zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/lib/libssl/openssl-1.1.1o/crypto/modes/asm/ghashv8-armx.pl b/ap/lib/libssl/openssl-1.1.1o/crypto/modes/asm/ghashv8-armx.pl
new file mode 100644
index 0000000..d0e398b
--- /dev/null
+++ b/ap/lib/libssl/openssl-1.1.1o/crypto/modes/asm/ghashv8-armx.pl
@@ -0,0 +1,781 @@
+#! /usr/bin/env perl
+# Copyright 2014-2020 The OpenSSL Project Authors. All Rights Reserved.
+#
+# Licensed under the OpenSSL license (the "License").  You may not use
+# this file except in compliance with the License.  You can obtain a copy
+# in the file LICENSE in the source distribution or at
+# https://www.openssl.org/source/license.html
+
+#
+# ====================================================================
+# Written by Andy Polyakov <appro@openssl.org> for the OpenSSL
+# project. The module is, however, dual licensed under OpenSSL and
+# CRYPTOGAMS licenses depending on where you obtain it. For further
+# details see http://www.openssl.org/~appro/cryptogams/.
+# ====================================================================
+#
+# GHASH for ARMv8 Crypto Extension, 64-bit polynomial multiplication.
+#
+# June 2014
+#
+# Initial version was developed in tight cooperation with Ard
+# Biesheuvel of Linaro from bits-n-pieces from other assembly modules.
+# Just like aesv8-armx.pl this module supports both AArch32 and
+# AArch64 execution modes.
+#
+# July 2014
+#
+# Implement 2x aggregated reduction [see ghash-x86.pl for background
+# information].
+#
+# November 2017
+#
+# AArch64 register bank to "accommodate" 4x aggregated reduction and
+# improve performance by 20-70% depending on processor.
+#
+# Current performance in cycles per processed byte:
+#
+#		64-bit PMULL	32-bit PMULL	32-bit NEON(*)
+# Apple A7	0.58		0.92		5.62
+# Cortex-A53	0.85		1.01		8.39
+# Cortex-A57	0.73		1.17		7.61
+# Denver	0.51		0.65		6.02
+# Mongoose	0.65		1.10		8.06
+# Kryo		0.76		1.16		8.00
+#
+# (*)	presented for reference/comparison purposes;
+
+$flavour = shift;
+$output  = shift;
+
+$0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
+( $xlate="${dir}arm-xlate.pl" and -f $xlate ) or
+( $xlate="${dir}../../perlasm/arm-xlate.pl" and -f $xlate) or
+die "can't locate arm-xlate.pl";
+
+open OUT,"| \"$^X\" $xlate $flavour $output";
+*STDOUT=*OUT;
+
+$Xi="x0";	# argument block
+$Htbl="x1";
+$inp="x2";
+$len="x3";
+
+$inc="x12";
+
+{
+my ($Xl,$Xm,$Xh,$IN)=map("q$_",(0..3));
+my ($t0,$t1,$t2,$xC2,$H,$Hhl,$H2)=map("q$_",(8..14));
+
+$code=<<___;
+#include "arm_arch.h"
+
+#if __ARM_MAX_ARCH__>=7
+.text
+___
+$code.=".arch	armv8-a+crypto\n"	if ($flavour =~ /64/);
+$code.=<<___				if ($flavour !~ /64/);
+.fpu	neon
+.code	32
+#undef	__thumb2__
+___
+
+################################################################################
+# void gcm_init_v8(u128 Htable[16],const u64 H[2]);
+#
+# input:	128-bit H - secret parameter E(K,0^128)
+# output:	precomputed table filled with degrees of twisted H;
+#		H is twisted to handle reverse bitness of GHASH;
+#		only few of 16 slots of Htable[16] are used;
+#		data is opaque to outside world (which allows to
