[Feature][T106]ZXW P56U09 code

Only Configure: Yes
Affected branch: master
Affected module: unknow
Is it affected on both ZXIC and MTK: only ZXIC
Self-test: No
Doc Update: No

Change-Id: I3cbd8b420271eb20c2b40ebe5c78f83059cd42f3
diff --git a/boot/common/src/uboot/drivers/mtd/nand/denali.c b/boot/common/src/uboot/drivers/mtd/nand/denali.c
new file mode 100644
index 0000000..c3b851b
--- /dev/null
+++ b/boot/common/src/uboot/drivers/mtd/nand/denali.c
@@ -0,0 +1,1600 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright © 2009-2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+#include <malloc.h> 
+#include <asm/io.h> 
+#include <linux/mtd/mtd.h>
+#include <asm-generic/ioctl.h>
+#include <config.h>
+#include <common.h>
+#include <command.h>
+#include <asm/arch/nand.h> 
+#include <linux/mtd/nand.h>
+#include "denali.h"
+#include <asm/arch/lsp_crpm.h>
+#include <boot_mode.h>
+
+ 
+/* DEBUG */
+#if	DENALI_DEBUG
+#define denali_debug(fmt,args...)	printf (fmt ,##args)
+#define denali_debugX(level,fmt,args...) if (DEBUG>=level) printf(fmt,##args);
+#else
+#define denali_debug(fmt,args...)
+#define denali_debugX(level,fmt,args...)
+#endif	/* DEBUG */
+
+
+
+/* We define a module parameter that allows the user to override
+ * the hardware and decide what timing mode should be used.
+ */
+#define NAND_DEFAULT_TIMINGS	-1
+
+//static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
+
+/* We define a macro here that combines all interrupts this driver uses into
+ * a single constant value, for convenience. */
+#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
+			INTR_STATUS__ECC_ERR | \
+			INTR_STATUS__PROGRAM_FAIL | \
+			INTR_STATUS__LOAD_COMP | \
+			INTR_STATUS__PROGRAM_COMP | \
+			INTR_STATUS__TIME_OUT | \
+			INTR_STATUS__ERASE_FAIL | \
+			INTR_STATUS__RST_COMP | \
+			INTR_STATUS__ERASE_COMP)
+
+/* indicates whether or not the internal value for the flash bank is
+ * valid or not */
+#define CHIP_SELECT_INVALID	-1
+
+#define SUPPORT_8BITECC		1
+
+/* This macro divides two integers and rounds fractional values up
+ * to the nearest integer value. */
+#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+
+/* this macro allows us to convert from an MTD structure to our own
+ * device context (denali) structure.
+ */
+//#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
+
+/* These constants are defined by the driver to enable common driver
+ * configuration options. */
+#define SPARE_ACCESS		0x41
+#define MAIN_ACCESS		0x42
+#define MAIN_SPARE_ACCESS	0x43
+
+#define DENALI_READ	0
+#define DENALI_WRITE	0x100
+
+/* types of device accesses. We can issue commands and get status */
+#define COMMAND_CYCLE	0
+#define ADDR_CYCLE	1
+#define STATUS_CYCLE	2
+
+/* this is a helper macro that allows us to
+ * format the bank into the proper bits for the controller */
+#define BANK(x) ((x) << 24)
+
+#define true		    1
+#define false		    0
+
+extern struct nand_flash_device_para nand_flash_para[];
+extern struct mtd_info nand_info[];
+extern struct nand_chip nand_chip[];
+extern int flash_dmabuf_disable_flag; 
+
+
+struct denali_nand_info denali_info = {0};
+struct denali_nand_info *g_denali = &denali_info;
+struct nand_flash_device_para *g_nand_dev_info = NULL;
+
+/* forward declarations */
+//static void clear_interrupts(struct denali_nand_info *denali);
+//static void denali_irq_enable(struct denali_nand_info *denali,
+//							uint32_t int_mask);
+//static uint32_t read_interrupt_status(struct denali_nand_info *denali);
+
+/* Certain operations for the denali NAND controller use
+ * an indexed mode to read/write data. The operation is
+ * performed by writing the address value of the command
+ * to the device memory followed by the data. This function
+ * abstracts this common operation.
+*/
+static void index_addr(struct denali_nand_info *denali,
+				uint32_t address, uint32_t data)
+{
+	writel(address, denali->flash_mem);
+	writel(data, denali->flash_mem + 0x10);
+}
+
+/* Perform an indexed read of the device */
+static void index_addr_read_data(struct denali_nand_info *denali,
+				 uint32_t address, uint32_t *pdata)
+{
+	writel(address, denali->flash_mem);
+	*pdata = readl(denali->flash_mem + 0x10);
+}
+
+/* We need to buffer some data for some of the NAND core routines.
+ * The operations manage buffering that data. */
+static void reset_buf(struct denali_nand_info *denali)
+{
+	denali->buf.head = denali->buf.tail = 0;
+}
+
+static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
+{
+	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
+	denali->buf.buf[denali->buf.tail++] = byte;
+}
+
+/* reads the status of the device */
+static void read_status(struct denali_nand_info *denali)
+{
+	uint32_t status, addr;     
+    addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+	index_addr(denali, (uint32_t)addr | 0, 0x70);
+	index_addr_read_data(denali,(uint32_t)addr | 2,	&status);
+	write_byte_to_buf(denali, status);
+}
+
+/* resets a specific device connected to the core */
+static void reset_bank(struct denali_nand_info *denali)
+{
+//	uint32_t status_type = 0;
+//	uint32_t status_mask = INTR_STATUS__RST_COMP |
+//			    INTR_STATUS__TIME_OUT;
+
+//	clear_interrupts(denali);
+
+	writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
+
+    while (!(readl(denali->flash_reg +
+				INTR_STATUS(denali->flash_bank)) &
+			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
+    {
+
+		if (readl(denali->flash_reg + INTR_STATUS(denali->flash_bank)) &
+			INTR_STATUS__TIME_OUT)
+		{
+			debug("NAND Reset operation timed out on bank %d\n", denali->flash_bank);
+		}
+    }
+}
+
+/* Reset the flash controller */
+static uint16_t denali_nand_reset(struct denali_nand_info *denali)
+{
+	uint32_t i;
+
+	for (i = 0 ; i < denali->max_banks; i++)
+		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+		denali->flash_reg + INTR_STATUS(i));
+
+	for (i = 0 ; i < denali->max_banks; i++) 
+    {
+		writel(1 << i, denali->flash_reg + DEVICE_RESET);
+		while (!(readl(denali->flash_reg +
+				INTR_STATUS(i)) &
+			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))); //zhouqi fpga 4.27
+
+		if (readl(denali->flash_reg + INTR_STATUS(i)) &
+			INTR_STATUS__TIME_OUT)
+			debug("NAND Reset operation timed out on bank %d\n", i);
+	}
+
+	for (i = 0; i < denali->max_banks; i++)
+		writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+			denali->flash_reg + INTR_STATUS(i));
+
+	return PASS;
+}
+
+
+/* determines how many NAND chips are connected to the controller. Note for
+ * Intel CE4100 devices we don't support more than one device.
