zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/drivers/edac/amd64_edac.c b/ap/os/linux/linux-3.4.x/drivers/edac/amd64_edac.c
new file mode 100644
index 0000000..a8bfe1c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/edac/amd64_edac.c
@@ -0,0 +1,2846 @@
+#include "amd64_edac.h"
+#include <asm/amd_nb.h>
+
+static struct edac_pci_ctl_info *amd64_ctl_pci;
+
+static int report_gart_errors;
+module_param(report_gart_errors, int, 0644);
+
+/*
+ * Set by command line parameter. If BIOS has enabled the ECC, this override is
+ * cleared to prevent re-enabling the hardware by this driver.
+ */
+static int ecc_enable_override;
+module_param(ecc_enable_override, int, 0644);
+
+static struct msr __percpu *msrs;
+
+/*
+ * count successfully initialized driver instances for setup_pci_device()
+ */
+static atomic_t drv_instances = ATOMIC_INIT(0);
+
+/* Per-node driver instances */
+static struct mem_ctl_info **mcis;
+static struct ecc_settings **ecc_stngs;
+
+/*
+ * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
+ * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
+ * or higher value'.
+ *
+ *FIXME: Produce a better mapping/linearisation.
+ */
+struct scrubrate {
+       u32 scrubval;           /* bit pattern for scrub rate */
+       u32 bandwidth;          /* bandwidth consumed (bytes/sec) */
+} scrubrates[] = {
+	{ 0x01, 1600000000UL},
+	{ 0x02, 800000000UL},
+	{ 0x03, 400000000UL},
+	{ 0x04, 200000000UL},
+	{ 0x05, 100000000UL},
+	{ 0x06, 50000000UL},
+	{ 0x07, 25000000UL},
+	{ 0x08, 12284069UL},
+	{ 0x09, 6274509UL},
+	{ 0x0A, 3121951UL},
+	{ 0x0B, 1560975UL},
+	{ 0x0C, 781440UL},
+	{ 0x0D, 390720UL},
+	{ 0x0E, 195300UL},
+	{ 0x0F, 97650UL},
+	{ 0x10, 48854UL},
+	{ 0x11, 24427UL},
+	{ 0x12, 12213UL},
+	{ 0x13, 6101UL},
+	{ 0x14, 3051UL},
+	{ 0x15, 1523UL},
+	{ 0x16, 761UL},
+	{ 0x00, 0UL},        /* scrubbing off */
+};
+
+static int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
+				      u32 *val, const char *func)
+{
+	int err = 0;
+
+	err = pci_read_config_dword(pdev, offset, val);
+	if (err)
+		amd64_warn("%s: error reading F%dx%03x.\n",
+			   func, PCI_FUNC(pdev->devfn), offset);
+
+	return err;
+}
+
+int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
+				u32 val, const char *func)
+{
+	int err = 0;
+
+	err = pci_write_config_dword(pdev, offset, val);
+	if (err)
+		amd64_warn("%s: error writing to F%dx%03x.\n",
+			   func, PCI_FUNC(pdev->devfn), offset);
+
+	return err;
+}
+
+/*
+ *
+ * Depending on the family, F2 DCT reads need special handling:
+ *
+ * K8: has a single DCT only
+ *
+ * F10h: each DCT has its own set of regs
+ *	DCT0 -> F2x040..
+ *	DCT1 -> F2x140..
+ *
+ * F15h: we select which DCT we access using F1x10C[DctCfgSel]
+ *
+ */
+static int k8_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
+			       const char *func)
+{
+	if (addr >= 0x100)
+		return -EINVAL;
+
+	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
+}
+
+static int f10_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
+				 const char *func)
+{
+	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
+}
+
+/*
+ * Select DCT to which PCI cfg accesses are routed
+ */
+static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
+{
+	u32 reg = 0;
+
+	amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
+	reg &= 0xfffffffe;
+	reg |= dct;
+	amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
+}
+
+static int f15_read_dct_pci_cfg(struct amd64_pvt *pvt, int addr, u32 *val,
+				 const char *func)
+{
+	u8 dct  = 0;
+
+	if (addr >= 0x140 && addr <= 0x1a0) {
+		dct   = 1;
+		addr -= 0x100;
+	}
+
+	f15h_select_dct(pvt, dct);
+
+	return __amd64_read_pci_cfg_dword(pvt->F2, addr, val, func);
+}
+
+/*
+ * Memory scrubber control interface. For K8, memory scrubbing is handled by
+ * hardware and can involve L2 cache, dcache as well as the main memory. With
+ * F10, this is extended to L3 cache scrubbing on CPU models sporting that
+ * functionality.
+ *
+ * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
+ * (dram) over to cache lines. This is nasty, so we will use bandwidth in
+ * bytes/sec for the setting.
+ *
+ * Currently, we only do dram scrubbing. If the scrubbing is done in software on
+ * other archs, we might not have access to the caches directly.
+ */
+
+/*
+ * scan the scrub rate mapping table for a close or matching bandwidth value to
+ * issue. If requested is too big, then use last maximum value found.
+ */
+static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
+{
+	u32 scrubval;
+	int i;
+
+	/*
+	 * map the configured rate (new_bw) to a value specific to the AMD64
+	 * memory controller and apply to register. Search for the first
+	 * bandwidth entry that is greater or equal than the setting requested
+	 * and program that. If at last entry, turn off DRAM scrubbing.
+	 *
+	 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
+	 * by falling back to the last element in scrubrates[].
+	 */
+	for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
+		/*
+		 * skip scrub rates which aren't recommended
+		 * (see F10 BKDG, F3x58)
+		 */
+		if (scrubrates[i].scrubval < min_rate)
+			continue;
+
+		if (scrubrates[i].bandwidth <= new_bw)
+			break;
+	}
+
+	scrubval = scrubrates[i].scrubval;
+
+	pci_write_bits32(ctl, SCRCTRL, scrubval, 0x001F);
+
+	if (scrubval)
+		return scrubrates[i].bandwidth;
+
+	return 0;
+}
+
+static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u32 min_scrubrate = 0x5;
+
+	if (boot_cpu_data.x86 == 0xf)
+		min_scrubrate = 0x0;
+
+	/* F15h Erratum #505 */
+	if (boot_cpu_data.x86 == 0x15)
+		f15h_select_dct(pvt, 0);
+
+	return __amd64_set_scrub_rate(pvt->F3, bw, min_scrubrate);
+}
+
+static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u32 scrubval = 0;
+	int i, retval = -EINVAL;
+
+	/* F15h Erratum #505 */
+	if (boot_cpu_data.x86 == 0x15)
+		f15h_select_dct(pvt, 0);
+
+	amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
+
+	scrubval = scrubval & 0x001F;
+
+	for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
+		if (scrubrates[i].scrubval == scrubval) {
+			retval = scrubrates[i].bandwidth;
+			break;
+		}
+	}
+	return retval;
+}
+
+/*
+ * returns true if the SysAddr given by sys_addr matches the
+ * DRAM base/limit associated with node_id
+ */
+static bool amd64_base_limit_match(struct amd64_pvt *pvt, u64 sys_addr,
+				   unsigned nid)
+{
+	u64 addr;
+
+	/* The K8 treats this as a 40-bit value.  However, bits 63-40 will be
+	 * all ones if the most significant implemented address bit is 1.
+	 * Here we discard bits 63-40.  See section 3.4.2 of AMD publication
+	 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
+	 * Application Programming.
+	 */
+	addr = sys_addr & 0x000000ffffffffffull;
+
+	return ((addr >= get_dram_base(pvt, nid)) &&
+		(addr <= get_dram_limit(pvt, nid)));
+}
+
+/*
+ * Attempt to map a SysAddr to a node. On success, return a pointer to the
+ * mem_ctl_info structure for the node that the SysAddr maps to.
+ *
+ * On failure, return NULL.
+ */
+static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
+						u64 sys_addr)
+{
+	struct amd64_pvt *pvt;
+	unsigned node_id;
+	u32 intlv_en, bits;
+
+	/*
+	 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
+	 * 3.4.4.2) registers to map the SysAddr to a node ID.
+	 */
+	pvt = mci->pvt_info;
+
+	/*
+	 * The value of this field should be the same for all DRAM Base
+	 * registers.  Therefore we arbitrarily choose to read it from the
+	 * register for node 0.
+	 */
+	intlv_en = dram_intlv_en(pvt, 0);
+
+	if (intlv_en == 0) {
+		for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
+			if (amd64_base_limit_match(pvt, sys_addr, node_id))
+				goto found;
+		}
+		goto err_no_match;
+	}
+
+	if (unlikely((intlv_en != 0x01) &&
+		     (intlv_en != 0x03) &&
+		     (intlv_en != 0x07))) {
+		amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
+		return NULL;
+	}
+
+	bits = (((u32) sys_addr) >> 12) & intlv_en;
+
+	for (node_id = 0; ; ) {
+		if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
+			break;	/* intlv_sel field matches */
+
+		if (++node_id >= DRAM_RANGES)
+			goto err_no_match;
+	}
+
+	/* sanity test for sys_addr */
+	if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
+		amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
+			   "range for node %d with node interleaving enabled.\n",
+			   __func__, sys_addr, node_id);
+		return NULL;
+	}
+
+found:
+	return edac_mc_find((int)node_id);
+
+err_no_match:
+	debugf2("sys_addr 0x%lx doesn't match any node\n",
+		(unsigned long)sys_addr);
+
+	return NULL;
+}
+
+/*
+ * compute the CS base address of the @csrow on the DRAM controller @dct.