+#		optimize the code independently);
+#
+$code.=<<___;
+.global	gcm_init_v8
+.type	gcm_init_v8,%function
+.align	4
+gcm_init_v8:
+	vld1.64		{$t1},[x1]		@ load input H
+	vmov.i8		$xC2,#0xe1
+	vshl.i64	$xC2,$xC2,#57		@ 0xc2.0
+	vext.8		$IN,$t1,$t1,#8
+	vshr.u64	$t2,$xC2,#63
+	vdup.32		$t1,${t1}[1]
+	vext.8		$t0,$t2,$xC2,#8		@ t0=0xc2....01
+	vshr.u64	$t2,$IN,#63
+	vshr.s32	$t1,$t1,#31		@ broadcast carry bit
+	vand		$t2,$t2,$t0
+	vshl.i64	$IN,$IN,#1
+	vext.8		$t2,$t2,$t2,#8
+	vand		$t0,$t0,$t1
+	vorr		$IN,$IN,$t2		@ H<<<=1
+	veor		$H,$IN,$t0		@ twisted H
+	vst1.64		{$H},[x0],#16		@ store Htable[0]
+
+	@ calculate H^2
+	vext.8		$t0,$H,$H,#8		@ Karatsuba pre-processing
+	vpmull.p64	$Xl,$H,$H
+	veor		$t0,$t0,$H
+	vpmull2.p64	$Xh,$H,$H
+	vpmull.p64	$Xm,$t0,$t0
+
+	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
+	veor		$t2,$Xl,$Xh
+	veor		$Xm,$Xm,$t1
+	veor		$Xm,$Xm,$t2
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase
+
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	veor		$Xl,$Xm,$t2
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase
+	vpmull.p64	$Xl,$Xl,$xC2
+	veor		$t2,$t2,$Xh
+	veor		$H2,$Xl,$t2
+
+	vext.8		$t1,$H2,$H2,#8		@ Karatsuba pre-processing
+	veor		$t1,$t1,$H2
+	vext.8		$Hhl,$t0,$t1,#8		@ pack Karatsuba pre-processed
+	vst1.64		{$Hhl-$H2},[x0],#32	@ store Htable[1..2]
+___
+if ($flavour =~ /64/) {
+my ($t3,$Yl,$Ym,$Yh) = map("q$_",(4..7));
+
+$code.=<<___;
+	@ calculate H^3 and H^4
+	vpmull.p64	$Xl,$H, $H2
+	 vpmull.p64	$Yl,$H2,$H2
+	vpmull2.p64	$Xh,$H, $H2
+	 vpmull2.p64	$Yh,$H2,$H2
+	vpmull.p64	$Xm,$t0,$t1
+	 vpmull.p64	$Ym,$t1,$t1
+
+	vext.8		$t0,$Xl,$Xh,#8		@ Karatsuba post-processing
+	 vext.8		$t1,$Yl,$Yh,#8
+	veor		$t2,$Xl,$Xh
+	veor		$Xm,$Xm,$t0
+	 veor		$t3,$Yl,$Yh
+	 veor		$Ym,$Ym,$t1
+	veor		$Xm,$Xm,$t2
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase
+	 veor		$Ym,$Ym,$t3
+	 vpmull.p64	$t3,$Yl,$xC2
+
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	 vmov		$Yh#lo,$Ym#hi
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	 vmov		$Ym#hi,$Yl#lo
+	veor		$Xl,$Xm,$t2
+	 veor		$Yl,$Ym,$t3
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase
+	 vext.8		$t3,$Yl,$Yl,#8
+	vpmull.p64	$Xl,$Xl,$xC2
+	 vpmull.p64	$Yl,$Yl,$xC2
+	veor		$t2,$t2,$Xh
+	 veor		$t3,$t3,$Yh
+	veor		$H, $Xl,$t2		@ H^3
+	 veor		$H2,$Yl,$t3		@ H^4
+
+	vext.8		$t0,$H, $H,#8		@ Karatsuba pre-processing
+	 vext.8		$t1,$H2,$H2,#8
+	veor		$t0,$t0,$H
+	 veor		$t1,$t1,$H2
+	vext.8		$Hhl,$t0,$t1,#8		@ pack Karatsuba pre-processed
+	vst1.64		{$H-$H2},[x0]		@ store Htable[3..5]
+___
+}
+$code.=<<___;
+	ret
+.size	gcm_init_v8,.-gcm_init_v8
+___
+################################################################################
+# void gcm_gmult_v8(u64 Xi[2],const u128 Htable[16]);
+#
+# input:	Xi - current hash value;
+#		Htable - table precomputed in gcm_init_v8;
+# output:	Xi - next hash value Xi;
+#
+$code.=<<___;
+.global	gcm_gmult_v8
+.type	gcm_gmult_v8,%function
+.align	4
+gcm_gmult_v8:
+	vld1.64		{$t1},[$Xi]		@ load Xi
+	vmov.i8		$xC2,#0xe1
+	vld1.64		{$H-$Hhl},[$Htbl]	@ load twisted H, ...
