[Feature][T106]ZXW P56U09 code

Only Configure: Yes
Affected branch: master
Affected module: unknow
Is it affected on both ZXIC and MTK: only ZXIC
Self-test: No
Doc Update: No

Change-Id: I3cbd8b420271eb20c2b40ebe5c78f83059cd42f3
diff --git a/ap/os/linux/linux-3.4.x/kernel/rtmutex.c b/ap/os/linux/linux-3.4.x/kernel/rtmutex.c
new file mode 100644
index 0000000..ba1bdb0
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/rtmutex.c
@@ -0,0 +1,1984 @@
+/*
+ * RT-Mutexes: simple blocking mutual exclusion locks with PI support
+ *
+ * started by Ingo Molnar and Thomas Gleixner.
+ *
+ *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
+ *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
+ *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
+ *  Copyright (C) 2006 Esben Nielsen
+ *
+ * Adaptive Spinlocks:
+ *  Copyright (C) 2008 Novell, Inc., Gregory Haskins, Sven Dietrich,
+ *                                   and Peter Morreale,
+ * Adaptive Spinlocks simplification:
+ *  Copyright (C) 2008 Red Hat, Inc., Steven Rostedt <srostedt@redhat.com>
+ *
+ *  See Documentation/rt-mutex-design.txt for details.
+ */
+#include <linux/spinlock.h>
+#include <linux/export.h>
+#include <linux/sched.h>
+#include <linux/timer.h>
+
+#include "rtmutex_common.h"
+
+/*
+ * lock->owner state tracking:
+ *
+ * lock->owner holds the task_struct pointer of the owner. Bit 0
+ * is used to keep track of the "lock has waiters" state.
+ *
+ * owner	bit0
+ * NULL		0	lock is free (fast acquire possible)
+ * NULL		1	lock is free and has waiters and the top waiter
+ *				is going to take the lock*
+ * taskpointer	0	lock is held (fast release possible)
+ * taskpointer	1	lock is held and has waiters**
+ *
+ * The fast atomic compare exchange based acquire and release is only
+ * possible when bit 0 of lock->owner is 0.
+ *
+ * (*) It also can be a transitional state when grabbing the lock
+ * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
+ * we need to set the bit0 before looking at the lock, and the owner may be
+ * NULL in this small time, hence this can be a transitional state.
+ *
+ * (**) There is a small time when bit 0 is set but there are no
+ * waiters. This can happen when grabbing the lock in the slow path.
+ * To prevent a cmpxchg of the owner releasing the lock, we need to
+ * set this bit before looking at the lock.
+ */
+
+static void
+rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
+{
+	unsigned long val = (unsigned long)owner;
+
+	if (rt_mutex_has_waiters(lock))
+		val |= RT_MUTEX_HAS_WAITERS;
+
+	lock->owner = (struct task_struct *)val;
+}
+
+static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
+{
+	lock->owner = (struct task_struct *)
+			((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
+}
+
+static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
+{
+	if (!rt_mutex_has_waiters(lock))
+		clear_rt_mutex_waiters(lock);
+}
+
+static int rt_mutex_real_waiter(struct rt_mutex_waiter *waiter)
+{
+	return waiter && waiter != PI_WAKEUP_INPROGRESS &&
+		waiter != PI_REQUEUE_INPROGRESS;
+}
+
+/*
+ * We can speed up the acquire/release, if the architecture
+ * supports cmpxchg and if there's no debugging state to be set up
+ */
+#if defined(__HAVE_ARCH_CMPXCHG) && !defined(CONFIG_DEBUG_RT_MUTEXES)
+# define rt_mutex_cmpxchg(l,c,n)	(cmpxchg(&l->owner, c, n) == c)
+static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
+{
+	unsigned long owner, *p = (unsigned long *) &lock->owner;
+
+	do {
+		owner = *p;
+	} while (cmpxchg(p, owner, owner | RT_MUTEX_HAS_WAITERS) != owner);
+}
+
+/*
+ * Safe fastpath aware unlock:
+ * 1) Clear the waiters bit
+ * 2) Drop lock->wait_lock
+ * 3) Try to unlock the lock with cmpxchg
+ */
+static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
+	__releases(lock->wait_lock)
+{
+	struct task_struct *owner = rt_mutex_owner(lock);
+
+	clear_rt_mutex_waiters(lock);
+	raw_spin_unlock(&lock->wait_lock);
+	/*
+	 * If a new waiter comes in between the unlock and the cmpxchg
+	 * we have two situations:
+	 *
+	 * unlock(wait_lock);
+	 *					lock(wait_lock);
+	 * cmpxchg(p, owner, 0) == owner
+	 *					mark_rt_mutex_waiters(lock);
+	 *					acquire(lock);
+	 * or:
+	 *
+	 * unlock(wait_lock);
+	 *					lock(wait_lock);
+	 *					mark_rt_mutex_waiters(lock);
+	 *
+	 * cmpxchg(p, owner, 0) != owner
+	 *					enqueue_waiter();
+	 *					unlock(wait_lock);
+	 * lock(wait_lock);
+	 * wake waiter();
+	 * unlock(wait_lock);
+	 *					lock(wait_lock);
+	 *					acquire(lock);
+	 */
+	return rt_mutex_cmpxchg(lock, owner, NULL);
+}
+
+#else
+# define rt_mutex_cmpxchg(l,c,n)	(0)
+static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
+{
+	lock->owner = (struct task_struct *)
+			((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
+}
+
+/*
+ * Simple slow path only version: lock->owner is protected by lock->wait_lock.
+ */
+static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock)
+	__releases(lock->wait_lock)
+{
+	lock->owner = NULL;
+	raw_spin_unlock(&lock->wait_lock);
+	return true;
+}
+#endif
+
+static inline void
+rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
+{
+	plist_add(&waiter->list_entry, &lock->wait_list);
+}
+
+static inline void
+rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
+{
+	plist_del(&waiter->list_entry, &lock->wait_list);
+}
+
+static inline void
+rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
+{
+	waiter->pi_list_entry.prio = waiter->list_entry.prio;
+	plist_add(&waiter->pi_list_entry, &task->pi_waiters);
+}
+
+static inline void
+rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
+{
+	plist_del(&waiter->pi_list_entry, &task->pi_waiters);
+}
+
+static inline void init_lists(struct rt_mutex *lock)
+{
+	if (unlikely(!lock->wait_list.node_list.prev))
+		plist_head_init(&lock->wait_list);
+}
+
+/*
+ * Calculate task priority from the waiter list priority
+ *
+ * Return task->normal_prio when the waiter list is empty or when
+ * the waiter is not allowed to do priority boosting
+ */
+int rt_mutex_getprio(struct task_struct *task)
+{
+	if (likely(!task_has_pi_waiters(task)))
+		return task->normal_prio;
+
+	return min(task_top_pi_waiter(task)->pi_list_entry.prio,
+		   task->normal_prio);
+}
+
+/*
+ * Called by sched_setscheduler() to check whether the priority change
+ * is overruled by a possible priority boosting.
+ */
+int rt_mutex_check_prio(struct task_struct *task, int newprio)
+{
+	if (!task_has_pi_waiters(task))
+		return 0;
+
+	return task_top_pi_waiter(task)->pi_list_entry.prio <= newprio;
+}
+
+/*
+ * Adjust the priority of a task, after its pi_waiters got modified.
+ *
+ * This can be both boosting and unboosting. task->pi_lock must be held.
+ */
+static void __rt_mutex_adjust_prio(struct task_struct *task)
+{
+	int prio = rt_mutex_getprio(task);
+
+	if (task->prio != prio)
+		rt_mutex_setprio(task, prio);
+}
+
+/*
+ * Adjust task priority (undo boosting). Called from the exit path of
+ * rt_mutex_slowunlock() and rt_mutex_slowlock().
+ *
+ * (Note: We do this outside of the protection of lock->wait_lock to
+ * allow the lock to be taken while or before we readjust the priority
+ * of task. We do not use the spin_xx_mutex() variants here as we are
+ * outside of the debug path.)
