[Feature][T106]ZXW P56U09 code

Only Configure: Yes
Affected branch: master
Affected module: unknow
Is it affected on both ZXIC and MTK: only ZXIC
Self-test: No
Doc Update: No

Change-Id: I3cbd8b420271eb20c2b40ebe5c78f83059cd42f3
diff --git a/ap/os/linux/linux-3.4.x/mm/memory-failure.c b/ap/os/linux/linux-3.4.x/mm/memory-failure.c
new file mode 100644
index 0000000..c957a37
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/mm/memory-failure.c
@@ -0,0 +1,1608 @@
+/*
+ * Copyright (C) 2008, 2009 Intel Corporation
+ * Authors: Andi Kleen, Fengguang Wu
+ *
+ * This software may be redistributed and/or modified under the terms of
+ * the GNU General Public License ("GPL") version 2 only as published by the
+ * Free Software Foundation.
+ *
+ * High level machine check handler. Handles pages reported by the
+ * hardware as being corrupted usually due to a multi-bit ECC memory or cache
+ * failure.
+ * 
+ * In addition there is a "soft offline" entry point that allows stop using
+ * not-yet-corrupted-by-suspicious pages without killing anything.
+ *
+ * Handles page cache pages in various states.	The tricky part
+ * here is that we can access any page asynchronously in respect to 
+ * other VM users, because memory failures could happen anytime and 
+ * anywhere. This could violate some of their assumptions. This is why 
+ * this code has to be extremely careful. Generally it tries to use 
+ * normal locking rules, as in get the standard locks, even if that means 
+ * the error handling takes potentially a long time.
+ * 
+ * There are several operations here with exponential complexity because
+ * of unsuitable VM data structures. For example the operation to map back 
+ * from RMAP chains to processes has to walk the complete process list and 
+ * has non linear complexity with the number. But since memory corruptions
+ * are rare we hope to get away with this. This avoids impacting the core 
+ * VM.
+ */
+
+/*
+ * Notebook:
+ * - hugetlb needs more code
+ * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
+ * - pass bad pages to kdump next kernel
+ */
+#include <linux/kernel.h>
+#include <linux/mm.h>
+#include <linux/page-flags.h>
+#include <linux/kernel-page-flags.h>
+#include <linux/sched.h>
+#include <linux/ksm.h>
+#include <linux/rmap.h>
+#include <linux/export.h>
+#include <linux/pagemap.h>
+#include <linux/swap.h>
+#include <linux/backing-dev.h>
+#include <linux/migrate.h>
+#include <linux/page-isolation.h>
+#include <linux/suspend.h>
+#include <linux/slab.h>
+#include <linux/swapops.h>
+#include <linux/hugetlb.h>
+#include <linux/memory_hotplug.h>
+#include <linux/mm_inline.h>
+#include <linux/kfifo.h>
+#include "internal.h"
+
+int sysctl_memory_failure_early_kill __read_mostly = 0;
+
+int sysctl_memory_failure_recovery __read_mostly = 1;
+
+atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
+
+#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
+
+u32 hwpoison_filter_enable = 0;
+u32 hwpoison_filter_dev_major = ~0U;
+u32 hwpoison_filter_dev_minor = ~0U;
+u64 hwpoison_filter_flags_mask;
+u64 hwpoison_filter_flags_value;
+EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
+EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
+EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
+EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
+EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
+
+static int hwpoison_filter_dev(struct page *p)
+{
+	struct address_space *mapping;
+	dev_t dev;
+
+	if (hwpoison_filter_dev_major == ~0U &&
+	    hwpoison_filter_dev_minor == ~0U)
+		return 0;
+
+	/*
+	 * page_mapping() does not accept slab pages.
+	 */
+	if (PageSlab(p))
+		return -EINVAL;
+
+	mapping = page_mapping(p);
+	if (mapping == NULL || mapping->host == NULL)
+		return -EINVAL;
+
+	dev = mapping->host->i_sb->s_dev;
+	if (hwpoison_filter_dev_major != ~0U &&
+	    hwpoison_filter_dev_major != MAJOR(dev))
+		return -EINVAL;
+	if (hwpoison_filter_dev_minor != ~0U &&
+	    hwpoison_filter_dev_minor != MINOR(dev))
+		return -EINVAL;
+
+	return 0;
+}
+
+static int hwpoison_filter_flags(struct page *p)
+{
+	if (!hwpoison_filter_flags_mask)
+		return 0;
+
+	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
+				    hwpoison_filter_flags_value)
+		return 0;
+	else
+		return -EINVAL;
+}
+
+/*
+ * This allows stress tests to limit test scope to a collection of tasks
+ * by putting them under some memcg. This prevents killing unrelated/important
+ * processes such as /sbin/init. Note that the target task may share clean
+ * pages with init (eg. libc text), which is harmless. If the target task
+ * share _dirty_ pages with another task B, the test scheme must make sure B
+ * is also included in the memcg. At last, due to race conditions this filter
+ * can only guarantee that the page either belongs to the memcg tasks, or is
+ * a freed page.
+ */
+#ifdef	CONFIG_CGROUP_MEM_RES_CTLR_SWAP
+u64 hwpoison_filter_memcg;
+EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
+static int hwpoison_filter_task(struct page *p)
+{
+	struct mem_cgroup *mem;
+	struct cgroup_subsys_state *css;
+	unsigned long ino;
+
+	if (!hwpoison_filter_memcg)
+		return 0;
+
+	mem = try_get_mem_cgroup_from_page(p);
+	if (!mem)
+		return -EINVAL;
+
+	css = mem_cgroup_css(mem);
+	/* root_mem_cgroup has NULL dentries */
+	if (!css->cgroup->dentry)
+		return -EINVAL;
+
+	ino = css->cgroup->dentry->d_inode->i_ino;
+	css_put(css);
+
+	if (ino != hwpoison_filter_memcg)
+		return -EINVAL;
+
+	return 0;
+}
+#else
+static int hwpoison_filter_task(struct page *p) { return 0; }
+#endif
+
+int hwpoison_filter(struct page *p)
+{
+	if (!hwpoison_filter_enable)
+		return 0;
+
+	if (hwpoison_filter_dev(p))
+		return -EINVAL;
+
+	if (hwpoison_filter_flags(p))
+		return -EINVAL;
+
+	if (hwpoison_filter_task(p))
+		return -EINVAL;
+
+	return 0;
+}
+#else
+int hwpoison_filter(struct page *p)
+{
+	return 0;
+}
+#endif
+
+EXPORT_SYMBOL_GPL(hwpoison_filter);
+
+/*
+ * Send all the processes who have the page mapped a signal.
