf(root, eb)) {
+		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
+		ret = -EIO;
+	}
+
+	if (!ret)
+		set_extent_buffer_uptodate(eb);
+err:
+	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
+		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
+		btree_readahead_hook(root, eb, eb->start, ret);
+	}
+
+	if (ret)
+		clear_extent_buffer_uptodate(eb);
+	free_extent_buffer(eb);
+out:
+	return ret;
+}
+
+static int btree_io_failed_hook(struct page *page, int failed_mirror)
+{
+	struct extent_buffer *eb;
+	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
+
+	eb = (struct extent_buffer *)page->private;
+	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
+	eb->read_mirror = failed_mirror;
+	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
+		btree_readahead_hook(root, eb, eb->start, -EIO);
+	return -EIO;	/* we fixed nothing */
+}
+
+static void end_workqueue_bio(struct bio *bio, int err)
+{
+	struct end_io_wq *end_io_wq = bio->bi_private;
+	struct btrfs_fs_info *fs_info;
+
+	fs_info = end_io_wq->info;
+	end_io_wq->error = err;
+	end_io_wq->work.func = end_workqueue_fn;
+	end_io_wq->work.flags = 0;
+
+	if (bio->bi_rw & REQ_WRITE) {
+		if (end_io_wq->metadata == 1)
+			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
+					   &end_io_wq->work);
+		else if (end_io_wq->metadata == 2)
+			btrfs_queue_worker(&fs_info->endio_freespace_worker,
+					   &end_io_wq->work);
+		else
+			btrfs_queue_worker(&fs_info->endio_write_workers,
+					   &end_io_wq->work);
+	} else {
+		if (end_io_wq->metadata)
+			btrfs_queue_worker(&fs_info->endio_meta_workers,
+					   &end_io_wq->work);
+		else
+			btrfs_queue_worker(&fs_info->endio_workers,
+					   &end_io_wq->work);
+	}
+}
+
+/*
+ * For the metadata arg you want
+ *
+ * 0 - if data
+ * 1 - if normal metadta
+ * 2 - if writing to the free space cache area
+ */
+int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
+			int metadata)
+{
+	struct end_io_wq *end_io_wq;
+	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
+	if (!end_io_wq)
+		return -ENOMEM;
+
+	end_io_wq->private = bio->bi_private;
+	end_io_wq->end_io = bio->bi_end_io;
+	end_io_wq->info = info;
+	end_io_wq->error = 0;
+	end_io_wq->bio = bio;
+	end_io_wq->metadata = metadata;
+
+	bio->bi_private = end_io_wq;
+	bio->bi_end_io = end_workqueue_bio;
+	return 0;
+}
+
+unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
+{
+	unsigned long limit = min_t(unsigned long,
+				    info->workers.max_workers,
+				    info->fs_devices->open_devices);
+	return 256 * limit;
+}
+
+static void run_one_async_start(struct btrfs_work *work)
+{
+	struct async_submit_bio *async;
+	int ret;
+
+	async = container_of(work, struct  async_submit_bio, work);
+	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
+				      async->mirror_num, async->bio_flags,
+				      async->bio_offset);
+	if (ret)
+		async->error = ret;
+}
+
+static void run_one_async_done(struct btrfs_work *work)
+{
+	struct btrfs_fs_info *fs_info;
+	struct async_submit_bio *async;
+	int limit;
+
+	async = container_of(work, struct  async_submit_bio, work);
+	fs_info = BTRFS_I(async->inode)->root->fs_info;
+
+	limit = btrfs_async_submit_limit(fs_info);
+	limit = limit * 2 / 3;
+
+	atomic_dec(&fs_info->nr_async_submits);
+
+	if (atomic_read(&fs_info->nr_async_submits) < limit &&
+	    waitqueue_active(&fs_info->async_submit_wait))
+		wake_up(&fs_info->async_submit_wait);
+
+	/* If an error occured we just want to clean up the bio and move on */
+	if (async->error) {
+		bio_endio(async->bio, async->error);
+		return;
+	}
+
+	async->submit_bio_done(async->inode, async->rw, async->bio,
+			       async->mirror_num, async->bio_flags,
+			       async->bio_offset);
+}
+
+static void run_one_async_free(struct btrfs_work *work)
+{
+	struct async_submit_bio *async;
+
+	async = container_of(work, struct  async_submit_bio, work);
+	kfree(async);
+}
+
+int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
+			int rw, struct bio *bio, int mirror_num,
+			unsigned long bio_flags,
+			u64 bio_offset,
+			extent_submit_bio_hook_t *submit_bio_start,
+			extent_submit_bio_hook_t *submit_bio_done)
+{
+	struct async_submit_bio *async;
+
+	async = kmalloc(sizeof(*async), GFP_NOFS);
+	if (!async)
+		return -ENOMEM;
+
+	async->inode = inode;
+	async->rw = rw;
+	async->bio = bio;
+	async->mirror_num = mirror_num;
+	async->submit_bio_start = submit_bio_start;
+	async->submit_bio_done = submit_bio_done;
+
+	async->work.func = run_one_async_start;
+	async->work.ordered_func = run_one_async_done;
+	async->work.ordered_free = run_one_async_free;
+
+	async->work.flags = 0;
+	async->bio_flags = bio_flags;
+	async->bio_offset = bio_offset;
+
+	async->error = 0;
+
+	atomic_inc(&fs_info->nr_async_submits);
+
+	if (rw & REQ_SYNC)
+		btrfs_set_work_high_prio(&async->work);
+
+	btrfs_queue_worker(&fs_info->workers, &async->work);
+
+	while (atomic_read(&fs_info->async_submit_draining) &&
+	      atomic_read(&fs_info->nr_async_submits)) {
+		wait_event(fs_info->async_submit_wait,
+			   (atomic_read(&fs_info->nr_async_submits) == 0));
+	}
+
+	return 0;
+}
+
+static int btree_csum_one_bio(struct bio *bio)
+{
+	struct bio_vec *bvec = bio->bi_io_vec;
+	int bio_index = 0;
+	struct btrfs_root *root;
+	int ret = 0;
+
+	WARN_ON(bio->bi_vcnt <= 0);
+	while (bio_index < bio->bi_vcnt) {
+		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
+		ret = csum_dirty_buffer(root, bvec->bv_page);
+		if (ret)
+			break;
+		bio_index++;
+		bvec++;
+	}
+	return ret;
+}
+
+static int __btree_submit_bio_start(struct inode *inode, int rw,
+				    struct bio *bio, int mirror_num,
+				    unsigned long bio_flags,
+				    u64 bio_offset)
+{
+	/*
+	 * when we're called for a write, we're already in the async
+	 * submission context.  Just jump into btrfs_map_bio
+	 */
+	return btree_csum_one_bio(bio);
+}
+
+static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
+				 int mirror_num, unsigned long bio_flags,
+				 u64 bio_offset)
+{
+	/*
+	 * when we're called for a write, we're already in the async
+	 * submission context.  Just jump into btrfs_map_bio
+	 */
+	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
+}
+
+static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
+				 int mirror_num, unsigned long bio_flags,
+				 u64 bio_offset)
+{
+	int ret;
+
+	if (!(rw & REQ_WRITE)) {
+
+		/*
+		 * called for a read, do the setup so that checksum validation
+		 * can happen in the async kernel threads
+		 */
+		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
+					  bio, 1);
+		if (ret)
+			return ret;
+		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
+				     mirror_num, 0);
+	}
+
+	/*
+	 * kthread helpers are used to submit writes so that checksumming
+	 * can happen in parallel across all CPUs
+	 */
+	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
+				   inode, rw, bio, mirror_num, 0,
+				   bio_offset,
+				   __btree_submit_bio_start,
+				   __btree_submit_bio_done);
+}
+
+#ifdef CONFIG_MIGRATION
+static int btree_migratepage(struct address_space *mapping,
+			struct page *newpage, struct page *page,
+			enum migrate_mode mode)
+{
+	/*
+	 * we can't safely write a btree page from here,
+	 * we haven't done the locking hook
+	 */
+	if (PageDirty(page))
+		return -EAGAIN;
+	/*
+	 * Buffers may be managed in a filesystem specific way.
+	 * We must have no buffers or drop them.
+	 */
+	if (page_has_private(page) &&
+	    !try_to_release_page(page, GFP_KERNEL))
+		return -EAGAIN;
+	return migrate_page(mapping, newpage, page, mode);
+}
+#endif
+
+
+static int btree_writepages(struct address_space *mapping,
+			    struct writeback_control *wbc)
+{
+	struct extent_io_tree *tree;
+	tree = &BTRFS_I(mapping->host)->io_tree;
+	if (wbc->sync_mode == WB_SYNC_NONE) {
+		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
+		u64 num_dirty;
+		unsigned long thresh = 32 * 1024 * 1024;
+
+		if (wbc->for_kupdate)
+			return 0;
+
+		/* this is a bit racy, but that's ok */
+		num_dirty = root->fs_info->dirty_metadata_bytes;
+		if (num_dirty < thresh)
+			return 0;
+	}
+	return btree_write_cache_pages(mapping, wbc);
+}
+
+static int btree_readpage(struct file *file, struct page *page)
+{
+	struct extent_io_tree *tree;
+	tree = &BTRFS_I(page->mapping->host)->io_tree;
+	return extent_read_full_page(tree, page, btree_get_extent, 0);
+}
+
+static int btree_releasepage(struct page *page, gfp_t gfp_flags)
+{
+	if (PageWriteback(page) || PageDirty(page))
+		return 0;
+	/*
+	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
+	 * slab allocation from alloc_extent_state down the callchain where
+	 * it'd hit a BUG_ON as those flags are not allowed.
