xf.li | bfc6e71 | 2025-02-07 01:54:34 -0800 | [diff] [blame] | 1 | /* |
| 2 | * NAND Flash Controller Device Driver |
| 3 | * Copyright © 2009-2010, Intel Corporation and its suppliers. |
| 4 | * |
| 5 | * This program is free software; you can redistribute it and/or modify it |
| 6 | * under the terms and conditions of the GNU General Public License, |
| 7 | * version 2, as published by the Free Software Foundation. |
| 8 | * |
| 9 | * This program is distributed in the hope it will be useful, but WITHOUT |
| 10 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| 11 | * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| 12 | * more details. |
| 13 | * |
| 14 | * You should have received a copy of the GNU General Public License along with |
| 15 | * this program; if not, write to the Free Software Foundation, Inc., |
| 16 | * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. |
| 17 | * |
| 18 | */ |
| 19 | #include <malloc.h> |
| 20 | #include <asm/io.h> |
| 21 | #include <linux/mtd/mtd.h> |
| 22 | #include <asm-generic/ioctl.h> |
| 23 | #include <config.h> |
| 24 | #include <common.h> |
| 25 | #include <command.h> |
| 26 | #include <asm/arch/nand.h> |
| 27 | #include <linux/mtd/nand.h> |
| 28 | #include "denali.h" |
| 29 | #include <asm/arch/lsp_crpm.h> |
| 30 | #include <boot_mode.h> |
| 31 | |
| 32 | |
| 33 | /* DEBUG */ |
| 34 | #if DENALI_DEBUG |
| 35 | #define denali_debug(fmt,args...) printf (fmt ,##args) |
| 36 | #define denali_debugX(level,fmt,args...) if (DEBUG>=level) printf(fmt,##args); |
| 37 | #else |
| 38 | #define denali_debug(fmt,args...) |
| 39 | #define denali_debugX(level,fmt,args...) |
| 40 | #endif /* DEBUG */ |
| 41 | |
| 42 | |
| 43 | |
| 44 | /* We define a module parameter that allows the user to override |
| 45 | * the hardware and decide what timing mode should be used. |
| 46 | */ |
| 47 | #define NAND_DEFAULT_TIMINGS -1 |
| 48 | |
| 49 | //static int onfi_timing_mode = NAND_DEFAULT_TIMINGS; |
| 50 | |
| 51 | /* We define a macro here that combines all interrupts this driver uses into |
| 52 | * a single constant value, for convenience. */ |
| 53 | #define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \ |
| 54 | INTR_STATUS__ECC_ERR | \ |
| 55 | INTR_STATUS__PROGRAM_FAIL | \ |
| 56 | INTR_STATUS__LOAD_COMP | \ |
| 57 | INTR_STATUS__PROGRAM_COMP | \ |
| 58 | INTR_STATUS__TIME_OUT | \ |
| 59 | INTR_STATUS__ERASE_FAIL | \ |
| 60 | INTR_STATUS__RST_COMP | \ |
| 61 | INTR_STATUS__ERASE_COMP) |
| 62 | |
| 63 | /* indicates whether or not the internal value for the flash bank is |
| 64 | * valid or not */ |
| 65 | #define CHIP_SELECT_INVALID -1 |
| 66 | |
| 67 | #define SUPPORT_8BITECC 1 |
| 68 | |
| 69 | /* This macro divides two integers and rounds fractional values up |
| 70 | * to the nearest integer value. */ |
| 71 | #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y))) |
| 72 | |
| 73 | /* this macro allows us to convert from an MTD structure to our own |
| 74 | * device context (denali) structure. |
| 75 | */ |
| 76 | //#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd) |
| 77 | |
| 78 | /* These constants are defined by the driver to enable common driver |
| 79 | * configuration options. */ |
| 80 | #define SPARE_ACCESS 0x41 |
| 81 | #define MAIN_ACCESS 0x42 |
| 82 | #define MAIN_SPARE_ACCESS 0x43 |
| 83 | |
| 84 | #define DENALI_READ 0 |
| 85 | #define DENALI_WRITE 0x100 |
| 86 | |
| 87 | /* types of device accesses. We can issue commands and get status */ |
| 88 | #define COMMAND_CYCLE 0 |
| 89 | #define ADDR_CYCLE 1 |
| 90 | #define STATUS_CYCLE 2 |
| 91 | |
| 92 | /* this is a helper macro that allows us to |
| 93 | * format the bank into the proper bits for the controller */ |
| 94 | #define BANK(x) ((x) << 24) |
| 95 | |
| 96 | #define true 1 |
| 97 | #define false 0 |
| 98 | |
| 99 | extern struct nand_flash_device_para nand_flash_para[]; |
| 100 | extern struct mtd_info nand_info[]; |
| 101 | extern struct nand_chip nand_chip[]; |
| 102 | extern int flash_dmabuf_disable_flag; |
| 103 | |
| 104 | |
| 105 | struct denali_nand_info denali_info = {0}; |
| 106 | struct denali_nand_info *g_denali = &denali_info; |
| 107 | struct nand_flash_device_para *g_nand_dev_info = NULL; |
| 108 | |
| 109 | /* forward declarations */ |
| 110 | //static void clear_interrupts(struct denali_nand_info *denali); |
| 111 | //static void denali_irq_enable(struct denali_nand_info *denali, |
| 112 | // uint32_t int_mask); |
| 113 | //static uint32_t read_interrupt_status(struct denali_nand_info *denali); |
| 114 | |
| 115 | /* Certain operations for the denali NAND controller use |
| 116 | * an indexed mode to read/write data. The operation is |
| 117 | * performed by writing the address value of the command |
| 118 | * to the device memory followed by the data. This function |
| 119 | * abstracts this common operation. |
| 120 | */ |
| 121 | static void index_addr(struct denali_nand_info *denali, |
| 122 | uint32_t address, uint32_t data) |
| 123 | { |
| 124 | writel(address, denali->flash_mem); |
| 125 | writel(data, denali->flash_mem + 0x10); |
| 126 | } |
| 127 | |
| 128 | /* Perform an indexed read of the device */ |
| 129 | static void index_addr_read_data(struct denali_nand_info *denali, |
| 130 | uint32_t address, uint32_t *pdata) |
| 131 | { |
| 132 | writel(address, denali->flash_mem); |
| 133 | *pdata = readl(denali->flash_mem + 0x10); |
| 134 | } |
| 135 | |
| 136 | /* We need to buffer some data for some of the NAND core routines. |
| 137 | * The operations manage buffering that data. */ |
| 138 | static void reset_buf(struct denali_nand_info *denali) |
| 139 | { |
| 140 | denali->buf.head = denali->buf.tail = 0; |
| 141 | } |
| 142 | |
| 143 | static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte) |
| 144 | { |
| 145 | BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf)); |
| 146 | denali->buf.buf[denali->buf.tail++] = byte; |
| 147 | } |
| 148 | |
| 149 | /* reads the status of the device */ |
| 150 | static void read_status(struct denali_nand_info *denali) |
| 151 | { |
| 152 | uint32_t status, addr; |
| 153 | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| 154 | index_addr(denali, (uint32_t)addr | 0, 0x70); |
| 155 | index_addr_read_data(denali,(uint32_t)addr | 2, &status); |
| 156 | write_byte_to_buf(denali, status); |
| 157 | } |
| 158 | |
| 159 | /* resets a specific device connected to the core */ |
| 160 | static void reset_bank(struct denali_nand_info *denali) |
| 161 | { |
| 162 | // uint32_t status_type = 0; |
| 163 | // uint32_t status_mask = INTR_STATUS__RST_COMP | |
| 164 | // INTR_STATUS__TIME_OUT; |
| 165 | |
| 166 | // clear_interrupts(denali); |
| 167 | |
| 168 | writel(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET); |
| 169 | |
| 170 | while (!(readl(denali->flash_reg + |
| 171 | INTR_STATUS(denali->flash_bank)) & |
| 172 | (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))) |
| 173 | { |
| 174 | |
| 175 | if (readl(denali->flash_reg + INTR_STATUS(denali->flash_bank)) & |
| 176 | INTR_STATUS__TIME_OUT) |
| 177 | { |
| 178 | debug("NAND Reset operation timed out on bank %d\n", denali->flash_bank); |
| 179 | } |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | /* Reset the flash controller */ |
| 184 | static uint16_t denali_nand_reset(struct denali_nand_info *denali) |
| 185 | { |
| 186 | uint32_t i; |
| 187 | |
| 188 | for (i = 0 ; i < denali->max_banks; i++) |
