zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/lib/libssl/openssl-1.1.1o/crypto/modes/ocb128.c b/ap/lib/libssl/openssl-1.1.1o/crypto/modes/ocb128.c
new file mode 100644
index 0000000..b39a55a
--- /dev/null
+++ b/ap/lib/libssl/openssl-1.1.1o/crypto/modes/ocb128.c
@@ -0,0 +1,562 @@
+/*
+ * Copyright 2014-2018 The OpenSSL Project Authors. All Rights Reserved.
+ *
+ * Licensed under the OpenSSL license (the "License").  You may not use
+ * this file except in compliance with the License.  You can obtain a copy
+ * in the file LICENSE in the source distribution or at
+ * https://www.openssl.org/source/license.html
+ */
+
+#include <string.h>
+#include <openssl/crypto.h>
+#include <openssl/err.h>
+#include "modes_local.h"
+
+#ifndef OPENSSL_NO_OCB
+
+/*
+ * Calculate the number of binary trailing zero's in any given number
+ */
+static u32 ocb_ntz(u64 n)
+{
+    u32 cnt = 0;
+
+    /*
+     * We do a right-to-left simple sequential search. This is surprisingly
+     * efficient as the distribution of trailing zeros is not uniform,
+     * e.g. the number of possible inputs with no trailing zeros is equal to
+     * the number with 1 or more; the number with exactly 1 is equal to the
+     * number with 2 or more, etc. Checking the last two bits covers 75% of
+     * all numbers. Checking the last three covers 87.5%
+     */
+    while (!(n & 1)) {
+        n >>= 1;
+        cnt++;
+    }
+    return cnt;
+}
+
+/*
+ * Shift a block of 16 bytes left by shift bits
+ */
+static void ocb_block_lshift(const unsigned char *in, size_t shift,
+                             unsigned char *out)
+{
+    int i;
+    unsigned char carry = 0, carry_next;
+
+    for (i = 15; i >= 0; i--) {
+        carry_next = in[i] >> (8 - shift);
+        out[i] = (in[i] << shift) | carry;
+        carry = carry_next;
+    }
+}
+
+/*
+ * Perform a "double" operation as per OCB spec
+ */
+static void ocb_double(OCB_BLOCK *in, OCB_BLOCK *out)
+{
+    unsigned char mask;
+
+    /*
+     * Calculate the mask based on the most significant bit. There are more
+     * efficient ways to do this - but this way is constant time
+     */
+    mask = in->c[0] & 0x80;
+    mask >>= 7;
+    mask = (0 - mask) & 0x87;
+
+    ocb_block_lshift(in->c, 1, out->c);
+
+    out->c[15] ^= mask;
+}
+
+/*
+ * Perform an xor on in1 and in2 - each of len bytes. Store result in out
+ */
+static void ocb_block_xor(const unsigned char *in1,
+                          const unsigned char *in2, size_t len,
+                          unsigned char *out)
+{
+    size_t i;
+    for (i = 0; i < len; i++) {
+        out[i] = in1[i] ^ in2[i];
+    }
+}
+
+/*
+ * Lookup L_index in our lookup table. If we haven't already got it we need to
+ * calculate it
+ */
+static OCB_BLOCK *ocb_lookup_l(OCB128_CONTEXT *ctx, size_t idx)
+{
+    size_t l_index = ctx->l_index;
+
+    if (idx <= l_index) {
+        return ctx->l + idx;
+    }
+
+    /* We don't have it - so calculate it */
+    if (idx >= ctx->max_l_index) {
+        void *tmp_ptr;
+        /*
+         * Each additional entry allows to process almost double as
+         * much data, so that in linear world the table will need to
+         * be expanded with smaller and smaller increments. Originally
+         * it was doubling in size, which was a waste. Growing it
+         * linearly is not formally optimal, but is simpler to implement.
+         * We grow table by minimally required 4*n that would accommodate
+         * the index.