+	 */
+	gfp_flags &= ~GFP_SLAB_BUG_MASK;
+
+	return try_release_extent_buffer(page, gfp_flags);
+}
+
+static void btree_invalidatepage(struct page *page, unsigned long offset)
+{
+	struct extent_io_tree *tree;
+	tree = &BTRFS_I(page->mapping->host)->io_tree;
+	extent_invalidatepage(tree, page, offset);
+	btree_releasepage(page, GFP_NOFS);
+	if (PagePrivate(page)) {
+		printk(KERN_WARNING "btrfs warning page private not zero "
+		       "on page %llu\n", (unsigned long long)page_offset(page));
+		ClearPagePrivate(page);
+		set_page_private(page, 0);
+		page_cache_release(page);
+	}
+}
+
+static int btree_set_page_dirty(struct page *page)
+{
+	struct extent_buffer *eb;
+
+	BUG_ON(!PagePrivate(page));
+	eb = (struct extent_buffer *)page->private;
+	BUG_ON(!eb);
+	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
+	BUG_ON(!atomic_read(&eb->refs));
+	btrfs_assert_tree_locked(eb);
+	return __set_page_dirty_nobuffers(page);
+}
+
+static const struct address_space_operations btree_aops = {
+	.readpage	= btree_readpage,
+	.writepages	= btree_writepages,
+	.releasepage	= btree_releasepage,
+	.invalidatepage = btree_invalidatepage,
+#ifdef CONFIG_MIGRATION
+	.migratepage	= btree_migratepage,
+#endif
+	.set_page_dirty = btree_set_page_dirty,
+};
+
+int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
+			 u64 parent_transid)
+{
+	struct extent_buffer *buf = NULL;
+	struct inode *btree_inode = root->fs_info->btree_inode;
+	int ret = 0;
+
+	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
+	if (!buf)
+		return 0;
+	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
+				 buf, 0, WAIT_NONE, btree_get_extent, 0);
+	free_extent_buffer(buf);
+	return ret;
+}
+
+int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
+			 int mirror_num, struct extent_buffer **eb)
+{
+	struct extent_buffer *buf = NULL;
+	struct inode *btree_inode = root->fs_info->btree_inode;
+	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
+	int ret;
+
+	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
+	if (!buf)
+		return 0;
+
+	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
+
+	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
+				       btree_get_extent, mirror_num);
+	if (ret) {
+		free_extent_buffer(buf);
+		return ret;
+	}
+
+	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
+		free_extent_buffer(buf);
+		return -EIO;
+	} else if (extent_buffer_uptodate(buf)) {
+		*eb = buf;
+	} else {
+		free_extent_buffer(buf);
+	}
+	return 0;
+}
+
+struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
+					    u64 bytenr, u32 blocksize)
+{
+	struct inode *btree_inode = root->fs_info->btree_inode;
+	struct extent_buffer *eb;
+	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
+				bytenr, blocksize);
+	return eb;
+}
+
+struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
+						 u64 bytenr, u32 blocksize)
+{
+	struct inode *btree_inode = root->fs_info->btree_inode;
+	struct extent_buffer *eb;
+
+	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
+				 bytenr, blocksize);
+	return eb;
+}
+
+
+int btrfs_write_tree_block(struct extent_buffer *buf)
+{
+	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
+					buf->start + buf->len - 1);
+}
+
+int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
+{
+	return filemap_fdatawait_range(buf->pages[0]->mapping,
+				       buf->start, buf->start + buf->len - 1);
+}
+
+struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
+				      u32 blocksize, u64 parent_transid)
+{
+	struct extent_buffer *buf = NULL;
+	int ret;
+
+	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
+	if (!buf)
+		return NULL;
+
+	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
+	return buf;
+
+}
+
+void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
+		      struct extent_buffer *buf)
+{
+	if (btrfs_header_generation(buf) ==
+	    root->fs_info->running_transaction->transid) {
+		btrfs_assert_tree_locked(buf);
+
+		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
+			spin_lock(&root->fs_info->delalloc_lock);
+			if (root->fs_info->dirty_metadata_bytes >= buf->len)
+				root->fs_info->dirty_metadata_bytes -= buf->len;
+			else {
+				spin_unlock(&root->fs_info->delalloc_lock);
+				btrfs_panic(root->fs_info, -EOVERFLOW,
+					  "Can't clear %lu bytes from "
+					  " dirty_mdatadata_bytes (%lu)",
+					  buf->len,
+					  root->fs_info->dirty_metadata_bytes);
+			}
+			spin_unlock(&root->fs_info->delalloc_lock);
+		}
+
+		/* ugh, clear_extent_buffer_dirty needs to lock the page */
+		btrfs_set_lock_blocking(buf);
+		clear_extent_buffer_dirty(buf);
+	}
+}
+
+static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
+			 u32 stripesize, struct btrfs_root *root,
+			 struct btrfs_fs_info *fs_info,
+			 u64 objectid)
+{
+	root->node = NULL;
+	root->commit_root = NULL;
+	root->sectorsize = sectorsize;
+	root->nodesize = nodesize;
+	root->leafsize = leafsize;
+	root->stripesize = stripesize;
+	root->ref_cows = 0;
+	root->track_dirty = 0;
+	root->in_radix = 0;
+	root->orphan_item_inserted = 0;
+	root->orphan_cleanup_state = 0;
+
+	root->objectid = objectid;
+	root->last_trans = 0;
+	root->highest_objectid = 0;
+	root->name = NULL;
+	root->inode_tree = RB_ROOT;
+	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
+	root->block_rsv = NULL;
+	root->orphan_block_rsv = NULL;
+
+	INIT_LIST_HEAD(&root->dirty_list);
+	INIT_LIST_HEAD(&root->orphan_list);
+	INIT_LIST_HEAD(&root->root_list);
+	spin_lock_init(&root->orphan_lock);
+	spin_lock_init(&root->inode_lock);
+	spin_lock_init(&root->accounting_lock);
+	mutex_init(&root->objectid_mutex);
+	mutex_init(&root->log_mutex);
+	init_waitqueue_head(&root->log_writer_wait);
+	init_waitqueue_head(&root->log_commit_wait[0]);
+	init_waitqueue_head(&root->log_commit_wait[1]);
+	atomic_set(&root->log_commit[0], 0);
+	atomic_set(&root->log_commit[1], 0);
+	atomic_set(&root->log_writers, 0);
+	root->log_batch = 0;
+	root->log_transid = 0;
+	root->last_log_commit = 0;
+	extent_io_tree_init(&root->dirty_log_pages,
+			     fs_info->btree_inode->i_mapping);
+
+	memset(&root->root_key, 0, sizeof(root->root_key));
+	memset(&root->root_item, 0, sizeof(root->root_item));
+	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
+	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
+	root->defrag_trans_start = fs_info->generation;
+	init_completion(&root->kobj_unregister);
+	root->defrag_running = 0;
+	root->root_key.objectid = objectid;
+	root->anon_dev = 0;
+}
+
+static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
+					    struct btrfs_fs_info *fs_info,
+					    u64 objectid,
+					    struct btrfs_root *root)
+{
+	int ret;
+	u32 blocksize;
+	u64 generation;
+
+	__setup_root(tree_root->nodesize, tree_root->leafsize,
+		     tree_root->sectorsize, tree_root->stripesize,
+		     root, fs_info, objectid);
+	ret = btrfs_find_last_root(tree_root, objectid,
+				   &root->root_item, &root->root_key);
+	if (ret > 0)
+		return -ENOENT;
+	else if (ret < 0)
+		return ret;
+
+	generation = btrfs_root_generation(&root->root_item);
+	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
+	root->commit_root = NULL;
+	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
+				     blocksize, generation);
+	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
+		free_extent_buffer(root->node);
+		root->node = NULL;
+		return -EIO;
+	}
+	root->commit_root = btrfs_root_node(root);
+	return 0;
+}
+
+static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
+	if (root)
+		root->fs_info = fs_info;
+	return root;
+}
+
+static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
+					 struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_root *root;
+	struct btrfs_root *tree_root = fs_info->tree_root;
+	struct extent_buffer *leaf;
+
+	root = btrfs_alloc_root(fs_info);
+	if (!root)
+		return ERR_PTR(-ENOMEM);
+
+	__setup_root(tree_root->nodesize, tree_root->leafsize,
+		     tree_root->sectorsize, tree_root->stripesize,
+		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
+
+	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
+	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
+	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
+	/*
+	 * log trees do not get reference counted because they go away
+	 * before a real commit is actually done.  They do store pointers
+	 * to file data extents, and those reference counts still get
+	 * updated (along with back refs to the log tree).
+	 */
+	root->ref_cows = 0;
+
+	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
+				      BTRFS_TREE_LOG_OBJECTID, NULL,
+				      0, 0, 0, 0);
+	if (IS_ERR(leaf)) {
+		kfree(root);
+		return ERR_CAST(leaf);
+	}
+
+	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
+	btrfs_set_header_bytenr(leaf, leaf->start);
+	btrfs_set_header_generation(leaf, trans->transid);
+	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
+	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
+	root->node = leaf;
+
+	write_extent_buffer(root->node, root->fs_info->fsid,
+			    (unsigned long)btrfs_header_fsid(root->node),
+			    BTRFS_FSID_SIZE);
+	btrfs_mark_buffer_dirty(root->node);
+	btrfs_tree_unlock(root->node);
+	return root;
+}
+
+int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
+			     struct btrfs_fs_info *fs_info)
+{
+	struct btrfs_root *log_root;
+
+	log_root = alloc_log_tree(trans, fs_info);
+	if (IS_ERR(log_root))
+		return PTR_ERR(log_root);
+	WARN_ON(fs_info->log_root_tree);
+	fs_info->log_root_tree = log_root;
+	return 0;
+}
+
+int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
+		       struct btrfs_root *root)
+{
+	struct btrfs_root *log_root;
+	struct btrfs_inode_item *inode_item;
+
+	log_root = alloc_log_tree(trans, root->fs_info);
+	if (IS_ERR(log_root))
+		return PTR_ERR(log_root);
+
+	log_root->last_trans = trans->transid;
+	log_root->root_key.offset = root->root_key.objectid;
+
+	inode_item = &log_root->root_item.inode;
+	inode_item->generation = cpu_to_le64(1);
+	inode_item->size = cpu_to_le64(3);
+	inode_item->nlink = cpu_to_le32(1);
+	inode_item->nbytes = cpu_to_le64(root->leafsize);
+	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
+
+	btrfs_set_root_node(&log_root->root_item, log_root->node);
+
+	WARN_ON(root->log_root);
+	root->log_root = log_root;
+	root->log_transid = 0;
+	root->last_log_commit = 0;
+	return 0;
+}
+
+struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
+					       struct btrfs_key *location)
+{
+	struct btrfs_root *root;
+	struct btrfs_fs_info *fs_info = tree_root->fs_info;
+	struct btrfs_path *path;
+	struct extent_buffer *l;
+	u64 generation;
+	u32 blocksize;
+	int ret = 0;
+
+	root = btrfs_alloc_root(fs_info);
+	if (!root)
+		return ERR_PTR(-ENOMEM);
+	if (location->offset == (u64)-1) {
+		ret = find_and_setup_root(tree_root, fs_info,
+					  location->objectid, root);
+		if (ret) {
+			kfree(root);
+			return ERR_PTR(ret);
+		}
+		goto out;
+	}
+
+	__setup_root(tree_root->nodesize, tree_root->leafsize,
+		     tree_root->sectorsize, tree_root->stripesize,
+		     root, fs_info, location->objectid);
+
+	path = btrfs_alloc_path();
+	if (!path) {
+		kfree(root);
+		return ERR_PTR(-ENOMEM);
+	}
+	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
+	if (ret == 0) {
+		l = path->nodes[0];
+		read_extent_buffer(l, &root->root_item,
+				btrfs_item_ptr_offset(l, path->slots[0]),
+				sizeof(root->root_item));
+		memcpy(&root->root_key, location, sizeof(*location));
+	}
+	btrfs_free_path(path);
+	if (ret) {
+		kfree(root);
+		if (ret > 0)
+			ret = -ENOENT;
+		return ERR_PTR(ret);
+	}
+
+	generation = btrfs_root_generation(&root->root_item);
+	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
+	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
+				     blocksize, generation);
+	root->commit_root = btrfs_root_node(root);
+	BUG_ON(!root->node); /* -ENOMEM */
+out:
+	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
+		root->ref_cows = 1;
+		btrfs_check_and_init_root_item(&root->root_item);
+	}
+
+	return root;
+}
+
+struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
+					      struct btrfs_key *location)
+{
+	struct btrfs_root *root;
+	int ret;
+
+	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
+		return fs_info->tree_root;
+	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
+		return fs_info->extent_root;
+	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
+		return fs_info->chunk_root;
+	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
+		return fs_info->dev_root;
+	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
+		return fs_info->csum_root;
+again:
+	spin_lock(&fs_info->fs_roots_radix_lock);
+	root = radix_tree_lookup(&fs_info->fs_roots_radix,
+				 (unsigned long)location->objectid);
+	spin_unlock(&fs_info->fs_roots_radix_lock);
+	if (root)
+		return root;
+
+	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
+	if (IS_ERR(root))
+		return root;
+
+	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
+	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
+					GFP_NOFS);
+	if (!root->free_ino_pinned || !root->free_ino_ctl) {
+		ret = -ENOMEM;
+		goto fail;
+	}
+
+	btrfs_init_free_ino_ctl(root);
+	mutex_init(&root->fs_commit_mutex);
+	spin_lock_init(&root->cache_lock);
+	init_waitqueue_head(&root->cache_wait);
+
+	ret = get_anon_bdev(&root->anon_dev);
+	if (ret)
+		goto fail;
+
+	if (btrfs_root_refs(&root->root_item) == 0) {
+		ret = -ENOENT;
+		goto fail;
+	}
+
+	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
+	if (ret < 0)
+		goto fail;
+	if (ret == 0)
+		root->orphan_item_inserted = 1;
+
+	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
+	if (ret)
+		goto fail;
+
+	spin_lock(&fs_info->fs_roots_radix_lock);
+	ret = radix_tree_insert(&fs_info->fs_roots_radix,
+				(unsigned long)root->root_key.objectid,
+				root);
+	if (ret == 0)
+		root->in_radix = 1;
+
+	spin_unlock(&fs_info->fs_roots_radix_lock);
+	radix_tree_preload_end();
+	if (ret) {
+		if (ret == -EEXIST) {
+			free_fs_root(root);
+			goto again;
+		}
+		goto fail;
+	}
+
+	ret = btrfs_find_dead_roots(fs_info->tree_root,
+				    root->root_key.objectid);
+	WARN_ON(ret);
+	return root;
+fail:
+	free_fs_root(root);
+	return ERR_PTR(ret);
+}
+
+static int btrfs_congested_fn(void *congested_data, int bdi_bits)
+{
+	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
+	int ret = 0;
+	struct btrfs_device *device;
+	struct backing_dev_info *bdi;
+
+	rcu_read_lock();
+	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
+		if (!device->bdev)
+			continue;
+		bdi = blk_get_backing_dev_info(device->bdev);
+		if (bdi && bdi_congested(bdi, bdi_bits)) {
+			ret = 1;
+			break;
+		}
+	}
+	rcu_read_unlock();
+	return ret;
+}
+
+/*
+ * If this fails, caller must call bdi_destroy() to get rid of the
+ * bdi again.
