zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/lib/libssl/openssl-1.1.1o/crypto/bn/bn_mont.c b/ap/lib/libssl/openssl-1.1.1o/crypto/bn/bn_mont.c
new file mode 100644
index 0000000..1e5045a
--- /dev/null
+++ b/ap/lib/libssl/openssl-1.1.1o/crypto/bn/bn_mont.c
@@ -0,0 +1,464 @@
+/*
+ * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License").  You may not use
+ * this file except in compliance with the License.  You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+/*
+ * Details about Montgomery multiplication algorithms can be found at
+ * http://security.ece.orst.edu/publications.html, e.g.
+ * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and
+ * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf
+ */
+
+#include "internal/cryptlib.h"
+#include "bn_local.h"
+
+#define MONT_WORD               /* use the faster word-based algorithm */
+
+#ifdef MONT_WORD
+static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont);
+#endif
+
+int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
+                          BN_MONT_CTX *mont, BN_CTX *ctx)
+{
+    int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx);
+
+    bn_correct_top(r);
+    bn_check_top(r);
+
+    return ret;
+}
+
+int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
+                          BN_MONT_CTX *mont, BN_CTX *ctx)
+{
+    BIGNUM *tmp;
+    int ret = 0;
+    int num = mont->N.top;
+
+#if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD)
+    if (num > 1 && a->top == num && b->top == num) {
+        if (bn_wexpand(r, num) == NULL)
+            return 0;
+        if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) {
+            r->neg = a->neg ^ b->neg;
+            r->top = num;
+            r->flags |= BN_FLG_FIXED_TOP;
+            return 1;
+        }
+    }
+#endif
+
+    if ((a->top + b->top) > 2 * num)
+        return 0;
+
+    BN_CTX_start(ctx);
+    tmp = BN_CTX_get(ctx);
+    if (tmp == NULL)
+        goto err;
+
+    bn_check_top(tmp);
+    if (a == b) {
+        if (!bn_sqr_fixed_top(tmp, a, ctx))
+            goto err;
+    } else {
+        if (!bn_mul_fixed_top(tmp, a, b, ctx))
+            goto err;
+    }
+    /* reduce from aRR to aR */
+#ifdef MONT_WORD
+    if (!bn_from_montgomery_word(r, tmp, mont))
+        goto err;
+#else
+    if (!BN_from_montgomery(r, tmp, mont, ctx))
+        goto err;
+#endif
+    ret = 1;
+ err:
+    BN_CTX_end(ctx);
+    return ret;
+}
+
+#ifdef MONT_WORD
+static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont)
+{
+    BIGNUM *n;
+    BN_ULONG *ap, *np, *rp, n0, v, carry;
+    int nl, max, i;
+    unsigned int rtop;
+
+    n = &(mont->N);
+    nl = n->top;
+    if (nl == 0) {
+        ret->top = 0;
+        return 1;
+    }
+
+    max = (2 * nl);             /* carry is stored separately */
+    if (bn_wexpand(r, max) == NULL)
+        return 0;
+
+    r->neg ^= n->neg;
+    np = n->d;
+    rp = r->d;
+
+    /* clear the top words of T */
+    for (rtop = r->top, i = 0; i < max; i++) {
+        v = (BN_ULONG)0 - ((i - rtop) >> (8 * sizeof(rtop) - 1));
+        rp[i] &= v;
+    }
+
+    r->top = max;
+    r->flags |= BN_FLG_FIXED_TOP;
+    n0 = mont->n0[0];
+
+    /*
+     * Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On
+     * input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r|
+     * includes |carry| which is stored separately.
+     */
+    for (carry = 0, i = 0; i < nl; i++, rp++) {
+        v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2);
+        v = (v + carry + rp[nl]) & BN_MASK2;
+        carry |= (v != rp[nl]);
+        carry &= (v <= rp[nl]);
+        rp[nl] = v;
+    }
+
+    if (bn_wexpand(ret, nl) == NULL)
+        return 0;
+    ret->top = nl;
+    ret->flags |= BN_FLG_FIXED_TOP;
+    ret->neg = r->neg;
+
+    rp = ret->d;
+
+    /*
+     * Shift |nl| words to divide by R. We have |ap| < 2 * |n|. Note that |ap|
+     * includes |carry| which is stored separately.
+     */
+    ap = &(r->d[nl]);
+
+    carry -= bn_sub_words(rp, ap, np, nl);
+    /*
+     * |carry| is -1 if |ap| - |np| underflowed or zero if it did not. Note
+     * |carry| cannot be 1. That would imply the subtraction did not fit in
+     * |nl| words, and we know at most one subtraction is needed.