+ * ``action optional'' if they are not immediately affected by the error
+ * ``action required'' if error happened in current execution context
+ */
+static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
+			unsigned long pfn, struct page *page, int flags)
+{
+	struct siginfo si;
+	int ret;
+
+	printk(KERN_ERR
+		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
+		pfn, t->comm, t->pid);
+	si.si_signo = SIGBUS;
+	si.si_errno = 0;
+	si.si_addr = (void *)addr;
+#ifdef __ARCH_SI_TRAPNO
+	si.si_trapno = trapno;
+#endif
+	si.si_addr_lsb = compound_trans_order(compound_head(page)) + PAGE_SHIFT;
+
+	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
+		si.si_code = BUS_MCEERR_AR;
+		ret = force_sig_info(SIGBUS, &si, current);
+	} else {
+		/*
+		 * Don't use force here, it's convenient if the signal
+		 * can be temporarily blocked.
+		 * This could cause a loop when the user sets SIGBUS
+		 * to SIG_IGN, but hopefully no one will do that?
+		 */
+		si.si_code = BUS_MCEERR_AO;
+		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
+	}
+	if (ret < 0)
+		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
+		       t->comm, t->pid, ret);
+	return ret;
+}
+
+/*
+ * When a unknown page type is encountered drain as many buffers as possible
+ * in the hope to turn the page into a LRU or free page, which we can handle.
+ */
+void shake_page(struct page *p, int access)
+{
+	if (!PageSlab(p)) {
+		lru_add_drain_all();
+		if (PageLRU(p))
+			return;
+		drain_all_pages();
+		if (PageLRU(p) || is_free_buddy_page(p))
+			return;
+	}
+
+	/*
+	 * Only call shrink_slab here (which would also shrink other caches) if
+	 * access is not potentially fatal.
+	 */
+	if (access) {
+		int nr;
+		do {
+			struct shrink_control shrink = {
+				.gfp_mask = GFP_KERNEL,
+			};
+
+			nr = shrink_slab(&shrink, 1000, 1000);
+			if (page_count(p) == 1)
+				break;
+		} while (nr > 10);
+	}
+}
+EXPORT_SYMBOL_GPL(shake_page);
+
+/*
+ * Kill all processes that have a poisoned page mapped and then isolate
+ * the page.
+ *
+ * General strategy:
+ * Find all processes having the page mapped and kill them.
+ * But we keep a page reference around so that the page is not
+ * actually freed yet.
+ * Then stash the page away
+ *
+ * There's no convenient way to get back to mapped processes
+ * from the VMAs. So do a brute-force search over all
+ * running processes.
+ *
+ * Remember that machine checks are not common (or rather
+ * if they are common you have other problems), so this shouldn't
+ * be a performance issue.
+ *
+ * Also there are some races possible while we get from the
+ * error detection to actually handle it.
+ */
+
+struct to_kill {
+	struct list_head nd;
+	struct task_struct *tsk;
+	unsigned long addr;
+	char addr_valid;
+};
+
+/*
+ * Failure handling: if we can't find or can't kill a process there's
+ * not much we can do.	We just print a message and ignore otherwise.
+ */
+
+/*
+ * Schedule a process for later kill.
+ * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
+ * TBD would GFP_NOIO be enough?
+ */
+static void add_to_kill(struct task_struct *tsk, struct page *p,
+		       struct vm_area_struct *vma,
+		       struct list_head *to_kill,
+		       struct to_kill **tkc)
+{
+	struct to_kill *tk;
+
+	if (*tkc) {
+		tk = *tkc;
+		*tkc = NULL;
+	} else {
+		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
+		if (!tk) {
+			printk(KERN_ERR
+		"MCE: Out of memory while machine check handling\n");
+			return;
+		}
+	}
+	tk->addr = page_address_in_vma(p, vma);
+	tk->addr_valid = 1;
+
+	/*
+	 * In theory we don't have to kill when the page was
+	 * munmaped. But it could be also a mremap. Since that's
+	 * likely very rare kill anyways just out of paranoia, but use
+	 * a SIGKILL because the error is not contained anymore.
+	 */
+	if (tk->addr == -EFAULT) {
+		pr_info("MCE: Unable to find user space address %lx in %s\n",
+			page_to_pfn(p), tsk->comm);
+		tk->addr_valid = 0;
+	}
+	get_task_struct(tsk);
+	tk->tsk = tsk;
+	list_add_tail(&tk->nd, to_kill);
+}
+
+/*
+ * Kill the processes that have been collected earlier.
+ *
+ * Only do anything when DOIT is set, otherwise just free the list
+ * (this is used for clean pages which do not need killing)
+ * Also when FAIL is set do a force kill because something went
+ * wrong earlier.
+ */
+static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
+			  int fail, struct page *page, unsigned long pfn,
+			  int flags)
+{
+	struct to_kill *tk, *next;
+
+	list_for_each_entry_safe (tk, next, to_kill, nd) {
+		if (forcekill) {
+			/*
+			 * In case something went wrong with munmapping
+			 * make sure the process doesn't catch the
+			 * signal and then access the memory. Just kill it.
+			 */
+			if (fail || tk->addr_valid == 0) {
+				printk(KERN_ERR
+		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
+					pfn, tk->tsk->comm, tk->tsk->pid);
+				force_sig(SIGKILL, tk->tsk);
+			}
+
+			/*
+			 * In theory the process could have mapped
+			 * something else on the address in-between. We could
+			 * check for that, but we need to tell the
+			 * process anyways.
+			 */
+			else if (kill_proc(tk->tsk, tk->addr, trapno,
+					      pfn, page, flags) < 0)
+				printk(KERN_ERR
+		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
+					pfn, tk->tsk->comm, tk->tsk->pid);
+		}
+		put_task_struct(tk->tsk);
+		kfree(tk);
+	}
+}
+
+static int task_early_kill(struct task_struct *tsk, int force_early)
+{
+	if (!tsk->mm)
+		return 0;
+	if (force_early)
+		return 1;
+	if (tsk->flags & PF_MCE_PROCESS)
+		return !!(tsk->flags & PF_MCE_EARLY);
+	return sysctl_memory_failure_early_kill;
+}
+
+/*
+ * Collect processes when the error hit an anonymous page.