+ */
+ #if 0 
+static void find_valid_banks(struct denali_nand_info *denali)
+{
+	uint32_t id[denali->max_banks];
+	int i;
+
+	denali->total_used_banks = 1;
+	for (i = 0; i < denali->max_banks; i++) 
+    {
+		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
+		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
+		index_addr_read_data(denali,
+				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
+
+		debug("Return 1st ID for bank[%d]: %x\n", i, id[i]);
+
+		if (i == 0) 
+        {
+			if (!(id[i] & 0x0ff))
+				break; /* WTF? */
+		} 
+        else 
+        {
+			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+				denali->total_used_banks++;
+			else
+				break;
+		}
+	}
+	debug(	"denali->total_used_banks: %d\n", denali->total_used_banks);
+}
+#endif
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+static void detect_max_banks(struct denali_nand_info *denali)
+{
+	//uint32_t features = readl(denali->flash_reg + FEATURES);
+
+	//denali->max_banks = 2 << (features & FEATURES__N_BANKS);
+	denali->max_banks = 1; //zhouqi for fpge 4.27 and for evb 7.19
+}
+
+
+static uint32_t detect_nand_bus_freq(void)
+{
+    uint32_t clk_reg = 0;
+
+	clk_reg = readl(0x01306050);
+	clk_reg &= 0xffffcfff;        /*MOD_CLK_SEL[13:12]=00,7520v2 NAND 104MHz*/
+    writel(clk_reg, 0x01306050);  
+    if((((readl(0x01306050))>>12) & 0x3) == 0)        
+        return 104;
+    else
+        return 26;      
+}
+
+#if 0
+static void detect_partition_feature(struct denali_nand_info *denali)
+{
+	/* For MRST platform, denali->fwblks represent the
+	 * number of blocks firmware is taken,
+	 * FW is in protect partition and MTD driver has no
+	 * permission to access it. So let driver know how many
+	 * blocks it can't touch.
+	 * */
+	if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
+		if ((readl(denali->flash_reg + PERM_SRC_ID(1)) &
+			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
+			denali->fwblks =
+			    ((readl(denali->flash_reg + MIN_MAX_BANK(1)) &
+			      MIN_MAX_BANK__MIN_VALUE) *
+			     denali->blksperchip)
+			    +
+			    (readl(denali->flash_reg + MIN_BLK_ADDR(1)) &
+			    MIN_BLK_ADDR__VALUE);
+		} else
+			denali->fwblks = SPECTRA_START_BLOCK;
+	} else
+		denali->fwblks = SPECTRA_START_BLOCK;
+}
+#endif
+
+static void denali_nand_register_set(struct denali_nand_info *denali,
+                                                struct nand_flash_device_para * table)
+{
+	writel(table->pages_per_block, denali->flash_reg + PAGES_PER_BLOCK);
+    writel(table->bus_num, denali->flash_reg + DEVICE_WIDTH);
+    writel(table->page_size, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+    writel(table->oob_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+    
+    if(table->row_addr_num == 2)       
+        writel(1, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
+    else
+        writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
+
+    writel(table->page_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+    writel(table->oob_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+    writel(1, denali->flash_reg + ECC_ENABLE);
+
+    
+}
+
+
+static void denali_nand_timing_set(struct denali_nand_info *denali,
+                                                struct nand_flash_device_para * table)
+{
+	uint32_t bus_freq;
+    struct nand_flash_timing * timing = NULL;
+
+    timing = &(table->nand_timeing);
+    bus_freq = detect_nand_bus_freq();
+	writel(((timing->Twhr * bus_freq)/1000+2) | (((timing->Trr1 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);
+    writel(((timing->Tadl * bus_freq)/1000+2) | (((timing->Trr2 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);
+    writel((timing->Trhw * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);
+    writel((timing->Trp * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT);
+    writel((timing->Treh * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT);
+    writel((timing->Tcs * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);
+    writel((timing->Trhz * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);   
+}
+
+static void denali_set_intr_modes(struct denali_nand_info *denali,
+					uint16_t INT_ENABLE)
+{
+	if (INT_ENABLE)
+		writel(1, denali->flash_reg + GLOBAL_INT_ENABLE);
+	else
+		writel(0, denali->flash_reg + GLOBAL_INT_ENABLE);
+}
+
+/* validation function to verify that the controlling software is making
+ * a valid request
+ */
+static inline uint32_t is_flash_bank_valid(int flash_bank)
+{
+	return (flash_bank >= 0 && flash_bank < 4);
+}
+
+static void denali_irq_init(struct denali_nand_info *denali)
+{
+	uint32_t int_mask = 0;
+	int i;
+
+	/* Disable global interrupts */
+	denali_set_intr_modes(denali, false);
+
+	int_mask = DENALI_IRQ_ALL;
+
+	/* Clear all status bits */
+	for (i = 0; i < denali->max_banks; ++i)
+		writel(0xFFFF, denali->flash_reg + INTR_STATUS(i));
+}
+
+#define BANK(x) ((x) << 24)
+
+static uint32_t wait_for_ready(struct denali_nand_info *denali, uint32_t status_type)
+{
+    uint32_t status = 0;
+
+    while (!(readl(denali->flash_reg +
+				INTR_STATUS(denali->flash_bank)) & status_type));
+    status = readl(denali->flash_reg + INTR_STATUS(denali->flash_bank));
+
+    #if 0
+    while (!(readl(0x1207410) & status_type));
+    status = readl(0x1207410);
+    #endif
+    
+    if (status & INTR_STATUS__ECC_ERR )
+    {
+        printf ("    Deanli Nand Failed: ECC Error\n");
+    }
+    if (status & INTR_STATUS__TIME_OUT)
+    {
+        printf ("    Deanli Nand Failed: Time out\n");
+    }
+    if (status & INTR_STATUS__PROGRAM_FAIL)
+    {
+        printf ("    Deanli Nand Failed: Program Fail\n");
+    } 
+    
+    writew(0xffff, denali->flash_reg + INTR_STATUS(denali->flash_bank));
+	return status;
+}
+
+/* This helper function setups the registers for ECC and whether or not
+ * the spare area will be transferred. */
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, uint32_t ecc_en,uint32_t transfer_spare)
+{
+	int ecc_en_flag = 0, transfer_spare_flag = 0;
+   #if ECC_TEST_VER
+   ecc_en_flag = 0;
+   #else
+	/* set ECC, transfer spare bits if needed */
+	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+   #endif
+	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+	/* Enable spare area/ECC per user's request. */
+	writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
+	writel(transfer_spare_flag,
+			denali->flash_reg + TRANSFER_SPARE_REG);
+}
+
+
+static void setup_ecc_the_end(struct denali_nand_info *denali, uint32_t ecc_en)
+{
+	int ecc_en_flag = 0;
+
+	/* set ECC, transfer spare bits if needed */
+	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+
+	/* Enable spare area/ECC per user's request. */
+	writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
+}
+
+
+/* sends a pipeline command operation to the controller. See the Denali NAND
+ * controller's user guide for more information (section 4.2.3.6).