+         */
+        ctx->max_l_index += (idx - ctx->max_l_index + 4) & ~3;
+        tmp_ptr = OPENSSL_realloc(ctx->l, ctx->max_l_index * sizeof(OCB_BLOCK));
+        if (tmp_ptr == NULL) /* prevent ctx->l from being clobbered */
+            return NULL;
+        ctx->l = tmp_ptr;
+    }
+    while (l_index < idx) {
+        ocb_double(ctx->l + l_index, ctx->l + l_index + 1);
+        l_index++;
+    }
+    ctx->l_index = l_index;
+
+    return ctx->l + idx;
+}
+
+/*
+ * Create a new OCB128_CONTEXT
+ */
+OCB128_CONTEXT *CRYPTO_ocb128_new(void *keyenc, void *keydec,
+                                  block128_f encrypt, block128_f decrypt,
+                                  ocb128_f stream)
+{
+    OCB128_CONTEXT *octx;
+    int ret;
+
+    if ((octx = OPENSSL_malloc(sizeof(*octx))) != NULL) {
+        ret = CRYPTO_ocb128_init(octx, keyenc, keydec, encrypt, decrypt,
+                                 stream);
+        if (ret)
+            return octx;
+        OPENSSL_free(octx);
+    }
+
+    return NULL;
+}
+
+/*
+ * Initialise an existing OCB128_CONTEXT
+ */
+int CRYPTO_ocb128_init(OCB128_CONTEXT *ctx, void *keyenc, void *keydec,
+                       block128_f encrypt, block128_f decrypt,
+                       ocb128_f stream)
+{
+    memset(ctx, 0, sizeof(*ctx));
+    ctx->l_index = 0;
+    ctx->max_l_index = 5;
+    if ((ctx->l = OPENSSL_malloc(ctx->max_l_index * 16)) == NULL) {
+        CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_INIT, ERR_R_MALLOC_FAILURE);
+        return 0;
+    }
+
+    /*
+     * We set both the encryption and decryption key schedules - decryption
+     * needs both. Don't really need decryption schedule if only doing
+     * encryption - but it simplifies things to take it anyway
+     */
+    ctx->encrypt = encrypt;
+    ctx->decrypt = decrypt;
+    ctx->stream = stream;
+    ctx->keyenc = keyenc;
+    ctx->keydec = keydec;
+
+    /* L_* = ENCIPHER(K, zeros(128)) */
+    ctx->encrypt(ctx->l_star.c, ctx->l_star.c, ctx->keyenc);
+
+    /* L_$ = double(L_*) */
+    ocb_double(&ctx->l_star, &ctx->l_dollar);
+
+    /* L_0 = double(L_$) */
+    ocb_double(&ctx->l_dollar, ctx->l);
+
+    /* L_{i} = double(L_{i-1}) */
+    ocb_double(ctx->l, ctx->l+1);
+    ocb_double(ctx->l+1, ctx->l+2);
+    ocb_double(ctx->l+2, ctx->l+3);
+    ocb_double(ctx->l+3, ctx->l+4);
+    ctx->l_index = 4;   /* enough to process up to 496 bytes */
+
+    return 1;
+}
+
+/*
+ * Copy an OCB128_CONTEXT object
+ */
+int CRYPTO_ocb128_copy_ctx(OCB128_CONTEXT *dest, OCB128_CONTEXT *src,
+                           void *keyenc, void *keydec)
+{
+    memcpy(dest, src, sizeof(OCB128_CONTEXT));
+    if (keyenc)
+        dest->keyenc = keyenc;
+    if (keydec)
+        dest->keydec = keydec;
+    if (src->l) {
+        if ((dest->l = OPENSSL_malloc(src->max_l_index * 16)) == NULL) {
+            CRYPTOerr(CRYPTO_F_CRYPTO_OCB128_COPY_CTX, ERR_R_MALLOC_FAILURE);
+            return 0;
+        }
+        memcpy(dest->l, src->l, (src->l_index + 1) * 16);
+    }
+    return 1;
+}
+
+/*
+ * Set the IV to be used for this operation. Must be 1 - 15 bytes.
+ */
+int CRYPTO_ocb128_setiv(OCB128_CONTEXT *ctx, const unsigned char *iv,
+                        size_t len, size_t taglen)
+{
+    unsigned char ktop[16], tmp[16], mask;
+    unsigned char stretch[24], nonce[16];
+    size_t bottom, shift;
+
+    /*
+     * Spec says IV is 120 bits or fewer - it allows non byte aligned lengths.
