zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/lib/libssl/openssl-1.1.1o/crypto/bn/bn_asm.c b/ap/lib/libssl/openssl-1.1.1o/crypto/bn/bn_asm.c
new file mode 100644
index 0000000..4d83a8c
--- /dev/null
+++ b/ap/lib/libssl/openssl-1.1.1o/crypto/bn/bn_asm.c
@@ -0,0 +1,1039 @@
+/*
+ * Copyright 1995-2016 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License").  You may not use
+ * this file except in compliance with the License.  You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <assert.h>
+#include <openssl/crypto.h>
+#include "internal/cryptlib.h"
+#include "bn_local.h"
+
+#if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
+
+BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
+                          BN_ULONG w)
+{
+    BN_ULONG c1 = 0;
+
+    assert(num >= 0);
+    if (num <= 0)
+        return c1;
+
+# ifndef OPENSSL_SMALL_FOOTPRINT
+    while (num & ~3) {
+        mul_add(rp[0], ap[0], w, c1);
+        mul_add(rp[1], ap[1], w, c1);
+        mul_add(rp[2], ap[2], w, c1);
+        mul_add(rp[3], ap[3], w, c1);
+        ap += 4;
+        rp += 4;
+        num -= 4;
+    }
+# endif
+    while (num) {
+        mul_add(rp[0], ap[0], w, c1);
+        ap++;
+        rp++;
+        num--;
+    }
+
+    return c1;
+}
+
+BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
+{
+    BN_ULONG c1 = 0;
+
+    assert(num >= 0);
+    if (num <= 0)
+        return c1;
+
+# ifndef OPENSSL_SMALL_FOOTPRINT
+    while (num & ~3) {
+        mul(rp[0], ap[0], w, c1);
+        mul(rp[1], ap[1], w, c1);
+        mul(rp[2], ap[2], w, c1);
+        mul(rp[3], ap[3], w, c1);
+        ap += 4;
+        rp += 4;
+        num -= 4;
+    }
+# endif
+    while (num) {
+        mul(rp[0], ap[0], w, c1);
+        ap++;
+        rp++;
+        num--;
+    }
+    return c1;
+}
+
+void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
+{
+    assert(n >= 0);
+    if (n <= 0)
+        return;
+
+# ifndef OPENSSL_SMALL_FOOTPRINT
+    while (n & ~3) {
+        sqr(r[0], r[1], a[0]);
+        sqr(r[2], r[3], a[1]);
+        sqr(r[4], r[5], a[2]);
+        sqr(r[6], r[7], a[3]);
+        a += 4;
+        r += 8;
+        n -= 4;
+    }
+# endif
+    while (n) {
+        sqr(r[0], r[1], a[0]);
+        a++;
+        r += 2;
+        n--;
+    }
+}
+
+#else                           /* !(defined(BN_LLONG) ||
+                                 * defined(BN_UMULT_HIGH)) */
+
+BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num,
+                          BN_ULONG w)
+{
+    BN_ULONG c = 0;
+    BN_ULONG bl, bh;
+
+    assert(num >= 0);
+    if (num <= 0)
+        return (BN_ULONG)0;
+
+    bl = LBITS(w);
+    bh = HBITS(w);
+
+# ifndef OPENSSL_SMALL_FOOTPRINT
+    while (num & ~3) {
+        mul_add(rp[0], ap[0], bl, bh, c);
+        mul_add(rp[1], ap[1], bl, bh, c);
+        mul_add(rp[2], ap[2], bl, bh, c);
+        mul_add(rp[3], ap[3], bl, bh, c);
+        ap += 4;
+        rp += 4;
+        num -= 4;
+    }
+# endif
+    while (num) {
+        mul_add(rp[0], ap[0], bl, bh, c);
+        ap++;
+        rp++;
+        num--;
+    }
+    return c;
+}
+
+BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
+{
+    BN_ULONG carry = 0;
+    BN_ULONG bl, bh;
+
+    assert(num >= 0);
+    if (num <= 0)
+        return (BN_ULONG)0;
+
+    bl = LBITS(w);
+    bh = HBITS(w);
+
+# ifndef OPENSSL_SMALL_FOOTPRINT
+    while (num & ~3) {
+        mul(rp[0], ap[0], bl, bh, carry);
+        mul(rp[1], ap[1], bl, bh, carry);
+        mul(rp[2], ap[2], bl, bh, carry);
+        mul(rp[3], ap[3], bl, bh, carry);
+        ap += 4;
+        rp += 4;
+        num -= 4;
+    }
+# endif
+    while (num) {
+        mul(rp[0], ap[0], bl, bh, carry);
+        ap++;
+        rp++;
+        num--;
+    }
+    return carry;
+}
+
+void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
+{
+    assert(n >= 0);
+    if (n <= 0)
+        return;
+
+# ifndef OPENSSL_SMALL_FOOTPRINT
