zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/Kconfig b/ap/os/linux/linux-3.4.x/drivers/md/Kconfig
new file mode 100644
index 0000000..da4dc25
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/Kconfig
@@ -0,0 +1,397 @@
+#
+# Block device driver configuration
+#
+
+menuconfig MD
+	bool "Multiple devices driver support (RAID and LVM)"
+	depends on BLOCK
+	help
+	  Support multiple physical spindles through a single logical device.
+	  Required for RAID and logical volume management.
+
+if MD
+
+config BLK_DEV_MD
+	tristate "RAID support"
+	---help---
+	  This driver lets you combine several hard disk partitions into one
+	  logical block device. This can be used to simply append one
+	  partition to another one or to combine several redundant hard disks
+	  into a RAID1/4/5 device so as to provide protection against hard
+	  disk failures. This is called "Software RAID" since the combining of
+	  the partitions is done by the kernel. "Hardware RAID" means that the
+	  combining is done by a dedicated controller; if you have such a
+	  controller, you do not need to say Y here.
+
+	  More information about Software RAID on Linux is contained in the
+	  Software RAID mini-HOWTO, available from
+	  <http://www.tldp.org/docs.html#howto>. There you will also learn
+	  where to get the supporting user space utilities raidtools.
+
+	  If unsure, say N.
+
+config MD_AUTODETECT
+	bool "Autodetect RAID arrays during kernel boot"
+	depends on BLK_DEV_MD=y
+	default y
+	---help---
+	  If you say Y here, then the kernel will try to autodetect raid
+	  arrays as part of its boot process. 
+
+	  If you don't use raid and say Y, this autodetection can cause 
+	  a several-second delay in the boot time due to various
+	  synchronisation steps that are part of this step.
+
+	  If unsure, say Y.
+
+config MD_LINEAR
+	tristate "Linear (append) mode"
+	depends on BLK_DEV_MD
+	---help---
+	  If you say Y here, then your multiple devices driver will be able to
+	  use the so-called linear mode, i.e. it will combine the hard disk
+	  partitions by simply appending one to the other.
+
+	  To compile this as a module, choose M here: the module
+	  will be called linear.
+
+	  If unsure, say Y.
+
+config MD_RAID0
+	tristate "RAID-0 (striping) mode"
+	depends on BLK_DEV_MD
+	---help---
+	  If you say Y here, then your multiple devices driver will be able to
+	  use the so-called raid0 mode, i.e. it will combine the hard disk
+	  partitions into one logical device in such a fashion as to fill them
+	  up evenly, one chunk here and one chunk there. This will increase
+	  the throughput rate if the partitions reside on distinct disks.
+
+	  Information about Software RAID on Linux is contained in the
+	  Software-RAID mini-HOWTO, available from
+	  <http://www.tldp.org/docs.html#howto>. There you will also
+	  learn where to get the supporting user space utilities raidtools.
+
+	  To compile this as a module, choose M here: the module
+	  will be called raid0.
+
+	  If unsure, say Y.
+
+config MD_RAID1
+	tristate "RAID-1 (mirroring) mode"
+	depends on BLK_DEV_MD
+	---help---
+	  A RAID-1 set consists of several disk drives which are exact copies
+	  of each other.  In the event of a mirror failure, the RAID driver
+	  will continue to use the operational mirrors in the set, providing
+	  an error free MD (multiple device) to the higher levels of the
+	  kernel.  In a set with N drives, the available space is the capacity
+	  of a single drive, and the set protects against a failure of (N - 1)
+	  drives.
+
+	  Information about Software RAID on Linux is contained in the
+	  Software-RAID mini-HOWTO, available from
+	  <http://www.tldp.org/docs.html#howto>.  There you will also
+	  learn where to get the supporting user space utilities raidtools.
+
+	  If you want to use such a RAID-1 set, say Y.  To compile this code
+	  as a module, choose M here: the module will be called raid1.
+
+	  If unsure, say Y.
+
+config MD_RAID10
+	tristate "RAID-10 (mirrored striping) mode"
+	depends on BLK_DEV_MD
+	---help---
+	  RAID-10 provides a combination of striping (RAID-0) and
+	  mirroring (RAID-1) with easier configuration and more flexible
+	  layout.
+	  Unlike RAID-0, but like RAID-1, RAID-10 requires all devices to
+	  be the same size (or at least, only as much as the smallest device
+	  will be used).
+	  RAID-10 provides a variety of layouts that provide different levels
+	  of redundancy and performance.
+
+	  RAID-10 requires mdadm-1.7.0 or later, available at:
+
+	  ftp://ftp.kernel.org/pub/linux/utils/raid/mdadm/
+
+	  If unsure, say Y.
+
+config MD_RAID456
+	tristate "RAID-4/RAID-5/RAID-6 mode"
+	depends on BLK_DEV_MD
+	select RAID6_PQ
+	select ASYNC_MEMCPY
+	select ASYNC_XOR
+	select ASYNC_PQ
+	select ASYNC_RAID6_RECOV
+	---help---
+	  A RAID-5 set of N drives with a capacity of C MB per drive provides
+	  the capacity of C * (N - 1) MB, and protects against a failure
+	  of a single drive. For a given sector (row) number, (N - 1) drives
+	  contain data sectors, and one drive contains the parity protection.
+	  For a RAID-4 set, the parity blocks are present on a single drive,
+	  while a RAID-5 set distributes the parity across the drives in one
+	  of the available parity distribution methods.
+
+	  A RAID-6 set of N drives with a capacity of C MB per drive
+	  provides the capacity of C * (N - 2) MB, and protects
+	  against a failure of any two drives. For a given sector
+	  (row) number, (N - 2) drives contain data sectors, and two
+	  drives contains two independent redundancy syndromes.  Like
+	  RAID-5, RAID-6 distributes the syndromes across the drives
+	  in one of the available parity distribution methods.
+
+	  Information about Software RAID on Linux is contained in the
+	  Software-RAID mini-HOWTO, available from
+	  <http://www.tldp.org/docs.html#howto>. There you will also
+	  learn where to get the supporting user space utilities raidtools.
+
+	  If you want to use such a RAID-4/RAID-5/RAID-6 set, say Y.  To
+	  compile this code as a module, choose M here: the module
+	  will be called raid456.
+
+	  If unsure, say Y.
+
+config MULTICORE_RAID456
+	bool "RAID-4/RAID-5/RAID-6 Multicore processing (EXPERIMENTAL)"
+	depends on MD_RAID456
+	depends on SMP
+	depends on EXPERIMENTAL
+	---help---
+	  Enable the raid456 module to dispatch per-stripe raid operations to a
+	  thread pool.
+
+	  If unsure, say N.
+
+config MD_MULTIPATH
+	tristate "Multipath I/O support"
+	depends on BLK_DEV_MD
+	help
+	  MD_MULTIPATH provides a simple multi-path personality for use
+	  the MD framework.  It is not under active development.  New
+	  projects should consider using DM_MULTIPATH which has more
+	  features and more testing.
+
+	  If unsure, say N.
+
+config MD_FAULTY
+	tristate "Faulty test module for MD"
+	depends on BLK_DEV_MD
+	help
+	  The "faulty" module allows for a block device that occasionally returns
+	  read or write errors.  It is useful for testing.
+
+	  In unsure, say N.
+
+config BLK_DEV_DM_BUILTIN
+	boolean
+
+config BLK_DEV_DM
+	tristate "Device mapper support"
+	select BLK_DEV_DM_BUILTIN
+	---help---
+	  Device-mapper is a low level volume manager.  It works by allowing
+	  people to specify mappings for ranges of logical sectors.  Various
+	  mapping types are available, in addition people may write their own
+	  modules containing custom mappings if they wish.
+
+	  Higher level volume managers such as LVM2 use this driver.
+
+	  To compile this as a module, choose M here: the module will be
+	  called dm-mod.
+
+	  If unsure, say N.
+
+config DM_DEBUG
+	boolean "Device mapper debugging support"
+	depends on BLK_DEV_DM
+	---help---
+	  Enable this for messages that may help debug device-mapper problems.
+
+	  If unsure, say N.
+
+config DM_BUFIO
+       tristate
+       depends on BLK_DEV_DM && EXPERIMENTAL
+       ---help---
+	 This interface allows you to do buffered I/O on a device and acts
+	 as a cache, holding recently-read blocks in memory and performing
+	 delayed writes.
+
+source "drivers/md/persistent-data/Kconfig"
+
+config DM_CRYPT
+	tristate "Crypt target support"
+	depends on BLK_DEV_DM
+	select CRYPTO
+	select CRYPTO_CBC
+	---help---
+	  This device-mapper target allows you to create a device that
+	  transparently encrypts the data on it. You'll need to activate
+	  the ciphers you're going to use in the cryptoapi configuration.
+
+	  Information on how to use dm-crypt can be found on
+
+	  <http://www.saout.de/misc/dm-crypt/>
+
+	  To compile this code as a module, choose M here: the module will
+	  be called dm-crypt.
+
+	  If unsure, say N.
+
+config DM_SNAPSHOT
+       tristate "Snapshot target"
+       depends on BLK_DEV_DM
+       ---help---
+         Allow volume managers to take writable snapshots of a device.
+
+config DM_THIN_PROVISIONING
+       tristate "Thin provisioning target (EXPERIMENTAL)"
+       depends on BLK_DEV_DM && EXPERIMENTAL
+       select DM_PERSISTENT_DATA
+       ---help---
+         Provides thin provisioning and snapshots that share a data store.
+
+config DM_DEBUG_BLOCK_STACK_TRACING
+	boolean "Keep stack trace of thin provisioning block lock holders"
+	depends on STACKTRACE_SUPPORT && DM_THIN_PROVISIONING
+	select STACKTRACE
+	---help---
+	  Enable this for messages that may help debug problems with the
+	  block manager locking used by thin provisioning.
+
+	  If unsure, say N.
+
+config DM_DEBUG_SPACE_MAPS
+	boolean "Extra validation for thin provisioning space maps"
+	depends on DM_THIN_PROVISIONING
+	---help---
+	  Enable this for messages that may help debug problems with the
+	  space maps used by thin provisioning.
+
+          If unsure, say N.
+
+config DM_MIRROR
+       tristate "Mirror target"
+       depends on BLK_DEV_DM
+       ---help---
+         Allow volume managers to mirror logical volumes, also
+         needed for live data migration tools such as 'pvmove'.
+
+config DM_RAID
+       tristate "RAID 1/4/5/6 target"
+       depends on BLK_DEV_DM
+       select MD_RAID1
+       select MD_RAID456
+       select BLK_DEV_MD
+       ---help---
+	 A dm target that supports RAID1, RAID4, RAID5 and RAID6 mappings
+
+	 A RAID-5 set of N drives with a capacity of C MB per drive provides
+	 the capacity of C * (N - 1) MB, and protects against a failure
+	 of a single drive. For a given sector (row) number, (N - 1) drives
+	 contain data sectors, and one drive contains the parity protection.
+	 For a RAID-4 set, the parity blocks are present on a single drive,
+	 while a RAID-5 set distributes the parity across the drives in one
+	 of the available parity distribution methods.
+
+	 A RAID-6 set of N drives with a capacity of C MB per drive
+	 provides the capacity of C * (N - 2) MB, and protects
+	 against a failure of any two drives. For a given sector
+	 (row) number, (N - 2) drives contain data sectors, and two
+	 drives contains two independent redundancy syndromes.  Like
+	 RAID-5, RAID-6 distributes the syndromes across the drives
+	 in one of the available parity distribution methods.
+
+config DM_LOG_USERSPACE
+	tristate "Mirror userspace logging (EXPERIMENTAL)"
+	depends on DM_MIRROR && EXPERIMENTAL && NET
+	select CONNECTOR
+	---help---
+	  The userspace logging module provides a mechanism for
+	  relaying the dm-dirty-log API to userspace.  Log designs
+	  which are more suited to userspace implementation (e.g.
+	  shared storage logs) or experimental logs can be implemented
+	  by leveraging this framework.
+
+config DM_ZERO
+	tristate "Zero target"
+	depends on BLK_DEV_DM
+	---help---
+	  A target that discards writes, and returns all zeroes for
+	  reads.  Useful in some recovery situations.
+
+config DM_MULTIPATH
+	tristate "Multipath target"
+	depends on BLK_DEV_DM
+	# nasty syntax but means make DM_MULTIPATH independent
+	# of SCSI_DH if the latter isn't defined but if
+	# it is, DM_MULTIPATH must depend on it.  We get a build
+	# error if SCSI_DH=m and DM_MULTIPATH=y
+	depends on SCSI_DH || !SCSI_DH
+	---help---
+	  Allow volume managers to support multipath hardware.
+
+config DM_MULTIPATH_QL
+	tristate "I/O Path Selector based on the number of in-flight I/Os"
+	depends on DM_MULTIPATH
+	---help---
+	  This path selector is a dynamic load balancer which selects
+	  the path with the least number of in-flight I/Os.
+
+	  If unsure, say N.
+
+config DM_MULTIPATH_ST
+	tristate "I/O Path Selector based on the service time"
+	depends on DM_MULTIPATH
+	---help---
+	  This path selector is a dynamic load balancer which selects
+	  the path expected to complete the incoming I/O in the shortest
+	  time.
+
+	  If unsure, say N.
+
+config DM_DELAY
+	tristate "I/O delaying target (EXPERIMENTAL)"
+	depends on BLK_DEV_DM && EXPERIMENTAL
+	---help---
+	A target that delays reads and/or writes and can send
+	them to different devices.  Useful for testing.
+
+	If unsure, say N.
+
+config DM_UEVENT
+	bool "DM uevents"
+	depends on BLK_DEV_DM
+	---help---
+	Generate udev events for DM events.
+
+config DM_FLAKEY
+       tristate "Flakey target (EXPERIMENTAL)"
+       depends on BLK_DEV_DM && EXPERIMENTAL
+       ---help---
+         A target that intermittently fails I/O for debugging purposes.
+
+config DM_VERITY
+	tristate "Verity target support (EXPERIMENTAL)"
+	depends on BLK_DEV_DM && EXPERIMENTAL
+	select CRYPTO
+	select CRYPTO_HASH
+	select DM_BUFIO
+	---help---
+	  This device-mapper target creates a read-only device that
+	  transparently validates the data on one underlying device against
+	  a pre-generated tree of cryptographic checksums stored on a second
+	  device.
+
+	  You'll need to activate the digests you're going to use in the
+	  cryptoapi configuration.
+
+	  To compile this code as a module, choose M here: the module will
+	  be called dm-verity.
+
+	  If unsure, say N.
+
+endif # MD
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/Makefile b/ap/os/linux/linux-3.4.x/drivers/md/Makefile
new file mode 100644
index 0000000..4e87c54
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/Makefile
@@ -0,0 +1,50 @@
+#
+# Makefile for the kernel software RAID and LVM drivers.
+#
+
+dm-mod-y	+= dm.o dm-table.o dm-target.o dm-linear.o dm-stripe.o \
+		   dm-ioctl.o dm-io.o dm-kcopyd.o dm-sysfs.o
+dm-multipath-y	+= dm-path-selector.o dm-mpath.o
+dm-snapshot-y	+= dm-snap.o dm-exception-store.o dm-snap-transient.o \
+		    dm-snap-persistent.o
+dm-mirror-y	+= dm-raid1.o
+dm-log-userspace-y \
+		+= dm-log-userspace-base.o dm-log-userspace-transfer.o
+dm-thin-pool-y	+= dm-thin.o dm-thin-metadata.o
+md-mod-y	+= md.o bitmap.o
+raid456-y	+= raid5.o
+
+# Note: link order is important.  All raid personalities
+# and must come before md.o, as they each initialise 
+# themselves, and md.o may use the personalities when it 
+# auto-initialised.
+
+obj-$(CONFIG_MD_LINEAR)		+= linear.o
+obj-$(CONFIG_MD_RAID0)		+= raid0.o
+obj-$(CONFIG_MD_RAID1)		+= raid1.o
+obj-$(CONFIG_MD_RAID10)		+= raid10.o
+obj-$(CONFIG_MD_RAID456)	+= raid456.o
+obj-$(CONFIG_MD_MULTIPATH)	+= multipath.o
+obj-$(CONFIG_MD_FAULTY)		+= faulty.o
+obj-$(CONFIG_BLK_DEV_MD)	+= md-mod.o
+obj-$(CONFIG_BLK_DEV_DM)	+= dm-mod.o
+obj-$(CONFIG_BLK_DEV_DM_BUILTIN) += dm-builtin.o
+obj-$(CONFIG_DM_BUFIO)		+= dm-bufio.o
+obj-$(CONFIG_DM_CRYPT)		+= dm-crypt.o
+obj-$(CONFIG_DM_DELAY)		+= dm-delay.o
+obj-$(CONFIG_DM_FLAKEY)		+= dm-flakey.o
+obj-$(CONFIG_DM_MULTIPATH)	+= dm-multipath.o dm-round-robin.o
+obj-$(CONFIG_DM_MULTIPATH_QL)	+= dm-queue-length.o
+obj-$(CONFIG_DM_MULTIPATH_ST)	+= dm-service-time.o
+obj-$(CONFIG_DM_SNAPSHOT)	+= dm-snapshot.o
+obj-$(CONFIG_DM_PERSISTENT_DATA)	+= persistent-data/
+obj-$(CONFIG_DM_MIRROR)		+= dm-mirror.o dm-log.o dm-region-hash.o
+obj-$(CONFIG_DM_LOG_USERSPACE)	+= dm-log-userspace.o
+obj-$(CONFIG_DM_ZERO)		+= dm-zero.o
+obj-$(CONFIG_DM_RAID)	+= dm-raid.o
+obj-$(CONFIG_DM_THIN_PROVISIONING)	+= dm-thin-pool.o
+obj-$(CONFIG_DM_VERITY)		+= dm-verity.o
+
+ifeq ($(CONFIG_DM_UEVENT),y)
+dm-mod-objs			+= dm-uevent.o
+endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/bitmap.c b/ap/os/linux/linux-3.4.x/drivers/md/bitmap.c
new file mode 100644
index 0000000..17e2b47
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/bitmap.c
@@ -0,0 +1,2113 @@
+/*
+ * bitmap.c two-level bitmap (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
+ *
+ * bitmap_create  - sets up the bitmap structure
+ * bitmap_destroy - destroys the bitmap structure
+ *
+ * additions, Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.:
+ * - added disk storage for bitmap
+ * - changes to allow various bitmap chunk sizes
+ */
+
+/*
+ * Still to do:
+ *
+ * flush after percent set rather than just time based. (maybe both).
+ */
+
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/errno.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/timer.h>
+#include <linux/sched.h>
+#include <linux/list.h>
+#include <linux/file.h>
+#include <linux/mount.h>
+#include <linux/buffer_head.h>
+#include <linux/seq_file.h>
+#include "md.h"
+#include "bitmap.h"
+
+static inline char *bmname(struct bitmap *bitmap)
+{
+	return bitmap->mddev ? mdname(bitmap->mddev) : "mdX";
+}
+
+/*
+ * check a page and, if necessary, allocate it (or hijack it if the alloc fails)
+ *
+ * 1) check to see if this page is allocated, if it's not then try to alloc
+ * 2) if the alloc fails, set the page's hijacked flag so we'll use the
+ *    page pointer directly as a counter
+ *
+ * if we find our page, we increment the page's refcount so that it stays
+ * allocated while we're using it
+ */
+static int bitmap_checkpage(struct bitmap *bitmap,
+			    unsigned long page, int create)
+__releases(bitmap->lock)
+__acquires(bitmap->lock)
+{
+	unsigned char *mappage;
+
+	if (page >= bitmap->pages) {
+		/* This can happen if bitmap_start_sync goes beyond
+		 * End-of-device while looking for a whole page.
+		 * It is harmless.