+     * We don't support this at this stage
+     */
+    if ((len > 15) || (len < 1) || (taglen > 16) || (taglen < 1)) {
+        return -1;
+    }
+
+    /* Reset nonce-dependent variables */
+    memset(&ctx->sess, 0, sizeof(ctx->sess));
+
+    /* Nonce = num2str(TAGLEN mod 128,7) || zeros(120-bitlen(N)) || 1 || N */
+    nonce[0] = ((taglen * 8) % 128) << 1;
+    memset(nonce + 1, 0, 15);
+    memcpy(nonce + 16 - len, iv, len);
+    nonce[15 - len] |= 1;
+
+    /* Ktop = ENCIPHER(K, Nonce[1..122] || zeros(6)) */
+    memcpy(tmp, nonce, 16);
+    tmp[15] &= 0xc0;
+    ctx->encrypt(tmp, ktop, ctx->keyenc);
+
+    /* Stretch = Ktop || (Ktop[1..64] xor Ktop[9..72]) */
+    memcpy(stretch, ktop, 16);
+    ocb_block_xor(ktop, ktop + 1, 8, stretch + 16);
+
+    /* bottom = str2num(Nonce[123..128]) */
+    bottom = nonce[15] & 0x3f;
+
+    /* Offset_0 = Stretch[1+bottom..128+bottom] */
+    shift = bottom % 8;
+    ocb_block_lshift(stretch + (bottom / 8), shift, ctx->sess.offset.c);
+    mask = 0xff;
+    mask <<= 8 - shift;
+    ctx->sess.offset.c[15] |=
+        (*(stretch + (bottom / 8) + 16) & mask) >> (8 - shift);
+
+    return 1;
+}
+
+/*
+ * Provide any AAD. This can be called multiple times. Only the final time can
+ * have a partial block
+ */
+int CRYPTO_ocb128_aad(OCB128_CONTEXT *ctx, const unsigned char *aad,
+                      size_t len)
+{
+    u64 i, all_num_blocks;
+    size_t num_blocks, last_len;
+    OCB_BLOCK tmp;
+
+    /* Calculate the number of blocks of AAD provided now, and so far */
+    num_blocks = len / 16;
+    all_num_blocks = num_blocks + ctx->sess.blocks_hashed;
+
+    /* Loop through all full blocks of AAD */
+    for (i = ctx->sess.blocks_hashed + 1; i <= all_num_blocks; i++) {
+        OCB_BLOCK *lookup;
+
+        /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
+        lookup = ocb_lookup_l(ctx, ocb_ntz(i));
+        if (lookup == NULL)
+            return 0;
+        ocb_block16_xor(&ctx->sess.offset_aad, lookup, &ctx->sess.offset_aad);
+
+        memcpy(tmp.c, aad, 16);
+        aad += 16;
+
+        /* Sum_i = Sum_{i-1} xor ENCIPHER(K, A_i xor Offset_i) */
+        ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
+        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
+        ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
+    }
+
+    /*
+     * Check if we have any partial blocks left over. This is only valid in the
+     * last call to this function
+     */
+    last_len = len % 16;
+
+    if (last_len > 0) {
+        /* Offset_* = Offset_m xor L_* */
+        ocb_block16_xor(&ctx->sess.offset_aad, &ctx->l_star,
+                        &ctx->sess.offset_aad);
+
+        /* CipherInput = (A_* || 1 || zeros(127-bitlen(A_*))) xor Offset_* */
+        memset(tmp.c, 0, 16);
+        memcpy(tmp.c, aad, last_len);
+        tmp.c[last_len] = 0x80;
+        ocb_block16_xor(&ctx->sess.offset_aad, &tmp, &tmp);
+
+        /* Sum = Sum_m xor ENCIPHER(K, CipherInput) */
+        ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
+        ocb_block16_xor(&tmp, &ctx->sess.sum, &ctx->sess.sum);
+    }
+
+    ctx->sess.blocks_hashed = all_num_blocks;
+
+    return 1;
+}
+
+/*
+ * Provide any data to be encrypted. This can be called multiple times. Only
+ * the final time can have a partial block
+ */
+int CRYPTO_ocb128_encrypt(OCB128_CONTEXT *ctx,
+                          const unsigned char *in, unsigned char *out,
+                          size_t len)
+{
+    u64 i, all_num_blocks;
+    size_t num_blocks, last_len;
+
+    /*
+     * Calculate the number of blocks of data to be encrypted provided now, and
+     * so far
+     */
+    num_blocks = len / 16;
+    all_num_blocks = num_blocks + ctx->sess.blocks_processed;
+
+    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
+        && ctx->stream != NULL) {
+        size_t max_idx = 0, top = (size_t)all_num_blocks;
+
+        /*
+         * See how many L_{i} entries we need to process data at hand
+         * and pre-compute missing entries in the table [if any]...