+ */
+static void rt_mutex_adjust_prio(struct task_struct *task)
+{
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&task->pi_lock, flags);
+	__rt_mutex_adjust_prio(task);
+	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+}
+
+static void rt_mutex_wake_waiter(struct rt_mutex_waiter *waiter)
+{
+	if (waiter->savestate)
+		wake_up_lock_sleeper(waiter->task);
+	else
+		wake_up_process(waiter->task);
+}
+
+/*
+ * Deadlock detection is conditional:
+ *
+ * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
+ * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
+ *
+ * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
+ * conducted independent of the detect argument.
+ *
+ * If the waiter argument is NULL this indicates the deboost path and
+ * deadlock detection is disabled independent of the detect argument
+ * and the config settings.
+ */
+static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
+					  enum rtmutex_chainwalk chwalk)
+{
+	/*
+	 * This is just a wrapper function for the following call,
+	 * because debug_rt_mutex_detect_deadlock() smells like a magic
+	 * debug feature and I wanted to keep the cond function in the
+	 * main source file along with the comments instead of having
+	 * two of the same in the headers.
+	 */
+	return debug_rt_mutex_detect_deadlock(waiter, chwalk);
+}
+
+/*
+ * Max number of times we'll walk the boosting chain:
+ */
+int max_lock_depth = 1024;
+
+static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
+{
+	return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
+}
+
+/*
+ * Adjust the priority chain. Also used for deadlock detection.
+ * Decreases task's usage by one - may thus free the task.
+ * Returns 0 or -EDEADLK.
+ *
+ * Chain walk basics and protection scope
+ *
+ * [R] refcount on task
+ * [P] task->pi_lock held
+ * [L] rtmutex->wait_lock held
+ *
+ * Step	Description				Protected by
+ *	function arguments:
+ *	@task					[R]
+ *	@orig_lock if != NULL			@top_task is blocked on it
+ *	@next_lock				Unprotected. Cannot be
+ *						dereferenced. Only used for
+ *						comparison.
+ *	@orig_waiter if != NULL			@top_task is blocked on it
+ *	@top_task				current, or in case of proxy
+ *						locking protected by calling
+ *						code
+ *	again:
+ *	  loop_sanity_check();
+ *	retry:
+ * [1]	  lock(task->pi_lock);			[R] acquire [P]
+ * [2]	  waiter = task->pi_blocked_on;		[P]
+ * [3]	  check_exit_conditions_1();		[P]
+ * [4]	  lock = waiter->lock;			[P]
+ * [5]	  if (!try_lock(lock->wait_lock)) {	[P] try to acquire [L]
+ *	    unlock(task->pi_lock);		release [P]
+ *	    goto retry;
+ *	  }
+ * [6]	  check_exit_conditions_2();		[P] + [L]
+ * [7]	  requeue_lock_waiter(lock, waiter);	[P] + [L]
+ * [8]	  unlock(task->pi_lock);		release [P]
+ *	  put_task_struct(task);		release [R]
+ * [9]	  check_exit_conditions_3();		[L]
+ * [10]	  task = owner(lock);			[L]
+ *	  get_task_struct(task);		[L] acquire [R]
+ *	  lock(task->pi_lock);			[L] acquire [P]
+ * [11]	  requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
+ * [12]	  check_exit_conditions_4();		[P] + [L]
+ * [13]	  unlock(task->pi_lock);		release [P]
+ *	  unlock(lock->wait_lock);		release [L]
+ *	  goto again;
+ */
+static int rt_mutex_adjust_prio_chain(struct task_struct *task,
+				      enum rtmutex_chainwalk chwalk,
+				      struct rt_mutex *orig_lock,
+				      struct rt_mutex *next_lock,
+				      struct rt_mutex_waiter *orig_waiter,
+				      struct task_struct *top_task)
+{
+	struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
+	struct rt_mutex_waiter *prerequeue_top_waiter;
+	int ret = 0, depth = 0;
+	struct rt_mutex *lock;
+	bool detect_deadlock;
+	unsigned long flags;
+	bool requeue = true;
+
+	detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
+
+	/*
+	 * The (de)boosting is a step by step approach with a lot of
+	 * pitfalls. We want this to be preemptible and we want hold a
+	 * maximum of two locks per step. So we have to check
+	 * carefully whether things change under us.
+	 */
+ again:
+	/*
+	 * We limit the lock chain length for each invocation.
+	 */
+	if (++depth > max_lock_depth) {
+		static int prev_max;
+
+		/*
+		 * Print this only once. If the admin changes the limit,
+		 * print a new message when reaching the limit again.
+		 */
+		if (prev_max != max_lock_depth) {
+			prev_max = max_lock_depth;
+			printk(KERN_WARNING "Maximum lock depth %d reached "
+			       "task: %s (%d)\n", max_lock_depth,
+			       top_task->comm, task_pid_nr(top_task));
+		}
+		put_task_struct(task);
+
+		return -EDEADLK;
+	}
+
+	/*
+	 * We are fully preemptible here and only hold the refcount on
+	 * @task. So everything can have changed under us since the
+	 * caller or our own code below (goto retry/again) dropped all
+	 * locks.
+	 */
+ retry:
+	/*
+	 * [1] Task cannot go away as we did a get_task() before !
+	 */
+	raw_spin_lock_irqsave(&task->pi_lock, flags);
+
+	/*
+	 * [2] Get the waiter on which @task is blocked on.
+	 */
+	waiter = task->pi_blocked_on;
+
+	/*
+	 * [3] check_exit_conditions_1() protected by task->pi_lock.
+	 */
+
+	/*
+	 * Check whether the end of the boosting chain has been
+	 * reached or the state of the chain has changed while we
+	 * dropped the locks.
+	 */
+	if (!rt_mutex_real_waiter(waiter))
+		goto out_unlock_pi;
+
+	/*
+	 * Check the orig_waiter state. After we dropped the locks,
+	 * the previous owner of the lock might have released the lock.
+	 */
+	if (orig_waiter && !rt_mutex_owner(orig_lock))
+		goto out_unlock_pi;
+
+	/*
+	 * We dropped all locks after taking a refcount on @task, so
+	 * the task might have moved on in the lock chain or even left
+	 * the chain completely and blocks now on an unrelated lock or
+	 * on @orig_lock.
+	 *
+	 * We stored the lock on which @task was blocked in @next_lock,
+	 * so we can detect the chain change.
+	 */
+	if (next_lock != waiter->lock)
+		goto out_unlock_pi;
+
+	/*
+	 * Drop out, when the task has no waiters. Note,
+	 * top_waiter can be NULL, when we are in the deboosting
+	 * mode!
+	 */
+	if (top_waiter) {
+		if (!task_has_pi_waiters(task))
+			goto out_unlock_pi;
+		/*
+		 * If deadlock detection is off, we stop here if we
+		 * are not the top pi waiter of the task. If deadlock
+		 * detection is enabled we continue, but stop the
+		 * requeueing in the chain walk.
+		 */
+		if (top_waiter != task_top_pi_waiter(task)) {
+			if (!detect_deadlock)
+				goto out_unlock_pi;
+			else
+				requeue = false;
+		}
+	}
+
+	/*
+	 * If the waiter priority is the same as the task priority
+	 * then there is no further priority adjustment necessary.  If
+	 * deadlock detection is off, we stop the chain walk. If its
+	 * enabled we continue, but stop the requeueing in the chain
+	 * walk.
+	 */
+	if (waiter->list_entry.prio == task->prio) {
+		if (!detect_deadlock)
+			goto out_unlock_pi;
+		else
+			requeue = false;
+	}
+
+	/*
+	 * [4] Get the next lock
+	 */
+	lock = waiter->lock;
+	/*
+	 * [5] We need to trylock here as we are holding task->pi_lock,
+	 * which is the reverse lock order versus the other rtmutex
+	 * operations.