+		 */
+		return -EINVAL;
+	}
+
+	if (bitmap->bp[page].hijacked) /* it's hijacked, don't try to alloc */
+		return 0;
+
+	if (bitmap->bp[page].map) /* page is already allocated, just return */
+		return 0;
+
+	if (!create)
+		return -ENOENT;
+
+	/* this page has not been allocated yet */
+
+	spin_unlock_irq(&bitmap->lock);
+	mappage = kzalloc(PAGE_SIZE, GFP_NOIO);
+	spin_lock_irq(&bitmap->lock);
+
+	if (mappage == NULL) {
+		pr_debug("%s: bitmap map page allocation failed, hijacking\n",
+			 bmname(bitmap));
+		/* failed - set the hijacked flag so that we can use the
+		 * pointer as a counter */
+		if (!bitmap->bp[page].map)
+			bitmap->bp[page].hijacked = 1;
+	} else if (bitmap->bp[page].map ||
+		   bitmap->bp[page].hijacked) {
+		/* somebody beat us to getting the page */
+		kfree(mappage);
+		return 0;
+	} else {
+
+		/* no page was in place and we have one, so install it */
+
+		bitmap->bp[page].map = mappage;
+		bitmap->missing_pages--;
+	}
+	return 0;
+}
+
+/* if page is completely empty, put it back on the free list, or dealloc it */
+/* if page was hijacked, unmark the flag so it might get alloced next time */
+/* Note: lock should be held when calling this */
+static void bitmap_checkfree(struct bitmap *bitmap, unsigned long page)
+{
+	char *ptr;
+
+	if (bitmap->bp[page].count) /* page is still busy */
+		return;
+
+	/* page is no longer in use, it can be released */
+
+	if (bitmap->bp[page].hijacked) { /* page was hijacked, undo this now */
+		bitmap->bp[page].hijacked = 0;
+		bitmap->bp[page].map = NULL;
+	} else {
+		/* normal case, free the page */
+		ptr = bitmap->bp[page].map;
+		bitmap->bp[page].map = NULL;
+		bitmap->missing_pages++;
+		kfree(ptr);
+	}
+}
+
+/*
+ * bitmap file handling - read and write the bitmap file and its superblock
+ */
+
+/*
+ * basic page I/O operations
+ */
+
+/* IO operations when bitmap is stored near all superblocks */
+static struct page *read_sb_page(struct mddev *mddev, loff_t offset,
+				 struct page *page,
+				 unsigned long index, int size)
+{
+	/* choose a good rdev and read the page from there */
+
+	struct md_rdev *rdev;
+	sector_t target;
+	int did_alloc = 0;
+
+	if (!page) {
+		page = alloc_page(GFP_KERNEL);
+		if (!page)
+			return ERR_PTR(-ENOMEM);
+		did_alloc = 1;
+	}
+
+	rdev_for_each(rdev, mddev) {
+		if (! test_bit(In_sync, &rdev->flags)
+		    || test_bit(Faulty, &rdev->flags))
+			continue;
+
+		target = offset + index * (PAGE_SIZE/512);
+
+		if (sync_page_io(rdev, target,
+				 roundup(size, bdev_logical_block_size(rdev->bdev)),
+				 page, READ, true)) {
+			page->index = index;
+			attach_page_buffers(page, NULL); /* so that free_buffer will
+							  * quietly no-op */
+			return page;
+		}
+	}
+	if (did_alloc)
+		put_page(page);
+	return ERR_PTR(-EIO);
+
+}
+
+static struct md_rdev *next_active_rdev(struct md_rdev *rdev, struct mddev *mddev)
+{
+	/* Iterate the disks of an mddev, using rcu to protect access to the
+	 * linked list, and raising the refcount of devices we return to ensure
+	 * they don't disappear while in use.
+	 * As devices are only added or removed when raid_disk is < 0 and
+	 * nr_pending is 0 and In_sync is clear, the entries we return will
+	 * still be in the same position on the list when we re-enter
+	 * list_for_each_continue_rcu.
+	 */
+	struct list_head *pos;
+	rcu_read_lock();
+	if (rdev == NULL)
+		/* start at the beginning */
+		pos = &mddev->disks;
+	else {
+		/* release the previous rdev and start from there. */
+		rdev_dec_pending(rdev, mddev);
+		pos = &rdev->same_set;
+	}
+	list_for_each_continue_rcu(pos, &mddev->disks) {
+		rdev = list_entry(pos, struct md_rdev, same_set);
+		if (rdev->raid_disk >= 0 &&
+		    !test_bit(Faulty, &rdev->flags)) {
+			/* this is a usable devices */
+			atomic_inc(&rdev->nr_pending);
+			rcu_read_unlock();
+			return rdev;
+		}
+	}
+	rcu_read_unlock();
+	return NULL;
+}
+
+static int write_sb_page(struct bitmap *bitmap, struct page *page, int wait)
+{
+	struct md_rdev *rdev = NULL;
+	struct block_device *bdev;
+	struct mddev *mddev = bitmap->mddev;
+
+	while ((rdev = next_active_rdev(rdev, mddev)) != NULL) {
+		int size = PAGE_SIZE;
+		loff_t offset = mddev->bitmap_info.offset;
+
+		bdev = (rdev->meta_bdev) ? rdev->meta_bdev : rdev->bdev;
+
+		if (page->index == bitmap->file_pages-1)
+			size = roundup(bitmap->last_page_size,
+				       bdev_logical_block_size(bdev));
+		/* Just make sure we aren't corrupting data or
+		 * metadata
+		 */
+		if (mddev->external) {
+			/* Bitmap could be anywhere. */
+			if (rdev->sb_start + offset + (page->index
+						       * (PAGE_SIZE/512))
+			    > rdev->data_offset
+			    &&
+			    rdev->sb_start + offset
+			    < (rdev->data_offset + mddev->dev_sectors
+			     + (PAGE_SIZE/512)))
+				goto bad_alignment;
+		} else if (offset < 0) {
+			/* DATA  BITMAP METADATA  */
+			if (offset
+			    + (long)(page->index * (PAGE_SIZE/512))
+			    + size/512 > 0)
+				/* bitmap runs in to metadata */
+				goto bad_alignment;
+			if (rdev->data_offset + mddev->dev_sectors
+			    > rdev->sb_start + offset)
+				/* data runs in to bitmap */
+				goto bad_alignment;
+		} else if (rdev->sb_start < rdev->data_offset) {
+			/* METADATA BITMAP DATA */
+			if (rdev->sb_start
+			    + offset
+			    + page->index*(PAGE_SIZE/512) + size/512
+			    > rdev->data_offset)
+				/* bitmap runs in to data */
+				goto bad_alignment;
+		} else {
+			/* DATA METADATA BITMAP - no problems */
+		}
+		md_super_write(mddev, rdev,
+			       rdev->sb_start + offset
+			       + page->index * (PAGE_SIZE/512),
+			       size,
+			       page);
+	}
+
+	if (wait)
+		md_super_wait(mddev);
+	return 0;
+
+ bad_alignment:
+	return -EINVAL;
+}
+
+static void bitmap_file_kick(struct bitmap *bitmap);
+/*
+ * write out a page to a file
+ */
+static void write_page(struct bitmap *bitmap, struct page *page, int wait)
+{
+	struct buffer_head *bh;
+
+	if (bitmap->file == NULL) {
+		switch (write_sb_page(bitmap, page, wait)) {
+		case -EINVAL:
+			bitmap->flags |= BITMAP_WRITE_ERROR;
+		}
+	} else {
+
+		bh = page_buffers(page);
+
+		while (bh && bh->b_blocknr) {
+			atomic_inc(&bitmap->pending_writes);
+			set_buffer_locked(bh);
+			set_buffer_mapped(bh);
+			submit_bh(WRITE | REQ_SYNC, bh);
+			bh = bh->b_this_page;
+		}
+
+		if (wait)
+			wait_event(bitmap->write_wait,
+				   atomic_read(&bitmap->pending_writes)==0);
+	}
+	if (bitmap->flags & BITMAP_WRITE_ERROR)
+		bitmap_file_kick(bitmap);
+}
+
+static void end_bitmap_write(struct buffer_head *bh, int uptodate)
+{
+	struct bitmap *bitmap = bh->b_private;
+	unsigned long flags;
+
+	if (!uptodate) {
+		spin_lock_irqsave(&bitmap->lock, flags);
+		bitmap->flags |= BITMAP_WRITE_ERROR;
+		spin_unlock_irqrestore(&bitmap->lock, flags);
+	}
+	if (atomic_dec_and_test(&bitmap->pending_writes))
+		wake_up(&bitmap->write_wait);
+}
+
+/* copied from buffer.c */
+static void
+__clear_page_buffers(struct page *page)
+{
+	ClearPagePrivate(page);
+	set_page_private(page, 0);
+	page_cache_release(page);
+}
+static void free_buffers(struct page *page)
+{
+	struct buffer_head *bh = page_buffers(page);
+
+	while (bh) {
+		struct buffer_head *next = bh->b_this_page;
+		free_buffer_head(bh);
+		bh = next;
+	}
+	__clear_page_buffers(page);
+	put_page(page);
+}
+
+/* read a page from a file.
+ * We both read the page, and attach buffers to the page to record the
+ * address of each block (using bmap).  These addresses will be used
+ * to write the block later, completely bypassing the filesystem.
+ * This usage is similar to how swap files are handled, and allows us
+ * to write to a file with no concerns of memory allocation failing.
+ */
+static struct page *read_page(struct file *file, unsigned long index,
+			      struct bitmap *bitmap,
+			      unsigned long count)
+{
+	struct page *page = NULL;
+	struct inode *inode = file->f_path.dentry->d_inode;
+	struct buffer_head *bh;
+	sector_t block;
+
+	pr_debug("read bitmap file (%dB @ %llu)\n", (int)PAGE_SIZE,
+		 (unsigned long long)index << PAGE_SHIFT);
+
+	page = alloc_page(GFP_KERNEL);
+	if (!page)
+		page = ERR_PTR(-ENOMEM);
+	if (IS_ERR(page))
+		goto out;
+
+	bh = alloc_page_buffers(page, 1<<inode->i_blkbits, 0);
+	if (!bh) {
+		put_page(page);
+		page = ERR_PTR(-ENOMEM);
+		goto out;
+	}
+	attach_page_buffers(page, bh);
+	block = index << (PAGE_SHIFT - inode->i_blkbits);
+	while (bh) {
+		if (count == 0)
+			bh->b_blocknr = 0;
+		else {
+			bh->b_blocknr = bmap(inode, block);
+			if (bh->b_blocknr == 0) {
+				/* Cannot use this file! */
+				free_buffers(page);
+				page = ERR_PTR(-EINVAL);
+				goto out;
+			}
+			bh->b_bdev = inode->i_sb->s_bdev;
+			if (count < (1<<inode->i_blkbits))
+				count = 0;
+			else
+				count -= (1<<inode->i_blkbits);
+
+			bh->b_end_io = end_bitmap_write;
+			bh->b_private = bitmap;
+			atomic_inc(&bitmap->pending_writes);
+			set_buffer_locked(bh);
+			set_buffer_mapped(bh);
+			submit_bh(READ, bh);
+		}
+		block++;
+		bh = bh->b_this_page;
+	}
+	page->index = index;
+
+	wait_event(bitmap->write_wait,
+		   atomic_read(&bitmap->pending_writes)==0);
+	if (bitmap->flags & BITMAP_WRITE_ERROR) {
+		free_buffers(page);
+		page = ERR_PTR(-EIO);
+	}
+out:
+	if (IS_ERR(page))
+		printk(KERN_ALERT "md: bitmap read error: (%dB @ %llu): %ld\n",
+			(int)PAGE_SIZE,
+			(unsigned long long)index << PAGE_SHIFT,
+			PTR_ERR(page));
+	return page;
+}
+
+/*
+ * bitmap file superblock operations
+ */
+
+/* update the event counter and sync the superblock to disk */
+void bitmap_update_sb(struct bitmap *bitmap)
+{
+	bitmap_super_t *sb;
+
+	if (!bitmap || !bitmap->mddev) /* no bitmap for this array */
+		return;
+	if (bitmap->mddev->bitmap_info.external)
+		return;
+	if (!bitmap->sb_page) /* no superblock */
+		return;
+	sb = kmap_atomic(bitmap->sb_page);
+	sb->events = cpu_to_le64(bitmap->mddev->events);
+	if (bitmap->mddev->events < bitmap->events_cleared)
+		/* rocking back to read-only */
+		bitmap->events_cleared = bitmap->mddev->events;
+	sb->events_cleared = cpu_to_le64(bitmap->events_cleared);
+	sb->state = cpu_to_le32(bitmap->flags);
+	/* Just in case these have been changed via sysfs: */
+	sb->daemon_sleep = cpu_to_le32(bitmap->mddev->bitmap_info.daemon_sleep/HZ);
+	sb->write_behind = cpu_to_le32(bitmap->mddev->bitmap_info.max_write_behind);
+	kunmap_atomic(sb);
+	write_page(bitmap, bitmap->sb_page, 1);
+}
+
+/* print out the bitmap file superblock */
+void bitmap_print_sb(struct bitmap *bitmap)
+{
+	bitmap_super_t *sb;
+
+	if (!bitmap || !bitmap->sb_page)
+		return;
+	sb = kmap_atomic(bitmap->sb_page);
+	printk(KERN_DEBUG "%s: bitmap file superblock:\n", bmname(bitmap));
+	printk(KERN_DEBUG "         magic: %08x\n", le32_to_cpu(sb->magic));
+	printk(KERN_DEBUG "       version: %d\n", le32_to_cpu(sb->version));
+	printk(KERN_DEBUG "          uuid: %08x.%08x.%08x.%08x\n",
+					*(__u32 *)(sb->uuid+0),
+					*(__u32 *)(sb->uuid+4),
+					*(__u32 *)(sb->uuid+8),
+					*(__u32 *)(sb->uuid+12));
+	printk(KERN_DEBUG "        events: %llu\n",
+			(unsigned long long) le64_to_cpu(sb->events));
+	printk(KERN_DEBUG "events cleared: %llu\n",
+			(unsigned long long) le64_to_cpu(sb->events_cleared));
+	printk(KERN_DEBUG "         state: %08x\n", le32_to_cpu(sb->state));
+	printk(KERN_DEBUG "     chunksize: %d B\n", le32_to_cpu(sb->chunksize));
+	printk(KERN_DEBUG "  daemon sleep: %ds\n", le32_to_cpu(sb->daemon_sleep));
+	printk(KERN_DEBUG "     sync size: %llu KB\n",
+			(unsigned long long)le64_to_cpu(sb->sync_size)/2);
+	printk(KERN_DEBUG "max write behind: %d\n", le32_to_cpu(sb->write_behind));
+	kunmap_atomic(sb);
+}
+
+/*
+ * bitmap_new_disk_sb
+ * @bitmap
+ *
+ * This function is somewhat the reverse of bitmap_read_sb.  bitmap_read_sb
+ * reads and verifies the on-disk bitmap superblock and populates bitmap_info.
+ * This function verifies 'bitmap_info' and populates the on-disk bitmap
+ * structure, which is to be written to disk.
+ *
+ * Returns: 0 on success, -Exxx on error
+ */
+static int bitmap_new_disk_sb(struct bitmap *bitmap)
+{
+	bitmap_super_t *sb;
+	unsigned long chunksize, daemon_sleep, write_behind;
+	int err = -EINVAL;
+
+	bitmap->sb_page = alloc_page(GFP_KERNEL);
+	if (IS_ERR(bitmap->sb_page)) {
+		err = PTR_ERR(bitmap->sb_page);
+		bitmap->sb_page = NULL;
+		return err;
+	}
+	bitmap->sb_page->index = 0;
+
+	sb = kmap_atomic(bitmap->sb_page);
+
+	sb->magic = cpu_to_le32(BITMAP_MAGIC);
+	sb->version = cpu_to_le32(BITMAP_MAJOR_HI);
+
+	chunksize = bitmap->mddev->bitmap_info.chunksize;
+	BUG_ON(!chunksize);
+	if (!is_power_of_2(chunksize)) {
+		kunmap_atomic(sb);
+		printk(KERN_ERR "bitmap chunksize not a power of 2\n");
+		return -EINVAL;
+	}
+	sb->chunksize = cpu_to_le32(chunksize);
+
+	daemon_sleep = bitmap->mddev->bitmap_info.daemon_sleep;
+	if (!daemon_sleep ||
+	    (daemon_sleep < 1) || (daemon_sleep > MAX_SCHEDULE_TIMEOUT)) {
+		printk(KERN_INFO "Choosing daemon_sleep default (5 sec)\n");
+		daemon_sleep = 5 * HZ;
+	}
+	sb->daemon_sleep = cpu_to_le32(daemon_sleep);
+	bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
+
+	/*
+	 * FIXME: write_behind for RAID1.  If not specified, what
+	 * is a good choice?  We choose COUNTER_MAX / 2 arbitrarily.
+	 */
+	write_behind = bitmap->mddev->bitmap_info.max_write_behind;
+	if (write_behind > COUNTER_MAX)
+		write_behind = COUNTER_MAX / 2;
+	sb->write_behind = cpu_to_le32(write_behind);
+	bitmap->mddev->bitmap_info.max_write_behind = write_behind;
+
+	/* keep the array size field of the bitmap superblock up to date */
+	sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
+
+	memcpy(sb->uuid, bitmap->mddev->uuid, 16);
+
+	bitmap->flags |= BITMAP_STALE;
+	sb->state |= cpu_to_le32(BITMAP_STALE);
+	bitmap->events_cleared = bitmap->mddev->events;
+	sb->events_cleared = cpu_to_le64(bitmap->mddev->events);
+
+	kunmap_atomic(sb);
+
+	return 0;
+}
+
+/* read the superblock from the bitmap file and initialize some bitmap fields */
+static int bitmap_read_sb(struct bitmap *bitmap)
+{
+	char *reason = NULL;
+	bitmap_super_t *sb;
+	unsigned long chunksize, daemon_sleep, write_behind;
+	unsigned long long events;
+	int err = -EINVAL;
+
+	/* page 0 is the superblock, read it... */
+	if (bitmap->file) {
+		loff_t isize = i_size_read(bitmap->file->f_mapping->host);
+		int bytes = isize > PAGE_SIZE ? PAGE_SIZE : isize;
+
+		bitmap->sb_page = read_page(bitmap->file, 0, bitmap, bytes);
+	} else {
+		bitmap->sb_page = read_sb_page(bitmap->mddev,
+					       bitmap->mddev->bitmap_info.offset,
+					       NULL,
+					       0, sizeof(bitmap_super_t));
+	}
+	if (IS_ERR(bitmap->sb_page)) {
+		err = PTR_ERR(bitmap->sb_page);
+		bitmap->sb_page = NULL;
+		return err;
+	}
+
+	sb = kmap_atomic(bitmap->sb_page);
+
+	chunksize = le32_to_cpu(sb->chunksize);
+	daemon_sleep = le32_to_cpu(sb->daemon_sleep) * HZ;
+	write_behind = le32_to_cpu(sb->write_behind);
+
+	/* verify that the bitmap-specific fields are valid */
+	if (sb->magic != cpu_to_le32(BITMAP_MAGIC))
+		reason = "bad magic";
+	else if (le32_to_cpu(sb->version) < BITMAP_MAJOR_LO ||
+		 le32_to_cpu(sb->version) > BITMAP_MAJOR_HI)
+		reason = "unrecognized superblock version";
+	else if (chunksize < 512)
+		reason = "bitmap chunksize too small";
+	else if (!is_power_of_2(chunksize))
+		reason = "bitmap chunksize not a power of 2";
+	else if (daemon_sleep < 1 || daemon_sleep > MAX_SCHEDULE_TIMEOUT)
+		reason = "daemon sleep period out of range";
+	else if (write_behind > COUNTER_MAX)
+		reason = "write-behind limit out of range (0 - 16383)";
+	if (reason) {
+		printk(KERN_INFO "%s: invalid bitmap file superblock: %s\n",
+			bmname(bitmap), reason);
+		goto out;
+	}
+
+	/* keep the array size field of the bitmap superblock up to date */
+	sb->sync_size = cpu_to_le64(bitmap->mddev->resync_max_sectors);
+
+	if (bitmap->mddev->persistent) {
+		/*
+		 * We have a persistent array superblock, so compare the
+		 * bitmap's UUID and event counter to the mddev's
+		 */
+		if (memcmp(sb->uuid, bitmap->mddev->uuid, 16)) {
+			printk(KERN_INFO
+			       "%s: bitmap superblock UUID mismatch\n",
+			       bmname(bitmap));
+			goto out;
+		}
+		events = le64_to_cpu(sb->events);
+		if (events < bitmap->mddev->events) {
+			printk(KERN_INFO
+			       "%s: bitmap file is out of date (%llu < %llu) "
+			       "-- forcing full recovery\n",
+			       bmname(bitmap), events,
+			       (unsigned long long) bitmap->mddev->events);
+			sb->state |= cpu_to_le32(BITMAP_STALE);
+		}
+	}
+
+	/* assign fields using values from superblock */
+	bitmap->mddev->bitmap_info.chunksize = chunksize;
+	bitmap->mddev->bitmap_info.daemon_sleep = daemon_sleep;
+	bitmap->mddev->bitmap_info.max_write_behind = write_behind;
+	bitmap->flags |= le32_to_cpu(sb->state);
+	if (le32_to_cpu(sb->version) == BITMAP_MAJOR_HOSTENDIAN)
+		bitmap->flags |= BITMAP_HOSTENDIAN;
+	bitmap->events_cleared = le64_to_cpu(sb->events_cleared);
+	if (bitmap->flags & BITMAP_STALE)
+		bitmap->events_cleared = bitmap->mddev->events;
+	err = 0;
+out:
+	kunmap_atomic(sb);
+	if (err)
+		bitmap_print_sb(bitmap);
+	return err;
+}
+
+enum bitmap_mask_op {
+	MASK_SET,
+	MASK_UNSET
+};
+
+/* record the state of the bitmap in the superblock.  Return the old value */
+static int bitmap_mask_state(struct bitmap *bitmap, enum bitmap_state bits,
+			     enum bitmap_mask_op op)
+{
+	bitmap_super_t *sb;
+	int old;
+
+	if (!bitmap->sb_page) /* can't set the state */
+		return 0;
+	sb = kmap_atomic(bitmap->sb_page);
+	old = le32_to_cpu(sb->state) & bits;
+	switch (op) {
+	case MASK_SET:
+		sb->state |= cpu_to_le32(bits);
+		bitmap->flags |= bits;
+		break;
+	case MASK_UNSET:
+		sb->state &= cpu_to_le32(~bits);
+		bitmap->flags &= ~bits;
+		break;
+	default:
+		BUG();
+	}
+	kunmap_atomic(sb);
+	return old;
+}
+
+/*
+ * general bitmap file operations
+ */
+
+/*
+ * on-disk bitmap:
+ *
+ * Use one bit per "chunk" (block set). We do the disk I/O on the bitmap
+ * file a page at a time. There's a superblock at the start of the file.