+ */
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
+                            uint32_t ecc_en,
+							uint32_t transfer_spare,
+							int access_type,
+							int op)
+{
+	int status = PASS;
+	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, status_type = 0,
+		 status_mask = 0;
+
+	if (op == DENALI_READ)
+		status_mask = INTR_STATUS__LOAD_COMP;
+	else if (op == DENALI_WRITE)
+		status_mask = 0;
+	else
+		BUG();
+
+	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+
+	addr = BANK(denali->flash_bank) | denali->page;
+
+	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) 
+    {
+		cmd = MODE_01 | addr;
+		writel(cmd, denali->flash_mem);
+	} 
+    else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) 
+    {
+		/* read spare area */
+		cmd = MODE_10 | addr;
+		index_addr(denali, (uint32_t)cmd, access_type);
+
+		cmd = MODE_01 | addr;
+		writel(cmd, denali->flash_mem);
+	} 
+    else if (op == DENALI_READ) 
+    {
+		/* setup page read request for access type */
+		cmd = MODE_10 | addr;
+		index_addr(denali, (uint32_t)cmd, access_type);
+
+		/* page 33 of the NAND controller spec indicates we should not
+		   use the pipeline commands in Spare area only mode. So we
+		   don't.
+		 */
+		if (access_type == SPARE_ACCESS) 
+        {
+			cmd = MODE_01 | addr;
+			writel(cmd, denali->flash_mem);
+		} 
+        else 
+        {
+			index_addr(denali, (uint32_t)cmd,
+					0x2000 | op | page_count);
+
+			/* wait for command to be accepted
+			 * can always use status0 bit as the
+			 * mask is identical for each
+			 * bank. */
+			status_type = wait_for_ready(denali, status_mask);
+
+			if (status_type == 0) 
+            {
+				debug("cmd, page, addr on timeout "
+						"(0x%x, 0x%x, 0x%x)\n",
+						cmd, denali->page, addr);
+				status = FAIL;
+			} 
+            else
+            {
+				cmd = MODE_01 | addr;
+				writel(cmd, denali->flash_mem);
+			}
+		}
+	}
+	return status;
+}
+
+/* helper function that simply writes a buffer to the flash */
+static int write_data_to_flash_mem(struct denali_nand_info *denali,
+							const uint8_t *buf,
+							int len)
+{
+	uint32_t i = 0, *buf32;
+
+	/* verify that the len is a multiple of 4. see comment in
+	 * read_data_from_flash_mem() */
+	BUG_ON((len % 4) != 0);
+
+	/* write the data to the flash memory */
+	buf32 = (uint32_t *)buf;
+	for (i = 0; i < len / 4; i++)
+		writel(*buf32++, denali->flash_mem + 0x10);
+	return i*4; /* intent is to return the number of bytes read */
+}
+
+/* helper function that simply reads a buffer from the flash */
+static int read_data_from_flash_mem(struct denali_nand_info *denali,
+								uint8_t *buf,
+								int len)
+{
+	uint32_t i = 0, *buf32;
+
+	/* we assume that len will be a multiple of 4, if not
+	 * it would be nice to know about it ASAP rather than
+	 * have random failures...
+	 * This assumption is based on the fact that this
+	 * function is designed to be used to read flash pages,
+	 * which are typically multiples of 4...
+	 */
+
+	BUG_ON((len % 4) != 0);
+
+	/* transfer the data from the flash */
+	buf32 = (uint32_t *)buf;
+	for (i = 0; i < len / 4; i++)
+		*buf32++ = readl(denali->flash_mem + 0x10);
+	return i*4; /* intent is to return the number of bytes read */
+}
+
+/* writes OOB data to the device */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = g_denali;
+	uint32_t status_type = 0;
+	uint32_t status_mask = INTR_STATUS__PROGRAM_COMP |
+						INTR_STATUS__PROGRAM_FAIL;
+	int status = 0, addr = 0x0, cmd = 0x0;
+
+	denali->page = page;
+
+    /* Modified by zhouqi for xxx, 2013/09/03 */
+	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+							DENALI_WRITE) == PASS) 
+    {
+		write_data_to_flash_mem(denali, buf, mtd->oobsize);
+
+		/* wait for operation to complete */
+		status_type = wait_for_ready(denali, status_mask);
+
+		if (status_type & INTR_STATUS__PROGRAM_FAIL)    //zhouqi
+        {
+			debug("OOB write failed\n");
+			status = -1;
+		}
+	} 
+    else 
+    {
+		debug("unable to send pipeline command\n");
+		status = -1;
+	}
+
+    /* Added by zhouqi for xxx, 2013/09/03 */
+    /* We set the device back to MAIN_ACCESS here as I observed
+	* instability with the controller if you do a block erase
+	* and the last transaction was a SPARE_ACCESS. Block erase
+	* is reliable (according to the MTD test infrastructure)
+	* if you are in MAIN_ACCESS.