+ */
+static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
+{
+	int err;
+
+	bdi->capabilities = BDI_CAP_MAP_COPY;
+	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
+	if (err)
+		return err;
+
+	bdi->ra_pages	= default_backing_dev_info.ra_pages;
+	bdi->congested_fn	= btrfs_congested_fn;
+	bdi->congested_data	= info;
+	return 0;
+}
+
+/*
+ * called by the kthread helper functions to finally call the bio end_io
+ * functions.  This is where read checksum verification actually happens
+ */
+static void end_workqueue_fn(struct btrfs_work *work)
+{
+	struct bio *bio;
+	struct end_io_wq *end_io_wq;
+	struct btrfs_fs_info *fs_info;
+	int error;
+
+	end_io_wq = container_of(work, struct end_io_wq, work);
+	bio = end_io_wq->bio;
+	fs_info = end_io_wq->info;
+
+	error = end_io_wq->error;
+	bio->bi_private = end_io_wq->private;
+	bio->bi_end_io = end_io_wq->end_io;
+	kfree(end_io_wq);
+	bio_endio(bio, error);
+}
+
+static int cleaner_kthread(void *arg)
+{
+	struct btrfs_root *root = arg;
+
+	do {
+		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
+
+		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
+		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
+			btrfs_run_delayed_iputs(root);
+			btrfs_clean_old_snapshots(root);
+			mutex_unlock(&root->fs_info->cleaner_mutex);
+			btrfs_run_defrag_inodes(root->fs_info);
+		}
+
+		if (!try_to_freeze()) {
+			set_current_state(TASK_INTERRUPTIBLE);
+			if (!kthread_should_stop())
+				schedule();
+			__set_current_state(TASK_RUNNING);
+		}
+	} while (!kthread_should_stop());
+	return 0;
+}
+
+static int transaction_kthread(void *arg)
+{
+	struct btrfs_root *root = arg;
+	struct btrfs_trans_handle *trans;
+	struct btrfs_transaction *cur;
+	u64 transid;
+	unsigned long now;
+	unsigned long delay;
+	bool cannot_commit;
+
+	do {
+		cannot_commit = false;
+		delay = HZ * 30;
+		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
+		mutex_lock(&root->fs_info->transaction_kthread_mutex);
+
+		spin_lock(&root->fs_info->trans_lock);
+		cur = root->fs_info->running_transaction;
+		if (!cur) {
+			spin_unlock(&root->fs_info->trans_lock);
+			goto sleep;
+		}
+
+		now = get_seconds();
+		if (!cur->blocked &&
+		    (now < cur->start_time || now - cur->start_time < 30)) {
+			spin_unlock(&root->fs_info->trans_lock);
+			delay = HZ * 5;
+			goto sleep;
+		}
+		transid = cur->transid;
+		spin_unlock(&root->fs_info->trans_lock);
+
+		/* If the file system is aborted, this will always fail. */
+		trans = btrfs_join_transaction(root);
+		if (IS_ERR(trans)) {
+			cannot_commit = true;
+			goto sleep;
+		}
+		if (transid == trans->transid) {
+			btrfs_commit_transaction(trans, root);
+		} else {
+			btrfs_end_transaction(trans, root);
+		}
+sleep:
+		wake_up_process(root->fs_info->cleaner_kthread);
+		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
+
+		if (!try_to_freeze()) {
+			set_current_state(TASK_INTERRUPTIBLE);
+			if (!kthread_should_stop() &&
+			    (!btrfs_transaction_blocked(root->fs_info) ||
+			     cannot_commit))
+				schedule_timeout(delay);
+			__set_current_state(TASK_RUNNING);
+		}
+	} while (!kthread_should_stop());
+	return 0;
+}
+
+/*
+ * this will find the highest generation in the array of
+ * root backups.  The index of the highest array is returned,
+ * or -1 if we can't find anything.
+ *
+ * We check to make sure the array is valid by comparing the
+ * generation of the latest  root in the array with the generation
+ * in the super block.  If they don't match we pitch it.
+ */
+static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
+{
+	u64 cur;
+	int newest_index = -1;
+	struct btrfs_root_backup *root_backup;
+	int i;
+
+	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
+		root_backup = info->super_copy->super_roots + i;
+		cur = btrfs_backup_tree_root_gen(root_backup);
+		if (cur == newest_gen)
+			newest_index = i;
+	}
+
+	/* check to see if we actually wrapped around */
+	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
+		root_backup = info->super_copy->super_roots;
+		cur = btrfs_backup_tree_root_gen(root_backup);
+		if (cur == newest_gen)
+			newest_index = 0;
+	}
+	return newest_index;
+}
+
+
+/*
+ * find the oldest backup so we know where to store new entries
+ * in the backup array.  This will set the backup_root_index
+ * field in the fs_info struct
+ */
+static void find_oldest_super_backup(struct btrfs_fs_info *info,
+				     u64 newest_gen)
+{
+	int newest_index = -1;
+
+	newest_index = find_newest_super_backup(info, newest_gen);
+	/* if there was garbage in there, just move along */
+	if (newest_index == -1) {
+		info->backup_root_index = 0;
+	} else {
+		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
+	}
+}
+
+/*
+ * copy all the root pointers into the super backup array.
+ * this will bump the backup pointer by one when it is
+ * done
+ */
+static void backup_super_roots(struct btrfs_fs_info *info)
+{
+	int next_backup;
+	struct btrfs_root_backup *root_backup;
+	int last_backup;
+
+	next_backup = info->backup_root_index;
+	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
+		BTRFS_NUM_BACKUP_ROOTS;
+
+	/*
+	 * just overwrite the last backup if we're at the same generation
+	 * this happens only at umount
+	 */
+	root_backup = info->super_for_commit->super_roots + last_backup;
+	if (btrfs_backup_tree_root_gen(root_backup) ==
+	    btrfs_header_generation(info->tree_root->node))
+		next_backup = last_backup;
+
+	root_backup = info->super_for_commit->super_roots + next_backup;
+
+	/*
+	 * make sure all of our padding and empty slots get zero filled
+	 * regardless of which ones we use today
+	 */
+	memset(root_backup, 0, sizeof(*root_backup));
+
+	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
+
+	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
+	btrfs_set_backup_tree_root_gen(root_backup,
+			       btrfs_header_generation(info->tree_root->node));
+
+	btrfs_set_backup_tree_root_level(root_backup,
+			       btrfs_header_level(info->tree_root->node));
+
+	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
+	btrfs_set_backup_chunk_root_gen(root_backup,
+			       btrfs_header_generation(info->chunk_root->node));
+	btrfs_set_backup_chunk_root_level(root_backup,
+			       btrfs_header_level(info->chunk_root->node));
+
+	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
+	btrfs_set_backup_extent_root_gen(root_backup,
+			       btrfs_header_generation(info->extent_root->node));
+	btrfs_set_backup_extent_root_level(root_backup,
+			       btrfs_header_level(info->extent_root->node));
+
+	/*
+	 * we might commit during log recovery, which happens before we set
+	 * the fs_root.  Make sure it is valid before we fill it in.
+	 */
+	if (info->fs_root && info->fs_root->node) {
+		btrfs_set_backup_fs_root(root_backup,
+					 info->fs_root->node->start);
+		btrfs_set_backup_fs_root_gen(root_backup,
+			       btrfs_header_generation(info->fs_root->node));
+		btrfs_set_backup_fs_root_level(root_backup,
+			       btrfs_header_level(info->fs_root->node));
+	}
+
+	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
+	btrfs_set_backup_dev_root_gen(root_backup,
+			       btrfs_header_generation(info->dev_root->node));
+	btrfs_set_backup_dev_root_level(root_backup,
+				       btrfs_header_level(info->dev_root->node));
+
+	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
+	btrfs_set_backup_csum_root_gen(root_backup,
+			       btrfs_header_generation(info->csum_root->node));
+	btrfs_set_backup_csum_root_level(root_backup,
+			       btrfs_header_level(info->csum_root->node));
+
+	btrfs_set_backup_total_bytes(root_backup,
+			     btrfs_super_total_bytes(info->super_copy));
+	btrfs_set_backup_bytes_used(root_backup,
+			     btrfs_super_bytes_used(info->super_copy));
+	btrfs_set_backup_num_devices(root_backup,
+			     btrfs_super_num_devices(info->super_copy));
+
+	/*
+	 * if we don't copy this out to the super_copy, it won't get remembered
+	 * for the next commit
+	 */
+	memcpy(&info->super_copy->super_roots,
+	       &info->super_for_commit->super_roots,
+	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
+}
+
+/*
+ * this copies info out of the root backup array and back into
+ * the in-memory super block.  It is meant to help iterate through
+ * the array, so you send it the number of backups you've already
+ * tried and the last backup index you used.