+ */
+/* calculate the index of the page that contains this bit */
+static inline unsigned long file_page_index(struct bitmap *bitmap, unsigned long chunk)
+{
+	if (!bitmap->mddev->bitmap_info.external)
+		chunk += sizeof(bitmap_super_t) << 3;
+	return chunk >> PAGE_BIT_SHIFT;
+}
+
+/* calculate the (bit) offset of this bit within a page */
+static inline unsigned long file_page_offset(struct bitmap *bitmap, unsigned long chunk)
+{
+	if (!bitmap->mddev->bitmap_info.external)
+		chunk += sizeof(bitmap_super_t) << 3;
+	return chunk & (PAGE_BITS - 1);
+}
+
+/*
+ * return a pointer to the page in the filemap that contains the given bit
+ *
+ * this lookup is complicated by the fact that the bitmap sb might be exactly
+ * 1 page (e.g., x86) or less than 1 page -- so the bitmap might start on page
+ * 0 or page 1
+ */
+static inline struct page *filemap_get_page(struct bitmap *bitmap,
+					    unsigned long chunk)
+{
+	if (file_page_index(bitmap, chunk) >= bitmap->file_pages)
+		return NULL;
+	return bitmap->filemap[file_page_index(bitmap, chunk)
+			       - file_page_index(bitmap, 0)];
+}
+
+static void bitmap_file_unmap(struct bitmap *bitmap)
+{
+	struct page **map, *sb_page;
+	unsigned long *attr;
+	int pages;
+	unsigned long flags;
+
+	spin_lock_irqsave(&bitmap->lock, flags);
+	map = bitmap->filemap;
+	bitmap->filemap = NULL;
+	attr = bitmap->filemap_attr;
+	bitmap->filemap_attr = NULL;
+	pages = bitmap->file_pages;
+	bitmap->file_pages = 0;
+	sb_page = bitmap->sb_page;
+	bitmap->sb_page = NULL;
+	spin_unlock_irqrestore(&bitmap->lock, flags);
+
+	while (pages--)
+		if (map[pages] != sb_page) /* 0 is sb_page, release it below */
+			free_buffers(map[pages]);
+	kfree(map);
+	kfree(attr);
+
+	if (sb_page)
+		free_buffers(sb_page);
+}
+
+static void bitmap_file_put(struct bitmap *bitmap)
+{
+	struct file *file;
+	unsigned long flags;
+
+	spin_lock_irqsave(&bitmap->lock, flags);
+	file = bitmap->file;
+	bitmap->file = NULL;
+	spin_unlock_irqrestore(&bitmap->lock, flags);
+
+	if (file)
+		wait_event(bitmap->write_wait,
+			   atomic_read(&bitmap->pending_writes)==0);
+	bitmap_file_unmap(bitmap);
+
+	if (file) {
+		struct inode *inode = file->f_path.dentry->d_inode;
+		invalidate_mapping_pages(inode->i_mapping, 0, -1);
+		fput(file);
+	}
+}
+
+/*
+ * bitmap_file_kick - if an error occurs while manipulating the bitmap file
+ * then it is no longer reliable, so we stop using it and we mark the file
+ * as failed in the superblock
+ */
+static void bitmap_file_kick(struct bitmap *bitmap)
+{
+	char *path, *ptr = NULL;
+
+	if (bitmap_mask_state(bitmap, BITMAP_STALE, MASK_SET) == 0) {
+		bitmap_update_sb(bitmap);
+
+		if (bitmap->file) {
+			path = kmalloc(PAGE_SIZE, GFP_KERNEL);
+			if (path)
+				ptr = d_path(&bitmap->file->f_path, path,
+					     PAGE_SIZE);
+
+			printk(KERN_ALERT
+			      "%s: kicking failed bitmap file %s from array!\n",
+			      bmname(bitmap), IS_ERR(ptr) ? "" : ptr);
+
+			kfree(path);
+		} else
+			printk(KERN_ALERT
+			       "%s: disabling internal bitmap due to errors\n",
+			       bmname(bitmap));
+	}
+
+	bitmap_file_put(bitmap);
+
+	return;
+}
+
+enum bitmap_page_attr {
+	BITMAP_PAGE_DIRTY = 0,     /* there are set bits that need to be synced */
+	BITMAP_PAGE_PENDING = 1,   /* there are bits that are being cleaned.
+				    * i.e. counter is 1 or 2. */
+	BITMAP_PAGE_NEEDWRITE = 2, /* there are cleared bits that need to be synced */
+};
+
+static inline void set_page_attr(struct bitmap *bitmap, struct page *page,
+				enum bitmap_page_attr attr)
+{
+	__set_bit((page->index<<2) + attr, bitmap->filemap_attr);
+}
+
+static inline void clear_page_attr(struct bitmap *bitmap, struct page *page,
+				enum bitmap_page_attr attr)
+{
+	__clear_bit((page->index<<2) + attr, bitmap->filemap_attr);
+}
+
+static inline unsigned long test_page_attr(struct bitmap *bitmap, struct page *page,
+					   enum bitmap_page_attr attr)
+{
+	return test_bit((page->index<<2) + attr, bitmap->filemap_attr);
+}
+
+/*
+ * bitmap_file_set_bit -- called before performing a write to the md device
+ * to set (and eventually sync) a particular bit in the bitmap file
+ *
+ * we set the bit immediately, then we record the page number so that
+ * when an unplug occurs, we can flush the dirty pages out to disk
+ */
+static void bitmap_file_set_bit(struct bitmap *bitmap, sector_t block)
+{
+	unsigned long bit;
+	struct page *page;
+	void *kaddr;
+	unsigned long chunk = block >> bitmap->chunkshift;
+
+	if (!bitmap->filemap)
+		return;
+
+	page = filemap_get_page(bitmap, chunk);
+	if (!page)
+		return;
+	bit = file_page_offset(bitmap, chunk);
+
+	/* set the bit */
+	kaddr = kmap_atomic(page);
+	if (bitmap->flags & BITMAP_HOSTENDIAN)
+		set_bit(bit, kaddr);
+	else
+		__set_bit_le(bit, kaddr);
+	kunmap_atomic(kaddr);
+	pr_debug("set file bit %lu page %lu\n", bit, page->index);
+	/* record page number so it gets flushed to disk when unplug occurs */
+	set_page_attr(bitmap, page, BITMAP_PAGE_DIRTY);
+}
+
+/* this gets called when the md device is ready to unplug its underlying
+ * (slave) device queues -- before we let any writes go down, we need to
+ * sync the dirty pages of the bitmap file to disk */
+void bitmap_unplug(struct bitmap *bitmap)
+{
+	unsigned long i, flags;
+	int dirty, need_write;
+	struct page *page;
+	int wait = 0;
+
+	if (!bitmap)
+		return;
+
+	/* look at each page to see if there are any set bits that need to be
+	 * flushed out to disk */
+	for (i = 0; i < bitmap->file_pages; i++) {
+		spin_lock_irqsave(&bitmap->lock, flags);
+		if (!bitmap->filemap) {
+			spin_unlock_irqrestore(&bitmap->lock, flags);
+			return;
+		}
+		page = bitmap->filemap[i];
+		dirty = test_page_attr(bitmap, page, BITMAP_PAGE_DIRTY);
+		need_write = test_page_attr(bitmap, page, BITMAP_PAGE_NEEDWRITE);
+		clear_page_attr(bitmap, page, BITMAP_PAGE_DIRTY);
+		clear_page_attr(bitmap, page, BITMAP_PAGE_NEEDWRITE);
+		if (dirty)
+			wait = 1;
+		spin_unlock_irqrestore(&bitmap->lock, flags);
+
+		if (dirty || need_write)
+			write_page(bitmap, page, 0);
+	}
+	if (wait) { /* if any writes were performed, we need to wait on them */
+		if (bitmap->file)
+			wait_event(bitmap->write_wait,
+				   atomic_read(&bitmap->pending_writes)==0);
+		else
+			md_super_wait(bitmap->mddev);
+	}
+	if (bitmap->flags & BITMAP_WRITE_ERROR)
+		bitmap_file_kick(bitmap);
+}
+EXPORT_SYMBOL(bitmap_unplug);
+
+static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed);
+/* * bitmap_init_from_disk -- called at bitmap_create time to initialize
+ * the in-memory bitmap from the on-disk bitmap -- also, sets up the
+ * memory mapping of the bitmap file
+ * Special cases:
+ *   if there's no bitmap file, or if the bitmap file had been
+ *   previously kicked from the array, we mark all the bits as
+ *   1's in order to cause a full resync.
+ *
+ * We ignore all bits for sectors that end earlier than 'start'.
+ * This is used when reading an out-of-date bitmap...
+ */
+static int bitmap_init_from_disk(struct bitmap *bitmap, sector_t start)
+{
+	unsigned long i, chunks, index, oldindex, bit;
+	struct page *page = NULL, *oldpage = NULL;
+	unsigned long num_pages, bit_cnt = 0;
+	struct file *file;
+	unsigned long bytes, offset;
+	int outofdate;
+	int ret = -ENOSPC;
+	void *paddr;
+
+	chunks = bitmap->chunks;
+	file = bitmap->file;
+
+	BUG_ON(!file && !bitmap->mddev->bitmap_info.offset);
+
+	outofdate = bitmap->flags & BITMAP_STALE;
+	if (outofdate)
+		printk(KERN_INFO "%s: bitmap file is out of date, doing full "
+			"recovery\n", bmname(bitmap));
+
+	bytes = DIV_ROUND_UP(bitmap->chunks, 8);
+	if (!bitmap->mddev->bitmap_info.external)
+		bytes += sizeof(bitmap_super_t);
+
+	num_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
+
+	if (file && i_size_read(file->f_mapping->host) < bytes) {
+		printk(KERN_INFO "%s: bitmap file too short %lu < %lu\n",
+			bmname(bitmap),
+			(unsigned long) i_size_read(file->f_mapping->host),
+			bytes);
+		goto err;
+	}
+
+	ret = -ENOMEM;
+
+	bitmap->filemap = kmalloc(sizeof(struct page *) * num_pages, GFP_KERNEL);
+	if (!bitmap->filemap)
+		goto err;
+
+	/* We need 4 bits per page, rounded up to a multiple of sizeof(unsigned long) */
+	bitmap->filemap_attr = kzalloc(
+		roundup(DIV_ROUND_UP(num_pages*4, 8), sizeof(unsigned long)),
+		GFP_KERNEL);
+	if (!bitmap->filemap_attr)
+		goto err;
+
+	oldindex = ~0L;
+
+	for (i = 0; i < chunks; i++) {
+		int b;
+		index = file_page_index(bitmap, i);
+		bit = file_page_offset(bitmap, i);
+		if (index != oldindex) { /* this is a new page, read it in */
+			int count;
+			/* unmap the old page, we're done with it */
+			if (index == num_pages-1)
+				count = bytes - index * PAGE_SIZE;
+			else
+				count = PAGE_SIZE;
+			if (index == 0 && bitmap->sb_page) {
+				/*
+				 * if we're here then the superblock page
+				 * contains some bits (PAGE_SIZE != sizeof sb)
+				 * we've already read it in, so just use it
+				 */
+				page = bitmap->sb_page;
+				offset = sizeof(bitmap_super_t);
+				if (!file)
+					page = read_sb_page(
+						bitmap->mddev,
+						bitmap->mddev->bitmap_info.offset,
+						page,
+						index, count);
+			} else if (file) {
+				page = read_page(file, index, bitmap, count);
+				offset = 0;
+			} else {
+				page = read_sb_page(bitmap->mddev,
+						    bitmap->mddev->bitmap_info.offset,
+						    NULL,
+						    index, count);
+				offset = 0;
+			}
+			if (IS_ERR(page)) { /* read error */
+				ret = PTR_ERR(page);
+				goto err;
+			}
+
+			oldindex = index;
+			oldpage = page;
+
+			bitmap->filemap[bitmap->file_pages++] = page;
+			bitmap->last_page_size = count;
+
+			if (outofdate) {
+				/*
+				 * if bitmap is out of date, dirty the
+				 * whole page and write it out
+				 */
+				paddr = kmap_atomic(page);
+				memset(paddr + offset, 0xff,
+				       PAGE_SIZE - offset);
+				kunmap_atomic(paddr);
+				write_page(bitmap, page, 1);
+
+				ret = -EIO;
+				if (bitmap->flags & BITMAP_WRITE_ERROR)
+					goto err;
+			}
+		}
+		paddr = kmap_atomic(page);
+		if (bitmap->flags & BITMAP_HOSTENDIAN)
+			b = test_bit(bit, paddr);
+		else
+			b = test_bit_le(bit, paddr);
+		kunmap_atomic(paddr);
+		if (b) {
+			/* if the disk bit is set, set the memory bit */
+			int needed = ((sector_t)(i+1) << bitmap->chunkshift
+				      >= start);
+			bitmap_set_memory_bits(bitmap,
+					       (sector_t)i << bitmap->chunkshift,
+					       needed);
+			bit_cnt++;
+		}
+	}
+
+	/* everything went OK */
+	ret = 0;
+	bitmap_mask_state(bitmap, BITMAP_STALE, MASK_UNSET);
+
+	if (bit_cnt) { /* Kick recovery if any bits were set */
+		set_bit(MD_RECOVERY_NEEDED, &bitmap->mddev->recovery);
+		md_wakeup_thread(bitmap->mddev->thread);
+	}
+
+	printk(KERN_INFO "%s: bitmap initialized from disk: "
+	       "read %lu/%lu pages, set %lu of %lu bits\n",
+	       bmname(bitmap), bitmap->file_pages, num_pages, bit_cnt, chunks);
+
+	return 0;
+
+ err:
+	printk(KERN_INFO "%s: bitmap initialisation failed: %d\n",
+	       bmname(bitmap), ret);
+	return ret;
+}
+
+void bitmap_write_all(struct bitmap *bitmap)
+{
+	/* We don't actually write all bitmap blocks here,
+	 * just flag them as needing to be written
+	 */
+	int i;
+
+	spin_lock_irq(&bitmap->lock);
+	for (i = 0; i < bitmap->file_pages; i++)
+		set_page_attr(bitmap, bitmap->filemap[i],
+			      BITMAP_PAGE_NEEDWRITE);
+	bitmap->allclean = 0;
+	spin_unlock_irq(&bitmap->lock);
+}
+
+static void bitmap_count_page(struct bitmap *bitmap, sector_t offset, int inc)
+{
+	sector_t chunk = offset >> bitmap->chunkshift;
+	unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
+	bitmap->bp[page].count += inc;
+	bitmap_checkfree(bitmap, page);
+}
+static bitmap_counter_t *bitmap_get_counter(struct bitmap *bitmap,
+					    sector_t offset, sector_t *blocks,
+					    int create);
+
+/*
+ * bitmap daemon -- periodically wakes up to clean bits and flush pages
+ *			out to disk
+ */
+
+void bitmap_daemon_work(struct mddev *mddev)
+{
+	struct bitmap *bitmap;
+	unsigned long j;
+	unsigned long flags;
+	struct page *page = NULL, *lastpage = NULL;
+	sector_t blocks;
+	void *paddr;
+
+	/* Use a mutex to guard daemon_work against
+	 * bitmap_destroy.
+	 */
+	mutex_lock(&mddev->bitmap_info.mutex);
+	bitmap = mddev->bitmap;
+	if (bitmap == NULL) {
+		mutex_unlock(&mddev->bitmap_info.mutex);
+		return;
+	}
+	if (time_before(jiffies, bitmap->daemon_lastrun
+			+ mddev->bitmap_info.daemon_sleep))
+		goto done;
+
+	bitmap->daemon_lastrun = jiffies;
+	if (bitmap->allclean) {
+		mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
+		goto done;
+	}
+	bitmap->allclean = 1;
+
+	spin_lock_irqsave(&bitmap->lock, flags);
+	for (j = 0; j < bitmap->chunks; j++) {
+		bitmap_counter_t *bmc;
+		if (!bitmap->filemap)
+			/* error or shutdown */
+			break;
+
+		page = filemap_get_page(bitmap, j);
+
+		if (page != lastpage) {
+			/* skip this page unless it's marked as needing cleaning */
+			if (!test_page_attr(bitmap, page, BITMAP_PAGE_PENDING)) {
+				int need_write = test_page_attr(bitmap, page,
+								BITMAP_PAGE_NEEDWRITE);
+				if (need_write)
+					clear_page_attr(bitmap, page, BITMAP_PAGE_NEEDWRITE);
+
+				spin_unlock_irqrestore(&bitmap->lock, flags);
+				if (need_write)
+					write_page(bitmap, page, 0);
+				spin_lock_irqsave(&bitmap->lock, flags);
+				j |= (PAGE_BITS - 1);
+				continue;
+			}
+
+			/* grab the new page, sync and release the old */
+			if (lastpage != NULL) {
+				if (test_page_attr(bitmap, lastpage,
+						   BITMAP_PAGE_NEEDWRITE)) {
+					clear_page_attr(bitmap, lastpage,
+							BITMAP_PAGE_NEEDWRITE);
+					spin_unlock_irqrestore(&bitmap->lock, flags);
+					write_page(bitmap, lastpage, 0);
+				} else {
+					set_page_attr(bitmap, lastpage,
+						      BITMAP_PAGE_NEEDWRITE);
+					bitmap->allclean = 0;
+					spin_unlock_irqrestore(&bitmap->lock, flags);
+				}
+			} else
+				spin_unlock_irqrestore(&bitmap->lock, flags);
+			lastpage = page;
+
+			/* We are possibly going to clear some bits, so make
+			 * sure that events_cleared is up-to-date.
+			 */
+			if (bitmap->need_sync &&
+			    mddev->bitmap_info.external == 0) {
+				bitmap_super_t *sb;
+				bitmap->need_sync = 0;
+				sb = kmap_atomic(bitmap->sb_page);
+				sb->events_cleared =
+					cpu_to_le64(bitmap->events_cleared);
+				kunmap_atomic(sb);
+				write_page(bitmap, bitmap->sb_page, 1);
+			}
+			spin_lock_irqsave(&bitmap->lock, flags);
+			if (!bitmap->need_sync)
+				clear_page_attr(bitmap, page, BITMAP_PAGE_PENDING);
+			else
+				bitmap->allclean = 0;
+		}
+		bmc = bitmap_get_counter(bitmap,
+					 (sector_t)j << bitmap->chunkshift,
+					 &blocks, 0);
+		if (!bmc)
+			j |= PAGE_COUNTER_MASK;
+		else if (*bmc) {
+			if (*bmc == 1 && !bitmap->need_sync) {
+				/* we can clear the bit */
+				*bmc = 0;
+				bitmap_count_page(bitmap,
+						  (sector_t)j << bitmap->chunkshift,
+						  -1);
+
+				/* clear the bit */
+				paddr = kmap_atomic(page);
+				if (bitmap->flags & BITMAP_HOSTENDIAN)
+					clear_bit(file_page_offset(bitmap, j),
+						  paddr);
+				else
+					__clear_bit_le(
+						file_page_offset(bitmap,
+								 j),
+						paddr);
+				kunmap_atomic(paddr);
+			} else if (*bmc <= 2) {
+				*bmc = 1; /* maybe clear the bit next time */
+				set_page_attr(bitmap, page, BITMAP_PAGE_PENDING);
+				bitmap->allclean = 0;
+			}
+		}
+	}
+	spin_unlock_irqrestore(&bitmap->lock, flags);
+
+	/* now sync the final page */
+	if (lastpage != NULL) {
+		spin_lock_irqsave(&bitmap->lock, flags);
+		if (test_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE)) {
+			clear_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
+			spin_unlock_irqrestore(&bitmap->lock, flags);
+			write_page(bitmap, lastpage, 0);
+		} else {
+			set_page_attr(bitmap, lastpage, BITMAP_PAGE_NEEDWRITE);
+			bitmap->allclean = 0;
+			spin_unlock_irqrestore(&bitmap->lock, flags);
+		}
+	}
+
+ done:
+	if (bitmap->allclean == 0)
+		mddev->thread->timeout =
+			mddev->bitmap_info.daemon_sleep;
+	mutex_unlock(&mddev->bitmap_info.mutex);
+}
+
+static bitmap_counter_t *bitmap_get_counter(struct bitmap *bitmap,
+					    sector_t offset, sector_t *blocks,
+					    int create)
+__releases(bitmap->lock)
+__acquires(bitmap->lock)
+{
+	/* If 'create', we might release the lock and reclaim it.
