zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/lib/libssl/openssl-1.1.1o/crypto/bn/bn_div.c b/ap/lib/libssl/openssl-1.1.1o/crypto/bn/bn_div.c
new file mode 100644
index 0000000..4273618
--- /dev/null
+++ b/ap/lib/libssl/openssl-1.1.1o/crypto/bn/bn_div.c
@@ -0,0 +1,460 @@
+/*
+ * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License").  You may not use
+ * this file except in compliance with the License.  You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <assert.h>
+#include <openssl/bn.h>
+#include "internal/cryptlib.h"
+#include "bn_local.h"
+
+/* The old slow way */
+#if 0
+int BN_div(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m, const BIGNUM *d,
+           BN_CTX *ctx)
+{
+    int i, nm, nd;
+    int ret = 0;
+    BIGNUM *D;
+
+    bn_check_top(m);
+    bn_check_top(d);
+    if (BN_is_zero(d)) {
+        BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO);
+        return 0;
+    }
+
+    if (BN_ucmp(m, d) < 0) {
+        if (rem != NULL) {
+            if (BN_copy(rem, m) == NULL)
+                return 0;
+        }
+        if (dv != NULL)
+            BN_zero(dv);
+        return 1;
+    }
+
+    BN_CTX_start(ctx);
+    D = BN_CTX_get(ctx);
+    if (dv == NULL)
+        dv = BN_CTX_get(ctx);
+    if (rem == NULL)
+        rem = BN_CTX_get(ctx);
+    if (D == NULL || dv == NULL || rem == NULL)
+        goto end;
+
+    nd = BN_num_bits(d);
+    nm = BN_num_bits(m);
+    if (BN_copy(D, d) == NULL)
+        goto end;
+    if (BN_copy(rem, m) == NULL)
+        goto end;
+
+    /*
+     * The next 2 are needed so we can do a dv->d[0]|=1 later since
+     * BN_lshift1 will only work once there is a value :-)
+     */
+    BN_zero(dv);
+    if (bn_wexpand(dv, 1) == NULL)
+        goto end;
+    dv->top = 1;
+
+    if (!BN_lshift(D, D, nm - nd))
+        goto end;
+    for (i = nm - nd; i >= 0; i--) {
+        if (!BN_lshift1(dv, dv))
+            goto end;
+        if (BN_ucmp(rem, D) >= 0) {
+            dv->d[0] |= 1;
+            if (!BN_usub(rem, rem, D))
+                goto end;
+        }
+/* CAN IMPROVE (and have now :=) */
+        if (!BN_rshift1(D, D))
+            goto end;
+    }
+    rem->neg = BN_is_zero(rem) ? 0 : m->neg;
+    dv->neg = m->neg ^ d->neg;
+    ret = 1;
+ end:
+    BN_CTX_end(ctx);
+    return ret;
+}
+
+#else
+
+# if defined(BN_DIV3W)
+BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0);
+# elif 0
+/*
+ * This is #if-ed away, because it's a reference for assembly implementations,
+ * where it can and should be made constant-time. But if you want to test it,
+ * just replace 0 with 1.
+ */
+#  if BN_BITS2 == 64 && defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16
+#   undef BN_ULLONG
+#   define BN_ULLONG __uint128_t
+#   define BN_LLONG
+#  endif
+
+#  ifdef BN_LLONG
+#   define BN_DIV3W
+/*
+ * Interface is somewhat quirky, |m| is pointer to most significant limb,
+ * and less significant limb is referred at |m[-1]|. This means that caller
+ * is responsible for ensuring that |m[-1]| is valid. Second condition that
+ * has to be met is that |d0|'s most significant bit has to be set. Or in
+ * other words divisor has to be "bit-aligned to the left." bn_div_fixed_top
+ * does all this. The subroutine considers four limbs, two of which are
+ * "overlapping," hence the name...