+    while (n & ~3) {
+        sqr64(r[0], r[1], a[0]);
+        sqr64(r[2], r[3], a[1]);
+        sqr64(r[4], r[5], a[2]);
+        sqr64(r[6], r[7], a[3]);
+        a += 4;
+        r += 8;
+        n -= 4;
+    }
+# endif
+    while (n) {
+        sqr64(r[0], r[1], a[0]);
+        a++;
+        r += 2;
+        n--;
+    }
+}
+
+#endif                          /* !(defined(BN_LLONG) ||
+                                 * defined(BN_UMULT_HIGH)) */
+
+#if defined(BN_LLONG) && defined(BN_DIV2W)
+
+BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
+{
+    return ((BN_ULONG)(((((BN_ULLONG) h) << BN_BITS2) | l) / (BN_ULLONG) d));
+}
+
+#else
+
+/* Divide h,l by d and return the result. */
+/* I need to test this some more :-( */
+BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
+{
+    BN_ULONG dh, dl, q, ret = 0, th, tl, t;
+    int i, count = 2;
+
+    if (d == 0)
+        return BN_MASK2;
+
+    i = BN_num_bits_word(d);
+    assert((i == BN_BITS2) || (h <= (BN_ULONG)1 << i));
+
+    i = BN_BITS2 - i;
+    if (h >= d)
+        h -= d;
+
+    if (i) {
+        d <<= i;
+        h = (h << i) | (l >> (BN_BITS2 - i));
+        l <<= i;
+    }
+    dh = (d & BN_MASK2h) >> BN_BITS4;
+    dl = (d & BN_MASK2l);
+    for (;;) {
+        if ((h >> BN_BITS4) == dh)
+            q = BN_MASK2l;
+        else
+            q = h / dh;
+
+        th = q * dh;
+        tl = dl * q;
+        for (;;) {
+            t = h - th;
+            if ((t & BN_MASK2h) ||
+                ((tl) <= ((t << BN_BITS4) | ((l & BN_MASK2h) >> BN_BITS4))))
+                break;
+            q--;
+            th -= dh;
+            tl -= dl;
+        }
+        t = (tl >> BN_BITS4);
+        tl = (tl << BN_BITS4) & BN_MASK2h;
+        th += t;
+
+        if (l < tl)
+            th++;
+        l -= tl;
+        if (h < th) {
+            h += d;
+            q--;
+        }
+        h -= th;
+
+        if (--count == 0)
+            break;
+
+        ret = q << BN_BITS4;
+        h = ((h << BN_BITS4) | (l >> BN_BITS4)) & BN_MASK2;
+        l = (l & BN_MASK2l) << BN_BITS4;
+    }
+    ret |= q;
+    return ret;
+}
+#endif                          /* !defined(BN_LLONG) && defined(BN_DIV2W) */
+
+#ifdef BN_LLONG
+BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+                      int n)
+{
+    BN_ULLONG ll = 0;
+
+    assert(n >= 0);
+    if (n <= 0)
+        return (BN_ULONG)0;
+
+# ifndef OPENSSL_SMALL_FOOTPRINT
+    while (n & ~3) {
+        ll += (BN_ULLONG) a[0] + b[0];
+        r[0] = (BN_ULONG)ll & BN_MASK2;
+        ll >>= BN_BITS2;
+        ll += (BN_ULLONG) a[1] + b[1];
+        r[1] = (BN_ULONG)ll & BN_MASK2;
+        ll >>= BN_BITS2;
+        ll += (BN_ULLONG) a[2] + b[2];
+        r[2] = (BN_ULONG)ll & BN_MASK2;
+        ll >>= BN_BITS2;
+        ll += (BN_ULLONG) a[3] + b[3];
+        r[3] = (BN_ULONG)ll & BN_MASK2;
+        ll >>= BN_BITS2;
+        a += 4;
+        b += 4;
+        r += 4;
+        n -= 4;
+    }
+# endif
+    while (n) {
+        ll += (BN_ULLONG) a[0] + b[0];
+        r[0] = (BN_ULONG)ll & BN_MASK2;
+        ll >>= BN_BITS2;
+        a++;
+        b++;
+        r++;
+        n--;
+    }
+    return (BN_ULONG)ll;
+}
+#else                           /* !BN_LLONG */
+BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+                      int n)
+{
+    BN_ULONG c, l, t;
+
+    assert(n >= 0);
+    if (n <= 0)
+        return (BN_ULONG)0;
+
+    c = 0;
+# ifndef OPENSSL_SMALL_FOOTPRINT
+    while (n & ~3) {
+        t = a[0];
+        t = (t + c) & BN_MASK2;
+        c = (t < c);
+        l = (t + b[0]) & BN_MASK2;
+        c += (l < t);
+        r[0] = l;
+        t = a[1];
+        t = (t + c) & BN_MASK2;
+        c = (t < c);
+        l = (t + b[1]) & BN_MASK2;
+        c += (l < t);
+        r[1] = l;
+        t = a[2];
+        t = (t + c) & BN_MASK2;
+        c = (t < c);
+        l = (t + b[2]) & BN_MASK2;