+	*/
+	addr = BANK(denali->flash_bank) | denali->page;
+	cmd = MODE_10 | addr;
+	index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
+    /* End added. zhouqi, 2013/09/03 */
+        
+	return status;
+}
+
+/* reads OOB data from the device */
+static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = g_denali;
+	uint32_t status_mask = INTR_STATUS__LOAD_COMP | INTR_STATUS__TIME_OUT,  //zhouqi
+			 status_type = 0, addr = 0x0, cmd = 0x0;
+
+	denali->page = page;
+
+	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+							DENALI_READ) == PASS) 
+    {
+		read_data_from_flash_mem(denali, buf, mtd->oobsize);
+
+		/* wait for command to be accepted
+		 * can always use status0 bit as the mask is identical for each
+		 * bank. */
+		status_type = wait_for_ready(denali, status_mask);
+
+		if (status_type & INTR_STATUS__TIME_OUT)
+			debug("page on OOB timeout %d\n",denali->page);
+
+		/* We set the device back to MAIN_ACCESS here as I observed
+		 * instability with the controller if you do a block erase
+		 * and the last transaction was a SPARE_ACCESS. Block erase
+		 * is reliable (according to the MTD test infrastructure)
+		 * if you are in MAIN_ACCESS.
+		 */
+		addr = BANK(denali->flash_bank) | denali->page;
+		cmd = MODE_10 | addr;
+		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
+	}
+}
+
+/* this function examines buffers to see if they contain data that
+ * indicate that the buffer is part of an erased region of flash.
+ */
+uint32_t is_erased(uint8_t *buf, int len)
+{
+	int i = 0;
+	for (i = 0; i < len; i++)
+		if (buf[i] != 0xFF)
+			return false;
+	return true;
+}
+#define ECC_SECTOR_SIZE 512
+
+#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
+#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
+#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
+#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
+#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
+#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
+
+static uint32_t handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
+					uint32_t status_type)
+{
+	int check_erased_page = 0;
+	uint32_t err_correction_value = 0;
+	uint32_t err_correction_info = 0;
+	
+#if 1
+    /*zx297520 use*/
+	if (status_type & INTR_STATUS__ECC_ERR) 
+	{
+        check_erased_page = 1;
+		
+	}
+	else
+	{
+	    
+		switch(denali->flash_bank)
+		{
+		    case 0:
+			err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B01);
+			err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B0;
+			break;
+
+			case 1:
+			err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B01);
+			err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B1)>>8;
+			break;
+
+			case 2:
+			err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B23);
+			err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B2;
+			break;
+
+			case 3:
+			err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B23);
+			err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B3)>>8;
+			break;
+
+			default:
+			break;
+				
+		}
+		if(err_correction_value)
+		    printk("correct %d bit errors on page %x.\n",err_correction_value,denali->page);
+		 
+				
+	}
+	return check_erased_page;
+#else
+		/* read the ECC errors. we'll ignore them for now */
+		uint32_t err_address = 0, err_correction_info = 0;
+		uint32_t err_byte = 0, err_sector = 0, err_device = 0;
+		uint32_t err_correction_value = 0;
+		denali_set_intr_modes(denali, false);
+
+		do 
+        {
+			err_address = readl(denali->flash_reg +
+						ECC_ERROR_ADDRESS);
+			err_sector = ECC_SECTOR(err_address);
+			err_byte = ECC_BYTE(err_address);
+
+			err_correction_info = readl(denali->flash_reg +
+						ERR_CORRECTION_INFO);
+			err_correction_value =
+				ECC_CORRECTION_VALUE(err_correction_info);
+			err_device = ECC_ERR_DEVICE(err_correction_info);
+
+			if (ECC_ERROR_CORRECTABLE(err_correction_info)) 
+            {
+				/* If err_byte is larger than ECC_SECTOR_SIZE,
+				 * means error happened in OOB, so we ignore
+				 * it. It's no need for us to correct it
+				 * err_device is represented the NAND error
+				 * bits are happened in if there are more
+				 * than one NAND connected.
+				 * */
+				if (err_byte < ECC_SECTOR_SIZE) 
+                {
+					int offset;
+					offset = (err_sector *
+							ECC_SECTOR_SIZE +
+							err_byte) *
+							denali->devnum +
+							err_device;
+					/* correct the ECC error */
+					buf[offset] ^= err_correction_value;
+					denali->mtd->ecc_stats.corrected++;
+				}
+			} else {
+				/* if the error is not correctable, need to
+				 * look at the page to see if it is an erased
+				 * page. if so, then it's not a real ECC error
+				 * */
+				check_erased_page = true;
+			}
+		} while (!ECC_LAST_ERR(err_correction_info));
+		/* Once handle all ecc errors, controller will triger
+		 * a ECC_TRANSACTION_DONE interrupt, so here just wait
+		 * for a while for this interrupt
+		 * */
+		while (!(read_interrupt_status(denali) &
+				INTR_STATUS__ECC_ERR))
+		clear_interrupts(denali);
+		denali_set_intr_modes(denali, false);		
+    #endif
+	}
+    
+
+
+
+/* programs the controller to either enable/disable DMA transfers */
+static void denali_enable_dma(struct denali_nand_info *denali, uint32_t en)
+{
+	uint32_t reg_val = 0x0;
+
+	if (en)
+		reg_val = DMA_ENABLE__FLAG;
+
+	writel(reg_val, denali->flash_reg + DMA_ENABLE);
+	readl(denali->flash_reg + DMA_ENABLE);
+}
+
+/* setups the HW to perform the data DMA */
+static void denali_setup_dma(struct denali_nand_info *denali, int op)
+                                        
+{
+	uint32_t mode = 0x0;
+	const int page_count = 1;
+	dma_addr_t addr = denali->buf.dma_buf; 
+
+	mode = MODE_10 | BANK(denali->flash_bank);
+
+	/* DMA is a four step process */
+
+	/* 1. setup transfer type and # of pages */
+	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+
+	/* 2. set memory high address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
+
+	/* 3. set memory low address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
+
+	/* 4.  interrupt when complete, burst len = 64 bytes*/
+    //writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4
+	index_addr(denali, mode | 0x14000, 0x2400);     //zhouqi not interrupt 0X40
+}
+static void denali_setup_dma_buffer(struct denali_nand_info *denali, int op,char* buffer)
+                                        
+{
+	uint32_t mode = 0x0;
+	const int page_count = 1;
+	dma_addr_t addr = buffer; 
+
+	mode = MODE_10 | BANK(denali->flash_bank);
+
+	/* DMA is a four step process */
+
+	/* 1. setup transfer type and # of pages */
+	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+
+	/* 2. set memory high address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
+
+	/* 3. set memory low address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
+
+	/* 4.  interrupt when complete, burst len = 64 bytes*/
+    //writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4
+	index_addr(denali, mode | 0x14000, 0x2400);     //zhouqi not interrupt 0X40
+}
+
+
+
+/* add by zhouqi */
+#if 0
+static void denali_setup_dma_derect(struct denali_nand_info *denali, int op,
+                                        dma_addr_t addr)    /* add by zhouqi */
+{
+	uint32_t mode = 0x0;
+	const int page_count = 1;
+//	dma_addr_t addr = denali->buf.dma_buf; 
+
+	mode = MODE_10 | BANK(denali->flash_bank);
+
+	/* DMA is a four step process */
+
+	/* 1. setup transfer type and # of pages */
+	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+
+	/* 2. set memory high address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
+
+	/* 3. set memory low address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
+
+	/* 4.  interrupt when complete, burst len = 64 bytes*/
+    //writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4
+	index_addr(denali, mode | 0x14000, 0x2400);     //zhouqi not interrupt 0X40
+}
+#endif
+
+/* writes a page. user specifies type, and this function handles the
+ * configuration details. */
+static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			const uint8_t *buf, uint32_t raw_xfer)
+{
+	struct denali_nand_info *denali = g_denali;
+
+	uint32_t status_type = 0;
+	uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP |
+						INTR_STATUS__PROGRAM_FAIL;
+
+	/* if it is a raw xfer, we want to disable ecc, and send
+	 * the spare area.