+ */
+static BN_ULONG bn_div_3_words(const BN_ULONG *m, BN_ULONG d1, BN_ULONG d0)
+{
+    BN_ULLONG R = ((BN_ULLONG)m[0] << BN_BITS2) | m[-1];
+    BN_ULLONG D = ((BN_ULLONG)d0 << BN_BITS2) | d1;
+    BN_ULONG Q = 0, mask;
+    int i;
+
+    for (i = 0; i < BN_BITS2; i++) {
+        Q <<= 1;
+        if (R >= D) {
+            Q |= 1;
+            R -= D;
+        }
+        D >>= 1;
+    }
+
+    mask = 0 - (Q >> (BN_BITS2 - 1));   /* does it overflow? */
+
+    Q <<= 1;
+    Q |= (R >= D);
+
+    return (Q | mask) & BN_MASK2;
+}
+#  endif
+# endif
+
+static int bn_left_align(BIGNUM *num)
+{
+    BN_ULONG *d = num->d, n, m, rmask;
+    int top = num->top;
+    int rshift = BN_num_bits_word(d[top - 1]), lshift, i;
+
+    lshift = BN_BITS2 - rshift;
+    rshift %= BN_BITS2;            /* say no to undefined behaviour */
+    rmask = (BN_ULONG)0 - rshift;  /* rmask = 0 - (rshift != 0) */
+    rmask |= rmask >> 8;
+
+    for (i = 0, m = 0; i < top; i++) {
+        n = d[i];
+        d[i] = ((n << lshift) | m) & BN_MASK2;
+        m = (n >> rshift) & rmask;
+    }
+
+    return lshift;
+}
+
+# if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) \
+    && !defined(PEDANTIC) && !defined(BN_DIV3W)
+#  if defined(__GNUC__) && __GNUC__>=2
+#   if defined(__i386) || defined (__i386__)
+   /*-
+    * There were two reasons for implementing this template:
+    * - GNU C generates a call to a function (__udivdi3 to be exact)
+    *   in reply to ((((BN_ULLONG)n0)<<BN_BITS2)|n1)/d0 (I fail to
+    *   understand why...);
+    * - divl doesn't only calculate quotient, but also leaves
+    *   remainder in %edx which we can definitely use here:-)
+    */
+#    undef bn_div_words
+#    define bn_div_words(n0,n1,d0)                \
+        ({  asm volatile (                      \
+                "divl   %4"                     \
+                : "=a"(q), "=d"(rem)            \
+                : "a"(n1), "d"(n0), "r"(d0)     \
+                : "cc");                        \
+            q;                                  \
+        })
+#    define REMAINDER_IS_ALREADY_CALCULATED
+#   elif defined(__x86_64) && defined(SIXTY_FOUR_BIT_LONG)
+   /*
+    * Same story here, but it's 128-bit by 64-bit division. Wow!
+    */
+#    undef bn_div_words
+#    define bn_div_words(n0,n1,d0)                \
+        ({  asm volatile (                      \
+                "divq   %4"                     \
+                : "=a"(q), "=d"(rem)            \
+                : "a"(n1), "d"(n0), "r"(d0)     \
+                : "cc");                        \
+            q;                                  \
+        })
+#    define REMAINDER_IS_ALREADY_CALCULATED
+#   endif                       /* __<cpu> */
+#  endif                        /* __GNUC__ */
+# endif                         /* OPENSSL_NO_ASM */
+
+/*-
+ * BN_div computes  dv := num / divisor, rounding towards
+ * zero, and sets up rm  such that  dv*divisor + rm = num  holds.
+ * Thus:
+ *     dv->neg == num->neg ^ divisor->neg  (unless the result is zero)
+ *     rm->neg == num->neg                 (unless the remainder is zero)
+ * If 'dv' or 'rm' is NULL, the respective value is not returned.
+ */
+int BN_div(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num, const BIGNUM *divisor,
+           BN_CTX *ctx)
+{
+    int ret;
+
+    if (BN_is_zero(divisor)) {
+        BNerr(BN_F_BN_DIV, BN_R_DIV_BY_ZERO);
+        return 0;
+    }
+
+    /*
+     * Invalid zero-padding would have particularly bad consequences so don't
+     * just rely on bn_check_top() here (bn_check_top() works only for
+     * BN_DEBUG builds)
+     */
+    if (divisor->d[divisor->top - 1] == 0) {
+        BNerr(BN_F_BN_DIV, BN_R_NOT_INITIALIZED);
+        return 0;
+    }
+
+    ret = bn_div_fixed_top(dv, rm, num, divisor, ctx);
+
+    if (ret) {
+        if (dv != NULL)
+            bn_correct_top(dv);
+        if (rm != NULL)
+            bn_correct_top(rm);
+    }
+
+    return ret;
+}
+
+/*
+ * It's argued that *length* of *significant* part of divisor is public.