+     */
+    for (i = 0; i < nl; i++) {
+        rp[i] = (carry & ap[i]) | (~carry & rp[i]);
+        ap[i] = 0;
+    }
+
+    return 1;
+}
+#endif                          /* MONT_WORD */
+
+int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
+                       BN_CTX *ctx)
+{
+    int retn;
+
+    retn = bn_from_mont_fixed_top(ret, a, mont, ctx);
+    bn_correct_top(ret);
+    bn_check_top(ret);
+
+    return retn;
+}
+
+int bn_from_mont_fixed_top(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont,
+                           BN_CTX *ctx)
+{
+    int retn = 0;
+#ifdef MONT_WORD
+    BIGNUM *t;
+
+    BN_CTX_start(ctx);
+    if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) {
+        retn = bn_from_montgomery_word(ret, t, mont);
+    }
+    BN_CTX_end(ctx);
+#else                           /* !MONT_WORD */
+    BIGNUM *t1, *t2;
+
+    BN_CTX_start(ctx);
+    t1 = BN_CTX_get(ctx);
+    t2 = BN_CTX_get(ctx);
+    if (t2 == NULL)
+        goto err;
+
+    if (!BN_copy(t1, a))
+        goto err;
+    BN_mask_bits(t1, mont->ri);
+
+    if (!BN_mul(t2, t1, &mont->Ni, ctx))
+        goto err;
+    BN_mask_bits(t2, mont->ri);
+
+    if (!BN_mul(t1, t2, &mont->N, ctx))
+        goto err;
+    if (!BN_add(t2, a, t1))
+        goto err;
+    if (!BN_rshift(ret, t2, mont->ri))
+        goto err;
+
+    if (BN_ucmp(ret, &(mont->N)) >= 0) {
+        if (!BN_usub(ret, ret, &(mont->N)))
+            goto err;
+    }
+    retn = 1;
+    bn_check_top(ret);
+ err:
+    BN_CTX_end(ctx);
+#endif                          /* MONT_WORD */
+    return retn;
+}
+
+int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont,
+                         BN_CTX *ctx)
+{
+    return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx);
+}
+
+BN_MONT_CTX *BN_MONT_CTX_new(void)
+{
+    BN_MONT_CTX *ret;
+
+    if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) {
+        BNerr(BN_F_BN_MONT_CTX_NEW, ERR_R_MALLOC_FAILURE);
+        return NULL;
+    }
+
+    BN_MONT_CTX_init(ret);
+    ret->flags = BN_FLG_MALLOCED;
+    return ret;
+}
+
+void BN_MONT_CTX_init(BN_MONT_CTX *ctx)
+{
+    ctx->ri = 0;
+    bn_init(&ctx->RR);
+    bn_init(&ctx->N);
+    bn_init(&ctx->Ni);
+    ctx->n0[0] = ctx->n0[1] = 0;
+    ctx->flags = 0;
+}
+
+void BN_MONT_CTX_free(BN_MONT_CTX *mont)
+{
+    if (mont == NULL)
+        return;
+    BN_clear_free(&mont->RR);
+    BN_clear_free(&mont->N);
+    BN_clear_free(&mont->Ni);
+    if (mont->flags & BN_FLG_MALLOCED)
+        OPENSSL_free(mont);
+}
+
+int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx)
+{
+    int i, ret = 0;
+    BIGNUM *Ri, *R;
+
+    if (BN_is_zero(mod))
+        return 0;
+
+    BN_CTX_start(ctx);
+    if ((Ri = BN_CTX_get(ctx)) == NULL)
+        goto err;
+    R = &(mont->RR);            /* grab RR as a temp */
+    if (!BN_copy(&(mont->N), mod))
+        goto err;               /* Set N */
+    if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
+        BN_set_flags(&(mont->N), BN_FLG_CONSTTIME);
+    mont->N.neg = 0;
+
+#ifdef MONT_WORD
+    {
+        BIGNUM tmod;
+        BN_ULONG buf[2];
+
+        bn_init(&tmod);
+        tmod.d = buf;
+        tmod.dmax = 2;
+        tmod.neg = 0;
+
+        if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0)
+            BN_set_flags(&tmod, BN_FLG_CONSTTIME);
+
+        mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2;
+
+# if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32)
+        /*
+         * Only certain BN_BITS2<=32 platforms actually make use of n0[1],
+         * and we could use the #else case (with a shorter R value) for the
+         * others.  However, currently only the assembler files do know which
+         * is which.