+	 * !raw_xfer - enable ecc
+	 * raw_xfer - transfer spare
+	 */
+	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
+
+	/* copy buffer into DMA buffer */
+	memcpy((void*)denali->buf.dma_buf, (void*)buf, mtd->writesize);
+
+	if (raw_xfer) 
+    	{
+		/* transfer the data to the spare area */
+		memcpy((void*)(denali->buf.dma_buf + mtd->writesize),
+			(void*)chip->oob_poi,mtd->oobsize);
+	}
+      
+	denali_enable_dma(denali, true);
+
+	denali_setup_dma(denali, DENALI_WRITE); //zhouqi p779-p789
+
+	/* wait for operation to complete */
+	status_type = wait_for_ready(denali, status_mask);
+
+	if (status_type & INTR_STATUS__TIME_OUT) 
+    {
+		debug("timeout on write_page (type = %d)\n",
+				raw_xfer);
+		denali->status =
+			(status_type & INTR_STATUS__PROGRAM_FAIL) ?
+			NAND_STATUS_FAIL : PASS;
+	}
+
+	denali_enable_dma(denali, false);
+    
+    setup_ecc_the_end(denali, false);   //zhouqi
+    
+}
+
+//add by zhouqi
+static void write_page_ops(struct mtd_info *mtd, struct nand_chip *chip,
+			const uint8_t *buf)
+{
+	int N,len,sector_size,ecc_bytes,i;
+	struct denali_nand_info *denali = g_denali;
+
+	uint32_t status_type = 0;
+	uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP |
+						INTR_STATUS__PROGRAM_FAIL;
+
+	/* if it is a raw xfer, we want to disable ecc, and send
+	 * the spare area.
+	 * !raw_xfer - enable ecc
+	 * raw_xfer - transfer spare
+	 */
+	setup_ecc_for_xfer(denali, 1, 1);
+	memset((void *)(denali->buf.dma_buf),0xff,denali->mtd->writesize+denali->mtd->oobsize);
+
+	sector_size = denali->nand->ecc.size;
+    ecc_bytes = denali->nand->ecc.bytes;
+    N = denali->mtd->writesize/(sector_size+ecc_bytes) + 1;
+	len = sector_size;
+
+    for(i=0;i < N;i++)
+	{
+		if(i==N-1)
+		{
+			len = denali->mtd->writesize - (sector_size+ecc_bytes)*i;
+		}
+	
+	   memcpy((void *)(denali->buf.dma_buf+(sector_size+ecc_bytes)*i), (void *)(buf+sector_size*i), len);  ;
+		
+	}
+	
+	len = sector_size - len;
+	
+    memcpy((void *)(denali->buf.dma_buf + denali->mtd->writesize+2), (void *)(buf + sector_size*i -len), len); 
+	memcpy((void *)(denali->buf.dma_buf+denali->mtd->writesize+2+len+ecc_bytes), (void *)(chip->oob_poi + 2+len+ecc_bytes), \
+	 		denali->mtd->oobsize-2-len-ecc_bytes);  
+
+	denali_enable_dma(denali, true);
+
+	denali_setup_dma(denali, DENALI_WRITE);
+
+	/* wait for operation to complete */
+	status_type = wait_for_ready(denali, status_mask);
+
+	if (status_type & INTR_STATUS__TIME_OUT) 
+    {
+		debug("timeout on write_page (type = )\n");
+		denali->status =
+			(status_type & INTR_STATUS__PROGRAM_FAIL) ?
+			NAND_STATUS_FAIL : PASS;
+	}
+
+	denali_enable_dma(denali, false);
+	setup_ecc_the_end(denali, false);   //zhouqi
+}
+
+/* NAND core entry points */
+
+/* this is the callback that the NAND core calls to write a page. Since
+ * writing a page with ECC or without is similar, all the work is done
+ * by write_page above.
+ * */
+static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				const uint8_t *buf, struct mtd_oob_ops *ops)//zhouqi add ops
+{
+	struct denali_nand_info *denali = g_denali;
+	/* for regular page writes, we let HW handle all the ECC
+	 * data written to the device. */
+	int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION);
+	if((ops->oobbuf != NULL) && (ops->ooblen != 0))
+	{
+        write_page_ops(mtd, chip, buf);
+	}
+    else
+    {
+		if(denali->page < 64) 
+		{
+			writel(0x8, denali->flash_reg + ECC_CORRECTION); 
+		}
+	    write_page(mtd, chip, buf, false);
+		writel(ecc_bits, denali->flash_reg + ECC_CORRECTION); 
+    }
+	update_led_twinkle();
+}
+
+/* This is the callback that the NAND core calls to write a page without ECC.
+ * raw access is similar to ECC page writes, so all the work is done in the
+ * write_page() function above.