+	 * The lock must have been taken with interrupts enabled.
+	 * If !create, we don't release the lock.
+	 */
+	sector_t chunk = offset >> bitmap->chunkshift;
+	unsigned long page = chunk >> PAGE_COUNTER_SHIFT;
+	unsigned long pageoff = (chunk & PAGE_COUNTER_MASK) << COUNTER_BYTE_SHIFT;
+	sector_t csize;
+	int err;
+
+	err = bitmap_checkpage(bitmap, page, create);
+
+	if (bitmap->bp[page].hijacked ||
+	    bitmap->bp[page].map == NULL)
+		csize = ((sector_t)1) << (bitmap->chunkshift +
+					  PAGE_COUNTER_SHIFT - 1);
+	else
+		csize = ((sector_t)1) << bitmap->chunkshift;
+	*blocks = csize - (offset & (csize - 1));
+
+	if (err < 0)
+		return NULL;
+
+	/* now locked ... */
+
+	if (bitmap->bp[page].hijacked) { /* hijacked pointer */
+		/* should we use the first or second counter field
+		 * of the hijacked pointer? */
+		int hi = (pageoff > PAGE_COUNTER_MASK);
+		return  &((bitmap_counter_t *)
+			  &bitmap->bp[page].map)[hi];
+	} else /* page is allocated */
+		return (bitmap_counter_t *)
+			&(bitmap->bp[page].map[pageoff]);
+}
+
+int bitmap_startwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors, int behind)
+{
+	if (!bitmap)
+		return 0;
+
+	if (behind) {
+		int bw;
+		atomic_inc(&bitmap->behind_writes);
+		bw = atomic_read(&bitmap->behind_writes);
+		if (bw > bitmap->behind_writes_used)
+			bitmap->behind_writes_used = bw;
+
+		pr_debug("inc write-behind count %d/%lu\n",
+			 bw, bitmap->mddev->bitmap_info.max_write_behind);
+	}
+
+	while (sectors) {
+		sector_t blocks;
+		bitmap_counter_t *bmc;
+
+		spin_lock_irq(&bitmap->lock);
+		bmc = bitmap_get_counter(bitmap, offset, &blocks, 1);
+		if (!bmc) {
+			spin_unlock_irq(&bitmap->lock);
+			return 0;
+		}
+
+		if (unlikely(COUNTER(*bmc) == COUNTER_MAX)) {
+			DEFINE_WAIT(__wait);
+			/* note that it is safe to do the prepare_to_wait
+			 * after the test as long as we do it before dropping
+			 * the spinlock.
+			 */
+			prepare_to_wait(&bitmap->overflow_wait, &__wait,
+					TASK_UNINTERRUPTIBLE);
+			spin_unlock_irq(&bitmap->lock);
+			io_schedule();
+			finish_wait(&bitmap->overflow_wait, &__wait);
+			continue;
+		}
+
+		switch (*bmc) {
+		case 0:
+			bitmap_file_set_bit(bitmap, offset);
+			bitmap_count_page(bitmap, offset, 1);
+			/* fall through */
+		case 1:
+			*bmc = 2;
+		}
+
+		(*bmc)++;
+
+		spin_unlock_irq(&bitmap->lock);
+
+		offset += blocks;
+		if (sectors > blocks)
+			sectors -= blocks;
+		else
+			sectors = 0;
+	}
+	return 0;
+}
+EXPORT_SYMBOL(bitmap_startwrite);
+
+void bitmap_endwrite(struct bitmap *bitmap, sector_t offset, unsigned long sectors,
+		     int success, int behind)
+{
+	if (!bitmap)
+		return;
+	if (behind) {
+		if (atomic_dec_and_test(&bitmap->behind_writes))
+			wake_up(&bitmap->behind_wait);
+		pr_debug("dec write-behind count %d/%lu\n",
+			 atomic_read(&bitmap->behind_writes),
+			 bitmap->mddev->bitmap_info.max_write_behind);
+	}
+
+	while (sectors) {
+		sector_t blocks;
+		unsigned long flags;
+		bitmap_counter_t *bmc;
+
+		spin_lock_irqsave(&bitmap->lock, flags);
+		bmc = bitmap_get_counter(bitmap, offset, &blocks, 0);
+		if (!bmc) {
+			spin_unlock_irqrestore(&bitmap->lock, flags);
+			return;
+		}
+
+		if (success && !bitmap->mddev->degraded &&
+		    bitmap->events_cleared < bitmap->mddev->events) {
+			bitmap->events_cleared = bitmap->mddev->events;
+			bitmap->need_sync = 1;
+			sysfs_notify_dirent_safe(bitmap->sysfs_can_clear);
+		}
+
+		if (!success && !NEEDED(*bmc))
+			*bmc |= NEEDED_MASK;
+
+		if (COUNTER(*bmc) == COUNTER_MAX)
+			wake_up(&bitmap->overflow_wait);
+
+		(*bmc)--;
+		if (*bmc <= 2) {
+			set_page_attr(bitmap,
+				      filemap_get_page(
+					      bitmap,
+					      offset >> bitmap->chunkshift),
+				      BITMAP_PAGE_PENDING);
+			bitmap->allclean = 0;
+		}
+		spin_unlock_irqrestore(&bitmap->lock, flags);
+		offset += blocks;
+		if (sectors > blocks)
+			sectors -= blocks;
+		else
+			sectors = 0;
+	}
+}
+EXPORT_SYMBOL(bitmap_endwrite);
+
+static int __bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks,
+			       int degraded)
+{
+	bitmap_counter_t *bmc;
+	int rv;
+	if (bitmap == NULL) {/* FIXME or bitmap set as 'failed' */
+		*blocks = 1024;
+		return 1; /* always resync if no bitmap */
+	}
+	spin_lock_irq(&bitmap->lock);
+	bmc = bitmap_get_counter(bitmap, offset, blocks, 0);
+	rv = 0;
+	if (bmc) {
+		/* locked */
+		if (RESYNC(*bmc))
+			rv = 1;
+		else if (NEEDED(*bmc)) {
+			rv = 1;
+			if (!degraded) { /* don't set/clear bits if degraded */
+				*bmc |= RESYNC_MASK;
+				*bmc &= ~NEEDED_MASK;
+			}
+		}
+	}
+	spin_unlock_irq(&bitmap->lock);
+	return rv;
+}
+
+int bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks,
+		      int degraded)
+{
+	/* bitmap_start_sync must always report on multiples of whole
+	 * pages, otherwise resync (which is very PAGE_SIZE based) will
+	 * get confused.
+	 * So call __bitmap_start_sync repeatedly (if needed) until
+	 * At least PAGE_SIZE>>9 blocks are covered.
+	 * Return the 'or' of the result.
+	 */
+	int rv = 0;
+	sector_t blocks1;
+
+	*blocks = 0;
+	while (*blocks < (PAGE_SIZE>>9)) {
+		rv |= __bitmap_start_sync(bitmap, offset,
+					  &blocks1, degraded);
+		offset += blocks1;
+		*blocks += blocks1;
+	}
+	return rv;
+}
+EXPORT_SYMBOL(bitmap_start_sync);
+
+void bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted)
+{
+	bitmap_counter_t *bmc;
+	unsigned long flags;
+
+	if (bitmap == NULL) {
+		*blocks = 1024;
+		return;
+	}
+	spin_lock_irqsave(&bitmap->lock, flags);
+	bmc = bitmap_get_counter(bitmap, offset, blocks, 0);
+	if (bmc == NULL)
+		goto unlock;
+	/* locked */
+	if (RESYNC(*bmc)) {
+		*bmc &= ~RESYNC_MASK;
+
+		if (!NEEDED(*bmc) && aborted)
+			*bmc |= NEEDED_MASK;
+		else {
+			if (*bmc <= 2) {
+				set_page_attr(bitmap,
+					      filemap_get_page(bitmap, offset >> bitmap->chunkshift),
+					      BITMAP_PAGE_PENDING);
+				bitmap->allclean = 0;
+			}
+		}
+	}
+ unlock:
+	spin_unlock_irqrestore(&bitmap->lock, flags);
+}
+EXPORT_SYMBOL(bitmap_end_sync);
+
+void bitmap_close_sync(struct bitmap *bitmap)
+{
+	/* Sync has finished, and any bitmap chunks that weren't synced
+	 * properly have been aborted.  It remains to us to clear the
+	 * RESYNC bit wherever it is still on
+	 */
+	sector_t sector = 0;
+	sector_t blocks;
+	if (!bitmap)
+		return;
+	while (sector < bitmap->mddev->resync_max_sectors) {
+		bitmap_end_sync(bitmap, sector, &blocks, 0);
+		sector += blocks;
+	}
+}
+EXPORT_SYMBOL(bitmap_close_sync);
+
+void bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector)
+{
+	sector_t s = 0;
+	sector_t blocks;
+
+	if (!bitmap)
+		return;
+	if (sector == 0) {
+		bitmap->last_end_sync = jiffies;
+		return;
+	}
+	if (time_before(jiffies, (bitmap->last_end_sync
+				  + bitmap->mddev->bitmap_info.daemon_sleep)))
+		return;
+	wait_event(bitmap->mddev->recovery_wait,
+		   atomic_read(&bitmap->mddev->recovery_active) == 0);
+
+	bitmap->mddev->curr_resync_completed = sector;
+	set_bit(MD_CHANGE_CLEAN, &bitmap->mddev->flags);
+	sector &= ~((1ULL << bitmap->chunkshift) - 1);
+	s = 0;
+	while (s < sector && s < bitmap->mddev->resync_max_sectors) {
+		bitmap_end_sync(bitmap, s, &blocks, 0);
+		s += blocks;
+	}
+	bitmap->last_end_sync = jiffies;
+	sysfs_notify(&bitmap->mddev->kobj, NULL, "sync_completed");
+}
+EXPORT_SYMBOL(bitmap_cond_end_sync);
+
+static void bitmap_set_memory_bits(struct bitmap *bitmap, sector_t offset, int needed)
+{
+	/* For each chunk covered by any of these sectors, set the
+	 * counter to 1 and set resync_needed.  They should all
+	 * be 0 at this point
+	 */
+
+	sector_t secs;
+	bitmap_counter_t *bmc;
+	spin_lock_irq(&bitmap->lock);
+	bmc = bitmap_get_counter(bitmap, offset, &secs, 1);
+	if (!bmc) {
+		spin_unlock_irq(&bitmap->lock);
+		return;
+	}
+	if (!*bmc) {
+		struct page *page;
+		*bmc = 2 | (needed ? NEEDED_MASK : 0);
+		bitmap_count_page(bitmap, offset, 1);
+		page = filemap_get_page(bitmap, offset >> bitmap->chunkshift);
+		set_page_attr(bitmap, page, BITMAP_PAGE_PENDING);
+		bitmap->allclean = 0;
+	}
+	spin_unlock_irq(&bitmap->lock);
+}
+
+/* dirty the memory and file bits for bitmap chunks "s" to "e" */
+void bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e)
+{
+	unsigned long chunk;
+
+	for (chunk = s; chunk <= e; chunk++) {
+		sector_t sec = (sector_t)chunk << bitmap->chunkshift;
+		bitmap_set_memory_bits(bitmap, sec, 1);
+		spin_lock_irq(&bitmap->lock);
+		bitmap_file_set_bit(bitmap, sec);
+		spin_unlock_irq(&bitmap->lock);
+		if (sec < bitmap->mddev->recovery_cp)
+			/* We are asserting that the array is dirty,
+			 * so move the recovery_cp address back so
+			 * that it is obvious that it is dirty
+			 */
+			bitmap->mddev->recovery_cp = sec;
+	}
+}
+
+/*
+ * flush out any pending updates
+ */
+void bitmap_flush(struct mddev *mddev)
+{
+	struct bitmap *bitmap = mddev->bitmap;
+	long sleep;
+
+	if (!bitmap) /* there was no bitmap */
+		return;
+
+	/* run the daemon_work three time to ensure everything is flushed
+	 * that can be
+	 */
+	sleep = mddev->bitmap_info.daemon_sleep * 2;
+	bitmap->daemon_lastrun -= sleep;
+	bitmap_daemon_work(mddev);
+	bitmap->daemon_lastrun -= sleep;
+	bitmap_daemon_work(mddev);
+	bitmap->daemon_lastrun -= sleep;
+	bitmap_daemon_work(mddev);
+	bitmap_update_sb(bitmap);
+}
+
+/*
+ * free memory that was allocated
+ */
+static void bitmap_free(struct bitmap *bitmap)
+{
+	unsigned long k, pages;
+	struct bitmap_page *bp;
+
+	if (!bitmap) /* there was no bitmap */
+		return;
+
+	/* release the bitmap file and kill the daemon */
+	bitmap_file_put(bitmap);
+
+	bp = bitmap->bp;
+	pages = bitmap->pages;
+
+	/* free all allocated memory */
+
+	if (bp) /* deallocate the page memory */
+		for (k = 0; k < pages; k++)
+			if (bp[k].map && !bp[k].hijacked)
+				kfree(bp[k].map);
+	kfree(bp);
+	kfree(bitmap);
+}
+
+void bitmap_destroy(struct mddev *mddev)
+{
+	struct bitmap *bitmap = mddev->bitmap;
+
+	if (!bitmap) /* there was no bitmap */
+		return;
+
+	mutex_lock(&mddev->bitmap_info.mutex);
+	mddev->bitmap = NULL; /* disconnect from the md device */
+	mutex_unlock(&mddev->bitmap_info.mutex);
+	if (mddev->thread)
+		mddev->thread->timeout = MAX_SCHEDULE_TIMEOUT;
+
+	if (bitmap->sysfs_can_clear)
+		sysfs_put(bitmap->sysfs_can_clear);
+
+	bitmap_free(bitmap);
+}
+
+/*
+ * initialize the bitmap structure
+ * if this returns an error, bitmap_destroy must be called to do clean up
+ */
+int bitmap_create(struct mddev *mddev)
+{
+	struct bitmap *bitmap;
+	sector_t blocks = mddev->resync_max_sectors;
+	unsigned long chunks;
+	unsigned long pages;
+	struct file *file = mddev->bitmap_info.file;
+	int err;
+	struct sysfs_dirent *bm = NULL;
+
+	BUILD_BUG_ON(sizeof(bitmap_super_t) != 256);
+
+	if (!file
+	    && !mddev->bitmap_info.offset) /* bitmap disabled, nothing to do */
+		return 0;
+
+	BUG_ON(file && mddev->bitmap_info.offset);
+
+	bitmap = kzalloc(sizeof(*bitmap), GFP_KERNEL);
+	if (!bitmap)
+		return -ENOMEM;
+
+	spin_lock_init(&bitmap->lock);
+	atomic_set(&bitmap->pending_writes, 0);
+	init_waitqueue_head(&bitmap->write_wait);
+	init_waitqueue_head(&bitmap->overflow_wait);
+	init_waitqueue_head(&bitmap->behind_wait);
+
+	bitmap->mddev = mddev;
+
+	if (mddev->kobj.sd)
+		bm = sysfs_get_dirent(mddev->kobj.sd, NULL, "bitmap");
+	if (bm) {
+		bitmap->sysfs_can_clear = sysfs_get_dirent(bm, NULL, "can_clear");
+		sysfs_put(bm);
+	} else
+		bitmap->sysfs_can_clear = NULL;
+
+	bitmap->file = file;
+	if (file) {
+		get_file(file);
+		/* As future accesses to this file will use bmap,
+		 * and bypass the page cache, we must sync the file
+		 * first.
+		 */
+		vfs_fsync(file, 1);
+	}
+	/* read superblock from bitmap file (this sets mddev->bitmap_info.chunksize) */
+	if (!mddev->bitmap_info.external) {
+		/*
+		 * If 'MD_ARRAY_FIRST_USE' is set, then device-mapper is
+		 * instructing us to create a new on-disk bitmap instance.
+		 */
+		if (test_and_clear_bit(MD_ARRAY_FIRST_USE, &mddev->flags))
+			err = bitmap_new_disk_sb(bitmap);
+		else
+			err = bitmap_read_sb(bitmap);
+	} else {
+		err = 0;
+		if (mddev->bitmap_info.chunksize == 0 ||
+		    mddev->bitmap_info.daemon_sleep == 0)
+			/* chunksize and time_base need to be
+			 * set first. */
+			err = -EINVAL;
+	}
+	if (err)
+		goto error;
+
+	bitmap->daemon_lastrun = jiffies;
+	bitmap->chunkshift = (ffz(~mddev->bitmap_info.chunksize)
+			      - BITMAP_BLOCK_SHIFT);
+
+	chunks = (blocks + (1 << bitmap->chunkshift) - 1) >>
+			bitmap->chunkshift;
+	pages = (chunks + PAGE_COUNTER_RATIO - 1) / PAGE_COUNTER_RATIO;
+
+	BUG_ON(!pages);
+
+	bitmap->chunks = chunks;
+	bitmap->pages = pages;
+	bitmap->missing_pages = pages;
+
+	bitmap->bp = kzalloc(pages * sizeof(*bitmap->bp), GFP_KERNEL);
+
+	err = -ENOMEM;
+	if (!bitmap->bp)
+		goto error;
+
+	printk(KERN_INFO "created bitmap (%lu pages) for device %s\n",
+		pages, bmname(bitmap));
+
+	mddev->bitmap = bitmap;
+
+
+	return (bitmap->flags & BITMAP_WRITE_ERROR) ? -EIO : 0;
+
+ error:
+	bitmap_free(bitmap);
+	return err;
+}
+
+int bitmap_load(struct mddev *mddev)
+{
+	int err = 0;
+	sector_t start = 0;
+	sector_t sector = 0;
+	struct bitmap *bitmap = mddev->bitmap;
+
+	if (!bitmap)
+		goto out;
+
+	/* Clear out old bitmap info first:  Either there is none, or we
+	 * are resuming after someone else has possibly changed things,
+	 * so we should forget old cached info.
+	 * All chunks should be clean, but some might need_sync.
