zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/lib/libssl/openssl-1.1.1o/crypto/modes/asm/ghashp8-ppc.pl b/ap/lib/libssl/openssl-1.1.1o/crypto/modes/asm/ghashp8-ppc.pl
new file mode 100755
index 0000000..447472c
--- /dev/null
+++ b/ap/lib/libssl/openssl-1.1.1o/crypto/modes/asm/ghashp8-ppc.pl
@@ -0,0 +1,671 @@
+#! /usr/bin/env perl
+# Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License").  You may not use
+# this file except in compliance with the License.  You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# GHASH for for PowerISA v2.07.
+#
+# July 2014
+#
+# Accurate performance measurements are problematic, because it's
+# always virtualized setup with possibly throttled processor.
+# Relative comparison is therefore more informative. This initial
+# version is ~2.1x slower than hardware-assisted AES-128-CTR, ~12x
+# faster than "4-bit" integer-only compiler-generated 64-bit code.
+# "Initial version" means that there is room for further improvement.
+
+# May 2016
+#
+# 2x aggregated reduction improves performance by 50% (resulting
+# performance on POWER8 is 1 cycle per processed byte), and 4x
+# aggregated reduction - by 170% or 2.7x (resulting in 0.55 cpb).
+# POWER9 delivers 0.51 cpb.
+
+$flavour=shift;
+$output =shift;
+
+if ($flavour =~ /64/) {
+	$SIZE_T=8;
+	$LRSAVE=2*$SIZE_T;
+	$STU="stdu";
+	$POP="ld";
+	$PUSH="std";
+	$UCMP="cmpld";
+	$SHRI="srdi";
+} elsif ($flavour =~ /32/) {
+	$SIZE_T=4;
+	$LRSAVE=$SIZE_T;
+	$STU="stwu";
+	$POP="lwz";
+	$PUSH="stw";
+	$UCMP="cmplw";
+	$SHRI="srwi";
+} else { die "nonsense $flavour"; }
+
+$sp="r1";
+$FRAME=6*$SIZE_T+13*16;	# 13*16 is for v20-v31 offload
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}ppc-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/ppc-xlate.pl" and -f $xlate) or
+die "can't locate ppc-xlate.pl";
+
+open STDOUT,"| $^X $xlate $flavour $output" || die "can't call $xlate: $!";
+
+my ($Xip,$Htbl,$inp,$len)=map("r$_",(3..6));	# argument block
+
+my ($Xl,$Xm,$Xh,$IN)=map("v$_",(0..3));
+my ($zero,$t0,$t1,$t2,$xC2,$H,$Hh,$Hl,$lemask)=map("v$_",(4..12));
+my ($Xl1,$Xm1,$Xh1,$IN1,$H2,$H2h,$H2l)=map("v$_",(13..19));
+my $vrsave="r12";
+
+$code=<<___;
+.machine	"any"
+
+.text
+
+.globl	.gcm_init_p8
+.align	5
+.gcm_init_p8:
+	li		r0,-4096
+	li		r8,0x10
+	mfspr		$vrsave,256
+	li		r9,0x20
+	mtspr		256,r0
+	li		r10,0x30
+	lvx_u		$H,0,r4			# load H
+
+	vspltisb	$xC2,-16		# 0xf0
+	vspltisb	$t0,1			# one
+	vaddubm		$xC2,$xC2,$xC2		# 0xe0
+	vxor		$zero,$zero,$zero
+	vor		$xC2,$xC2,$t0		# 0xe1
+	vsldoi		$xC2,$xC2,$zero,15	# 0xe1...
+	vsldoi		$t1,$zero,$t0,1		# ...1
+	vaddubm		$xC2,$xC2,$xC2		# 0xc2...
+	vspltisb	$t2,7
+	vor		$xC2,$xC2,$t1		# 0xc2....01
+	vspltb		$t1,$H,0		# most significant byte
+	vsl		$H,$H,$t0		# H<<=1
+	vsrab		$t1,$t1,$t2		# broadcast carry bit
+	vand		$t1,$t1,$xC2
+	vxor		$IN,$H,$t1		# twisted H
+
+	vsldoi		$H,$IN,$IN,8		# twist even more ...