+        c += (l < t);
+        r[2] = l;
+        t = a[3];
+        t = (t + c) & BN_MASK2;
+        c = (t < c);
+        l = (t + b[3]) & BN_MASK2;
+        c += (l < t);
+        r[3] = l;
+        a += 4;
+        b += 4;
+        r += 4;
+        n -= 4;
+    }
+# endif
+    while (n) {
+        t = a[0];
+        t = (t + c) & BN_MASK2;
+        c = (t < c);
+        l = (t + b[0]) & BN_MASK2;
+        c += (l < t);
+        r[0] = l;
+        a++;
+        b++;
+        r++;
+        n--;
+    }
+    return (BN_ULONG)c;
+}
+#endif                          /* !BN_LLONG */
+
+BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b,
+                      int n)
+{
+    BN_ULONG t1, t2;
+    int c = 0;
+
+    assert(n >= 0);
+    if (n <= 0)
+        return (BN_ULONG)0;
+
+#ifndef OPENSSL_SMALL_FOOTPRINT
+    while (n & ~3) {
+        t1 = a[0];
+        t2 = b[0];
+        r[0] = (t1 - t2 - c) & BN_MASK2;
+        if (t1 != t2)
+            c = (t1 < t2);
+        t1 = a[1];
+        t2 = b[1];
+        r[1] = (t1 - t2 - c) & BN_MASK2;
+        if (t1 != t2)
+            c = (t1 < t2);
+        t1 = a[2];
+        t2 = b[2];
+        r[2] = (t1 - t2 - c) & BN_MASK2;
+        if (t1 != t2)
+            c = (t1 < t2);
+        t1 = a[3];
+        t2 = b[3];
+        r[3] = (t1 - t2 - c) & BN_MASK2;
+        if (t1 != t2)
+            c = (t1 < t2);
+        a += 4;
+        b += 4;
+        r += 4;
+        n -= 4;
+    }
+#endif
+    while (n) {
+        t1 = a[0];
+        t2 = b[0];
+        r[0] = (t1 - t2 - c) & BN_MASK2;
+        if (t1 != t2)
+            c = (t1 < t2);
+        a++;
+        b++;
+        r++;
+        n--;
+    }
+    return c;
+}
+
+#if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
+
+# undef bn_mul_comba8
+# undef bn_mul_comba4
+# undef bn_sqr_comba8
+# undef bn_sqr_comba4
+
+/* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
+/* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
+/* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
+/*
+ * sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number
+ * c=(c2,c1,c0)
+ */
+
+# ifdef BN_LLONG
+/*
+ * Keep in mind that additions to multiplication result can not
+ * overflow, because its high half cannot be all-ones.
+ */
+#  define mul_add_c(a,b,c0,c1,c2)       do {    \
+        BN_ULONG hi;                            \
+        BN_ULLONG t = (BN_ULLONG)(a)*(b);       \
+        t += c0;                /* no carry */  \
+        c0 = (BN_ULONG)Lw(t);                   \
+        hi = (BN_ULONG)Hw(t);                   \
+        c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
+        } while(0)
+
+#  define mul_add_c2(a,b,c0,c1,c2)      do {    \
+        BN_ULONG hi;                            \
+        BN_ULLONG t = (BN_ULLONG)(a)*(b);       \
+        BN_ULLONG tt = t+c0;    /* no carry */  \
+        c0 = (BN_ULONG)Lw(tt);                  \
+        hi = (BN_ULONG)Hw(tt);                  \
+        c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
+        t += c0;                /* no carry */  \
+        c0 = (BN_ULONG)Lw(t);                   \
+        hi = (BN_ULONG)Hw(t);                   \
+        c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
+        } while(0)
+
+#  define sqr_add_c(a,i,c0,c1,c2)       do {    \
+        BN_ULONG hi;                            \
+        BN_ULLONG t = (BN_ULLONG)a[i]*a[i];     \
+        t += c0;                /* no carry */  \
+        c0 = (BN_ULONG)Lw(t);                   \
+        hi = (BN_ULONG)Hw(t);                   \
+        c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
+        } while(0)
+
+#  define sqr_add_c2(a,i,j,c0,c1,c2) \
+        mul_add_c2((a)[i],(a)[j],c0,c1,c2)
+
+# elif defined(BN_UMULT_LOHI)
+/*
+ * Keep in mind that additions to hi can not overflow, because
+ * the high word of a multiplication result cannot be all-ones.