+         */
+        while (top >>= 1)
+            max_idx++;
+        if (ocb_lookup_l(ctx, max_idx) == NULL)
+            return 0;
+
+        ctx->stream(in, out, num_blocks, ctx->keyenc,
+                    (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
+                    (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
+    } else {
+        /* Loop through all full blocks to be encrypted */
+        for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
+            OCB_BLOCK *lookup;
+            OCB_BLOCK tmp;
+
+            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
+            lookup = ocb_lookup_l(ctx, ocb_ntz(i));
+            if (lookup == NULL)
+                return 0;
+            ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
+
+            memcpy(tmp.c, in, 16);
+            in += 16;
+
+            /* Checksum_i = Checksum_{i-1} xor P_i */
+            ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
+
+            /* C_i = Offset_i xor ENCIPHER(K, P_i xor Offset_i) */
+            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
+            ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
+            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
+
+            memcpy(out, tmp.c, 16);
+            out += 16;
+        }
+    }
+
+    /*
+     * Check if we have any partial blocks left over. This is only valid in the
+     * last call to this function
+     */
+    last_len = len % 16;
+
+    if (last_len > 0) {
+        OCB_BLOCK pad;
+
+        /* Offset_* = Offset_m xor L_* */
+        ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
+
+        /* Pad = ENCIPHER(K, Offset_*) */
+        ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
+
+        /* C_* = P_* xor Pad[1..bitlen(P_*)] */
+        ocb_block_xor(in, pad.c, last_len, out);
+
+        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
+        memset(pad.c, 0, 16);           /* borrow pad */
+        memcpy(pad.c, in, last_len);
+        pad.c[last_len] = 0x80;
+        ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
+    }
+
+    ctx->sess.blocks_processed = all_num_blocks;
+
+    return 1;
+}
+
+/*
+ * Provide any data to be decrypted. This can be called multiple times. Only
+ * the final time can have a partial block
+ */
+int CRYPTO_ocb128_decrypt(OCB128_CONTEXT *ctx,
+                          const unsigned char *in, unsigned char *out,
+                          size_t len)
+{
+    u64 i, all_num_blocks;
+    size_t num_blocks, last_len;
+
+    /*
+     * Calculate the number of blocks of data to be decrypted provided now, and
+     * so far
+     */
+    num_blocks = len / 16;
+    all_num_blocks = num_blocks + ctx->sess.blocks_processed;
+
+    if (num_blocks && all_num_blocks == (size_t)all_num_blocks
+        && ctx->stream != NULL) {
+        size_t max_idx = 0, top = (size_t)all_num_blocks;
+
+        /*
+         * See how many L_{i} entries we need to process data at hand
+         * and pre-compute missing entries in the table [if any]...