+	vsldoi		$xC2,$zero,$xC2,8	# 0xc2.0
+	vsldoi		$Hl,$zero,$H,8		# ... and split
+	vsldoi		$Hh,$H,$zero,8
+
+	stvx_u		$xC2,0,r3		# save pre-computed table
+	stvx_u		$Hl,r8,r3
+	li		r8,0x40
+	stvx_u		$H, r9,r3
+	li		r9,0x50
+	stvx_u		$Hh,r10,r3
+	li		r10,0x60
+
+	vpmsumd		$Xl,$IN,$Hl		# H.lo·H.lo
+	vpmsumd		$Xm,$IN,$H		# H.hi·H.lo+H.lo·H.hi
+	vpmsumd		$Xh,$IN,$Hh		# H.hi·H.hi
+
+	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase
+
+	vsldoi		$t0,$Xm,$zero,8
+	vsldoi		$t1,$zero,$Xm,8
+	vxor		$Xl,$Xl,$t0
+	vxor		$Xh,$Xh,$t1
+
+	vsldoi		$Xl,$Xl,$Xl,8
+	vxor		$Xl,$Xl,$t2
+
+	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
+	vpmsumd		$Xl,$Xl,$xC2
+	vxor		$t1,$t1,$Xh
+	vxor		$IN1,$Xl,$t1
+
+	vsldoi		$H2,$IN1,$IN1,8
+	vsldoi		$H2l,$zero,$H2,8
+	vsldoi		$H2h,$H2,$zero,8
+
+	stvx_u		$H2l,r8,r3		# save H^2
+	li		r8,0x70
+	stvx_u		$H2,r9,r3
+	li		r9,0x80
+	stvx_u		$H2h,r10,r3
+	li		r10,0x90
+___
+{
+my ($t4,$t5,$t6) = ($Hl,$H,$Hh);
+$code.=<<___;
+	vpmsumd		$Xl,$IN,$H2l		# H.lo·H^2.lo
+	 vpmsumd	$Xl1,$IN1,$H2l		# H^2.lo·H^2.lo
+	vpmsumd		$Xm,$IN,$H2		# H.hi·H^2.lo+H.lo·H^2.hi
+	 vpmsumd	$Xm1,$IN1,$H2		# H^2.hi·H^2.lo+H^2.lo·H^2.hi
+	vpmsumd		$Xh,$IN,$H2h		# H.hi·H^2.hi
+	 vpmsumd	$Xh1,$IN1,$H2h		# H^2.hi·H^2.hi
+
+	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase
+	 vpmsumd	$t6,$Xl1,$xC2		# 1st reduction phase
+
+	vsldoi		$t0,$Xm,$zero,8
+	vsldoi		$t1,$zero,$Xm,8
+	 vsldoi		$t4,$Xm1,$zero,8
+	 vsldoi		$t5,$zero,$Xm1,8
+	vxor		$Xl,$Xl,$t0
+	vxor		$Xh,$Xh,$t1
+	 vxor		$Xl1,$Xl1,$t4
+	 vxor		$Xh1,$Xh1,$t5
+
+	vsldoi		$Xl,$Xl,$Xl,8
+	 vsldoi		$Xl1,$Xl1,$Xl1,8
+	vxor		$Xl,$Xl,$t2
+	 vxor		$Xl1,$Xl1,$t6
+
+	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
+	 vsldoi		$t5,$Xl1,$Xl1,8		# 2nd reduction phase
+	vpmsumd		$Xl,$Xl,$xC2
+	 vpmsumd	$Xl1,$Xl1,$xC2
+	vxor		$t1,$t1,$Xh
+	 vxor		$t5,$t5,$Xh1
+	vxor		$Xl,$Xl,$t1
+	 vxor		$Xl1,$Xl1,$t5
+
+	vsldoi		$H,$Xl,$Xl,8
+	 vsldoi		$H2,$Xl1,$Xl1,8
+	vsldoi		$Hl,$zero,$H,8
+	vsldoi		$Hh,$H,$zero,8
+	 vsldoi		$H2l,$zero,$H2,8
+	 vsldoi		$H2h,$H2,$zero,8
+
+	stvx_u		$Hl,r8,r3		# save H^3
+	li		r8,0xa0