+ * Even if it's private modulus that is. Again, *length* is assumed
+ * public, but not *value*. Former is likely to be pre-defined by
+ * algorithm with bit granularity, though below subroutine is invariant
+ * of limb length. Thanks to this assumption we can require that |divisor|
+ * may not be zero-padded, yet claim this subroutine "constant-time"(*).
+ * This is because zero-padded dividend, |num|, is tolerated, so that
+ * caller can pass dividend of public length(*), but with smaller amount
+ * of significant limbs. This naturally means that quotient, |dv|, would
+ * contain correspongly less significant limbs as well, and will be zero-
+ * padded accordingly. Returned remainder, |rm|, will have same bit length
+ * as divisor, also zero-padded if needed. These actually leave sign bits
+ * in ambiguous state. In sense that we try to avoid negative zeros, while
+ * zero-padded zeros would retain sign.
+ *
+ * (*) "Constant-time-ness" has two pre-conditions:
+ *
+ *     - availability of constant-time bn_div_3_words;
+ *     - dividend is at least as "wide" as divisor, limb-wise, zero-padded
+ *       if so required, which shouldn't be a privacy problem, because
+ *       divisor's length is considered public;
+ */
+int bn_div_fixed_top(BIGNUM *dv, BIGNUM *rm, const BIGNUM *num,
+                     const BIGNUM *divisor, BN_CTX *ctx)
+{
+    int norm_shift, i, j, loop;
+    BIGNUM *tmp, *snum, *sdiv, *res;
+    BN_ULONG *resp, *wnum, *wnumtop;
+    BN_ULONG d0, d1;
+    int num_n, div_n, num_neg;
+
+    assert(divisor->top > 0 && divisor->d[divisor->top - 1] != 0);
+
+    bn_check_top(num);
+    bn_check_top(divisor);
+    bn_check_top(dv);
+    bn_check_top(rm);
+
+    BN_CTX_start(ctx);
+    res = (dv == NULL) ? BN_CTX_get(ctx) : dv;
+    tmp = BN_CTX_get(ctx);
+    snum = BN_CTX_get(ctx);
+    sdiv = BN_CTX_get(ctx);
+    if (sdiv == NULL)
+        goto err;
+
+    /* First we normalise the numbers */
+    if (!BN_copy(sdiv, divisor))
+        goto err;
+    norm_shift = bn_left_align(sdiv);
+    sdiv->neg = 0;
+    /*
+     * Note that bn_lshift_fixed_top's output is always one limb longer
+     * than input, even when norm_shift is zero. This means that amount of
+     * inner loop iterations is invariant of dividend value, and that one
+     * doesn't need to compare dividend and divisor if they were originally
+     * of the same bit length.
+     */
+    if (!(bn_lshift_fixed_top(snum, num, norm_shift)))
+        goto err;
+
+    div_n = sdiv->top;
+    num_n = snum->top;
+
+    if (num_n <= div_n) {
+        /* caller didn't pad dividend -> no constant-time guarantee... */
+        if (bn_wexpand(snum, div_n + 1) == NULL)
+            goto err;
+        memset(&(snum->d[num_n]), 0, (div_n - num_n + 1) * sizeof(BN_ULONG));
+        snum->top = num_n = div_n + 1;
+    }
+
+    loop = num_n - div_n;
+    /*
+     * Lets setup a 'window' into snum This is the part that corresponds to
+     * the current 'area' being divided
+     */
+    wnum = &(snum->d[loop]);
+    wnumtop = &(snum->d[num_n - 1]);
+
+    /* Get the top 2 words of sdiv */
+    d0 = sdiv->d[div_n - 1];
+    d1 = (div_n == 1) ? 0 : sdiv->d[div_n - 2];
+
+    /* Setup quotient */
+    if (!bn_wexpand(res, loop))
+        goto err;
+    num_neg = num->neg;
+    res->neg = (num_neg ^ divisor->neg);
+    res->top = loop;
+    res->flags |= BN_FLG_FIXED_TOP;
+    resp = &(res->d[loop]);
+
+    /* space for temp */
+    if (!bn_wexpand(tmp, (div_n + 1)))
+        goto err;
+
+    for (i = 0; i < loop; i++, wnumtop--) {
+        BN_ULONG q, l0;
+        /*
+         * the first part of the loop uses the top two words of snum and sdiv
+         * to calculate a BN_ULONG q such that | wnum - sdiv * q | < sdiv
+         */
+# if defined(BN_DIV3W)
+        q = bn_div_3_words(wnumtop, d1, d0);
+# else
+        BN_ULONG n0, n1, rem = 0;
+
+        n0 = wnumtop[0];
+        n1 = wnumtop[-1];
+        if (n0 == d0)
+            q = BN_MASK2;
+        else {                  /* n0 < d0 */
+            BN_ULONG n2 = (wnumtop == wnum) ? 0 : wnumtop[-2];
+#  ifdef BN_LLONG
+            BN_ULLONG t2;
+
+#   if defined(BN_LLONG) && defined(BN_DIV2W) && !defined(bn_div_words)
+            q = (BN_ULONG)(((((BN_ULLONG) n0) << BN_BITS2) | n1) / d0);
+#   else
+            q = bn_div_words(n0, n1, d0);
+#   endif
+
+#   ifndef REMAINDER_IS_ALREADY_CALCULATED
+            /*
+             * rem doesn't have to be BN_ULLONG. The least we
+             * know it's less that d0, isn't it?