+	 */
+	while (sector < mddev->resync_max_sectors) {
+		sector_t blocks;
+		bitmap_start_sync(bitmap, sector, &blocks, 0);
+		sector += blocks;
+	}
+	bitmap_close_sync(bitmap);
+
+	if (mddev->degraded == 0
+	    || bitmap->events_cleared == mddev->events)
+		/* no need to keep dirty bits to optimise a
+		 * re-add of a missing device */
+		start = mddev->recovery_cp;
+
+	mutex_lock(&mddev->bitmap_info.mutex);
+	err = bitmap_init_from_disk(bitmap, start);
+	mutex_unlock(&mddev->bitmap_info.mutex);
+
+	if (err)
+		goto out;
+
+	mddev->thread->timeout = mddev->bitmap_info.daemon_sleep;
+	md_wakeup_thread(mddev->thread);
+
+	bitmap_update_sb(bitmap);
+
+	if (bitmap->flags & BITMAP_WRITE_ERROR)
+		err = -EIO;
+out:
+	return err;
+}
+EXPORT_SYMBOL_GPL(bitmap_load);
+
+void bitmap_status(struct seq_file *seq, struct bitmap *bitmap)
+{
+	unsigned long chunk_kb;
+	unsigned long flags;
+
+	if (!bitmap)
+		return;
+
+	spin_lock_irqsave(&bitmap->lock, flags);
+	chunk_kb = bitmap->mddev->bitmap_info.chunksize >> 10;
+	seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
+		   "%lu%s chunk",
+		   bitmap->pages - bitmap->missing_pages,
+		   bitmap->pages,
+		   (bitmap->pages - bitmap->missing_pages)
+		   << (PAGE_SHIFT - 10),
+		   chunk_kb ? chunk_kb : bitmap->mddev->bitmap_info.chunksize,
+		   chunk_kb ? "KB" : "B");
+	if (bitmap->file) {
+		seq_printf(seq, ", file: ");
+		seq_path(seq, &bitmap->file->f_path, " \t\n");
+	}
+
+	seq_printf(seq, "\n");
+	spin_unlock_irqrestore(&bitmap->lock, flags);
+}
+
+static ssize_t
+location_show(struct mddev *mddev, char *page)
+{
+	ssize_t len;
+	if (mddev->bitmap_info.file)
+		len = sprintf(page, "file");
+	else if (mddev->bitmap_info.offset)
+		len = sprintf(page, "%+lld", (long long)mddev->bitmap_info.offset);
+	else
+		len = sprintf(page, "none");
+	len += sprintf(page+len, "\n");
+	return len;
+}
+
+static ssize_t
+location_store(struct mddev *mddev, const char *buf, size_t len)
+{
+
+	if (mddev->pers) {
+		if (!mddev->pers->quiesce)
+			return -EBUSY;
+		if (mddev->recovery || mddev->sync_thread)
+			return -EBUSY;
+	}
+
+	if (mddev->bitmap || mddev->bitmap_info.file ||
+	    mddev->bitmap_info.offset) {
+		/* bitmap already configured.  Only option is to clear it */
+		if (strncmp(buf, "none", 4) != 0)
+			return -EBUSY;
+		if (mddev->pers) {
+			mddev->pers->quiesce(mddev, 1);
+			bitmap_destroy(mddev);
+			mddev->pers->quiesce(mddev, 0);
+		}
+		mddev->bitmap_info.offset = 0;
+		if (mddev->bitmap_info.file) {
+			struct file *f = mddev->bitmap_info.file;
+			mddev->bitmap_info.file = NULL;
+			restore_bitmap_write_access(f);
+			fput(f);
+		}
+	} else {
+		/* No bitmap, OK to set a location */
+		long long offset;
+		if (strncmp(buf, "none", 4) == 0)
+			/* nothing to be done */;
+		else if (strncmp(buf, "file:", 5) == 0) {
+			/* Not supported yet */
+			return -EINVAL;
+		} else {
+			int rv;
+			if (buf[0] == '+')
+				rv = strict_strtoll(buf+1, 10, &offset);
+			else
+				rv = strict_strtoll(buf, 10, &offset);
+			if (rv)
+				return rv;
+			if (offset == 0)
+				return -EINVAL;
+			if (mddev->bitmap_info.external == 0 &&
+			    mddev->major_version == 0 &&
+			    offset != mddev->bitmap_info.default_offset)
+				return -EINVAL;
+			mddev->bitmap_info.offset = offset;
+			if (mddev->pers) {
+				mddev->pers->quiesce(mddev, 1);
+				rv = bitmap_create(mddev);
+				if (!rv)
+					rv = bitmap_load(mddev);
+				if (rv) {
+					bitmap_destroy(mddev);
+					mddev->bitmap_info.offset = 0;
+				}
+				mddev->pers->quiesce(mddev, 0);
+				if (rv)
+					return rv;
+			}
+		}
+	}
+	if (!mddev->external) {
+		/* Ensure new bitmap info is stored in
+		 * metadata promptly.
+		 */
+		set_bit(MD_CHANGE_DEVS, &mddev->flags);
+		md_wakeup_thread(mddev->thread);
+	}
+	return len;
+}
+
+static struct md_sysfs_entry bitmap_location =
+__ATTR(location, S_IRUGO|S_IWUSR, location_show, location_store);
+
+static ssize_t
+timeout_show(struct mddev *mddev, char *page)
+{
+	ssize_t len;
+	unsigned long secs = mddev->bitmap_info.daemon_sleep / HZ;
+	unsigned long jifs = mddev->bitmap_info.daemon_sleep % HZ;
+
+	len = sprintf(page, "%lu", secs);
+	if (jifs)
+		len += sprintf(page+len, ".%03u", jiffies_to_msecs(jifs));
+	len += sprintf(page+len, "\n");
+	return len;
+}
+
+static ssize_t
+timeout_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	/* timeout can be set at any time */
+	unsigned long timeout;
+	int rv = strict_strtoul_scaled(buf, &timeout, 4);
+	if (rv)
+		return rv;
+
+	/* just to make sure we don't overflow... */
+	if (timeout >= LONG_MAX / HZ)
+		return -EINVAL;
+
+	timeout = timeout * HZ / 10000;
+
+	if (timeout >= MAX_SCHEDULE_TIMEOUT)
+		timeout = MAX_SCHEDULE_TIMEOUT-1;
+	if (timeout < 1)
+		timeout = 1;
+	mddev->bitmap_info.daemon_sleep = timeout;
+	if (mddev->thread) {
+		/* if thread->timeout is MAX_SCHEDULE_TIMEOUT, then
+		 * the bitmap is all clean and we don't need to
+		 * adjust the timeout right now
+		 */
+		if (mddev->thread->timeout < MAX_SCHEDULE_TIMEOUT) {
+			mddev->thread->timeout = timeout;
+			md_wakeup_thread(mddev->thread);
+		}
+	}
+	return len;
+}
+
+static struct md_sysfs_entry bitmap_timeout =
+__ATTR(time_base, S_IRUGO|S_IWUSR, timeout_show, timeout_store);
+
+static ssize_t
+backlog_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%lu\n", mddev->bitmap_info.max_write_behind);
+}
+
+static ssize_t
+backlog_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	unsigned long backlog;
+	int rv = strict_strtoul(buf, 10, &backlog);
+	if (rv)
+		return rv;
+	if (backlog > COUNTER_MAX)
+		return -EINVAL;
+	mddev->bitmap_info.max_write_behind = backlog;
+	return len;
+}
+
+static struct md_sysfs_entry bitmap_backlog =
+__ATTR(backlog, S_IRUGO|S_IWUSR, backlog_show, backlog_store);
+
+static ssize_t
+chunksize_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%lu\n", mddev->bitmap_info.chunksize);
+}
+
+static ssize_t
+chunksize_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	/* Can only be changed when no bitmap is active */
+	int rv;
+	unsigned long csize;
+	if (mddev->bitmap)
+		return -EBUSY;
+	rv = strict_strtoul(buf, 10, &csize);
+	if (rv)
+		return rv;
+	if (csize < 512 ||
+	    !is_power_of_2(csize))
+		return -EINVAL;
+	mddev->bitmap_info.chunksize = csize;
+	return len;
+}
+
+static struct md_sysfs_entry bitmap_chunksize =
+__ATTR(chunksize, S_IRUGO|S_IWUSR, chunksize_show, chunksize_store);
+
+static ssize_t metadata_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%s\n", (mddev->bitmap_info.external
+				      ? "external" : "internal"));
+}
+
+static ssize_t metadata_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	if (mddev->bitmap ||
+	    mddev->bitmap_info.file ||
+	    mddev->bitmap_info.offset)
+		return -EBUSY;
+	if (strncmp(buf, "external", 8) == 0)
+		mddev->bitmap_info.external = 1;
+	else if (strncmp(buf, "internal", 8) == 0)
+		mddev->bitmap_info.external = 0;
+	else
+		return -EINVAL;
+	return len;
+}
+
+static struct md_sysfs_entry bitmap_metadata =
+__ATTR(metadata, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
+
+static ssize_t can_clear_show(struct mddev *mddev, char *page)
+{
+	int len;
+	if (mddev->bitmap)
+		len = sprintf(page, "%s\n", (mddev->bitmap->need_sync ?
+					     "false" : "true"));
+	else
+		len = sprintf(page, "\n");
+	return len;
+}
+
+static ssize_t can_clear_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	if (mddev->bitmap == NULL)
+		return -ENOENT;
+	if (strncmp(buf, "false", 5) == 0)
+		mddev->bitmap->need_sync = 1;
+	else if (strncmp(buf, "true", 4) == 0) {
+		if (mddev->degraded)
+			return -EBUSY;
+		mddev->bitmap->need_sync = 0;
+	} else
+		return -EINVAL;
+	return len;
+}
+
+static struct md_sysfs_entry bitmap_can_clear =
+__ATTR(can_clear, S_IRUGO|S_IWUSR, can_clear_show, can_clear_store);
+
+static ssize_t
+behind_writes_used_show(struct mddev *mddev, char *page)
+{
+	if (mddev->bitmap == NULL)
+		return sprintf(page, "0\n");
+	return sprintf(page, "%lu\n",
+		       mddev->bitmap->behind_writes_used);
+}
+
+static ssize_t
+behind_writes_used_reset(struct mddev *mddev, const char *buf, size_t len)
+{
+	if (mddev->bitmap)
+		mddev->bitmap->behind_writes_used = 0;
+	return len;
+}
+
+static struct md_sysfs_entry max_backlog_used =
+__ATTR(max_backlog_used, S_IRUGO | S_IWUSR,
+       behind_writes_used_show, behind_writes_used_reset);
+
+static struct attribute *md_bitmap_attrs[] = {
+	&bitmap_location.attr,
+	&bitmap_timeout.attr,
+	&bitmap_backlog.attr,
+	&bitmap_chunksize.attr,
+	&bitmap_metadata.attr,
+	&bitmap_can_clear.attr,
+	&max_backlog_used.attr,
+	NULL
+};
+struct attribute_group md_bitmap_group = {
+	.name = "bitmap",
+	.attrs = md_bitmap_attrs,
+};
+
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/bitmap.h b/ap/os/linux/linux-3.4.x/drivers/md/bitmap.h
new file mode 100644
index 0000000..b44b0ab
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/bitmap.h
@@ -0,0 +1,247 @@
+/*
+ * bitmap.h: Copyright (C) Peter T. Breuer (ptb@ot.uc3m.es) 2003
+ *
+ * additions: Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
+ */
+#ifndef BITMAP_H
+#define BITMAP_H 1
+
+#define BITMAP_MAJOR_LO 3
+/* version 4 insists the bitmap is in little-endian order
+ * with version 3, it is host-endian which is non-portable
+ */
+#define BITMAP_MAJOR_HI 4
+#define	BITMAP_MAJOR_HOSTENDIAN 3
+
+/*
+ * in-memory bitmap:
+ *
+ * Use 16 bit block counters to track pending writes to each "chunk".
+ * The 2 high order bits are special-purpose, the first is a flag indicating
+ * whether a resync is needed.  The second is a flag indicating whether a
+ * resync is active.
+ * This means that the counter is actually 14 bits:
+ *
+ * +--------+--------+------------------------------------------------+
+ * | resync | resync |               counter                          |
+ * | needed | active |                                                |
+ * |  (0-1) |  (0-1) |              (0-16383)                         |
+ * +--------+--------+------------------------------------------------+
+ *
+ * The "resync needed" bit is set when:
+ *    a '1' bit is read from storage at startup.
+ *    a write request fails on some drives
+ *    a resync is aborted on a chunk with 'resync active' set
+ * It is cleared (and resync-active set) when a resync starts across all drives
+ * of the chunk.
+ *
+ *
+ * The "resync active" bit is set when:
+ *    a resync is started on all drives, and resync_needed is set.
+ *       resync_needed will be cleared (as long as resync_active wasn't already set).
+ * It is cleared when a resync completes.
+ *
+ * The counter counts pending write requests, plus the on-disk bit.
+ * When the counter is '1' and the resync bits are clear, the on-disk
+ * bit can be cleared as well, thus setting the counter to 0.
+ * When we set a bit, or in the counter (to start a write), if the fields is
+ * 0, we first set the disk bit and set the counter to 1.
+ *
+ * If the counter is 0, the on-disk bit is clear and the stipe is clean
+ * Anything that dirties the stipe pushes the counter to 2 (at least)
+ * and sets the on-disk bit (lazily).
+ * If a periodic sweep find the counter at 2, it is decremented to 1.
+ * If the sweep find the counter at 1, the on-disk bit is cleared and the
+ * counter goes to zero.
+ *
+ * Also, we'll hijack the "map" pointer itself and use it as two 16 bit block
+ * counters as a fallback when "page" memory cannot be allocated:
+ *
+ * Normal case (page memory allocated):
+ *
+ *     page pointer (32-bit)
+ *
+ *     [ ] ------+
+ *               |
+ *               +-------> [   ][   ]..[   ] (4096 byte page == 2048 counters)
+ *                          c1   c2    c2048
+ *
+ * Hijacked case (page memory allocation failed):
+ *
+ *     hijacked page pointer (32-bit)
+ *
+ *     [		  ][		  ] (no page memory allocated)
+ *      counter #1 (16-bit) counter #2 (16-bit)
+ *
+ */
+
+#ifdef __KERNEL__
+
+#define PAGE_BITS (PAGE_SIZE << 3)
+#define PAGE_BIT_SHIFT (PAGE_SHIFT + 3)
+
+typedef __u16 bitmap_counter_t;
+#define COUNTER_BITS 16
+#define COUNTER_BIT_SHIFT 4
+#define COUNTER_BYTE_SHIFT (COUNTER_BIT_SHIFT - 3)
+
+#define NEEDED_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 1)))
+#define RESYNC_MASK ((bitmap_counter_t) (1 << (COUNTER_BITS - 2)))
+#define COUNTER_MAX ((bitmap_counter_t) RESYNC_MASK - 1)
+#define NEEDED(x) (((bitmap_counter_t) x) & NEEDED_MASK)
+#define RESYNC(x) (((bitmap_counter_t) x) & RESYNC_MASK)
+#define COUNTER(x) (((bitmap_counter_t) x) & COUNTER_MAX)
+
+/* how many counters per page? */
+#define PAGE_COUNTER_RATIO (PAGE_BITS / COUNTER_BITS)
+/* same, except a shift value for more efficient bitops */
+#define PAGE_COUNTER_SHIFT (PAGE_BIT_SHIFT - COUNTER_BIT_SHIFT)
+/* same, except a mask value for more efficient bitops */
+#define PAGE_COUNTER_MASK  (PAGE_COUNTER_RATIO - 1)
+
+#define BITMAP_BLOCK_SHIFT 9
+
+#endif
+
+/*
+ * bitmap structures:
+ */
+
+#define BITMAP_MAGIC 0x6d746962
+
+/* use these for bitmap->flags and bitmap->sb->state bit-fields */
+enum bitmap_state {
+	BITMAP_STALE  = 0x002,  /* the bitmap file is out of date or had -EIO */
+	BITMAP_WRITE_ERROR = 0x004, /* A write error has occurred */
+	BITMAP_HOSTENDIAN = 0x8000,
+};
+
+/* the superblock at the front of the bitmap file -- little endian */
+typedef struct bitmap_super_s {
+	__le32 magic;        /*  0  BITMAP_MAGIC */
+	__le32 version;      /*  4  the bitmap major for now, could change... */
+	__u8  uuid[16];      /*  8  128 bit uuid - must match md device uuid */
+	__le64 events;       /* 24  event counter for the bitmap (1)*/
+	__le64 events_cleared;/*32  event counter when last bit cleared (2) */
+	__le64 sync_size;    /* 40  the size of the md device's sync range(3) */
+	__le32 state;        /* 48  bitmap state information */
+	__le32 chunksize;    /* 52  the bitmap chunk size in bytes */
+	__le32 daemon_sleep; /* 56  seconds between disk flushes */
+	__le32 write_behind; /* 60  number of outstanding write-behind writes */
+
+	__u8  pad[256 - 64]; /* set to zero */
+} bitmap_super_t;
+
+/* notes:
+ * (1) This event counter is updated before the eventcounter in the md superblock
+ *    When a bitmap is loaded, it is only accepted if this event counter is equal
+ *    to, or one greater than, the event counter in the superblock.
+ * (2) This event counter is updated when the other one is *if*and*only*if* the
+ *    array is not degraded.  As bits are not cleared when the array is degraded,
+ *    this represents the last time that any bits were cleared.
+ *    If a device is being added that has an event count with this value or
+ *    higher, it is accepted as conforming to the bitmap.
+ * (3)This is the number of sectors represented by the bitmap, and is the range that
+ *    resync happens across.  For raid1 and raid5/6 it is the size of individual
+ *    devices.  For raid10 it is the size of the array.
+ */
+
+#ifdef __KERNEL__
+
+/* the in-memory bitmap is represented by bitmap_pages */
+struct bitmap_page {
+	/*
+	 * map points to the actual memory page
+	 */
+	char *map;
+	/*
+	 * in emergencies (when map cannot be alloced), hijack the map
+	 * pointer and use it as two counters itself
+	 */
+	unsigned int hijacked:1;
+	/*
+	 * count of dirty bits on the page
+	 */
+	unsigned int  count:31;
+};
+
+/* the main bitmap structure - one per mddev */
+struct bitmap {
+	struct bitmap_page *bp;
+	unsigned long pages; /* total number of pages in the bitmap */
+	unsigned long missing_pages; /* number of pages not yet allocated */
+
+	struct mddev *mddev; /* the md device that the bitmap is for */
+
+	/* bitmap chunksize -- how much data does each bit represent? */
+	unsigned long chunkshift; /* chunksize = 2^(chunkshift+9) (for bitops) */
+	unsigned long chunks; /* total number of data chunks for the array */
+
+	__u64	events_cleared;
+	int need_sync;
+
+	/* bitmap spinlock */
+	spinlock_t lock;
+
+	struct file *file; /* backing disk file */
+	struct page *sb_page; /* cached copy of the bitmap file superblock */
+	struct page **filemap; /* list of cache pages for the file */
+	unsigned long *filemap_attr; /* attributes associated w/ filemap pages */
+	unsigned long file_pages; /* number of pages in the file */
+	int last_page_size; /* bytes in the last page */
+
+	unsigned long flags;
+
+	int allclean;
+
+	atomic_t behind_writes;
+	unsigned long behind_writes_used; /* highest actual value at runtime */
+
+	/*
+	 * the bitmap daemon - periodically wakes up and sweeps the bitmap
+	 * file, cleaning up bits and flushing out pages to disk as necessary
+	 */
+	unsigned long daemon_lastrun; /* jiffies of last run */
+	unsigned long last_end_sync; /* when we lasted called end_sync to
+				      * update bitmap with resync progress */
+
+	atomic_t pending_writes; /* pending writes to the bitmap file */
+	wait_queue_head_t write_wait;
+	wait_queue_head_t overflow_wait;
+	wait_queue_head_t behind_wait;
+
+	struct sysfs_dirent *sysfs_can_clear;
+};
+
+/* the bitmap API */
+
+/* these are used only by md/bitmap */
+int  bitmap_create(struct mddev *mddev);
+int bitmap_load(struct mddev *mddev);
+void bitmap_flush(struct mddev *mddev);
+void bitmap_destroy(struct mddev *mddev);
+
+void bitmap_print_sb(struct bitmap *bitmap);
+void bitmap_update_sb(struct bitmap *bitmap);
+void bitmap_status(struct seq_file *seq, struct bitmap *bitmap);
+
+int  bitmap_setallbits(struct bitmap *bitmap);
+void bitmap_write_all(struct bitmap *bitmap);
+
+void bitmap_dirty_bits(struct bitmap *bitmap, unsigned long s, unsigned long e);
+
+/* these are exported */
+int bitmap_startwrite(struct bitmap *bitmap, sector_t offset,
+			unsigned long sectors, int behind);
+void bitmap_endwrite(struct bitmap *bitmap, sector_t offset,
+			unsigned long sectors, int success, int behind);
+int bitmap_start_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int degraded);
+void bitmap_end_sync(struct bitmap *bitmap, sector_t offset, sector_t *blocks, int aborted);
+void bitmap_close_sync(struct bitmap *bitmap);
+void bitmap_cond_end_sync(struct bitmap *bitmap, sector_t sector);
+
+void bitmap_unplug(struct bitmap *bitmap);
+void bitmap_daemon_work(struct mddev *mddev);
+#endif
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-bio-record.h b/ap/os/linux/linux-3.4.x/drivers/md/dm-bio-record.h
new file mode 100644
index 0000000..3a8cfa2
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-bio-record.h
@@ -0,0 +1,71 @@
+/*
+ * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_BIO_RECORD_H
+#define DM_BIO_RECORD_H
+
+#include <linux/bio.h>
+
+/*
+ * There are lots of mutable fields in the bio struct that get
+ * changed by the lower levels of the block layer.  Some targets,
+ * such as multipath, may wish to resubmit a bio on error.  The
+ * functions in this file help the target record and restore the
+ * original bio state.
