zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/lib/libssl/openssl-1.1.1o/crypto/modes/asm/ghash-sparcv9.pl b/ap/lib/libssl/openssl-1.1.1o/crypto/modes/asm/ghash-sparcv9.pl
new file mode 100644
index 0000000..ccebc74
--- /dev/null
+++ b/ap/lib/libssl/openssl-1.1.1o/crypto/modes/asm/ghash-sparcv9.pl
@@ -0,0 +1,581 @@
+#! /usr/bin/env perl
+# Copyright 2010-2020 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License").  You may not use
+# this file except in compliance with the License.  You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+
+# March 2010
+#
+# The module implements "4-bit" GCM GHASH function and underlying
+# single multiplication operation in GF(2^128). "4-bit" means that it
+# uses 256 bytes per-key table [+128 bytes shared table]. Performance
+# results are for streamed GHASH subroutine on UltraSPARC pre-Tx CPU
+# and are expressed in cycles per processed byte, less is better:
+#
+#		gcc 3.3.x	cc 5.2		this assembler
+#
+# 32-bit build	81.4		43.3		12.6	(+546%/+244%)
+# 64-bit build	20.2		21.2		12.6	(+60%/+68%)
+#
+# Here is data collected on UltraSPARC T1 system running Linux:
+#
+#		gcc 4.4.1			this assembler
+#
+# 32-bit build	566				50	(+1000%)
+# 64-bit build	56				50	(+12%)
+#
+# I don't quite understand why difference between 32-bit and 64-bit
+# compiler-generated code is so big. Compilers *were* instructed to
+# generate code for UltraSPARC and should have used 64-bit registers
+# for Z vector (see C code) even in 32-bit build... Oh well, it only
+# means more impressive improvement coefficients for this assembler
+# module;-) Loops are aggressively modulo-scheduled in respect to
+# references to input data and Z.hi updates to achieve 12 cycles
+# timing. To anchor to something else, sha1-sparcv9.pl spends 11.6
+# cycles to process one byte on UltraSPARC pre-Tx CPU and ~24 on T1.
+#
+# October 2012
+#
+# Add VIS3 lookup-table-free implementation using polynomial
+# multiplication xmulx[hi] and extended addition addxc[cc]
+# instructions. 4.52/7.63x improvement on T3/T4 or in absolute
+# terms 7.90/2.14 cycles per byte. On T4 multi-process benchmark
+# saturates at ~15.5x single-process result on 8-core processor,
+# or ~20.5GBps per 2.85GHz socket.
+