+	 */
+	if (!raw_spin_trylock(&lock->wait_lock)) {
+		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+		cpu_relax();
+		goto retry;
+	}
+
+	/*
+	 * [6] check_exit_conditions_2() protected by task->pi_lock and
+	 * lock->wait_lock.
+	 *
+	 * Deadlock detection. If the lock is the same as the original
+	 * lock which caused us to walk the lock chain or if the
+	 * current lock is owned by the task which initiated the chain
+	 * walk, we detected a deadlock.
+	 */
+	if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
+		debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
+		raw_spin_unlock(&lock->wait_lock);
+		ret = -EDEADLK;
+		goto out_unlock_pi;
+	}
+
+	/*
+	 * If we just follow the lock chain for deadlock detection, no
+	 * need to do all the requeue operations. To avoid a truckload
+	 * of conditionals around the various places below, just do the
+	 * minimum chain walk checks.
+	 */
+	if (!requeue) {
+		/*
+		 * No requeue[7] here. Just release @task [8]
+		 */
+		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+		put_task_struct(task);
+
+		/*
+		 * [9] check_exit_conditions_3 protected by lock->wait_lock.
+		 * If there is no owner of the lock, end of chain.
+		 */
+		if (!rt_mutex_owner(lock)) {
+			raw_spin_unlock(&lock->wait_lock);
+			return 0;
+		}
+
+		/* [10] Grab the next task, i.e. owner of @lock */
+		task = rt_mutex_owner(lock);
+		get_task_struct(task);
+		raw_spin_lock_irqsave(&task->pi_lock, flags);
+
+		/*
+		 * No requeue [11] here. We just do deadlock detection.
+		 *
+		 * [12] Store whether owner is blocked
+		 * itself. Decision is made after dropping the locks
+		 */
+		next_lock = task_blocked_on_lock(task);
+		/*
+		 * Get the top waiter for the next iteration
+		 */
+		top_waiter = rt_mutex_top_waiter(lock);
+
+		/* [13] Drop locks */
+		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+		raw_spin_unlock(&lock->wait_lock);
+
+		/* If owner is not blocked, end of chain. */
+		if (!next_lock)
+			goto out_put_task;
+		goto again;
+	}
+
+	/*
+	 * Store the current top waiter before doing the requeue
+	 * operation on @lock. We need it for the boost/deboost
+	 * decision below.
+	 */
+	prerequeue_top_waiter = rt_mutex_top_waiter(lock);
+
+	/* [7] Requeue the waiter in the lock waiter list. */
+	rt_mutex_dequeue(lock, waiter);
+	waiter->list_entry.prio = task->prio;
+	rt_mutex_enqueue(lock, waiter);
+
+	/* [8] Release the task */
+	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+	put_task_struct(task);
+
+	/*
+	 * [9] check_exit_conditions_3 protected by lock->wait_lock.
+	 *
+	 * We must abort the chain walk if there is no lock owner even
+	 * in the dead lock detection case, as we have nothing to
+	 * follow here. This is the end of the chain we are walking.
+	 */
+	if (!rt_mutex_owner(lock)) {
+		struct rt_mutex_waiter *lock_top_waiter;
+
+		/*
+		 * If the requeue [7] above changed the top waiter,
+		 * then we need to wake the new top waiter up to try
+		 * to get the lock.
+		 */
+		lock_top_waiter = rt_mutex_top_waiter(lock);
+		if (prerequeue_top_waiter != lock_top_waiter)
+			rt_mutex_wake_waiter(lock_top_waiter);
+		raw_spin_unlock(&lock->wait_lock);
+		return 0;
+	}
+
+	/* [10] Grab the next task, i.e. the owner of @lock */
+	task = rt_mutex_owner(lock);
+	get_task_struct(task);
+	raw_spin_lock_irqsave(&task->pi_lock, flags);
+
+	/* [11] requeue the pi waiters if necessary */
+	if (waiter == rt_mutex_top_waiter(lock)) {
+		/*
+		 * The waiter became the new top (highest priority)
+		 * waiter on the lock. Replace the previous top waiter
+		 * in the owner tasks pi waiters list with this waiter
+		 * and adjust the priority of the owner.
+		 */
+		rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
+		rt_mutex_enqueue_pi(task, waiter);
+		__rt_mutex_adjust_prio(task);
+
+	} else if (prerequeue_top_waiter == waiter) {
+		/*
+		 * The waiter was the top waiter on the lock, but is
+		 * no longer the top prority waiter. Replace waiter in
+		 * the owner tasks pi waiters list with the new top
+		 * (highest priority) waiter and adjust the priority
+		 * of the owner.
+		 * The new top waiter is stored in @waiter so that
+		 * @waiter == @top_waiter evaluates to true below and
+		 * we continue to deboost the rest of the chain.
+		 */
+		rt_mutex_dequeue_pi(task, waiter);
+		waiter = rt_mutex_top_waiter(lock);
+		rt_mutex_enqueue_pi(task, waiter);
+		__rt_mutex_adjust_prio(task);
+	} else {
+		/*
+		 * Nothing changed. No need to do any priority
+		 * adjustment.
+		 */
+	}
+
+	/*
+	 * [12] check_exit_conditions_4() protected by task->pi_lock
+	 * and lock->wait_lock. The actual decisions are made after we
+	 * dropped the locks.
+	 *
+	 * Check whether the task which owns the current lock is pi
+	 * blocked itself. If yes we store a pointer to the lock for
+	 * the lock chain change detection above. After we dropped
+	 * task->pi_lock next_lock cannot be dereferenced anymore.
+	 */
+	next_lock = task_blocked_on_lock(task);
+	/*
+	 * Store the top waiter of @lock for the end of chain walk
+	 * decision below.
+	 */
+	top_waiter = rt_mutex_top_waiter(lock);
+
+	/* [13] Drop the locks */
+	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+	raw_spin_unlock(&lock->wait_lock);
+
+	/*
+	 * Make the actual exit decisions [12], based on the stored
+	 * values.
+	 *
+	 * We reached the end of the lock chain. Stop right here. No
+	 * point to go back just to figure that out.
+	 */
+	if (!next_lock)
+		goto out_put_task;
+
+	/*
+	 * If the current waiter is not the top waiter on the lock,
+	 * then we can stop the chain walk here if we are not in full
+	 * deadlock detection mode.
+	 */
+	if (!detect_deadlock && waiter != top_waiter)
+		goto out_put_task;
+
+	goto again;
+
+ out_unlock_pi:
+	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+ out_put_task:
+	put_task_struct(task);
+
+	return ret;
+}
+
+
+#define STEAL_NORMAL  0
+#define STEAL_LATERAL 1
+
+/*
+ * Note that RT tasks are excluded from lateral-steals to prevent the
+ * introduction of an unbounded latency
+ */
+static inline int lock_is_stealable(struct task_struct *task,
+				    struct task_struct *pendowner, int mode)
+{
+    if (mode == STEAL_NORMAL || rt_task(task)) {
+	    if (task->prio >= pendowner->prio)
+		    return 0;
+    } else if (task->prio > pendowner->prio)
+	    return 0;
+    return 1;
+}
+
+/*
+ * Try to take an rt-mutex
+ *
+ * Must be called with lock->wait_lock held.
+ *
+ * @lock:   The lock to be acquired.
+ * @task:   The task which wants to acquire the lock
+ * @waiter: The waiter that is queued to the lock's wait list if the
+ *	    callsite called task_blocked_on_lock(), otherwise NULL
+ */
+static int
+__try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
+		       struct rt_mutex_waiter *waiter, int mode)
+{
+	unsigned long flags;
+
+	/*
+	 * Before testing whether we can acquire @lock, we set the
+	 * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
+	 * other tasks which try to modify @lock into the slow path
+	 * and they serialize on @lock->wait_lock.
+	 *
+	 * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
+	 * as explained at the top of this file if and only if:
+	 *
+	 * - There is a lock owner. The caller must fixup the
+	 *   transient state if it does a trylock or leaves the lock
+	 *   function due to a signal or timeout.