+ */
+
+struct dm_bio_vec_details {
+#if PAGE_SIZE < 65536
+	__u16 bv_len;
+	__u16 bv_offset;
+#else
+	unsigned bv_len;
+	unsigned bv_offset;
+#endif
+};
+
+struct dm_bio_details {
+	sector_t bi_sector;
+	struct block_device *bi_bdev;
+	unsigned int bi_size;
+	unsigned short bi_idx;
+	unsigned long bi_flags;
+	struct dm_bio_vec_details bi_io_vec[BIO_MAX_PAGES];
+};
+
+static inline void dm_bio_record(struct dm_bio_details *bd, struct bio *bio)
+{
+	unsigned i;
+
+	bd->bi_sector = bio->bi_sector;
+	bd->bi_bdev = bio->bi_bdev;
+	bd->bi_size = bio->bi_size;
+	bd->bi_idx = bio->bi_idx;
+	bd->bi_flags = bio->bi_flags;
+
+	for (i = 0; i < bio->bi_vcnt; i++) {
+		bd->bi_io_vec[i].bv_len = bio->bi_io_vec[i].bv_len;
+		bd->bi_io_vec[i].bv_offset = bio->bi_io_vec[i].bv_offset;
+	}
+}
+
+static inline void dm_bio_restore(struct dm_bio_details *bd, struct bio *bio)
+{
+	unsigned i;
+
+	bio->bi_sector = bd->bi_sector;
+	bio->bi_bdev = bd->bi_bdev;
+	bio->bi_size = bd->bi_size;
+	bio->bi_idx = bd->bi_idx;
+	bio->bi_flags = bd->bi_flags;
+
+	for (i = 0; i < bio->bi_vcnt; i++) {
+		bio->bi_io_vec[i].bv_len = bd->bi_io_vec[i].bv_len;
+		bio->bi_io_vec[i].bv_offset = bd->bi_io_vec[i].bv_offset;
+	}
+}
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-bufio.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-bufio.c
new file mode 100644
index 0000000..535b09c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-bufio.c
@@ -0,0 +1,1785 @@
+/*
+ * Copyright (C) 2009-2011 Red Hat, Inc.
+ *
+ * Author: Mikulas Patocka <mpatocka@redhat.com>
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-bufio.h"
+
+#include <linux/device-mapper.h>
+#include <linux/dm-io.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/shrinker.h>
+#include <linux/module.h>
+
+#define DM_MSG_PREFIX "bufio"
+
+/*
+ * Memory management policy:
+ *	Limit the number of buffers to DM_BUFIO_MEMORY_PERCENT of main memory
+ *	or DM_BUFIO_VMALLOC_PERCENT of vmalloc memory (whichever is lower).
+ *	Always allocate at least DM_BUFIO_MIN_BUFFERS buffers.
+ *	Start background writeback when there are DM_BUFIO_WRITEBACK_PERCENT
+ *	dirty buffers.
+ */
+#define DM_BUFIO_MIN_BUFFERS		8
+
+#define DM_BUFIO_MEMORY_PERCENT		2
+#define DM_BUFIO_VMALLOC_PERCENT	25
+#define DM_BUFIO_WRITEBACK_PERCENT	75
+
+/*
+ * Check buffer ages in this interval (seconds)
+ */
+#define DM_BUFIO_WORK_TIMER_SECS	10
+
+/*
+ * Free buffers when they are older than this (seconds)
+ */
+#define DM_BUFIO_DEFAULT_AGE_SECS	60
+
+/*
+ * The number of bvec entries that are embedded directly in the buffer.
+ * If the chunk size is larger, dm-io is used to do the io.
+ */
+#define DM_BUFIO_INLINE_VECS		16
+
+/*
+ * Buffer hash
+ */
+#define DM_BUFIO_HASH_BITS	20
+#define DM_BUFIO_HASH(block) \
+	((((block) >> DM_BUFIO_HASH_BITS) ^ (block)) & \
+	 ((1 << DM_BUFIO_HASH_BITS) - 1))
+
+/*
+ * Don't try to use kmem_cache_alloc for blocks larger than this.
+ * For explanation, see alloc_buffer_data below.
+ */
+#define DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT	(PAGE_SIZE >> 1)
+#define DM_BUFIO_BLOCK_SIZE_GFP_LIMIT	(PAGE_SIZE << (MAX_ORDER - 1))
+
+/*
+ * dm_buffer->list_mode
+ */
+#define LIST_CLEAN	0
+#define LIST_DIRTY	1
+#define LIST_SIZE	2
+
+/*
+ * Linking of buffers:
+ *	All buffers are linked to cache_hash with their hash_list field.
+ *
+ *	Clean buffers that are not being written (B_WRITING not set)
+ *	are linked to lru[LIST_CLEAN] with their lru_list field.
+ *
+ *	Dirty and clean buffers that are being written are linked to
+ *	lru[LIST_DIRTY] with their lru_list field. When the write
+ *	finishes, the buffer cannot be relinked immediately (because we
+ *	are in an interrupt context and relinking requires process
+ *	context), so some clean-not-writing buffers can be held on
+ *	dirty_lru too.  They are later added to lru in the process
+ *	context.
+ */
+struct dm_bufio_client {
+	struct mutex lock;
+
+	struct list_head lru[LIST_SIZE];
+	unsigned long n_buffers[LIST_SIZE];
+
+	struct block_device *bdev;
+	unsigned block_size;
+	unsigned char sectors_per_block_bits;
+	unsigned char pages_per_block_bits;
+	unsigned char blocks_per_page_bits;
+	unsigned aux_size;
+	void (*alloc_callback)(struct dm_buffer *);
+	void (*write_callback)(struct dm_buffer *);
+
+	struct dm_io_client *dm_io;
+
+	struct list_head reserved_buffers;
+	unsigned need_reserved_buffers;
+
+	struct hlist_head *cache_hash;
+	wait_queue_head_t free_buffer_wait;
+
+	int async_write_error;
+
+	struct list_head client_list;
+	struct shrinker shrinker;
+};
+
+/*
+ * Buffer state bits.
+ */
+#define B_READING	0
+#define B_WRITING	1
+#define B_DIRTY		2
+
+/*
+ * Describes how the block was allocated:
+ * kmem_cache_alloc(), __get_free_pages() or vmalloc().
+ * See the comment at alloc_buffer_data.
+ */
+enum data_mode {
+	DATA_MODE_SLAB = 0,
+	DATA_MODE_GET_FREE_PAGES = 1,
+	DATA_MODE_VMALLOC = 2,
+	DATA_MODE_LIMIT = 3
+};
+
+struct dm_buffer {
+	struct hlist_node hash_list;
+	struct list_head lru_list;
+	sector_t block;
+	void *data;
+	enum data_mode data_mode;
+	unsigned char list_mode;		/* LIST_* */
+	unsigned hold_count;
+	int read_error;
+	int write_error;
+	unsigned long state;
+	unsigned long last_accessed;
+	struct dm_bufio_client *c;
+	struct bio bio;
+	struct bio_vec bio_vec[DM_BUFIO_INLINE_VECS];
+};
+
+/*----------------------------------------------------------------*/
+
+static struct kmem_cache *dm_bufio_caches[PAGE_SHIFT - SECTOR_SHIFT];
+static char *dm_bufio_cache_names[PAGE_SHIFT - SECTOR_SHIFT];
+
+static inline int dm_bufio_cache_index(struct dm_bufio_client *c)
+{
+	unsigned ret = c->blocks_per_page_bits - 1;
+
+	BUG_ON(ret >= ARRAY_SIZE(dm_bufio_caches));
+
+	return ret;
+}
+
+#define DM_BUFIO_CACHE(c)	(dm_bufio_caches[dm_bufio_cache_index(c)])
+#define DM_BUFIO_CACHE_NAME(c)	(dm_bufio_cache_names[dm_bufio_cache_index(c)])
+
+#define dm_bufio_in_request()	(!!current->bio_list)
+
+static void dm_bufio_lock(struct dm_bufio_client *c)
+{
+	mutex_lock_nested(&c->lock, dm_bufio_in_request());
+}
+
+static int dm_bufio_trylock(struct dm_bufio_client *c)
+{
+	return mutex_trylock(&c->lock);
+}
+
+static void dm_bufio_unlock(struct dm_bufio_client *c)
+{
+	mutex_unlock(&c->lock);
+}
+
+/*
+ * FIXME Move to sched.h?
+ */
+#ifdef CONFIG_PREEMPT_VOLUNTARY
+#  define dm_bufio_cond_resched()		\
+do {						\
+	if (unlikely(need_resched()))		\
+		_cond_resched();		\
+} while (0)
+#else
+#  define dm_bufio_cond_resched()                do { } while (0)
+#endif
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Default cache size: available memory divided by the ratio.
+ */
+static unsigned long dm_bufio_default_cache_size;
+
+/*
+ * Total cache size set by the user.
+ */
+static unsigned long dm_bufio_cache_size;
+
+/*
+ * A copy of dm_bufio_cache_size because dm_bufio_cache_size can change
+ * at any time.  If it disagrees, the user has changed cache size.
+ */
+static unsigned long dm_bufio_cache_size_latch;
+
+static DEFINE_SPINLOCK(param_spinlock);
+
+/*
+ * Buffers are freed after this timeout
+ */
+static unsigned dm_bufio_max_age = DM_BUFIO_DEFAULT_AGE_SECS;
+
+static unsigned long dm_bufio_peak_allocated;
+static unsigned long dm_bufio_allocated_kmem_cache;
+static unsigned long dm_bufio_allocated_get_free_pages;
+static unsigned long dm_bufio_allocated_vmalloc;
+static unsigned long dm_bufio_current_allocated;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Per-client cache: dm_bufio_cache_size / dm_bufio_client_count
+ */
+static unsigned long dm_bufio_cache_size_per_client;
+
+/*
+ * The current number of clients.
+ */
+static int dm_bufio_client_count;
+
+/*
+ * The list of all clients.
+ */
+static LIST_HEAD(dm_bufio_all_clients);
+
+/*
+ * This mutex protects dm_bufio_cache_size_latch,
+ * dm_bufio_cache_size_per_client and dm_bufio_client_count
+ */
+static DEFINE_MUTEX(dm_bufio_clients_lock);
+
+/*----------------------------------------------------------------*/
+
+static void adjust_total_allocated(enum data_mode data_mode, long diff)
+{
+	static unsigned long * const class_ptr[DATA_MODE_LIMIT] = {
+		&dm_bufio_allocated_kmem_cache,
+		&dm_bufio_allocated_get_free_pages,
+		&dm_bufio_allocated_vmalloc,
+	};
+
+	spin_lock(&param_spinlock);
+
+	*class_ptr[data_mode] += diff;
+
+	dm_bufio_current_allocated += diff;
+
+	if (dm_bufio_current_allocated > dm_bufio_peak_allocated)
+		dm_bufio_peak_allocated = dm_bufio_current_allocated;
+
+	spin_unlock(&param_spinlock);
+}
+
+/*
+ * Change the number of clients and recalculate per-client limit.
+ */
+static void __cache_size_refresh(void)
+{
+	BUG_ON(!mutex_is_locked(&dm_bufio_clients_lock));
+	BUG_ON(dm_bufio_client_count < 0);
+
+	dm_bufio_cache_size_latch = dm_bufio_cache_size;
+
+	barrier();
+
+	/*
+	 * Use default if set to 0 and report the actual cache size used.
+	 */
+	if (!dm_bufio_cache_size_latch) {
+		(void)cmpxchg(&dm_bufio_cache_size, 0,
+			      dm_bufio_default_cache_size);
+		dm_bufio_cache_size_latch = dm_bufio_default_cache_size;
+	}
+
+	dm_bufio_cache_size_per_client = dm_bufio_cache_size_latch /
+					 (dm_bufio_client_count ? : 1);
+}
+
+/*
+ * Allocating buffer data.
+ *
+ * Small buffers are allocated with kmem_cache, to use space optimally.
+ *
+ * For large buffers, we choose between get_free_pages and vmalloc.
+ * Each has advantages and disadvantages.
+ *
+ * __get_free_pages can randomly fail if the memory is fragmented.
+ * __vmalloc won't randomly fail, but vmalloc space is limited (it may be
+ * as low as 128M) so using it for caching is not appropriate.
+ *
+ * If the allocation may fail we use __get_free_pages. Memory fragmentation
+ * won't have a fatal effect here, but it just causes flushes of some other
+ * buffers and more I/O will be performed. Don't use __get_free_pages if it
+ * always fails (i.e. order >= MAX_ORDER).
+ *
+ * If the allocation shouldn't fail we use __vmalloc. This is only for the
+ * initial reserve allocation, so there's no risk of wasting all vmalloc
+ * space.
+ */
+static void *alloc_buffer_data(struct dm_bufio_client *c, gfp_t gfp_mask,
+			       enum data_mode *data_mode)
+{
+	unsigned noio_flag;
+	void *ptr;
+
+	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_SLAB_LIMIT) {
+		*data_mode = DATA_MODE_SLAB;
+		return kmem_cache_alloc(DM_BUFIO_CACHE(c), gfp_mask);
+	}
+
+	if (c->block_size <= DM_BUFIO_BLOCK_SIZE_GFP_LIMIT &&
+	    gfp_mask & __GFP_NORETRY) {
+		*data_mode = DATA_MODE_GET_FREE_PAGES;
+		return (void *)__get_free_pages(gfp_mask,
+						c->pages_per_block_bits);
+	}
+
+	*data_mode = DATA_MODE_VMALLOC;
+
+	/*
+	 * __vmalloc allocates the data pages and auxiliary structures with
+	 * gfp_flags that were specified, but pagetables are always allocated
+	 * with GFP_KERNEL, no matter what was specified as gfp_mask.
+	 *
+	 * Consequently, we must set per-process flag PF_MEMALLOC_NOIO so that
+	 * all allocations done by this process (including pagetables) are done
+	 * as if GFP_NOIO was specified.
+	 */
+
+	if (gfp_mask & __GFP_NORETRY) {
+		noio_flag = current->flags & PF_MEMALLOC;
+		current->flags |= PF_MEMALLOC;
+	}
+
+	ptr = __vmalloc(c->block_size, gfp_mask, PAGE_KERNEL);
+
+	if (gfp_mask & __GFP_NORETRY)
+		current->flags = (current->flags & ~PF_MEMALLOC) | noio_flag;
+
+	return ptr;
+}
+
+/*
+ * Free buffer's data.
+ */
+static void free_buffer_data(struct dm_bufio_client *c,
+			     void *data, enum data_mode data_mode)
+{
+	switch (data_mode) {
+	case DATA_MODE_SLAB:
+		kmem_cache_free(DM_BUFIO_CACHE(c), data);
+		break;
+
+	case DATA_MODE_GET_FREE_PAGES:
+		free_pages((unsigned long)data, c->pages_per_block_bits);
+		break;
+
+	case DATA_MODE_VMALLOC:
+		vfree(data);
+		break;
+
+	default:
+		DMCRIT("dm_bufio_free_buffer_data: bad data mode: %d",
+		       data_mode);
+		BUG();
+	}
+}
+
+/*
+ * Allocate buffer and its data.
+ */
+static struct dm_buffer *alloc_buffer(struct dm_bufio_client *c, gfp_t gfp_mask)
+{
+	struct dm_buffer *b = kmalloc(sizeof(struct dm_buffer) + c->aux_size,
+				      gfp_mask);
+
+	if (!b)
+		return NULL;
+
+	b->c = c;
+
+	b->data = alloc_buffer_data(c, gfp_mask, &b->data_mode);
+	if (!b->data) {
+		kfree(b);
+		return NULL;
+	}
+
+	adjust_total_allocated(b->data_mode, (long)c->block_size);
+
+	return b;
+}
+
+/*
+ * Free buffer and its data.
+ */
+static void free_buffer(struct dm_buffer *b)
+{
+	struct dm_bufio_client *c = b->c;
+
+	adjust_total_allocated(b->data_mode, -(long)c->block_size);
+
+	free_buffer_data(c, b->data, b->data_mode);
+	kfree(b);
+}
+
+/*
+ * Link buffer to the hash list and clean or dirty queue.
+ */
+static void __link_buffer(struct dm_buffer *b, sector_t block, int dirty)
+{
+	struct dm_bufio_client *c = b->c;
+
+	c->n_buffers[dirty]++;
+	b->block = block;
+	b->list_mode = dirty;
+	list_add(&b->lru_list, &c->lru[dirty]);
+	hlist_add_head(&b->hash_list, &c->cache_hash[DM_BUFIO_HASH(block)]);
+	b->last_accessed = jiffies;
+}
+
+/*
+ * Unlink buffer from the hash list and dirty or clean queue.
+ */
+static void __unlink_buffer(struct dm_buffer *b)
+{
+	struct dm_bufio_client *c = b->c;
+
+	BUG_ON(!c->n_buffers[b->list_mode]);
+
+	c->n_buffers[b->list_mode]--;
+	hlist_del(&b->hash_list);
+	list_del(&b->lru_list);
+}
+
+/*
+ * Place the buffer to the head of dirty or clean LRU queue.
+ */
+static void __relink_lru(struct dm_buffer *b, int dirty)
+{
+	struct dm_bufio_client *c = b->c;
+
+	BUG_ON(!c->n_buffers[b->list_mode]);
+
+	c->n_buffers[b->list_mode]--;
+	c->n_buffers[dirty]++;
+	b->list_mode = dirty;
+	list_del(&b->lru_list);
+	list_add(&b->lru_list, &c->lru[dirty]);
+	b->last_accessed = jiffies;
+}
+
+/*----------------------------------------------------------------
+ * Submit I/O on the buffer.
+ *
+ * Bio interface is faster but it has some problems:
+ *	the vector list is limited (increasing this limit increases
+ *	memory-consumption per buffer, so it is not viable);
+ *
+ *	the memory must be direct-mapped, not vmalloced;
+ *
+ *	the I/O driver can reject requests spuriously if it thinks that
+ *	the requests are too big for the device or if they cross a
+ *	controller-defined memory boundary.
+ *
+ * If the buffer is small enough (up to DM_BUFIO_INLINE_VECS pages) and
+ * it is not vmalloced, try using the bio interface.
+ *
+ * If the buffer is big, if it is vmalloced or if the underlying device
+ * rejects the bio because it is too large, use dm-io layer to do the I/O.
+ * The dm-io layer splits the I/O into multiple requests, avoiding the above
+ * shortcomings.
+ *--------------------------------------------------------------*/
+
+/*
+ * dm-io completion routine. It just calls b->bio.bi_end_io, pretending
+ * that the request was handled directly with bio interface.
+ */
+static void dmio_complete(unsigned long error, void *context)
+{
+	struct dm_buffer *b = context;
+
+	b->bio.bi_end_io(&b->bio, error ? -EIO : 0);
+}
+
+static void use_dmio(struct dm_buffer *b, int rw, sector_t block,
+		     bio_end_io_t *end_io)
+{
+	int r;
+	struct dm_io_request io_req = {
+		.bi_rw = rw,
+		.notify.fn = dmio_complete,
+		.notify.context = b,
+		.client = b->c->dm_io,
+	};
+	struct dm_io_region region = {
+		.bdev = b->c->bdev,
+		.sector = block << b->c->sectors_per_block_bits,
+		.count = b->c->block_size >> SECTOR_SHIFT,
+	};
+
+	if (b->data_mode != DATA_MODE_VMALLOC) {
+		io_req.mem.type = DM_IO_KMEM;
+		io_req.mem.ptr.addr = b->data;
+	} else {
+		io_req.mem.type = DM_IO_VMA;
+		io_req.mem.ptr.vma = b->data;
+	}
+
+	b->bio.bi_end_io = end_io;
+
+	r = dm_io(&io_req, 1, &region, NULL);
+	if (r)
+		end_io(&b->bio, r);
+}
+
+static void use_inline_bio(struct dm_buffer *b, int rw, sector_t block,
+			   bio_end_io_t *end_io)
+{
+	char *ptr;
+	int len;
+
+	bio_init(&b->bio);
+	b->bio.bi_io_vec = b->bio_vec;
+	b->bio.bi_max_vecs = DM_BUFIO_INLINE_VECS;
+	b->bio.bi_sector = block << b->c->sectors_per_block_bits;
+	b->bio.bi_bdev = b->c->bdev;
+	b->bio.bi_end_io = end_io;
+
+	/*
+	 * We assume that if len >= PAGE_SIZE ptr is page-aligned.
+	 * If len < PAGE_SIZE the buffer doesn't cross page boundary.
+	 */
+	ptr = b->data;
+	len = b->c->block_size;
+
+	if (len >= PAGE_SIZE)
+		BUG_ON((unsigned long)ptr & (PAGE_SIZE - 1));
+	else
+		BUG_ON((unsigned long)ptr & (len - 1));
+
+	do {
+		if (!bio_add_page(&b->bio, virt_to_page(ptr),
+				  len < PAGE_SIZE ? len : PAGE_SIZE,
+				  virt_to_phys(ptr) & (PAGE_SIZE - 1))) {
+			BUG_ON(b->c->block_size <= PAGE_SIZE);
+			use_dmio(b, rw, block, end_io);
+			return;
+		}
+
+		len -= PAGE_SIZE;
+		ptr += PAGE_SIZE;
+	} while (len > 0);
+
+	submit_bio(rw, &b->bio);
+}
+
+static void submit_io(struct dm_buffer *b, int rw, sector_t block,
+		      bio_end_io_t *end_io)
+{
+	if (rw == WRITE && b->c->write_callback)
+		b->c->write_callback(b);
+
+	if (b->c->block_size <= DM_BUFIO_INLINE_VECS * PAGE_SIZE &&
+	    b->data_mode != DATA_MODE_VMALLOC)
+		use_inline_bio(b, rw, block, end_io);
+	else
+		use_dmio(b, rw, block, end_io);
+}
+
+/*----------------------------------------------------------------
+ * Writing dirty buffers
+ *--------------------------------------------------------------*/
+
+/*
+ * The endio routine for write.