+ */
+#  define mul_add_c(a,b,c0,c1,c2)       do {    \
+        BN_ULONG ta = (a), tb = (b);            \
+        BN_ULONG lo, hi;                        \
+        BN_UMULT_LOHI(lo,hi,ta,tb);             \
+        c0 += lo; hi += (c0<lo)?1:0;            \
+        c1 += hi; c2 += (c1<hi)?1:0;            \
+        } while(0)
+
+#  define mul_add_c2(a,b,c0,c1,c2)      do {    \
+        BN_ULONG ta = (a), tb = (b);            \
+        BN_ULONG lo, hi, tt;                    \
+        BN_UMULT_LOHI(lo,hi,ta,tb);             \
+        c0 += lo; tt = hi+((c0<lo)?1:0);        \
+        c1 += tt; c2 += (c1<tt)?1:0;            \
+        c0 += lo; hi += (c0<lo)?1:0;            \
+        c1 += hi; c2 += (c1<hi)?1:0;            \
+        } while(0)
+
+#  define sqr_add_c(a,i,c0,c1,c2)       do {    \
+        BN_ULONG ta = (a)[i];                   \
+        BN_ULONG lo, hi;                        \
+        BN_UMULT_LOHI(lo,hi,ta,ta);             \
+        c0 += lo; hi += (c0<lo)?1:0;            \
+        c1 += hi; c2 += (c1<hi)?1:0;            \
+        } while(0)
+
+#  define sqr_add_c2(a,i,j,c0,c1,c2)    \
+        mul_add_c2((a)[i],(a)[j],c0,c1,c2)
+
+# elif defined(BN_UMULT_HIGH)
+/*
+ * Keep in mind that additions to hi can not overflow, because
+ * the high word of a multiplication result cannot be all-ones.
+ */
+#  define mul_add_c(a,b,c0,c1,c2)       do {    \
+        BN_ULONG ta = (a), tb = (b);            \
+        BN_ULONG lo = ta * tb;                  \
+        BN_ULONG hi = BN_UMULT_HIGH(ta,tb);     \
+        c0 += lo; hi += (c0<lo)?1:0;            \
+        c1 += hi; c2 += (c1<hi)?1:0;            \
+        } while(0)
+
+#  define mul_add_c2(a,b,c0,c1,c2)      do {    \
+        BN_ULONG ta = (a), tb = (b), tt;        \
+        BN_ULONG lo = ta * tb;                  \
+        BN_ULONG hi = BN_UMULT_HIGH(ta,tb);     \
+        c0 += lo; tt = hi + ((c0<lo)?1:0);      \
+        c1 += tt; c2 += (c1<tt)?1:0;            \
+        c0 += lo; hi += (c0<lo)?1:0;            \
+        c1 += hi; c2 += (c1<hi)?1:0;            \
+        } while(0)
+
+#  define sqr_add_c(a,i,c0,c1,c2)       do {    \
+        BN_ULONG ta = (a)[i];                   \
+        BN_ULONG lo = ta * ta;                  \
+        BN_ULONG hi = BN_UMULT_HIGH(ta,ta);     \
+        c0 += lo; hi += (c0<lo)?1:0;            \
+        c1 += hi; c2 += (c1<hi)?1:0;            \
+        } while(0)
+
+#  define sqr_add_c2(a,i,j,c0,c1,c2)      \
+        mul_add_c2((a)[i],(a)[j],c0,c1,c2)
+
+# else                          /* !BN_LLONG */
+/*
+ * Keep in mind that additions to hi can not overflow, because
+ * the high word of a multiplication result cannot be all-ones.