+	 *
+	 * - @task acquires the lock and there are no other
+	 *   waiters. This is undone in rt_mutex_set_owner(@task) at
+	 *   the end of this function.
+	 */
+	mark_rt_mutex_waiters(lock);
+
+	/*
+	 * If @lock has an owner, give up.
+	 */
+	if (rt_mutex_owner(lock))
+		return 0;
+
+	/*
+	 * If @waiter != NULL, @task has already enqueued the waiter
+	 * into @lock waiter list. If @waiter == NULL then this is a
+	 * trylock attempt.
+	 */
+	if (waiter) {
+		/*
+		 * If waiter is not the highest priority waiter of
+		 * @lock, give up.
+		 */
+		if (waiter != rt_mutex_top_waiter(lock))
+			return 0;
+
+		/*
+		 * We can acquire the lock. Remove the waiter from the
+		 * lock waiters list.
+		 */
+		rt_mutex_dequeue(lock, waiter);
+
+	} else {
+		/*
+		 * If the lock has waiters already we check whether @task is
+		 * eligible to take over the lock.
+		 *
+		 * If there are no other waiters, @task can acquire
+		 * the lock.  @task->pi_blocked_on is NULL, so it does
+		 * not need to be dequeued.
+		 */
+		if (rt_mutex_has_waiters(lock)) {
+			struct task_struct *pown = rt_mutex_top_waiter(lock)->task;
+
+			/*
+			 * If @task->prio is greater than or equal to
+			 * the top waiter priority (kernel view),
+			 * @task lost.
+			 */
+			if (task != pown && !lock_is_stealable(task, pown, mode))
+				return 0;
+
+			/*
+			 * The current top waiter stays enqueued. We
+			 * don't have to change anything in the lock
+			 * waiters order.
+			 */
+		} else {
+			/*
+			 * No waiters. Take the lock without the
+			 * pi_lock dance.@task->pi_blocked_on is NULL
+			 * and we have no waiters to enqueue in @task
+			 * pi waiters list.
+			 */
+			goto takeit;
+		}
+	}
+
+	/*
+	 * Clear @task->pi_blocked_on. Requires protection by
+	 * @task->pi_lock. Redundant operation for the @waiter == NULL
+	 * case, but conditionals are more expensive than a redundant
+	 * store.
+	 */
+	raw_spin_lock_irqsave(&task->pi_lock, flags);
+	task->pi_blocked_on = NULL;
+	/*
+	 * Finish the lock acquisition. @task is the new owner. If
+	 * other waiters exist we have to insert the highest priority
+	 * waiter into @task->pi_waiters list.
+	 */
+	if (rt_mutex_has_waiters(lock))
+		rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
+	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+
+takeit:
+	/* We got the lock. */
+	debug_rt_mutex_lock(lock);
+
+	/*
+	 * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
+	 * are still waiters or clears it.
+	 */
+	rt_mutex_set_owner(lock, task);
+
+	rt_mutex_deadlock_account_lock(lock, task);
+
+	return 1;
+}
+
+static inline int
+try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
+		     struct rt_mutex_waiter *waiter)
+{
+	return __try_to_take_rt_mutex(lock, task, waiter, STEAL_NORMAL);
+}
+
+/*
+ * Task blocks on lock.
+ *
+ * Prepare waiter and propagate pi chain
+ *
+ * This must be called with lock->wait_lock held.
+ */
+static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
+				   struct rt_mutex_waiter *waiter,
+				   struct task_struct *task,
+				   enum rtmutex_chainwalk chwalk)
+{
+	struct task_struct *owner = rt_mutex_owner(lock);
+	struct rt_mutex_waiter *top_waiter = waiter;
+	struct rt_mutex *next_lock;
+	int chain_walk = 0, res;
+	unsigned long flags;
+
+	/*
+	 * Early deadlock detection. We really don't want the task to
+	 * enqueue on itself just to untangle the mess later. It's not
+	 * only an optimization. We drop the locks, so another waiter
+	 * can come in before the chain walk detects the deadlock. So
+	 * the other will detect the deadlock and return -EDEADLOCK,
+	 * which is wrong, as the other waiter is not in a deadlock
+	 * situation.
+	 */
+	if (owner == task)
+		return -EDEADLK;
+
+	raw_spin_lock_irqsave(&task->pi_lock, flags);
+
+	/*
+	 * In the case of futex requeue PI, this will be a proxy
+	 * lock. The task will wake unaware that it is enqueueed on
+	 * this lock. Avoid blocking on two locks and corrupting
+	 * pi_blocked_on via the PI_WAKEUP_INPROGRESS
+	 * flag. futex_wait_requeue_pi() sets this when it wakes up
+	 * before requeue (due to a signal or timeout). Do not enqueue
+	 * the task if PI_WAKEUP_INPROGRESS is set.
+	 */
+	if (task != current && task->pi_blocked_on == PI_WAKEUP_INPROGRESS) {
+		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+		return -EAGAIN;
+	}
+
+	BUG_ON(rt_mutex_real_waiter(task->pi_blocked_on));
+
+	__rt_mutex_adjust_prio(task);
+	waiter->task = task;
+	waiter->lock = lock;
+	plist_node_init(&waiter->list_entry, task->prio);
+	plist_node_init(&waiter->pi_list_entry, task->prio);
+
+	/* Get the top priority waiter on the lock */
+	if (rt_mutex_has_waiters(lock))
+		top_waiter = rt_mutex_top_waiter(lock);
+	rt_mutex_enqueue(lock, waiter);
+
+	task->pi_blocked_on = waiter;
+
+	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+
+	if (!owner)
+		return 0;
+
+	raw_spin_lock_irqsave(&owner->pi_lock, flags);
+	if (waiter == rt_mutex_top_waiter(lock)) {
+		rt_mutex_dequeue_pi(owner, top_waiter);
+		rt_mutex_enqueue_pi(owner, waiter);
+
+		__rt_mutex_adjust_prio(owner);
+		if (rt_mutex_real_waiter(owner->pi_blocked_on))
+			chain_walk = 1;
+	} else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
+		chain_walk = 1;
+	}
+
+	/* Store the lock on which owner is blocked or NULL */
+	next_lock = task_blocked_on_lock(owner);
+
+	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
+	/*
+	 * Even if full deadlock detection is on, if the owner is not
+	 * blocked itself, we can avoid finding this out in the chain
+	 * walk.
+	 */
+	if (!chain_walk || !next_lock)
+		return 0;
+
+	/*
+	 * The owner can't disappear while holding a lock,
+	 * so the owner struct is protected by wait_lock.
+	 * Gets dropped in rt_mutex_adjust_prio_chain()!
+	 */
+	get_task_struct(owner);
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
+					 next_lock, waiter, task);
+
+	raw_spin_lock(&lock->wait_lock);
+
+	return res;
+}
+
+/*
+ * Wake up the next waiter on the lock.
+ *
+ * Remove the top waiter from the current tasks pi waiter list and
+ * wake it up.
+ *
+ * Called with lock->wait_lock held.
+ */
+static void wakeup_next_waiter(struct rt_mutex *lock)
+{
+	struct rt_mutex_waiter *waiter;
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&current->pi_lock, flags);
+
+	waiter = rt_mutex_top_waiter(lock);
+
+	/*
+	 * Remove it from current->pi_waiters. We do not adjust a
+	 * possible priority boost right now. We execute wakeup in the
+	 * boosted mode and go back to normal after releasing
+	 * lock->wait_lock.
+	 */
+	rt_mutex_dequeue_pi(current, waiter);
+
+	/*
+	 * As we are waking up the top waiter, and the waiter stays
+	 * queued on the lock until it gets the lock, this lock
+	 * obviously has waiters. Just set the bit here and this has
+	 * the added benefit of forcing all new tasks into the
+	 * slow path making sure no task of lower priority than
+	 * the top waiter can steal this lock.