+	vshl.u64	$xC2,$xC2,#57
+#ifndef __ARMEB__
+	vrev64.8	$t1,$t1
+#endif
+	vext.8		$IN,$t1,$t1,#8
+
+	vpmull.p64	$Xl,$H,$IN		@ H.lo·Xi.lo
+	veor		$t1,$t1,$IN		@ Karatsuba pre-processing
+	vpmull2.p64	$Xh,$H,$IN		@ H.hi·Xi.hi
+	vpmull.p64	$Xm,$Hhl,$t1		@ (H.lo+H.hi)·(Xi.lo+Xi.hi)
+
+	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
+	veor		$t2,$Xl,$Xh
+	veor		$Xm,$Xm,$t1
+	veor		$Xm,$Xm,$t2
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
+
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	veor		$Xl,$Xm,$t2
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
+	vpmull.p64	$Xl,$Xl,$xC2
+	veor		$t2,$t2,$Xh
+	veor		$Xl,$Xl,$t2
+
+#ifndef __ARMEB__
+	vrev64.8	$Xl,$Xl
+#endif
+	vext.8		$Xl,$Xl,$Xl,#8
+	vst1.64		{$Xl},[$Xi]		@ write out Xi
+
+	ret
+.size	gcm_gmult_v8,.-gcm_gmult_v8
+___
+################################################################################
+# void gcm_ghash_v8(u64 Xi[2],const u128 Htable[16],const u8 *inp,size_t len);
+#
+# input:	table precomputed in gcm_init_v8;
+#		current hash value Xi;
+#		pointer to input data;
+#		length of input data in bytes, but divisible by block size;
+# output:	next hash value Xi;
+#
+$code.=<<___;
+.global	gcm_ghash_v8
+.type	gcm_ghash_v8,%function
+.align	4
+gcm_ghash_v8:
+___
+$code.=<<___	if ($flavour =~ /64/);
+	cmp		$len,#64
+	b.hs		.Lgcm_ghash_v8_4x
+___
+$code.=<<___		if ($flavour !~ /64/);
+	vstmdb		sp!,{d8-d15}		@ 32-bit ABI says so
+___
+$code.=<<___;
+	vld1.64		{$Xl},[$Xi]		@ load [rotated] Xi
+						@ "[rotated]" means that
+						@ loaded value would have
+						@ to be rotated in order to
+						@ make it appear as in
+						@ algorithm specification
+	subs		$len,$len,#32		@ see if $len is 32 or larger
+	mov		$inc,#16		@ $inc is used as post-
+						@ increment for input pointer;
+						@ as loop is modulo-scheduled
+						@ $inc is zeroed just in time
+						@ to preclude overstepping
+						@ inp[len], which means that
+						@ last block[s] are actually
+						@ loaded twice, but last
+						@ copy is not processed
+	vld1.64		{$H-$Hhl},[$Htbl],#32	@ load twisted H, ..., H^2
+	vmov.i8		$xC2,#0xe1
+	vld1.64		{$H2},[$Htbl]
+	cclr		$inc,eq			@ is it time to zero $inc?