+         */
+        while (top >>= 1)
+            max_idx++;
+        if (ocb_lookup_l(ctx, max_idx) == NULL)
+            return 0;
+
+        ctx->stream(in, out, num_blocks, ctx->keydec,
+                    (size_t)ctx->sess.blocks_processed + 1, ctx->sess.offset.c,
+                    (const unsigned char (*)[16])ctx->l, ctx->sess.checksum.c);
+    } else {
+        OCB_BLOCK tmp;
+
+        /* Loop through all full blocks to be decrypted */
+        for (i = ctx->sess.blocks_processed + 1; i <= all_num_blocks; i++) {
+
+            /* Offset_i = Offset_{i-1} xor L_{ntz(i)} */
+            OCB_BLOCK *lookup = ocb_lookup_l(ctx, ocb_ntz(i));
+            if (lookup == NULL)
+                return 0;
+            ocb_block16_xor(&ctx->sess.offset, lookup, &ctx->sess.offset);
+
+            memcpy(tmp.c, in, 16);
+            in += 16;
+
+            /* P_i = Offset_i xor DECIPHER(K, C_i xor Offset_i) */
+            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
+            ctx->decrypt(tmp.c, tmp.c, ctx->keydec);
+            ocb_block16_xor(&ctx->sess.offset, &tmp, &tmp);
+
+            /* Checksum_i = Checksum_{i-1} xor P_i */
+            ocb_block16_xor(&tmp, &ctx->sess.checksum, &ctx->sess.checksum);
+
+            memcpy(out, tmp.c, 16);
+            out += 16;
+        }
+    }
+
+    /*
+     * Check if we have any partial blocks left over. This is only valid in the
+     * last call to this function
+     */
+    last_len = len % 16;
+
+    if (last_len > 0) {
+        OCB_BLOCK pad;
+
+        /* Offset_* = Offset_m xor L_* */
+        ocb_block16_xor(&ctx->sess.offset, &ctx->l_star, &ctx->sess.offset);
+
+        /* Pad = ENCIPHER(K, Offset_*) */
+        ctx->encrypt(ctx->sess.offset.c, pad.c, ctx->keyenc);
+
+        /* P_* = C_* xor Pad[1..bitlen(C_*)] */
+        ocb_block_xor(in, pad.c, last_len, out);
+
+        /* Checksum_* = Checksum_m xor (P_* || 1 || zeros(127-bitlen(P_*))) */
+        memset(pad.c, 0, 16);           /* borrow pad */
+        memcpy(pad.c, out, last_len);
+        pad.c[last_len] = 0x80;
+        ocb_block16_xor(&pad, &ctx->sess.checksum, &ctx->sess.checksum);
+    }
+
+    ctx->sess.blocks_processed = all_num_blocks;
+
+    return 1;
+}
+
+static int ocb_finish(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len,
+                      int write)
+{
+    OCB_BLOCK tmp;
+
+    if (len > 16 || len < 1) {
+        return -1;
+    }
+
+    /*
+     * Tag = ENCIPHER(K, Checksum_* xor Offset_* xor L_$) xor HASH(K,A)
+     */
+    ocb_block16_xor(&ctx->sess.checksum, &ctx->sess.offset, &tmp);
+    ocb_block16_xor(&ctx->l_dollar, &tmp, &tmp);
+    ctx->encrypt(tmp.c, tmp.c, ctx->keyenc);
+    ocb_block16_xor(&tmp, &ctx->sess.sum, &tmp);
+
+    if (write) {
+        memcpy(tag, &tmp, len);
+        return 1;
+    } else {
+        return CRYPTO_memcmp(&tmp, tag, len);
+    }
+}
+
+/*
+ * Calculate the tag and verify it against the supplied tag
+ */
+int CRYPTO_ocb128_finish(OCB128_CONTEXT *ctx, const unsigned char *tag,
+                         size_t len)
+{
+    return ocb_finish(ctx, (unsigned char*)tag, len, 0);
+}
+
+/*
+ * Retrieve the calculated tag
+ */
+int CRYPTO_ocb128_tag(OCB128_CONTEXT *ctx, unsigned char *tag, size_t len)
+{
+    return ocb_finish(ctx, tag, len, 1);
+}
+
+/*
+ * Release all resources
+ */
+void CRYPTO_ocb128_cleanup(OCB128_CONTEXT *ctx)
+{
+    if (ctx) {
+        OPENSSL_clear_free(ctx->l, ctx->max_l_index * 16);
+        OPENSSL_cleanse(ctx, sizeof(*ctx));
+    }
+}
+
+#endif                          /* OPENSSL_NO_OCB */