+ *
+ * this returns -1 when it has tried all the backups
+ */
+static noinline int next_root_backup(struct btrfs_fs_info *info,
+				     struct btrfs_super_block *super,
+				     int *num_backups_tried, int *backup_index)
+{
+	struct btrfs_root_backup *root_backup;
+	int newest = *backup_index;
+
+	if (*num_backups_tried == 0) {
+		u64 gen = btrfs_super_generation(super);
+
+		newest = find_newest_super_backup(info, gen);
+		if (newest == -1)
+			return -1;
+
+		*backup_index = newest;
+		*num_backups_tried = 1;
+	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
+		/* we've tried all the backups, all done */
+		return -1;
+	} else {
+		/* jump to the next oldest backup */
+		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
+			BTRFS_NUM_BACKUP_ROOTS;
+		*backup_index = newest;
+		*num_backups_tried += 1;
+	}
+	root_backup = super->super_roots + newest;
+
+	btrfs_set_super_generation(super,
+				   btrfs_backup_tree_root_gen(root_backup));
+	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
+	btrfs_set_super_root_level(super,
+				   btrfs_backup_tree_root_level(root_backup));
+	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
+
+	/*
+	 * fixme: the total bytes and num_devices need to match or we should
+	 * need a fsck
+	 */
+	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
+	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
+	return 0;
+}
+
+/* helper to cleanup tree roots */
+static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
+{
+	free_extent_buffer(info->tree_root->node);
+	free_extent_buffer(info->tree_root->commit_root);
+	free_extent_buffer(info->dev_root->node);
+	free_extent_buffer(info->dev_root->commit_root);
+	free_extent_buffer(info->extent_root->node);
+	free_extent_buffer(info->extent_root->commit_root);
+	free_extent_buffer(info->csum_root->node);
+	free_extent_buffer(info->csum_root->commit_root);
+
+	info->tree_root->node = NULL;
+	info->tree_root->commit_root = NULL;
+	info->dev_root->node = NULL;
+	info->dev_root->commit_root = NULL;
+	info->extent_root->node = NULL;
+	info->extent_root->commit_root = NULL;
+	info->csum_root->node = NULL;
+	info->csum_root->commit_root = NULL;
+
+	if (chunk_root) {
+		free_extent_buffer(info->chunk_root->node);
+		free_extent_buffer(info->chunk_root->commit_root);
+		info->chunk_root->node = NULL;
+		info->chunk_root->commit_root = NULL;
+	}
+}
+
+
+int open_ctree(struct super_block *sb,
+	       struct btrfs_fs_devices *fs_devices,
+	       char *options)
+{
+	u32 sectorsize;
+	u32 nodesize;
+	u32 leafsize;
+	u32 blocksize;
+	u32 stripesize;
+	u64 generation;
+	u64 features;
+	struct btrfs_key location;
+	struct buffer_head *bh;
+	struct btrfs_super_block *disk_super;
+	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+	struct btrfs_root *tree_root;
+	struct btrfs_root *extent_root;
+	struct btrfs_root *csum_root;
+	struct btrfs_root *chunk_root;
+	struct btrfs_root *dev_root;
+	struct btrfs_root *log_tree_root;
+	int ret;
+	int err = -EINVAL;
+	int num_backups_tried = 0;
+	int backup_index = 0;
+
+	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
+	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
+	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
+	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
+	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
+
+	if (!tree_root || !extent_root || !csum_root ||
+	    !chunk_root || !dev_root) {
+		err = -ENOMEM;
+		goto fail;
+	}
+
+	ret = init_srcu_struct(&fs_info->subvol_srcu);
+	if (ret) {
+		err = ret;
+		goto fail;
+	}
+
+	ret = setup_bdi(fs_info, &fs_info->bdi);
+	if (ret) {
+		err = ret;
+		goto fail_srcu;
+	}
+
+	fs_info->btree_inode = new_inode(sb);
+	if (!fs_info->btree_inode) {
+		err = -ENOMEM;
+		goto fail_bdi;
+	}
+
+	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
+
+	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
+	INIT_LIST_HEAD(&fs_info->trans_list);
+	INIT_LIST_HEAD(&fs_info->dead_roots);
+	INIT_LIST_HEAD(&fs_info->delayed_iputs);
+	INIT_LIST_HEAD(&fs_info->hashers);
+	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
+	INIT_LIST_HEAD(&fs_info->ordered_operations);
+	INIT_LIST_HEAD(&fs_info->caching_block_groups);
+	spin_lock_init(&fs_info->delalloc_lock);
+	spin_lock_init(&fs_info->trans_lock);
+	spin_lock_init(&fs_info->ref_cache_lock);
+	spin_lock_init(&fs_info->fs_roots_radix_lock);
+	spin_lock_init(&fs_info->delayed_iput_lock);
+	spin_lock_init(&fs_info->defrag_inodes_lock);
+	spin_lock_init(&fs_info->free_chunk_lock);
+	mutex_init(&fs_info->reloc_mutex);
+
+	init_completion(&fs_info->kobj_unregister);
+	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
+	INIT_LIST_HEAD(&fs_info->space_info);
+	btrfs_mapping_init(&fs_info->mapping_tree);
+	btrfs_init_block_rsv(&fs_info->global_block_rsv);
+	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
+	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
+	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
+	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
+	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
+	atomic_set(&fs_info->nr_async_submits, 0);
+	atomic_set(&fs_info->async_delalloc_pages, 0);
+	atomic_set(&fs_info->async_submit_draining, 0);
+	atomic_set(&fs_info->nr_async_bios, 0);
+	atomic_set(&fs_info->defrag_running, 0);
+	fs_info->sb = sb;
+	fs_info->max_inline = 8192 * 1024;
+	fs_info->metadata_ratio = 0;
+	fs_info->defrag_inodes = RB_ROOT;
+	fs_info->trans_no_join = 0;
+	fs_info->free_chunk_space = 0;
+
+	/* readahead state */
+	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
+	spin_lock_init(&fs_info->reada_lock);
+
+	fs_info->thread_pool_size = min_t(unsigned long,
+					  num_online_cpus() + 2, 8);
+
+	INIT_LIST_HEAD(&fs_info->ordered_extents);
+	spin_lock_init(&fs_info->ordered_extent_lock);
+	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
+					GFP_NOFS);
+	if (!fs_info->delayed_root) {
+		err = -ENOMEM;
+		goto fail_iput;
+	}
+	btrfs_init_delayed_root(fs_info->delayed_root);
+
+	mutex_init(&fs_info->scrub_lock);
+	atomic_set(&fs_info->scrubs_running, 0);
+	atomic_set(&fs_info->scrub_pause_req, 0);
+	atomic_set(&fs_info->scrubs_paused, 0);
+	atomic_set(&fs_info->scrub_cancel_req, 0);
+	init_waitqueue_head(&fs_info->scrub_pause_wait);
+	init_rwsem(&fs_info->scrub_super_lock);
+	fs_info->scrub_workers_refcnt = 0;
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+	fs_info->check_integrity_print_mask = 0;
+#endif
+
+	spin_lock_init(&fs_info->balance_lock);
+	mutex_init(&fs_info->balance_mutex);
+	atomic_set(&fs_info->balance_running, 0);
+	atomic_set(&fs_info->balance_pause_req, 0);
+	atomic_set(&fs_info->balance_cancel_req, 0);
+	fs_info->balance_ctl = NULL;
+	init_waitqueue_head(&fs_info->balance_wait_q);
+
+	sb->s_blocksize = 4096;
+	sb->s_blocksize_bits = blksize_bits(4096);
+	sb->s_bdi = &fs_info->bdi;
+
+	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
+	set_nlink(fs_info->btree_inode, 1);
+	/*
+	 * we set the i_size on the btree inode to the max possible int.
+	 * the real end of the address space is determined by all of
+	 * the devices in the system
+	 */
+	fs_info->btree_inode->i_size = OFFSET_MAX;
+	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
+	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
+
+	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
+	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
+			     fs_info->btree_inode->i_mapping);
+	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
+	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
+
+	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
+
+	BTRFS_I(fs_info->btree_inode)->root = tree_root;
+	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
+	       sizeof(struct btrfs_key));
+	BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
+	insert_inode_hash(fs_info->btree_inode);
+
+	spin_lock_init(&fs_info->block_group_cache_lock);
+	fs_info->block_group_cache_tree = RB_ROOT;
+
+	extent_io_tree_init(&fs_info->freed_extents[0],
+			     fs_info->btree_inode->i_mapping);
+	extent_io_tree_init(&fs_info->freed_extents[1],
+			     fs_info->btree_inode->i_mapping);
+	fs_info->pinned_extents = &fs_info->freed_extents[0];
+	fs_info->do_barriers = 1;
+
+
+	mutex_init(&fs_info->ordered_operations_mutex);
+	mutex_init(&fs_info->tree_log_mutex);
+	mutex_init(&fs_info->chunk_mutex);
+	mutex_init(&fs_info->transaction_kthread_mutex);
+	mutex_init(&fs_info->cleaner_mutex);
+	mutex_init(&fs_info->volume_mutex);
+	init_rwsem(&fs_info->extent_commit_sem);
+	init_rwsem(&fs_info->cleanup_work_sem);
+	init_rwsem(&fs_info->subvol_sem);
+
+	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
+	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
+
+	init_waitqueue_head(&fs_info->transaction_throttle);
+	init_waitqueue_head(&fs_info->transaction_wait);
+	init_waitqueue_head(&fs_info->transaction_blocked_wait);
+	init_waitqueue_head(&fs_info->async_submit_wait);
+
+	__setup_root(4096, 4096, 4096, 4096, tree_root,
+		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
+
+	invalidate_bdev(fs_devices->latest_bdev);
+	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
+	if (!bh) {
+		err = -EINVAL;
+		goto fail_alloc;
+	}
+
+	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
+	memcpy(fs_info->super_for_commit, fs_info->super_copy,
+	       sizeof(*fs_info->super_for_commit));
+	brelse(bh);
+
+	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
+
+	disk_super = fs_info->super_copy;
+	if (!btrfs_super_root(disk_super))
+		goto fail_alloc;
+
+	/* check FS state, whether FS is broken. */
+	fs_info->fs_state |= btrfs_super_flags(disk_super);
+
+	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
+	if (ret) {
+		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
+		err = ret;
+		goto fail_alloc;
+	}
+
+	/*
+	 * run through our array of backup supers and setup
+	 * our ring pointer to the oldest one
+	 */
+	generation = btrfs_super_generation(disk_super);
+	find_oldest_super_backup(fs_info, generation);
+
+	/*
+	 * In the long term, we'll store the compression type in the super
+	 * block, and it'll be used for per file compression control.
