zte's code,first commit
Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/build/uClibc/libm/math_private.h b/ap/build/uClibc/libm/math_private.h
new file mode 100644
index 0000000..be8031e
--- /dev/null
+++ b/ap/build/uClibc/libm/math_private.h
@@ -0,0 +1,259 @@
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#ifndef _MATH_PRIVATE_H_
+#define _MATH_PRIVATE_H_
+
+#include <endian.h>
+#include <sys/types.h>
+
+/* The original fdlibm code used statements like:
+ n0 = ((*(int*)&one)>>29)^1; * index of high word *
+ ix0 = *(n0+(int*)&x); * high word of x *
+ ix1 = *((1-n0)+(int*)&x); * low word of x *
+ to dig two 32 bit words out of the 64 bit IEEE floating point
+ value. That is non-ANSI, and, moreover, the gcc instruction
+ scheduler gets it wrong. We instead use the following macros.
+ Unlike the original code, we determine the endianness at compile
+ time, not at run time; I don't see much benefit to selecting
+ endianness at run time. */
+
+/* A union which permits us to convert between a double and two 32 bit
+ ints. */
+
+/*
+ * Math on arm is special (read: stupid):
+ * For FPA, float words are always big-endian.
+ * For VFP, float words follow the memory system mode.
+ * For Maverick, float words are always little-endian.
+ */
+
+#if !defined(__MAVERICK__) && ((__BYTE_ORDER == __BIG_ENDIAN) || \
+ (!defined(__VFP_FP__) && (defined(__arm__) || defined(__thumb__))))
+
+typedef union
+{
+ double value;
+ struct
+ {
+ u_int32_t msw;
+ u_int32_t lsw;
+ } parts;
+} ieee_double_shape_type;
+
+#else
+
+typedef union
+{
+ double value;
+ struct
+ {
+ u_int32_t lsw;
+ u_int32_t msw;
+ } parts;
+} ieee_double_shape_type;
+
+#endif
+
+/* Get two 32 bit ints from a double. */
+
+#define EXTRACT_WORDS(ix0,ix1,d) \
+do { \
+ ieee_double_shape_type ew_u; \
+ ew_u.value = (d); \
+ (ix0) = ew_u.parts.msw; \
+ (ix1) = ew_u.parts.lsw; \
+} while (0)
+
+/* Get the more significant 32 bit int from a double. */
+
+#define GET_HIGH_WORD(i,d) \
+do { \
+ ieee_double_shape_type gh_u; \
+ gh_u.value = (d); \
+ (i) = gh_u.parts.msw; \
+} while (0)
+
+/* Get the less significant 32 bit int from a double. */
+
+#define GET_LOW_WORD(i,d) \
+do { \
+ ieee_double_shape_type gl_u; \
+ gl_u.value = (d); \
+ (i) = gl_u.parts.lsw; \
+} while (0)
+
+/* Set a double from two 32 bit ints. */
+
+#define INSERT_WORDS(d,ix0,ix1) \
+do { \
+ ieee_double_shape_type iw_u; \
+ iw_u.parts.msw = (ix0); \
+ iw_u.parts.lsw = (ix1); \
+ (d) = iw_u.value; \
+} while (0)
+
+/* Set the more significant 32 bits of a double from an int. */
+
+#define SET_HIGH_WORD(d,v) \
+do { \
+ ieee_double_shape_type sh_u; \
+ sh_u.value = (d); \
+ sh_u.parts.msw = (v); \
+ (d) = sh_u.value; \
+} while (0)
+
+/* Set the less significant 32 bits of a double from an int. */
+
+#define SET_LOW_WORD(d,v) \
+do { \
+ ieee_double_shape_type sl_u; \
+ sl_u.value = (d); \
+ sl_u.parts.lsw = (v); \
+ (d) = sl_u.value; \
+} while (0)
+
+/* A union which permits us to convert between a float and a 32 bit
+ int. */
+
+typedef union
+{
+ float value;
+ u_int32_t word;
+} ieee_float_shape_type;
+
+/* Get a 32 bit int from a float. */
+
+#define GET_FLOAT_WORD(i,d) \
+do { \
+ ieee_float_shape_type gf_u; \
+ gf_u.value = (d); \
+ (i) = gf_u.word; \
+} while (0)
+
+/* Set a float from a 32 bit int. */
+
+#define SET_FLOAT_WORD(d,i) \
+do { \
+ ieee_float_shape_type sf_u; \
+ sf_u.word = (i); \
+ (d) = sf_u.value; \
+} while (0)
+
+/* ieee style elementary functions */
+extern double __ieee754_sqrt (double) attribute_hidden;
+extern double __ieee754_acos (double) attribute_hidden;
+extern double __ieee754_acosh (double) attribute_hidden;
+extern double __ieee754_log (double) attribute_hidden;
+extern double __ieee754_log2 (double) attribute_hidden;
+extern double __ieee754_atanh (double) attribute_hidden;
+extern double __ieee754_asin (double) attribute_hidden;
+extern double __ieee754_atan2 (double,double) attribute_hidden;
+extern double __ieee754_exp (double) attribute_hidden;