+$output=pop;
+open STDOUT,">$output";
+
+$frame="STACK_FRAME";
+$bias="STACK_BIAS";
+
+$Zhi="%o0";	# 64-bit values
+$Zlo="%o1";
+$Thi="%o2";
+$Tlo="%o3";
+$rem="%o4";
+$tmp="%o5";
+
+$nhi="%l0";	# small values and pointers
+$nlo="%l1";
+$xi0="%l2";
+$xi1="%l3";
+$rem_4bit="%l4";
+$remi="%l5";
+$Htblo="%l6";
+$cnt="%l7";
+
+$Xi="%i0";	# input argument block
+$Htbl="%i1";
+$inp="%i2";
+$len="%i3";
+
+$code.=<<___;
+#include "sparc_arch.h"
+
+#ifdef  __arch64__
+.register	%g2,#scratch
+.register	%g3,#scratch
+#endif
+
+.section	".text",#alloc,#execinstr
+
+.align	64
+rem_4bit:
+	.long	`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16`,0
+	.long	`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16`,0
+	.long	`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16`,0
+	.long	`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16`,0
+.type	rem_4bit,#object
+.size	rem_4bit,(.-rem_4bit)
+
+.globl	gcm_ghash_4bit
+.align	32
+gcm_ghash_4bit:
+	save	%sp,-$frame,%sp
+	ldub	[$inp+15],$nlo
+	ldub	[$Xi+15],$xi0
+	ldub	[$Xi+14],$xi1
+	add	$len,$inp,$len
+	add	$Htbl,8,$Htblo
+
+1:	call	.+8
+	add	%o7,rem_4bit-1b,$rem_4bit
+
+.Louter:
+	xor	$xi0,$nlo,$nlo
+	and	$nlo,0xf0,$nhi
+	and	$nlo,0x0f,$nlo
+	sll	$nlo,4,$nlo
+	ldx	[$Htblo+$nlo],$Zlo
+	ldx	[$Htbl+$nlo],$Zhi
+
+	ldub	[$inp+14],$nlo
+
+	ldx	[$Htblo+$nhi],$Tlo
+	and	$Zlo,0xf,$remi
+	ldx	[$Htbl+$nhi],$Thi
+	sll	$remi,3,$remi
+	ldx	[$rem_4bit+$remi],$rem
+	srlx	$Zlo,4,$Zlo
+	mov	13,$cnt
+	sllx	$Zhi,60,$tmp
+	xor	$Tlo,$Zlo,$Zlo
+	srlx	$Zhi,4,$Zhi
+	xor	$Zlo,$tmp,$Zlo
+
+	xor	$xi1,$nlo,$nlo
+	and	$Zlo,0xf,$remi
+	and	$nlo,0xf0,$nhi
+	and	$nlo,0x0f,$nlo
+	ba	.Lghash_inner
+	sll	$nlo,4,$nlo
+.align	32
+.Lghash_inner:
+	ldx	[$Htblo+$nlo],$Tlo
+	sll	$remi,3,$remi
+	xor	$Thi,$Zhi,$Zhi
+	ldx	[$Htbl+$nlo],$Thi
+	srlx	$Zlo,4,$Zlo
+	xor	$rem,$Zhi,$Zhi
+	ldx	[$rem_4bit+$remi],$rem
+	sllx	$Zhi,60,$tmp
+	xor	$Tlo,$Zlo,$Zlo
+	ldub	[$inp+$cnt],$nlo
+	srlx	$Zhi,4,$Zhi
+	xor	$Zlo,$tmp,$Zlo
+	ldub	[$Xi+$cnt],$xi1
+	xor	$Thi,$Zhi,$Zhi
+	and	$Zlo,0xf,$remi
+
+	ldx	[$Htblo+$nhi],$Tlo
+	sll	$remi,3,$remi
+	xor	$rem,$Zhi,$Zhi
+	ldx	[$Htbl+$nhi],$Thi
+	srlx	$Zlo,4,$Zlo
+	ldx	[$rem_4bit+$remi],$rem
+	sllx	$Zhi,60,$tmp
+	xor	$xi1,$nlo,$nlo
+	srlx	$Zhi,4,$Zhi
+	and	$nlo,0xf0,$nhi