+	stvx_u		$H,r9,r3
+	li		r9,0xb0
+	stvx_u		$Hh,r10,r3
+	li		r10,0xc0
+	 stvx_u		$H2l,r8,r3		# save H^4
+	 stvx_u		$H2,r9,r3
+	 stvx_u		$H2h,r10,r3
+
+	mtspr		256,$vrsave
+	blr
+	.long		0
+	.byte		0,12,0x14,0,0,0,2,0
+	.long		0
+.size	.gcm_init_p8,.-.gcm_init_p8
+___
+}
+$code.=<<___;
+.globl	.gcm_gmult_p8
+.align	5
+.gcm_gmult_p8:
+	lis		r0,0xfff8
+	li		r8,0x10
+	mfspr		$vrsave,256
+	li		r9,0x20
+	mtspr		256,r0
+	li		r10,0x30
+	lvx_u		$IN,0,$Xip		# load Xi
+
+	lvx_u		$Hl,r8,$Htbl		# load pre-computed table
+	 le?lvsl	$lemask,r0,r0
+	lvx_u		$H, r9,$Htbl
+	 le?vspltisb	$t0,0x07
+	lvx_u		$Hh,r10,$Htbl
+	 le?vxor	$lemask,$lemask,$t0
+	lvx_u		$xC2,0,$Htbl
+	 le?vperm	$IN,$IN,$IN,$lemask
+	vxor		$zero,$zero,$zero
+
+	vpmsumd		$Xl,$IN,$Hl		# H.lo·Xi.lo
+	vpmsumd		$Xm,$IN,$H		# H.hi·Xi.lo+H.lo·Xi.hi
+	vpmsumd		$Xh,$IN,$Hh		# H.hi·Xi.hi
+
+	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase
+
+	vsldoi		$t0,$Xm,$zero,8
+	vsldoi		$t1,$zero,$Xm,8
+	vxor		$Xl,$Xl,$t0
+	vxor		$Xh,$Xh,$t1
+
+	vsldoi		$Xl,$Xl,$Xl,8
+	vxor		$Xl,$Xl,$t2
+
+	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
+	vpmsumd		$Xl,$Xl,$xC2
+	vxor		$t1,$t1,$Xh
+	vxor		$Xl,$Xl,$t1
+
+	le?vperm	$Xl,$Xl,$Xl,$lemask
+	stvx_u		$Xl,0,$Xip		# write out Xi
+
+	mtspr		256,$vrsave
+	blr
+	.long		0
+	.byte		0,12,0x14,0,0,0,2,0
+	.long		0
+.size	.gcm_gmult_p8,.-.gcm_gmult_p8
+
+.globl	.gcm_ghash_p8
+.align	5
+.gcm_ghash_p8:
+	li		r0,-4096
+	li		r8,0x10
+	mfspr		$vrsave,256
+	li		r9,0x20
+	mtspr		256,r0
+	li		r10,0x30
+	lvx_u		$Xl,0,$Xip		# load Xi
+
+	lvx_u		$Hl,r8,$Htbl		# load pre-computed table
+	li		r8,0x40
+	 le?lvsl	$lemask,r0,r0
+	lvx_u		$H, r9,$Htbl
+	li		r9,0x50
+	 le?vspltisb	$t0,0x07
+	lvx_u		$Hh,r10,$Htbl
+	li		r10,0x60
+	 le?vxor	$lemask,$lemask,$t0
+	lvx_u		$xC2,0,$Htbl
+	 le?vperm	$Xl,$Xl,$Xl,$lemask
+	vxor		$zero,$zero,$zero
+
+	${UCMP}i	$len,64
+	bge		Lgcm_ghash_p8_4x
+
+	lvx_u		$IN,0,$inp
+	addi		$inp,$inp,16
+	subic.		$len,$len,16
+	 le?vperm	$IN,$IN,$IN,$lemask
+	vxor		$IN,$IN,$Xl
+	beq		Lshort
+
+	lvx_u		$H2l,r8,$Htbl		# load H^2
+	li		r8,16
+	lvx_u		$H2, r9,$Htbl