+ *
+ * Set the error, clear B_WRITING bit and wake anyone who was waiting on
+ * it.
+ */
+static void write_endio(struct bio *bio, int error)
+{
+	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
+
+	b->write_error = error;
+	if (unlikely(error)) {
+		struct dm_bufio_client *c = b->c;
+		(void)cmpxchg(&c->async_write_error, 0, error);
+	}
+
+	BUG_ON(!test_bit(B_WRITING, &b->state));
+
+	smp_mb__before_clear_bit();
+	clear_bit(B_WRITING, &b->state);
+	smp_mb__after_clear_bit();
+
+	wake_up_bit(&b->state, B_WRITING);
+}
+
+/*
+ * This function is called when wait_on_bit is actually waiting.
+ */
+static int do_io_schedule(void *word)
+{
+	io_schedule();
+
+	return 0;
+}
+
+/*
+ * Initiate a write on a dirty buffer, but don't wait for it.
+ *
+ * - If the buffer is not dirty, exit.
+ * - If there some previous write going on, wait for it to finish (we can't
+ *   have two writes on the same buffer simultaneously).
+ * - Submit our write and don't wait on it. We set B_WRITING indicating
+ *   that there is a write in progress.
+ */
+static void __write_dirty_buffer(struct dm_buffer *b)
+{
+	if (!test_bit(B_DIRTY, &b->state))
+		return;
+
+	clear_bit(B_DIRTY, &b->state);
+	wait_on_bit_lock(&b->state, B_WRITING,
+			 do_io_schedule, TASK_UNINTERRUPTIBLE);
+
+	submit_io(b, WRITE, b->block, write_endio);
+}
+
+/*
+ * Wait until any activity on the buffer finishes.  Possibly write the
+ * buffer if it is dirty.  When this function finishes, there is no I/O
+ * running on the buffer and the buffer is not dirty.
+ */
+static void __make_buffer_clean(struct dm_buffer *b)
+{
+	BUG_ON(b->hold_count);
+
+	if (!b->state)	/* fast case */
+		return;
+
+	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
+	__write_dirty_buffer(b);
+	wait_on_bit(&b->state, B_WRITING, do_io_schedule, TASK_UNINTERRUPTIBLE);
+}
+
+/*
+ * Find some buffer that is not held by anybody, clean it, unlink it and
+ * return it.
+ */
+static struct dm_buffer *__get_unclaimed_buffer(struct dm_bufio_client *c)
+{
+	struct dm_buffer *b;
+
+	list_for_each_entry_reverse(b, &c->lru[LIST_CLEAN], lru_list) {
+		BUG_ON(test_bit(B_WRITING, &b->state));
+		BUG_ON(test_bit(B_DIRTY, &b->state));
+
+		if (!b->hold_count) {
+			__make_buffer_clean(b);
+			__unlink_buffer(b);
+			return b;
+		}
+		dm_bufio_cond_resched();
+	}
+
+	list_for_each_entry_reverse(b, &c->lru[LIST_DIRTY], lru_list) {
+		BUG_ON(test_bit(B_READING, &b->state));
+
+		if (!b->hold_count) {
+			__make_buffer_clean(b);
+			__unlink_buffer(b);
+			return b;
+		}
+		dm_bufio_cond_resched();
+	}
+
+	return NULL;
+}
+
+/*
+ * Wait until some other threads free some buffer or release hold count on
+ * some buffer.
+ *
+ * This function is entered with c->lock held, drops it and regains it
+ * before exiting.
+ */
+static void __wait_for_free_buffer(struct dm_bufio_client *c)
+{
+	DECLARE_WAITQUEUE(wait, current);
+
+	add_wait_queue(&c->free_buffer_wait, &wait);
+	set_task_state(current, TASK_UNINTERRUPTIBLE);
+	dm_bufio_unlock(c);
+
+	io_schedule();
+
+	set_task_state(current, TASK_RUNNING);
+	remove_wait_queue(&c->free_buffer_wait, &wait);
+
+	dm_bufio_lock(c);
+}
+
+enum new_flag {
+	NF_FRESH = 0,
+	NF_READ = 1,
+	NF_GET = 2,
+	NF_PREFETCH = 3
+};
+
+/*
+ * Allocate a new buffer. If the allocation is not possible, wait until
+ * some other thread frees a buffer.
+ *
+ * May drop the lock and regain it.
+ */
+static struct dm_buffer *__alloc_buffer_wait_no_callback(struct dm_bufio_client *c, enum new_flag nf)
+{
+	struct dm_buffer *b;
+
+	/*
+	 * dm-bufio is resistant to allocation failures (it just keeps
+	 * one buffer reserved in cases all the allocations fail).
+	 * So set flags to not try too hard:
+	 *	GFP_NOIO: don't recurse into the I/O layer
+	 *	__GFP_NORETRY: don't retry and rather return failure
+	 *	__GFP_NOMEMALLOC: don't use emergency reserves
+	 *	__GFP_NOWARN: don't print a warning in case of failure
+	 *
+	 * For debugging, if we set the cache size to 1, no new buffers will
+	 * be allocated.
+	 */
+	while (1) {
+		if (dm_bufio_cache_size_latch != 1) {
+			b = alloc_buffer(c, GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
+			if (b)
+				return b;
+		}
+
+		if (nf == NF_PREFETCH)
+			return NULL;
+
+		if (!list_empty(&c->reserved_buffers)) {
+			b = list_entry(c->reserved_buffers.next,
+				       struct dm_buffer, lru_list);
+			list_del(&b->lru_list);
+			c->need_reserved_buffers++;
+
+			return b;
+		}
+
+		b = __get_unclaimed_buffer(c);
+		if (b)
+			return b;
+
+		__wait_for_free_buffer(c);
+	}
+}
+
+static struct dm_buffer *__alloc_buffer_wait(struct dm_bufio_client *c, enum new_flag nf)
+{
+	struct dm_buffer *b = __alloc_buffer_wait_no_callback(c, nf);
+
+	if (!b)
+		return NULL;
+
+	if (c->alloc_callback)
+		c->alloc_callback(b);
+
+	return b;
+}
+
+/*
+ * Free a buffer and wake other threads waiting for free buffers.
+ */
+static void __free_buffer_wake(struct dm_buffer *b)
+{
+	struct dm_bufio_client *c = b->c;
+
+	if (!c->need_reserved_buffers)
+		free_buffer(b);
+	else {
+		list_add(&b->lru_list, &c->reserved_buffers);
+		c->need_reserved_buffers--;
+	}
+
+	wake_up(&c->free_buffer_wait);
+}
+
+static void __write_dirty_buffers_async(struct dm_bufio_client *c, int no_wait)
+{
+	struct dm_buffer *b, *tmp;
+
+	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
+		BUG_ON(test_bit(B_READING, &b->state));
+
+		if (!test_bit(B_DIRTY, &b->state) &&
+		    !test_bit(B_WRITING, &b->state)) {
+			__relink_lru(b, LIST_CLEAN);
+			continue;
+		}
+
+		if (no_wait && test_bit(B_WRITING, &b->state))
+			return;
+
+		__write_dirty_buffer(b);
+		dm_bufio_cond_resched();
+	}
+}
+
+/*
+ * Get writeback threshold and buffer limit for a given client.
+ */
+static void __get_memory_limit(struct dm_bufio_client *c,
+			       unsigned long *threshold_buffers,
+			       unsigned long *limit_buffers)
+{
+	unsigned long buffers;
+
+	if (dm_bufio_cache_size != dm_bufio_cache_size_latch) {
+		mutex_lock(&dm_bufio_clients_lock);
+		__cache_size_refresh();
+		mutex_unlock(&dm_bufio_clients_lock);
+	}
+
+	buffers = dm_bufio_cache_size_per_client >>
+		  (c->sectors_per_block_bits + SECTOR_SHIFT);
+
+	if (buffers < DM_BUFIO_MIN_BUFFERS)
+		buffers = DM_BUFIO_MIN_BUFFERS;
+
+	*limit_buffers = buffers;
+	*threshold_buffers = buffers * DM_BUFIO_WRITEBACK_PERCENT / 100;
+}
+
+/*
+ * Check if we're over watermark.
+ * If we are over threshold_buffers, start freeing buffers.
+ * If we're over "limit_buffers", block until we get under the limit.
+ */
+static void __check_watermark(struct dm_bufio_client *c)
+{
+	unsigned long threshold_buffers, limit_buffers;
+
+	__get_memory_limit(c, &threshold_buffers, &limit_buffers);
+
+	while (c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY] >
+	       limit_buffers) {
+
+		struct dm_buffer *b = __get_unclaimed_buffer(c);
+
+		if (!b)
+			return;
+
+		__free_buffer_wake(b);
+		dm_bufio_cond_resched();
+	}
+
+	if (c->n_buffers[LIST_DIRTY] > threshold_buffers)
+		__write_dirty_buffers_async(c, 1);
+}
+
+/*
+ * Find a buffer in the hash.
+ */
+static struct dm_buffer *__find(struct dm_bufio_client *c, sector_t block)
+{
+	struct dm_buffer *b;
+	struct hlist_node *hn;
+
+	hlist_for_each_entry(b, hn, &c->cache_hash[DM_BUFIO_HASH(block)],
+			     hash_list) {
+		dm_bufio_cond_resched();
+		if (b->block == block)
+			return b;
+	}
+
+	return NULL;
+}
+
+/*----------------------------------------------------------------
+ * Getting a buffer
+ *--------------------------------------------------------------*/
+
+static struct dm_buffer *__bufio_new(struct dm_bufio_client *c, sector_t block,
+				     enum new_flag nf, int *need_submit)
+{
+	struct dm_buffer *b, *new_b = NULL;
+
+	*need_submit = 0;
+
+	b = __find(c, block);
+	if (b)
+		goto found_buffer;
+
+	if (nf == NF_GET)
+		return NULL;
+
+	new_b = __alloc_buffer_wait(c, nf);
+	if (!new_b)
+		return NULL;
+
+	/*
+	 * We've had a period where the mutex was unlocked, so need to
+	 * recheck the hash table.
+	 */
+	b = __find(c, block);
+	if (b) {
+		__free_buffer_wake(new_b);
+		goto found_buffer;
+	}
+
+	__check_watermark(c);
+
+	b = new_b;
+	b->hold_count = 1;
+	b->read_error = 0;
+	b->write_error = 0;
+	__link_buffer(b, block, LIST_CLEAN);
+
+	if (nf == NF_FRESH) {
+		b->state = 0;
+		return b;
+	}
+
+	b->state = 1 << B_READING;
+	*need_submit = 1;
+
+	return b;
+
+found_buffer:
+	if (nf == NF_PREFETCH)
+		return NULL;
+	/*
+	 * Note: it is essential that we don't wait for the buffer to be
+	 * read if dm_bufio_get function is used. Both dm_bufio_get and
+	 * dm_bufio_prefetch can be used in the driver request routine.
+	 * If the user called both dm_bufio_prefetch and dm_bufio_get on
+	 * the same buffer, it would deadlock if we waited.
+	 */
+	if (nf == NF_GET && unlikely(test_bit(B_READING, &b->state)))
+		return NULL;
+
+	b->hold_count++;
+	__relink_lru(b, test_bit(B_DIRTY, &b->state) ||
+		     test_bit(B_WRITING, &b->state));
+	return b;
+}
+
+/*
+ * The endio routine for reading: set the error, clear the bit and wake up
+ * anyone waiting on the buffer.
+ */
+static void read_endio(struct bio *bio, int error)
+{
+	struct dm_buffer *b = container_of(bio, struct dm_buffer, bio);
+
+	b->read_error = error;
+
+	BUG_ON(!test_bit(B_READING, &b->state));
+
+	smp_mb__before_clear_bit();
+	clear_bit(B_READING, &b->state);
+	smp_mb__after_clear_bit();
+
+	wake_up_bit(&b->state, B_READING);
+}
+
+/*
+ * A common routine for dm_bufio_new and dm_bufio_read.  Operation of these
+ * functions is similar except that dm_bufio_new doesn't read the
+ * buffer from the disk (assuming that the caller overwrites all the data
+ * and uses dm_bufio_mark_buffer_dirty to write new data back).
+ */
+static void *new_read(struct dm_bufio_client *c, sector_t block,
+		      enum new_flag nf, struct dm_buffer **bp)
+{
+	int need_submit;
+	struct dm_buffer *b;
+
+	dm_bufio_lock(c);
+	b = __bufio_new(c, block, nf, &need_submit);
+	dm_bufio_unlock(c);
+
+	if (!b)
+		return b;
+
+	if (need_submit)
+		submit_io(b, READ, b->block, read_endio);
+
+	wait_on_bit(&b->state, B_READING, do_io_schedule, TASK_UNINTERRUPTIBLE);
+
+	if (b->read_error) {
+		int error = b->read_error;
+
+		dm_bufio_release(b);
+
+		return ERR_PTR(error);
+	}
+
+	*bp = b;
+
+	return b->data;
+}
+
+void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
+		   struct dm_buffer **bp)
+{
+	return new_read(c, block, NF_GET, bp);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get);
+
+void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
+		    struct dm_buffer **bp)
+{
+	BUG_ON(dm_bufio_in_request());
+
+	return new_read(c, block, NF_READ, bp);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_read);
+
+void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
+		   struct dm_buffer **bp)
+{
+	BUG_ON(dm_bufio_in_request());
+
+	return new_read(c, block, NF_FRESH, bp);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_new);
+
+void dm_bufio_prefetch(struct dm_bufio_client *c,
+		       sector_t block, unsigned n_blocks)
+{
+	struct blk_plug plug;
+
+	blk_start_plug(&plug);
+	dm_bufio_lock(c);
+
+	for (; n_blocks--; block++) {
+		int need_submit;
+		struct dm_buffer *b;
+		b = __bufio_new(c, block, NF_PREFETCH, &need_submit);
+		if (unlikely(b != NULL)) {
+			dm_bufio_unlock(c);
+
+			if (need_submit)
+				submit_io(b, READ, b->block, read_endio);
+			dm_bufio_release(b);
+
+			dm_bufio_cond_resched();
+
+			if (!n_blocks)
+				goto flush_plug;
+			dm_bufio_lock(c);
+		}
+
+	}
+
+	dm_bufio_unlock(c);
+
+flush_plug:
+	blk_finish_plug(&plug);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_prefetch);
+
+void dm_bufio_release(struct dm_buffer *b)
+{
+	struct dm_bufio_client *c = b->c;
+
+	dm_bufio_lock(c);
+
+	BUG_ON(!b->hold_count);
+
+	b->hold_count--;
+	if (!b->hold_count) {
+		wake_up(&c->free_buffer_wait);
+
+		/*
+		 * If there were errors on the buffer, and the buffer is not
+		 * to be written, free the buffer. There is no point in caching
+		 * invalid buffer.
+		 */
+		if ((b->read_error || b->write_error) &&
+		    !test_bit(B_READING, &b->state) &&
+		    !test_bit(B_WRITING, &b->state) &&
+		    !test_bit(B_DIRTY, &b->state)) {
+			__unlink_buffer(b);
+			__free_buffer_wake(b);
+		}
+	}
+
+	dm_bufio_unlock(c);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_release);
+
+void dm_bufio_mark_buffer_dirty(struct dm_buffer *b)
+{
+	struct dm_bufio_client *c = b->c;
+
+	dm_bufio_lock(c);
+
+	BUG_ON(test_bit(B_READING, &b->state));
+
+	if (!test_and_set_bit(B_DIRTY, &b->state))
+		__relink_lru(b, LIST_DIRTY);
+
+	dm_bufio_unlock(c);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_mark_buffer_dirty);
+
+void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c)
+{
+	BUG_ON(dm_bufio_in_request());
+
+	dm_bufio_lock(c);
+	__write_dirty_buffers_async(c, 0);
+	dm_bufio_unlock(c);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers_async);
+
+/*
+ * For performance, it is essential that the buffers are written asynchronously
+ * and simultaneously (so that the block layer can merge the writes) and then
+ * waited upon.
+ *
+ * Finally, we flush hardware disk cache.
+ */
+int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c)
+{
+	int a, f;
+	unsigned long buffers_processed = 0;
+	struct dm_buffer *b, *tmp;
+
+	dm_bufio_lock(c);
+	__write_dirty_buffers_async(c, 0);
+
+again:
+	list_for_each_entry_safe_reverse(b, tmp, &c->lru[LIST_DIRTY], lru_list) {
+		int dropped_lock = 0;
+
+		if (buffers_processed < c->n_buffers[LIST_DIRTY])
+			buffers_processed++;
+
+		BUG_ON(test_bit(B_READING, &b->state));
+
+		if (test_bit(B_WRITING, &b->state)) {
+			if (buffers_processed < c->n_buffers[LIST_DIRTY]) {
+				dropped_lock = 1;
+				b->hold_count++;
+				dm_bufio_unlock(c);
+				wait_on_bit(&b->state, B_WRITING,
+					    do_io_schedule,
+					    TASK_UNINTERRUPTIBLE);
+				dm_bufio_lock(c);
+				b->hold_count--;
+			} else
+				wait_on_bit(&b->state, B_WRITING,
+					    do_io_schedule,
+					    TASK_UNINTERRUPTIBLE);
+		}
+
+		if (!test_bit(B_DIRTY, &b->state) &&
+		    !test_bit(B_WRITING, &b->state))
+			__relink_lru(b, LIST_CLEAN);
+
+		dm_bufio_cond_resched();
+
+		/*
+		 * If we dropped the lock, the list is no longer consistent,
+		 * so we must restart the search.
+		 *
+		 * In the most common case, the buffer just processed is
+		 * relinked to the clean list, so we won't loop scanning the
+		 * same buffer again and again.
+		 *
+		 * This may livelock if there is another thread simultaneously
+		 * dirtying buffers, so we count the number of buffers walked
+		 * and if it exceeds the total number of buffers, it means that
+		 * someone is doing some writes simultaneously with us.  In
+		 * this case, stop, dropping the lock.
+		 */
+		if (dropped_lock)
+			goto again;
+	}
+	wake_up(&c->free_buffer_wait);
+	dm_bufio_unlock(c);
+
+	a = xchg(&c->async_write_error, 0);
+	f = dm_bufio_issue_flush(c);
+	if (a)
+		return a;
+
+	return f;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_write_dirty_buffers);
+
+/*
+ * Use dm-io to send and empty barrier flush the device.
+ */
+int dm_bufio_issue_flush(struct dm_bufio_client *c)
+{
+	struct dm_io_request io_req = {
+		.bi_rw = REQ_FLUSH,
+		.mem.type = DM_IO_KMEM,
+		.mem.ptr.addr = NULL,
+		.client = c->dm_io,
+	};
+	struct dm_io_region io_reg = {
+		.bdev = c->bdev,
+		.sector = 0,
+		.count = 0,
+	};
+
+	BUG_ON(dm_bufio_in_request());
+
+	return dm_io(&io_req, 1, &io_reg, NULL);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_issue_flush);
+
+/*
+ * We first delete any other buffer that may be at that new location.
+ *
+ * Then, we write the buffer to the original location if it was dirty.
+ *
+ * Then, if we are the only one who is holding the buffer, relink the buffer
+ * in the hash queue for the new location.
+ *
+ * If there was someone else holding the buffer, we write it to the new
+ * location but not relink it, because that other user needs to have the buffer
+ * at the same place.
+ */
+void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block)
+{
+	struct dm_bufio_client *c = b->c;
+	struct dm_buffer *new;
+
+	BUG_ON(dm_bufio_in_request());
+
+	dm_bufio_lock(c);
+
+retry:
+	new = __find(c, new_block);
+	if (new) {
+		if (new->hold_count) {
+			__wait_for_free_buffer(c);
+			goto retry;
+		}
+
+		/*
+		 * FIXME: Is there any point waiting for a write that's going
+		 * to be overwritten in a bit?