+	addcc	$cnt,-1,$cnt
+	xor	$Zlo,$tmp,$Zlo
+	and	$nlo,0x0f,$nlo
+	xor	$Tlo,$Zlo,$Zlo
+	sll	$nlo,4,$nlo
+	blu	.Lghash_inner
+	and	$Zlo,0xf,$remi
+
+	ldx	[$Htblo+$nlo],$Tlo
+	sll	$remi,3,$remi
+	xor	$Thi,$Zhi,$Zhi
+	ldx	[$Htbl+$nlo],$Thi
+	srlx	$Zlo,4,$Zlo
+	xor	$rem,$Zhi,$Zhi
+	ldx	[$rem_4bit+$remi],$rem
+	sllx	$Zhi,60,$tmp
+	xor	$Tlo,$Zlo,$Zlo
+	srlx	$Zhi,4,$Zhi
+	xor	$Zlo,$tmp,$Zlo
+	xor	$Thi,$Zhi,$Zhi
+
+	add	$inp,16,$inp
+	cmp	$inp,$len
+	be,pn	SIZE_T_CC,.Ldone
+	and	$Zlo,0xf,$remi
+
+	ldx	[$Htblo+$nhi],$Tlo
+	sll	$remi,3,$remi
+	xor	$rem,$Zhi,$Zhi
+	ldx	[$Htbl+$nhi],$Thi
+	srlx	$Zlo,4,$Zlo
+	ldx	[$rem_4bit+$remi],$rem
+	sllx	$Zhi,60,$tmp
+	xor	$Tlo,$Zlo,$Zlo
+	ldub	[$inp+15],$nlo
+	srlx	$Zhi,4,$Zhi
+	xor	$Zlo,$tmp,$Zlo
+	xor	$Thi,$Zhi,$Zhi
+	stx	$Zlo,[$Xi+8]
+	xor	$rem,$Zhi,$Zhi
+	stx	$Zhi,[$Xi]
+	srl	$Zlo,8,$xi1
+	and	$Zlo,0xff,$xi0
+	ba	.Louter
+	and	$xi1,0xff,$xi1
+.align	32
+.Ldone:
+	ldx	[$Htblo+$nhi],$Tlo
+	sll	$remi,3,$remi
+	xor	$rem,$Zhi,$Zhi
+	ldx	[$Htbl+$nhi],$Thi
+	srlx	$Zlo,4,$Zlo
+	ldx	[$rem_4bit+$remi],$rem
+	sllx	$Zhi,60,$tmp
+	xor	$Tlo,$Zlo,$Zlo
+	srlx	$Zhi,4,$Zhi
+	xor	$Zlo,$tmp,$Zlo
+	xor	$Thi,$Zhi,$Zhi
+	stx	$Zlo,[$Xi+8]
+	xor	$rem,$Zhi,$Zhi
+	stx	$Zhi,[$Xi]
+
+	ret
+	restore
+.type	gcm_ghash_4bit,#function
+.size	gcm_ghash_4bit,(.-gcm_ghash_4bit)
+___
+
+undef $inp;
+undef $len;
+
+$code.=<<___;
+.globl	gcm_gmult_4bit
+.align	32
+gcm_gmult_4bit:
+	save	%sp,-$frame,%sp
+	ldub	[$Xi+15],$nlo
+	add	$Htbl,8,$Htblo
+
+1:	call	.+8
+	add	%o7,rem_4bit-1b,$rem_4bit
+
+	and	$nlo,0xf0,$nhi
+	and	$nlo,0x0f,$nlo
+	sll	$nlo,4,$nlo
+	ldx	[$Htblo+$nlo],$Zlo
+	ldx	[$Htbl+$nlo],$Zhi
+
+	ldub	[$Xi+14],$nlo
+
+	ldx	[$Htblo+$nhi],$Tlo
+	and	$Zlo,0xf,$remi
+	ldx	[$Htbl+$nhi],$Thi
+	sll	$remi,3,$remi
+	ldx	[$rem_4bit+$remi],$rem
+	srlx	$Zlo,4,$Zlo
+	mov	13,$cnt
+	sllx	$Zhi,60,$tmp
+	xor	$Tlo,$Zlo,$Zlo
+	srlx	$Zhi,4,$Zhi
+	xor	$Zlo,$tmp,$Zlo
+
+	and	$Zlo,0xf,$remi
+	and	$nlo,0xf0,$nhi
+	and	$nlo,0x0f,$nlo
+	ba	.Lgmult_inner
+	sll	$nlo,4,$nlo
+.align	32
+.Lgmult_inner:
+	ldx	[$Htblo+$nlo],$Tlo
+	sll	$remi,3,$remi
+	xor	$Thi,$Zhi,$Zhi
+	ldx	[$Htbl+$nlo],$Thi
+	srlx	$Zlo,4,$Zlo
+	xor	$rem,$Zhi,$Zhi
+	ldx	[$rem_4bit+$remi],$rem
+	sllx	$Zhi,60,$tmp
+	xor	$Tlo,$Zlo,$Zlo
+	ldub	[$Xi+$cnt],$nlo