+ */
+#  define mul_add_c(a,b,c0,c1,c2)       do {    \
+        BN_ULONG lo = LBITS(a), hi = HBITS(a);  \
+        BN_ULONG bl = LBITS(b), bh = HBITS(b);  \
+        mul64(lo,hi,bl,bh);                     \
+        c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
+        c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
+        } while(0)
+
+#  define mul_add_c2(a,b,c0,c1,c2)      do {    \
+        BN_ULONG tt;                            \
+        BN_ULONG lo = LBITS(a), hi = HBITS(a);  \
+        BN_ULONG bl = LBITS(b), bh = HBITS(b);  \
+        mul64(lo,hi,bl,bh);                     \
+        tt = hi;                                \
+        c0 = (c0+lo)&BN_MASK2; if (c0<lo) tt++; \
+        c1 = (c1+tt)&BN_MASK2; if (c1<tt) c2++; \
+        c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
+        c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
+        } while(0)
+
+#  define sqr_add_c(a,i,c0,c1,c2)       do {    \
+        BN_ULONG lo, hi;                        \
+        sqr64(lo,hi,(a)[i]);                    \
+        c0 = (c0+lo)&BN_MASK2; if (c0<lo) hi++; \
+        c1 = (c1+hi)&BN_MASK2; if (c1<hi) c2++; \
+        } while(0)
+
+#  define sqr_add_c2(a,i,j,c0,c1,c2) \
+        mul_add_c2((a)[i],(a)[j],c0,c1,c2)
+# endif                         /* !BN_LLONG */
+
+void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+{
+    BN_ULONG c1, c2, c3;
+
+    c1 = 0;
+    c2 = 0;
+    c3 = 0;
+    mul_add_c(a[0], b[0], c1, c2, c3);
+    r[0] = c1;
+    c1 = 0;
+    mul_add_c(a[0], b[1], c2, c3, c1);
+    mul_add_c(a[1], b[0], c2, c3, c1);
+    r[1] = c2;
+    c2 = 0;
+    mul_add_c(a[2], b[0], c3, c1, c2);
+    mul_add_c(a[1], b[1], c3, c1, c2);
+    mul_add_c(a[0], b[2], c3, c1, c2);
+    r[2] = c3;
+    c3 = 0;
+    mul_add_c(a[0], b[3], c1, c2, c3);
+    mul_add_c(a[1], b[2], c1, c2, c3);
+    mul_add_c(a[2], b[1], c1, c2, c3);
+    mul_add_c(a[3], b[0], c1, c2, c3);
+    r[3] = c1;
+    c1 = 0;
+    mul_add_c(a[4], b[0], c2, c3, c1);
+    mul_add_c(a[3], b[1], c2, c3, c1);
+    mul_add_c(a[2], b[2], c2, c3, c1);
+    mul_add_c(a[1], b[3], c2, c3, c1);
+    mul_add_c(a[0], b[4], c2, c3, c1);
+    r[4] = c2;
+    c2 = 0;
+    mul_add_c(a[0], b[5], c3, c1, c2);
+    mul_add_c(a[1], b[4], c3, c1, c2);
+    mul_add_c(a[2], b[3], c3, c1, c2);
+    mul_add_c(a[3], b[2], c3, c1, c2);
+    mul_add_c(a[4], b[1], c3, c1, c2);
+    mul_add_c(a[5], b[0], c3, c1, c2);
+    r[5] = c3;
+    c3 = 0;
+    mul_add_c(a[6], b[0], c1, c2, c3);
+    mul_add_c(a[5], b[1], c1, c2, c3);
+    mul_add_c(a[4], b[2], c1, c2, c3);
+    mul_add_c(a[3], b[3], c1, c2, c3);
+    mul_add_c(a[2], b[4], c1, c2, c3);
+    mul_add_c(a[1], b[5], c1, c2, c3);
+    mul_add_c(a[0], b[6], c1, c2, c3);
+    r[6] = c1;
+    c1 = 0;
+    mul_add_c(a[0], b[7], c2, c3, c1);
+    mul_add_c(a[1], b[6], c2, c3, c1);
+    mul_add_c(a[2], b[5], c2, c3, c1);
+    mul_add_c(a[3], b[4], c2, c3, c1);
+    mul_add_c(a[4], b[3], c2, c3, c1);
+    mul_add_c(a[5], b[2], c2, c3, c1);
+    mul_add_c(a[6], b[1], c2, c3, c1);
+    mul_add_c(a[7], b[0], c2, c3, c1);
+    r[7] = c2;
+    c2 = 0;
+    mul_add_c(a[7], b[1], c3, c1, c2);
+    mul_add_c(a[6], b[2], c3, c1, c2);
+    mul_add_c(a[5], b[3], c3, c1, c2);
+    mul_add_c(a[4], b[4], c3, c1, c2);
+    mul_add_c(a[3], b[5], c3, c1, c2);
+    mul_add_c(a[2], b[6], c3, c1, c2);
+    mul_add_c(a[1], b[7], c3, c1, c2);
+    r[8] = c3;
+    c3 = 0;
+    mul_add_c(a[2], b[7], c1, c2, c3);
+    mul_add_c(a[3], b[6], c1, c2, c3);
+    mul_add_c(a[4], b[5], c1, c2, c3);
+    mul_add_c(a[5], b[4], c1, c2, c3);
+    mul_add_c(a[6], b[3], c1, c2, c3);
+    mul_add_c(a[7], b[2], c1, c2, c3);
+    r[9] = c1;
+    c1 = 0;
+    mul_add_c(a[7], b[3], c2, c3, c1);
+    mul_add_c(a[6], b[4], c2, c3, c1);