+	vext.8		$Xl,$Xl,$Xl,#8		@ rotate Xi
+	vld1.64		{$t0},[$inp],#16	@ load [rotated] I[0]
+	vshl.u64	$xC2,$xC2,#57		@ compose 0xc2.0 constant
+#ifndef __ARMEB__
+	vrev64.8	$t0,$t0
+	vrev64.8	$Xl,$Xl
+#endif
+	vext.8		$IN,$t0,$t0,#8		@ rotate I[0]
+	b.lo		.Lodd_tail_v8		@ $len was less than 32
+___
+{ my ($Xln,$Xmn,$Xhn,$In) = map("q$_",(4..7));
+	#######
+	# Xi+2 =[H*(Ii+1 + Xi+1)] mod P =
+	#	[(H*Ii+1) + (H*Xi+1)] mod P =
+	#	[(H*Ii+1) + H^2*(Ii+Xi)] mod P
+	#
+$code.=<<___;
+	vld1.64		{$t1},[$inp],$inc	@ load [rotated] I[1]
+#ifndef __ARMEB__
+	vrev64.8	$t1,$t1
+#endif
+	vext.8		$In,$t1,$t1,#8
+	veor		$IN,$IN,$Xl		@ I[i]^=Xi
+	vpmull.p64	$Xln,$H,$In		@ H·Ii+1
+	veor		$t1,$t1,$In		@ Karatsuba pre-processing
+	vpmull2.p64	$Xhn,$H,$In
+	b		.Loop_mod2x_v8
+
+.align	4
+.Loop_mod2x_v8:
+	vext.8		$t2,$IN,$IN,#8
+	subs		$len,$len,#32		@ is there more data?
+	vpmull.p64	$Xl,$H2,$IN		@ H^2.lo·Xi.lo
+	cclr		$inc,lo			@ is it time to zero $inc?
+
+	 vpmull.p64	$Xmn,$Hhl,$t1
+	veor		$t2,$t2,$IN		@ Karatsuba pre-processing
+	vpmull2.p64	$Xh,$H2,$IN		@ H^2.hi·Xi.hi
+	veor		$Xl,$Xl,$Xln		@ accumulate
+	vpmull2.p64	$Xm,$Hhl,$t2		@ (H^2.lo+H^2.hi)·(Xi.lo+Xi.hi)
+	 vld1.64	{$t0},[$inp],$inc	@ load [rotated] I[i+2]
+
+	veor		$Xh,$Xh,$Xhn
+	 cclr		$inc,eq			@ is it time to zero $inc?
+	veor		$Xm,$Xm,$Xmn
+
+	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
+	veor		$t2,$Xl,$Xh
+	veor		$Xm,$Xm,$t1
+	 vld1.64	{$t1},[$inp],$inc	@ load [rotated] I[i+3]
+#ifndef __ARMEB__
+	 vrev64.8	$t0,$t0
+#endif
+	veor		$Xm,$Xm,$t2
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
+
+#ifndef __ARMEB__
+	 vrev64.8	$t1,$t1
+#endif
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	 vext.8		$In,$t1,$t1,#8
+	 vext.8		$IN,$t0,$t0,#8
+	veor		$Xl,$Xm,$t2
+	 vpmull.p64	$Xln,$H,$In		@ H·Ii+1
+	veor		$IN,$IN,$Xh		@ accumulate $IN early
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
+	vpmull.p64	$Xl,$Xl,$xC2
+	veor		$IN,$IN,$t2
+	 veor		$t1,$t1,$In		@ Karatsuba pre-processing
+	veor		$IN,$IN,$Xl
+	 vpmull2.p64	$Xhn,$H,$In
+	b.hs		.Loop_mod2x_v8		@ there was at least 32 more bytes
+
+	veor		$Xh,$Xh,$t2
+	vext.8		$IN,$t0,$t0,#8		@ re-construct $IN
+	adds		$len,$len,#32		@ re-construct $len
+	veor		$Xl,$Xl,$Xh		@ re-construct $Xl
+	b.eq		.Ldone_v8		@ is $len zero?