| 189 | writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| 190 | denali->flash_reg + INTR_STATUS(i)); |
| 191 | |
| 192 | for (i = 0 ; i < denali->max_banks; i++) |
| 193 | { |
| 194 | writel(1 << i, denali->flash_reg + DEVICE_RESET); |
| 195 | while (!(readl(denali->flash_reg + |
| 196 | INTR_STATUS(i)) & |
| 197 | (INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT))); //zhouqi fpga 4.27 |
| 198 | |
| 199 | if (readl(denali->flash_reg + INTR_STATUS(i)) & |
| 200 | INTR_STATUS__TIME_OUT) |
| 201 | debug("NAND Reset operation timed out on bank %d\n", i); |
| 202 | } |
| 203 | |
| 204 | for (i = 0; i < denali->max_banks; i++) |
| 205 | writel(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT, |
| 206 | denali->flash_reg + INTR_STATUS(i)); |
| 207 | |
| 208 | return PASS; |
| 209 | } |
| 210 | |
| 211 | |
| 212 | /* determines how many NAND chips are connected to the controller. Note for |
| 213 | * Intel CE4100 devices we don't support more than one device. |
| 214 | */ |
| 215 | #if 0 |
| 216 | static void find_valid_banks(struct denali_nand_info *denali) |
| 217 | { |
| 218 | uint32_t id[denali->max_banks]; |
| 219 | int i; |
| 220 | |
| 221 | denali->total_used_banks = 1; |
| 222 | for (i = 0; i < denali->max_banks; i++) |
| 223 | { |
| 224 | index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90); |
| 225 | index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0); |
| 226 | index_addr_read_data(denali, |
| 227 | (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]); |
| 228 | |
| 229 | debug("Return 1st ID for bank[%d]: %x\n", i, id[i]); |
| 230 | |
| 231 | if (i == 0) |
| 232 | { |
| 233 | if (!(id[i] & 0x0ff)) |
| 234 | break; /* WTF? */ |
| 235 | } |
| 236 | else |
| 237 | { |
| 238 | if ((id[i] & 0x0ff) == (id[0] & 0x0ff)) |
| 239 | denali->total_used_banks++; |
| 240 | else |
| 241 | break; |
| 242 | } |
| 243 | } |
| 244 | debug( "denali->total_used_banks: %d\n", denali->total_used_banks); |
| 245 | } |
| 246 | #endif |
| 247 | /* |
| 248 | * Use the configuration feature register to determine the maximum number of |
| 249 | * banks that the hardware supports. |
| 250 | */ |
| 251 | static void detect_max_banks(struct denali_nand_info *denali) |
| 252 | { |
| 253 | //uint32_t features = readl(denali->flash_reg + FEATURES); |
| 254 | |
| 255 | //denali->max_banks = 2 << (features & FEATURES__N_BANKS); |
| 256 | denali->max_banks = 1; //zhouqi for fpge 4.27 and for evb 7.19 |
| 257 | } |
| 258 | |
| 259 | |
| 260 | static uint32_t detect_nand_bus_freq(void) |
| 261 | { |
| 262 | uint32_t clk_reg = 0; |
| 263 | |
| 264 | clk_reg = readl(0x01306050); |
| 265 | clk_reg &= 0xffffcfff; /*MOD_CLK_SEL[13:12]=00,7520v2 NAND 104MHz*/ |
| 266 | writel(clk_reg, 0x01306050); |
| 267 | if((((readl(0x01306050))>>12) & 0x3) == 0) |
| 268 | return 104; |
| 269 | else |
| 270 | return 26; |
| 271 | } |
| 272 | |
| 273 | #if 0 |
| 274 | static void detect_partition_feature(struct denali_nand_info *denali) |
| 275 | { |
| 276 | /* For MRST platform, denali->fwblks represent the |
| 277 | * number of blocks firmware is taken, |
| 278 | * FW is in protect partition and MTD driver has no |
| 279 | * permission to access it. So let driver know how many |
| 280 | * blocks it can't touch. |
| 281 | * */ |
| 282 | if (readl(denali->flash_reg + FEATURES) & FEATURES__PARTITION) { |
| 283 | if ((readl(denali->flash_reg + PERM_SRC_ID(1)) & |
| 284 | PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) { |
| 285 | denali->fwblks = |
| 286 | ((readl(denali->flash_reg + MIN_MAX_BANK(1)) & |
| 287 | MIN_MAX_BANK__MIN_VALUE) * |
| 288 | denali->blksperchip) |
| 289 | + |
| 290 | (readl(denali->flash_reg + MIN_BLK_ADDR(1)) & |
| 291 | MIN_BLK_ADDR__VALUE); |
| 292 | } else |
| 293 | denali->fwblks = SPECTRA_START_BLOCK; |
| 294 | } else |
| 295 | denali->fwblks = SPECTRA_START_BLOCK; |
| 296 | } |
| 297 | #endif |
| 298 | |
| 299 | static void denali_nand_register_set(struct denali_nand_info *denali, |
| 300 | struct nand_flash_device_para * table) |
| 301 | { |
| 302 | writel(table->pages_per_block, denali->flash_reg + PAGES_PER_BLOCK); |
| 303 | writel(table->bus_num, denali->flash_reg + DEVICE_WIDTH); |
| 304 | writel(table->page_size, denali->flash_reg + DEVICE_MAIN_AREA_SIZE); |
| 305 | writel(table->oob_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE); |
| 306 | |
| 307 | if(table->row_addr_num == 2) |
| 308 | writel(1, denali->flash_reg + TWO_ROW_ADDR_CYCLES); |
| 309 | else |
| 310 | writel(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES); |
| 311 | |
| 312 | writel(table->page_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE); |
| 313 | writel(table->oob_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE); |
| 314 | writel(1, denali->flash_reg + ECC_ENABLE); |
| 315 | |
| 316 | |
| 317 | } |
| 318 | |
| 319 | |
| 320 | static void denali_nand_timing_set(struct denali_nand_info *denali, |
| 321 | struct nand_flash_device_para * table) |
| 322 | { |
| 323 | uint32_t bus_freq; |
| 324 | struct nand_flash_timing * timing = NULL; |
| 325 | |
| 326 | timing = &(table->nand_timeing); |
| 327 | bus_freq = detect_nand_bus_freq(); |
| 328 | writel(((timing->Twhr * bus_freq)/1000+2) | (((timing->Trr1 * bus_freq)/1000+2)<<8), |
| 329 | denali->flash_reg + WE_2_RE); |
| 330 | writel(((timing->Tadl * bus_freq)/1000+2) | (((timing->Trr2 * bus_freq)/1000+2)<<8), |
| 331 | denali->flash_reg + ADDR_2_DATA); |
| 332 | writel((timing->Trhw * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); |
| 333 | writel((timing->Trp * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); |
| 334 | writel((timing->Treh * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); |
| 335 | writel((timing->Tcs * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); |
| 336 | writel((timing->Trhz * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); |
| 337 | } |
| 338 | |
| 339 | static void denali_set_intr_modes(struct denali_nand_info *denali, |
| 340 | uint16_t INT_ENABLE) |
| 341 | { |
| 342 | if (INT_ENABLE) |
| 343 | writel(1, denali->flash_reg + GLOBAL_INT_ENABLE); |
| 344 | else |
| 345 | writel(0, denali->flash_reg + GLOBAL_INT_ENABLE); |
| 346 | } |
| 347 | |
| 348 | /* validation function to verify that the controlling software is making |
| 349 | * a valid request |
| 350 | */ |
| 351 | static inline uint32_t is_flash_bank_valid(int flash_bank) |
| 352 | { |
| 353 | return (flash_bank >= 0 && flash_bank < 4); |
| 354 | } |
| 355 | |
| 356 | static void denali_irq_init(struct denali_nand_info *denali) |
| 357 | { |
| 358 | uint32_t int_mask = 0; |
| 359 | int i; |
| 360 | |
| 361 | /* Disable global interrupts */ |
| 362 | denali_set_intr_modes(denali, false); |
| 363 | |
| 364 | int_mask = DENALI_IRQ_ALL; |
| 365 | |
| 366 | /* Clear all status bits */ |
| 367 | for (i = 0; i < denali->max_banks; ++i) |
| 368 | writel(0xFFFF, denali->flash_reg + INTR_STATUS(i)); |
| 369 | } |
| 370 | |
| 371 | #define BANK(x) ((x) << 24) |
| 372 | |
| 373 | static uint32_t wait_for_ready(struct denali_nand_info *denali, uint32_t status_type) |
| 374 | { |
| 375 | uint32_t status = 0; |
| 376 | |
| 377 | while (!(readl(denali->flash_reg + |
| 378 | INTR_STATUS(denali->flash_bank)) & status_type)); |
| 379 | status = readl(denali->flash_reg + INTR_STATUS(denali->flash_bank)); |
| 380 | |
| 381 | #if 0 |
| 382 | while (!(readl(0x1207410) & status_type)); |
| 383 | status = readl(0x1207410); |
| 384 | #endif |
| 385 | |
| 386 | if (status & INTR_STATUS__ECC_ERR ) |