+	 */
+	lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
+
+	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
+
+	/*
+	 * It's safe to dereference waiter as it cannot go away as
+	 * long as we hold lock->wait_lock. The waiter task needs to
+	 * acquire it in order to dequeue the waiter.
+	 */
+	rt_mutex_wake_waiter(waiter);
+}
+
+/*
+ * Remove a waiter from a lock and give up
+ *
+ * Must be called with lock->wait_lock held and
+ * have just failed to try_to_take_rt_mutex().
+ */
+static void remove_waiter(struct rt_mutex *lock,
+			  struct rt_mutex_waiter *waiter)
+{
+	bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
+	struct task_struct *owner = rt_mutex_owner(lock);
+	struct rt_mutex *next_lock = NULL;
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&current->pi_lock, flags);
+	rt_mutex_dequeue(lock, waiter);
+	current->pi_blocked_on = NULL;
+	raw_spin_unlock_irqrestore(&current->pi_lock, flags);
+
+	/*
+	 * Only update priority if the waiter was the highest priority
+	 * waiter of the lock and there is an owner to update.
+	 */
+	if (!owner || !is_top_waiter)
+		return;
+
+	raw_spin_lock_irqsave(&owner->pi_lock, flags);
+
+	rt_mutex_dequeue_pi(owner, waiter);
+
+	if (rt_mutex_has_waiters(lock))
+		rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
+
+	__rt_mutex_adjust_prio(owner);
+
+	/* Store the lock on which owner is blocked or NULL */
+	if (rt_mutex_real_waiter(owner->pi_blocked_on))
+		next_lock = task_blocked_on_lock(owner);
+
+	raw_spin_unlock_irqrestore(&owner->pi_lock, flags);
+
+	WARN_ON(!plist_node_empty(&waiter->pi_list_entry));
+
+	/*
+	 * Don't walk the chain, if the owner task is not blocked
+	 * itself.
+	 */
+	if (!next_lock)
+		return;
+
+	/* gets dropped in rt_mutex_adjust_prio_chain()! */
+	get_task_struct(owner);
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
+				   next_lock, NULL, current);
+
+	raw_spin_lock(&lock->wait_lock);
+}
+
+/*
+ * Recheck the pi chain, in case we got a priority setting
+ *
+ * Called from sched_setscheduler
+ */
+void rt_mutex_adjust_pi(struct task_struct *task)
+{
+	struct rt_mutex_waiter *waiter;
+	struct rt_mutex *next_lock;
+	unsigned long flags;
+
+	raw_spin_lock_irqsave(&task->pi_lock, flags);
+
+	waiter = task->pi_blocked_on;
+	if (!rt_mutex_real_waiter(waiter) ||
+	    waiter->list_entry.prio == task->prio) {
+		raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+		return;
+	}
+
+	next_lock = waiter->lock;
+	/* gets dropped in rt_mutex_adjust_prio_chain()! */
+	get_task_struct(task);
+	raw_spin_unlock_irqrestore(&task->pi_lock, flags);
+	rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
+				   next_lock, NULL, task);
+}
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * preemptible spin_lock functions:
+ */
+static inline void rt_spin_lock_fastlock(struct rt_mutex *lock,
+					 void  (*slowfn)(struct rt_mutex *lock))
+{
+	might_sleep();
+
+	if (likely(rt_mutex_cmpxchg(lock, NULL, current)))
+		rt_mutex_deadlock_account_lock(lock, current);
+	else
+		slowfn(lock);
+}
+
+static inline void rt_spin_lock_fastunlock(struct rt_mutex *lock,
+					   void  (*slowfn)(struct rt_mutex *lock))
+{
+	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
+		rt_mutex_deadlock_account_unlock(current);
+	else
+		slowfn(lock);
+}
+
+#ifdef CONFIG_SMP
+/*
+ * Note that owner is a speculative pointer and dereferencing relies
+ * on rcu_read_lock() and the check against the lock owner.
+ */
+static int adaptive_wait(struct rt_mutex *lock,
+			 struct task_struct *owner)
+{
+	int res = 0;
+
+	rcu_read_lock();
+	for (;;) {
+		if (owner != rt_mutex_owner(lock))
+			break;
+		/*
+		 * Ensure that owner->on_cpu is dereferenced _after_
+		 * checking the above to be valid.
+		 */
+		barrier();
+		if (!owner->on_cpu) {
+			res = 1;
+			break;
+		}
+		cpu_relax();
+	}
+	rcu_read_unlock();
+	return res;
+}
+#else
+static int adaptive_wait(struct rt_mutex *lock,
+			 struct task_struct *orig_owner)
+{
+	return 1;
+}
+#endif
+
+# define pi_lock(lock)			raw_spin_lock_irq(lock)
+# define pi_unlock(lock)		raw_spin_unlock_irq(lock)
+
+/*
+ * Slow path lock function spin_lock style: this variant is very
+ * careful not to miss any non-lock wakeups.
+ *
+ * We store the current state under p->pi_lock in p->saved_state and
+ * the try_to_wake_up() code handles this accordingly.
+ */
+static void  noinline __sched rt_spin_lock_slowlock(struct rt_mutex *lock)
+{
+	struct task_struct *lock_owner, *self = current;
+	struct rt_mutex_waiter waiter, *top_waiter;
+	int ret;
+
+	rt_mutex_init_waiter(&waiter, true);
+
+	raw_spin_lock(&lock->wait_lock);
+	init_lists(lock);
+
+	if (__try_to_take_rt_mutex(lock, self, NULL, STEAL_LATERAL)) {
+		raw_spin_unlock(&lock->wait_lock);
+		return;
+	}
+
+	BUG_ON(rt_mutex_owner(lock) == self);
+
+	/*
+	 * We save whatever state the task is in and we'll restore it
+	 * after acquiring the lock taking real wakeups into account
+	 * as well. We are serialized via pi_lock against wakeups. See
+	 * try_to_wake_up().
+	 */
+	pi_lock(&self->pi_lock);
+	self->saved_state = self->state;
+	__set_current_state(TASK_UNINTERRUPTIBLE);
+	pi_unlock(&self->pi_lock);
+
+	ret = task_blocks_on_rt_mutex(lock, &waiter, self, RT_MUTEX_MIN_CHAINWALK);
+	BUG_ON(ret);
+
+	for (;;) {
+		/* Try to acquire the lock again. */
+		if (__try_to_take_rt_mutex(lock, self, &waiter, STEAL_LATERAL))
+			break;
+
+		top_waiter = rt_mutex_top_waiter(lock);
+		lock_owner = rt_mutex_owner(lock);
+
+		raw_spin_unlock(&lock->wait_lock);
+
+		debug_rt_mutex_print_deadlock(&waiter);
+
+		if (top_waiter != &waiter || adaptive_wait(lock, lock_owner))
+			schedule_rt_mutex(lock);
+
+		raw_spin_lock(&lock->wait_lock);
+
+		pi_lock(&self->pi_lock);
+		__set_current_state(TASK_UNINTERRUPTIBLE);
+		pi_unlock(&self->pi_lock);
+	}
+
+	/*
+	 * Restore the task state to current->saved_state. We set it
+	 * to the original state above and the try_to_wake_up() code
+	 * has possibly updated it when a real (non-rtmutex) wakeup
+	 * happened while we were blocked. Clear saved_state so
+	 * try_to_wakeup() does not get confused.