+ * For details see F2x[5C:40] in the processor's BKDG
+ */
+static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
+				 u64 *base, u64 *mask)
+{
+	u64 csbase, csmask, base_bits, mask_bits;
+	u8 addr_shift;
+
+	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
+		csbase		= pvt->csels[dct].csbases[csrow];
+		csmask		= pvt->csels[dct].csmasks[csrow];
+		base_bits	= GENMASK(21, 31) | GENMASK(9, 15);
+		mask_bits	= GENMASK(21, 29) | GENMASK(9, 15);
+		addr_shift	= 4;
+	} else {
+		csbase		= pvt->csels[dct].csbases[csrow];
+		csmask		= pvt->csels[dct].csmasks[csrow >> 1];
+		addr_shift	= 8;
+
+		if (boot_cpu_data.x86 == 0x15)
+			base_bits = mask_bits = GENMASK(19,30) | GENMASK(5,13);
+		else
+			base_bits = mask_bits = GENMASK(19,28) | GENMASK(5,13);
+	}
+
+	*base  = (csbase & base_bits) << addr_shift;
+
+	*mask  = ~0ULL;
+	/* poke holes for the csmask */
+	*mask &= ~(mask_bits << addr_shift);
+	/* OR them in */
+	*mask |= (csmask & mask_bits) << addr_shift;
+}
+
+#define for_each_chip_select(i, dct, pvt) \
+	for (i = 0; i < pvt->csels[dct].b_cnt; i++)
+
+#define chip_select_base(i, dct, pvt) \
+	pvt->csels[dct].csbases[i]
+
+#define for_each_chip_select_mask(i, dct, pvt) \
+	for (i = 0; i < pvt->csels[dct].m_cnt; i++)
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Return the
+ * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
+ */
+static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
+{
+	struct amd64_pvt *pvt;
+	int csrow;
+	u64 base, mask;
+
+	pvt = mci->pvt_info;
+
+	for_each_chip_select(csrow, 0, pvt) {
+		if (!csrow_enabled(csrow, 0, pvt))
+			continue;
+
+		get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
+
+		mask = ~mask;
+
+		if ((input_addr & mask) == (base & mask)) {
+			debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
+				(unsigned long)input_addr, csrow,
+				pvt->mc_node_id);
+
+			return csrow;
+		}
+	}
+	debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
+		(unsigned long)input_addr, pvt->mc_node_id);
+
+	return -1;
+}
+
+/*
+ * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
+ * for the node represented by mci. Info is passed back in *hole_base,
+ * *hole_offset, and *hole_size.  Function returns 0 if info is valid or 1 if
+ * info is invalid. Info may be invalid for either of the following reasons:
+ *
+ * - The revision of the node is not E or greater.  In this case, the DRAM Hole
+ *   Address Register does not exist.
+ *
+ * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
+ *   indicating that its contents are not valid.
+ *
+ * The values passed back in *hole_base, *hole_offset, and *hole_size are
+ * complete 32-bit values despite the fact that the bitfields in the DHAR
+ * only represent bits 31-24 of the base and offset values.
+ */
+int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
+			     u64 *hole_offset, u64 *hole_size)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u64 base;
+
+	/* only revE and later have the DRAM Hole Address Register */
+	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
+		debugf1("  revision %d for node %d does not support DHAR\n",
+			pvt->ext_model, pvt->mc_node_id);
+		return 1;
+	}
+
+	/* valid for Fam10h and above */
+	if (boot_cpu_data.x86 >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
+		debugf1("  Dram Memory Hoisting is DISABLED on this system\n");
+		return 1;
+	}
+
+	if (!dhar_valid(pvt)) {
+		debugf1("  Dram Memory Hoisting is DISABLED on this node %d\n",
+			pvt->mc_node_id);
+		return 1;
+	}
+
+	/* This node has Memory Hoisting */
+
+	/* +------------------+--------------------+--------------------+-----
+	 * | memory           | DRAM hole          | relocated          |
+	 * | [0, (x - 1)]     | [x, 0xffffffff]    | addresses from     |
+	 * |                  |                    | DRAM hole          |
+	 * |                  |                    | [0x100000000,      |
+	 * |                  |                    |  (0x100000000+     |
+	 * |                  |                    |   (0xffffffff-x))] |
+	 * +------------------+--------------------+--------------------+-----
+	 *
+	 * Above is a diagram of physical memory showing the DRAM hole and the
+	 * relocated addresses from the DRAM hole.  As shown, the DRAM hole
+	 * starts at address x (the base address) and extends through address
+	 * 0xffffffff.  The DRAM Hole Address Register (DHAR) relocates the
+	 * addresses in the hole so that they start at 0x100000000.
+	 */
+
+	base = dhar_base(pvt);
+
+	*hole_base = base;
+	*hole_size = (0x1ull << 32) - base;
+
+	if (boot_cpu_data.x86 > 0xf)
+		*hole_offset = f10_dhar_offset(pvt);
+	else
+		*hole_offset = k8_dhar_offset(pvt);
+
+	debugf1("  DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
+		pvt->mc_node_id, (unsigned long)*hole_base,
+		(unsigned long)*hole_offset, (unsigned long)*hole_size);
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
+
+/*
+ * Return the DramAddr that the SysAddr given by @sys_addr maps to.  It is
+ * assumed that sys_addr maps to the node given by mci.
+ *
+ * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
+ * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
+ * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
+ * then it is also involved in translating a SysAddr to a DramAddr. Sections
+ * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
+ * These parts of the documentation are unclear. I interpret them as follows:
+ *
+ * When node n receives a SysAddr, it processes the SysAddr as follows:
+ *
+ * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
+ *    Limit registers for node n. If the SysAddr is not within the range
+ *    specified by the base and limit values, then node n ignores the Sysaddr
+ *    (since it does not map to node n). Otherwise continue to step 2 below.
+ *
+ * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
+ *    disabled so skip to step 3 below. Otherwise see if the SysAddr is within
+ *    the range of relocated addresses (starting at 0x100000000) from the DRAM
+ *    hole. If not, skip to step 3 below. Else get the value of the
+ *    DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
+ *    offset defined by this value from the SysAddr.
+ *
+ * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
+ *    Base register for node n. To obtain the DramAddr, subtract the base
+ *    address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
+ */
+static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
+	int ret = 0;
+
+	dram_base = get_dram_base(pvt, pvt->mc_node_id);
+
+	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+				      &hole_size);
+	if (!ret) {
+		if ((sys_addr >= (1ull << 32)) &&
+		    (sys_addr < ((1ull << 32) + hole_size))) {
+			/* use DHAR to translate SysAddr to DramAddr */
+			dram_addr = sys_addr - hole_offset;
+
+			debugf2("using DHAR to translate SysAddr 0x%lx to "
+				"DramAddr 0x%lx\n",
+				(unsigned long)sys_addr,
+				(unsigned long)dram_addr);
+
+			return dram_addr;
+		}
+	}
+
+	/*
+	 * Translate the SysAddr to a DramAddr as shown near the start of
+	 * section 3.4.4 (p. 70).  Although sys_addr is a 64-bit value, the k8
+	 * only deals with 40-bit values.  Therefore we discard bits 63-40 of
+	 * sys_addr below.  If bit 39 of sys_addr is 1 then the bits we
+	 * discard are all 1s.  Otherwise the bits we discard are all 0s.  See
+	 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
+	 * Programmer's Manual Volume 1 Application Programming.
+	 */
+	dram_addr = (sys_addr & GENMASK(0, 39)) - dram_base;
+
+	debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
+		"DramAddr 0x%lx\n", (unsigned long)sys_addr,
+		(unsigned long)dram_addr);
+	return dram_addr;
+}
+
+/*
+ * @intlv_en is the value of the IntlvEn field from a DRAM Base register
+ * (section 3.4.4.1).  Return the number of bits from a SysAddr that are used
+ * for node interleaving.
+ */
+static int num_node_interleave_bits(unsigned intlv_en)
+{
+	static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
+	int n;
+
+	BUG_ON(intlv_en > 7);
+	n = intlv_shift_table[intlv_en];
+	return n;
+}
+
+/* Translate the DramAddr given by @dram_addr to an InputAddr. */
+static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+	struct amd64_pvt *pvt;
+	int intlv_shift;
+	u64 input_addr;
+
+	pvt = mci->pvt_info;
+
+	/*
+	 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+	 * concerning translating a DramAddr to an InputAddr.
+	 */
+	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
+	input_addr = ((dram_addr >> intlv_shift) & GENMASK(12, 35)) +
+		      (dram_addr & 0xfff);
+
+	debugf2("  Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
+		intlv_shift, (unsigned long)dram_addr,
+		(unsigned long)input_addr);
+
+	return input_addr;
+}
+
+/*
+ * Translate the SysAddr represented by @sys_addr to an InputAddr.  It is
+ * assumed that @sys_addr maps to the node given by mci.
+ */
+static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
+{
+	u64 input_addr;
+
+	input_addr =
+	    dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
+
+	debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
+		(unsigned long)sys_addr, (unsigned long)input_addr);
+
+	return input_addr;
+}
+
+
+/*
+ * @input_addr is an InputAddr associated with the node represented by mci.
+ * Translate @input_addr to a DramAddr and return the result.
+ */
+static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
+{
+	struct amd64_pvt *pvt;
+	unsigned node_id, intlv_shift;
+	u64 bits, dram_addr;
+	u32 intlv_sel;
+
+	/*
+	 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
+	 * shows how to translate a DramAddr to an InputAddr. Here we reverse
+	 * this procedure. When translating from a DramAddr to an InputAddr, the
+	 * bits used for node interleaving are discarded.  Here we recover these
+	 * bits from the IntlvSel field of the DRAM Limit register (section
+	 * 3.4.4.2) for the node that input_addr is associated with.
+	 */
+	pvt = mci->pvt_info;
+	node_id = pvt->mc_node_id;
+
+	BUG_ON(node_id > 7);
+
+	intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
+	if (intlv_shift == 0) {
+		debugf1("    InputAddr 0x%lx translates to DramAddr of "
+			"same value\n",	(unsigned long)input_addr);
+
+		return input_addr;
+	}
+
+	bits = ((input_addr & GENMASK(12, 35)) << intlv_shift) +
+		(input_addr & 0xfff);
+
+	intlv_sel = dram_intlv_sel(pvt, node_id) & ((1 << intlv_shift) - 1);
+	dram_addr = bits + (intlv_sel << 12);
+
+	debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
+		"(%d node interleave bits)\n", (unsigned long)input_addr,
+		(unsigned long)dram_addr, intlv_shift);
+
+	return dram_addr;
+}
+
+/*
+ * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
+ * @dram_addr to a SysAddr.
+ */
+static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u64 hole_base, hole_offset, hole_size, base, sys_addr;
+	int ret = 0;
+
+	ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
+				      &hole_size);
+	if (!ret) {
+		if ((dram_addr >= hole_base) &&
+		    (dram_addr < (hole_base + hole_size))) {
+			sys_addr = dram_addr + hole_offset;
+
+			debugf1("using DHAR to translate DramAddr 0x%lx to "
+				"SysAddr 0x%lx\n", (unsigned long)dram_addr,
+				(unsigned long)sys_addr);
+
+			return sys_addr;
+		}
+	}
+
+	base     = get_dram_base(pvt, pvt->mc_node_id);
+	sys_addr = dram_addr + base;
+
+	/*
+	 * The sys_addr we have computed up to this point is a 40-bit value
+	 * because the k8 deals with 40-bit values.  However, the value we are
+	 * supposed to return is a full 64-bit physical address.  The AMD
+	 * x86-64 architecture specifies that the most significant implemented
+	 * address bit through bit 63 of a physical address must be either all
+	 * 0s or all 1s.  Therefore we sign-extend the 40-bit sys_addr to a
+	 * 64-bit value below.  See section 3.4.2 of AMD publication 24592:
+	 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
+	 * Programming.