| 387 | { |
| 388 | printf (" Deanli Nand Failed: ECC Error\n"); |
| 389 | } |
| 390 | if (status & INTR_STATUS__TIME_OUT) |
| 391 | { |
| 392 | printf (" Deanli Nand Failed: Time out\n"); |
| 393 | } |
| 394 | if (status & INTR_STATUS__PROGRAM_FAIL) |
| 395 | { |
| 396 | printf (" Deanli Nand Failed: Program Fail\n"); |
| 397 | } |
| 398 | |
| 399 | writew(0xffff, denali->flash_reg + INTR_STATUS(denali->flash_bank)); |
| 400 | return status; |
| 401 | } |
| 402 | |
| 403 | /* This helper function setups the registers for ECC and whether or not |
| 404 | * the spare area will be transferred. */ |
| 405 | static void setup_ecc_for_xfer(struct denali_nand_info *denali, uint32_t ecc_en,uint32_t transfer_spare) |
| 406 | { |
| 407 | int ecc_en_flag = 0, transfer_spare_flag = 0; |
| 408 | #if ECC_TEST_VER |
| 409 | ecc_en_flag = 0; |
| 410 | #else |
| 411 | /* set ECC, transfer spare bits if needed */ |
| 412 | ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; |
| 413 | #endif |
| 414 | transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0; |
| 415 | |
| 416 | /* Enable spare area/ECC per user's request. */ |
| 417 | writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE); |
| 418 | writel(transfer_spare_flag, |
| 419 | denali->flash_reg + TRANSFER_SPARE_REG); |
| 420 | } |
| 421 | |
| 422 | |
| 423 | static void setup_ecc_the_end(struct denali_nand_info *denali, uint32_t ecc_en) |
| 424 | { |
| 425 | int ecc_en_flag = 0; |
| 426 | |
| 427 | /* set ECC, transfer spare bits if needed */ |
| 428 | ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0; |
| 429 | |
| 430 | /* Enable spare area/ECC per user's request. */ |
| 431 | writel(ecc_en_flag, denali->flash_reg + ECC_ENABLE); |
| 432 | } |
| 433 | |
| 434 | |
| 435 | /* sends a pipeline command operation to the controller. See the Denali NAND |
| 436 | * controller's user guide for more information (section 4.2.3.6). |
| 437 | */ |
| 438 | static int denali_send_pipeline_cmd(struct denali_nand_info *denali, |
| 439 | uint32_t ecc_en, |
| 440 | uint32_t transfer_spare, |
| 441 | int access_type, |
| 442 | int op) |
| 443 | { |
| 444 | int status = PASS; |
| 445 | uint32_t addr = 0x0, cmd = 0x0, page_count = 1, status_type = 0, |
| 446 | status_mask = 0; |
| 447 | |
| 448 | if (op == DENALI_READ) |
| 449 | status_mask = INTR_STATUS__LOAD_COMP; |
| 450 | else if (op == DENALI_WRITE) |
| 451 | status_mask = 0; |
| 452 | else |
| 453 | BUG(); |
| 454 | |
| 455 | setup_ecc_for_xfer(denali, ecc_en, transfer_spare); |
| 456 | |
| 457 | addr = BANK(denali->flash_bank) | denali->page; |
| 458 | |
| 459 | if (op == DENALI_WRITE && access_type != SPARE_ACCESS) |
| 460 | { |
| 461 | cmd = MODE_01 | addr; |
| 462 | writel(cmd, denali->flash_mem); |
| 463 | } |
| 464 | else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) |
| 465 | { |
| 466 | /* read spare area */ |
| 467 | cmd = MODE_10 | addr; |
| 468 | index_addr(denali, (uint32_t)cmd, access_type); |
| 469 | |
| 470 | cmd = MODE_01 | addr; |
| 471 | writel(cmd, denali->flash_mem); |
| 472 | } |
| 473 | else if (op == DENALI_READ) |
| 474 | { |
| 475 | /* setup page read request for access type */ |
| 476 | cmd = MODE_10 | addr; |
| 477 | index_addr(denali, (uint32_t)cmd, access_type); |
| 478 | |
| 479 | /* page 33 of the NAND controller spec indicates we should not |
| 480 | use the pipeline commands in Spare area only mode. So we |
| 481 | don't. |
| 482 | */ |
| 483 | if (access_type == SPARE_ACCESS) |
| 484 | { |
| 485 | cmd = MODE_01 | addr; |
| 486 | writel(cmd, denali->flash_mem); |
| 487 | } |
| 488 | else |
| 489 | { |
| 490 | index_addr(denali, (uint32_t)cmd, |
| 491 | 0x2000 | op | page_count); |
| 492 | |
| 493 | /* wait for command to be accepted |
| 494 | * can always use status0 bit as the |
| 495 | * mask is identical for each |
| 496 | * bank. */ |
| 497 | status_type = wait_for_ready(denali, status_mask); |
| 498 | |
| 499 | if (status_type == 0) |
| 500 | { |
| 501 | debug("cmd, page, addr on timeout " |
| 502 | "(0x%x, 0x%x, 0x%x)\n", |
| 503 | cmd, denali->page, addr); |
| 504 | status = FAIL; |
| 505 | } |
| 506 | else |
| 507 | { |
| 508 | cmd = MODE_01 | addr; |
| 509 | writel(cmd, denali->flash_mem); |
| 510 | } |
| 511 | } |
| 512 | } |
| 513 | return status; |
| 514 | } |
| 515 | |
| 516 | /* helper function that simply writes a buffer to the flash */ |
| 517 | static int write_data_to_flash_mem(struct denali_nand_info *denali, |
| 518 | const uint8_t *buf, |
| 519 | int len) |
| 520 | { |
| 521 | uint32_t i = 0, *buf32; |
| 522 | |
| 523 | /* verify that the len is a multiple of 4. see comment in |
| 524 | * read_data_from_flash_mem() */ |
| 525 | BUG_ON((len % 4) != 0); |
| 526 | |
| 527 | /* write the data to the flash memory */ |
| 528 | buf32 = (uint32_t *)buf; |
| 529 | for (i = 0; i < len / 4; i++) |
| 530 | writel(*buf32++, denali->flash_mem + 0x10); |
| 531 | return i*4; /* intent is to return the number of bytes read */ |
| 532 | } |
| 533 | |
| 534 | /* helper function that simply reads a buffer from the flash */ |
| 535 | static int read_data_from_flash_mem(struct denali_nand_info *denali, |
| 536 | uint8_t *buf, |
| 537 | int len) |
| 538 | { |
| 539 | uint32_t i = 0, *buf32; |
| 540 | |
| 541 | /* we assume that len will be a multiple of 4, if not |
| 542 | * it would be nice to know about it ASAP rather than |
| 543 | * have random failures... |
| 544 | * This assumption is based on the fact that this |
| 545 | * function is designed to be used to read flash pages, |
| 546 | * which are typically multiples of 4... |
| 547 | */ |
| 548 | |
| 549 | BUG_ON((len % 4) != 0); |
| 550 | |
| 551 | /* transfer the data from the flash */ |
| 552 | buf32 = (uint32_t *)buf; |
| 553 | for (i = 0; i < len / 4; i++) |
| 554 | *buf32++ = readl(denali->flash_mem + 0x10); |
| 555 | return i*4; /* intent is to return the number of bytes read */ |
| 556 | } |
| 557 | |
| 558 | /* writes OOB data to the device */ |
| 559 | static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| 560 | { |
| 561 | struct denali_nand_info *denali = g_denali; |
| 562 | uint32_t status_type = 0; |
| 563 | uint32_t status_mask = INTR_STATUS__PROGRAM_COMP | |
| 564 | INTR_STATUS__PROGRAM_FAIL; |
| 565 | int status = 0, addr = 0x0, cmd = 0x0; |
| 566 | |
| 567 | denali->page = page; |
| 568 | |
| 569 | /* Modified by zhouqi for xxx, 2013/09/03 */ |
| 570 | if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| 571 | DENALI_WRITE) == PASS) |
| 572 | { |
| 573 | write_data_to_flash_mem(denali, buf, mtd->oobsize); |
| 574 | |
| 575 | /* wait for operation to complete */ |
| 576 | status_type = wait_for_ready(denali, status_mask); |
| 577 | |
| 578 | if (status_type & INTR_STATUS__PROGRAM_FAIL) //zhouqi |
| 579 | { |
| 580 | debug("OOB write failed\n"); |
| 581 | status = -1; |
| 582 | } |
| 583 | } |
| 584 | else |
| 585 | { |
| 586 | debug("unable to send pipeline command\n"); |
| 587 | status = -1; |
| 588 | } |
| 589 | |
| 590 | /* Added by zhouqi for xxx, 2013/09/03 */ |
| 591 | /* We set the device back to MAIN_ACCESS here as I observed |
| 592 | * instability with the controller if you do a block erase |
| 593 | * and the last transaction was a SPARE_ACCESS. Block erase |
| 594 | * is reliable (according to the MTD test infrastructure) |
| 595 | * if you are in MAIN_ACCESS. |
| 596 | */ |
| 597 | addr = BANK(denali->flash_bank) | denali->page; |
| 598 | cmd = MODE_10 | addr; |