+ */
+static void collect_procs_anon(struct page *page, struct list_head *to_kill,
+			      struct to_kill **tkc, int force_early)
+{
+	struct vm_area_struct *vma;
+	struct task_struct *tsk;
+	struct anon_vma *av;
+
+	av = page_lock_anon_vma(page);
+	if (av == NULL)	/* Not actually mapped anymore */
+		return;
+
+	read_lock(&tasklist_lock);
+	for_each_process (tsk) {
+		struct anon_vma_chain *vmac;
+
+		if (!task_early_kill(tsk, force_early))
+			continue;
+		list_for_each_entry(vmac, &av->head, same_anon_vma) {
+			vma = vmac->vma;
+			if (!page_mapped_in_vma(page, vma))
+				continue;
+			if (vma->vm_mm == tsk->mm)
+				add_to_kill(tsk, page, vma, to_kill, tkc);
+		}
+	}
+	read_unlock(&tasklist_lock);
+	page_unlock_anon_vma(av);
+}
+
+/*
+ * Collect processes when the error hit a file mapped page.
+ */
+static void collect_procs_file(struct page *page, struct list_head *to_kill,
+			      struct to_kill **tkc, int force_early)
+{
+	struct vm_area_struct *vma;
+	struct task_struct *tsk;
+	struct prio_tree_iter iter;
+	struct address_space *mapping = page->mapping;
+
+	mutex_lock(&mapping->i_mmap_mutex);
+	read_lock(&tasklist_lock);
+	for_each_process(tsk) {
+		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
+
+		if (!task_early_kill(tsk, force_early))
+			continue;
+
+		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
+				      pgoff) {
+			/*
+			 * Send early kill signal to tasks where a vma covers
+			 * the page but the corrupted page is not necessarily
+			 * mapped it in its pte.
+			 * Assume applications who requested early kill want
+			 * to be informed of all such data corruptions.
+			 */
+			if (vma->vm_mm == tsk->mm)
+				add_to_kill(tsk, page, vma, to_kill, tkc);
+		}
+	}
+	read_unlock(&tasklist_lock);
+	mutex_unlock(&mapping->i_mmap_mutex);
+}
+
+/*
+ * Collect the processes who have the corrupted page mapped to kill.
+ * This is done in two steps for locking reasons.
+ * First preallocate one tokill structure outside the spin locks,
+ * so that we can kill at least one process reasonably reliable.
+ */
+static void collect_procs(struct page *page, struct list_head *tokill,
+				int force_early)
+{
+	struct to_kill *tk;
+
+	if (!page->mapping)
+		return;
+
+	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
+	if (!tk)
+		return;
+	if (PageAnon(page))
+		collect_procs_anon(page, tokill, &tk, force_early);
+	else
+		collect_procs_file(page, tokill, &tk, force_early);
+	kfree(tk);
+}
+
+/*
+ * Error handlers for various types of pages.
+ */
+
+enum outcome {
+	IGNORED,	/* Error: cannot be handled */
+	FAILED,		/* Error: handling failed */
+	DELAYED,	/* Will be handled later */
+	RECOVERED,	/* Successfully recovered */
+};
+
+static const char *action_name[] = {
+	[IGNORED] = "Ignored",
+	[FAILED] = "Failed",
+	[DELAYED] = "Delayed",
+	[RECOVERED] = "Recovered",
+};
+
+/*
+ * XXX: It is possible that a page is isolated from LRU cache,
+ * and then kept in swap cache or failed to remove from page cache.
+ * The page count will stop it from being freed by unpoison.
+ * Stress tests should be aware of this memory leak problem.
+ */
+static int delete_from_lru_cache(struct page *p)
+{
+	if (!isolate_lru_page(p)) {
+		/*
+		 * Clear sensible page flags, so that the buddy system won't
+		 * complain when the page is unpoison-and-freed.
+		 */
+		ClearPageActive(p);
+		ClearPageUnevictable(p);
+		/*
+		 * drop the page count elevated by isolate_lru_page()
+		 */
+		page_cache_release(p);
+		return 0;
+	}
+	return -EIO;
+}
+
+/*
+ * Error hit kernel page.
+ * Do nothing, try to be lucky and not touch this instead. For a few cases we
+ * could be more sophisticated.
+ */
+static int me_kernel(struct page *p, unsigned long pfn)
+{
+	return IGNORED;
+}
+
+/*
+ * Page in unknown state. Do nothing.
+ */
+static int me_unknown(struct page *p, unsigned long pfn)
+{
+	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
+	return FAILED;
+}
+
+/*
+ * Clean (or cleaned) page cache page.
+ */
+static int me_pagecache_clean(struct page *p, unsigned long pfn)
+{
+	int err;
+	int ret = FAILED;
+	struct address_space *mapping;
+
+	delete_from_lru_cache(p);
+
+	/*
+	 * For anonymous pages we're done the only reference left
+	 * should be the one m_f() holds.
+	 */
+	if (PageAnon(p))
+		return RECOVERED;
+
+	/*
+	 * Now truncate the page in the page cache. This is really
+	 * more like a "temporary hole punch"
+	 * Don't do this for block devices when someone else
+	 * has a reference, because it could be file system metadata
+	 * and that's not safe to truncate.
+	 */
+	mapping = page_mapping(p);
+	if (!mapping) {
+		/*
+		 * Page has been teared down in the meanwhile
+		 */
+		return FAILED;
+	}
+
+	/*
+	 * Truncation is a bit tricky. Enable it per file system for now.
+	 *
+	 * Open: to take i_mutex or not for this? Right now we don't.
+	 */
+	if (mapping->a_ops->error_remove_page) {
+		err = mapping->a_ops->error_remove_page(mapping, p);
+		if (err != 0) {
+			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
+					pfn, err);
+		} else if (page_has_private(p) &&
+				!try_to_release_page(p, GFP_NOIO)) {
+			pr_info("MCE %#lx: failed to release buffers\n", pfn);
+		} else {
+			ret = RECOVERED;
+		}
+	} else {
+		/*
+		 * If the file system doesn't support it just invalidate
+		 * This fails on dirty or anything with private pages
+		 */
+		if (invalidate_inode_page(p))
+			ret = RECOVERED;
+		else
+			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
+				pfn);
+	}
+	return ret;
+}
+
+/*
+ * Dirty cache page page
+ * Issues: when the error hit a hole page the error is not properly
+ * propagated.