+	 */
+	sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
+
+	debugf1("    Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
+		pvt->mc_node_id, (unsigned long)dram_addr,
+		(unsigned long)sys_addr);
+
+	return sys_addr;
+}
+
+/*
+ * @input_addr is an InputAddr associated with the node given by mci. Translate
+ * @input_addr to a SysAddr.
+ */
+static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
+					 u64 input_addr)
+{
+	return dram_addr_to_sys_addr(mci,
+				     input_addr_to_dram_addr(mci, input_addr));
+}
+
+/*
+ * Find the minimum and maximum InputAddr values that map to the given @csrow.
+ * Pass back these values in *input_addr_min and *input_addr_max.
+ */
+static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
+			      u64 *input_addr_min, u64 *input_addr_max)
+{
+	struct amd64_pvt *pvt;
+	u64 base, mask;
+
+	pvt = mci->pvt_info;
+	BUG_ON((csrow < 0) || (csrow >= pvt->csels[0].b_cnt));
+
+	get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
+
+	*input_addr_min = base & ~mask;
+	*input_addr_max = base | mask;
+}
+
+/* Map the Error address to a PAGE and PAGE OFFSET. */
+static inline void error_address_to_page_and_offset(u64 error_address,
+						    u32 *page, u32 *offset)
+{
+	*page = (u32) (error_address >> PAGE_SHIFT);
+	*offset = ((u32) error_address) & ~PAGE_MASK;
+}
+
+/*
+ * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
+ * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
+ * of a node that detected an ECC memory error.  mci represents the node that
+ * the error address maps to (possibly different from the node that detected
+ * the error).  Return the number of the csrow that sys_addr maps to, or -1 on
+ * error.
+ */
+static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
+{
+	int csrow;
+
+	csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
+
+	if (csrow == -1)
+		amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
+				  "address 0x%lx\n", (unsigned long)sys_addr);
+	return csrow;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
+
+/*
+ * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
+ * are ECC capable.
+ */
+static unsigned long amd64_determine_edac_cap(struct amd64_pvt *pvt)
+{
+	u8 bit;
+	unsigned long edac_cap = EDAC_FLAG_NONE;
+
+	bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
+		? 19
+		: 17;
+
+	if (pvt->dclr0 & BIT(bit))
+		edac_cap = EDAC_FLAG_SECDED;
+
+	return edac_cap;
+}
+
+static void amd64_debug_display_dimm_sizes(struct amd64_pvt *, u8);
+
+static void amd64_dump_dramcfg_low(u32 dclr, int chan)
+{
+	debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
+
+	debugf1("  DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
+		(dclr & BIT(16)) ?  "un" : "",
+		(dclr & BIT(19)) ? "yes" : "no");
+
+	debugf1("  PAR/ERR parity: %s\n",
+		(dclr & BIT(8)) ?  "enabled" : "disabled");
+
+	if (boot_cpu_data.x86 == 0x10)
+		debugf1("  DCT 128bit mode width: %s\n",
+			(dclr & BIT(11)) ?  "128b" : "64b");
+
+	debugf1("  x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
+		(dclr & BIT(12)) ?  "yes" : "no",
+		(dclr & BIT(13)) ?  "yes" : "no",
+		(dclr & BIT(14)) ?  "yes" : "no",
+		(dclr & BIT(15)) ?  "yes" : "no");
+}
+
+/* Display and decode various NB registers for debug purposes. */
+static void dump_misc_regs(struct amd64_pvt *pvt)
+{
+	debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
+
+	debugf1("  NB two channel DRAM capable: %s\n",
+		(pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
+
+	debugf1("  ECC capable: %s, ChipKill ECC capable: %s\n",
+		(pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
+		(pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
+
+	amd64_dump_dramcfg_low(pvt->dclr0, 0);
+
+	debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
+
+	debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
+			"offset: 0x%08x\n",
+			pvt->dhar, dhar_base(pvt),
+			(boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt)
+						   : f10_dhar_offset(pvt));
+
+	debugf1("  DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
+
+	amd64_debug_display_dimm_sizes(pvt, 0);
+
+	/* everything below this point is Fam10h and above */
+	if (boot_cpu_data.x86 == 0xf)
+		return;
+
+	amd64_debug_display_dimm_sizes(pvt, 1);
+
+	amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
+
+	/* Only if NOT ganged does dclr1 have valid info */
+	if (!dct_ganging_enabled(pvt))
+		amd64_dump_dramcfg_low(pvt->dclr1, 1);
+}
+
+/*
+ * see BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
+ */
+static void prep_chip_selects(struct amd64_pvt *pvt)
+{
+	if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
+		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
+		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
+	} else {
+		pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
+		pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
+	}
+}
+
+/*
+ * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
+ */
+static void read_dct_base_mask(struct amd64_pvt *pvt)
+{
+	int cs;
+
+	prep_chip_selects(pvt);
+
+	for_each_chip_select(cs, 0, pvt) {
+		int reg0   = DCSB0 + (cs * 4);
+		int reg1   = DCSB1 + (cs * 4);
+		u32 *base0 = &pvt->csels[0].csbases[cs];
+		u32 *base1 = &pvt->csels[1].csbases[cs];
+
+		if (!amd64_read_dct_pci_cfg(pvt, reg0, base0))
+			debugf0("  DCSB0[%d]=0x%08x reg: F2x%x\n",
+				cs, *base0, reg0);
+
+		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
+			continue;
+
+		if (!amd64_read_dct_pci_cfg(pvt, reg1, base1))
+			debugf0("  DCSB1[%d]=0x%08x reg: F2x%x\n",
+				cs, *base1, reg1);
+	}
+
+	for_each_chip_select_mask(cs, 0, pvt) {
+		int reg0   = DCSM0 + (cs * 4);
+		int reg1   = DCSM1 + (cs * 4);
+		u32 *mask0 = &pvt->csels[0].csmasks[cs];
+		u32 *mask1 = &pvt->csels[1].csmasks[cs];
+
+		if (!amd64_read_dct_pci_cfg(pvt, reg0, mask0))
+			debugf0("    DCSM0[%d]=0x%08x reg: F2x%x\n",
+				cs, *mask0, reg0);
+
+		if (boot_cpu_data.x86 == 0xf || dct_ganging_enabled(pvt))
+			continue;
+
+		if (!amd64_read_dct_pci_cfg(pvt, reg1, mask1))
+			debugf0("    DCSM1[%d]=0x%08x reg: F2x%x\n",
+				cs, *mask1, reg1);
+	}
+}
+
+static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
+{
+	enum mem_type type;
+
+	/* F15h supports only DDR3 */
+	if (boot_cpu_data.x86 >= 0x15)
+		type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
+	else if (boot_cpu_data.x86 == 0x10 || pvt->ext_model >= K8_REV_F) {
+		if (pvt->dchr0 & DDR3_MODE)
+			type = (pvt->dclr0 & BIT(16)) ?	MEM_DDR3 : MEM_RDDR3;
+		else
+			type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
+	} else {
+		type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
+	}
+
+	amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
+
+	return type;
+}
+
+/* Get the number of DCT channels the memory controller is using. */
+static int k8_early_channel_count(struct amd64_pvt *pvt)
+{
+	int flag;
+
+	if (pvt->ext_model >= K8_REV_F)
+		/* RevF (NPT) and later */
+		flag = pvt->dclr0 & WIDTH_128;
+	else
+		/* RevE and earlier */
+		flag = pvt->dclr0 & REVE_WIDTH_128;
+
+	/* not used */
+	pvt->dclr1 = 0;
+
+	return (flag) ? 2 : 1;
+}
+
+/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
+static u64 get_error_address(struct mce *m)
+{
+	struct cpuinfo_x86 *c = &boot_cpu_data;
+	u64 addr;
+	u8 start_bit = 1;
+	u8 end_bit   = 47;
+
+	if (c->x86 == 0xf) {
+		start_bit = 3;
+		end_bit   = 39;
+	}
+
+	addr = m->addr & GENMASK(start_bit, end_bit);
+
+	/*
+	 * Erratum 637 workaround
+	 */
+	if (c->x86 == 0x15) {
+		struct amd64_pvt *pvt;
+		u64 cc6_base, tmp_addr;
+		u32 tmp;
+		u8 mce_nid, intlv_en;
+
+		if ((addr & GENMASK(24, 47)) >> 24 != 0x00fdf7)
+			return addr;
+
+		mce_nid	= amd_get_nb_id(m->extcpu);
+		pvt	= mcis[mce_nid]->pvt_info;
+
+		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
+		intlv_en = tmp >> 21 & 0x7;
+
+		/* add [47:27] + 3 trailing bits */
+		cc6_base  = (tmp & GENMASK(0, 20)) << 3;
+
+		/* reverse and add DramIntlvEn */
+		cc6_base |= intlv_en ^ 0x7;
+
+		/* pin at [47:24] */
+		cc6_base <<= 24;
+
+		if (!intlv_en)
+			return cc6_base | (addr & GENMASK(0, 23));
+
+		amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
+
+							/* faster log2 */
+		tmp_addr  = (addr & GENMASK(12, 23)) << __fls(intlv_en + 1);
+
+		/* OR DramIntlvSel into bits [14:12] */
+		tmp_addr |= (tmp & GENMASK(21, 23)) >> 9;
+
+		/* add remaining [11:0] bits from original MC4_ADDR */
+		tmp_addr |= addr & GENMASK(0, 11);
+
+		return cc6_base | tmp_addr;
+	}
+
+	return addr;
+}
+
+static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
+{
+	struct cpuinfo_x86 *c = &boot_cpu_data;
+	int off = range << 3;
+
+	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off,  &pvt->ranges[range].base.lo);
+	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
+
+	if (c->x86 == 0xf)
+		return;
+
+	if (!dram_rw(pvt, range))
+		return;
+
+	amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off,  &pvt->ranges[range].base.hi);
+	amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
+
+	/* Factor in CC6 save area by reading dst node's limit reg */
+	if (c->x86 == 0x15) {
+		struct pci_dev *f1 = NULL;
+		u8 nid = dram_dst_node(pvt, range);
+		u32 llim;
+
+		f1 = pci_get_domain_bus_and_slot(0, 0, PCI_DEVFN(0x18 + nid, 1));
+		if (WARN_ON(!f1))
+			return;
+
+		amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
+
+		pvt->ranges[range].lim.lo &= GENMASK(0, 15);
+
+					    /* {[39:27],111b} */
+		pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
+
+		pvt->ranges[range].lim.hi &= GENMASK(0, 7);
+
+					    /* [47:40] */
+		pvt->ranges[range].lim.hi |= llim >> 13;
+
+		pci_dev_put(f1);
+	}
+}
+
+static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
+				    u16 syndrome)
+{
+	struct mem_ctl_info *src_mci;
+	struct amd64_pvt *pvt = mci->pvt_info;
+	int channel, csrow;
+	u32 page, offset;
+
+	/* CHIPKILL enabled */
+	if (pvt->nbcfg & NBCFG_CHIPKILL) {
+		channel = get_channel_from_ecc_syndrome(mci, syndrome);
+		if (channel < 0) {
+			/*
+			 * Syndrome didn't map, so we don't know which of the
+			 * 2 DIMMs is in error. So we need to ID 'both' of them
+			 * as suspect.