+	 */
+	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
+
+	ret = btrfs_parse_options(tree_root, options);
+	if (ret) {
+		err = ret;
+		goto fail_alloc;
+	}
+
+	features = btrfs_super_incompat_flags(disk_super) &
+		~BTRFS_FEATURE_INCOMPAT_SUPP;
+	if (features) {
+		printk(KERN_ERR "BTRFS: couldn't mount because of "
+		       "unsupported optional features (%Lx).\n",
+		       (unsigned long long)features);
+		err = -EINVAL;
+		goto fail_alloc;
+	}
+
+	if (btrfs_super_leafsize(disk_super) !=
+	    btrfs_super_nodesize(disk_super)) {
+		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
+		       "blocksizes don't match.  node %d leaf %d\n",
+		       btrfs_super_nodesize(disk_super),
+		       btrfs_super_leafsize(disk_super));
+		err = -EINVAL;
+		goto fail_alloc;
+	}
+	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
+		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
+		       "blocksize (%d) was too large\n",
+		       btrfs_super_leafsize(disk_super));
+		err = -EINVAL;
+		goto fail_alloc;
+	}
+
+	features = btrfs_super_incompat_flags(disk_super);
+	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
+	if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
+		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
+
+	/*
+	 * flag our filesystem as having big metadata blocks if
+	 * they are bigger than the page size
+	 */
+	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
+		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
+			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
+		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
+	}
+
+	nodesize = btrfs_super_nodesize(disk_super);
+	leafsize = btrfs_super_leafsize(disk_super);
+	sectorsize = btrfs_super_sectorsize(disk_super);
+	stripesize = btrfs_super_stripesize(disk_super);
+
+	/*
+	 * mixed block groups end up with duplicate but slightly offset
+	 * extent buffers for the same range.  It leads to corruptions
+	 */
+	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
+	    (sectorsize != leafsize)) {
+		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
+				"are not allowed for mixed block groups on %s\n",
+				sb->s_id);
+		goto fail_alloc;
+	}
+
+	btrfs_set_super_incompat_flags(disk_super, features);
+
+	features = btrfs_super_compat_ro_flags(disk_super) &
+		~BTRFS_FEATURE_COMPAT_RO_SUPP;
+	if (!(sb->s_flags & MS_RDONLY) && features) {
+		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
+		       "unsupported option features (%Lx).\n",
+		       (unsigned long long)features);
+		err = -EINVAL;
+		goto fail_alloc;
+	}
+
+	btrfs_init_workers(&fs_info->generic_worker,
+			   "genwork", 1, NULL);
+
+	btrfs_init_workers(&fs_info->workers, "worker",
+			   fs_info->thread_pool_size,
+			   &fs_info->generic_worker);
+
+	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
+			   fs_info->thread_pool_size,
+			   &fs_info->generic_worker);
+
+	btrfs_init_workers(&fs_info->submit_workers, "submit",
+			   min_t(u64, fs_devices->num_devices,
+			   fs_info->thread_pool_size),
+			   &fs_info->generic_worker);
+
+	btrfs_init_workers(&fs_info->caching_workers, "cache",
+			   2, &fs_info->generic_worker);
+
+	/* a higher idle thresh on the submit workers makes it much more
+	 * likely that bios will be send down in a sane order to the
+	 * devices
+	 */
+	fs_info->submit_workers.idle_thresh = 64;
+
+	fs_info->workers.idle_thresh = 16;
+	fs_info->workers.ordered = 1;
+
+	fs_info->delalloc_workers.idle_thresh = 2;
+	fs_info->delalloc_workers.ordered = 1;
+
+	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
+			   &fs_info->generic_worker);
+	btrfs_init_workers(&fs_info->endio_workers, "endio",
+			   fs_info->thread_pool_size,
+			   &fs_info->generic_worker);
+	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
+			   fs_info->thread_pool_size,
+			   &fs_info->generic_worker);
+	btrfs_init_workers(&fs_info->endio_meta_write_workers,
+			   "endio-meta-write", fs_info->thread_pool_size,
+			   &fs_info->generic_worker);
+	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
+			   fs_info->thread_pool_size,
+			   &fs_info->generic_worker);
+	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
+			   1, &fs_info->generic_worker);
+	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
+			   fs_info->thread_pool_size,
+			   &fs_info->generic_worker);
+	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
+			   fs_info->thread_pool_size,
+			   &fs_info->generic_worker);
+
+	/*
+	 * endios are largely parallel and should have a very
+	 * low idle thresh
+	 */
+	fs_info->endio_workers.idle_thresh = 4;
+	fs_info->endio_meta_workers.idle_thresh = 4;
+
+	fs_info->endio_write_workers.idle_thresh = 2;
+	fs_info->endio_meta_write_workers.idle_thresh = 2;
+	fs_info->readahead_workers.idle_thresh = 2;
+
+	/*
+	 * btrfs_start_workers can really only fail because of ENOMEM so just
+	 * return -ENOMEM if any of these fail.
+	 */
+	ret = btrfs_start_workers(&fs_info->workers);
+	ret |= btrfs_start_workers(&fs_info->generic_worker);
+	ret |= btrfs_start_workers(&fs_info->submit_workers);
+	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
+	ret |= btrfs_start_workers(&fs_info->fixup_workers);
+	ret |= btrfs_start_workers(&fs_info->endio_workers);
+	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
+	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
+	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
+	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
+	ret |= btrfs_start_workers(&fs_info->delayed_workers);
+	ret |= btrfs_start_workers(&fs_info->caching_workers);
+	ret |= btrfs_start_workers(&fs_info->readahead_workers);
+	if (ret) {
+		ret = -ENOMEM;
+		goto fail_sb_buffer;
+	}
+
+	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
+	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
+				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
+
+	tree_root->nodesize = nodesize;
+	tree_root->leafsize = leafsize;
+	tree_root->sectorsize = sectorsize;
+	tree_root->stripesize = stripesize;
+
+	sb->s_blocksize = sectorsize;
+	sb->s_blocksize_bits = blksize_bits(sectorsize);
+
+	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
+		    sizeof(disk_super->magic))) {
+		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
+		goto fail_sb_buffer;
+	}
+
+	if (sectorsize != PAGE_SIZE) {
+		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
+		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
+		goto fail_sb_buffer;
+	}
+
+	mutex_lock(&fs_info->chunk_mutex);
+	ret = btrfs_read_sys_array(tree_root);
+	mutex_unlock(&fs_info->chunk_mutex);
+	if (ret) {
+		printk(KERN_WARNING "btrfs: failed to read the system "
+		       "array on %s\n", sb->s_id);
+		goto fail_sb_buffer;
+	}
+
+	blocksize = btrfs_level_size(tree_root,
+				     btrfs_super_chunk_root_level(disk_super));
+	generation = btrfs_super_chunk_root_generation(disk_super);
+
+	__setup_root(nodesize, leafsize, sectorsize, stripesize,
+		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
+
+	chunk_root->node = read_tree_block(chunk_root,
+					   btrfs_super_chunk_root(disk_super),
+					   blocksize, generation);
+	BUG_ON(!chunk_root->node); /* -ENOMEM */
+	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
+		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
+		       sb->s_id);
+		goto fail_tree_roots;
+	}
+	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
+	chunk_root->commit_root = btrfs_root_node(chunk_root);
+
+	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
+	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
+	   BTRFS_UUID_SIZE);
+
+	ret = btrfs_read_chunk_tree(chunk_root);
+	if (ret) {
+		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
+		       sb->s_id);
+		goto fail_tree_roots;
+	}
+
+	btrfs_close_extra_devices(fs_devices);
+
+	if (!fs_devices->latest_bdev) {
+		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
+		       sb->s_id);
+		goto fail_tree_roots;
+	}
+
+retry_root_backup:
+	blocksize = btrfs_level_size(tree_root,
+				     btrfs_super_root_level(disk_super));
+	generation = btrfs_super_generation(disk_super);
+
+	tree_root->node = read_tree_block(tree_root,
+					  btrfs_super_root(disk_super),
+					  blocksize, generation);
+	if (!tree_root->node ||
+	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
+		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
+		       sb->s_id);
+
+		goto recovery_tree_root;
+	}
+
+	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
+	tree_root->commit_root = btrfs_root_node(tree_root);
+
+	ret = find_and_setup_root(tree_root, fs_info,
+				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
+	if (ret)
+		goto recovery_tree_root;
+	extent_root->track_dirty = 1;
+
+	ret = find_and_setup_root(tree_root, fs_info,
+				  BTRFS_DEV_TREE_OBJECTID, dev_root);
+	if (ret)
+		goto recovery_tree_root;
+	dev_root->track_dirty = 1;
+
+	ret = find_and_setup_root(tree_root, fs_info,
+				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
+	if (ret)
+		goto recovery_tree_root;
+
+	csum_root->track_dirty = 1;
+
+	fs_info->generation = generation;
+	fs_info->last_trans_committed = generation;
+
+	ret = btrfs_init_space_info(fs_info);
+	if (ret) {
+		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
+		goto fail_block_groups;
+	}
+
+	ret = btrfs_read_block_groups(extent_root);
+	if (ret) {
+		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
+		goto fail_block_groups;
+	}
+
+	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
+					       "btrfs-cleaner");
+	if (IS_ERR(fs_info->cleaner_kthread))
+		goto fail_block_groups;
+
+	fs_info->transaction_kthread = kthread_run(transaction_kthread,
+						   tree_root,
+						   "btrfs-transaction");
+	if (IS_ERR(fs_info->transaction_kthread))
+		goto fail_cleaner;
+
+	if (!btrfs_test_opt(tree_root, SSD) &&
+	    !btrfs_test_opt(tree_root, NOSSD) &&
+	    !fs_info->fs_devices->rotating) {
+		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
+		       "mode\n");
+		btrfs_set_opt(fs_info->mount_opt, SSD);
+	}
+
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
+		ret = btrfsic_mount(tree_root, fs_devices,
+				    btrfs_test_opt(tree_root,
+					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
+				    1 : 0,
+				    fs_info->check_integrity_print_mask);
+		if (ret)
+			printk(KERN_WARNING "btrfs: failed to initialize"
+			       " integrity check module %s\n", sb->s_id);
+	}
+#endif
+
+	/* do not make disk changes in broken FS */
+	if (btrfs_super_log_root(disk_super) != 0 &&
+	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
+		u64 bytenr = btrfs_super_log_root(disk_super);
+
+		if (fs_devices->rw_devices == 0) {
+			printk(KERN_WARNING "Btrfs log replay required "
+			       "on RO media\n");
+			err = -EIO;
+			goto fail_trans_kthread;
+		}
+		blocksize =
+		     btrfs_level_size(tree_root,
+				      btrfs_super_log_root_level(disk_super));
+
+		log_tree_root = btrfs_alloc_root(fs_info);
+		if (!log_tree_root) {
+			err = -ENOMEM;
+			goto fail_trans_kthread;
+		}
+
+		__setup_root(nodesize, leafsize, sectorsize, stripesize,
+			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
+
+		log_tree_root->node = read_tree_block(tree_root, bytenr,
+						      blocksize,
+						      generation + 1);
+		/* returns with log_tree_root freed on success */
+		ret = btrfs_recover_log_trees(log_tree_root);
+		if (ret) {
+			btrfs_error(tree_root->fs_info, ret,
+				    "Failed to recover log tree");
+			free_extent_buffer(log_tree_root->node);
+			kfree(log_tree_root);
+			goto fail_trans_kthread;
+		}
+
+		if (sb->s_flags & MS_RDONLY) {
+			ret = btrfs_commit_super(tree_root);
+			if (ret)
+				goto fail_trans_kthread;
+		}
+	}
+
+	ret = btrfs_find_orphan_roots(tree_root);
+	if (ret)
+		goto fail_trans_kthread;
+
+	if (!(sb->s_flags & MS_RDONLY)) {
+		ret = btrfs_cleanup_fs_roots(fs_info);
+		if (ret) {
+			}
+
+		ret = btrfs_recover_relocation(tree_root);
+		if (ret < 0) {
+			printk(KERN_WARNING
+			       "btrfs: failed to recover relocation\n");
+			err = -EINVAL;
+			goto fail_trans_kthread;
+		}
+	}
+
+	location.objectid = BTRFS_FS_TREE_OBJECTID;
+	location.type = BTRFS_ROOT_ITEM_KEY;
+	location.offset = (u64)-1;
+
+	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
+	if (!fs_info->fs_root)
+		goto fail_trans_kthread;
+	if (IS_ERR(fs_info->fs_root)) {
+		err = PTR_ERR(fs_info->fs_root);
+		goto fail_trans_kthread;
+	}
+
+	if (!(sb->s_flags & MS_RDONLY)) {
+		down_read(&fs_info->cleanup_work_sem);
+		err = btrfs_orphan_cleanup(fs_info->fs_root);
+		if (!err)
+			err = btrfs_orphan_cleanup(fs_info->tree_root);
+		up_read(&fs_info->cleanup_work_sem);
+
+		if (!err)
+			err = btrfs_recover_balance(fs_info->tree_root);
+
+		if (err) {
+			close_ctree(tree_root);
+			return err;
+		}
+	}
+
+	return 0;
+
+fail_trans_kthread:
+	kthread_stop(fs_info->transaction_kthread);
+fail_cleaner:
+	kthread_stop(fs_info->cleaner_kthread);
+
+	/*
+	 * make sure we're done with the btree inode before we stop our
+	 * kthreads
+	 */
+	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
+	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
+
+fail_block_groups:
+	btrfs_free_block_groups(fs_info);
+
+fail_tree_roots:
+	free_root_pointers(fs_info, 1);
+
+fail_sb_buffer:
+	btrfs_stop_workers(&fs_info->generic_worker);
+	btrfs_stop_workers(&fs_info->readahead_workers);
+	btrfs_stop_workers(&fs_info->fixup_workers);
+	btrfs_stop_workers(&fs_info->delalloc_workers);
+	btrfs_stop_workers(&fs_info->workers);
+	btrfs_stop_workers(&fs_info->endio_workers);
+	btrfs_stop_workers(&fs_info->endio_meta_workers);
+	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
+	btrfs_stop_workers(&fs_info->endio_write_workers);
+	btrfs_stop_workers(&fs_info->endio_freespace_worker);
+	btrfs_stop_workers(&fs_info->submit_workers);
+	btrfs_stop_workers(&fs_info->delayed_workers);
+	btrfs_stop_workers(&fs_info->caching_workers);
+fail_alloc:
+fail_iput:
+	btrfs_mapping_tree_free(&fs_info->mapping_tree);
+
+	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
+	iput(fs_info->btree_inode);
+fail_bdi:
+	bdi_destroy(&fs_info->bdi);
+fail_srcu:
+	cleanup_srcu_struct(&fs_info->subvol_srcu);
+fail:
+	btrfs_close_devices(fs_info->fs_devices);
+	return err;
+
+recovery_tree_root:
+	if (!btrfs_test_opt(tree_root, RECOVERY))
+		goto fail_tree_roots;
+
+	free_root_pointers(fs_info, 0);
+
+	/* don't use the log in recovery mode, it won't be valid */
+	btrfs_set_super_log_root(disk_super, 0);
+
+	/* we can't trust the free space cache either */
+	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
+
+	ret = next_root_backup(fs_info, fs_info->super_copy,
+			       &num_backups_tried, &backup_index);
+	if (ret == -1)
+		goto fail_block_groups;
+	goto retry_root_backup;
+}
+
+static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
+{
+	char b[BDEVNAME_SIZE];
+
+	if (uptodate) {
+		set_buffer_uptodate(bh);
+	} else {
+		printk_ratelimited(KERN_WARNING "lost page write due to "
+					"I/O error on %s\n",
+				       bdevname(bh->b_bdev, b));
+		/* note, we dont' set_buffer_write_io_error because we have
+		 * our own ways of dealing with the IO errors
+		 */
+		clear_buffer_uptodate(bh);
+	}
+	unlock_buffer(bh);
+	put_bh(bh);
+}
+
+struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
+{
+	struct buffer_head *bh;
+	struct buffer_head *latest = NULL;
+	struct btrfs_super_block *super;
+	int i;
+	u64 transid = 0;
+	u64 bytenr;
+
+	/* we would like to check all the supers, but that would make
+	 * a btrfs mount succeed after a mkfs from a different FS.