+         */
+
+        BN_zero(R);
+        if (!(BN_set_bit(R, 2 * BN_BITS2)))
+            goto err;
+
+        tmod.top = 0;
+        if ((buf[0] = mod->d[0]))
+            tmod.top = 1;
+        if ((buf[1] = mod->top > 1 ? mod->d[1] : 0))
+            tmod.top = 2;
+
+        if (BN_is_one(&tmod))
+            BN_zero(Ri);
+        else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
+            goto err;
+        if (!BN_lshift(Ri, Ri, 2 * BN_BITS2))
+            goto err;           /* R*Ri */
+        if (!BN_is_zero(Ri)) {
+            if (!BN_sub_word(Ri, 1))
+                goto err;
+        } else {                /* if N mod word size == 1 */
+
+            if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL)
+                goto err;
+            /* Ri-- (mod double word size) */
+            Ri->neg = 0;
+            Ri->d[0] = BN_MASK2;
+            Ri->d[1] = BN_MASK2;
+            Ri->top = 2;
+        }
+        if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
+            goto err;
+        /*
+         * Ni = (R*Ri-1)/N, keep only couple of least significant words:
+         */
+        mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
+        mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0;
+# else
+        BN_zero(R);
+        if (!(BN_set_bit(R, BN_BITS2)))
+            goto err;           /* R */
+
+        buf[0] = mod->d[0];     /* tmod = N mod word size */
+        buf[1] = 0;
+        tmod.top = buf[0] != 0 ? 1 : 0;
+        /* Ri = R^-1 mod N */
+        if (BN_is_one(&tmod))
+            BN_zero(Ri);
+        else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL)
+            goto err;
+        if (!BN_lshift(Ri, Ri, BN_BITS2))
+            goto err;           /* R*Ri */
+        if (!BN_is_zero(Ri)) {
+            if (!BN_sub_word(Ri, 1))
+                goto err;
+        } else {                /* if N mod word size == 1 */
+
+            if (!BN_set_word(Ri, BN_MASK2))
+                goto err;       /* Ri-- (mod word size) */
+        }
+        if (!BN_div(Ri, NULL, Ri, &tmod, ctx))
+            goto err;
+        /*
+         * Ni = (R*Ri-1)/N, keep only least significant word:
+         */
+        mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0;
+        mont->n0[1] = 0;
+# endif
+    }
+#else                           /* !MONT_WORD */
+    {                           /* bignum version */
+        mont->ri = BN_num_bits(&mont->N);
+        BN_zero(R);
+        if (!BN_set_bit(R, mont->ri))
+            goto err;           /* R = 2^ri */
+        /* Ri = R^-1 mod N */
+        if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL)
+            goto err;
+        if (!BN_lshift(Ri, Ri, mont->ri))
+            goto err;           /* R*Ri */
+        if (!BN_sub_word(Ri, 1))
+            goto err;
+        /*
+         * Ni = (R*Ri-1) / N
+         */
+        if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx))
+            goto err;
+    }
+#endif
+
+    /* setup RR for conversions */
+    BN_zero(&(mont->RR));
+    if (!BN_set_bit(&(mont->RR), mont->ri * 2))
+        goto err;
+    if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx))
+        goto err;
+
+    for (i = mont->RR.top, ret = mont->N.top; i < ret; i++)
+        mont->RR.d[i] = 0;
+    mont->RR.top = ret;
+    mont->RR.flags |= BN_FLG_FIXED_TOP;
+
+    ret = 1;
+ err:
+    BN_CTX_end(ctx);
+    return ret;
+}
+
+BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from)
+{
+    if (to == from)
+        return to;
+
+    if (!BN_copy(&(to->RR), &(from->RR)))
+        return NULL;
+    if (!BN_copy(&(to->N), &(from->N)))
+        return NULL;
+    if (!BN_copy(&(to->Ni), &(from->Ni)))
+        return NULL;
+    to->ri = from->ri;
+    to->n0[0] = from->n0[0];
+    to->n0[1] = from->n0[1];
+    return to;
+}
+
+BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock,
+                                    const BIGNUM *mod, BN_CTX *ctx)
+{
+    BN_MONT_CTX *ret;
+
+    CRYPTO_THREAD_read_lock(lock);
+    ret = *pmont;
+    CRYPTO_THREAD_unlock(lock);
+    if (ret)
+        return ret;
+
+    /*
+     * We don't want to serialise globally while doing our lazy-init math in
+     * BN_MONT_CTX_set. That punishes threads that are doing independent
+     * things. Instead, punish the case where more than one thread tries to
+     * lazy-init the same 'pmont', by having each do the lazy-init math work
+     * independently and only use the one from the thread that wins the race
+     * (the losers throw away the work they've done).
+     */
+    ret = BN_MONT_CTX_new();
+    if (ret == NULL)
+        return NULL;
+    if (!BN_MONT_CTX_set(ret, mod, ctx)) {
+        BN_MONT_CTX_free(ret);
+        return NULL;
+    }
+
+    /* The locked compare-and-set, after the local work is done. */
+    CRYPTO_THREAD_write_lock(lock);
+    if (*pmont) {
+        BN_MONT_CTX_free(ret);
+        ret = *pmont;
+    } else
+        *pmont = ret;
+    CRYPTO_THREAD_unlock(lock);
+    return ret;
+}