+___
+}
+$code.=<<___;
+.Lodd_tail_v8:
+	vext.8		$t2,$Xl,$Xl,#8
+	veor		$IN,$IN,$Xl		@ inp^=Xi
+	veor		$t1,$t0,$t2		@ $t1 is rotated inp^Xi
+
+	vpmull.p64	$Xl,$H,$IN		@ H.lo·Xi.lo
+	veor		$t1,$t1,$IN		@ Karatsuba pre-processing
+	vpmull2.p64	$Xh,$H,$IN		@ H.hi·Xi.hi
+	vpmull.p64	$Xm,$Hhl,$t1		@ (H.lo+H.hi)·(Xi.lo+Xi.hi)
+
+	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
+	veor		$t2,$Xl,$Xh
+	veor		$Xm,$Xm,$t1
+	veor		$Xm,$Xm,$t2
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
+
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	veor		$Xl,$Xm,$t2
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
+	vpmull.p64	$Xl,$Xl,$xC2
+	veor		$t2,$t2,$Xh
+	veor		$Xl,$Xl,$t2
+
+.Ldone_v8:
+#ifndef __ARMEB__
+	vrev64.8	$Xl,$Xl
+#endif
+	vext.8		$Xl,$Xl,$Xl,#8
+	vst1.64		{$Xl},[$Xi]		@ write out Xi
+
+___
+$code.=<<___		if ($flavour !~ /64/);
+	vldmia		sp!,{d8-d15}		@ 32-bit ABI says so
+___
+$code.=<<___;
+	ret
+.size	gcm_ghash_v8,.-gcm_ghash_v8
+___
+
+if ($flavour =~ /64/) {				# 4x subroutine
+my ($I0,$j1,$j2,$j3,
+    $I1,$I2,$I3,$H3,$H34,$H4,$Yl,$Ym,$Yh) = map("q$_",(4..7,15..23));
+
+$code.=<<___;
+.type	gcm_ghash_v8_4x,%function
+.align	4
+gcm_ghash_v8_4x:
+.Lgcm_ghash_v8_4x:
+	vld1.64		{$Xl},[$Xi]		@ load [rotated] Xi
+	vld1.64		{$H-$H2},[$Htbl],#48	@ load twisted H, ..., H^2
+	vmov.i8		$xC2,#0xe1
+	vld1.64		{$H3-$H4},[$Htbl]	@ load twisted H^3, ..., H^4
+	vshl.u64	$xC2,$xC2,#57		@ compose 0xc2.0 constant
+
+	vld1.64		{$I0-$j3},[$inp],#64
+#ifndef __ARMEB__
+	vrev64.8	$Xl,$Xl
+	vrev64.8	$j1,$j1
+	vrev64.8	$j2,$j2
+	vrev64.8	$j3,$j3
+	vrev64.8	$I0,$I0
+#endif
+	vext.8		$I3,$j3,$j3,#8
+	vext.8		$I2,$j2,$j2,#8
+	vext.8		$I1,$j1,$j1,#8
+
+	vpmull.p64	$Yl,$H,$I3		@ H·Ii+3
+	veor		$j3,$j3,$I3
+	vpmull2.p64	$Yh,$H,$I3
+	vpmull.p64	$Ym,$Hhl,$j3
+
+	vpmull.p64	$t0,$H2,$I2		@ H^2·Ii+2
+	veor		$j2,$j2,$I2
+	vpmull2.p64	$I2,$H2,$I2
+	vpmull2.p64	$j2,$Hhl,$j2
+
+	veor		$Yl,$Yl,$t0
+	veor		$Yh,$Yh,$I2
+	veor		$Ym,$Ym,$j2
+
+	vpmull.p64	$j3,$H3,$I1		@ H^3·Ii+1
+	veor		$j1,$j1,$I1
+	vpmull2.p64	$I1,$H3,$I1
+	vpmull.p64	$j1,$H34,$j1
+
+	veor		$Yl,$Yl,$j3
+	veor		$Yh,$Yh,$I1
+	veor		$Ym,$Ym,$j1
+
+	subs		$len,$len,#128
+	b.lo		.Ltail4x
+
+	b		.Loop4x
+
+.align	4
+.Loop4x:
+	veor		$t0,$I0,$Xl
+	 vld1.64	{$I0-$j3},[$inp],#64
+	vext.8		$IN,$t0,$t0,#8
+#ifndef __ARMEB__
+	 vrev64.8	$j1,$j1
+	 vrev64.8	$j2,$j2