| 599 | index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); |
| 600 | /* End added. zhouqi, 2013/09/03 */ |
| 601 | |
| 602 | return status; |
| 603 | } |
| 604 | |
| 605 | /* reads OOB data from the device */ |
| 606 | static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page) |
| 607 | { |
| 608 | struct denali_nand_info *denali = g_denali; |
| 609 | uint32_t status_mask = INTR_STATUS__LOAD_COMP | INTR_STATUS__TIME_OUT, //zhouqi |
| 610 | status_type = 0, addr = 0x0, cmd = 0x0; |
| 611 | |
| 612 | denali->page = page; |
| 613 | |
| 614 | if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS, |
| 615 | DENALI_READ) == PASS) |
| 616 | { |
| 617 | read_data_from_flash_mem(denali, buf, mtd->oobsize); |
| 618 | |
| 619 | /* wait for command to be accepted |
| 620 | * can always use status0 bit as the mask is identical for each |
| 621 | * bank. */ |
| 622 | status_type = wait_for_ready(denali, status_mask); |
| 623 | |
| 624 | if (status_type & INTR_STATUS__TIME_OUT) |
| 625 | debug("page on OOB timeout %d\n",denali->page); |
| 626 | |
| 627 | /* We set the device back to MAIN_ACCESS here as I observed |
| 628 | * instability with the controller if you do a block erase |
| 629 | * and the last transaction was a SPARE_ACCESS. Block erase |
| 630 | * is reliable (according to the MTD test infrastructure) |
| 631 | * if you are in MAIN_ACCESS. |
| 632 | */ |
| 633 | addr = BANK(denali->flash_bank) | denali->page; |
| 634 | cmd = MODE_10 | addr; |
| 635 | index_addr(denali, (uint32_t)cmd, MAIN_ACCESS); |
| 636 | } |
| 637 | } |
| 638 | |
| 639 | /* this function examines buffers to see if they contain data that |
| 640 | * indicate that the buffer is part of an erased region of flash. |
| 641 | */ |
| 642 | uint32_t is_erased(uint8_t *buf, int len) |
| 643 | { |
| 644 | int i = 0; |
| 645 | for (i = 0; i < len; i++) |
| 646 | if (buf[i] != 0xFF) |
| 647 | return false; |
| 648 | return true; |
| 649 | } |
| 650 | #define ECC_SECTOR_SIZE 512 |
| 651 | |
| 652 | #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12) |
| 653 | #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET)) |
| 654 | #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK) |
| 655 | #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE)) |
| 656 | #define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8) |
| 657 | #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO) |
| 658 | |
| 659 | static uint32_t handle_ecc(struct denali_nand_info *denali, uint8_t *buf, |
| 660 | uint32_t status_type) |
| 661 | { |
| 662 | int check_erased_page = 0; |
| 663 | uint32_t err_correction_value = 0; |
| 664 | uint32_t err_correction_info = 0; |
| 665 | |
| 666 | #if 1 |
| 667 | /*zx297520 use*/ |
| 668 | if (status_type & INTR_STATUS__ECC_ERR) |
| 669 | { |
| 670 | check_erased_page = 1; |
| 671 | |
| 672 | } |
| 673 | else |
| 674 | { |
| 675 | |
| 676 | switch(denali->flash_bank) |
| 677 | { |
| 678 | case 0: |
| 679 | err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B01); |
| 680 | err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B0; |
| 681 | break; |
| 682 | |
| 683 | case 1: |
| 684 | err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B01); |
| 685 | err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B1)>>8; |
| 686 | break; |
| 687 | |
| 688 | case 2: |
| 689 | err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B23); |
| 690 | err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B2; |
| 691 | break; |
| 692 | |
| 693 | case 3: |
| 694 | err_correction_info = readl(denali->flash_reg +ERR_CORRECTION_INFO_B23); |
| 695 | err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B3)>>8; |
| 696 | break; |
| 697 | |
| 698 | default: |
| 699 | break; |
| 700 | |
| 701 | } |
| 702 | if(err_correction_value) |
| 703 | printk("correct %d bit errors on page %x.\n",err_correction_value,denali->page); |
| 704 | |
| 705 | |
| 706 | } |
| 707 | return check_erased_page; |
| 708 | #else |
| 709 | /* read the ECC errors. we'll ignore them for now */ |
| 710 | uint32_t err_address = 0, err_correction_info = 0; |
| 711 | uint32_t err_byte = 0, err_sector = 0, err_device = 0; |
| 712 | uint32_t err_correction_value = 0; |
| 713 | denali_set_intr_modes(denali, false); |
| 714 | |
| 715 | do |
| 716 | { |
| 717 | err_address = readl(denali->flash_reg + |
| 718 | ECC_ERROR_ADDRESS); |
| 719 | err_sector = ECC_SECTOR(err_address); |
| 720 | err_byte = ECC_BYTE(err_address); |
| 721 | |
| 722 | err_correction_info = readl(denali->flash_reg + |
| 723 | ERR_CORRECTION_INFO); |
| 724 | err_correction_value = |
| 725 | ECC_CORRECTION_VALUE(err_correction_info); |
| 726 | err_device = ECC_ERR_DEVICE(err_correction_info); |
| 727 | |
| 728 | if (ECC_ERROR_CORRECTABLE(err_correction_info)) |
| 729 | { |
| 730 | /* If err_byte is larger than ECC_SECTOR_SIZE, |
| 731 | * means error happened in OOB, so we ignore |
| 732 | * it. It's no need for us to correct it |
| 733 | * err_device is represented the NAND error |
| 734 | * bits are happened in if there are more |
| 735 | * than one NAND connected. |
| 736 | * */ |
| 737 | if (err_byte < ECC_SECTOR_SIZE) |
| 738 | { |
| 739 | int offset; |
| 740 | offset = (err_sector * |
| 741 | ECC_SECTOR_SIZE + |
| 742 | err_byte) * |
| 743 | denali->devnum + |
| 744 | err_device; |
| 745 | /* correct the ECC error */ |
| 746 | buf[offset] ^= err_correction_value; |
| 747 | denali->mtd->ecc_stats.corrected++; |
| 748 | } |
| 749 | } else { |
| 750 | /* if the error is not correctable, need to |
| 751 | * look at the page to see if it is an erased |
| 752 | * page. if so, then it's not a real ECC error |
| 753 | * */ |
| 754 | check_erased_page = true; |
| 755 | } |
| 756 | } while (!ECC_LAST_ERR(err_correction_info)); |
| 757 | /* Once handle all ecc errors, controller will triger |
| 758 | * a ECC_TRANSACTION_DONE interrupt, so here just wait |
| 759 | * for a while for this interrupt |
| 760 | * */ |
| 761 | while (!(read_interrupt_status(denali) & |
| 762 | INTR_STATUS__ECC_ERR)) |
| 763 | clear_interrupts(denali); |
| 764 | denali_set_intr_modes(denali, false); |
| 765 | #endif |
| 766 | } |
| 767 | |
| 768 | |
| 769 | |
| 770 | |
| 771 | /* programs the controller to either enable/disable DMA transfers */ |
| 772 | static void denali_enable_dma(struct denali_nand_info *denali, uint32_t en) |
| 773 | { |
| 774 | uint32_t reg_val = 0x0; |
| 775 | |
| 776 | if (en) |
| 777 | reg_val = DMA_ENABLE__FLAG; |
| 778 | |
| 779 | writel(reg_val, denali->flash_reg + DMA_ENABLE); |
| 780 | readl(denali->flash_reg + DMA_ENABLE); |
| 781 | } |
| 782 | |
| 783 | /* setups the HW to perform the data DMA */ |
| 784 | static void denali_setup_dma(struct denali_nand_info *denali, int op) |
| 785 | |
| 786 | { |
| 787 | uint32_t mode = 0x0; |
| 788 | const int page_count = 1; |
| 789 | dma_addr_t addr = denali->buf.dma_buf; |
| 790 | |
| 791 | mode = MODE_10 | BANK(denali->flash_bank); |
| 792 | |
| 793 | /* DMA is a four step process */ |
| 794 | |
| 795 | /* 1. setup transfer type and # of pages */ |
| 796 | index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| 797 | |
| 798 | /* 2. set memory high address bits 23:8 */ |
| 799 | index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); |
| 800 | |
| 801 | /* 3. set memory low address bits 23:8 */ |
| 802 | index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); |
| 803 | |
| 804 | /* 4. interrupt when complete, burst len = 64 bytes*/ |
| 805 | //writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4 |