+             */
+            rem = (n1 - q * d0) & BN_MASK2;
+#   endif
+            t2 = (BN_ULLONG) d1 *q;
+
+            for (;;) {
+                if (t2 <= ((((BN_ULLONG) rem) << BN_BITS2) | n2))
+                    break;
+                q--;
+                rem += d0;
+                if (rem < d0)
+                    break;      /* don't let rem overflow */
+                t2 -= d1;
+            }
+#  else                         /* !BN_LLONG */
+            BN_ULONG t2l, t2h;
+
+            q = bn_div_words(n0, n1, d0);
+#   ifndef REMAINDER_IS_ALREADY_CALCULATED
+            rem = (n1 - q * d0) & BN_MASK2;
+#   endif
+
+#   if defined(BN_UMULT_LOHI)
+            BN_UMULT_LOHI(t2l, t2h, d1, q);
+#   elif defined(BN_UMULT_HIGH)
+            t2l = d1 * q;
+            t2h = BN_UMULT_HIGH(d1, q);
+#   else
+            {
+                BN_ULONG ql, qh;
+                t2l = LBITS(d1);
+                t2h = HBITS(d1);
+                ql = LBITS(q);
+                qh = HBITS(q);
+                mul64(t2l, t2h, ql, qh); /* t2=(BN_ULLONG)d1*q; */
+            }
+#   endif
+
+            for (;;) {
+                if ((t2h < rem) || ((t2h == rem) && (t2l <= n2)))
+                    break;
+                q--;
+                rem += d0;
+                if (rem < d0)
+                    break;      /* don't let rem overflow */
+                if (t2l < d1)
+                    t2h--;
+                t2l -= d1;
+            }
+#  endif                        /* !BN_LLONG */
+        }
+# endif                         /* !BN_DIV3W */
+
+        l0 = bn_mul_words(tmp->d, sdiv->d, div_n, q);
+        tmp->d[div_n] = l0;
+        wnum--;
+        /*
+         * ignore top values of the bignums just sub the two BN_ULONG arrays
+         * with bn_sub_words
+         */
+        l0 = bn_sub_words(wnum, wnum, tmp->d, div_n + 1);
+        q -= l0;
+        /*
+         * Note: As we have considered only the leading two BN_ULONGs in
+         * the calculation of q, sdiv * q might be greater than wnum (but
+         * then (q-1) * sdiv is less or equal than wnum)
+         */
+        for (l0 = 0 - l0, j = 0; j < div_n; j++)
+            tmp->d[j] = sdiv->d[j] & l0;
+        l0 = bn_add_words(wnum, wnum, tmp->d, div_n);
+        (*wnumtop) += l0;
+        assert((*wnumtop) == 0);
+
+        /* store part of the result */
+        *--resp = q;
+    }
+    /* snum holds remainder, it's as wide as divisor */
+    snum->neg = num_neg;
+    snum->top = div_n;
+    snum->flags |= BN_FLG_FIXED_TOP;
+
+    if (rm != NULL && bn_rshift_fixed_top(rm, snum, norm_shift) == 0)
+        goto err;
+
+    BN_CTX_end(ctx);
+    return 1;
+ err:
+    bn_check_top(rm);
+    BN_CTX_end(ctx);
+    return 0;
+}
+#endif