+	srlx	$Zhi,4,$Zhi
+	xor	$Zlo,$tmp,$Zlo
+	xor	$Thi,$Zhi,$Zhi
+	and	$Zlo,0xf,$remi
+
+	ldx	[$Htblo+$nhi],$Tlo
+	sll	$remi,3,$remi
+	xor	$rem,$Zhi,$Zhi
+	ldx	[$Htbl+$nhi],$Thi
+	srlx	$Zlo,4,$Zlo
+	ldx	[$rem_4bit+$remi],$rem
+	sllx	$Zhi,60,$tmp
+	srlx	$Zhi,4,$Zhi
+	and	$nlo,0xf0,$nhi
+	addcc	$cnt,-1,$cnt
+	xor	$Zlo,$tmp,$Zlo
+	and	$nlo,0x0f,$nlo
+	xor	$Tlo,$Zlo,$Zlo
+	sll	$nlo,4,$nlo
+	blu	.Lgmult_inner
+	and	$Zlo,0xf,$remi
+
+	ldx	[$Htblo+$nlo],$Tlo
+	sll	$remi,3,$remi
+	xor	$Thi,$Zhi,$Zhi
+	ldx	[$Htbl+$nlo],$Thi
+	srlx	$Zlo,4,$Zlo
+	xor	$rem,$Zhi,$Zhi
+	ldx	[$rem_4bit+$remi],$rem
+	sllx	$Zhi,60,$tmp
+	xor	$Tlo,$Zlo,$Zlo
+	srlx	$Zhi,4,$Zhi
+	xor	$Zlo,$tmp,$Zlo
+	xor	$Thi,$Zhi,$Zhi
+	and	$Zlo,0xf,$remi
+
+	ldx	[$Htblo+$nhi],$Tlo
+	sll	$remi,3,$remi
+	xor	$rem,$Zhi,$Zhi
+	ldx	[$Htbl+$nhi],$Thi
+	srlx	$Zlo,4,$Zlo
+	ldx	[$rem_4bit+$remi],$rem
+	sllx	$Zhi,60,$tmp
+	xor	$Tlo,$Zlo,$Zlo
+	srlx	$Zhi,4,$Zhi
+	xor	$Zlo,$tmp,$Zlo
+	xor	$Thi,$Zhi,$Zhi
+	stx	$Zlo,[$Xi+8]
+	xor	$rem,$Zhi,$Zhi
+	stx	$Zhi,[$Xi]
+
+	ret
+	restore
+.type	gcm_gmult_4bit,#function
+.size	gcm_gmult_4bit,(.-gcm_gmult_4bit)
+___
+
+{{{
+# Straightforward 128x128-bit multiplication using Karatsuba algorithm
+# followed by pair of 64-bit reductions [with a shortcut in first one,
+# which allowed to break dependency between reductions and remove one
+# multiplication from critical path]. While it might be suboptimal
+# with regard to sheer number of multiplications, other methods [such
+# as aggregate reduction] would require more 64-bit registers, which
+# we don't have in 32-bit application context.
+
+($Xip,$Htable,$inp,$len)=map("%i$_",(0..3));
+
+($Hhl,$Hlo,$Hhi,$Xlo,$Xhi,$xE1,$sqr, $C0,$C1,$C2,$C3,$V)=
+	(map("%o$_",(0..5,7)),map("%g$_",(1..5)));
+
+($shl,$shr)=map("%l$_",(0..7));
+
+# For details regarding "twisted H" see ghash-x86.pl.
+$code.=<<___;
+.globl	gcm_init_vis3
+.align	32
+gcm_init_vis3:
+	save	%sp,-$frame,%sp
+
+	ldx	[%i1+0],$Hhi
+	ldx	[%i1+8],$Hlo
+	mov	0xE1,$Xhi
+	mov	1,$Xlo
+	sllx	$Xhi,57,$Xhi
+	srax	$Hhi,63,$C0		! broadcast carry
+	addcc	$Hlo,$Hlo,$Hlo		! H<<=1
+	addxc	$Hhi,$Hhi,$Hhi
+	and	$C0,$Xlo,$Xlo
+	and	$C0,$Xhi,$Xhi
+	xor	$Xlo,$Hlo,$Hlo
+	xor	$Xhi,$Hhi,$Hhi
+	stx	$Hlo,[%i0+8]		! save twisted H
+	stx	$Hhi,[%i0+0]