+			 */
+			amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
+					   "error reporting race\n", syndrome);
+			edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+			return;
+		}
+	} else {
+		/*
+		 * non-chipkill ecc mode
+		 *
+		 * The k8 documentation is unclear about how to determine the
+		 * channel number when using non-chipkill memory.  This method
+		 * was obtained from email communication with someone at AMD.
+		 * (Wish the email was placed in this comment - norsk)
+		 */
+		channel = ((sys_addr & BIT(3)) != 0);
+	}
+
+	/*
+	 * Find out which node the error address belongs to. This may be
+	 * different from the node that detected the error.
+	 */
+	src_mci = find_mc_by_sys_addr(mci, sys_addr);
+	if (!src_mci) {
+		amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
+			     (unsigned long)sys_addr);
+		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+		return;
+	}
+
+	/* Now map the sys_addr to a CSROW */
+	csrow = sys_addr_to_csrow(src_mci, sys_addr);
+	if (csrow < 0) {
+		edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
+	} else {
+		error_address_to_page_and_offset(sys_addr, &page, &offset);
+
+		edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
+				  channel, EDAC_MOD_STR);
+	}
+}
+
+static int ddr2_cs_size(unsigned i, bool dct_width)
+{
+	unsigned shift = 0;
+
+	if (i <= 2)
+		shift = i;
+	else if (!(i & 0x1))
+		shift = i >> 1;
+	else
+		shift = (i + 1) >> 1;
+
+	return 128 << (shift + !!dct_width);
+}
+
+static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+				  unsigned cs_mode)
+{
+	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
+
+	if (pvt->ext_model >= K8_REV_F) {
+		WARN_ON(cs_mode > 11);
+		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
+	}
+	else if (pvt->ext_model >= K8_REV_D) {
+		unsigned diff;
+		WARN_ON(cs_mode > 10);
+
+		/*
+		 * the below calculation, besides trying to win an obfuscated C
+		 * contest, maps cs_mode values to DIMM chip select sizes. The
+		 * mappings are:
+		 *
+		 * cs_mode	CS size (mb)
+		 * =======	============
+		 * 0		32
+		 * 1		64
+		 * 2		128
+		 * 3		128
+		 * 4		256
+		 * 5		512
+		 * 6		256
+		 * 7		512
+		 * 8		1024
+		 * 9		1024
+		 * 10		2048
+		 *
+		 * Basically, it calculates a value with which to shift the
+		 * smallest CS size of 32MB.
+		 *
+		 * ddr[23]_cs_size have a similar purpose.
+		 */
+		diff = cs_mode/3 + (unsigned)(cs_mode > 5);
+
+		return 32 << (cs_mode - diff);
+	}
+	else {
+		WARN_ON(cs_mode > 6);
+		return 32 << cs_mode;
+	}
+}
+
+/*
+ * Get the number of DCT channels in use.
+ *
+ * Return:
+ *	number of Memory Channels in operation
+ * Pass back:
+ *	contents of the DCL0_LOW register
+ */
+static int f1x_early_channel_count(struct amd64_pvt *pvt)
+{
+	int i, j, channels = 0;
+
+	/* On F10h, if we are in 128 bit mode, then we are using 2 channels */
+	if (boot_cpu_data.x86 == 0x10 && (pvt->dclr0 & WIDTH_128))
+		return 2;
+
+	/*
+	 * Need to check if in unganged mode: In such, there are 2 channels,
+	 * but they are not in 128 bit mode and thus the above 'dclr0' status
+	 * bit will be OFF.
+	 *
+	 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
+	 * their CSEnable bit on. If so, then SINGLE DIMM case.
+	 */
+	debugf0("Data width is not 128 bits - need more decoding\n");
+
+	/*
+	 * Check DRAM Bank Address Mapping values for each DIMM to see if there
+	 * is more than just one DIMM present in unganged mode. Need to check
+	 * both controllers since DIMMs can be placed in either one.
+	 */
+	for (i = 0; i < 2; i++) {
+		u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
+
+		for (j = 0; j < 4; j++) {
+			if (DBAM_DIMM(j, dbam) > 0) {
+				channels++;
+				break;
+			}
+		}
+	}
+
+	if (channels > 2)
+		channels = 2;
+
+	amd64_info("MCT channel count: %d\n", channels);
+
+	return channels;
+}
+
+static int ddr3_cs_size(unsigned i, bool dct_width)
+{
+	unsigned shift = 0;
+	int cs_size = 0;
+
+	if (i == 0 || i == 3 || i == 4)
+		cs_size = -1;
+	else if (i <= 2)
+		shift = i;
+	else if (i == 12)
+		shift = 7;
+	else if (!(i & 0x1))
+		shift = i >> 1;
+	else
+		shift = (i + 1) >> 1;
+
+	if (cs_size != -1)
+		cs_size = (128 * (1 << !!dct_width)) << shift;
+
+	return cs_size;
+}
+
+static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+				   unsigned cs_mode)
+{
+	u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
+
+	WARN_ON(cs_mode > 11);
+
+	if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
+		return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
+	else
+		return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
+}
+
+/*
+ * F15h supports only 64bit DCT interfaces
+ */
+static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
+				   unsigned cs_mode)
+{
+	WARN_ON(cs_mode > 12);
+
+	return ddr3_cs_size(cs_mode, false);
+}
+
+static void read_dram_ctl_register(struct amd64_pvt *pvt)
+{
+
+	if (boot_cpu_data.x86 == 0xf)
+		return;
+
+	if (!amd64_read_dct_pci_cfg(pvt, DCT_SEL_LO, &pvt->dct_sel_lo)) {
+		debugf0("F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
+			pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
+
+		debugf0("  DCTs operate in %s mode.\n",
+			(dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
+
+		if (!dct_ganging_enabled(pvt))
+			debugf0("  Address range split per DCT: %s\n",
+				(dct_high_range_enabled(pvt) ? "yes" : "no"));
+
+		debugf0("  data interleave for ECC: %s, "
+			"DRAM cleared since last warm reset: %s\n",
+			(dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
+			(dct_memory_cleared(pvt) ? "yes" : "no"));
+
+		debugf0("  channel interleave: %s, "
+			"interleave bits selector: 0x%x\n",
+			(dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
+			dct_sel_interleave_addr(pvt));
+	}
+
+	amd64_read_dct_pci_cfg(pvt, DCT_SEL_HI, &pvt->dct_sel_hi);
+}
+
+/*
+ * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
+ * Interleaving Modes.
+ */
+static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
+				bool hi_range_sel, u8 intlv_en)
+{
+	u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
+
+	if (dct_ganging_enabled(pvt))
+		return 0;
+
+	if (hi_range_sel)
+		return dct_sel_high;
+
+	/*
+	 * see F2x110[DctSelIntLvAddr] - channel interleave mode
+	 */
+	if (dct_interleave_enabled(pvt)) {
+		u8 intlv_addr = dct_sel_interleave_addr(pvt);
+
+		/* return DCT select function: 0=DCT0, 1=DCT1 */
+		if (!intlv_addr)
+			return sys_addr >> 6 & 1;
+
+		if (intlv_addr & 0x2) {
+			u8 shift = intlv_addr & 0x1 ? 9 : 6;
+			u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
+
+			return ((sys_addr >> shift) & 1) ^ temp;
+		}
+
+		return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
+	}
+
+	if (dct_high_range_enabled(pvt))
+		return ~dct_sel_high & 1;
+
+	return 0;
+}
+
+/* Convert the sys_addr to the normalized DCT address */
+static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, unsigned range,
+				 u64 sys_addr, bool hi_rng,
+				 u32 dct_sel_base_addr)
+{
+	u64 chan_off;
+	u64 dram_base		= get_dram_base(pvt, range);
+	u64 hole_off		= f10_dhar_offset(pvt);
+	u64 dct_sel_base_off	= (pvt->dct_sel_hi & 0xFFFFFC00) << 16;
+
+	if (hi_rng) {
+		/*
+		 * if
+		 * base address of high range is below 4Gb
+		 * (bits [47:27] at [31:11])
+		 * DRAM address space on this DCT is hoisted above 4Gb	&&
+		 * sys_addr > 4Gb
+		 *
+		 *	remove hole offset from sys_addr
+		 * else
+		 *	remove high range offset from sys_addr
+		 */
+		if ((!(dct_sel_base_addr >> 16) ||
+		     dct_sel_base_addr < dhar_base(pvt)) &&
+		    dhar_valid(pvt) &&
+		    (sys_addr >= BIT_64(32)))
+			chan_off = hole_off;
+		else
+			chan_off = dct_sel_base_off;
+	} else {
+		/*
+		 * if
+		 * we have a valid hole		&&
+		 * sys_addr > 4Gb
+		 *
+		 *	remove hole
+		 * else
+		 *	remove dram base to normalize to DCT address
+		 */
+		if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
+			chan_off = hole_off;
+		else
+			chan_off = dram_base;
+	}
+
+	return (sys_addr & GENMASK(6,47)) - (chan_off & GENMASK(23,47));
+}
+
+/*
+ * checks if the csrow passed in is marked as SPARED, if so returns the new
+ * spare row
+ */
+static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
+{
+	int tmp_cs;
+
+	if (online_spare_swap_done(pvt, dct) &&
+	    csrow == online_spare_bad_dramcs(pvt, dct)) {
+
+		for_each_chip_select(tmp_cs, dct, pvt) {
+			if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
+				csrow = tmp_cs;
+				break;
+			}
+		}
+	}
+	return csrow;
+}
+
+/*
+ * Iterate over the DRAM DCT "base" and "mask" registers looking for a
+ * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
+ *
+ * Return:
+ *	-EINVAL:  NOT FOUND
+ *	0..csrow = Chip-Select Row
+ */
+static int f1x_lookup_addr_in_dct(u64 in_addr, u32 nid, u8 dct)
+{
+	struct mem_ctl_info *mci;
+	struct amd64_pvt *pvt;
+	u64 cs_base, cs_mask;
+	int cs_found = -EINVAL;
+	int csrow;
+
+	mci = mcis[nid];
+	if (!mci)
+		return cs_found;
+
+	pvt = mci->pvt_info;
+
+	debugf1("input addr: 0x%llx, DCT: %d\n", in_addr, dct);
+
+	for_each_chip_select(csrow, dct, pvt) {
+		if (!csrow_enabled(csrow, dct, pvt))
+			continue;
+
+		get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
+
+		debugf1("    CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
+			csrow, cs_base, cs_mask);
+
+		cs_mask = ~cs_mask;
+
+		debugf1("    (InputAddr & ~CSMask)=0x%llx "
+			"(CSBase & ~CSMask)=0x%llx\n",
+			(in_addr & cs_mask), (cs_base & cs_mask));
+
+		if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
+			cs_found = f10_process_possible_spare(pvt, dct, csrow);
+
+			debugf1(" MATCH csrow=%d\n", cs_found);
+			break;
+		}
+	}
+	return cs_found;
+}
+
+/*
+ * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
+ * swapped with a region located at the bottom of memory so that the GPU can use
+ * the interleaved region and thus two channels.