+	 * So, we need to add a special mount option to scan for
+	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
+	 */
+	for (i = 0; i < 1; i++) {
+		bytenr = btrfs_sb_offset(i);
+		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
+			break;
+		bh = __bread(bdev, bytenr / 4096, 4096);
+		if (!bh)
+			continue;
+
+		super = (struct btrfs_super_block *)bh->b_data;
+		if (btrfs_super_bytenr(super) != bytenr ||
+		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
+			    sizeof(super->magic))) {
+			brelse(bh);
+			continue;
+		}
+
+		if (!latest || btrfs_super_generation(super) > transid) {
+			brelse(latest);
+			latest = bh;
+			transid = btrfs_super_generation(super);
+		} else {
+			brelse(bh);
+		}
+	}
+	return latest;
+}
+
+/*
+ * this should be called twice, once with wait == 0 and
+ * once with wait == 1.  When wait == 0 is done, all the buffer heads
+ * we write are pinned.
+ *
+ * They are released when wait == 1 is done.
+ * max_mirrors must be the same for both runs, and it indicates how
+ * many supers on this one device should be written.
+ *
+ * max_mirrors == 0 means to write them all.
+ */
+static int write_dev_supers(struct btrfs_device *device,
+			    struct btrfs_super_block *sb,
+			    int do_barriers, int wait, int max_mirrors)
+{
+	struct buffer_head *bh;
+	int i;
+	int ret;
+	int errors = 0;
+	u32 crc;
+	u64 bytenr;
+
+	if (max_mirrors == 0)
+		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
+
+	for (i = 0; i < max_mirrors; i++) {
+		bytenr = btrfs_sb_offset(i);
+		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
+			break;
+
+		if (wait) {
+			bh = __find_get_block(device->bdev, bytenr / 4096,
+					      BTRFS_SUPER_INFO_SIZE);
+			BUG_ON(!bh);
+			wait_on_buffer(bh);
+			if (!buffer_uptodate(bh))
+				errors++;
+
+			/* drop our reference */
+			brelse(bh);
+
+			/* drop the reference from the wait == 0 run */
+			brelse(bh);
+			continue;
+		} else {
+			btrfs_set_super_bytenr(sb, bytenr);
+
+			crc = ~(u32)0;
+			crc = btrfs_csum_data(NULL, (char *)sb +
+					      BTRFS_CSUM_SIZE, crc,
+					      BTRFS_SUPER_INFO_SIZE -
+					      BTRFS_CSUM_SIZE);
+			btrfs_csum_final(crc, sb->csum);
+
+			/*
+			 * one reference for us, and we leave it for the
+			 * caller
+			 */
+			bh = __getblk(device->bdev, bytenr / 4096,
+				      BTRFS_SUPER_INFO_SIZE);
+			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
+
+			/* one reference for submit_bh */
+			get_bh(bh);
+
+			set_buffer_uptodate(bh);
+			lock_buffer(bh);
+			bh->b_end_io = btrfs_end_buffer_write_sync;
+		}
+
+		/*
+		 * we fua the first super.  The others we allow
+		 * to go down lazy.
+		 */
+		ret = btrfsic_submit_bh(WRITE_FUA, bh);
+		if (ret)
+			errors++;
+	}
+	return errors < i ? 0 : -1;
+}
+
+/*
+ * endio for the write_dev_flush, this will wake anyone waiting
+ * for the barrier when it is done
+ */
+static void btrfs_end_empty_barrier(struct bio *bio, int err)
+{
+	if (err) {
+		if (err == -EOPNOTSUPP)
+			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
+		clear_bit(BIO_UPTODATE, &bio->bi_flags);
+	}
+	if (bio->bi_private)
+		complete(bio->bi_private);
+	bio_put(bio);
+}
+
+/*
+ * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
+ * sent down.  With wait == 1, it waits for the previous flush.
+ *
+ * any device where the flush fails with eopnotsupp are flagged as not-barrier
+ * capable
+ */
+static int write_dev_flush(struct btrfs_device *device, int wait)
+{
+	struct bio *bio;
+	int ret = 0;
+
+	if (device->nobarriers)
+		return 0;
+
+	if (wait) {
+		bio = device->flush_bio;
+		if (!bio)
+			return 0;
+
+		wait_for_completion(&device->flush_wait);
+
+		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
+			printk("btrfs: disabling barriers on dev %s\n",
+			       device->name);
+			device->nobarriers = 1;
+		}
+		if (!bio_flagged(bio, BIO_UPTODATE)) {
+			ret = -EIO;
+		}
+
+		/* drop the reference from the wait == 0 run */
+		bio_put(bio);
+		device->flush_bio = NULL;
+
+		return ret;
+	}
+
+	/*
+	 * one reference for us, and we leave it for the
+	 * caller
+	 */
+	device->flush_bio = NULL;;
+	bio = bio_alloc(GFP_NOFS, 0);
+	if (!bio)
+		return -ENOMEM;
+
+	bio->bi_end_io = btrfs_end_empty_barrier;
+	bio->bi_bdev = device->bdev;
+	init_completion(&device->flush_wait);
+	bio->bi_private = &device->flush_wait;
+	device->flush_bio = bio;
+
+	bio_get(bio);
+	btrfsic_submit_bio(WRITE_FLUSH, bio);
+
+	return 0;
+}
+
+/*
+ * send an empty flush down to each device in parallel,
+ * then wait for them
+ */
+static int barrier_all_devices(struct btrfs_fs_info *info)
+{
+	struct list_head *head;
+	struct btrfs_device *dev;
+	int errors = 0;
+	int ret;
+
+	/* send down all the barriers */
+	head = &info->fs_devices->devices;
+	list_for_each_entry_rcu(dev, head, dev_list) {
+		if (!dev->bdev) {
+			errors++;
+			continue;
+		}
+		if (!dev->in_fs_metadata || !dev->writeable)
+			continue;
+
+		ret = write_dev_flush(dev, 0);
+		if (ret)
+			errors++;
+	}
+
+	/* wait for all the barriers */
+	list_for_each_entry_rcu(dev, head, dev_list) {
+		if (!dev->bdev) {
+			errors++;
+			continue;
+		}
+		if (!dev->in_fs_metadata || !dev->writeable)
+			continue;
+
+		ret = write_dev_flush(dev, 1);
+		if (ret)
+			errors++;
+	}
+	if (errors)
+		return -EIO;
+	return 0;
+}
+
+int write_all_supers(struct btrfs_root *root, int max_mirrors)
+{
+	struct list_head *head;
+	struct btrfs_device *dev;
+	struct btrfs_super_block *sb;
+	struct btrfs_dev_item *dev_item;
+	int ret;
+	int do_barriers;
+	int max_errors;
+	int total_errors = 0;
+	u64 flags;
+
+	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
+	do_barriers = !btrfs_test_opt(root, NOBARRIER);
+	backup_super_roots(root->fs_info);
+
+	sb = root->fs_info->super_for_commit;
+	dev_item = &sb->dev_item;
+
+	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+	head = &root->fs_info->fs_devices->devices;
+
+	if (do_barriers)
+		barrier_all_devices(root->fs_info);
+
+	list_for_each_entry_rcu(dev, head, dev_list) {
+		if (!dev->bdev) {
+			total_errors++;
+			continue;
+		}
+		if (!dev->in_fs_metadata || !dev->writeable)
+			continue;
+
+		btrfs_set_stack_device_generation(dev_item, 0);
+		btrfs_set_stack_device_type(dev_item, dev->type);
+		btrfs_set_stack_device_id(dev_item, dev->devid);
+		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
+		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
+		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
+		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
+		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
+		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
+		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
+
+		flags = btrfs_super_flags(sb);
+		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
+
+		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
+		if (ret)
+			total_errors++;
+	}
+	if (total_errors > max_errors) {
+		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
+		       total_errors);
+
+		/* This shouldn't happen. FUA is masked off if unsupported */
+		BUG();
+	}
+
+	total_errors = 0;
+	list_for_each_entry_rcu(dev, head, dev_list) {
+		if (!dev->bdev)
+			continue;
+		if (!dev->in_fs_metadata || !dev->writeable)
+			continue;
+
+		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
+		if (ret)
+			total_errors++;
+	}
+	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+	if (total_errors > max_errors) {
+		btrfs_error(root->fs_info, -EIO,
+			    "%d errors while writing supers", total_errors);
+		return -EIO;
+	}
+	return 0;
+}
+
+int write_ctree_super(struct btrfs_trans_handle *trans,
+		      struct btrfs_root *root, int max_mirrors)
+{
+	int ret;
+
+	ret = write_all_supers(root, max_mirrors);
+	return ret;
+}
+
+/* Kill all outstanding I/O */
+void btrfs_abort_devices(struct btrfs_root *root)
+{
+	struct list_head *head;
+	struct btrfs_device *dev;
+	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
+	head = &root->fs_info->fs_devices->devices;
+	list_for_each_entry_rcu(dev, head, dev_list) {
+		blk_abort_queue(dev->bdev->bd_disk->queue);
+	}
+	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
+}
+
+void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
+{
+	spin_lock(&fs_info->fs_roots_radix_lock);
+	radix_tree_delete(&fs_info->fs_roots_radix,
+			  (unsigned long)root->root_key.objectid);
+	spin_unlock(&fs_info->fs_roots_radix_lock);
+
+	if (btrfs_root_refs(&root->root_item) == 0)
+		synchronize_srcu(&fs_info->subvol_srcu);
+
+	__btrfs_remove_free_space_cache(root->free_ino_pinned);
+	__btrfs_remove_free_space_cache(root->free_ino_ctl);
+	free_fs_root(root);
+}
+
+static void free_fs_root(struct btrfs_root *root)
+{
+	iput(root->cache_inode);
+	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