| 806 | index_addr(denali, mode | 0x14000, 0x2400); //zhouqi not interrupt 0X40 |
| 807 | } |
| 808 | static void denali_setup_dma_buffer(struct denali_nand_info *denali, int op,char* buffer) |
| 809 | |
| 810 | { |
| 811 | uint32_t mode = 0x0; |
| 812 | const int page_count = 1; |
| 813 | dma_addr_t addr = buffer; |
| 814 | |
| 815 | mode = MODE_10 | BANK(denali->flash_bank); |
| 816 | |
| 817 | /* DMA is a four step process */ |
| 818 | |
| 819 | /* 1. setup transfer type and # of pages */ |
| 820 | index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| 821 | |
| 822 | /* 2. set memory high address bits 23:8 */ |
| 823 | index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); |
| 824 | |
| 825 | /* 3. set memory low address bits 23:8 */ |
| 826 | index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); |
| 827 | |
| 828 | /* 4. interrupt when complete, burst len = 64 bytes*/ |
| 829 | //writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4 |
| 830 | index_addr(denali, mode | 0x14000, 0x2400); //zhouqi not interrupt 0X40 |
| 831 | } |
| 832 | |
| 833 | |
| 834 | |
| 835 | /* add by zhouqi */ |
| 836 | #if 0 |
| 837 | static void denali_setup_dma_derect(struct denali_nand_info *denali, int op, |
| 838 | dma_addr_t addr) /* add by zhouqi */ |
| 839 | { |
| 840 | uint32_t mode = 0x0; |
| 841 | const int page_count = 1; |
| 842 | // dma_addr_t addr = denali->buf.dma_buf; |
| 843 | |
| 844 | mode = MODE_10 | BANK(denali->flash_bank); |
| 845 | |
| 846 | /* DMA is a four step process */ |
| 847 | |
| 848 | /* 1. setup transfer type and # of pages */ |
| 849 | index_addr(denali, mode | denali->page, 0x2000 | op | page_count); |
| 850 | |
| 851 | /* 2. set memory high address bits 23:8 */ |
| 852 | index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200); |
| 853 | |
| 854 | /* 3. set memory low address bits 23:8 */ |
| 855 | index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300); |
| 856 | |
| 857 | /* 4. interrupt when complete, burst len = 64 bytes*/ |
| 858 | //writel(NAND_BASE, MODE_10|0x10000|(4 << 8));//BurstLength =4 |
| 859 | index_addr(denali, mode | 0x14000, 0x2400); //zhouqi not interrupt 0X40 |
| 860 | } |
| 861 | #endif |
| 862 | |
| 863 | /* writes a page. user specifies type, and this function handles the |
| 864 | * configuration details. */ |
| 865 | static void write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 866 | const uint8_t *buf, uint32_t raw_xfer) |
| 867 | { |
| 868 | struct denali_nand_info *denali = g_denali; |
| 869 | |
| 870 | uint32_t status_type = 0; |
| 871 | uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP | |
| 872 | INTR_STATUS__PROGRAM_FAIL; |
| 873 | |
| 874 | /* if it is a raw xfer, we want to disable ecc, and send |
| 875 | * the spare area. |
| 876 | * !raw_xfer - enable ecc |
| 877 | * raw_xfer - transfer spare |
| 878 | */ |
| 879 | setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer); |
| 880 | |
| 881 | /* copy buffer into DMA buffer */ |
| 882 | memcpy((void*)denali->buf.dma_buf, (void*)buf, mtd->writesize); |
| 883 | |
| 884 | if (raw_xfer) |
| 885 | { |
| 886 | /* transfer the data to the spare area */ |
| 887 | memcpy((void*)(denali->buf.dma_buf + mtd->writesize), |
| 888 | (void*)chip->oob_poi,mtd->oobsize); |
| 889 | } |
| 890 | |
| 891 | denali_enable_dma(denali, true); |
| 892 | |
| 893 | denali_setup_dma(denali, DENALI_WRITE); //zhouqi p779-p789 |
| 894 | |
| 895 | /* wait for operation to complete */ |
| 896 | status_type = wait_for_ready(denali, status_mask); |
| 897 | |
| 898 | if (status_type & INTR_STATUS__TIME_OUT) |
| 899 | { |
| 900 | debug("timeout on write_page (type = %d)\n", |
| 901 | raw_xfer); |
| 902 | denali->status = |
| 903 | (status_type & INTR_STATUS__PROGRAM_FAIL) ? |
| 904 | NAND_STATUS_FAIL : PASS; |
| 905 | } |
| 906 | |
| 907 | denali_enable_dma(denali, false); |
| 908 | |
| 909 | setup_ecc_the_end(denali, false); //zhouqi |
| 910 | |
| 911 | } |
| 912 | |
| 913 | //add by zhouqi |
| 914 | static void write_page_ops(struct mtd_info *mtd, struct nand_chip *chip, |
| 915 | const uint8_t *buf) |
| 916 | { |
| 917 | int N,len,sector_size,ecc_bytes,i; |
| 918 | struct denali_nand_info *denali = g_denali; |
| 919 | |
| 920 | uint32_t status_type = 0; |
| 921 | uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP | |
| 922 | INTR_STATUS__PROGRAM_FAIL; |
| 923 | |
| 924 | /* if it is a raw xfer, we want to disable ecc, and send |
| 925 | * the spare area. |
| 926 | * !raw_xfer - enable ecc |
| 927 | * raw_xfer - transfer spare |
| 928 | */ |
| 929 | setup_ecc_for_xfer(denali, 1, 1); |
| 930 | memset((void *)(denali->buf.dma_buf),0xff,denali->mtd->writesize+denali->mtd->oobsize); |
| 931 | |
| 932 | sector_size = denali->nand->ecc.size; |
| 933 | ecc_bytes = denali->nand->ecc.bytes; |
| 934 | N = denali->mtd->writesize/(sector_size+ecc_bytes) + 1; |
| 935 | len = sector_size; |
| 936 | |
| 937 | for(i=0;i < N;i++) |
| 938 | { |
| 939 | if(i==N-1) |
| 940 | { |
| 941 | len = denali->mtd->writesize - (sector_size+ecc_bytes)*i; |
| 942 | } |
| 943 | |
| 944 | memcpy((void *)(denali->buf.dma_buf+(sector_size+ecc_bytes)*i), (void *)(buf+sector_size*i), len); ; |
| 945 | |
| 946 | } |
| 947 | |
| 948 | len = sector_size - len; |
| 949 | |
| 950 | memcpy((void *)(denali->buf.dma_buf + denali->mtd->writesize+2), (void *)(buf + sector_size*i -len), len); |
| 951 | memcpy((void *)(denali->buf.dma_buf+denali->mtd->writesize+2+len+ecc_bytes), (void *)(chip->oob_poi + 2+len+ecc_bytes), \ |
| 952 | denali->mtd->oobsize-2-len-ecc_bytes); |
| 953 | |
| 954 | denali_enable_dma(denali, true); |
| 955 | |
| 956 | denali_setup_dma(denali, DENALI_WRITE); |
| 957 | |
| 958 | /* wait for operation to complete */ |
| 959 | status_type = wait_for_ready(denali, status_mask); |
| 960 | |
| 961 | if (status_type & INTR_STATUS__TIME_OUT) |
| 962 | { |
| 963 | debug("timeout on write_page (type = )\n"); |
| 964 | denali->status = |
| 965 | (status_type & INTR_STATUS__PROGRAM_FAIL) ? |
| 966 | NAND_STATUS_FAIL : PASS; |
| 967 | } |
| 968 | |
| 969 | denali_enable_dma(denali, false); |
| 970 | setup_ecc_the_end(denali, false); //zhouqi |
| 971 | } |
| 972 | |
| 973 | /* NAND core entry points */ |
| 974 | |
| 975 | /* this is the callback that the NAND core calls to write a page. Since |
| 976 | * writing a page with ECC or without is similar, all the work is done |
| 977 | * by write_page above. |
| 978 | * */ |
| 979 | static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 980 | const uint8_t *buf, struct mtd_oob_ops *ops)//zhouqi add ops |
| 981 | { |
| 982 | struct denali_nand_info *denali = g_denali; |
| 983 | /* for regular page writes, we let HW handle all the ECC |
| 984 | * data written to the device. */ |
| 985 | int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION); |
| 986 | if((ops->oobbuf != NULL) && (ops->ooblen != 0)) |
| 987 | { |
| 988 | write_page_ops(mtd, chip, buf); |
| 989 | } |
| 990 | else |
| 991 | { |
| 992 | if(denali->page < 64) |
| 993 | { |
| 994 | writel(0x8, denali->flash_reg + ECC_CORRECTION); |
| 995 | } |
| 996 | write_page(mtd, chip, buf, false); |
| 997 | writel(ecc_bits, denali->flash_reg + ECC_CORRECTION); |
| 998 | } |
| 999 | update_led_twinkle(); |
| 1000 | } |
| 1001 | |
| 1002 | /* This is the callback that the NAND core calls to write a page without ECC. |
| 1003 | * raw access is similar to ECC page writes, so all the work is done in the |