+    mul_add_c(a[5], b[5], c2, c3, c1);
+    mul_add_c(a[4], b[6], c2, c3, c1);
+    mul_add_c(a[3], b[7], c2, c3, c1);
+    r[10] = c2;
+    c2 = 0;
+    mul_add_c(a[4], b[7], c3, c1, c2);
+    mul_add_c(a[5], b[6], c3, c1, c2);
+    mul_add_c(a[6], b[5], c3, c1, c2);
+    mul_add_c(a[7], b[4], c3, c1, c2);
+    r[11] = c3;
+    c3 = 0;
+    mul_add_c(a[7], b[5], c1, c2, c3);
+    mul_add_c(a[6], b[6], c1, c2, c3);
+    mul_add_c(a[5], b[7], c1, c2, c3);
+    r[12] = c1;
+    c1 = 0;
+    mul_add_c(a[6], b[7], c2, c3, c1);
+    mul_add_c(a[7], b[6], c2, c3, c1);
+    r[13] = c2;
+    c2 = 0;
+    mul_add_c(a[7], b[7], c3, c1, c2);
+    r[14] = c3;
+    r[15] = c1;
+}
+
+void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+{
+    BN_ULONG c1, c2, c3;
+
+    c1 = 0;
+    c2 = 0;
+    c3 = 0;
+    mul_add_c(a[0], b[0], c1, c2, c3);
+    r[0] = c1;
+    c1 = 0;
+    mul_add_c(a[0], b[1], c2, c3, c1);
+    mul_add_c(a[1], b[0], c2, c3, c1);
+    r[1] = c2;
+    c2 = 0;
+    mul_add_c(a[2], b[0], c3, c1, c2);
+    mul_add_c(a[1], b[1], c3, c1, c2);
+    mul_add_c(a[0], b[2], c3, c1, c2);
+    r[2] = c3;
+    c3 = 0;
+    mul_add_c(a[0], b[3], c1, c2, c3);
+    mul_add_c(a[1], b[2], c1, c2, c3);
+    mul_add_c(a[2], b[1], c1, c2, c3);
+    mul_add_c(a[3], b[0], c1, c2, c3);
+    r[3] = c1;
+    c1 = 0;
+    mul_add_c(a[3], b[1], c2, c3, c1);
+    mul_add_c(a[2], b[2], c2, c3, c1);
+    mul_add_c(a[1], b[3], c2, c3, c1);
+    r[4] = c2;
+    c2 = 0;
+    mul_add_c(a[2], b[3], c3, c1, c2);
+    mul_add_c(a[3], b[2], c3, c1, c2);
+    r[5] = c3;
+    c3 = 0;
+    mul_add_c(a[3], b[3], c1, c2, c3);
+    r[6] = c1;
+    r[7] = c2;
+}
+
+void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
+{
+    BN_ULONG c1, c2, c3;
+
+    c1 = 0;
+    c2 = 0;
+    c3 = 0;
+    sqr_add_c(a, 0, c1, c2, c3);
+    r[0] = c1;
+    c1 = 0;
+    sqr_add_c2(a, 1, 0, c2, c3, c1);
+    r[1] = c2;
+    c2 = 0;
+    sqr_add_c(a, 1, c3, c1, c2);
+    sqr_add_c2(a, 2, 0, c3, c1, c2);
+    r[2] = c3;
+    c3 = 0;
+    sqr_add_c2(a, 3, 0, c1, c2, c3);
+    sqr_add_c2(a, 2, 1, c1, c2, c3);
+    r[3] = c1;
+    c1 = 0;
+    sqr_add_c(a, 2, c2, c3, c1);
+    sqr_add_c2(a, 3, 1, c2, c3, c1);
+    sqr_add_c2(a, 4, 0, c2, c3, c1);
+    r[4] = c2;
+    c2 = 0;
+    sqr_add_c2(a, 5, 0, c3, c1, c2);
+    sqr_add_c2(a, 4, 1, c3, c1, c2);
+    sqr_add_c2(a, 3, 2, c3, c1, c2);
+    r[5] = c3;
+    c3 = 0;
+    sqr_add_c(a, 3, c1, c2, c3);
+    sqr_add_c2(a, 4, 2, c1, c2, c3);
+    sqr_add_c2(a, 5, 1, c1, c2, c3);
+    sqr_add_c2(a, 6, 0, c1, c2, c3);
+    r[6] = c1;
+    c1 = 0;
+    sqr_add_c2(a, 7, 0, c2, c3, c1);
+    sqr_add_c2(a, 6, 1, c2, c3, c1);
+    sqr_add_c2(a, 5, 2, c2, c3, c1);
+    sqr_add_c2(a, 4, 3, c2, c3, c1);
+    r[7] = c2;
+    c2 = 0;
+    sqr_add_c(a, 4, c3, c1, c2);
+    sqr_add_c2(a, 5, 3, c3, c1, c2);
+    sqr_add_c2(a, 6, 2, c3, c1, c2);
+    sqr_add_c2(a, 7, 1, c3, c1, c2);
+    r[8] = c3;
+    c3 = 0;
+    sqr_add_c2(a, 7, 2, c1, c2, c3);
+    sqr_add_c2(a, 6, 3, c1, c2, c3);
+    sqr_add_c2(a, 5, 4, c1, c2, c3);
+    r[9] = c1;
+    c1 = 0;
+    sqr_add_c(a, 5, c2, c3, c1);
+    sqr_add_c2(a, 6, 4, c2, c3, c1);
+    sqr_add_c2(a, 7, 3, c2, c3, c1);
+    r[10] = c2;
+    c2 = 0;
+    sqr_add_c2(a, 7, 4, c3, c1, c2);
+    sqr_add_c2(a, 6, 5, c3, c1, c2);
+    r[11] = c3;
+    c3 = 0;
+    sqr_add_c(a, 6, c1, c2, c3);
+    sqr_add_c2(a, 7, 5, c1, c2, c3);
+    r[12] = c1;
+    c1 = 0;
+    sqr_add_c2(a, 7, 6, c2, c3, c1);
+    r[13] = c2;
+    c2 = 0;
+    sqr_add_c(a, 7, c3, c1, c2);
+    r[14] = c3;
+    r[15] = c1;
+}
+
+void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
+{
+    BN_ULONG c1, c2, c3;
+
+    c1 = 0;
+    c2 = 0;
+    c3 = 0;
+    sqr_add_c(a, 0, c1, c2, c3);
+    r[0] = c1;
+    c1 = 0;