+	add		r9,$inp,$len		# end of input
+	lvx_u		$H2h,r10,$Htbl
+	be?b		Loop_2x
+
+.align	5
+Loop_2x:
+	lvx_u		$IN1,0,$inp
+	le?vperm	$IN1,$IN1,$IN1,$lemask
+
+	 subic		$len,$len,32
+	vpmsumd		$Xl,$IN,$H2l		# H^2.lo·Xi.lo
+	 vpmsumd	$Xl1,$IN1,$Hl		# H.lo·Xi+1.lo
+	 subfe		r0,r0,r0		# borrow?-1:0
+	vpmsumd		$Xm,$IN,$H2		# H^2.hi·Xi.lo+H^2.lo·Xi.hi
+	 vpmsumd	$Xm1,$IN1,$H		# H.hi·Xi+1.lo+H.lo·Xi+1.hi
+	 and		r0,r0,$len
+	vpmsumd		$Xh,$IN,$H2h		# H^2.hi·Xi.hi
+	 vpmsumd	$Xh1,$IN1,$Hh		# H.hi·Xi+1.hi
+	 add		$inp,$inp,r0
+
+	vxor		$Xl,$Xl,$Xl1
+	vxor		$Xm,$Xm,$Xm1
+
+	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase
+
+	vsldoi		$t0,$Xm,$zero,8
+	vsldoi		$t1,$zero,$Xm,8
+	 vxor		$Xh,$Xh,$Xh1
+	vxor		$Xl,$Xl,$t0
+	vxor		$Xh,$Xh,$t1
+
+	vsldoi		$Xl,$Xl,$Xl,8
+	vxor		$Xl,$Xl,$t2
+	 lvx_u		$IN,r8,$inp
+	 addi		$inp,$inp,32
+
+	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
+	vpmsumd		$Xl,$Xl,$xC2
+	 le?vperm	$IN,$IN,$IN,$lemask
+	vxor		$t1,$t1,$Xh
+	vxor		$IN,$IN,$t1
+	vxor		$IN,$IN,$Xl
+	$UCMP		r9,$inp
+	bgt		Loop_2x			# done yet?
+
+	cmplwi		$len,0
+	bne		Leven
+
+Lshort:
+	vpmsumd		$Xl,$IN,$Hl		# H.lo·Xi.lo
+	vpmsumd		$Xm,$IN,$H		# H.hi·Xi.lo+H.lo·Xi.hi
+	vpmsumd		$Xh,$IN,$Hh		# H.hi·Xi.hi
+
+	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase
+
+	vsldoi		$t0,$Xm,$zero,8
+	vsldoi		$t1,$zero,$Xm,8
+	vxor		$Xl,$Xl,$t0
+	vxor		$Xh,$Xh,$t1
+
+	vsldoi		$Xl,$Xl,$Xl,8
+	vxor		$Xl,$Xl,$t2
+
+	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
+	vpmsumd		$Xl,$Xl,$xC2
+	vxor		$t1,$t1,$Xh
+
+Leven:
+	vxor		$Xl,$Xl,$t1
+	le?vperm	$Xl,$Xl,$Xl,$lemask
+	stvx_u		$Xl,0,$Xip		# write out Xi
+
+	mtspr		256,$vrsave
+	blr
+	.long		0
+	.byte		0,12,0x14,0,0,0,4,0
+	.long		0
+___
+{
+my ($Xl3,$Xm2,$IN2,$H3l,$H3,$H3h,
+    $Xh3,$Xm3,$IN3,$H4l,$H4,$H4h) = map("v$_",(20..31));
+my $IN0=$IN;
+my ($H21l,$H21h,$loperm,$hiperm) = ($Hl,$Hh,$H2l,$H2h);
+
+$code.=<<___;
+.align	5
+.gcm_ghash_p8_4x:
+Lgcm_ghash_p8_4x:
+	$STU		$sp,-$FRAME($sp)
+	li		r10,`15+6*$SIZE_T`
+	li		r11,`31+6*$SIZE_T`
+	stvx		v20,r10,$sp
+	addi		r10,r10,32
+	stvx		v21,r11,$sp