+ */
+static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+					const uint8_t *buf)
+{
+	/* for raw page writes, we want to disable ECC and simply write
+	   whatever data is in the buffer. */
+	write_page(mtd, chip, buf, true);
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
+{
+	//printk(KERN_EMERG "[denali.c]  denali_write_oob: page = 0x%0x\n",page); //zhouqi
+	return write_oob_data(mtd, chip->oob_poi, page);
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			   int page, int sndcmd)
+{
+    //printk(KERN_EMERG "[denali.c]  denali_read_oob: page = 0x%0x\n",page); //zhouqi
+	read_oob_data(mtd, chip->oob_poi, page);
+
+	return 0; /* notify NAND core to send command to
+			   NAND device. */
+}
+
+
+static int read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = g_denali;
+
+	uint32_t status_type = 0;
+//	uint32_t status_mask = INTR_STATUS__ECC_ERR |
+//			    INTR_STATUS__ECC_ERR;
+    uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP;
+	uint32_t check_erased_page = false;
+
+	if (page != denali->page) 
+    {
+		debug("IN %s: page %d is not"
+				" equal to denali->page %d, investigate!!",
+				__func__, page, denali->page);
+		BUG();
+	}
+
+	setup_ecc_for_xfer(denali, true, false); 
+
+	denali_enable_dma(denali, true);
+	
+	if(flash_dmabuf_disable_flag == 1)
+	{
+		denali_setup_dma(denali, DENALI_READ);
+		/* wait for operation to complete */
+		status_type = wait_for_ready(denali, status_mask);
+		memcpy(buf, (void *)denali->buf.dma_buf, mtd->writesize);   //zhouqi -p939
+	}
+	else
+	{
+		denali_setup_dma_buffer(denali, DENALI_READ,buf); //zhouqi
+		/* wait for operation to complete */
+		status_type = wait_for_ready(denali, status_mask);
+	}
+
+	check_erased_page = handle_ecc(denali, buf, status_type);
+	//check_erased_page = 0;
+	denali_enable_dma(denali, false);
+    setup_ecc_the_end(denali, false);   //zhouqi
+
+	if (check_erased_page) 
+    {
+		read_oob_data(denali->mtd, chip->oob_poi, denali->page);
+		
+		if (!is_erased(buf, denali->mtd->writesize))
+			denali->mtd->ecc_stats.failed++;
+		if (!is_erased(chip->oob_poi, denali->mtd->oobsize))
+			denali->mtd->ecc_stats.failed++;
+	}
+	return 0;
+}
+
+
+//add by zhouqi
+static int read_page_ops(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int page)
+{
+	int N,len,sector_size,ecc_bytes,i;
+    struct denali_nand_info *denali = g_denali;
+
+	uint32_t status_type = 0;
+    uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP;
+	uint32_t check_erased_page = false;
+    
+	if (page != denali->page) 
+    {
+		debug("IN %s: page %d is not"
+				" equal to denali->page %d, investigate!!",
+				__func__, page, denali->page);
+		BUG();
+	}
+
+	setup_ecc_for_xfer(denali, 1, 1);
+
+	denali_enable_dma(denali, true);
+
+	denali_setup_dma(denali, DENALI_READ);
+
+	/* wait for operation to complete */
+	status_type = wait_for_ready(denali, status_mask);
+
+    sector_size = denali->nand->ecc.size;
+    ecc_bytes = denali->nand->ecc.bytes;
+    N = denali->mtd->writesize/(sector_size+ecc_bytes) + 1;
+	len = sector_size;
+
+    for(i=0;i < N;i++)
+	{
+		if(i==N-1)
+		{
+			len = denali->mtd->writesize - (sector_size+ecc_bytes)*i;
+		}
+	
+	   memcpy((void *)(buf+sector_size*i),(void *)( denali->buf.dma_buf + (sector_size+ecc_bytes)*i),len);
+		
+	}
+	
+	len = sector_size - len;
+	memcpy((void *)(buf + sector_size*(N-1)+len), (void *)(denali->buf.dma_buf + denali->mtd->writesize +2), len);   
+   
+	memset((void *)(chip->oob_poi), 0xFF, len +ecc_bytes+2);
+	memcpy((void *)(chip->oob_poi + len+ecc_bytes+2), (void *)(denali->buf.dma_buf +  denali->mtd->writesize+len+ecc_bytes+2),\
+		   denali->mtd->oobsize-len -ecc_bytes-2);
+
+	check_erased_page = handle_ecc(denali, buf, status_type);
+	//check_erased_page = 0;
+	denali_enable_dma(denali, false);
+    setup_ecc_the_end(denali, false);   //zhouqi
+
+	if (check_erased_page) 
+    {
+		read_oob_data(denali->mtd, chip->oob_poi, denali->page);
+
+		/* check ECC failures that may have occurred on erased pages */
+		if (!is_erased(buf, denali->mtd->writesize))
+			denali->mtd->ecc_stats.failed++;
+		if (!is_erased(chip->oob_poi, denali->mtd->oobsize))
+			denali->mtd->ecc_stats.failed++;
+	}
+	return 0;
+}
+
+//add by zhouqi
+static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int page, struct mtd_oob_ops *ops)//add by zhouqi
+{
+
+	struct denali_nand_info *denali = g_denali;
+
+	int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION);
+		
+	if((ops->oobbuf != NULL) && ops->ooblen != 0)
+	{
+        //denali_debug("[denali.c]:  read_page_ops: page = 0x%0x\n", page);//zhouqi
+        read_page_ops(mtd, chip, buf, page);
+	}
+    else
+    {
+    	if(denali->page < 64) 
+		{
+			writel(0x8, denali->flash_reg + ECC_CORRECTION); 
+		}
+        //denali_debug("[denali.c]:  read_page: page = 0x%0x\n", page);//zhouqi
+        read_page(mtd, chip, buf, page);
+		writel(ecc_bits, denali->flash_reg + ECC_CORRECTION); 
+    }
+	update_led_twinkle();
+    return 0;
+}
+
+static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = g_denali;
+
+	uint32_t status_type = 0;
+	uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP;
+
+	if (page != denali->page) 
+    {
+		debug("IN %s: page %d is not"
+				" equal to denali->page %d, investigate!!",
+				__func__, page, denali->page);
+		BUG();
+	}
+
+	setup_ecc_for_xfer(denali, false, true);
+	denali_enable_dma(denali, true);
+
+	denali_setup_dma(denali, DENALI_READ);
+
+	/* wait for operation to complete */
+	status_type = wait_for_ready(denali, status_mask);
+
+	denali_enable_dma(denali, false);
+
+	memcpy(buf, (void*)denali->buf.dma_buf, mtd->writesize);
+	memcpy(chip->oob_poi, (void*)(denali->buf.dma_buf + mtd->writesize), mtd->oobsize);
+
+	return 0;
+}
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+	struct denali_nand_info *denali = g_denali;
+	uint8_t result = 0xff;
+
+	if (denali->buf.head < denali->buf.tail)
+		result = denali->buf.buf[denali->buf.head++];
+
+	return result;
+}
+
+static uint16_t denali_read_word(struct mtd_info *mtd)
+{
+    struct nand_chip *chip = mtd->priv;
+	uint16_t result = 0x0;
+
+    result = (uint16_t)(*(chip->oob_poi));
+    result = result << 8;
+    result |= (uint16_t)(*(chip->oob_poi + 1));
+    
+	return result;
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct denali_nand_info *denali = g_denali;
+
+	denali->flash_bank = chip;
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct denali_nand_info *denali = g_denali;
+	int status = denali->status;
+	denali->status = 0;
+
+	return status;
+}
+
+static void denali_erase(struct mtd_info *mtd, int page)
+{
+    #if ECC_TEST_VER
+	return;
+	#endif
+	struct denali_nand_info *denali = g_denali;
+
+	uint32_t cmd = 0x0, status_type = 0;
+
+	/* setup page read request for access type */
+	cmd = MODE_10 | BANK(denali->flash_bank) | page;
+	index_addr(denali, (uint32_t)cmd, 0x1);
+
+	/* wait for erase to complete or failure to occur */
+	status_type = wait_for_ready(denali, INTR_STATUS__ERASE_COMP |
+					INTR_STATUS__ERASE_FAIL);
+
+	denali->status = (status_type & INTR_STATUS__ERASE_FAIL) ?