+	 vrev64.8	$j3,$j3
+	 vrev64.8	$I0,$I0
+#endif
+
+	vpmull.p64	$Xl,$H4,$IN		@ H^4·(Xi+Ii)
+	veor		$t0,$t0,$IN
+	vpmull2.p64	$Xh,$H4,$IN
+	 vext.8		$I3,$j3,$j3,#8
+	vpmull2.p64	$Xm,$H34,$t0
+
+	veor		$Xl,$Xl,$Yl
+	veor		$Xh,$Xh,$Yh
+	 vext.8		$I2,$j2,$j2,#8
+	veor		$Xm,$Xm,$Ym
+	 vext.8		$I1,$j1,$j1,#8
+
+	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
+	veor		$t2,$Xl,$Xh
+	 vpmull.p64	$Yl,$H,$I3		@ H·Ii+3
+	 veor		$j3,$j3,$I3
+	veor		$Xm,$Xm,$t1
+	 vpmull2.p64	$Yh,$H,$I3
+	veor		$Xm,$Xm,$t2
+	 vpmull.p64	$Ym,$Hhl,$j3
+
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	 vpmull.p64	$t0,$H2,$I2		@ H^2·Ii+2
+	 veor		$j2,$j2,$I2
+	 vpmull2.p64	$I2,$H2,$I2
+	veor		$Xl,$Xm,$t2
+	 vpmull2.p64	$j2,$Hhl,$j2
+
+	 veor		$Yl,$Yl,$t0
+	 veor		$Yh,$Yh,$I2
+	 veor		$Ym,$Ym,$j2
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
+	vpmull.p64	$Xl,$Xl,$xC2
+	 vpmull.p64	$j3,$H3,$I1		@ H^3·Ii+1
+	 veor		$j1,$j1,$I1
+	veor		$t2,$t2,$Xh
+	 vpmull2.p64	$I1,$H3,$I1
+	 vpmull.p64	$j1,$H34,$j1
+
+	veor		$Xl,$Xl,$t2
+	 veor		$Yl,$Yl,$j3
+	 veor		$Yh,$Yh,$I1
+	vext.8		$Xl,$Xl,$Xl,#8
+	 veor		$Ym,$Ym,$j1
+
+	subs		$len,$len,#64
+	b.hs		.Loop4x
+
+.Ltail4x:
+	veor		$t0,$I0,$Xl
+	vext.8		$IN,$t0,$t0,#8
+
+	vpmull.p64	$Xl,$H4,$IN		@ H^4·(Xi+Ii)
+	veor		$t0,$t0,$IN
+	vpmull2.p64	$Xh,$H4,$IN
+	vpmull2.p64	$Xm,$H34,$t0
+
+	veor		$Xl,$Xl,$Yl
+	veor		$Xh,$Xh,$Yh
+	veor		$Xm,$Xm,$Ym
+
+	adds		$len,$len,#64
+	b.eq		.Ldone4x
+
+	cmp		$len,#32
+	b.lo		.Lone
+	b.eq		.Ltwo
+.Lthree:
+	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
+	veor		$t2,$Xl,$Xh
+	veor		$Xm,$Xm,$t1
+	 vld1.64	{$I0-$j2},[$inp]
+	veor		$Xm,$Xm,$t2
+#ifndef	__ARMEB__
+	 vrev64.8	$j1,$j1
+	 vrev64.8	$j2,$j2
+	 vrev64.8	$I0,$I0
+#endif
+
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	 vext.8		$I2,$j2,$j2,#8
+	 vext.8		$I1,$j1,$j1,#8
+	veor		$Xl,$Xm,$t2
+
+	 vpmull.p64	$Yl,$H,$I2		@ H·Ii+2
+	 veor		$j2,$j2,$I2
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
+	vpmull.p64	$Xl,$Xl,$xC2
+	veor		$t2,$t2,$Xh
+	 vpmull2.p64	$Yh,$H,$I2
+	 vpmull.p64	$Ym,$Hhl,$j2
+	veor		$Xl,$Xl,$t2
+	 vpmull.p64	$j3,$H2,$I1		@ H^2·Ii+1
+	 veor		$j1,$j1,$I1
+	vext.8		$Xl,$Xl,$Xl,#8
+
+	 vpmull2.p64	$I1,$H2,$I1
+	veor		$t0,$I0,$Xl
+	 vpmull2.p64	$j1,$Hhl,$j1
+	vext.8		$IN,$t0,$t0,#8
+
+	 veor		$Yl,$Yl,$j3
+	 veor		$Yh,$Yh,$I1
+	 veor		$Ym,$Ym,$j1
+
+	vpmull.p64	$Xl,$H3,$IN		@ H^3·(Xi+Ii)