+ */
+static int me_pagecache_dirty(struct page *p, unsigned long pfn)
+{
+	struct address_space *mapping = page_mapping(p);
+
+	SetPageError(p);
+	/* TBD: print more information about the file. */
+	if (mapping) {
+		/*
+		 * IO error will be reported by write(), fsync(), etc.
+		 * who check the mapping.
+		 * This way the application knows that something went
+		 * wrong with its dirty file data.
+		 *
+		 * There's one open issue:
+		 *
+		 * The EIO will be only reported on the next IO
+		 * operation and then cleared through the IO map.
+		 * Normally Linux has two mechanisms to pass IO error
+		 * first through the AS_EIO flag in the address space
+		 * and then through the PageError flag in the page.
+		 * Since we drop pages on memory failure handling the
+		 * only mechanism open to use is through AS_AIO.
+		 *
+		 * This has the disadvantage that it gets cleared on
+		 * the first operation that returns an error, while
+		 * the PageError bit is more sticky and only cleared
+		 * when the page is reread or dropped.  If an
+		 * application assumes it will always get error on
+		 * fsync, but does other operations on the fd before
+		 * and the page is dropped between then the error
+		 * will not be properly reported.
+		 *
+		 * This can already happen even without hwpoisoned
+		 * pages: first on metadata IO errors (which only
+		 * report through AS_EIO) or when the page is dropped
+		 * at the wrong time.
+		 *
+		 * So right now we assume that the application DTRT on
+		 * the first EIO, but we're not worse than other parts
+		 * of the kernel.
+		 */
+		mapping_set_error(mapping, EIO);
+	}
+
+	return me_pagecache_clean(p, pfn);
+}
+
+/*
+ * Clean and dirty swap cache.
+ *
+ * Dirty swap cache page is tricky to handle. The page could live both in page
+ * cache and swap cache(ie. page is freshly swapped in). So it could be
+ * referenced concurrently by 2 types of PTEs:
+ * normal PTEs and swap PTEs. We try to handle them consistently by calling
+ * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
+ * and then
+ *      - clear dirty bit to prevent IO
+ *      - remove from LRU
+ *      - but keep in the swap cache, so that when we return to it on
+ *        a later page fault, we know the application is accessing
+ *        corrupted data and shall be killed (we installed simple
+ *        interception code in do_swap_page to catch it).
+ *
+ * Clean swap cache pages can be directly isolated. A later page fault will
+ * bring in the known good data from disk.
+ */
+static int me_swapcache_dirty(struct page *p, unsigned long pfn)
+{
+	ClearPageDirty(p);
+	/* Trigger EIO in shmem: */
+	ClearPageUptodate(p);
+
+	if (!delete_from_lru_cache(p))
+		return DELAYED;
+	else
+		return FAILED;
+}
+
+static int me_swapcache_clean(struct page *p, unsigned long pfn)
+{
+	delete_from_swap_cache(p);
+
+	if (!delete_from_lru_cache(p))
+		return RECOVERED;
+	else
+		return FAILED;
+}
+
+/*
+ * Huge pages. Needs work.
+ * Issues:
+ * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
+ *   To narrow down kill region to one page, we need to break up pmd.
+ */
+static int me_huge_page(struct page *p, unsigned long pfn)
+{
+	int res = 0;
+	struct page *hpage = compound_head(p);
+	/*
+	 * We can safely recover from error on free or reserved (i.e.
+	 * not in-use) hugepage by dequeuing it from freelist.
+	 * To check whether a hugepage is in-use or not, we can't use
+	 * page->lru because it can be used in other hugepage operations,
+	 * such as __unmap_hugepage_range() and gather_surplus_pages().
+	 * So instead we use page_mapping() and PageAnon().
+	 * We assume that this function is called with page lock held,
+	 * so there is no race between isolation and mapping/unmapping.
+	 */
+	if (!(page_mapping(hpage) || PageAnon(hpage))) {
+		res = dequeue_hwpoisoned_huge_page(hpage);
+		if (!res)
+			return RECOVERED;
+	}
+	return DELAYED;
+}
+
+/*
+ * Various page states we can handle.
+ *
+ * A page state is defined by its current page->flags bits.
+ * The table matches them in order and calls the right handler.
+ *
+ * This is quite tricky because we can access page at any time
+ * in its live cycle, so all accesses have to be extremely careful.
+ *
+ * This is not complete. More states could be added.
+ * For any missing state don't attempt recovery.
+ */
+
+#define dirty		(1UL << PG_dirty)
+#define sc		(1UL << PG_swapcache)
+#define unevict		(1UL << PG_unevictable)
+#define mlock		(1UL << PG_mlocked)
+#define writeback	(1UL << PG_writeback)
+#define lru		(1UL << PG_lru)
+#define swapbacked	(1UL << PG_swapbacked)
+#define head		(1UL << PG_head)
+#define tail		(1UL << PG_tail)
+#define compound	(1UL << PG_compound)
+#define slab		(1UL << PG_slab)
+#define reserved	(1UL << PG_reserved)
+
+static struct page_state {
+	unsigned long mask;
+	unsigned long res;
+	char *msg;
+	int (*action)(struct page *p, unsigned long pfn);
+} error_states[] = {
+	{ reserved,	reserved,	"reserved kernel",	me_kernel },
+	/*
+	 * free pages are specially detected outside this table:
+	 * PG_buddy pages only make a small fraction of all free pages.
+	 */
+
+	/*
+	 * Could in theory check if slab page is free or if we can drop
+	 * currently unused objects without touching them. But just
+	 * treat it as standard kernel for now.
+	 */
+	{ slab,		slab,		"kernel slab",	me_kernel },
+
+#ifdef CONFIG_PAGEFLAGS_EXTENDED
+	{ head,		head,		"huge",		me_huge_page },
+	{ tail,		tail,		"huge",		me_huge_page },
+#else
+	{ compound,	compound,	"huge",		me_huge_page },
+#endif
+
+	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
+	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
+
+	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
+	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
+
+	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
+	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
+
+	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
+	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
+
+	/*
+	 * Catchall entry: must be at end.