+
+	sethi	%hi(0xA0406080),$V
+	sethi	%hi(0x20C0E000),%l0
+	or	$V,%lo(0xA0406080),$V
+	or	%l0,%lo(0x20C0E000),%l0
+	sllx	$V,32,$V
+	or	%l0,$V,$V		! (0xE0·i)&0xff=0xA040608020C0E000
+	stx	$V,[%i0+16]
+
+	ret
+	restore
+.type	gcm_init_vis3,#function
+.size	gcm_init_vis3,.-gcm_init_vis3
+
+.globl	gcm_gmult_vis3
+.align	32
+gcm_gmult_vis3:
+	save	%sp,-$frame,%sp
+
+	ldx	[$Xip+8],$Xlo		! load Xi
+	ldx	[$Xip+0],$Xhi
+	ldx	[$Htable+8],$Hlo	! load twisted H
+	ldx	[$Htable+0],$Hhi
+
+	mov	0xE1,%l7
+	sllx	%l7,57,$xE1		! 57 is not a typo
+	ldx	[$Htable+16],$V		! (0xE0·i)&0xff=0xA040608020C0E000
+
+	xor	$Hhi,$Hlo,$Hhl		! Karatsuba pre-processing
+	xmulx	$Xlo,$Hlo,$C0
+	xor	$Xlo,$Xhi,$C2		! Karatsuba pre-processing
+	xmulx	$C2,$Hhl,$C1
+	xmulxhi	$Xlo,$Hlo,$Xlo
+	xmulxhi	$C2,$Hhl,$C2
+	xmulxhi	$Xhi,$Hhi,$C3
+	xmulx	$Xhi,$Hhi,$Xhi
+
+	sll	$C0,3,$sqr
+	srlx	$V,$sqr,$sqr		! ·0xE0 [implicit &(7<<3)]
+	xor	$C0,$sqr,$sqr
+	sllx	$sqr,57,$sqr		! ($C0·0xE1)<<1<<56 [implicit &0x7f]
+
+	xor	$C0,$C1,$C1		! Karatsuba post-processing
+	xor	$Xlo,$C2,$C2
+	 xor	$sqr,$Xlo,$Xlo		! real destination is $C1
+	xor	$C3,$C2,$C2
+	xor	$Xlo,$C1,$C1
+	xor	$Xhi,$C2,$C2
+	xor	$Xhi,$C1,$C1
+
+	xmulxhi	$C0,$xE1,$Xlo		! ·0xE1<<1<<56
+	 xor	$C0,$C2,$C2
+	xmulx	$C1,$xE1,$C0
+	 xor	$C1,$C3,$C3
+	xmulxhi	$C1,$xE1,$C1
+
+	xor	$Xlo,$C2,$C2
+	xor	$C0,$C2,$C2
+	xor	$C1,$C3,$C3
+
+	stx	$C2,[$Xip+8]		! save Xi
+	stx	$C3,[$Xip+0]
+
+	ret
+	restore
+.type	gcm_gmult_vis3,#function
+.size	gcm_gmult_vis3,.-gcm_gmult_vis3
+
+.globl	gcm_ghash_vis3
+.align	32
+gcm_ghash_vis3:
+	save	%sp,-$frame,%sp
+	nop
+	srln	$len,0,$len		! needed on v8+, "nop" on v9
+
+	ldx	[$Xip+8],$C2		! load Xi
+	ldx	[$Xip+0],$C3
+	ldx	[$Htable+8],$Hlo	! load twisted H
+	ldx	[$Htable+0],$Hhi
+
+	mov	0xE1,%l7
+	sllx	%l7,57,$xE1		! 57 is not a typo
+	ldx	[$Htable+16],$V		! (0xE0·i)&0xff=0xA040608020C0E000
+
+	and	$inp,7,$shl
+	andn	$inp,7,$inp
+	sll	$shl,3,$shl
+	prefetch [$inp+63], 20
+	sub	%g0,$shl,$shr
+
+	xor	$Hhi,$Hlo,$Hhl		! Karatsuba pre-processing
+.Loop:
+	ldx	[$inp+8],$Xlo
+	brz,pt	$shl,1f
+	ldx	[$inp+0],$Xhi
+
+	ldx	[$inp+16],$C1		! align data
+	srlx	$Xlo,$shr,$C0
+	sllx	$Xlo,$shl,$Xlo
+	sllx	$Xhi,$shl,$Xhi
+	srlx	$C1,$shr,$C1
+	or	$C0,$Xhi,$Xhi
+	or	$C1,$Xlo,$Xlo