+	veor		$t0,$t0,$IN
+	vpmull2.p64	$Xh,$H3,$IN
+	vpmull.p64	$Xm,$H34,$t0
+
+	veor		$Xl,$Xl,$Yl
+	veor		$Xh,$Xh,$Yh
+	veor		$Xm,$Xm,$Ym
+	b		.Ldone4x
+
+.align	4
+.Ltwo:
+	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
+	veor		$t2,$Xl,$Xh
+	veor		$Xm,$Xm,$t1
+	 vld1.64	{$I0-$j1},[$inp]
+	veor		$Xm,$Xm,$t2
+#ifndef	__ARMEB__
+	 vrev64.8	$j1,$j1
+	 vrev64.8	$I0,$I0
+#endif
+
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	 vext.8		$I1,$j1,$j1,#8
+	veor		$Xl,$Xm,$t2
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
+	vpmull.p64	$Xl,$Xl,$xC2
+	veor		$t2,$t2,$Xh
+	veor		$Xl,$Xl,$t2
+	vext.8		$Xl,$Xl,$Xl,#8
+
+	 vpmull.p64	$Yl,$H,$I1		@ H·Ii+1
+	 veor		$j1,$j1,$I1
+
+	veor		$t0,$I0,$Xl
+	vext.8		$IN,$t0,$t0,#8
+
+	 vpmull2.p64	$Yh,$H,$I1
+	 vpmull.p64	$Ym,$Hhl,$j1
+
+	vpmull.p64	$Xl,$H2,$IN		@ H^2·(Xi+Ii)
+	veor		$t0,$t0,$IN
+	vpmull2.p64	$Xh,$H2,$IN
+	vpmull2.p64	$Xm,$Hhl,$t0
+
+	veor		$Xl,$Xl,$Yl
+	veor		$Xh,$Xh,$Yh
+	veor		$Xm,$Xm,$Ym
+	b		.Ldone4x
+
+.align	4
+.Lone:
+	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
+	veor		$t2,$Xl,$Xh
+	veor		$Xm,$Xm,$t1
+	 vld1.64	{$I0},[$inp]
+	veor		$Xm,$Xm,$t2
+#ifndef	__ARMEB__
+	 vrev64.8	$I0,$I0
+#endif
+
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	veor		$Xl,$Xm,$t2
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
+	vpmull.p64	$Xl,$Xl,$xC2
+	veor		$t2,$t2,$Xh
+	veor		$Xl,$Xl,$t2
+	vext.8		$Xl,$Xl,$Xl,#8
+
+	veor		$t0,$I0,$Xl
+	vext.8		$IN,$t0,$t0,#8
+
+	vpmull.p64	$Xl,$H,$IN
+	veor		$t0,$t0,$IN
+	vpmull2.p64	$Xh,$H,$IN
+	vpmull.p64	$Xm,$Hhl,$t0
+
+.Ldone4x:
+	vext.8		$t1,$Xl,$Xh,#8		@ Karatsuba post-processing
+	veor		$t2,$Xl,$Xh
+	veor		$Xm,$Xm,$t1
+	veor		$Xm,$Xm,$t2
+
+	vpmull.p64	$t2,$Xl,$xC2		@ 1st phase of reduction
+	vmov		$Xh#lo,$Xm#hi		@ Xh|Xm - 256-bit result
+	vmov		$Xm#hi,$Xl#lo		@ Xm is rotated Xl
+	veor		$Xl,$Xm,$t2
+
+	vext.8		$t2,$Xl,$Xl,#8		@ 2nd phase of reduction
+	vpmull.p64	$Xl,$Xl,$xC2
+	veor		$t2,$t2,$Xh
+	veor		$Xl,$Xl,$t2
+	vext.8		$Xl,$Xl,$Xl,#8
+
+#ifndef __ARMEB__
+	vrev64.8	$Xl,$Xl
+#endif
+	vst1.64		{$Xl},[$Xi]		@ write out Xi
+
+	ret
+.size	gcm_ghash_v8_4x,.-gcm_ghash_v8_4x
+___
+
+}
+}
+
+$code.=<<___;
+.asciz  "GHASH for ARMv8, CRYPTOGAMS by <appro\@openssl.org>"
+.align  2
+#endif
+___
+
+if ($flavour =~ /64/) {			######## 64-bit code
+    sub unvmov {
+	my $arg=shift;
+