+	 */
+	{ 0,		0,		"unknown page state",	me_unknown },
+};
+
+#undef dirty
+#undef sc
+#undef unevict
+#undef mlock
+#undef writeback
+#undef lru
+#undef swapbacked
+#undef head
+#undef tail
+#undef compound
+#undef slab
+#undef reserved
+
+static void action_result(unsigned long pfn, char *msg, int result)
+{
+	struct page *page = pfn_to_page(pfn);
+
+	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
+		pfn,
+		PageDirty(page) ? "dirty " : "",
+		msg, action_name[result]);
+}
+
+static int page_action(struct page_state *ps, struct page *p,
+			unsigned long pfn)
+{
+	int result;
+	int count;
+
+	result = ps->action(p, pfn);
+	action_result(pfn, ps->msg, result);
+
+	count = page_count(p) - 1;
+	if (ps->action == me_swapcache_dirty && result == DELAYED)
+		count--;
+	if (count != 0) {
+		printk(KERN_ERR
+		       "MCE %#lx: %s page still referenced by %d users\n",
+		       pfn, ps->msg, count);
+		result = FAILED;
+	}
+
+	/* Could do more checks here if page looks ok */
+	/*
+	 * Could adjust zone counters here to correct for the missing page.
+	 */
+
+	return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
+}
+
+/*
+ * Do all that is necessary to remove user space mappings. Unmap
+ * the pages and send SIGBUS to the processes if the data was dirty.
+ */
+static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
+				  int trapno, int flags)
+{
+	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
+	struct address_space *mapping;
+	LIST_HEAD(tokill);
+	int ret;
+	int kill = 1, forcekill;
+	struct page *hpage = compound_head(p);
+	struct page *ppage;
+
+	if (PageReserved(p) || PageSlab(p))
+		return SWAP_SUCCESS;
+
+	/*
+	 * This check implies we don't kill processes if their pages
+	 * are in the swap cache early. Those are always late kills.
+	 */
+	if (!page_mapped(hpage))
+		return SWAP_SUCCESS;
+
+	if (PageKsm(p))
+		return SWAP_FAIL;
+
+	if (PageSwapCache(p)) {
+		printk(KERN_ERR
+		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
+		ttu |= TTU_IGNORE_HWPOISON;
+	}
+
+	/*
+	 * Propagate the dirty bit from PTEs to struct page first, because we
+	 * need this to decide if we should kill or just drop the page.
+	 * XXX: the dirty test could be racy: set_page_dirty() may not always
+	 * be called inside page lock (it's recommended but not enforced).
+	 */
+	mapping = page_mapping(hpage);
+	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
+	    mapping_cap_writeback_dirty(mapping)) {
+		if (page_mkclean(hpage)) {
+			SetPageDirty(hpage);
+		} else {
+			kill = 0;
+			ttu |= TTU_IGNORE_HWPOISON;
+			printk(KERN_INFO
+	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
+				pfn);
+		}
+	}
+
+	/*
+	 * ppage: poisoned page
+	 *   if p is regular page(4k page)
+	 *        ppage == real poisoned page;
+	 *   else p is hugetlb or THP, ppage == head page.
+	 */
+	ppage = hpage;
+
+	if (PageTransHuge(hpage)) {
+		/*
+		 * Verify that this isn't a hugetlbfs head page, the check for
+		 * PageAnon is just for avoid tripping a split_huge_page
+		 * internal debug check, as split_huge_page refuses to deal with
+		 * anything that isn't an anon page. PageAnon can't go away fro
+		 * under us because we hold a refcount on the hpage, without a
+		 * refcount on the hpage. split_huge_page can't be safely called
+		 * in the first place, having a refcount on the tail isn't
+		 * enough * to be safe.
+		 */
+		if (!PageHuge(hpage) && PageAnon(hpage)) {
+			if (unlikely(split_huge_page(hpage))) {
+				/*
+				 * FIXME: if splitting THP is failed, it is
+				 * better to stop the following operation rather
+				 * than causing panic by unmapping. System might
+				 * survive if the page is freed later.
+				 */
+				printk(KERN_INFO
+					"MCE %#lx: failed to split THP\n", pfn);
+
+				BUG_ON(!PageHWPoison(p));
+				return SWAP_FAIL;
+			}
+			/* THP is split, so ppage should be the real poisoned page. */
+			ppage = p;
+		}
+	}
+
+	/*
+	 * First collect all the processes that have the page
+	 * mapped in dirty form.  This has to be done before try_to_unmap,
+	 * because ttu takes the rmap data structures down.
+	 *
+	 * Error handling: We ignore errors here because
+	 * there's nothing that can be done.
+	 */
+	if (kill)
+		collect_procs(ppage, &tokill, flags & MF_ACTION_REQUIRED);
+
+	if (hpage != ppage)
+		lock_page(ppage);
+
+	ret = try_to_unmap(ppage, ttu);
+	if (ret != SWAP_SUCCESS)
+		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
+				pfn, page_mapcount(ppage));
+
+	if (hpage != ppage)
+		unlock_page(ppage);
+
+	/*
+	 * Now that the dirty bit has been propagated to the
+	 * struct page and all unmaps done we can decide if
+	 * killing is needed or not.  Only kill when the page
+	 * was dirty or the process is not restartable,
+	 * otherwise the tokill list is merely
+	 * freed.  When there was a problem unmapping earlier
+	 * use a more force-full uncatchable kill to prevent
+	 * any accesses to the poisoned memory.
+	 */
+	forcekill = PageDirty(ppage) || (flags & MF_MUST_KILL);
+	kill_procs(&tokill, forcekill, trapno,
+		      ret != SWAP_SUCCESS, p, pfn, flags);
+
+	return ret;
+}
+
+static void set_page_hwpoison_huge_page(struct page *hpage)
+{
+	int i;
+	int nr_pages = 1 << compound_trans_order(hpage);
+	for (i = 0; i < nr_pages; i++)
+		SetPageHWPoison(hpage + i);
+}
+
+static void clear_page_hwpoison_huge_page(struct page *hpage)
+{
+	int i;
+	int nr_pages = 1 << compound_trans_order(hpage);
+	for (i = 0; i < nr_pages; i++)
+		ClearPageHWPoison(hpage + i);
+}
+
+/**
+ * memory_failure - Handle memory failure of a page.