| 1004 | * write_page() function above. |
| 1005 | */ |
| 1006 | static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| 1007 | const uint8_t *buf) |
| 1008 | { |
| 1009 | /* for raw page writes, we want to disable ECC and simply write |
| 1010 | whatever data is in the buffer. */ |
| 1011 | write_page(mtd, chip, buf, true); |
| 1012 | } |
| 1013 | |
| 1014 | static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 1015 | int page) |
| 1016 | { |
| 1017 | //printk(KERN_EMERG "[denali.c] denali_write_oob: page = 0x%0x\n",page); //zhouqi |
| 1018 | return write_oob_data(mtd, chip->oob_poi, page); |
| 1019 | } |
| 1020 | |
| 1021 | static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip, |
| 1022 | int page, int sndcmd) |
| 1023 | { |
| 1024 | //printk(KERN_EMERG "[denali.c] denali_read_oob: page = 0x%0x\n",page); //zhouqi |
| 1025 | read_oob_data(mtd, chip->oob_poi, page); |
| 1026 | |
| 1027 | return 0; /* notify NAND core to send command to |
| 1028 | NAND device. */ |
| 1029 | } |
| 1030 | |
| 1031 | |
| 1032 | static int read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 1033 | uint8_t *buf, int page) |
| 1034 | { |
| 1035 | struct denali_nand_info *denali = g_denali; |
| 1036 | |
| 1037 | uint32_t status_type = 0; |
| 1038 | // uint32_t status_mask = INTR_STATUS__ECC_ERR | |
| 1039 | // INTR_STATUS__ECC_ERR; |
| 1040 | uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP; |
| 1041 | uint32_t check_erased_page = false; |
| 1042 | |
| 1043 | if (page != denali->page) |
| 1044 | { |
| 1045 | debug("IN %s: page %d is not" |
| 1046 | " equal to denali->page %d, investigate!!", |
| 1047 | __func__, page, denali->page); |
| 1048 | BUG(); |
| 1049 | } |
| 1050 | |
| 1051 | setup_ecc_for_xfer(denali, true, false); |
| 1052 | |
| 1053 | denali_enable_dma(denali, true); |
| 1054 | |
| 1055 | if(flash_dmabuf_disable_flag == 1) |
| 1056 | { |
| 1057 | denali_setup_dma(denali, DENALI_READ); |
| 1058 | /* wait for operation to complete */ |
| 1059 | status_type = wait_for_ready(denali, status_mask); |
| 1060 | memcpy(buf, (void *)denali->buf.dma_buf, mtd->writesize); //zhouqi -p939 |
| 1061 | } |
| 1062 | else |
| 1063 | { |
| 1064 | denali_setup_dma_buffer(denali, DENALI_READ,buf); //zhouqi |
| 1065 | /* wait for operation to complete */ |
| 1066 | status_type = wait_for_ready(denali, status_mask); |
| 1067 | } |
| 1068 | |
| 1069 | check_erased_page = handle_ecc(denali, buf, status_type); |
| 1070 | //check_erased_page = 0; |
| 1071 | denali_enable_dma(denali, false); |
| 1072 | setup_ecc_the_end(denali, false); //zhouqi |
| 1073 | |
| 1074 | if (check_erased_page) |
| 1075 | { |
| 1076 | read_oob_data(denali->mtd, chip->oob_poi, denali->page); |
| 1077 | |
| 1078 | if (!is_erased(buf, denali->mtd->writesize)) |
| 1079 | denali->mtd->ecc_stats.failed++; |
| 1080 | if (!is_erased(chip->oob_poi, denali->mtd->oobsize)) |
| 1081 | denali->mtd->ecc_stats.failed++; |
| 1082 | } |
| 1083 | return 0; |
| 1084 | } |
| 1085 | |
| 1086 | |
| 1087 | //add by zhouqi |
| 1088 | static int read_page_ops(struct mtd_info *mtd, struct nand_chip *chip, |
| 1089 | uint8_t *buf, int page) |
| 1090 | { |
| 1091 | int N,len,sector_size,ecc_bytes,i; |
| 1092 | struct denali_nand_info *denali = g_denali; |
| 1093 | |
| 1094 | uint32_t status_type = 0; |
| 1095 | uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP; |
| 1096 | uint32_t check_erased_page = false; |
| 1097 | |
| 1098 | if (page != denali->page) |
| 1099 | { |
| 1100 | debug("IN %s: page %d is not" |
| 1101 | " equal to denali->page %d, investigate!!", |
| 1102 | __func__, page, denali->page); |
| 1103 | BUG(); |
| 1104 | } |
| 1105 | |
| 1106 | setup_ecc_for_xfer(denali, 1, 1); |
| 1107 | |
| 1108 | denali_enable_dma(denali, true); |
| 1109 | |
| 1110 | denali_setup_dma(denali, DENALI_READ); |
| 1111 | |
| 1112 | /* wait for operation to complete */ |
| 1113 | status_type = wait_for_ready(denali, status_mask); |
| 1114 | |
| 1115 | sector_size = denali->nand->ecc.size; |
| 1116 | ecc_bytes = denali->nand->ecc.bytes; |
| 1117 | N = denali->mtd->writesize/(sector_size+ecc_bytes) + 1; |
| 1118 | len = sector_size; |
| 1119 | |
| 1120 | for(i=0;i < N;i++) |
| 1121 | { |
| 1122 | if(i==N-1) |
| 1123 | { |
| 1124 | len = denali->mtd->writesize - (sector_size+ecc_bytes)*i; |
| 1125 | } |
| 1126 | |
| 1127 | memcpy((void *)(buf+sector_size*i),(void *)( denali->buf.dma_buf + (sector_size+ecc_bytes)*i),len); |
| 1128 | |
| 1129 | } |
| 1130 | |
| 1131 | len = sector_size - len; |
| 1132 | memcpy((void *)(buf + sector_size*(N-1)+len), (void *)(denali->buf.dma_buf + denali->mtd->writesize +2), len); |
| 1133 | |
| 1134 | memset((void *)(chip->oob_poi), 0xFF, len +ecc_bytes+2); |
| 1135 | memcpy((void *)(chip->oob_poi + len+ecc_bytes+2), (void *)(denali->buf.dma_buf + denali->mtd->writesize+len+ecc_bytes+2),\ |
| 1136 | denali->mtd->oobsize-len -ecc_bytes-2); |
| 1137 | |
| 1138 | check_erased_page = handle_ecc(denali, buf, status_type); |
| 1139 | //check_erased_page = 0; |
| 1140 | denali_enable_dma(denali, false); |
| 1141 | setup_ecc_the_end(denali, false); //zhouqi |
| 1142 | |
| 1143 | if (check_erased_page) |
| 1144 | { |
| 1145 | read_oob_data(denali->mtd, chip->oob_poi, denali->page); |
| 1146 | |
| 1147 | /* check ECC failures that may have occurred on erased pages */ |
| 1148 | if (!is_erased(buf, denali->mtd->writesize)) |
| 1149 | denali->mtd->ecc_stats.failed++; |
| 1150 | if (!is_erased(chip->oob_poi, denali->mtd->oobsize)) |
| 1151 | denali->mtd->ecc_stats.failed++; |
| 1152 | } |
| 1153 | return 0; |
| 1154 | } |
| 1155 | |
| 1156 | //add by zhouqi |
| 1157 | static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip, |
| 1158 | uint8_t *buf, int page, struct mtd_oob_ops *ops)//add by zhouqi |
| 1159 | { |
| 1160 | |
| 1161 | struct denali_nand_info *denali = g_denali; |
| 1162 | |
| 1163 | int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION); |
| 1164 | |
| 1165 | if((ops->oobbuf != NULL) && ops->ooblen != 0) |
| 1166 | { |
| 1167 | //denali_debug("[denali.c]: read_page_ops: page = 0x%0x\n", page);//zhouqi |
| 1168 | read_page_ops(mtd, chip, buf, page); |
| 1169 | } |
| 1170 | else |
| 1171 | { |
| 1172 | if(denali->page < 64) |
| 1173 | { |
| 1174 | writel(0x8, denali->flash_reg + ECC_CORRECTION); |
| 1175 | } |
| 1176 | //denali_debug("[denali.c]: read_page: page = 0x%0x\n", page);//zhouqi |
| 1177 | read_page(mtd, chip, buf, page); |
| 1178 | writel(ecc_bits, denali->flash_reg + ECC_CORRECTION); |
| 1179 | } |
| 1180 | update_led_twinkle(); |
| 1181 | return 0; |
| 1182 | } |
| 1183 | |
| 1184 | static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip, |
| 1185 | uint8_t *buf, int page) |
| 1186 | { |
| 1187 | struct denali_nand_info *denali = g_denali; |
| 1188 | |
| 1189 | uint32_t status_type = 0; |
| 1190 | uint32_t status_mask = INTR_STATUS__DMA_CMD_COMP; |
| 1191 | |
| 1192 | if (page != denali->page) |
| 1193 | { |
| 1194 | debug("IN %s: page %d is not" |
| 1195 | " equal to denali->page %d, investigate!!", |
| 1196 | __func__, page, denali->page); |
| 1197 | BUG(); |
| 1198 | } |
| 1199 | |
| 1200 | setup_ecc_for_xfer(denali, false, true); |
| 1201 | denali_enable_dma(denali, true); |
| 1202 | |
| 1203 | denali_setup_dma(denali, DENALI_READ); |
| 1204 | |
| 1205 | /* wait for operation to complete */ |
| 1206 | status_type = wait_for_ready(denali, status_mask); |
| 1207 | |
| 1208 | denali_enable_dma(denali, false); |
| 1209 | |