+	if (root->anon_dev)
+		free_anon_bdev(root->anon_dev);
+	free_extent_buffer(root->node);
+	free_extent_buffer(root->commit_root);
+	kfree(root->free_ino_ctl);
+	kfree(root->free_ino_pinned);
+	kfree(root->name);
+	kfree(root);
+}
+
+static void del_fs_roots(struct btrfs_fs_info *fs_info)
+{
+	int ret;
+	struct btrfs_root *gang[8];
+	int i;
+
+	while (!list_empty(&fs_info->dead_roots)) {
+		gang[0] = list_entry(fs_info->dead_roots.next,
+				     struct btrfs_root, root_list);
+		list_del(&gang[0]->root_list);
+
+		if (gang[0]->in_radix) {
+			btrfs_free_fs_root(fs_info, gang[0]);
+		} else {
+			free_extent_buffer(gang[0]->node);
+			free_extent_buffer(gang[0]->commit_root);
+			kfree(gang[0]);
+		}
+	}
+
+	while (1) {
+		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
+					     (void **)gang, 0,
+					     ARRAY_SIZE(gang));
+		if (!ret)
+			break;
+		for (i = 0; i < ret; i++)
+			btrfs_free_fs_root(fs_info, gang[i]);
+	}
+}
+
+int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
+{
+	u64 root_objectid = 0;
+	struct btrfs_root *gang[8];
+	int i;
+	int ret;
+
+	while (1) {
+		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
+					     (void **)gang, root_objectid,
+					     ARRAY_SIZE(gang));
+		if (!ret)
+			break;
+
+		root_objectid = gang[ret - 1]->root_key.objectid + 1;
+		for (i = 0; i < ret; i++) {
+			int err;
+
+			root_objectid = gang[i]->root_key.objectid;
+			err = btrfs_orphan_cleanup(gang[i]);
+			if (err)
+				return err;
+		}
+		root_objectid++;
+	}
+	return 0;
+}
+
+int btrfs_commit_super(struct btrfs_root *root)
+{
+	struct btrfs_trans_handle *trans;
+	int ret;
+
+	mutex_lock(&root->fs_info->cleaner_mutex);
+	btrfs_run_delayed_iputs(root);
+	btrfs_clean_old_snapshots(root);
+	mutex_unlock(&root->fs_info->cleaner_mutex);
+
+	/* wait until ongoing cleanup work done */
+	down_write(&root->fs_info->cleanup_work_sem);
+	up_write(&root->fs_info->cleanup_work_sem);
+
+	trans = btrfs_join_transaction(root);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+	ret = btrfs_commit_transaction(trans, root);
+	if (ret)
+		return ret;
+	/* run commit again to drop the original snapshot */
+	trans = btrfs_join_transaction(root);
+	if (IS_ERR(trans))
+		return PTR_ERR(trans);
+	ret = btrfs_commit_transaction(trans, root);
+	if (ret)
+		return ret;
+	ret = btrfs_write_and_wait_transaction(NULL, root);
+	if (ret) {
+		btrfs_error(root->fs_info, ret,
+			    "Failed to sync btree inode to disk.");
+		return ret;
+	}
+
+	ret = write_ctree_super(NULL, root, 0);
+	return ret;
+}
+
+int close_ctree(struct btrfs_root *root)
+{
+	struct btrfs_fs_info *fs_info = root->fs_info;
+	int ret;
+
+	fs_info->closing = 1;
+	smp_mb();
+
+	/* pause restriper - we want to resume on mount */
+	btrfs_pause_balance(root->fs_info);
+
+	btrfs_scrub_cancel(root);
+
+	/* wait for any defraggers to finish */
+	wait_event(fs_info->transaction_wait,
+		   (atomic_read(&fs_info->defrag_running) == 0));
+
+	/* clear out the rbtree of defraggable inodes */
+	btrfs_run_defrag_inodes(fs_info);
+
+	/*
+	 * Here come 2 situations when btrfs is broken to flip readonly:
+	 *
+	 * 1. when btrfs flips readonly somewhere else before
+	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
+	 * and btrfs will skip to write sb directly to keep
+	 * ERROR state on disk.
+	 *
+	 * 2. when btrfs flips readonly just in btrfs_commit_super,
+	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
+	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
+	 * btrfs will cleanup all FS resources first and write sb then.
+	 */
+	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
+		ret = btrfs_commit_super(root);
+		if (ret)
+			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
+	}
+
+	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
+		ret = btrfs_error_commit_super(root);
+		if (ret)
+			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
+	}
+
+	btrfs_put_block_group_cache(fs_info);
+
+	kthread_stop(fs_info->transaction_kthread);
+	kthread_stop(fs_info->cleaner_kthread);
+
+	fs_info->closing = 2;
+	smp_mb();
+
+	if (fs_info->delalloc_bytes) {
+		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
+		       (unsigned long long)fs_info->delalloc_bytes);
+	}
+	if (fs_info->total_ref_cache_size) {
+		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
+		       (unsigned long long)fs_info->total_ref_cache_size);
+	}
+
+	free_extent_buffer(fs_info->extent_root->node);
+	free_extent_buffer(fs_info->extent_root->commit_root);
+	free_extent_buffer(fs_info->tree_root->node);
+	free_extent_buffer(fs_info->tree_root->commit_root);
+	free_extent_buffer(fs_info->chunk_root->node);
+	free_extent_buffer(fs_info->chunk_root->commit_root);
+	free_extent_buffer(fs_info->dev_root->node);
+	free_extent_buffer(fs_info->dev_root->commit_root);
+	free_extent_buffer(fs_info->csum_root->node);
+	free_extent_buffer(fs_info->csum_root->commit_root);
+
+	btrfs_free_block_groups(fs_info);
+
+	del_fs_roots(fs_info);
+
+	iput(fs_info->btree_inode);
+
+	btrfs_stop_workers(&fs_info->generic_worker);
+	btrfs_stop_workers(&fs_info->fixup_workers);
+	btrfs_stop_workers(&fs_info->delalloc_workers);
+	btrfs_stop_workers(&fs_info->workers);
+	btrfs_stop_workers(&fs_info->endio_workers);
+	btrfs_stop_workers(&fs_info->endio_meta_workers);
+	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
+	btrfs_stop_workers(&fs_info->endio_write_workers);
+	btrfs_stop_workers(&fs_info->endio_freespace_worker);
+	btrfs_stop_workers(&fs_info->submit_workers);
+	btrfs_stop_workers(&fs_info->delayed_workers);
+	btrfs_stop_workers(&fs_info->caching_workers);
+	btrfs_stop_workers(&fs_info->readahead_workers);
+
+#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
+	if (btrfs_test_opt(root, CHECK_INTEGRITY))
+		btrfsic_unmount(root, fs_info->fs_devices);
+#endif
+
+	btrfs_close_devices(fs_info->fs_devices);
+	btrfs_mapping_tree_free(&fs_info->mapping_tree);
+
+	bdi_destroy(&fs_info->bdi);
+	cleanup_srcu_struct(&fs_info->subvol_srcu);
+
+	return 0;
+}
+
+int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
+			  int atomic)
+{
+	int ret;
+	struct inode *btree_inode = buf->pages[0]->mapping->host;
+
+	ret = extent_buffer_uptodate(buf);
+	if (!ret)
+		return ret;
+
+	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
+				    parent_transid, atomic);
+	if (ret == -EAGAIN)
+		return ret;
+	return !ret;
+}
+
+int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
+{
+	return set_extent_buffer_uptodate(buf);
+}
+
+void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
+{
+	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
+	u64 transid = btrfs_header_generation(buf);
+	int was_dirty;
+
+	btrfs_assert_tree_locked(buf);
+	if (transid != root->fs_info->generation) {
+		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
+		       "found %llu running %llu\n",
+			(unsigned long long)buf->start,
+			(unsigned long long)transid,
+			(unsigned long long)root->fs_info->generation);
+		WARN_ON(1);
+	}
+	was_dirty = set_extent_buffer_dirty(buf);
+	if (!was_dirty) {
+		spin_lock(&root->fs_info->delalloc_lock);
+		root->fs_info->dirty_metadata_bytes += buf->len;
+		spin_unlock(&root->fs_info->delalloc_lock);
+	}
+}
+
+void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
+{
+	/*
+	 * looks as though older kernels can get into trouble with
+	 * this code, they end up stuck in balance_dirty_pages forever
+	 */
+	u64 num_dirty;
+	unsigned long thresh = 32 * 1024 * 1024;
+
+	if (current->flags & PF_MEMALLOC)
+		return;
+
+	btrfs_balance_delayed_items(root);
+
+	num_dirty = root->fs_info->dirty_metadata_bytes;
+
+	if (num_dirty > thresh) {
+		balance_dirty_pages_ratelimited_nr(
+				   root->fs_info->btree_inode->i_mapping, 1);
+	}
+	return;
+}
+
+void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
+{
+	/*
+	 * looks as though older kernels can get into trouble with
+	 * this code, they end up stuck in balance_dirty_pages forever
+	 */
+	u64 num_dirty;
+	unsigned long thresh = 32 * 1024 * 1024;
+
+	if (current->flags & PF_MEMALLOC)
+		return;
+
+	num_dirty = root->fs_info->dirty_metadata_bytes;
+
+	if (num_dirty > thresh) {
+		balance_dirty_pages_ratelimited_nr(
+				   root->fs_info->btree_inode->i_mapping, 1);
+	}
+	return;
+}
+
+int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
+{
+	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
+	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
+}
+
+static int btree_lock_page_hook(struct page *page, void *data,
+				void (*flush_fn)(void *))
+{
+	struct inode *inode = page->mapping->host;
+	struct btrfs_root *root = BTRFS_I(inode)->root;
+	struct extent_buffer *eb;
+
+	/*
+	 * We culled this eb but the page is still hanging out on the mapping,
+	 * carry on.