+ */
+static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
+{
+	u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
+
+	if (boot_cpu_data.x86 == 0x10) {
+		/* only revC3 and revE have that feature */
+		if (boot_cpu_data.x86_model < 4 ||
+		    (boot_cpu_data.x86_model < 0xa &&
+		     boot_cpu_data.x86_mask < 3))
+			return sys_addr;
+	}
+
+	amd64_read_dct_pci_cfg(pvt, SWAP_INTLV_REG, &swap_reg);
+
+	if (!(swap_reg & 0x1))
+		return sys_addr;
+
+	swap_base	= (swap_reg >> 3) & 0x7f;
+	swap_limit	= (swap_reg >> 11) & 0x7f;
+	rgn_size	= (swap_reg >> 20) & 0x7f;
+	tmp_addr	= sys_addr >> 27;
+
+	if (!(sys_addr >> 34) &&
+	    (((tmp_addr >= swap_base) &&
+	     (tmp_addr <= swap_limit)) ||
+	     (tmp_addr < rgn_size)))
+		return sys_addr ^ (u64)swap_base << 27;
+
+	return sys_addr;
+}
+
+/* For a given @dram_range, check if @sys_addr falls within it. */
+static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
+				  u64 sys_addr, int *nid, int *chan_sel)
+{
+	int cs_found = -EINVAL;
+	u64 chan_addr;
+	u32 dct_sel_base;
+	u8 channel;
+	bool high_range = false;
+
+	u8 node_id    = dram_dst_node(pvt, range);
+	u8 intlv_en   = dram_intlv_en(pvt, range);
+	u32 intlv_sel = dram_intlv_sel(pvt, range);
+
+	debugf1("(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
+		range, sys_addr, get_dram_limit(pvt, range));
+
+	if (dhar_valid(pvt) &&
+	    dhar_base(pvt) <= sys_addr &&
+	    sys_addr < BIT_64(32)) {
+		amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
+			    sys_addr);
+		return -EINVAL;
+	}
+
+	if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
+		return -EINVAL;
+
+	sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
+
+	dct_sel_base = dct_sel_baseaddr(pvt);
+
+	/*
+	 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
+	 * select between DCT0 and DCT1.
+	 */
+	if (dct_high_range_enabled(pvt) &&
+	   !dct_ganging_enabled(pvt) &&
+	   ((sys_addr >> 27) >= (dct_sel_base >> 11)))
+		high_range = true;
+
+	channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
+
+	chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
+					  high_range, dct_sel_base);
+
+	/* Remove node interleaving, see F1x120 */
+	if (intlv_en)
+		chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
+			    (chan_addr & 0xfff);
+
+	/* remove channel interleave */
+	if (dct_interleave_enabled(pvt) &&
+	   !dct_high_range_enabled(pvt) &&
+	   !dct_ganging_enabled(pvt)) {
+
+		if (dct_sel_interleave_addr(pvt) != 1) {
+			if (dct_sel_interleave_addr(pvt) == 0x3)
+				/* hash 9 */
+				chan_addr = ((chan_addr >> 10) << 9) |
+					     (chan_addr & 0x1ff);
+			else
+				/* A[6] or hash 6 */
+				chan_addr = ((chan_addr >> 7) << 6) |
+					     (chan_addr & 0x3f);
+		} else
+			/* A[12] */
+			chan_addr = ((chan_addr >> 13) << 12) |
+				     (chan_addr & 0xfff);
+	}
+
+	debugf1("   Normalized DCT addr: 0x%llx\n", chan_addr);
+
+	cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
+
+	if (cs_found >= 0) {
+		*nid = node_id;
+		*chan_sel = channel;
+	}
+	return cs_found;
+}
+
+static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
+				       int *node, int *chan_sel)
+{
+	int cs_found = -EINVAL;
+	unsigned range;
+
+	for (range = 0; range < DRAM_RANGES; range++) {
+
+		if (!dram_rw(pvt, range))
+			continue;
+
+		if ((get_dram_base(pvt, range)  <= sys_addr) &&
+		    (get_dram_limit(pvt, range) >= sys_addr)) {
+
+			cs_found = f1x_match_to_this_node(pvt, range,
+							  sys_addr, node,
+							  chan_sel);
+			if (cs_found >= 0)
+				break;
+		}
+	}
+	return cs_found;
+}
+
+/*
+ * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
+ * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
+ *
+ * The @sys_addr is usually an error address received from the hardware
+ * (MCX_ADDR).
+ */
+static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
+				     u16 syndrome)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u32 page, offset;
+	int nid, csrow, chan = 0;
+
+	csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
+
+	if (csrow < 0) {
+		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+		return;
+	}
+
+	error_address_to_page_and_offset(sys_addr, &page, &offset);
+
+	/*
+	 * We need the syndromes for channel detection only when we're
+	 * ganged. Otherwise @chan should already contain the channel at
+	 * this point.
+	 */
+	if (dct_ganging_enabled(pvt))
+		chan = get_channel_from_ecc_syndrome(mci, syndrome);
+
+	if (chan >= 0)
+		edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
+				  EDAC_MOD_STR);
+	else
+		/*
+		 * Channel unknown, report all channels on this CSROW as failed.
+		 */
+		for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
+			edac_mc_handle_ce(mci, page, offset, syndrome,
+					  csrow, chan, EDAC_MOD_STR);
+}
+
+/*
+ * debug routine to display the memory sizes of all logical DIMMs and its
+ * CSROWs
+ */
+static void amd64_debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
+{
+	int dimm, size0, size1, factor = 0;
+	u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
+	u32 dbam  = ctrl ? pvt->dbam1 : pvt->dbam0;
+
+	if (boot_cpu_data.x86 == 0xf) {
+		if (pvt->dclr0 & WIDTH_128)
+			factor = 1;
+
+		/* K8 families < revF not supported yet */
+	       if (pvt->ext_model < K8_REV_F)
+			return;
+	       else
+		       WARN_ON(ctrl != 0);
+	}
+
+	dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1 : pvt->dbam0;
+	dcsb = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->csels[1].csbases
+						   : pvt->csels[0].csbases;
+
+	debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n", ctrl, dbam);
+
+	edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
+
+	/* Dump memory sizes for DIMM and its CSROWs */
+	for (dimm = 0; dimm < 4; dimm++) {
+
+		size0 = 0;
+		if (dcsb[dimm*2] & DCSB_CS_ENABLE)
+			size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
+						     DBAM_DIMM(dimm, dbam));
+
+		size1 = 0;
+		if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
+			size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
+						     DBAM_DIMM(dimm, dbam));
+
+		amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
+				dimm * 2,     size0 << factor,
+				dimm * 2 + 1, size1 << factor);
+	}
+}
+
+static struct amd64_family_type amd64_family_types[] = {
+	[K8_CPUS] = {
+		.ctl_name = "K8",
+		.f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
+		.f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
+		.ops = {
+			.early_channel_count	= k8_early_channel_count,
+			.map_sysaddr_to_csrow	= k8_map_sysaddr_to_csrow,
+			.dbam_to_cs		= k8_dbam_to_chip_select,
+			.read_dct_pci_cfg	= k8_read_dct_pci_cfg,
+		}
+	},
+	[F10_CPUS] = {
+		.ctl_name = "F10h",
+		.f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
+		.f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
+		.ops = {
+			.early_channel_count	= f1x_early_channel_count,
+			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
+			.dbam_to_cs		= f10_dbam_to_chip_select,
+			.read_dct_pci_cfg	= f10_read_dct_pci_cfg,
+		}
+	},
+	[F15_CPUS] = {
+		.ctl_name = "F15h",
+		.f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
+		.f3_id = PCI_DEVICE_ID_AMD_15H_NB_F3,
+		.ops = {
+			.early_channel_count	= f1x_early_channel_count,
+			.map_sysaddr_to_csrow	= f1x_map_sysaddr_to_csrow,
+			.dbam_to_cs		= f15_dbam_to_chip_select,
+			.read_dct_pci_cfg	= f15_read_dct_pci_cfg,
+		}
+	},
+};
+
+static struct pci_dev *pci_get_related_function(unsigned int vendor,
+						unsigned int device,
+						struct pci_dev *related)
+{
+	struct pci_dev *dev = NULL;
+
+	dev = pci_get_device(vendor, device, dev);
+	while (dev) {
+		if ((dev->bus->number == related->bus->number) &&
+		    (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
+			break;
+		dev = pci_get_device(vendor, device, dev);
+	}
+
+	return dev;
+}
+
+/*
+ * These are tables of eigenvectors (one per line) which can be used for the
+ * construction of the syndrome tables. The modified syndrome search algorithm
+ * uses those to find the symbol in error and thus the DIMM.
+ *
+ * Algorithm courtesy of Ross LaFetra from AMD.