+	 */
+	pi_lock(&self->pi_lock);
+	__set_current_state(self->saved_state);
+	self->saved_state = TASK_RUNNING;
+	pi_unlock(&self->pi_lock);
+
+	/*
+	 * try_to_take_rt_mutex() sets the waiter bit
+	 * unconditionally. We might have to fix that up:
+	 */
+	fixup_rt_mutex_waiters(lock);
+
+	BUG_ON(rt_mutex_has_waiters(lock) && &waiter == rt_mutex_top_waiter(lock));
+	BUG_ON(!plist_node_empty(&waiter.list_entry));
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	debug_rt_mutex_free_waiter(&waiter);
+}
+
+/*
+ * Slow path to release a rt_mutex spin_lock style
+ */
+static void __sched __rt_spin_lock_slowunlock(struct rt_mutex *lock)
+{
+	debug_rt_mutex_unlock(lock);
+
+	rt_mutex_deadlock_account_unlock(current);
+
+	if (!rt_mutex_has_waiters(lock)) {
+		lock->owner = NULL;
+		raw_spin_unlock(&lock->wait_lock);
+		return;
+	}
+
+	wakeup_next_waiter(lock);
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	/* Undo pi boosting.when necessary */
+	rt_mutex_adjust_prio(current);
+}
+
+static void  noinline __sched rt_spin_lock_slowunlock(struct rt_mutex *lock)
+{
+	raw_spin_lock(&lock->wait_lock);
+	__rt_spin_lock_slowunlock(lock);
+}
+
+static void  noinline __sched rt_spin_lock_slowunlock_hirq(struct rt_mutex *lock)
+{
+	int ret;
+
+	do {
+		ret = raw_spin_trylock(&lock->wait_lock);
+	} while (!ret);
+
+	__rt_spin_lock_slowunlock(lock);
+}
+
+void __lockfunc rt_spin_lock(spinlock_t *lock)
+{
+	rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock);
+	spin_acquire(&lock->dep_map, 0, 0, _RET_IP_);
+}
+EXPORT_SYMBOL(rt_spin_lock);
+
+void __lockfunc __rt_spin_lock(struct rt_mutex *lock)
+{
+	rt_spin_lock_fastlock(lock, rt_spin_lock_slowlock);
+}
+EXPORT_SYMBOL(__rt_spin_lock);
+
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+void __lockfunc rt_spin_lock_nested(spinlock_t *lock, int subclass)
+{
+	rt_spin_lock_fastlock(&lock->lock, rt_spin_lock_slowlock);
+	spin_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
+}
+EXPORT_SYMBOL(rt_spin_lock_nested);
+#endif
+
+void __lockfunc rt_spin_unlock(spinlock_t *lock)
+{
+	/* NOTE: we always pass in '1' for nested, for simplicity */
+	spin_release(&lock->dep_map, 1, _RET_IP_);
+	rt_spin_lock_fastunlock(&lock->lock, rt_spin_lock_slowunlock);
+}
+EXPORT_SYMBOL(rt_spin_unlock);
+
+void __lockfunc rt_spin_unlock_after_trylock_in_irq(spinlock_t *lock)
+{
+	/* NOTE: we always pass in '1' for nested, for simplicity */
+	spin_release(&lock->dep_map, 1, _RET_IP_);
+	rt_spin_lock_fastunlock(&lock->lock, rt_spin_lock_slowunlock_hirq);
+}
+
+void __lockfunc __rt_spin_unlock(struct rt_mutex *lock)
+{
+	rt_spin_lock_fastunlock(lock, rt_spin_lock_slowunlock);
+}
+EXPORT_SYMBOL(__rt_spin_unlock);
+
+/*
+ * Wait for the lock to get unlocked: instead of polling for an unlock
+ * (like raw spinlocks do), we lock and unlock, to force the kernel to
+ * schedule if there's contention:
+ */
+void __lockfunc rt_spin_unlock_wait(spinlock_t *lock)
+{
+	spin_lock(lock);
+	spin_unlock(lock);
+}
+EXPORT_SYMBOL(rt_spin_unlock_wait);
+
+int __lockfunc rt_spin_trylock(spinlock_t *lock)
+{
+	int ret = rt_mutex_trylock(&lock->lock);
+
+	if (ret)
+		spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+	return ret;
+}
+EXPORT_SYMBOL(rt_spin_trylock);
+
+int __lockfunc rt_spin_trylock_bh(spinlock_t *lock)
+{
+	int ret;
+
+	local_bh_disable();
+	ret = rt_mutex_trylock(&lock->lock);
+	if (ret) {
+		migrate_disable();
+		spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+	} else
+		local_bh_enable();
+	return ret;
+}
+EXPORT_SYMBOL(rt_spin_trylock_bh);
+
+int __lockfunc rt_spin_trylock_irqsave(spinlock_t *lock, unsigned long *flags)
+{
+	int ret;
+
+	*flags = 0;
+	migrate_disable();
+	ret = rt_mutex_trylock(&lock->lock);
+	if (ret)
+		spin_acquire(&lock->dep_map, 0, 1, _RET_IP_);
+	else
+		migrate_enable();
+	return ret;
+}
+EXPORT_SYMBOL(rt_spin_trylock_irqsave);
+
+int atomic_dec_and_spin_lock(atomic_t *atomic, spinlock_t *lock)
+{
+	/* Subtract 1 from counter unless that drops it to 0 (ie. it was 1) */
+	if (atomic_add_unless(atomic, -1, 1))
+		return 0;
+	migrate_disable();
+	rt_spin_lock(lock);
+	if (atomic_dec_and_test(atomic))
+		return 1;
+	rt_spin_unlock(lock);
+	migrate_enable();
+	return 0;
+}
+EXPORT_SYMBOL(atomic_dec_and_spin_lock);
+
+void
+__rt_spin_lock_init(spinlock_t *lock, char *name, struct lock_class_key *key)
+{
+#ifdef CONFIG_DEBUG_LOCK_ALLOC
+	/*
+	 * Make sure we are not reinitializing a held lock:
+	 */
+	debug_check_no_locks_freed((void *)lock, sizeof(*lock));
+	lockdep_init_map(&lock->dep_map, name, key, 0);
+#endif
+}
+EXPORT_SYMBOL(__rt_spin_lock_init);
+
+#endif /* PREEMPT_RT_FULL */
+
+/**
+ * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
+ * @lock:		 the rt_mutex to take
+ * @state:		 the state the task should block in (TASK_INTERRUPTIBLE
+ *			 or TASK_UNINTERRUPTIBLE)
+ * @timeout:		 the pre-initialized and started timer, or NULL for none
+ * @waiter:		 the pre-initialized rt_mutex_waiter
+ *
+ * lock->wait_lock must be held by the caller.
+ */
+static int __sched
+__rt_mutex_slowlock(struct rt_mutex *lock, int state,
+		    struct hrtimer_sleeper *timeout,
+		    struct rt_mutex_waiter *waiter)
+{
+	int ret = 0;
+
+	for (;;) {
+		/* Try to acquire the lock: */
+		if (try_to_take_rt_mutex(lock, current, waiter))
+			break;
+
+		/*
+		 * TASK_INTERRUPTIBLE checks for signals and
+		 * timeout. Ignored otherwise.
+		 */
+		if (unlikely(state == TASK_INTERRUPTIBLE)) {
+			/* Signal pending? */
+			if (signal_pending(current))
+				ret = -EINTR;
+			if (timeout && !timeout->task)
+				ret = -ETIMEDOUT;
+			if (ret)
+				break;
+		}
+
+		raw_spin_unlock(&lock->wait_lock);
+
+		debug_rt_mutex_print_deadlock(waiter);
+
+		schedule_rt_mutex(lock);
+
+		raw_spin_lock(&lock->wait_lock);
+		set_current_state(state);
+	}
+
+	return ret;
+}
+
+static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
+				     struct rt_mutex_waiter *w)
+{
+	/*
+	 * If the result is not -EDEADLOCK or the caller requested
+	 * deadlock detection, nothing to do here.
+	 */
+	if (res != -EDEADLOCK || detect_deadlock)
+		return;
+
+	/*
+	 * Yell lowdly and stop the task right here.