+ * @pfn: Page Number of the corrupted page
+ * @trapno: Trap number reported in the signal to user space.
+ * @flags: fine tune action taken
+ *
+ * This function is called by the low level machine check code
+ * of an architecture when it detects hardware memory corruption
+ * of a page. It tries its best to recover, which includes
+ * dropping pages, killing processes etc.
+ *
+ * The function is primarily of use for corruptions that
+ * happen outside the current execution context (e.g. when
+ * detected by a background scrubber)
+ *
+ * Must run in process context (e.g. a work queue) with interrupts
+ * enabled and no spinlocks hold.
+ */
+int memory_failure(unsigned long pfn, int trapno, int flags)
+{
+	struct page_state *ps;
+	struct page *p;
+	struct page *hpage;
+	int res;
+	unsigned int nr_pages;
+
+	if (!sysctl_memory_failure_recovery)
+		panic("Memory failure from trap %d on page %lx", trapno, pfn);
+
+	if (!pfn_valid(pfn)) {
+		printk(KERN_ERR
+		       "MCE %#lx: memory outside kernel control\n",
+		       pfn);
+		return -ENXIO;
+	}
+
+	p = pfn_to_page(pfn);
+	hpage = compound_head(p);
+	if (TestSetPageHWPoison(p)) {
+		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
+		return 0;
+	}
+
+	nr_pages = 1 << compound_trans_order(hpage);
+	atomic_long_add(nr_pages, &mce_bad_pages);
+
+	/*
+	 * We need/can do nothing about count=0 pages.
+	 * 1) it's a free page, and therefore in safe hand:
+	 *    prep_new_page() will be the gate keeper.
+	 * 2) it's a free hugepage, which is also safe:
+	 *    an affected hugepage will be dequeued from hugepage freelist,
+	 *    so there's no concern about reusing it ever after.
+	 * 3) it's part of a non-compound high order page.
+	 *    Implies some kernel user: cannot stop them from
+	 *    R/W the page; let's pray that the page has been
+	 *    used and will be freed some time later.
+	 * In fact it's dangerous to directly bump up page count from 0,
+	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
+	 */
+	if (!(flags & MF_COUNT_INCREASED) &&
+		!get_page_unless_zero(hpage)) {
+		if (is_free_buddy_page(p)) {
+			action_result(pfn, "free buddy", DELAYED);
+			return 0;
+		} else if (PageHuge(hpage)) {
+			/*
+			 * Check "filter hit" and "race with other subpage."
+			 */
+			lock_page(hpage);
+			if (PageHWPoison(hpage)) {
+				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
+				    || (p != hpage && TestSetPageHWPoison(hpage))) {
+					atomic_long_sub(nr_pages, &mce_bad_pages);
+					unlock_page(hpage);
+					return 0;
+				}
+			}
+			set_page_hwpoison_huge_page(hpage);
+			res = dequeue_hwpoisoned_huge_page(hpage);
+			action_result(pfn, "free huge",
+				      res ? IGNORED : DELAYED);
+			unlock_page(hpage);
+			return res;
+		} else {
+			action_result(pfn, "high order kernel", IGNORED);
+			return -EBUSY;
+		}
+	}
+
+	/*
+	 * We ignore non-LRU pages for good reasons.
+	 * - PG_locked is only well defined for LRU pages and a few others
+	 * - to avoid races with __set_page_locked()
+	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
+	 * The check (unnecessarily) ignores LRU pages being isolated and
+	 * walked by the page reclaim code, however that's not a big loss.
+	 */
+	if (!PageHuge(p)) {
+		if (!PageLRU(hpage))
+			shake_page(hpage, 0);
+		if (!PageLRU(hpage)) {
+			/*
+			 * shake_page could have turned it free.
+			 */
+			if (is_free_buddy_page(p)) {
+				action_result(pfn, "free buddy, 2nd try",
+						DELAYED);
+				return 0;
+			}
+			action_result(pfn, "non LRU", IGNORED);
+			put_page(p);
+			return -EBUSY;
+		}
+	}
+
+	/*
+	 * Lock the page and wait for writeback to finish.
+	 * It's very difficult to mess with pages currently under IO
+	 * and in many cases impossible, so we just avoid it here.
+	 */
+	lock_page(hpage);
+
+	/*
+	 * unpoison always clear PG_hwpoison inside page lock
+	 */
+	if (!PageHWPoison(p)) {
+		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
+		atomic_long_sub(nr_pages, &mce_bad_pages);
+		put_page(hpage);
+		res = 0;
+		goto out;
+	}
+	if (hwpoison_filter(p)) {
+		if (TestClearPageHWPoison(p))
+			atomic_long_sub(nr_pages, &mce_bad_pages);
+		unlock_page(hpage);
+		put_page(hpage);
+		return 0;
+	}
+
+	/*
+	 * For error on the tail page, we should set PG_hwpoison
+	 * on the head page to show that the hugepage is hwpoisoned
+	 */
+	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
+		action_result(pfn, "hugepage already hardware poisoned",
+				IGNORED);
+		unlock_page(hpage);
+		put_page(hpage);
+		return 0;
+	}
+	/*
+	 * Set PG_hwpoison on all pages in an error hugepage,
+	 * because containment is done in hugepage unit for now.
+	 * Since we have done TestSetPageHWPoison() for the head page with
+	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
+	 */
+	if (PageHuge(p))
+		set_page_hwpoison_huge_page(hpage);
+
+	wait_on_page_writeback(p);
+
+	/*
+	 * Now take care of user space mappings.
+	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
+	 */
+	if (hwpoison_user_mappings(p, pfn, trapno, flags) != SWAP_SUCCESS) {
+		printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
+		res = -EBUSY;
+		goto out;
+	}
+
+	/*
+	 * Torn down by someone else?