+	$arg =~ m/q([0-9]+)#(lo|hi),\s*q([0-9]+)#(lo|hi)/o &&
+	sprintf	"ins	v%d.d[%d],v%d.d[%d]",$1<8?$1:$1+8,($2 eq "lo")?0:1,
+					     $3<8?$3:$3+8,($4 eq "lo")?0:1;
+    }
+    foreach(split("\n",$code)) {
+	s/cclr\s+([wx])([^,]+),\s*([a-z]+)/csel	$1$2,$1zr,$1$2,$3/o	or
+	s/vmov\.i8/movi/o		or	# fix up legacy mnemonics
+	s/vmov\s+(.*)/unvmov($1)/geo	or
+	s/vext\.8/ext/o			or
+	s/vshr\.s/sshr\.s/o		or
+	s/vshr/ushr/o			or
+	s/^(\s+)v/$1/o			or	# strip off v prefix
+	s/\bbx\s+lr\b/ret/o;
+
+	s/\bq([0-9]+)\b/"v".($1<8?$1:$1+8).".16b"/geo;	# old->new registers
+	s/@\s/\/\//o;				# old->new style commentary
+
+	# fix up remaining legacy suffixes
+	s/\.[ui]?8(\s)/$1/o;
+	s/\.[uis]?32//o and s/\.16b/\.4s/go;
+	m/\.p64/o and s/\.16b/\.1q/o;		# 1st pmull argument
+	m/l\.p64/o and s/\.16b/\.1d/go;		# 2nd and 3rd pmull arguments
+	s/\.[uisp]?64//o and s/\.16b/\.2d/go;
+	s/\.[42]([sd])\[([0-3])\]/\.$1\[$2\]/o;
+
+	print $_,"\n";
+    }
+} else {				######## 32-bit code
+    sub unvdup32 {
+	my $arg=shift;
+
+	$arg =~ m/q([0-9]+),\s*q([0-9]+)\[([0-3])\]/o &&
+	sprintf	"vdup.32	q%d,d%d[%d]",$1,2*$2+($3>>1),$3&1;
+    }
+    sub unvpmullp64 {
+	my ($mnemonic,$arg)=@_;
+
+	if ($arg =~ m/q([0-9]+),\s*q([0-9]+),\s*q([0-9]+)/o) {
+	    my $word = 0xf2a00e00|(($1&7)<<13)|(($1&8)<<19)
+				 |(($2&7)<<17)|(($2&8)<<4)
+				 |(($3&7)<<1) |(($3&8)<<2);
+	    $word |= 0x00010001	 if ($mnemonic =~ "2");
+	    # since ARMv7 instructions are always encoded little-endian.
+	    # correct solution is to use .inst directive, but older
+	    # assemblers don't implement it:-(
+	    sprintf ".byte\t0x%02x,0x%02x,0x%02x,0x%02x\t@ %s %s",
+			$word&0xff,($word>>8)&0xff,
+			($word>>16)&0xff,($word>>24)&0xff,
+			$mnemonic,$arg;
+	}
+    }
+
+    foreach(split("\n",$code)) {
+	s/\b[wx]([0-9]+)\b/r$1/go;		# new->old registers
+	s/\bv([0-9])\.[12468]+[bsd]\b/q$1/go;	# new->old registers
+	s/\/\/\s?/@ /o;				# new->old style commentary
+
+	# fix up remaining new-style suffixes
+	s/\],#[0-9]+/]!/o;
+
+	s/cclr\s+([^,]+),\s*([a-z]+)/mov$2	$1,#0/o			or
+	s/vdup\.32\s+(.*)/unvdup32($1)/geo				or
+	s/v?(pmull2?)\.p64\s+(.*)/unvpmullp64($1,$2)/geo		or
+	s/\bq([0-9]+)#(lo|hi)/sprintf "d%d",2*$1+($2 eq "hi")/geo	or
+	s/^(\s+)b\./$1b/o						or
+	s/^(\s+)ret/$1bx\tlr/o;
+
+	print $_,"\n";
+    }
+}
+
+close STDOUT or die "error closing STDOUT: $!"; # enforce flush