+						NAND_STATUS_FAIL : PASS;
+	update_led_twinkle();
+}
+
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
+			   int page)
+{
+	struct denali_nand_info *denali = g_denali;
+	uint32_t addr, id;
+	int i;
+    
+	switch (cmd) {
+	case NAND_CMD_PAGEPROG:
+		break;
+	case NAND_CMD_STATUS:
+        reset_buf(denali);
+		read_status(denali);
+		break;
+	case NAND_CMD_READID:
+	case NAND_CMD_PARAM:
+		reset_buf(denali);
+		/*sometimes ManufactureId read from register is not right
+		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
+		 * So here we send READID cmd to NAND insteand
+		 * */
+		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+		index_addr(denali, (uint32_t)addr | 0, 0x90);
+		index_addr(denali, (uint32_t)addr | 1, 0);
+		for (i = 0; i < 5; i++) 
+        {
+			index_addr_read_data(denali,(uint32_t)addr | 2,	&id);
+			write_byte_to_buf(denali, id);
+		}
+		break;
+	case NAND_CMD_READ0:
+	case NAND_CMD_SEQIN:
+		denali->page = page;
+		break;
+	case NAND_CMD_RESET:
+		reset_bank(denali);
+		break;
+	case NAND_CMD_READOOB:
+        reset_buf(denali);      //zhouqi
+        denali_read_oob(mtd, mtd->priv, page, 0);
+		/* TODO: Read OOB data */
+		break;
+	default:
+		debug(": unsupported command"
+				" received 0x%x\n", cmd);
+		break;
+	}
+}
+
+/* stubs for ECC functions not used by the NAND core */
+static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
+				uint8_t *ecc_code)
+{
+	debug("denali_ecc_calculate called unexpectedly\n");
+	BUG();
+	return -1;
+}
+
+static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
+				uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	debug("denali_ecc_correct called unexpectedly\n");
+	BUG();
+	return -1;
+}
+
+static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
+{
+	debug("denali_ecc_hwctl called unexpectedly\n");
+	BUG();
+}
+/* end NAND core entry points */
+
+
+/* Initialization code to bring the device up to a known good state */
+static void denali_hw_init(struct denali_nand_info *denali)
+{
+    uint32_t id_bytes[5], addr;
+	uint8_t i, maf_id, device_id, res_id;
+    struct nand_flash_device_para * table = nand_flash_para;
+
+    denali->flash_reg = (void __iomem *)NAND_FLASH_REG;
+	denali->flash_mem = (void __iomem *)NAND_FLASH_MEM;
+
+    detect_max_banks(denali);       /* test the max banks support*/
+    denali_nand_reset(denali);
+    writel(0, denali->flash_reg + DMA_ENABLE);      /* dma disable */
+    writel(0, denali->flash_reg + ECC_ENABLE);      /* ecc disable */
+	writel(2, denali->flash_reg + SPARE_AREA_SKIP_BYTES);   
+	denali->bbtskipbytes = readl(denali->flash_reg +
+						SPARE_AREA_SKIP_BYTES);	
+	writel(0x0F, denali->flash_reg + RB_PIN_ENABLED);
+	writel(0, denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+	writel(1, denali->flash_reg + DEVICES_CONNECTED);
+	
+
+	writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+
+
+    /* Use read id method to get device ID and other */
+	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+	index_addr(denali, (uint32_t)addr | 0, 0x90);
+	index_addr(denali, (uint32_t)addr | 1, 0);
+	for (i = 0; i < 5; i++)
+		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
+	maf_id = id_bytes[0];
+	device_id = id_bytes[1];
+    res_id = id_bytes[2];
+
+    for (; table->manuf_id != 0; table++)
+    {
+        if ((maf_id == table->manuf_id) && (device_id == table->device_id) 
+                                        && (res_id == table->res_id) )
+        {
+            break;
+        }		
+    }
+    g_nand_dev_info = table;
+    printf("maf_id=%x,dev_id=%x,res_id=%x\n",maf_id,device_id,res_id);   
+	/* Should set value for these registers when init */ 
+    denali_nand_register_set(denali, table);
+	denali_nand_timing_set(denali, table);
+    //find_valid_banks(denali); //zhouqi for 7520 fpga
+	//detect_partition_feature(denali);
+	denali_irq_init(denali);
+
+}
+
+/* Althogh controller spec said SLC ECC is forceb to be 4bit,
+ * but denali controller in MRST only support 15bit and 8bit ECC
+ * correction
+ * */
+
+static struct nand_ecclayout g_nand_oob;
+
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+/* initialize driver data structures */
+void denali_drv_init(struct denali_nand_info *denali)
+{
+	/* indicate that MTD has not selected a valid bank yet */
+	denali->flash_bank = CHIP_SELECT_INVALID;
+
+	/* initialize our status_type variable to indicate no interrupts */
+}
+
+static int denali_nand_ecc_init(struct denali_nand_info  *denali)
+{
+    int i,eccpos_start;
+    denali->nand->ecc.mode = NAND_ECC_HW_SYNDROME;
+	denali->nand->ecc.size = g_nand_dev_info->ecc.sector_size;
+    denali->nand->ecc.steps = g_nand_dev_info->page_size/g_nand_dev_info->ecc.sector_size;
+    denali->nand->ecc.strength = g_nand_dev_info->ecc.strength;
+	