+ */
+static u16 x4_vectors[] = {
+	0x2f57, 0x1afe, 0x66cc, 0xdd88,
+	0x11eb, 0x3396, 0x7f4c, 0xeac8,
+	0x0001, 0x0002, 0x0004, 0x0008,
+	0x1013, 0x3032, 0x4044, 0x8088,
+	0x106b, 0x30d6, 0x70fc, 0xe0a8,
+	0x4857, 0xc4fe, 0x13cc, 0x3288,
+	0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
+	0x1f39, 0x251e, 0xbd6c, 0x6bd8,
+	0x15c1, 0x2a42, 0x89ac, 0x4758,
+	0x2b03, 0x1602, 0x4f0c, 0xca08,
+	0x1f07, 0x3a0e, 0x6b04, 0xbd08,
+	0x8ba7, 0x465e, 0x244c, 0x1cc8,
+	0x2b87, 0x164e, 0x642c, 0xdc18,
+	0x40b9, 0x80de, 0x1094, 0x20e8,
+	0x27db, 0x1eb6, 0x9dac, 0x7b58,
+	0x11c1, 0x2242, 0x84ac, 0x4c58,
+	0x1be5, 0x2d7a, 0x5e34, 0xa718,
+	0x4b39, 0x8d1e, 0x14b4, 0x28d8,
+	0x4c97, 0xc87e, 0x11fc, 0x33a8,
+	0x8e97, 0x497e, 0x2ffc, 0x1aa8,
+	0x16b3, 0x3d62, 0x4f34, 0x8518,
+	0x1e2f, 0x391a, 0x5cac, 0xf858,
+	0x1d9f, 0x3b7a, 0x572c, 0xfe18,
+	0x15f5, 0x2a5a, 0x5264, 0xa3b8,
+	0x1dbb, 0x3b66, 0x715c, 0xe3f8,
+	0x4397, 0xc27e, 0x17fc, 0x3ea8,
+	0x1617, 0x3d3e, 0x6464, 0xb8b8,
+	0x23ff, 0x12aa, 0xab6c, 0x56d8,
+	0x2dfb, 0x1ba6, 0x913c, 0x7328,
+	0x185d, 0x2ca6, 0x7914, 0x9e28,
+	0x171b, 0x3e36, 0x7d7c, 0xebe8,
+	0x4199, 0x82ee, 0x19f4, 0x2e58,
+	0x4807, 0xc40e, 0x130c, 0x3208,
+	0x1905, 0x2e0a, 0x5804, 0xac08,
+	0x213f, 0x132a, 0xadfc, 0x5ba8,
+	0x19a9, 0x2efe, 0xb5cc, 0x6f88,
+};
+
+static u16 x8_vectors[] = {
+	0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
+	0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
+	0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
+	0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
+	0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
+	0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
+	0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
+	0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
+	0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
+	0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
+	0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
+	0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
+	0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
+	0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
+	0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
+	0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
+	0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
+	0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+	0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
+};
+
+static int decode_syndrome(u16 syndrome, u16 *vectors, unsigned num_vecs,
+			   unsigned v_dim)
+{
+	unsigned int i, err_sym;
+
+	for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
+		u16 s = syndrome;
+		unsigned v_idx =  err_sym * v_dim;
+		unsigned v_end = (err_sym + 1) * v_dim;
+
+		/* walk over all 16 bits of the syndrome */
+		for (i = 1; i < (1U << 16); i <<= 1) {
+
+			/* if bit is set in that eigenvector... */
+			if (v_idx < v_end && vectors[v_idx] & i) {
+				u16 ev_comp = vectors[v_idx++];
+
+				/* ... and bit set in the modified syndrome, */
+				if (s & i) {
+					/* remove it. */
+					s ^= ev_comp;
+
+					if (!s)
+						return err_sym;
+				}
+
+			} else if (s & i)
+				/* can't get to zero, move to next symbol */
+				break;
+		}
+	}
+
+	debugf0("syndrome(%x) not found\n", syndrome);
+	return -1;
+}
+
+static int map_err_sym_to_channel(int err_sym, int sym_size)
+{
+	if (sym_size == 4)
+		switch (err_sym) {
+		case 0x20:
+		case 0x21:
+			return 0;
+			break;
+		case 0x22:
+		case 0x23:
+			return 1;
+			break;
+		default:
+			return err_sym >> 4;
+			break;
+		}
+	/* x8 symbols */
+	else
+		switch (err_sym) {
+		/* imaginary bits not in a DIMM */
+		case 0x10:
+			WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
+					  err_sym);
+			return -1;
+			break;
+
+		case 0x11:
+			return 0;
+			break;
+		case 0x12:
+			return 1;
+			break;
+		default:
+			return err_sym >> 3;
+			break;
+		}
+	return -1;
+}
+
+static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	int err_sym = -1;
+
+	if (pvt->ecc_sym_sz == 8)
+		err_sym = decode_syndrome(syndrome, x8_vectors,
+					  ARRAY_SIZE(x8_vectors),
+					  pvt->ecc_sym_sz);
+	else if (pvt->ecc_sym_sz == 4)
+		err_sym = decode_syndrome(syndrome, x4_vectors,
+					  ARRAY_SIZE(x4_vectors),
+					  pvt->ecc_sym_sz);
+	else {
+		amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
+		return err_sym;
+	}
+
+	return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
+}
+
+/*
+ * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
+ * ADDRESS and process.
+ */
+static void amd64_handle_ce(struct mem_ctl_info *mci, struct mce *m)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u64 sys_addr;
+	u16 syndrome;
+
+	/* Ensure that the Error Address is VALID */
+	if (!(m->status & MCI_STATUS_ADDRV)) {
+		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
+		edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
+		return;
+	}
+
+	sys_addr = get_error_address(m);
+	syndrome = extract_syndrome(m->status);
+
+	amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
+
+	pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, syndrome);
+}
+
+/* Handle any Un-correctable Errors (UEs) */
+static void amd64_handle_ue(struct mem_ctl_info *mci, struct mce *m)
+{
+	struct mem_ctl_info *log_mci, *src_mci = NULL;
+	int csrow;
+	u64 sys_addr;
+	u32 page, offset;
+
+	log_mci = mci;
+
+	if (!(m->status & MCI_STATUS_ADDRV)) {
+		amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
+		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+		return;
+	}
+
+	sys_addr = get_error_address(m);
+
+	/*
+	 * Find out which node the error address belongs to. This may be
+	 * different from the node that detected the error.
+	 */
+	src_mci = find_mc_by_sys_addr(mci, sys_addr);
+	if (!src_mci) {
+		amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
+				  (unsigned long)sys_addr);
+		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+		return;
+	}
+
+	log_mci = src_mci;
+
+	csrow = sys_addr_to_csrow(log_mci, sys_addr);
+	if (csrow < 0) {
+		amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
+				  (unsigned long)sys_addr);
+		edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
+	} else {
+		error_address_to_page_and_offset(sys_addr, &page, &offset);
+		edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
+	}
+}
+
+static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
+					    struct mce *m)
+{
+	u16 ec = EC(m->status);
+	u8 xec = XEC(m->status, 0x1f);
+	u8 ecc_type = (m->status >> 45) & 0x3;
+
+	/* Bail early out if this was an 'observed' error */
+	if (PP(ec) == NBSL_PP_OBS)
+		return;
+
+	/* Do only ECC errors */
+	if (xec && xec != F10_NBSL_EXT_ERR_ECC)
+		return;
+
+	if (ecc_type == 2)
+		amd64_handle_ce(mci, m);
+	else if (ecc_type == 1)
+		amd64_handle_ue(mci, m);
+}
+
+void amd64_decode_bus_error(int node_id, struct mce *m)
+{
+	__amd64_decode_bus_error(mcis[node_id], m);
+}
+
+/*
+ * Use pvt->F2 which contains the F2 CPU PCI device to get the related
+ * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
+ */
+static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
+{
+	/* Reserve the ADDRESS MAP Device */
+	pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
+	if (!pvt->F1) {
+		amd64_err("error address map device not found: "
+			  "vendor %x device 0x%x (broken BIOS?)\n",
+			  PCI_VENDOR_ID_AMD, f1_id);
+		return -ENODEV;
+	}
+
+	/* Reserve the MISC Device */
+	pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
+	if (!pvt->F3) {
+		pci_dev_put(pvt->F1);
+		pvt->F1 = NULL;
+
+		amd64_err("error F3 device not found: "
+			  "vendor %x device 0x%x (broken BIOS?)\n",
+			  PCI_VENDOR_ID_AMD, f3_id);
+
+		return -ENODEV;
+	}
+	debugf1("F1: %s\n", pci_name(pvt->F1));
+	debugf1("F2: %s\n", pci_name(pvt->F2));
+	debugf1("F3: %s\n", pci_name(pvt->F3));
+
+	return 0;
+}
+
+static void free_mc_sibling_devs(struct amd64_pvt *pvt)
+{
+	pci_dev_put(pvt->F1);
+	pci_dev_put(pvt->F3);
+}
+
+/*
+ * Retrieve the hardware registers of the memory controller (this includes the
+ * 'Address Map' and 'Misc' device regs)
+ */
+static void read_mc_regs(struct amd64_pvt *pvt)
+{
+	struct cpuinfo_x86 *c = &boot_cpu_data;
+	u64 msr_val;
+	u32 tmp;
+	unsigned range;
+
+	/*
+	 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
+	 * those are Read-As-Zero
+	 */
+	rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
+	debugf0("  TOP_MEM:  0x%016llx\n", pvt->top_mem);
+
+	/* check first whether TOP_MEM2 is enabled */
+	rdmsrl(MSR_K8_SYSCFG, msr_val);
+	if (msr_val & (1U << 21)) {
+		rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
+		debugf0("  TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
+	} else
+		debugf0("  TOP_MEM2 disabled.\n");
+
+	amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
+
+	read_dram_ctl_register(pvt);
+
+	for (range = 0; range < DRAM_RANGES; range++) {
+		u8 rw;
+
+		/* read settings for this DRAM range */
+		read_dram_base_limit_regs(pvt, range);
+
+		rw = dram_rw(pvt, range);
+		if (!rw)
+			continue;
+
+		debugf1("  DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
+			range,
+			get_dram_base(pvt, range),
+			get_dram_limit(pvt, range));
+
+		debugf1("   IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
+			dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
+			(rw & 0x1) ? "R" : "-",
+			(rw & 0x2) ? "W" : "-",
+			dram_intlv_sel(pvt, range),
+			dram_dst_node(pvt, range));
+	}
+
+	read_dct_base_mask(pvt);
+
+	amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
+	amd64_read_dct_pci_cfg(pvt, DBAM0, &pvt->dbam0);
+
+	amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
+
+	amd64_read_dct_pci_cfg(pvt, DCLR0, &pvt->dclr0);
+	amd64_read_dct_pci_cfg(pvt, DCHR0, &pvt->dchr0);
+
+	if (!dct_ganging_enabled(pvt)) {
+		amd64_read_dct_pci_cfg(pvt, DCLR1, &pvt->dclr1);
+		amd64_read_dct_pci_cfg(pvt, DCHR1, &pvt->dchr1);
+	}
+
+	pvt->ecc_sym_sz = 4;
+
+	if (c->x86 >= 0x10) {
+		amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
+		amd64_read_dct_pci_cfg(pvt, DBAM1, &pvt->dbam1);
+
+		/* F10h, revD and later can do x8 ECC too */
+		if ((c->x86 > 0x10 || c->x86_model > 7) && tmp & BIT(25))
+			pvt->ecc_sym_sz = 8;
+	}
+	dump_misc_regs(pvt);
+}
+
+/*
+ * NOTE: CPU Revision Dependent code
+ *
+ * Input:
+ *	@csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
+ *	k8 private pointer to -->
+ *			DRAM Bank Address mapping register
+ *			node_id
+ *			DCL register where dual_channel_active is
+ *
+ * The DBAM register consists of 4 sets of 4 bits each definitions:
+ *
+ * Bits:	CSROWs
+ * 0-3		CSROWs 0 and 1
+ * 4-7		CSROWs 2 and 3
+ * 8-11		CSROWs 4 and 5
+ * 12-15	CSROWs 6 and 7
+ *
+ * Values range from: 0 to 15
+ * The meaning of the values depends on CPU revision and dual-channel state,
+ * see relevant BKDG more info.