+    sqr_add_c2(a, 1, 0, c2, c3, c1);
+    r[1] = c2;
+    c2 = 0;
+    sqr_add_c(a, 1, c3, c1, c2);
+    sqr_add_c2(a, 2, 0, c3, c1, c2);
+    r[2] = c3;
+    c3 = 0;
+    sqr_add_c2(a, 3, 0, c1, c2, c3);
+    sqr_add_c2(a, 2, 1, c1, c2, c3);
+    r[3] = c1;
+    c1 = 0;
+    sqr_add_c(a, 2, c2, c3, c1);
+    sqr_add_c2(a, 3, 1, c2, c3, c1);
+    r[4] = c2;
+    c2 = 0;
+    sqr_add_c2(a, 3, 2, c3, c1, c2);
+    r[5] = c3;
+    c3 = 0;
+    sqr_add_c(a, 3, c1, c2, c3);
+    r[6] = c1;
+    r[7] = c2;
+}
+
+# ifdef OPENSSL_NO_ASM
+#  ifdef OPENSSL_BN_ASM_MONT
+#   include <alloca.h>
+/*
+ * This is essentially reference implementation, which may or may not
+ * result in performance improvement. E.g. on IA-32 this routine was
+ * observed to give 40% faster rsa1024 private key operations and 10%
+ * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
+ * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
+ * reference implementation, one to be used as starting point for
+ * platform-specific assembler. Mentioned numbers apply to compiler
+ * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
+ * can vary not only from platform to platform, but even for compiler
+ * versions. Assembler vs. assembler improvement coefficients can
+ * [and are known to] differ and are to be documented elsewhere.
+ */
+int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
+                const BN_ULONG *np, const BN_ULONG *n0p, int num)
+{
+    BN_ULONG c0, c1, ml, *tp, n0;
+#   ifdef mul64
+    BN_ULONG mh;
+#   endif
+    volatile BN_ULONG *vp;
+    int i = 0, j;
+
+#   if 0                        /* template for platform-specific
+                                 * implementation */
+    if (ap == bp)
+        return bn_sqr_mont(rp, ap, np, n0p, num);
+#   endif
+    vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
+
+    n0 = *n0p;
+
+    c0 = 0;
+    ml = bp[0];
+#   ifdef mul64
+    mh = HBITS(ml);
+    ml = LBITS(ml);
+    for (j = 0; j < num; ++j)
+        mul(tp[j], ap[j], ml, mh, c0);
+#   else
+    for (j = 0; j < num; ++j)
+        mul(tp[j], ap[j], ml, c0);
+#   endif
+
+    tp[num] = c0;
+    tp[num + 1] = 0;
+    goto enter;
+
+    for (i = 0; i < num; i++) {
+        c0 = 0;
+        ml = bp[i];
+#   ifdef mul64
+        mh = HBITS(ml);
+        ml = LBITS(ml);
+        for (j = 0; j < num; ++j)
+            mul_add(tp[j], ap[j], ml, mh, c0);
+#   else
+        for (j = 0; j < num; ++j)
+            mul_add(tp[j], ap[j], ml, c0);
+#   endif
+        c1 = (tp[num] + c0) & BN_MASK2;
+        tp[num] = c1;
+        tp[num + 1] = (c1 < c0 ? 1 : 0);
+ enter:
+        c1 = tp[0];
+        ml = (c1 * n0) & BN_MASK2;
+        c0 = 0;
+#   ifdef mul64
+        mh = HBITS(ml);
+        ml = LBITS(ml);
+        mul_add(c1, np[0], ml, mh, c0);
+#   else
+        mul_add(c1, ml, np[0], c0);
+#   endif
+        for (j = 1; j < num; j++) {
+            c1 = tp[j];
+#   ifdef mul64
+            mul_add(c1, np[j], ml, mh, c0);
+#   else
+            mul_add(c1, ml, np[j], c0);
+#   endif
+            tp[j - 1] = c1 & BN_MASK2;
+        }
+        c1 = (tp[num] + c0) & BN_MASK2;
+        tp[num - 1] = c1;
+        tp[num] = tp[num + 1] + (c1 < c0 ? 1 : 0);
+    }
+
+    if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
+        c0 = bn_sub_words(rp, tp, np, num);
+        if (tp[num] != 0 || c0 == 0) {
+            for (i = 0; i < num + 2; i++)
+                vp[i] = 0;
+            return 1;
+        }
+    }
+    for (i = 0; i < num; i++)
+        rp[i] = tp[i], vp[i] = 0;
+    vp[num] = 0;
+    vp[num + 1] = 0;
+    return 1;
+}
+#  else
+/*
+ * Return value of 0 indicates that multiplication/convolution was not
+ * performed to signal the caller to fall down to alternative/original
+ * code-path.