| 1210 | memcpy(buf, (void*)denali->buf.dma_buf, mtd->writesize); |
| 1211 | memcpy(chip->oob_poi, (void*)(denali->buf.dma_buf + mtd->writesize), mtd->oobsize); |
| 1212 | |
| 1213 | return 0; |
| 1214 | } |
| 1215 | |
| 1216 | static uint8_t denali_read_byte(struct mtd_info *mtd) |
| 1217 | { |
| 1218 | struct denali_nand_info *denali = g_denali; |
| 1219 | uint8_t result = 0xff; |
| 1220 | |
| 1221 | if (denali->buf.head < denali->buf.tail) |
| 1222 | result = denali->buf.buf[denali->buf.head++]; |
| 1223 | |
| 1224 | return result; |
| 1225 | } |
| 1226 | |
| 1227 | static uint16_t denali_read_word(struct mtd_info *mtd) |
| 1228 | { |
| 1229 | struct nand_chip *chip = mtd->priv; |
| 1230 | uint16_t result = 0x0; |
| 1231 | |
| 1232 | result = (uint16_t)(*(chip->oob_poi)); |
| 1233 | result = result << 8; |
| 1234 | result |= (uint16_t)(*(chip->oob_poi + 1)); |
| 1235 | |
| 1236 | return result; |
| 1237 | } |
| 1238 | |
| 1239 | static void denali_select_chip(struct mtd_info *mtd, int chip) |
| 1240 | { |
| 1241 | struct denali_nand_info *denali = g_denali; |
| 1242 | |
| 1243 | denali->flash_bank = chip; |
| 1244 | } |
| 1245 | |
| 1246 | static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip) |
| 1247 | { |
| 1248 | struct denali_nand_info *denali = g_denali; |
| 1249 | int status = denali->status; |
| 1250 | denali->status = 0; |
| 1251 | |
| 1252 | return status; |
| 1253 | } |
| 1254 | |
| 1255 | static void denali_erase(struct mtd_info *mtd, int page) |
| 1256 | { |
| 1257 | #if ECC_TEST_VER |
| 1258 | return; |
| 1259 | #endif |
| 1260 | struct denali_nand_info *denali = g_denali; |
| 1261 | |
| 1262 | uint32_t cmd = 0x0, status_type = 0; |
| 1263 | |
| 1264 | /* setup page read request for access type */ |
| 1265 | cmd = MODE_10 | BANK(denali->flash_bank) | page; |
| 1266 | index_addr(denali, (uint32_t)cmd, 0x1); |
| 1267 | |
| 1268 | /* wait for erase to complete or failure to occur */ |
| 1269 | status_type = wait_for_ready(denali, INTR_STATUS__ERASE_COMP | |
| 1270 | INTR_STATUS__ERASE_FAIL); |
| 1271 | |
| 1272 | denali->status = (status_type & INTR_STATUS__ERASE_FAIL) ? |
| 1273 | NAND_STATUS_FAIL : PASS; |
| 1274 | update_led_twinkle(); |
| 1275 | } |
| 1276 | |
| 1277 | static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col, |
| 1278 | int page) |
| 1279 | { |
| 1280 | struct denali_nand_info *denali = g_denali; |
| 1281 | uint32_t addr, id; |
| 1282 | int i; |
| 1283 | |
| 1284 | switch (cmd) { |
| 1285 | case NAND_CMD_PAGEPROG: |
| 1286 | break; |
| 1287 | case NAND_CMD_STATUS: |
| 1288 | reset_buf(denali); |
| 1289 | read_status(denali); |
| 1290 | break; |
| 1291 | case NAND_CMD_READID: |
| 1292 | case NAND_CMD_PARAM: |
| 1293 | reset_buf(denali); |
| 1294 | /*sometimes ManufactureId read from register is not right |
| 1295 | * e.g. some of Micron MT29F32G08QAA MLC NAND chips |
| 1296 | * So here we send READID cmd to NAND insteand |
| 1297 | * */ |
| 1298 | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| 1299 | index_addr(denali, (uint32_t)addr | 0, 0x90); |
| 1300 | index_addr(denali, (uint32_t)addr | 1, 0); |
| 1301 | for (i = 0; i < 5; i++) |
| 1302 | { |
| 1303 | index_addr_read_data(denali,(uint32_t)addr | 2, &id); |
| 1304 | write_byte_to_buf(denali, id); |
| 1305 | } |
| 1306 | break; |
| 1307 | case NAND_CMD_READ0: |
| 1308 | case NAND_CMD_SEQIN: |
| 1309 | denali->page = page; |
| 1310 | break; |
| 1311 | case NAND_CMD_RESET: |
| 1312 | reset_bank(denali); |
| 1313 | break; |
| 1314 | case NAND_CMD_READOOB: |
| 1315 | reset_buf(denali); //zhouqi |
| 1316 | denali_read_oob(mtd, mtd->priv, page, 0); |
| 1317 | /* TODO: Read OOB data */ |
| 1318 | break; |
| 1319 | default: |
| 1320 | debug(": unsupported command" |
| 1321 | " received 0x%x\n", cmd); |
| 1322 | break; |
| 1323 | } |
| 1324 | } |
| 1325 | |
| 1326 | /* stubs for ECC functions not used by the NAND core */ |
| 1327 | static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data, |
| 1328 | uint8_t *ecc_code) |
| 1329 | { |
| 1330 | debug("denali_ecc_calculate called unexpectedly\n"); |
| 1331 | BUG(); |
| 1332 | return -1; |
| 1333 | } |
| 1334 | |
| 1335 | static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data, |
| 1336 | uint8_t *read_ecc, uint8_t *calc_ecc) |
| 1337 | { |
| 1338 | debug("denali_ecc_correct called unexpectedly\n"); |
| 1339 | BUG(); |
| 1340 | return -1; |
| 1341 | } |
| 1342 | |
| 1343 | static void denali_ecc_hwctl(struct mtd_info *mtd, int mode) |
| 1344 | { |
| 1345 | debug("denali_ecc_hwctl called unexpectedly\n"); |
| 1346 | BUG(); |
| 1347 | } |
| 1348 | /* end NAND core entry points */ |
| 1349 | |
| 1350 | |
| 1351 | /* Initialization code to bring the device up to a known good state */ |
| 1352 | static void denali_hw_init(struct denali_nand_info *denali) |
| 1353 | { |
| 1354 | uint32_t id_bytes[5], addr; |
| 1355 | uint8_t i, maf_id, device_id, res_id; |
| 1356 | struct nand_flash_device_para * table = nand_flash_para; |
| 1357 | |
| 1358 | denali->flash_reg = (void __iomem *)NAND_FLASH_REG; |
| 1359 | denali->flash_mem = (void __iomem *)NAND_FLASH_MEM; |
| 1360 | |
| 1361 | detect_max_banks(denali); /* test the max banks support*/ |
| 1362 | denali_nand_reset(denali); |
| 1363 | writel(0, denali->flash_reg + DMA_ENABLE); /* dma disable */ |
| 1364 | writel(0, denali->flash_reg + ECC_ENABLE); /* ecc disable */ |
| 1365 | writel(2, denali->flash_reg + SPARE_AREA_SKIP_BYTES); |
| 1366 | denali->bbtskipbytes = readl(denali->flash_reg + |
| 1367 | SPARE_AREA_SKIP_BYTES); |
| 1368 | writel(0x0F, denali->flash_reg + RB_PIN_ENABLED); |
| 1369 | writel(0, denali->flash_reg + CHIP_ENABLE_DONT_CARE); |
| 1370 | writel(1, denali->flash_reg + DEVICES_CONNECTED); |
| 1371 | |
| 1372 | |
| 1373 | writel(0xffff, denali->flash_reg + SPARE_AREA_MARKER); |
| 1374 | |
| 1375 | |
| 1376 | /* Use read id method to get device ID and other */ |
| 1377 | addr = (uint32_t)MODE_11 | BANK(denali->flash_bank); |
| 1378 | index_addr(denali, (uint32_t)addr | 0, 0x90); |
| 1379 | index_addr(denali, (uint32_t)addr | 1, 0); |
| 1380 | for (i = 0; i < 5; i++) |
| 1381 | index_addr_read_data(denali, addr | 2, &id_bytes[i]); |
| 1382 | maf_id = id_bytes[0]; |
| 1383 | device_id = id_bytes[1]; |
| 1384 | res_id = id_bytes[2]; |
| 1385 | |
| 1386 | for (; table->manuf_id != 0; table++) |
| 1387 | { |
| 1388 | if ((maf_id == table->manuf_id) && (device_id == table->device_id) |
| 1389 | && (res_id == table->res_id) ) |
| 1390 | { |
| 1391 | break; |
| 1392 | } |
| 1393 | } |
| 1394 | g_nand_dev_info = table; |
| 1395 | printf("maf_id=%x,dev_id=%x,res_id=%x\n",maf_id,device_id,res_id); |
| 1396 | /* Should set value for these registers when init */ |
| 1397 | denali_nand_register_set(denali, table); |
| 1398 | denali_nand_timing_set(denali, table); |
| 1399 | //find_valid_banks(denali); //zhouqi for 7520 fpga |
| 1400 | //detect_partition_feature(denali); |
| 1401 | denali_irq_init(denali); |
| 1402 | |
| 1403 | } |
| 1404 | |
| 1405 | /* Althogh controller spec said SLC ECC is forceb to be 4bit, |
| 1406 | * but denali controller in MRST only support 15bit and 8bit ECC |
| 1407 | * correction |
| 1408 | * */ |
| 1409 | |
| 1410 | static struct nand_ecclayout g_nand_oob; |
| 1411 | |
| 1412 | static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' }; |
| 1413 | static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' }; |
| 1414 | |
| 1415 | static struct nand_bbt_descr bbt_main_descr = { |