+ *
+ * The memory controller provides for total of only 8 CSROWs in its current
+ * architecture. Each "pair" of CSROWs normally represents just one DIMM in
+ * single channel or two (2) DIMMs in dual channel mode.
+ *
+ * The following code logic collapses the various tables for CSROW based on CPU
+ * revision.
+ *
+ * Returns:
+ *	The number of PAGE_SIZE pages on the specified CSROW number it
+ *	encompasses
+ *
+ */
+static u32 amd64_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
+{
+	u32 cs_mode, nr_pages;
+	u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
+
+	/*
+	 * The math on this doesn't look right on the surface because x/2*4 can
+	 * be simplified to x*2 but this expression makes use of the fact that
+	 * it is integral math where 1/2=0. This intermediate value becomes the
+	 * number of bits to shift the DBAM register to extract the proper CSROW
+	 * field.
+	 */
+	cs_mode =  (dbam >> ((csrow_nr / 2) * 4)) & 0xF;
+
+	nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode) << (20 - PAGE_SHIFT);
+
+	debugf0("  (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
+	debugf0("    nr_pages= %u  channel-count = %d\n",
+		nr_pages, pvt->channel_count);
+
+	return nr_pages;
+}
+
+/*
+ * Initialize the array of csrow attribute instances, based on the values
+ * from pci config hardware registers.
+ */
+static int init_csrows(struct mem_ctl_info *mci)
+{
+	struct csrow_info *csrow;
+	struct amd64_pvt *pvt = mci->pvt_info;
+	u64 input_addr_min, input_addr_max, sys_addr, base, mask;
+	u32 val;
+	int i, empty = 1;
+
+	amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
+
+	pvt->nbcfg = val;
+
+	debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
+		pvt->mc_node_id, val,
+		!!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
+
+	for_each_chip_select(i, 0, pvt) {
+		csrow = &mci->csrows[i];
+
+		if (!csrow_enabled(i, 0, pvt) && !csrow_enabled(i, 1, pvt)) {
+			debugf1("----CSROW %d EMPTY for node %d\n", i,
+				pvt->mc_node_id);
+			continue;
+		}
+
+		debugf1("----CSROW %d VALID for MC node %d\n",
+			i, pvt->mc_node_id);
+
+		empty = 0;
+		if (csrow_enabled(i, 0, pvt))
+			csrow->nr_pages = amd64_csrow_nr_pages(pvt, 0, i);
+		if (csrow_enabled(i, 1, pvt))
+			csrow->nr_pages += amd64_csrow_nr_pages(pvt, 1, i);
+		find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
+		sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
+		csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
+		sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
+		csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
+
+		get_cs_base_and_mask(pvt, i, 0, &base, &mask);
+		csrow->page_mask = ~mask;
+		/* 8 bytes of resolution */
+
+		csrow->mtype = amd64_determine_memory_type(pvt, i);
+
+		debugf1("  for MC node %d csrow %d:\n", pvt->mc_node_id, i);
+		debugf1("    input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
+			(unsigned long)input_addr_min,
+			(unsigned long)input_addr_max);
+		debugf1("    sys_addr: 0x%lx  page_mask: 0x%lx\n",
+			(unsigned long)sys_addr, csrow->page_mask);
+		debugf1("    nr_pages: %u  first_page: 0x%lx "
+			"last_page: 0x%lx\n",
+			(unsigned)csrow->nr_pages,
+			csrow->first_page, csrow->last_page);
+
+		/*
+		 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
+		 */
+		if (pvt->nbcfg & NBCFG_ECC_ENABLE)
+			csrow->edac_mode =
+			    (pvt->nbcfg & NBCFG_CHIPKILL) ?
+			    EDAC_S4ECD4ED : EDAC_SECDED;
+		else
+			csrow->edac_mode = EDAC_NONE;
+	}
+
+	return empty;
+}
+
+/* get all cores on this DCT */
+static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, unsigned nid)
+{
+	int cpu;
+
+	for_each_online_cpu(cpu)
+		if (amd_get_nb_id(cpu) == nid)
+			cpumask_set_cpu(cpu, mask);
+}
+
+/* check MCG_CTL on all the cpus on this node */
+static bool amd64_nb_mce_bank_enabled_on_node(unsigned nid)
+{
+	cpumask_var_t mask;
+	int cpu, nbe;
+	bool ret = false;
+
+	if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
+		amd64_warn("%s: Error allocating mask\n", __func__);
+		return false;
+	}
+
+	get_cpus_on_this_dct_cpumask(mask, nid);
+
+	rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
+
+	for_each_cpu(cpu, mask) {
+		struct msr *reg = per_cpu_ptr(msrs, cpu);
+		nbe = reg->l & MSR_MCGCTL_NBE;
+
+		debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
+			cpu, reg->q,
+			(nbe ? "enabled" : "disabled"));
+
+		if (!nbe)
+			goto out;
+	}
+	ret = true;
+
+out:
+	free_cpumask_var(mask);
+	return ret;
+}
+
+static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
+{
+	cpumask_var_t cmask;
+	int cpu;
+
+	if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
+		amd64_warn("%s: error allocating mask\n", __func__);
+		return false;
+	}
+
+	get_cpus_on_this_dct_cpumask(cmask, nid);
+
+	rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+	for_each_cpu(cpu, cmask) {
+
+		struct msr *reg = per_cpu_ptr(msrs, cpu);
+
+		if (on) {
+			if (reg->l & MSR_MCGCTL_NBE)
+				s->flags.nb_mce_enable = 1;
+
+			reg->l |= MSR_MCGCTL_NBE;
+		} else {
+			/*
+			 * Turn off NB MCE reporting only when it was off before
+			 */
+			if (!s->flags.nb_mce_enable)
+				reg->l &= ~MSR_MCGCTL_NBE;
+		}
+	}
+	wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
+
+	free_cpumask_var(cmask);
+
+	return 0;
+}
+
+static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
+				       struct pci_dev *F3)
+{
+	bool ret = true;
+	u32 value, mask = 0x3;		/* UECC/CECC enable */
+
+	if (toggle_ecc_err_reporting(s, nid, ON)) {
+		amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
+		return false;
+	}
+
+	amd64_read_pci_cfg(F3, NBCTL, &value);
+
+	s->old_nbctl   = value & mask;
+	s->nbctl_valid = true;
+
+	value |= mask;
+	amd64_write_pci_cfg(F3, NBCTL, value);
+
+	amd64_read_pci_cfg(F3, NBCFG, &value);
+
+	debugf0("1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
+		nid, value, !!(value & NBCFG_ECC_ENABLE));
+
+	if (!(value & NBCFG_ECC_ENABLE)) {
+		amd64_warn("DRAM ECC disabled on this node, enabling...\n");
+
+		s->flags.nb_ecc_prev = 0;
+
+		/* Attempt to turn on DRAM ECC Enable */
+		value |= NBCFG_ECC_ENABLE;
+		amd64_write_pci_cfg(F3, NBCFG, value);
+
+		amd64_read_pci_cfg(F3, NBCFG, &value);
+
+		if (!(value & NBCFG_ECC_ENABLE)) {
+			amd64_warn("Hardware rejected DRAM ECC enable,"
+				   "check memory DIMM configuration.\n");
+			ret = false;
+		} else {
+			amd64_info("Hardware accepted DRAM ECC Enable\n");
+		}
+	} else {
+		s->flags.nb_ecc_prev = 1;
+	}
+
+	debugf0("2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
+		nid, value, !!(value & NBCFG_ECC_ENABLE));
+
+	return ret;
+}
+
+static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
+					struct pci_dev *F3)
+{
+	u32 value, mask = 0x3;		/* UECC/CECC enable */
+
+
+	if (!s->nbctl_valid)
+		return;
+
+	amd64_read_pci_cfg(F3, NBCTL, &value);
+	value &= ~mask;
+	value |= s->old_nbctl;
+
+	amd64_write_pci_cfg(F3, NBCTL, value);
+
+	/* restore previous BIOS DRAM ECC "off" setting we force-enabled */
+	if (!s->flags.nb_ecc_prev) {
+		amd64_read_pci_cfg(F3, NBCFG, &value);
+		value &= ~NBCFG_ECC_ENABLE;
+		amd64_write_pci_cfg(F3, NBCFG, value);
+	}
+
+	/* restore the NB Enable MCGCTL bit */
+	if (toggle_ecc_err_reporting(s, nid, OFF))
+		amd64_warn("Error restoring NB MCGCTL settings!\n");
+}
+
+/*
+ * EDAC requires that the BIOS have ECC enabled before
+ * taking over the processing of ECC errors. A command line
+ * option allows to force-enable hardware ECC later in
+ * enable_ecc_error_reporting().
+ */
+static const char *ecc_msg =
+	"ECC disabled in the BIOS or no ECC capability, module will not load.\n"
+	" Either enable ECC checking or force module loading by setting "
+	"'ecc_enable_override'.\n"
+	" (Note that use of the override may cause unknown side effects.)\n";
+
+static bool ecc_enabled(struct pci_dev *F3, u8 nid)
+{
+	u32 value;
+	u8 ecc_en = 0;
+	bool nb_mce_en = false;
+
+	amd64_read_pci_cfg(F3, NBCFG, &value);
+
+	ecc_en = !!(value & NBCFG_ECC_ENABLE);
+	amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
+
+	nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
+	if (!nb_mce_en)
+		amd64_notice("NB MCE bank disabled, set MSR "
+			     "0x%08x[4] on node %d to enable.\n",
+			     MSR_IA32_MCG_CTL, nid);
+
+	if (!ecc_en || !nb_mce_en) {
+		amd64_notice("%s", ecc_msg);
+		return false;
+	}
+	return true;
+}
+
+struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
+					  ARRAY_SIZE(amd64_inj_attrs) +
+					  1];
+
+struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
+
+static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
+{
+	unsigned int i = 0, j = 0;
+
+	for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
+		sysfs_attrs[i] = amd64_dbg_attrs[i];
+
+	if (boot_cpu_data.x86 >= 0x10)
+		for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
+			sysfs_attrs[i] = amd64_inj_attrs[j];
+
+	sysfs_attrs[i] = terminator;
+
+	mci->mc_driver_sysfs_attributes = sysfs_attrs;
+}
+
+static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
+				 struct amd64_family_type *fam)
+{
+	struct amd64_pvt *pvt = mci->pvt_info;
+
+	mci->mtype_cap		= MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
+	mci->edac_ctl_cap	= EDAC_FLAG_NONE;
+
+	if (pvt->nbcap & NBCAP_SECDED)
+		mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
+
+	if (pvt->nbcap & NBCAP_CHIPKILL)
+		mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
+
+	mci->edac_cap		= amd64_determine_edac_cap(pvt);
+	mci->mod_name		= EDAC_MOD_STR;
+	mci->mod_ver		= EDAC_AMD64_VERSION;
+	mci->ctl_name		= fam->ctl_name;
+	mci->dev_name		= pci_name(pvt->F2);
+	mci->ctl_page_to_phys	= NULL;
+
+	/* memory scrubber interface */
+	mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
+	mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
+}
+
+/*
+ * returns a pointer to the family descriptor on success, NULL otherwise.