+ */
+int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
+                const BN_ULONG *np, const BN_ULONG *n0, int num)
+{
+    return 0;
+}
+#  endif                        /* OPENSSL_BN_ASM_MONT */
+# endif
+
+#else                           /* !BN_MUL_COMBA */
+
+/* hmm... is it faster just to do a multiply? */
+# undef bn_sqr_comba4
+# undef bn_sqr_comba8
+void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
+{
+    BN_ULONG t[8];
+    bn_sqr_normal(r, a, 4, t);
+}
+
+void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
+{
+    BN_ULONG t[16];
+    bn_sqr_normal(r, a, 8, t);
+}
+
+void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+{
+    r[4] = bn_mul_words(&(r[0]), a, 4, b[0]);
+    r[5] = bn_mul_add_words(&(r[1]), a, 4, b[1]);
+    r[6] = bn_mul_add_words(&(r[2]), a, 4, b[2]);
+    r[7] = bn_mul_add_words(&(r[3]), a, 4, b[3]);
+}
+
+void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
+{
+    r[8] = bn_mul_words(&(r[0]), a, 8, b[0]);
+    r[9] = bn_mul_add_words(&(r[1]), a, 8, b[1]);
+    r[10] = bn_mul_add_words(&(r[2]), a, 8, b[2]);
+    r[11] = bn_mul_add_words(&(r[3]), a, 8, b[3]);
+    r[12] = bn_mul_add_words(&(r[4]), a, 8, b[4]);
+    r[13] = bn_mul_add_words(&(r[5]), a, 8, b[5]);
+    r[14] = bn_mul_add_words(&(r[6]), a, 8, b[6]);
+    r[15] = bn_mul_add_words(&(r[7]), a, 8, b[7]);
+}
+
+# ifdef OPENSSL_NO_ASM
+#  ifdef OPENSSL_BN_ASM_MONT
+#   include <alloca.h>
+int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
+                const BN_ULONG *np, const BN_ULONG *n0p, int num)
+{
+    BN_ULONG c0, c1, *tp, n0 = *n0p;
+    volatile BN_ULONG *vp;
+    int i = 0, j;
+
+    vp = tp = alloca((num + 2) * sizeof(BN_ULONG));
+
+    for (i = 0; i <= num; i++)
+        tp[i] = 0;
+
+    for (i = 0; i < num; i++) {
+        c0 = bn_mul_add_words(tp, ap, num, bp[i]);
+        c1 = (tp[num] + c0) & BN_MASK2;
+        tp[num] = c1;
+        tp[num + 1] = (c1 < c0 ? 1 : 0);
+
+        c0 = bn_mul_add_words(tp, np, num, tp[0] * n0);
+        c1 = (tp[num] + c0) & BN_MASK2;
+        tp[num] = c1;
+        tp[num + 1] += (c1 < c0 ? 1 : 0);
+        for (j = 0; j <= num; j++)
+            tp[j] = tp[j + 1];
+    }
+
+    if (tp[num] != 0 || tp[num - 1] >= np[num - 1]) {
+        c0 = bn_sub_words(rp, tp, np, num);
+        if (tp[num] != 0 || c0 == 0) {
+            for (i = 0; i < num + 2; i++)
+                vp[i] = 0;
+            return 1;
+        }
+    }
+    for (i = 0; i < num; i++)
+        rp[i] = tp[i], vp[i] = 0;
+    vp[num] = 0;
+    vp[num + 1] = 0;
+    return 1;
+}
+#  else
+int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp,
+                const BN_ULONG *np, const BN_ULONG *n0, int num)
+{
+    return 0;
+}
+#  endif                        /* OPENSSL_BN_ASM_MONT */
+# endif
+
+#endif                          /* !BN_MUL_COMBA */