| 1416 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| 1417 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| 1418 | .offs = 8, |
| 1419 | .len = 4, |
| 1420 | .veroffs = 12, |
| 1421 | .maxblocks = 4, |
| 1422 | .pattern = bbt_pattern, |
| 1423 | }; |
| 1424 | |
| 1425 | static struct nand_bbt_descr bbt_mirror_descr = { |
| 1426 | .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE |
| 1427 | | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP, |
| 1428 | .offs = 8, |
| 1429 | .len = 4, |
| 1430 | .veroffs = 12, |
| 1431 | .maxblocks = 4, |
| 1432 | .pattern = mirror_pattern, |
| 1433 | }; |
| 1434 | |
| 1435 | /* initialize driver data structures */ |
| 1436 | void denali_drv_init(struct denali_nand_info *denali) |
| 1437 | { |
| 1438 | /* indicate that MTD has not selected a valid bank yet */ |
| 1439 | denali->flash_bank = CHIP_SELECT_INVALID; |
| 1440 | |
| 1441 | /* initialize our status_type variable to indicate no interrupts */ |
| 1442 | } |
| 1443 | |
| 1444 | static int denali_nand_ecc_init(struct denali_nand_info *denali) |
| 1445 | { |
| 1446 | int i,eccpos_start; |
| 1447 | denali->nand->ecc.mode = NAND_ECC_HW_SYNDROME; |
| 1448 | denali->nand->ecc.size = g_nand_dev_info->ecc.sector_size; |
| 1449 | denali->nand->ecc.steps = g_nand_dev_info->page_size/g_nand_dev_info->ecc.sector_size; |
| 1450 | denali->nand->ecc.strength = g_nand_dev_info->ecc.strength; |
| 1451 | |
| 1452 | switch (denali->nand->ecc.size) { |
| 1453 | case 512: |
| 1454 | denali->nand->ecc.bytes = |
| 1455 | ( denali->nand->ecc.strength * 13 + 15) / 16 * 2; |
| 1456 | break; |
| 1457 | case 1024: |
| 1458 | denali->nand->ecc.bytes = |
| 1459 | ( denali->nand->ecc.strength * 14 + 15) / 16 * 2; |
| 1460 | break; |
| 1461 | default: |
| 1462 | printk("Unsupported ECC sector size\n"); |
| 1463 | |
| 1464 | BUG_ON(1); |
| 1465 | return -1; |
| 1466 | } |
| 1467 | |
| 1468 | denali->nand->ecc.total = denali->nand->ecc.bytes* denali->nand->ecc.steps; |
| 1469 | if(g_nand_dev_info->oob_size >= (denali->nand->ecc.total+denali->bbtskipbytes + 8)) |
| 1470 | { |
| 1471 | |
| 1472 | writel(g_nand_dev_info->ecc.strength, denali->flash_reg + ECC_CORRECTION); |
| 1473 | g_nand_oob.eccbytes = denali->nand->ecc.total; |
| 1474 | |
| 1475 | eccpos_start = denali->bbtskipbytes; |
| 1476 | |
| 1477 | for (i = 0; i < g_nand_oob.eccbytes; i++) |
| 1478 | { |
| 1479 | g_nand_oob.eccpos[i] = eccpos_start + i; |
| 1480 | } |
| 1481 | |
| 1482 | g_nand_oob.oobfree[0].offset = g_nand_oob.eccbytes+denali->bbtskipbytes; |
| 1483 | g_nand_oob.oobfree[0].length = g_nand_dev_info->oob_size -(g_nand_oob.eccbytes+denali->bbtskipbytes); |
| 1484 | denali->nand->ecc.layout = &g_nand_oob; |
| 1485 | } |
| 1486 | else |
| 1487 | { |
| 1488 | printk("Unsupported ECC strength,please check the id table\n"); |
| 1489 | BUG(); |
| 1490 | } |
| 1491 | |
| 1492 | |
| 1493 | return 0; |
| 1494 | } |
| 1495 | |
| 1496 | |
| 1497 | /* driver entry point */ |
| 1498 | int board_nand_init_denali(struct nand_chip *nand) |
| 1499 | { |
| 1500 | int ret = -1; |
| 1501 | struct denali_nand_info *denali = g_denali; |
| 1502 | |
| 1503 | denali_hw_init(denali); |
| 1504 | denali_drv_init(denali); |
| 1505 | |
| 1506 | denali->mtd = (struct mtd_info *)&nand_info; |
| 1507 | denali->nand = (struct nand_chip *)&nand_chip; |
| 1508 | denali->buf.dma_buf = (dma_addr_t)CONFIG_NAND_DMA_BUF_ADDR; |
| 1509 | |
| 1510 | /* register the driver with the NAND core subsystem */ |
| 1511 | denali->nand->select_chip = denali_select_chip; |
| 1512 | denali->nand->cmdfunc = denali_cmdfunc; |
| 1513 | denali->nand->read_byte = denali_read_byte; |
| 1514 | denali->nand->read_word = denali_read_word; |
| 1515 | denali->nand->waitfunc = denali_waitfunc; |
| 1516 | |
| 1517 | /* scan for NAND devices attached to the controller |
| 1518 | * this is the first stage in a two step process to register |
| 1519 | * with the nand subsystem */ |
| 1520 | |
| 1521 | if (nand_scan_ident(denali->mtd, denali->total_used_banks, NULL)) |
| 1522 | { |
| 1523 | debug("nand ident: cant ident this nand device"); |
| 1524 | return -1; |
| 1525 | } |
| 1526 | |
| 1527 | /* MTD supported page sizes vary by kernel. We validate our |
| 1528 | * kernel supports the device here. |
| 1529 | */ |
| 1530 | if (denali->mtd->writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) |
| 1531 | { |
| 1532 | ret = -1; |
| 1533 | debug("Spectra: device size not supported by this version of MTD."); |
| 1534 | return ret; |
| 1535 | } |
| 1536 | |
| 1537 | /* support for multi nand |
| 1538 | * MTD known nothing about multi nand, |
| 1539 | * so we should tell it the real pagesize |
| 1540 | * and anything necessery |
| 1541 | */ |
| 1542 | denali->devnum = readl(denali->flash_reg + DEVICES_CONNECTED); |
| 1543 | denali->nand->chipsize <<= (denali->devnum - 1); |
| 1544 | denali->nand->page_shift += (denali->devnum - 1); |
| 1545 | denali->nand->pagemask = (denali->nand->chipsize >> denali->nand->page_shift) - 1; |
| 1546 | denali->nand->bbt_erase_shift += (denali->devnum - 1); |
| 1547 | denali->nand->phys_erase_shift = denali->nand->bbt_erase_shift; |
| 1548 | denali->nand->chip_shift += (denali->devnum - 1); |
| 1549 | denali->mtd->writesize <<= (denali->devnum - 1); |
| 1550 | denali->mtd->oobsize <<= (denali->devnum - 1); |
| 1551 | denali->mtd->erasesize <<= (denali->devnum - 1); |
| 1552 | denali->mtd->size = denali->nand->numchips * denali->nand->chipsize; |
| 1553 | denali->bbtskipbytes *= denali->devnum; |
| 1554 | |
| 1555 | /* second stage of the NAND scan |
| 1556 | * this stage requires information regarding ECC and |
| 1557 | * bad block management. */ |
| 1558 | |
| 1559 | /* Bad block management */ |
| 1560 | denali->nand->bbt_td = &bbt_main_descr; |
| 1561 | denali->nand->bbt_md = &bbt_mirror_descr; |
| 1562 | |
| 1563 | /* skip the scan for now until we have OOB read and write support */ |
| 1564 | denali->nand->options |= NAND_USE_FLASH_BBT;//NAND_SKIP_BBTSCAN |
| 1565 | |
| 1566 | // init ecc |
| 1567 | denali_nand_ecc_init(denali); |
| 1568 | |
| 1569 | /* Let driver know the total blocks number and |
| 1570 | * how many blocks contained by each nand chip. |
| 1571 | * blksperchip will help driver to know how many |
| 1572 | * blocks is taken by FW. |
| 1573 | * */ |
| 1574 | denali->totalblks = denali->mtd->size >> denali->nand->phys_erase_shift; |
| 1575 | denali->blksperchip = denali->totalblks / denali->nand->numchips; |
| 1576 | |
| 1577 | /* These functions are required by the NAND core framework, otherwise, |
| 1578 | * the NAND core will assert. However, we don't need them, so we'll stub |
| 1579 | * them out. */ |
| 1580 | denali->nand->ecc.calculate = denali_ecc_calculate; |
| 1581 | denali->nand->ecc.correct = denali_ecc_correct; |
| 1582 | denali->nand->ecc.hwctl = denali_ecc_hwctl; |
| 1583 | |
| 1584 | /* override the default read operations */ |
| 1585 | denali->nand->ecc.read_page = denali_read_page; |
| 1586 | denali->nand->ecc.read_page_raw = denali_read_page_raw; |
| 1587 | denali->nand->ecc.write_page = denali_write_page; |
| 1588 | denali->nand->ecc.write_page_raw = denali_write_page_raw; |
| 1589 | denali->nand->ecc.read_oob = denali_read_oob; |
| 1590 | denali->nand->ecc.write_oob = denali_write_oob; |
| 1591 | denali->nand->erase_cmd = denali_erase; |
| 1592 | |
| 1593 | if (nand_scan_tail(denali->mtd)) |
| 1594 | { |
| 1595 | ret = -1; |
| 1596 | } |
| 1597 | |
| 1598 | return 0; |
| 1599 | } |
| 1600 | |