+	 */
+	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
+		action_result(pfn, "already truncated LRU", IGNORED);
+		res = -EBUSY;
+		goto out;
+	}
+
+	res = -EBUSY;
+	for (ps = error_states;; ps++) {
+		if ((p->flags & ps->mask) == ps->res) {
+			res = page_action(ps, p, pfn);
+			break;
+		}
+	}
+out:
+	unlock_page(hpage);
+	return res;
+}
+EXPORT_SYMBOL_GPL(memory_failure);
+
+#define MEMORY_FAILURE_FIFO_ORDER	4
+#define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
+
+struct memory_failure_entry {
+	unsigned long pfn;
+	int trapno;
+	int flags;
+};
+
+struct memory_failure_cpu {
+	DECLARE_KFIFO(fifo, struct memory_failure_entry,
+		      MEMORY_FAILURE_FIFO_SIZE);
+	spinlock_t lock;
+	struct work_struct work;
+};
+
+static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
+
+/**
+ * memory_failure_queue - Schedule handling memory failure of a page.
+ * @pfn: Page Number of the corrupted page
+ * @trapno: Trap number reported in the signal to user space.
+ * @flags: Flags for memory failure handling
+ *
+ * This function is called by the low level hardware error handler
+ * when it detects hardware memory corruption of a page. It schedules
+ * the recovering of error page, including dropping pages, killing
+ * processes etc.
+ *
+ * The function is primarily of use for corruptions that
+ * happen outside the current execution context (e.g. when
+ * detected by a background scrubber)
+ *
+ * Can run in IRQ context.
+ */
+void memory_failure_queue(unsigned long pfn, int trapno, int flags)
+{
+	struct memory_failure_cpu *mf_cpu;
+	unsigned long proc_flags;
+	struct memory_failure_entry entry = {
+		.pfn =		pfn,
+		.trapno =	trapno,
+		.flags =	flags,
+	};
+
+	mf_cpu = &get_cpu_var(memory_failure_cpu);
+	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
+	if (kfifo_put(&mf_cpu->fifo, &entry))
+		schedule_work_on(smp_processor_id(), &mf_cpu->work);
+	else
+		pr_err("Memory failure: buffer overflow when queuing memory failure at 0x%#lx\n",
+		       pfn);
+	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
+	put_cpu_var(memory_failure_cpu);
+}
+EXPORT_SYMBOL_GPL(memory_failure_queue);
+
+static void memory_failure_work_func(struct work_struct *work)
+{
+	struct memory_failure_cpu *mf_cpu;
+	struct memory_failure_entry entry = { 0, };
+	unsigned long proc_flags;
+	int gotten;
+
+	mf_cpu = &__get_cpu_var(memory_failure_cpu);
+	for (;;) {
+		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
+		gotten = kfifo_get(&mf_cpu->fifo, &entry);
+		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
+		if (!gotten)
+			break;
+		memory_failure(entry.pfn, entry.trapno, entry.flags);
+	}
+}
+
+static int __init memory_failure_init(void)
+{
+	struct memory_failure_cpu *mf_cpu;
+	int cpu;
+
+	for_each_possible_cpu(cpu) {
+		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
+		spin_lock_init(&mf_cpu->lock);
+		INIT_KFIFO(mf_cpu->fifo);
+		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
+	}
+
+	return 0;
+}
+core_initcall(memory_failure_init);
+
+/**
+ * unpoison_memory - Unpoison a previously poisoned page
+ * @pfn: Page number of the to be unpoisoned page
+ *
+ * Software-unpoison a page that has been poisoned by
+ * memory_failure() earlier.
+ *
+ * This is only done on the software-level, so it only works
+ * for linux injected failures, not real hardware failures
+ *
+ * Returns 0 for success, otherwise -errno.
+ */
+int unpoison_memory(unsigned long pfn)
+{
+	struct page *page;
+	struct page *p;
+	int freeit = 0;
+	unsigned int nr_pages;
+
+	if (!pfn_valid(pfn))
+		return -ENXIO;
+
+	p = pfn_to_page(pfn);
+	page = compound_head(p);
+
+	if (!PageHWPoison(p)) {
+		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
+		return 0;
+	}
+
+	nr_pages = 1 << compound_trans_order(page);
+
+	if (!get_page_unless_zero(page)) {
+		/*
+		 * Since HWPoisoned hugepage should have non-zero refcount,
+		 * race between memory failure and unpoison seems to happen.
+		 * In such case unpoison fails and memory failure runs
+		 * to the end.
+		 */
+		if (PageHuge(page)) {
+			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
+			return 0;
+		}
+		if (TestClearPageHWPoison(p))
+			atomic_long_sub(nr_pages, &mce_bad_pages);
+		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
+		return 0;
+	}
+
+	lock_page(page);
+	/*
+	 * This test is racy because PG_hwpoison is set outside of page lock.
+	 * That's acceptable because that won't trigger kernel panic. Instead,
+	 * the PG_hwpoison page will be caught and isolated on the entrance to
+	 * the free buddy page pool.
+	 */
+	if (TestClearPageHWPoison(page)) {
+		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
+		atomic_long_sub(nr_pages, &mce_bad_pages);
+		freeit = 1;
+		if (PageHuge(page))
+			clear_page_hwpoison_huge_page(page);
+	}
+	unlock_page(page);
+
+	put_page(page);
+	if (freeit)
+		put_page(page);
+
+	return 0;
+}
+EXPORT_SYMBOL(unpoison_memory);
+
+static struct page *new_page(struct page *p, unsigned long private, int **x)
+{
+	int nid = page_to_nid(p);
+	if (PageHuge(p))
+		return alloc_huge_page_node(page_hstate(compound_head(p)),
+						   nid);
+	else
+		return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
+}
+
+/*
+ * Safely get reference count of an arbitrary page.
+ * Returns 0 for a free page, -EIO for a zero refcount page
+ * that is not free, and 1 for any other page type.
+ * For 1 the page is returned with increased page count, otherwise not.
+ */
+static int get_any_page(struct page *p, unsigned long pfn, int flags)
+{
+	int ret;
+
+	if (flags & MF_COUNT_INCREASED)
+		return 1;
+
+	/*
+	 * The lock_memory_hotplug prevents a race with memory hotplug.
+	 * This is a big hammer, a better would be nicer.
+	 */
+	lock_memory_hotplug();
+
+	/*
+	 * Isolate the page, so that it doesn't get reallocated if it
+	 * was free.
+	 */
+	set_migratetype_isolate(p);
+	/*
+	 * When the target page is a free hugepage, just remove it
+	 * from free hugepage list.