+ */
+static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
+{
+	u8 fam = boot_cpu_data.x86;
+	struct amd64_family_type *fam_type = NULL;
+
+	switch (fam) {
+	case 0xf:
+		fam_type		= &amd64_family_types[K8_CPUS];
+		pvt->ops		= &amd64_family_types[K8_CPUS].ops;
+		break;
+
+	case 0x10:
+		fam_type		= &amd64_family_types[F10_CPUS];
+		pvt->ops		= &amd64_family_types[F10_CPUS].ops;
+		break;
+
+	case 0x15:
+		fam_type		= &amd64_family_types[F15_CPUS];
+		pvt->ops		= &amd64_family_types[F15_CPUS].ops;
+		break;
+
+	default:
+		amd64_err("Unsupported family!\n");
+		return NULL;
+	}
+
+	pvt->ext_model = boot_cpu_data.x86_model >> 4;
+
+	amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
+		     (fam == 0xf ?
+				(pvt->ext_model >= K8_REV_F  ? "revF or later "
+							     : "revE or earlier ")
+				 : ""), pvt->mc_node_id);
+	return fam_type;
+}
+
+static int amd64_init_one_instance(struct pci_dev *F2)
+{
+	struct amd64_pvt *pvt = NULL;
+	struct amd64_family_type *fam_type = NULL;
+	struct mem_ctl_info *mci = NULL;
+	int err = 0, ret;
+	u8 nid = get_node_id(F2);
+
+	ret = -ENOMEM;
+	pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
+	if (!pvt)
+		goto err_ret;
+
+	pvt->mc_node_id	= nid;
+	pvt->F2 = F2;
+
+	ret = -EINVAL;
+	fam_type = amd64_per_family_init(pvt);
+	if (!fam_type)
+		goto err_free;
+
+	ret = -ENODEV;
+	err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
+	if (err)
+		goto err_free;
+
+	read_mc_regs(pvt);
+
+	/*
+	 * We need to determine how many memory channels there are. Then use
+	 * that information for calculating the size of the dynamic instance
+	 * tables in the 'mci' structure.
+	 */
+	ret = -EINVAL;
+	pvt->channel_count = pvt->ops->early_channel_count(pvt);
+	if (pvt->channel_count < 0)
+		goto err_siblings;
+
+	ret = -ENOMEM;
+	mci = edac_mc_alloc(0, pvt->csels[0].b_cnt, pvt->channel_count, nid);
+	if (!mci)
+		goto err_siblings;
+
+	mci->pvt_info = pvt;
+	mci->dev = &pvt->F2->dev;
+
+	setup_mci_misc_attrs(mci, fam_type);
+
+	if (init_csrows(mci))
+		mci->edac_cap = EDAC_FLAG_NONE;
+
+	set_mc_sysfs_attrs(mci);
+
+	ret = -ENODEV;
+	if (edac_mc_add_mc(mci)) {
+		debugf1("failed edac_mc_add_mc()\n");
+		goto err_add_mc;
+	}
+
+	/* register stuff with EDAC MCE */
+	if (report_gart_errors)
+		amd_report_gart_errors(true);
+
+	amd_register_ecc_decoder(amd64_decode_bus_error);
+
+	mcis[nid] = mci;
+
+	atomic_inc(&drv_instances);
+
+	return 0;
+
+err_add_mc:
+	edac_mc_free(mci);
+
+err_siblings:
+	free_mc_sibling_devs(pvt);
+
+err_free:
+	kfree(pvt);
+
+err_ret:
+	return ret;
+}
+
+static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
+					     const struct pci_device_id *mc_type)
+{
+	u8 nid = get_node_id(pdev);
+	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
+	struct ecc_settings *s;
+	int ret = 0;
+
+	ret = pci_enable_device(pdev);
+	if (ret < 0) {
+		debugf0("ret=%d\n", ret);
+		return -EIO;
+	}
+
+	ret = -ENOMEM;
+	s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
+	if (!s)
+		goto err_out;
+
+	ecc_stngs[nid] = s;
+
+	if (!ecc_enabled(F3, nid)) {
+		ret = -ENODEV;
+
+		if (!ecc_enable_override)
+			goto err_enable;
+
+		amd64_warn("Forcing ECC on!\n");
+
+		if (!enable_ecc_error_reporting(s, nid, F3))
+			goto err_enable;
+	}
+
+	ret = amd64_init_one_instance(pdev);
+	if (ret < 0) {
+		amd64_err("Error probing instance: %d\n", nid);
+		restore_ecc_error_reporting(s, nid, F3);
+	}
+
+	return ret;
+
+err_enable:
+	kfree(s);
+	ecc_stngs[nid] = NULL;
+
+err_out:
+	return ret;
+}
+
+static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
+{
+	struct mem_ctl_info *mci;
+	struct amd64_pvt *pvt;
+	u8 nid = get_node_id(pdev);
+	struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
+	struct ecc_settings *s = ecc_stngs[nid];
+
+	/* Remove from EDAC CORE tracking list */
+	mci = edac_mc_del_mc(&pdev->dev);
+	if (!mci)
+		return;
+
+	pvt = mci->pvt_info;
+
+	restore_ecc_error_reporting(s, nid, F3);
+
+	free_mc_sibling_devs(pvt);
+
+	/* unregister from EDAC MCE */
+	amd_report_gart_errors(false);
+	amd_unregister_ecc_decoder(amd64_decode_bus_error);
+
+	kfree(ecc_stngs[nid]);
+	ecc_stngs[nid] = NULL;
+
+	/* Free the EDAC CORE resources */
+	mci->pvt_info = NULL;
+	mcis[nid] = NULL;
+
+	kfree(pvt);
+	edac_mc_free(mci);
+}
+
+/*
+ * This table is part of the interface for loading drivers for PCI devices. The
+ * PCI core identifies what devices are on a system during boot, and then
+ * inquiry this table to see if this driver is for a given device found.
+ */
+static DEFINE_PCI_DEVICE_TABLE(amd64_pci_table) = {
+	{
+		.vendor		= PCI_VENDOR_ID_AMD,
+		.device		= PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
+		.subvendor	= PCI_ANY_ID,
+		.subdevice	= PCI_ANY_ID,
+		.class		= 0,
+		.class_mask	= 0,
+	},
+	{
+		.vendor		= PCI_VENDOR_ID_AMD,
+		.device		= PCI_DEVICE_ID_AMD_10H_NB_DRAM,
+		.subvendor	= PCI_ANY_ID,
+		.subdevice	= PCI_ANY_ID,
+		.class		= 0,
+		.class_mask	= 0,
+	},
+	{
+		.vendor		= PCI_VENDOR_ID_AMD,
+		.device		= PCI_DEVICE_ID_AMD_15H_NB_F2,
+		.subvendor	= PCI_ANY_ID,
+		.subdevice	= PCI_ANY_ID,
+		.class		= 0,
+		.class_mask	= 0,
+	},
+
+	{0, }
+};
+MODULE_DEVICE_TABLE(pci, amd64_pci_table);
+
+static struct pci_driver amd64_pci_driver = {
+	.name		= EDAC_MOD_STR,
+	.probe		= amd64_probe_one_instance,
+	.remove		= __devexit_p(amd64_remove_one_instance),
+	.id_table	= amd64_pci_table,
+};
+
+static void setup_pci_device(void)
+{
+	struct mem_ctl_info *mci;
+	struct amd64_pvt *pvt;
+
+	if (amd64_ctl_pci)
+		return;
+
+	mci = mcis[0];
+	if (mci) {
+
+		pvt = mci->pvt_info;
+		amd64_ctl_pci =
+			edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
+
+		if (!amd64_ctl_pci) {
+			pr_warning("%s(): Unable to create PCI control\n",
+				   __func__);
+
+			pr_warning("%s(): PCI error report via EDAC not set\n",
+				   __func__);
+			}
+	}
+}
+
+static int __init amd64_edac_init(void)
+{
+	int err = -ENODEV;
+
+	printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
+
+	opstate_init();
+
+	if (amd_cache_northbridges() < 0)
+		goto err_ret;
+
+	err = -ENOMEM;
+	mcis	  = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
+	ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
+	if (!(mcis && ecc_stngs))
+		goto err_free;
+
+	msrs = msrs_alloc();
+	if (!msrs)
+		goto err_free;
+
+	err = pci_register_driver(&amd64_pci_driver);
+	if (err)
+		goto err_pci;
+
+	err = -ENODEV;
+	if (!atomic_read(&drv_instances))
+		goto err_no_instances;
+
+	setup_pci_device();
+	return 0;
+
+err_no_instances:
+	pci_unregister_driver(&amd64_pci_driver);
+
+err_pci:
+	msrs_free(msrs);
+	msrs = NULL;
+
+err_free:
+	kfree(mcis);
+	mcis = NULL;
+
+	kfree(ecc_stngs);
+	ecc_stngs = NULL;
+
+err_ret:
+	return err;
+}
+
+static void __exit amd64_edac_exit(void)
+{
+	if (amd64_ctl_pci)
+		edac_pci_release_generic_ctl(amd64_ctl_pci);
+
+	pci_unregister_driver(&amd64_pci_driver);
+
+	kfree(ecc_stngs);
+	ecc_stngs = NULL;
+
+	kfree(mcis);
+	mcis = NULL;
+
+	msrs_free(msrs);
+	msrs = NULL;
+}
+
+module_init(amd64_edac_init);
+module_exit(amd64_edac_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
+		"Dave Peterson, Thayne Harbaugh");
+MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
+		EDAC_AMD64_VERSION);
+
+module_param(edac_op_state, int, 0444);
+MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");