+1:
+	add	$inp,16,$inp
+	sub	$len,16,$len
+	xor	$C2,$Xlo,$Xlo
+	xor	$C3,$Xhi,$Xhi
+	prefetch [$inp+63], 20
+
+	xmulx	$Xlo,$Hlo,$C0
+	xor	$Xlo,$Xhi,$C2		! Karatsuba pre-processing
+	xmulx	$C2,$Hhl,$C1
+	xmulxhi	$Xlo,$Hlo,$Xlo
+	xmulxhi	$C2,$Hhl,$C2
+	xmulxhi	$Xhi,$Hhi,$C3
+	xmulx	$Xhi,$Hhi,$Xhi
+
+	sll	$C0,3,$sqr
+	srlx	$V,$sqr,$sqr		! ·0xE0 [implicit &(7<<3)]
+	xor	$C0,$sqr,$sqr
+	sllx	$sqr,57,$sqr		! ($C0·0xE1)<<1<<56 [implicit &0x7f]
+
+	xor	$C0,$C1,$C1		! Karatsuba post-processing
+	xor	$Xlo,$C2,$C2
+	 xor	$sqr,$Xlo,$Xlo		! real destination is $C1
+	xor	$C3,$C2,$C2
+	xor	$Xlo,$C1,$C1
+	xor	$Xhi,$C2,$C2
+	xor	$Xhi,$C1,$C1
+
+	xmulxhi	$C0,$xE1,$Xlo		! ·0xE1<<1<<56
+	 xor	$C0,$C2,$C2
+	xmulx	$C1,$xE1,$C0
+	 xor	$C1,$C3,$C3
+	xmulxhi	$C1,$xE1,$C1
+
+	xor	$Xlo,$C2,$C2
+	xor	$C0,$C2,$C2
+	brnz,pt	$len,.Loop
+	xor	$C1,$C3,$C3
+
+	stx	$C2,[$Xip+8]		! save Xi
+	stx	$C3,[$Xip+0]
+
+	ret
+	restore
+.type	gcm_ghash_vis3,#function
+.size	gcm_ghash_vis3,.-gcm_ghash_vis3
+___
+}}}
+$code.=<<___;
+.asciz	"GHASH for SPARCv9/VIS3, CRYPTOGAMS by <appro\@openssl.org>"
+.align	4
+___
+
+
+# Purpose of these subroutines is to explicitly encode VIS instructions,
+# so that one can compile the module without having to specify VIS
+# extensions on compiler command line, e.g. -xarch=v9 vs. -xarch=v9a.
+# Idea is to reserve for option to produce "universal" binary and let
+# programmer detect if current CPU is VIS capable at run-time.
+sub unvis3 {
+my ($mnemonic,$rs1,$rs2,$rd)=@_;
+my %bias = ( "g" => 0, "o" => 8, "l" => 16, "i" => 24 );
+my ($ref,$opf);
+my %visopf = (	"addxc"		=> 0x011,
+		"addxccc"	=> 0x013,
+		"xmulx"		=> 0x115,
+		"xmulxhi"	=> 0x116	);
+
+    $ref = "$mnemonic\t$rs1,$rs2,$rd";
+
+    if ($opf=$visopf{$mnemonic}) {
+	foreach ($rs1,$rs2,$rd) {
+	    return $ref if (!/%([goli])([0-9])/);
+	    $_=$bias{$1}+$2;
+	}
+
+	return	sprintf ".word\t0x%08x !%s",
+			0x81b00000|$rd<<25|$rs1<<14|$opf<<5|$rs2,
+			$ref;
+    } else {
+	return $ref;
+    }
+}
+
+foreach (split("\n",$code)) {
+	s/\`([^\`]*)\`/eval $1/ge;
+
+	s/\b(xmulx[hi]*|addxc[c]{0,2})\s+(%[goli][0-7]),\s*(%[goli][0-7]),\s*(%[goli][0-7])/
+		&unvis3($1,$2,$3,$4)
+	 /ge;
+
+	print $_,"\n";
+}
+
+close STDOUT or die "error closing STDOUT: $!";