+	 */
+	if (!PagePrivate(page))
+		goto out;
+
+	eb = (struct extent_buffer *)page->private;
+	if (!eb) {
+		WARN_ON(1);
+		goto out;
+	}
+	if (page != eb->pages[0])
+		goto out;
+
+	if (!btrfs_try_tree_write_lock(eb)) {
+		flush_fn(data);
+		btrfs_tree_lock(eb);
+	}
+	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
+
+	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
+		spin_lock(&root->fs_info->delalloc_lock);
+		if (root->fs_info->dirty_metadata_bytes >= eb->len)
+			root->fs_info->dirty_metadata_bytes -= eb->len;
+		else
+			WARN_ON(1);
+		spin_unlock(&root->fs_info->delalloc_lock);
+	}
+
+	btrfs_tree_unlock(eb);
+out:
+	if (!trylock_page(page)) {
+		flush_fn(data);
+		lock_page(page);
+	}
+	return 0;
+}
+
+static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
+			      int read_only)
+{
+	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
+		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
+		return -EINVAL;
+	}
+
+	if (read_only)
+		return 0;
+
+	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
+		printk(KERN_WARNING "warning: mount fs with errors, "
+		       "running btrfsck is recommended\n");
+	}
+
+	return 0;
+}
+
+int btrfs_error_commit_super(struct btrfs_root *root)
+{
+	int ret;
+
+	mutex_lock(&root->fs_info->cleaner_mutex);
+	btrfs_run_delayed_iputs(root);
+	mutex_unlock(&root->fs_info->cleaner_mutex);
+
+	down_write(&root->fs_info->cleanup_work_sem);
+	up_write(&root->fs_info->cleanup_work_sem);
+
+	/* cleanup FS via transaction */
+	btrfs_cleanup_transaction(root);
+
+	ret = write_ctree_super(NULL, root, 0);
+
+	return ret;
+}
+
+static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
+{
+	struct btrfs_inode *btrfs_inode;
+	struct list_head splice;
+
+	INIT_LIST_HEAD(&splice);
+
+	mutex_lock(&root->fs_info->ordered_operations_mutex);
+	spin_lock(&root->fs_info->ordered_extent_lock);
+
+	list_splice_init(&root->fs_info->ordered_operations, &splice);
+	while (!list_empty(&splice)) {
+		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
+					 ordered_operations);
+
+		list_del_init(&btrfs_inode->ordered_operations);
+
+		btrfs_invalidate_inodes(btrfs_inode->root);
+	}
+
+	spin_unlock(&root->fs_info->ordered_extent_lock);
+	mutex_unlock(&root->fs_info->ordered_operations_mutex);
+}
+
+static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
+{
+	struct list_head splice;
+	struct btrfs_ordered_extent *ordered;
+	struct inode *inode;
+
+	INIT_LIST_HEAD(&splice);
+
+	spin_lock(&root->fs_info->ordered_extent_lock);
+
+	list_splice_init(&root->fs_info->ordered_extents, &splice);
+	while (!list_empty(&splice)) {
+		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
+				     root_extent_list);
+
+		list_del_init(&ordered->root_extent_list);
+		atomic_inc(&ordered->refs);
+
+		/* the inode may be getting freed (in sys_unlink path). */
+		inode = igrab(ordered->inode);
+
+		spin_unlock(&root->fs_info->ordered_extent_lock);
+		if (inode)
+			iput(inode);
+
+		atomic_set(&ordered->refs, 1);
+		btrfs_put_ordered_extent(ordered);
+
+		spin_lock(&root->fs_info->ordered_extent_lock);
+	}
+
+	spin_unlock(&root->fs_info->ordered_extent_lock);
+}
+
+int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
+			       struct btrfs_root *root)
+{
+	struct rb_node *node;
+	struct btrfs_delayed_ref_root *delayed_refs;
+	struct btrfs_delayed_ref_node *ref;
+	int ret = 0;
+
+	delayed_refs = &trans->delayed_refs;
+
+again:
+	spin_lock(&delayed_refs->lock);
+	if (delayed_refs->num_entries == 0) {
+		spin_unlock(&delayed_refs->lock);
+		printk(KERN_INFO "delayed_refs has NO entry\n");
+		return ret;
+	}
+
+	node = rb_first(&delayed_refs->root);
+	while (node) {
+		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
+		node = rb_next(node);
+
+		ref->in_tree = 0;
+		rb_erase(&ref->rb_node, &delayed_refs->root);
+		delayed_refs->num_entries--;
+
+		atomic_set(&ref->refs, 1);
+		if (btrfs_delayed_ref_is_head(ref)) {
+			struct btrfs_delayed_ref_head *head;
+
+			head = btrfs_delayed_node_to_head(ref);
+			spin_unlock(&delayed_refs->lock);
+			mutex_lock(&head->mutex);
+			kfree(head->extent_op);
+			delayed_refs->num_heads--;
+			if (list_empty(&head->cluster))
+				delayed_refs->num_heads_ready--;
+			list_del_init(&head->cluster);
+			mutex_unlock(&head->mutex);
+			btrfs_put_delayed_ref(ref);
+			goto again;
+		}
+		spin_unlock(&delayed_refs->lock);
+		btrfs_put_delayed_ref(ref);
+
+		cond_resched();
+		spin_lock(&delayed_refs->lock);
+	}
+
+	spin_unlock(&delayed_refs->lock);
+
+	return ret;
+}
+
+static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
+{
+	struct btrfs_pending_snapshot *snapshot;
+	struct list_head splice;
+
+	INIT_LIST_HEAD(&splice);
+
+	list_splice_init(&t->pending_snapshots, &splice);
+
+	while (!list_empty(&splice)) {
+		snapshot = list_entry(splice.next,
+				      struct btrfs_pending_snapshot,
+				      list);
+
+		list_del_init(&snapshot->list);
+
+		kfree(snapshot);
+	}
+}
+
+static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
+{
+	struct btrfs_inode *btrfs_inode;
+	struct list_head splice;
+
+	INIT_LIST_HEAD(&splice);
+
+	spin_lock(&root->fs_info->delalloc_lock);
+	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
+
+	while (!list_empty(&splice)) {
+		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
+				    delalloc_inodes);
+
+		list_del_init(&btrfs_inode->delalloc_inodes);
+
+		btrfs_invalidate_inodes(btrfs_inode->root);
+	}
+
+	spin_unlock(&root->fs_info->delalloc_lock);
+}
+
+static int btrfs_destroy_marked_extents(struct btrfs_root *root,
+					struct extent_io_tree *dirty_pages,
+					int mark)
+{
+	int ret;
+	struct page *page;
+	struct inode *btree_inode = root->fs_info->btree_inode;
+	struct extent_buffer *eb;
+	u64 start = 0;
+	u64 end;
+	u64 offset;
+	unsigned long index;
+
+	while (1) {
+		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
+					    mark);
+		if (ret)
+			break;
+
+		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
+		while (start <= end) {
+			index = start >> PAGE_CACHE_SHIFT;
+			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
+			page = find_get_page(btree_inode->i_mapping, index);
+			if (!page)
+				continue;
+			offset = page_offset(page);
+
+			spin_lock(&dirty_pages->buffer_lock);
+			eb = radix_tree_lookup(
+			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
+					       offset >> PAGE_CACHE_SHIFT);
+			spin_unlock(&dirty_pages->buffer_lock);
+			if (eb) {
+				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
+							 &eb->bflags);
+				atomic_set(&eb->refs, 1);
+			}
+			if (PageWriteback(page))
+				end_page_writeback(page);
+
+			lock_page(page);
+			if (PageDirty(page)) {
+				clear_page_dirty_for_io(page);
+				spin_lock_irq(&page->mapping->tree_lock);
+				radix_tree_tag_clear(&page->mapping->page_tree,
+							page_index(page),
+							PAGECACHE_TAG_DIRTY);
+				spin_unlock_irq(&page->mapping->tree_lock);
+			}
+
+			page->mapping->a_ops->invalidatepage(page, 0);
+			unlock_page(page);
+		}
+	}
+
+	return ret;
+}
+
+static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
+				       struct extent_io_tree *pinned_extents)
+{
+	struct extent_io_tree *unpin;
+	u64 start;
+	u64 end;
+	int ret;
+
+	unpin = pinned_extents;
+	while (1) {
+		ret = find_first_extent_bit(unpin, 0, &start, &end,
+					    EXTENT_DIRTY);
+		if (ret)
+			break;
+
+		clear_extent_dirty(unpin, start, end, GFP_NOFS);
+		btrfs_error_unpin_extent_range(root, start, end);
+		cond_resched();
+	}
+
+	return 0;
+}
+
+void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
+				   struct btrfs_root *root)
+{
+	btrfs_destroy_delayed_refs(cur_trans, root);
+	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
+				cur_trans->dirty_pages.dirty_bytes);
+
+	/* FIXME: cleanup wait for commit */
+	cur_trans->in_commit = 1;
+	cur_trans->blocked = 1;
+	if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
+		wake_up(&root->fs_info->transaction_blocked_wait);
+
+	cur_trans->blocked = 0;
+	if (waitqueue_active(&root->fs_info->transaction_wait))
+		wake_up(&root->fs_info->transaction_wait);
+
+	cur_trans->commit_done = 1;
+	if (waitqueue_active(&cur_trans->commit_wait))
+		wake_up(&cur_trans->commit_wait);
+
+	btrfs_destroy_pending_snapshots(cur_trans);
+
+	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
+				     EXTENT_DIRTY);
+
+	/*
+	memset(cur_trans, 0, sizeof(*cur_trans));
+	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
+	*/
+}
+
+int btrfs_cleanup_transaction(struct btrfs_root *root)
+{
+	struct btrfs_transaction *t;
+	LIST_HEAD(list);
+
+	mutex_lock(&root->fs_info->transaction_kthread_mutex);
+
+	spin_lock(&root->fs_info->trans_lock);
+	list_splice_init(&root->fs_info->trans_list, &list);
+	root->fs_info->trans_no_join = 1;
+	spin_unlock(&root->fs_info->trans_lock);
+
+	while (!list_empty(&list)) {
+		t = list_entry(list.next, struct btrfs_transaction, list);
+		if (!t)
+			break;
+
+		btrfs_destroy_ordered_operations(root);
+
+		btrfs_destroy_ordered_extents(root);
+
+		btrfs_destroy_delayed_refs(t, root);
+
+		btrfs_block_rsv_release(root,
+					&root->fs_info->trans_block_rsv,
+					t->dirty_pages.dirty_bytes);
+
+		/* FIXME: cleanup wait for commit */
+		t->in_commit = 1;
+		t->blocked = 1;
+		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
+			wake_up(&root->fs_info->transaction_blocked_wait);
+
+		t->blocked = 0;
+		if (waitqueue_active(&root->fs_info->transaction_wait))
+			wake_up(&root->fs_info->transaction_wait);
+
+		t->commit_done = 1;
+		if (waitqueue_active(&t->commit_wait))
+			wake_up(&t->commit_wait);
+
+		btrfs_destroy_pending_snapshots(t);
+
+		btrfs_destroy_delalloc_inodes(root);
+
+		spin_lock(&root->fs_info->trans_lock);
+		root->fs_info->running_transaction = NULL;
+		spin_unlock(&root->fs_info->trans_lock);
+
+		btrfs_destroy_marked_extents(root, &t->dirty_pages,
+					     EXTENT_DIRTY);
+
+		btrfs_destroy_pinned_extent(root,
+					    root->fs_info->pinned_extents);
+
+		atomic_set(&t->use_count, 0);
+		list_del_init(&t->list);
+		memset(t, 0, sizeof(*t));
+		kmem_cache_free(btrfs_transaction_cachep, t);
+	}
+
+	spin_lock(&root->fs_info->trans_lock);
+	root->fs_info->trans_no_join = 0;
+	spin_unlock(&root->fs_info->trans_lock);
+	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
+
+	return 0;
+}
+
+static int btree_writepage_io_failed_hook(struct bio *bio, struct page *page,
+					  u64 start, u64 end,
+					  struct extent_state *state)
+{
+	struct super_block *sb = page->mapping->host->i_sb;
+	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
+	btrfs_error(fs_info, -EIO,
+		    "Error occured while writing out btree at %llu", start);
+	return -EIO;
+}
+
+static struct extent_io_ops btree_extent_io_ops = {
+	.write_cache_pages_lock_hook = btree_lock_page_hook,
+	.readpage_end_io_hook = btree_readpage_end_io_hook,
+	.readpage_io_failed_hook = btree_io_failed_hook,
+	.submit_bio_hook = btree_submit_bio_hook,
+	/* note we're sharing with inode.c for the merge bio hook */
+	.merge_bio_hook = btrfs_merge_bio_hook,
+	.writepage_io_failed_hook = btree_writepage_io_failed_hook,
+};