+	addi		r11,r11,32
+	stvx		v22,r10,$sp
+	addi		r10,r10,32
+	stvx		v23,r11,$sp
+	addi		r11,r11,32
+	stvx		v24,r10,$sp
+	addi		r10,r10,32
+	stvx		v25,r11,$sp
+	addi		r11,r11,32
+	stvx		v26,r10,$sp
+	addi		r10,r10,32
+	stvx		v27,r11,$sp
+	addi		r11,r11,32
+	stvx		v28,r10,$sp
+	addi		r10,r10,32
+	stvx		v29,r11,$sp
+	addi		r11,r11,32
+	stvx		v30,r10,$sp
+	li		r10,0x60
+	stvx		v31,r11,$sp
+	li		r0,-1
+	stw		$vrsave,`$FRAME-4`($sp)	# save vrsave
+	mtspr		256,r0			# preserve all AltiVec registers
+
+	lvsl		$t0,0,r8		# 0x0001..0e0f
+	#lvx_u		$H2l,r8,$Htbl		# load H^2
+	li		r8,0x70
+	lvx_u		$H2, r9,$Htbl
+	li		r9,0x80
+	vspltisb	$t1,8			# 0x0808..0808
+	#lvx_u		$H2h,r10,$Htbl
+	li		r10,0x90
+	lvx_u		$H3l,r8,$Htbl		# load H^3
+	li		r8,0xa0
+	lvx_u		$H3, r9,$Htbl
+	li		r9,0xb0
+	lvx_u		$H3h,r10,$Htbl
+	li		r10,0xc0
+	lvx_u		$H4l,r8,$Htbl		# load H^4
+	li		r8,0x10
+	lvx_u		$H4, r9,$Htbl
+	li		r9,0x20
+	lvx_u		$H4h,r10,$Htbl
+	li		r10,0x30
+
+	vsldoi		$t2,$zero,$t1,8		# 0x0000..0808
+	vaddubm		$hiperm,$t0,$t2		# 0x0001..1617
+	vaddubm		$loperm,$t1,$hiperm	# 0x0809..1e1f
+
+	$SHRI		$len,$len,4		# this allows to use sign bit
+						# as carry
+	lvx_u		$IN0,0,$inp		# load input
+	lvx_u		$IN1,r8,$inp
+	subic.		$len,$len,8
+	lvx_u		$IN2,r9,$inp
+	lvx_u		$IN3,r10,$inp
+	addi		$inp,$inp,0x40
+	le?vperm	$IN0,$IN0,$IN0,$lemask
+	le?vperm	$IN1,$IN1,$IN1,$lemask
+	le?vperm	$IN2,$IN2,$IN2,$lemask
+	le?vperm	$IN3,$IN3,$IN3,$lemask
+
+	vxor		$Xh,$IN0,$Xl
+
+	 vpmsumd	$Xl1,$IN1,$H3l
+	 vpmsumd	$Xm1,$IN1,$H3
+	 vpmsumd	$Xh1,$IN1,$H3h
+
+	 vperm		$H21l,$H2,$H,$hiperm
+	 vperm		$t0,$IN2,$IN3,$loperm
+	 vperm		$H21h,$H2,$H,$loperm
+	 vperm		$t1,$IN2,$IN3,$hiperm
+	 vpmsumd	$Xm2,$IN2,$H2		# H^2.lo·Xi+2.hi+H^2.hi·Xi+2.lo
+	 vpmsumd	$Xl3,$t0,$H21l		# H^2.lo·Xi+2.lo+H.lo·Xi+3.lo
+	 vpmsumd	$Xm3,$IN3,$H		# H.hi·Xi+3.lo  +H.lo·Xi+3.hi
+	 vpmsumd	$Xh3,$t1,$H21h		# H^2.hi·Xi+2.hi+H.hi·Xi+3.hi
+
+	 vxor		$Xm2,$Xm2,$Xm1
+	 vxor		$Xl3,$Xl3,$Xl1
+	 vxor		$Xm3,$Xm3,$Xm2
+	 vxor		$Xh3,$Xh3,$Xh1
+
+	blt		Ltail_4x
+
+Loop_4x:
+	lvx_u		$IN0,0,$inp
+	lvx_u		$IN1,r8,$inp
+	subic.		$len,$len,4