+	 */
+	rt_mutex_print_deadlock(w);
+	while (1) {
+		set_current_state(TASK_INTERRUPTIBLE);
+		schedule();
+	}
+}
+
+/*
+ * Slow path lock function:
+ */
+static int __sched
+rt_mutex_slowlock(struct rt_mutex *lock, int state,
+		  struct hrtimer_sleeper *timeout,
+		  enum rtmutex_chainwalk chwalk)
+{
+	struct rt_mutex_waiter waiter;
+	int ret = 0;
+
+	rt_mutex_init_waiter(&waiter, false);
+
+	raw_spin_lock(&lock->wait_lock);
+	init_lists(lock);
+
+	/* Try to acquire the lock again: */
+	if (try_to_take_rt_mutex(lock, current, NULL)) {
+		raw_spin_unlock(&lock->wait_lock);
+		return 0;
+	}
+
+	set_current_state(state);
+
+	/* Setup the timer, when timeout != NULL */
+	if (unlikely(timeout)) {
+		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
+		if (!hrtimer_active(&timeout->timer))
+			timeout->task = NULL;
+	}
+
+	ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
+
+	if (likely(!ret))
+		ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
+
+	set_current_state(TASK_RUNNING);
+
+	if (unlikely(ret)) {
+		if (rt_mutex_has_waiters(lock))
+			remove_waiter(lock, &waiter);
+		rt_mutex_handle_deadlock(ret, chwalk, &waiter);
+	}
+
+	/*
+	 * try_to_take_rt_mutex() sets the waiter bit
+	 * unconditionally. We might have to fix that up.
+	 */
+	fixup_rt_mutex_waiters(lock);
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	/* Remove pending timer: */
+	if (unlikely(timeout))
+		hrtimer_cancel(&timeout->timer);
+
+	debug_rt_mutex_free_waiter(&waiter);
+
+	return ret;
+}
+
+/*
+ * Slow path try-lock function:
+ */
+static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
+{
+	int ret;
+
+	/*
+	 * If the lock already has an owner we fail to get the lock.
+	 * This can be done without taking the @lock->wait_lock as
+	 * it is only being read, and this is a trylock anyway.
+	 */
+	if (rt_mutex_owner(lock))
+		return 0;
+
+	/*
+	 * The mutex has currently no owner. Lock the wait lock and
+	 * try to acquire the lock.
+	 */
+	if (!raw_spin_trylock(&lock->wait_lock))
+		return 0;
+	init_lists(lock);
+
+	ret = try_to_take_rt_mutex(lock, current, NULL);
+
+	/*
+	 * try_to_take_rt_mutex() sets the lock waiters bit
+	 * unconditionally. Clean this up.
+	 */
+	fixup_rt_mutex_waiters(lock);
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	return ret;
+}
+
+/*
+ * Slow path to release a rt-mutex:
+ */
+static void __sched
+rt_mutex_slowunlock(struct rt_mutex *lock)
+{
+	raw_spin_lock(&lock->wait_lock);
+
+	debug_rt_mutex_unlock(lock);
+
+	rt_mutex_deadlock_account_unlock(current);
+
+	/*
+	 * We must be careful here if the fast path is enabled. If we
+	 * have no waiters queued we cannot set owner to NULL here
+	 * because of:
+	 *
+	 * foo->lock->owner = NULL;
+	 *			rtmutex_lock(foo->lock);   <- fast path
+	 *			free = atomic_dec_and_test(foo->refcnt);
+	 *			rtmutex_unlock(foo->lock); <- fast path
+	 *			if (free)
+	 *				kfree(foo);
+	 * raw_spin_unlock(foo->lock->wait_lock);
+	 *
+	 * So for the fastpath enabled kernel:
+	 *
+	 * Nothing can set the waiters bit as long as we hold
+	 * lock->wait_lock. So we do the following sequence:
+	 *
+	 *	owner = rt_mutex_owner(lock);
+	 *	clear_rt_mutex_waiters(lock);
+	 *	raw_spin_unlock(&lock->wait_lock);
+	 *	if (cmpxchg(&lock->owner, owner, 0) == owner)
+	 *		return;
+	 *	goto retry;
+	 *
+	 * The fastpath disabled variant is simple as all access to
+	 * lock->owner is serialized by lock->wait_lock:
+	 *
+	 *	lock->owner = NULL;
+	 *	raw_spin_unlock(&lock->wait_lock);
+	 */
+	while (!rt_mutex_has_waiters(lock)) {
+		/* Drops lock->wait_lock ! */
+		if (unlock_rt_mutex_safe(lock) == true)
+			return;
+		/* Relock the rtmutex and try again */
+		raw_spin_lock(&lock->wait_lock);
+	}
+
+	/*
+	 * The wakeup next waiter path does not suffer from the above
+	 * race. See the comments there.
+	 */
+	wakeup_next_waiter(lock);
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	/* Undo pi boosting if necessary: */
+	rt_mutex_adjust_prio(current);
+}
+
+/*
+ * debug aware fast / slowpath lock,trylock,unlock
+ *
+ * The atomic acquire/release ops are compiled away, when either the
+ * architecture does not support cmpxchg or when debugging is enabled.
+ */
+static inline int
+rt_mutex_fastlock(struct rt_mutex *lock, int state,
+		  int (*slowfn)(struct rt_mutex *lock, int state,
+				struct hrtimer_sleeper *timeout,
+				enum rtmutex_chainwalk chwalk))
+{
+	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
+		rt_mutex_deadlock_account_lock(lock, current);
+		return 0;
+	} else
+		return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
+}
+
+static inline int
+rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
+			struct hrtimer_sleeper *timeout,
+			enum rtmutex_chainwalk chwalk,
+			int (*slowfn)(struct rt_mutex *lock, int state,
+				      struct hrtimer_sleeper *timeout,
+				      enum rtmutex_chainwalk chwalk))
+{
+	if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
+	    likely(rt_mutex_cmpxchg(lock, NULL, current))) {
+		rt_mutex_deadlock_account_lock(lock, current);
+		return 0;
+	} else
+		return slowfn(lock, state, timeout, chwalk);
+}
+
+static inline int
+rt_mutex_fasttrylock(struct rt_mutex *lock,
+		     int (*slowfn)(struct rt_mutex *lock))
+{
+	if (likely(rt_mutex_cmpxchg(lock, NULL, current))) {
+		rt_mutex_deadlock_account_lock(lock, current);
+		return 1;
+	}
+	return slowfn(lock);
+}
+
+static inline void
+rt_mutex_fastunlock(struct rt_mutex *lock,
+		    void (*slowfn)(struct rt_mutex *lock))
+{
+	if (likely(rt_mutex_cmpxchg(lock, current, NULL)))
+		rt_mutex_deadlock_account_unlock(current);
+	else
+		slowfn(lock);
+}
+
+/**
+ * rt_mutex_lock - lock a rt_mutex
+ *
+ * @lock: the rt_mutex to be locked
+ */
+void __sched rt_mutex_lock(struct rt_mutex *lock)
+{
+	might_sleep();
+
+	rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_lock);
+
+/**
+ * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
+ *
+ * @lock:		the rt_mutex to be locked
+ *
+ * Returns:
+ *  0		on success
+ * -EINTR	when interrupted by a signal
+ */
+int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
+{
+	might_sleep();
+
+	return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
+
+/*
+ * Futex variant with full deadlock detection.