+	 */
+	if (!get_page_unless_zero(compound_head(p))) {
+		if (PageHuge(p)) {
+			pr_info("get_any_page: %#lx free huge page\n", pfn);
+			ret = dequeue_hwpoisoned_huge_page(compound_head(p));
+		} else if (is_free_buddy_page(p)) {
+			pr_info("get_any_page: %#lx free buddy page\n", pfn);
+			/* Set hwpoison bit while page is still isolated */
+			SetPageHWPoison(p);
+			ret = 0;
+		} else {
+			pr_info("get_any_page: %#lx: unknown zero refcount page type %lx\n",
+				pfn, p->flags);
+			ret = -EIO;
+		}
+	} else {
+		/* Not a free page */
+		ret = 1;
+	}
+	unset_migratetype_isolate(p);
+	unlock_memory_hotplug();
+	return ret;
+}
+
+static int soft_offline_huge_page(struct page *page, int flags)
+{
+	int ret;
+	unsigned long pfn = page_to_pfn(page);
+	struct page *hpage = compound_head(page);
+	LIST_HEAD(pagelist);
+
+	ret = get_any_page(page, pfn, flags);
+	if (ret < 0)
+		return ret;
+	if (ret == 0)
+		goto done;
+
+	if (PageHWPoison(hpage)) {
+		put_page(hpage);
+		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
+		return -EBUSY;
+	}
+
+	/* Keep page count to indicate a given hugepage is isolated. */
+
+	list_add(&hpage->lru, &pagelist);
+	ret = migrate_huge_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, false,
+				MIGRATE_SYNC);
+	if (ret) {
+		struct page *page1, *page2;
+		list_for_each_entry_safe(page1, page2, &pagelist, lru)
+			put_page(page1);
+
+		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
+			pfn, ret, page->flags);
+		if (ret > 0)
+			ret = -EIO;
+		return ret;
+	}
+done:
+	/* overcommit hugetlb page will be freed to buddy */
+	if (PageHuge(hpage)) {
+		if (!PageHWPoison(hpage))
+			atomic_long_add(1 << compound_trans_order(hpage),
+					&mce_bad_pages);
+		set_page_hwpoison_huge_page(hpage);
+		dequeue_hwpoisoned_huge_page(hpage);
+	} else {
+		SetPageHWPoison(page);
+		atomic_long_inc(&mce_bad_pages);
+	}
+
+	/* keep elevated page count for bad page */
+	return ret;
+}
+
+/**
+ * soft_offline_page - Soft offline a page.
+ * @page: page to offline
+ * @flags: flags. Same as memory_failure().
+ *
+ * Returns 0 on success, otherwise negated errno.
+ *
+ * Soft offline a page, by migration or invalidation,
+ * without killing anything. This is for the case when
+ * a page is not corrupted yet (so it's still valid to access),
+ * but has had a number of corrected errors and is better taken
+ * out.
+ *
+ * The actual policy on when to do that is maintained by
+ * user space.
+ *
+ * This should never impact any application or cause data loss,
+ * however it might take some time.
+ *
+ * This is not a 100% solution for all memory, but tries to be
+ * ``good enough'' for the majority of memory.
+ */
+int soft_offline_page(struct page *page, int flags)
+{
+	int ret;
+	unsigned long pfn = page_to_pfn(page);
+	struct page *hpage = compound_trans_head(page);
+
+	if (PageHuge(page))
+		return soft_offline_huge_page(page, flags);
+	if (PageTransHuge(hpage)) {
+		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
+			pr_info("soft offline: %#lx: failed to split THP\n",
+				pfn);
+			return -EBUSY;
+		}
+	}
+
+	ret = get_any_page(page, pfn, flags);
+	if (ret < 0)
+		return ret;
+	if (ret == 0)
+		goto done;
+
+	/*
+	 * Page cache page we can handle?
+	 */
+	if (!PageLRU(page)) {
+		/*
+		 * Try to free it.
+		 */
+		put_page(page);
+		shake_page(page, 1);
+
+		/*
+		 * Did it turn free?
+		 */
+		ret = get_any_page(page, pfn, 0);
+		if (ret < 0)
+			return ret;
+		if (ret == 0)
+			goto done;
+	}
+	if (!PageLRU(page)) {
+		pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
+			pfn, page->flags);
+		return -EIO;
+	}
+
+	lock_page(page);
+	wait_on_page_writeback(page);
+
+	/*
+	 * Synchronized using the page lock with memory_failure()
+	 */
+	if (PageHWPoison(page)) {
+		unlock_page(page);
+		put_page(page);
+		pr_info("soft offline: %#lx page already poisoned\n", pfn);
+		return -EBUSY;
+	}
+
+	/*
+	 * Try to invalidate first. This should work for
+	 * non dirty unmapped page cache pages.
+	 */
+	ret = invalidate_inode_page(page);
+	unlock_page(page);
+	/*
+	 * RED-PEN would be better to keep it isolated here, but we
+	 * would need to fix isolation locking first.
+	 */
+	if (ret == 1) {
+		put_page(page);
+		ret = 0;
+		pr_info("soft_offline: %#lx: invalidated\n", pfn);
+		goto done;
+	}
+
+	/*
+	 * Simple invalidation didn't work.
+	 * Try to migrate to a new page instead. migrate.c
+	 * handles a large number of cases for us.
+	 */
+	ret = isolate_lru_page(page);
+	/*
+	 * Drop page reference which is came from get_any_page()
+	 * successful isolate_lru_page() already took another one.
+	 */
+	put_page(page);
+	if (!ret) {
+		LIST_HEAD(pagelist);
+		inc_zone_page_state(page, NR_ISOLATED_ANON +
+					    page_is_file_cache(page));
+		list_add(&page->lru, &pagelist);
+		ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL,
+							false, MIGRATE_SYNC);
+		if (ret) {
+			putback_lru_pages(&pagelist);
+			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
+				pfn, ret, page->flags);
+			if (ret > 0)
+				ret = -EIO;
+		}
+	} else {
+		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
+			pfn, ret, page_count(page), page->flags);
+	}
+	if (ret)
+		return ret;
+
+done:
+	atomic_long_add(1, &mce_bad_pages);
+	SetPageHWPoison(page);
+	/* keep elevated page count for bad page */
+	return ret;
+}