+extern double __ieee754_cosh (double) attribute_hidden;
+extern double __ieee754_fmod (double,double) attribute_hidden;
+extern double __ieee754_pow (double,double) attribute_hidden;
+extern double __ieee754_lgamma_r (double,int *) attribute_hidden;
+/*extern double __ieee754_gamma_r (double,int *) attribute_hidden;*/
+extern double __ieee754_lgamma (double) attribute_hidden;
+/*extern double __ieee754_gamma (double) attribute_hidden;*/
+extern double __ieee754_log10 (double) attribute_hidden;
+extern double __ieee754_sinh (double) attribute_hidden;
+extern double __ieee754_hypot (double,double) attribute_hidden;
+extern double __ieee754_j0 (double) attribute_hidden;
+extern double __ieee754_j1 (double) attribute_hidden;
+extern double __ieee754_y0 (double) attribute_hidden;
+extern double __ieee754_y1 (double) attribute_hidden;
+extern double __ieee754_jn (int,double) attribute_hidden;
+extern double __ieee754_yn (int,double) attribute_hidden;
+extern double __ieee754_remainder (double,double) attribute_hidden;
+extern int __ieee754_rem_pio2 (double,double*) attribute_hidden;
+extern double __ieee754_scalb (double,double) attribute_hidden;
+
+/* fdlibm kernel function */
+#ifndef _IEEE_LIBM
+extern double __kernel_standard (double,double,int) attribute_hidden;
+#endif
+extern double __kernel_sin (double,double,int) attribute_hidden;
+extern double __kernel_cos (double,double) attribute_hidden;
+extern double __kernel_tan (double,double,int) attribute_hidden;
+extern int __kernel_rem_pio2 (double*,double*,int,int,int,const int*) attribute_hidden;
+
+/*
+ * math_opt_barrier(x): safely load x, even if it was manipulated
+ * by non-floationg point operations. This macro returns the value of x.
+ * This ensures compiler does not (ab)use its knowledge about x value
+ * and don't optimize future operations. Example:
+ * float x;
+ * SET_FLOAT_WORD(x, 0x80000001); // sets a bit pattern
+ * y = math_opt_barrier(x); // "compiler, do not cheat!"
+ * y = y * y; // compiler can't optimize, must use real multiply insn
+ *
+ * math_force_eval(x): force expression x to be evaluated.
+ * Useful if otherwise compiler may eliminate the expression
+ * as unused. This macro returns no value.
+ * Example: "void fn(float f) { f = f * f; }"
+ * versus "void fn(float f) { f = f * f; math_force_eval(f); }"
+ *
+ * Currently, math_force_eval(x) stores x into
+ * a floating point register or memory *of the appropriate size*.
+ * There is no guarantee this will not change.
+ */
+#if defined(__i386__)
+#define math_opt_barrier(x) ({ \
+ __typeof(x) __x = (x); \
+ /* "t": load x into top-of-stack fpreg */ \
+ __asm__ ("" : "=t" (__x) : "0" (__x)); \
+ __x; \
+})
+#define math_force_eval(x) do { \
+ __typeof(x) __x = (x); \
+ if (sizeof(__x) <= sizeof(double)) \
+ /* "m": store x into a memory location */ \
+ __asm__ __volatile__ ("" : : "m" (__x)); \
+ else /* long double */ \
+ /* "f": load x into (any) fpreg */ \
+ __asm__ __volatile__ ("" : : "f" (__x)); \
+} while (0)
+#endif
+
+#if defined(__x86_64__)
+#define math_opt_barrier(x) ({ \
+ __typeof(x) __x = (x); \
+ if (sizeof(__x) <= sizeof(double)) \
+ /* "x": load into XMM SSE register */ \
+ __asm__ ("" : "=x" (__x) : "0" (__x)); \
+ else /* long double */ \
+ /* "t": load x into top-of-stack fpreg */ \
+ __asm__ ("" : "=t" (__x) : "0" (__x)); \
+ __x; \
+})
+#define math_force_eval(x) do { \
+ __typeof(x) __x = (x); \
+ if (sizeof(__x) <= sizeof(double)) \
+ /* "x": load into XMM SSE register */ \
+ __asm__ __volatile__ ("" : : "x" (__x)); \
+ else /* long double */ \
+ /* "f": load x into (any) fpreg */ \
+ __asm__ __volatile__ ("" : : "f" (__x)); \
+} while (0)
+#endif
+
+/* Default implementations force store to a memory location */
+#ifndef math_opt_barrier
+#define math_opt_barrier(x) ({ __typeof(x) __x = (x); __asm__ ("" : "+m" (__x)); __x; })
+#endif
+#ifndef math_force_eval
+#define math_force_eval(x) do { __typeof(x) __x = (x); __asm__ __volatile__ ("" : : "m" (__x)); } while (0)
+#endif
+
+
+#endif /* _MATH_PRIVATE_H_ */