+ */
+int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
+			      struct hrtimer_sleeper *timeout)
+{
+	might_sleep();
+
+	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
+				       RT_MUTEX_FULL_CHAINWALK, rt_mutex_slowlock);
+}
+
+/**
+ * rt_mutex_lock_killable - lock a rt_mutex killable
+ *
+ * @lock:		the rt_mutex to be locked
+ *
+ * Returns:
+ *  0		on success
+ * -EINTR	when interrupted by a signal
+ * -EDEADLK	when the lock would deadlock (when deadlock detection is on)
+ */
+int __sched rt_mutex_lock_killable(struct rt_mutex *lock)
+{
+	might_sleep();
+
+	return rt_mutex_fastlock(lock, TASK_KILLABLE, rt_mutex_slowlock);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_lock_killable);
+
+/**
+ * rt_mutex_timed_lock - lock a rt_mutex interruptible
+ *			the timeout structure is provided
+ *			by the caller
+ *
+ * @lock:		the rt_mutex to be locked
+ * @timeout:		timeout structure or NULL (no timeout)
+ *
+ * Returns:
+ *  0		on success
+ * -EINTR	when interrupted by a signal
+ * -ETIMEDOUT	when the timeout expired
+ */
+int
+rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
+{
+	might_sleep();
+
+	return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
+				       RT_MUTEX_MIN_CHAINWALK, rt_mutex_slowlock);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
+
+/**
+ * rt_mutex_trylock - try to lock a rt_mutex
+ *
+ * @lock:	the rt_mutex to be locked
+ *
+ * Returns 1 on success and 0 on contention
+ */
+int __sched rt_mutex_trylock(struct rt_mutex *lock)
+{
+	return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_trylock);
+
+/**
+ * rt_mutex_unlock - unlock a rt_mutex
+ *
+ * @lock: the rt_mutex to be unlocked
+ */
+void __sched rt_mutex_unlock(struct rt_mutex *lock)
+{
+	rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
+}
+EXPORT_SYMBOL_GPL(rt_mutex_unlock);
+
+/**
+ * rt_mutex_destroy - mark a mutex unusable
+ * @lock: the mutex to be destroyed
+ *
+ * This function marks the mutex uninitialized, and any subsequent
+ * use of the mutex is forbidden. The mutex must not be locked when
+ * this function is called.
+ */
+void rt_mutex_destroy(struct rt_mutex *lock)
+{
+	WARN_ON(rt_mutex_is_locked(lock));
+#ifdef CONFIG_DEBUG_RT_MUTEXES
+	lock->magic = NULL;
+#endif
+}
+EXPORT_SYMBOL(rt_mutex_destroy);
+
+/**
+ * __rt_mutex_init - initialize the rt lock
+ *
+ * @lock: the rt lock to be initialized
+ *
+ * Initialize the rt lock to unlocked state.
+ *
+ * Initializing of a locked rt lock is not allowed
+ */
+void __rt_mutex_init(struct rt_mutex *lock, const char *name)
+{
+	lock->owner = NULL;
+	plist_head_init(&lock->wait_list);
+
+	debug_rt_mutex_init(lock, name);
+}
+EXPORT_SYMBOL(__rt_mutex_init);
+
+/**
+ * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
+ *				proxy owner
+ *
+ * @lock: 	the rt_mutex to be locked
+ * @proxy_owner:the task to set as owner
+ *
+ * No locking. Caller has to do serializing itself
+ * Special API call for PI-futex support
+ */
+void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
+				struct task_struct *proxy_owner)
+{
+	rt_mutex_init(lock);
+	debug_rt_mutex_proxy_lock(lock, proxy_owner);
+	rt_mutex_set_owner(lock, proxy_owner);
+	rt_mutex_deadlock_account_lock(lock, proxy_owner);
+}
+
+/**
+ * rt_mutex_proxy_unlock - release a lock on behalf of owner
+ *
+ * @lock: 	the rt_mutex to be locked
+ *
+ * No locking. Caller has to do serializing itself
+ * Special API call for PI-futex support
+ */
+void rt_mutex_proxy_unlock(struct rt_mutex *lock,
+			   struct task_struct *proxy_owner)
+{
+	debug_rt_mutex_proxy_unlock(lock);
+	rt_mutex_set_owner(lock, NULL);
+	rt_mutex_deadlock_account_unlock(proxy_owner);
+}
+
+/**
+ * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
+ * @lock:		the rt_mutex to take
+ * @waiter:		the pre-initialized rt_mutex_waiter
+ * @task:		the task to prepare
+ *
+ * Returns:
+ *  0 - task blocked on lock
+ *  1 - acquired the lock for task, caller should wake it up
+ * <0 - error
+ *
+ * Special API call for FUTEX_REQUEUE_PI support.
+ */
+int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
+			      struct rt_mutex_waiter *waiter,
+			      struct task_struct *task)
+{
+	int ret;
+
+	raw_spin_lock(&lock->wait_lock);
+
+	if (try_to_take_rt_mutex(lock, task, NULL)) {
+		raw_spin_unlock(&lock->wait_lock);
+		return 1;
+	}
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+	/*
+	 * In PREEMPT_RT there's an added race.
+	 * If the task, that we are about to requeue, times out,
+	 * it can set the PI_WAKEUP_INPROGRESS. This tells the requeue
+	 * to skip this task. But right after the task sets
+	 * its pi_blocked_on to PI_WAKEUP_INPROGRESS it can then
+	 * block on the spin_lock(&hb->lock), which in RT is an rtmutex.
+	 * This will replace the PI_WAKEUP_INPROGRESS with the actual
+	 * lock that it blocks on. We *must not* place this task
+	 * on this proxy lock in that case.
+	 *
+	 * To prevent this race, we first take the task's pi_lock
+	 * and check if it has updated its pi_blocked_on. If it has,
+	 * we assume that it woke up and we return -EAGAIN.
+	 * Otherwise, we set the task's pi_blocked_on to
+	 * PI_REQUEUE_INPROGRESS, so that if the task is waking up
+	 * it will know that we are in the process of requeuing it.
+	 */
+	raw_spin_lock_irq(&task->pi_lock);
+	if (task->pi_blocked_on) {
+		raw_spin_unlock_irq(&task->pi_lock);
+		raw_spin_unlock(&lock->wait_lock);
+		return -EAGAIN;
+	}
+	task->pi_blocked_on = PI_REQUEUE_INPROGRESS;
+	raw_spin_unlock_irq(&task->pi_lock);
+#endif
+
+	/* We enforce deadlock detection for futexes */
+	ret = task_blocks_on_rt_mutex(lock, waiter, task,
+				      RT_MUTEX_FULL_CHAINWALK);
+
+	if (ret && !rt_mutex_owner(lock)) {
+		/*
+		 * Reset the return value. We might have
+		 * returned with -EDEADLK and the owner
+		 * released the lock while we were walking the
+		 * pi chain.  Let the waiter sort it out.
+		 */
+		ret = 0;
+	}
+
+	if (ret && rt_mutex_has_waiters(lock))
+		remove_waiter(lock, waiter);
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	debug_rt_mutex_print_deadlock(waiter);
+
+	return ret;
+}
+
+/**
+ * rt_mutex_next_owner - return the next owner of the lock
+ *
+ * @lock: the rt lock query
+ *
+ * Returns the next owner of the lock or NULL
+ *
+ * Caller has to serialize against other accessors to the lock
+ * itself.
+ *
+ * Special API call for PI-futex support
+ */
+struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
+{
+	if (!rt_mutex_has_waiters(lock))
+		return NULL;
+
+	return rt_mutex_top_waiter(lock)->task;
+}
+
+/**
+ * rt_mutex_finish_proxy_lock() - Complete lock acquisition
+ * @lock:		the rt_mutex we were woken on
+ * @to:			the timeout, null if none. hrtimer should already have
+ *			been started.
+ * @waiter:		the pre-initialized rt_mutex_waiter
+ *
+ * Complete the lock acquisition started our behalf by another thread.
+ *
+ * Returns:
+ *  0 - success
+ * <0 - error, one of -EINTR, -ETIMEDOUT
+ *
+ * Special API call for PI-futex requeue support
+ */
+int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
+			       struct hrtimer_sleeper *to,
+			       struct rt_mutex_waiter *waiter)
+{
+	int ret;
+
+	raw_spin_lock(&lock->wait_lock);
+
+	set_current_state(TASK_INTERRUPTIBLE);
+
+	ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
+
+	set_current_state(TASK_RUNNING);
+
+	if (unlikely(ret))
+		remove_waiter(lock, waiter);
+
+	/*
+	 * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
+	 * have to fix that up.
+	 */
+	fixup_rt_mutex_waiters(lock);
+
+	raw_spin_unlock(&lock->wait_lock);
+
+	return ret;
+}