+	switch (denali->nand->ecc.size) {
+	case 512:
+		denali->nand->ecc.bytes =
+			( denali->nand->ecc.strength  * 13 + 15) / 16 * 2;
+		break;
+	case 1024:
+		denali->nand->ecc.bytes =
+			( denali->nand->ecc.strength  * 14 + 15) / 16 * 2;
+		break;
+	default:
+		printk("Unsupported ECC sector size\n");
+
+		BUG_ON(1);
+		return -1;
+	}
+
+	denali->nand->ecc.total = denali->nand->ecc.bytes* denali->nand->ecc.steps;
+	if(g_nand_dev_info->oob_size >= (denali->nand->ecc.total+denali->bbtskipbytes + 8))
+	{
+		
+		writel(g_nand_dev_info->ecc.strength, denali->flash_reg + ECC_CORRECTION);
+        g_nand_oob.eccbytes = denali->nand->ecc.total;
+	
+		eccpos_start = denali->bbtskipbytes;
+
+		for (i = 0; i < g_nand_oob.eccbytes; i++)
+		{
+			g_nand_oob.eccpos[i] = eccpos_start + i;
+		}
+
+		g_nand_oob.oobfree[0].offset = g_nand_oob.eccbytes+denali->bbtskipbytes;
+		g_nand_oob.oobfree[0].length = g_nand_dev_info->oob_size -(g_nand_oob.eccbytes+denali->bbtskipbytes);
+		denali->nand->ecc.layout = &g_nand_oob;
+	}
+	else
+	{
+		printk("Unsupported ECC strength,please check the id table\n");
+		BUG();
+	}
+
+	
+	return 0;
+}
+
+
+/* driver entry point */
+int board_nand_init_denali(struct nand_chip *nand)
+{
+	int ret = -1; 
+	struct denali_nand_info *denali = g_denali;
+
+	denali_hw_init(denali);
+	denali_drv_init(denali);
+
+	denali->mtd = (struct mtd_info *)&nand_info;
+	denali->nand = (struct nand_chip *)&nand_chip;
+	denali->buf.dma_buf = (dma_addr_t)CONFIG_NAND_DMA_BUF_ADDR;
+
+	/* register the driver with the NAND core subsystem */
+	denali->nand->select_chip = denali_select_chip;
+	denali->nand->cmdfunc = denali_cmdfunc;
+	denali->nand->read_byte = denali_read_byte;
+	denali->nand->read_word = denali_read_word;
+	denali->nand->waitfunc = denali_waitfunc;
+
+	/* scan for NAND devices attached to the controller
+	 * this is the first stage in a two step process to register
+	 * with the nand subsystem */
+	
+	if (nand_scan_ident(denali->mtd, denali->total_used_banks, NULL)) 
+	{
+		debug("nand ident: cant ident this nand device");
+		return -1;
+	}
+
+	/* MTD supported page sizes vary by kernel. We validate our
+	 * kernel supports the device here.
+	 */
+	if (denali->mtd->writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) 
+	{
+		ret = -1;
+		debug("Spectra: device size not supported by this version of MTD.");
+		return ret;
+	}
+
+	/* support for multi nand
+	 * MTD known nothing about multi nand,
+	 * so we should tell it the real pagesize
+	 * and anything necessery
+	 */
+	denali->devnum = readl(denali->flash_reg + DEVICES_CONNECTED);
+	denali->nand->chipsize <<= (denali->devnum - 1);
+	denali->nand->page_shift += (denali->devnum - 1);
+	denali->nand->pagemask = (denali->nand->chipsize >> denali->nand->page_shift) - 1;
+	denali->nand->bbt_erase_shift += (denali->devnum - 1);
+	denali->nand->phys_erase_shift = denali->nand->bbt_erase_shift;
+	denali->nand->chip_shift += (denali->devnum - 1);
+	denali->mtd->writesize <<= (denali->devnum - 1);
+	denali->mtd->oobsize <<= (denali->devnum - 1);
+	denali->mtd->erasesize <<= (denali->devnum - 1);
+	denali->mtd->size = denali->nand->numchips * denali->nand->chipsize;
+	denali->bbtskipbytes *= denali->devnum;
+
+	/* second stage of the NAND scan
+	 * this stage requires information regarding ECC and
+	 * bad block management. */
+
+	/* Bad block management */
+	denali->nand->bbt_td = &bbt_main_descr;
+	denali->nand->bbt_md = &bbt_mirror_descr;
+
+	/* skip the scan for now until we have OOB read and write support */
+	denali->nand->options |= NAND_USE_FLASH_BBT;//NAND_SKIP_BBTSCAN
+	
+	// init ecc
+	 denali_nand_ecc_init(denali);
+    
+	/* Let driver know the total blocks number and
+	 * how many blocks contained by each nand chip.
+	 * blksperchip will help driver to know how many
+	 * blocks is taken by FW.
+	 * */
+	denali->totalblks = denali->mtd->size >> denali->nand->phys_erase_shift;
+	denali->blksperchip = denali->totalblks / denali->nand->numchips;
+
+	/* These functions are required by the NAND core framework, otherwise,
+	 * the NAND core will assert. However, we don't need them, so we'll stub
+	 * them out. */
+	denali->nand->ecc.calculate = denali_ecc_calculate;
+	denali->nand->ecc.correct = denali_ecc_correct;
+	denali->nand->ecc.hwctl = denali_ecc_hwctl;
+
+	/* override the default read operations */
+	denali->nand->ecc.read_page = denali_read_page;
+	denali->nand->ecc.read_page_raw = denali_read_page_raw;
+	denali->nand->ecc.write_page = denali_write_page;
+	denali->nand->ecc.write_page_raw = denali_write_page_raw;
+	denali->nand->ecc.read_oob = denali_read_oob;
+	denali->nand->ecc.write_oob = denali_write_oob;
+	denali->nand->erase_cmd = denali_erase;
+
+	if (nand_scan_tail(denali->mtd)) 
+	{
+		ret = -1;
+	}
+	
+	return 0;
+}
+