+	lvx_u		$IN2,r9,$inp
+	lvx_u		$IN3,r10,$inp
+	addi		$inp,$inp,0x40
+	le?vperm	$IN1,$IN1,$IN1,$lemask
+	le?vperm	$IN2,$IN2,$IN2,$lemask
+	le?vperm	$IN3,$IN3,$IN3,$lemask
+	le?vperm	$IN0,$IN0,$IN0,$lemask
+
+	vpmsumd		$Xl,$Xh,$H4l		# H^4.lo·Xi.lo
+	vpmsumd		$Xm,$Xh,$H4		# H^4.hi·Xi.lo+H^4.lo·Xi.hi
+	vpmsumd		$Xh,$Xh,$H4h		# H^4.hi·Xi.hi
+	 vpmsumd	$Xl1,$IN1,$H3l
+	 vpmsumd	$Xm1,$IN1,$H3
+	 vpmsumd	$Xh1,$IN1,$H3h
+
+	vxor		$Xl,$Xl,$Xl3
+	vxor		$Xm,$Xm,$Xm3
+	vxor		$Xh,$Xh,$Xh3
+	 vperm		$t0,$IN2,$IN3,$loperm
+	 vperm		$t1,$IN2,$IN3,$hiperm
+
+	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase
+	 vpmsumd	$Xl3,$t0,$H21l		# H.lo·Xi+3.lo  +H^2.lo·Xi+2.lo
+	 vpmsumd	$Xh3,$t1,$H21h		# H.hi·Xi+3.hi  +H^2.hi·Xi+2.hi
+
+	vsldoi		$t0,$Xm,$zero,8
+	vsldoi		$t1,$zero,$Xm,8
+	vxor		$Xl,$Xl,$t0
+	vxor		$Xh,$Xh,$t1
+
+	vsldoi		$Xl,$Xl,$Xl,8
+	vxor		$Xl,$Xl,$t2
+
+	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
+	 vpmsumd	$Xm2,$IN2,$H2		# H^2.hi·Xi+2.lo+H^2.lo·Xi+2.hi
+	 vpmsumd	$Xm3,$IN3,$H		# H.hi·Xi+3.lo  +H.lo·Xi+3.hi
+	vpmsumd		$Xl,$Xl,$xC2
+
+	 vxor		$Xl3,$Xl3,$Xl1
+	 vxor		$Xh3,$Xh3,$Xh1
+	vxor		$Xh,$Xh,$IN0
+	 vxor		$Xm2,$Xm2,$Xm1
+	vxor		$Xh,$Xh,$t1
+	 vxor		$Xm3,$Xm3,$Xm2
+	vxor		$Xh,$Xh,$Xl
+	bge		Loop_4x
+
+Ltail_4x:
+	vpmsumd		$Xl,$Xh,$H4l		# H^4.lo·Xi.lo
+	vpmsumd		$Xm,$Xh,$H4		# H^4.hi·Xi.lo+H^4.lo·Xi.hi
+	vpmsumd		$Xh,$Xh,$H4h		# H^4.hi·Xi.hi
+
+	vxor		$Xl,$Xl,$Xl3
+	vxor		$Xm,$Xm,$Xm3
+
+	vpmsumd		$t2,$Xl,$xC2		# 1st reduction phase
+
+	vsldoi		$t0,$Xm,$zero,8
+	vsldoi		$t1,$zero,$Xm,8
+	 vxor		$Xh,$Xh,$Xh3
+	vxor		$Xl,$Xl,$t0
+	vxor		$Xh,$Xh,$t1
+
+	vsldoi		$Xl,$Xl,$Xl,8
+	vxor		$Xl,$Xl,$t2
+
+	vsldoi		$t1,$Xl,$Xl,8		# 2nd reduction phase
+	vpmsumd		$Xl,$Xl,$xC2
+	vxor		$t1,$t1,$Xh
+	vxor		$Xl,$Xl,$t1
+
+	addic.		$len,$len,4
+	beq		Ldone_4x
+
+	lvx_u		$IN0,0,$inp
+	${UCMP}i	$len,2
+	li		$len,-4
+	blt		Lone
+	lvx_u		$IN1,r8,$inp
+	beq		Ltwo
+
+Lthree:
+	lvx_u		$IN2,r9,$inp
+	le?vperm	$IN0,$IN0,$IN0,$lemask
+	le?vperm	$IN1,$IN1,$IN1,$lemask
+	le?vperm	$IN2,$IN2,$IN2,$lemask
+
+	vxor		$Xh,$IN0,$Xl
+	vmr		$H4l,$H3l
+	vmr		$H4, $H3
+	vmr		$H4h,$H3h
+
+	vperm		$t0,$IN1,$IN2,$loperm
+	vperm		$t1,$IN1,$IN2,$hiperm
+	vpmsumd		$Xm2,$IN1,$H2		# H^2.lo·Xi+1.hi+H^2.hi·Xi+1.lo
+	vpmsumd		$Xm3,$IN2,$H		# H.hi·Xi+2.lo  +H.lo·Xi+2.hi
+	vpmsumd		$Xl3,$t0,$H21l		# H^2.lo·Xi+1.lo+H.lo·Xi+2.lo
+	vpmsumd		$Xh3,$t1,$H21h		# H^2.hi·Xi+1.hi+H.hi·Xi+2.hi
+
+	vxor		$Xm3,$Xm3,$Xm2
+	b		Ltail_4x
+
+.align	4
+Ltwo:
+	le?vperm	$IN0,$IN0,$IN0,$lemask
+	le?vperm	$IN1,$IN1,$IN1,$lemask
+
+	vxor		$Xh,$IN0,$Xl
+	vperm		$t0,$zero,$IN1,$loperm
+	vperm		$t1,$zero,$IN1,$hiperm
+
+	vsldoi		$H4l,$zero,$H2,8
+	vmr		$H4, $H2
+	vsldoi		$H4h,$H2,$zero,8
+
+	vpmsumd		$Xl3,$t0, $H21l		# H.lo·Xi+1.lo
+	vpmsumd		$Xm3,$IN1,$H		# H.hi·Xi+1.lo+H.lo·Xi+2.hi
+	vpmsumd		$Xh3,$t1, $H21h		# H.hi·Xi+1.hi
+
+	b		Ltail_4x
+
+.align	4
+Lone:
+	le?vperm	$IN0,$IN0,$IN0,$lemask
+
+	vsldoi		$H4l,$zero,$H,8
+	vmr		$H4, $H
+	vsldoi		$H4h,$H,$zero,8
+
+	vxor		$Xh,$IN0,$Xl
+	vxor		$Xl3,$Xl3,$Xl3
+	vxor		$Xm3,$Xm3,$Xm3
+	vxor		$Xh3,$Xh3,$Xh3
+
+	b		Ltail_4x
+
+Ldone_4x:
+	le?vperm	$Xl,$Xl,$Xl,$lemask
+	stvx_u		$Xl,0,$Xip		# write out Xi
+
+	li		r10,`15+6*$SIZE_T`
+	li		r11,`31+6*$SIZE_T`
+	mtspr		256,$vrsave
+	lvx		v20,r10,$sp
+	addi		r10,r10,32
+	lvx		v21,r11,$sp
+	addi		r11,r11,32
+	lvx		v22,r10,$sp
+	addi		r10,r10,32
+	lvx		v23,r11,$sp
+	addi		r11,r11,32
+	lvx		v24,r10,$sp
+	addi		r10,r10,32
+	lvx		v25,r11,$sp
+	addi		r11,r11,32
+	lvx		v26,r10,$sp
+	addi		r10,r10,32
+	lvx		v27,r11,$sp
+	addi		r11,r11,32
+	lvx		v28,r10,$sp
+	addi		r10,r10,32
+	lvx		v29,r11,$sp
+	addi		r11,r11,32
+	lvx		v30,r10,$sp
+	lvx		v31,r11,$sp
+	addi		$sp,$sp,$FRAME
+	blr
+	.long		0
+	.byte		0,12,0x04,0,0x80,0,4,0
+	.long		0
+___
+}
+$code.=<<___;
+.size	.gcm_ghash_p8,.-.gcm_ghash_p8
+
+.asciz  "GHASH for PowerISA 2.07, CRYPTOGAMS by <appro\@openssl.org>"
+.align  2
+___
+
+foreach (split("\n",$code)) {
+	s/\`([^\`]*)\`/eval $1/geo;
+
+	if ($flavour =~ /le$/o) {	# little-endian
+	    s/le\?//o		or
+	    s/be\?/#be#/o;
+	} else {
+	    s/le\?/#le#/o	or
+	    s/be\?//o;
+	}
+	print $_,"\n";
+}
+
+close STDOUT or die "error closing STDOUT: $!"; # enforce flush