+		 */
+		__make_buffer_clean(new);
+		__unlink_buffer(new);
+		__free_buffer_wake(new);
+	}
+
+	BUG_ON(!b->hold_count);
+	BUG_ON(test_bit(B_READING, &b->state));
+
+	__write_dirty_buffer(b);
+	if (b->hold_count == 1) {
+		wait_on_bit(&b->state, B_WRITING,
+			    do_io_schedule, TASK_UNINTERRUPTIBLE);
+		set_bit(B_DIRTY, &b->state);
+		__unlink_buffer(b);
+		__link_buffer(b, new_block, LIST_DIRTY);
+	} else {
+		sector_t old_block;
+		wait_on_bit_lock(&b->state, B_WRITING,
+				 do_io_schedule, TASK_UNINTERRUPTIBLE);
+		/*
+		 * Relink buffer to "new_block" so that write_callback
+		 * sees "new_block" as a block number.
+		 * After the write, link the buffer back to old_block.
+		 * All this must be done in bufio lock, so that block number
+		 * change isn't visible to other threads.
+		 */
+		old_block = b->block;
+		__unlink_buffer(b);
+		__link_buffer(b, new_block, b->list_mode);
+		submit_io(b, WRITE, new_block, write_endio);
+		wait_on_bit(&b->state, B_WRITING,
+			    do_io_schedule, TASK_UNINTERRUPTIBLE);
+		__unlink_buffer(b);
+		__link_buffer(b, old_block, b->list_mode);
+	}
+
+	dm_bufio_unlock(c);
+	dm_bufio_release(b);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_release_move);
+
+unsigned dm_bufio_get_block_size(struct dm_bufio_client *c)
+{
+	return c->block_size;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_block_size);
+
+sector_t dm_bufio_get_device_size(struct dm_bufio_client *c)
+{
+	return i_size_read(c->bdev->bd_inode) >>
+			   (SECTOR_SHIFT + c->sectors_per_block_bits);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_device_size);
+
+sector_t dm_bufio_get_block_number(struct dm_buffer *b)
+{
+	return b->block;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_block_number);
+
+void *dm_bufio_get_block_data(struct dm_buffer *b)
+{
+	return b->data;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_block_data);
+
+void *dm_bufio_get_aux_data(struct dm_buffer *b)
+{
+	return b + 1;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_aux_data);
+
+struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b)
+{
+	return b->c;
+}
+EXPORT_SYMBOL_GPL(dm_bufio_get_client);
+
+static void drop_buffers(struct dm_bufio_client *c)
+{
+	struct dm_buffer *b;
+	int i;
+
+	BUG_ON(dm_bufio_in_request());
+
+	/*
+	 * An optimization so that the buffers are not written one-by-one.
+	 */
+	dm_bufio_write_dirty_buffers_async(c);
+
+	dm_bufio_lock(c);
+
+	while ((b = __get_unclaimed_buffer(c)))
+		__free_buffer_wake(b);
+
+	for (i = 0; i < LIST_SIZE; i++)
+		list_for_each_entry(b, &c->lru[i], lru_list)
+			DMERR("leaked buffer %llx, hold count %u, list %d",
+			      (unsigned long long)b->block, b->hold_count, i);
+
+	for (i = 0; i < LIST_SIZE; i++)
+		BUG_ON(!list_empty(&c->lru[i]));
+
+	dm_bufio_unlock(c);
+}
+
+/*
+ * Test if the buffer is unused and too old, and commit it.
+ * And if GFP_NOFS is used, we must not do any I/O because we hold
+ * dm_bufio_clients_lock and we would risk deadlock if the I/O gets
+ * rerouted to different bufio client.
+ */
+static int __cleanup_old_buffer(struct dm_buffer *b, gfp_t gfp,
+				unsigned long max_jiffies)
+{
+	if (jiffies - b->last_accessed < max_jiffies)
+		return 1;
+
+	if (!(gfp & __GFP_FS)) {
+		if (test_bit(B_READING, &b->state) ||
+		    test_bit(B_WRITING, &b->state) ||
+		    test_bit(B_DIRTY, &b->state))
+			return 1;
+	}
+
+	if (b->hold_count)
+		return 1;
+
+	__make_buffer_clean(b);
+	__unlink_buffer(b);
+	__free_buffer_wake(b);
+
+	return 0;
+}
+
+static void __scan(struct dm_bufio_client *c, unsigned long nr_to_scan,
+		   struct shrink_control *sc)
+{
+	int l;
+	struct dm_buffer *b, *tmp;
+
+	for (l = 0; l < LIST_SIZE; l++) {
+		list_for_each_entry_safe_reverse(b, tmp, &c->lru[l], lru_list)
+			if (!__cleanup_old_buffer(b, sc->gfp_mask, 0) &&
+			    !--nr_to_scan)
+				return;
+		dm_bufio_cond_resched();
+	}
+}
+
+static int shrink(struct shrinker *shrinker, struct shrink_control *sc)
+{
+	struct dm_bufio_client *c =
+	    container_of(shrinker, struct dm_bufio_client, shrinker);
+	unsigned long r;
+	unsigned long nr_to_scan = sc->nr_to_scan;
+
+	if (sc->gfp_mask & __GFP_FS)
+		dm_bufio_lock(c);
+	else if (!dm_bufio_trylock(c))
+		return !nr_to_scan ? 0 : -1;
+
+	if (nr_to_scan)
+		__scan(c, nr_to_scan, sc);
+
+	r = c->n_buffers[LIST_CLEAN] + c->n_buffers[LIST_DIRTY];
+	if (r > INT_MAX)
+		r = INT_MAX;
+
+	dm_bufio_unlock(c);
+
+	return r;
+}
+
+/*
+ * Create the buffering interface
+ */
+struct dm_bufio_client *dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
+					       unsigned reserved_buffers, unsigned aux_size,
+					       void (*alloc_callback)(struct dm_buffer *),
+					       void (*write_callback)(struct dm_buffer *))
+{
+	int r;
+	struct dm_bufio_client *c;
+	unsigned i;
+
+	BUG_ON(block_size < 1 << SECTOR_SHIFT ||
+	       (block_size & (block_size - 1)));
+
+	c = kmalloc(sizeof(*c), GFP_KERNEL);
+	if (!c) {
+		r = -ENOMEM;
+		goto bad_client;
+	}
+	c->cache_hash = vmalloc(sizeof(struct hlist_head) << DM_BUFIO_HASH_BITS);
+	if (!c->cache_hash) {
+		r = -ENOMEM;
+		goto bad_hash;
+	}
+
+	c->bdev = bdev;
+	c->block_size = block_size;
+	c->sectors_per_block_bits = ffs(block_size) - 1 - SECTOR_SHIFT;
+	c->pages_per_block_bits = (ffs(block_size) - 1 >= PAGE_SHIFT) ?
+				  ffs(block_size) - 1 - PAGE_SHIFT : 0;
+	c->blocks_per_page_bits = (ffs(block_size) - 1 < PAGE_SHIFT ?
+				  PAGE_SHIFT - (ffs(block_size) - 1) : 0);
+
+	c->aux_size = aux_size;
+	c->alloc_callback = alloc_callback;
+	c->write_callback = write_callback;
+
+	for (i = 0; i < LIST_SIZE; i++) {
+		INIT_LIST_HEAD(&c->lru[i]);
+		c->n_buffers[i] = 0;
+	}
+
+	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
+		INIT_HLIST_HEAD(&c->cache_hash[i]);
+
+	mutex_init(&c->lock);
+	INIT_LIST_HEAD(&c->reserved_buffers);
+	c->need_reserved_buffers = reserved_buffers;
+
+	init_waitqueue_head(&c->free_buffer_wait);
+	c->async_write_error = 0;
+
+	c->dm_io = dm_io_client_create();
+	if (IS_ERR(c->dm_io)) {
+		r = PTR_ERR(c->dm_io);
+		goto bad_dm_io;
+	}
+
+	mutex_lock(&dm_bufio_clients_lock);
+	if (c->blocks_per_page_bits) {
+		if (!DM_BUFIO_CACHE_NAME(c)) {
+			DM_BUFIO_CACHE_NAME(c) = kasprintf(GFP_KERNEL, "dm_bufio_cache-%u", c->block_size);
+			if (!DM_BUFIO_CACHE_NAME(c)) {
+				r = -ENOMEM;
+				mutex_unlock(&dm_bufio_clients_lock);
+				goto bad_cache;
+			}
+		}
+
+		if (!DM_BUFIO_CACHE(c)) {
+			DM_BUFIO_CACHE(c) = kmem_cache_create(DM_BUFIO_CACHE_NAME(c),
+							      c->block_size,
+							      c->block_size, 0, NULL);
+			if (!DM_BUFIO_CACHE(c)) {
+				r = -ENOMEM;
+				mutex_unlock(&dm_bufio_clients_lock);
+				goto bad_cache;
+			}
+		}
+	}
+	mutex_unlock(&dm_bufio_clients_lock);
+
+	while (c->need_reserved_buffers) {
+		struct dm_buffer *b = alloc_buffer(c, GFP_KERNEL);
+
+		if (!b) {
+			r = -ENOMEM;
+			goto bad_buffer;
+		}
+		__free_buffer_wake(b);
+	}
+
+	mutex_lock(&dm_bufio_clients_lock);
+	dm_bufio_client_count++;
+	list_add(&c->client_list, &dm_bufio_all_clients);
+	__cache_size_refresh();
+	mutex_unlock(&dm_bufio_clients_lock);
+
+	c->shrinker.shrink = shrink;
+	c->shrinker.seeks = 1;
+	c->shrinker.batch = 0;
+	register_shrinker(&c->shrinker);
+
+	return c;
+
+bad_buffer:
+bad_cache:
+	while (!list_empty(&c->reserved_buffers)) {
+		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
+						 struct dm_buffer, lru_list);
+		list_del(&b->lru_list);
+		free_buffer(b);
+	}
+	dm_io_client_destroy(c->dm_io);
+bad_dm_io:
+	vfree(c->cache_hash);
+bad_hash:
+	kfree(c);
+bad_client:
+	return ERR_PTR(r);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_client_create);
+
+/*
+ * Free the buffering interface.
+ * It is required that there are no references on any buffers.
+ */
+void dm_bufio_client_destroy(struct dm_bufio_client *c)
+{
+	unsigned i;
+
+	drop_buffers(c);
+
+	unregister_shrinker(&c->shrinker);
+
+	mutex_lock(&dm_bufio_clients_lock);
+
+	list_del(&c->client_list);
+	dm_bufio_client_count--;
+	__cache_size_refresh();
+
+	mutex_unlock(&dm_bufio_clients_lock);
+
+	for (i = 0; i < 1 << DM_BUFIO_HASH_BITS; i++)
+		BUG_ON(!hlist_empty(&c->cache_hash[i]));
+
+	BUG_ON(c->need_reserved_buffers);
+
+	while (!list_empty(&c->reserved_buffers)) {
+		struct dm_buffer *b = list_entry(c->reserved_buffers.next,
+						 struct dm_buffer, lru_list);
+		list_del(&b->lru_list);
+		free_buffer(b);
+	}
+
+	for (i = 0; i < LIST_SIZE; i++)
+		if (c->n_buffers[i])
+			DMERR("leaked buffer count %d: %ld", i, c->n_buffers[i]);
+
+	for (i = 0; i < LIST_SIZE; i++)
+		BUG_ON(c->n_buffers[i]);
+
+	dm_io_client_destroy(c->dm_io);
+	vfree(c->cache_hash);
+	kfree(c);
+}
+EXPORT_SYMBOL_GPL(dm_bufio_client_destroy);
+
+static void cleanup_old_buffers(void)
+{
+	unsigned long max_age = dm_bufio_max_age;
+	struct dm_bufio_client *c;
+
+	barrier();
+
+	if (max_age > ULONG_MAX / HZ)
+		max_age = ULONG_MAX / HZ;
+
+	mutex_lock(&dm_bufio_clients_lock);
+	list_for_each_entry(c, &dm_bufio_all_clients, client_list) {
+		if (!dm_bufio_trylock(c))
+			continue;
+
+		while (!list_empty(&c->lru[LIST_CLEAN])) {
+			struct dm_buffer *b;
+			b = list_entry(c->lru[LIST_CLEAN].prev,
+				       struct dm_buffer, lru_list);
+			if (__cleanup_old_buffer(b, 0, max_age * HZ))
+				break;
+			dm_bufio_cond_resched();
+		}
+
+		dm_bufio_unlock(c);
+		dm_bufio_cond_resched();
+	}
+	mutex_unlock(&dm_bufio_clients_lock);
+}
+
+static struct workqueue_struct *dm_bufio_wq;
+static struct delayed_work dm_bufio_work;
+
+static void work_fn(struct work_struct *w)
+{
+	cleanup_old_buffers();
+
+	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
+			   DM_BUFIO_WORK_TIMER_SECS * HZ);
+}
+
+/*----------------------------------------------------------------
+ * Module setup
+ *--------------------------------------------------------------*/
+
+/*
+ * This is called only once for the whole dm_bufio module.
+ * It initializes memory limit.
+ */
+static int __init dm_bufio_init(void)
+{
+	__u64 mem;
+
+	dm_bufio_allocated_kmem_cache = 0;
+	dm_bufio_allocated_get_free_pages = 0;
+	dm_bufio_allocated_vmalloc = 0;
+	dm_bufio_current_allocated = 0;
+
+	memset(&dm_bufio_caches, 0, sizeof dm_bufio_caches);
+	memset(&dm_bufio_cache_names, 0, sizeof dm_bufio_cache_names);
+
+	mem = (__u64)((totalram_pages - totalhigh_pages) *
+		      DM_BUFIO_MEMORY_PERCENT / 100) << PAGE_SHIFT;
+
+	if (mem > ULONG_MAX)
+		mem = ULONG_MAX;
+
+#ifdef CONFIG_MMU
+	/*
+	 * Get the size of vmalloc space the same way as VMALLOC_TOTAL
+	 * in fs/proc/internal.h
+	 */
+	if (mem > (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100)
+		mem = (VMALLOC_END - VMALLOC_START) * DM_BUFIO_VMALLOC_PERCENT / 100;
+#endif
+
+	dm_bufio_default_cache_size = mem;
+
+	mutex_lock(&dm_bufio_clients_lock);
+	__cache_size_refresh();
+	mutex_unlock(&dm_bufio_clients_lock);
+
+	dm_bufio_wq = create_singlethread_workqueue("dm_bufio_cache");
+	if (!dm_bufio_wq)
+		return -ENOMEM;
+
+	INIT_DELAYED_WORK(&dm_bufio_work, work_fn);
+	queue_delayed_work(dm_bufio_wq, &dm_bufio_work,
+			   DM_BUFIO_WORK_TIMER_SECS * HZ);
+
+	return 0;
+}
+
+/*
+ * This is called once when unloading the dm_bufio module.
+ */
+static void __exit dm_bufio_exit(void)
+{
+	int bug = 0;
+	int i;
+
+	cancel_delayed_work_sync(&dm_bufio_work);
+	destroy_workqueue(dm_bufio_wq);
+
+	for (i = 0; i < ARRAY_SIZE(dm_bufio_caches); i++) {
+		struct kmem_cache *kc = dm_bufio_caches[i];
+
+		if (kc)
+			kmem_cache_destroy(kc);
+	}
+
+	for (i = 0; i < ARRAY_SIZE(dm_bufio_cache_names); i++)
+		kfree(dm_bufio_cache_names[i]);
+
+	if (dm_bufio_client_count) {
+		DMCRIT("%s: dm_bufio_client_count leaked: %d",
+			__func__, dm_bufio_client_count);
+		bug = 1;
+	}
+
+	if (dm_bufio_current_allocated) {
+		DMCRIT("%s: dm_bufio_current_allocated leaked: %lu",
+			__func__, dm_bufio_current_allocated);
+		bug = 1;
+	}
+
+	if (dm_bufio_allocated_get_free_pages) {
+		DMCRIT("%s: dm_bufio_allocated_get_free_pages leaked: %lu",
+		       __func__, dm_bufio_allocated_get_free_pages);
+		bug = 1;
+	}
+
+	if (dm_bufio_allocated_vmalloc) {
+		DMCRIT("%s: dm_bufio_vmalloc leaked: %lu",
+		       __func__, dm_bufio_allocated_vmalloc);
+		bug = 1;
+	}
+
+	if (bug)
+		BUG();
+}
+
+module_init(dm_bufio_init)
+module_exit(dm_bufio_exit)
+
+module_param_named(max_cache_size_bytes, dm_bufio_cache_size, ulong, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(max_cache_size_bytes, "Size of metadata cache");
+
+module_param_named(max_age_seconds, dm_bufio_max_age, uint, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(max_age_seconds, "Max age of a buffer in seconds");
+
+module_param_named(peak_allocated_bytes, dm_bufio_peak_allocated, ulong, S_IRUGO | S_IWUSR);
+MODULE_PARM_DESC(peak_allocated_bytes, "Tracks the maximum allocated memory");
+
+module_param_named(allocated_kmem_cache_bytes, dm_bufio_allocated_kmem_cache, ulong, S_IRUGO);
+MODULE_PARM_DESC(allocated_kmem_cache_bytes, "Memory allocated with kmem_cache_alloc");
+
+module_param_named(allocated_get_free_pages_bytes, dm_bufio_allocated_get_free_pages, ulong, S_IRUGO);
+MODULE_PARM_DESC(allocated_get_free_pages_bytes, "Memory allocated with get_free_pages");
+
+module_param_named(allocated_vmalloc_bytes, dm_bufio_allocated_vmalloc, ulong, S_IRUGO);
+MODULE_PARM_DESC(allocated_vmalloc_bytes, "Memory allocated with vmalloc");
+
+module_param_named(current_allocated_bytes, dm_bufio_current_allocated, ulong, S_IRUGO);
+MODULE_PARM_DESC(current_allocated_bytes, "Memory currently used by the cache");
+
+MODULE_AUTHOR("Mikulas Patocka <dm-devel@redhat.com>");
+MODULE_DESCRIPTION(DM_NAME " buffered I/O library");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-bufio.h b/ap/os/linux/linux-3.4.x/drivers/md/dm-bufio.h
new file mode 100644
index 0000000..b142946
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-bufio.h
@@ -0,0 +1,120 @@
+/*
+ * Copyright (C) 2009-2011 Red Hat, Inc.
+ *
+ * Author: Mikulas Patocka <mpatocka@redhat.com>
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_BUFIO_H
+#define DM_BUFIO_H
+
+#include <linux/blkdev.h>
+#include <linux/types.h>
+
+/*----------------------------------------------------------------*/
+
+struct dm_bufio_client;
+struct dm_buffer;
+
+/*
+ * Create a buffered IO cache on a given device
+ */
+struct dm_bufio_client *
+dm_bufio_client_create(struct block_device *bdev, unsigned block_size,
+		       unsigned reserved_buffers, unsigned aux_size,
+		       void (*alloc_callback)(struct dm_buffer *),
+		       void (*write_callback)(struct dm_buffer *));
+
+/*
+ * Release a buffered IO cache.
+ */
+void dm_bufio_client_destroy(struct dm_bufio_client *c);
+
+/*
+ * WARNING: to avoid deadlocks, these conditions are observed:
+ *
+ * - At most one thread can hold at most "reserved_buffers" simultaneously.
+ * - Each other threads can hold at most one buffer.
+ * - Threads which call only dm_bufio_get can hold unlimited number of
+ *   buffers.
+ */
+
+/*
+ * Read a given block from disk. Returns pointer to data.  Returns a
+ * pointer to dm_buffer that can be used to release the buffer or to make
+ * it dirty.
+ */
+void *dm_bufio_read(struct dm_bufio_client *c, sector_t block,
+		    struct dm_buffer **bp);
+
+/*
+ * Like dm_bufio_read, but return buffer from cache, don't read
+ * it. If the buffer is not in the cache, return NULL.
+ */
+void *dm_bufio_get(struct dm_bufio_client *c, sector_t block,
+		   struct dm_buffer **bp);
+
+/*
+ * Like dm_bufio_read, but don't read anything from the disk.  It is
+ * expected that the caller initializes the buffer and marks it dirty.
+ */
+void *dm_bufio_new(struct dm_bufio_client *c, sector_t block,
+		   struct dm_buffer **bp);
+
+/*
+ * Prefetch the specified blocks to the cache.
+ * The function starts to read the blocks and returns without waiting for
+ * I/O to finish.
+ */
+void dm_bufio_prefetch(struct dm_bufio_client *c,
+		       sector_t block, unsigned n_blocks);
+
+/*
+ * Release a reference obtained with dm_bufio_{read,get,new}. The data
+ * pointer and dm_buffer pointer is no longer valid after this call.
+ */
+void dm_bufio_release(struct dm_buffer *b);
+
+/*
+ * Mark a buffer dirty. It should be called after the buffer is modified.
+ *
+ * In case of memory pressure, the buffer may be written after
+ * dm_bufio_mark_buffer_dirty, but before dm_bufio_write_dirty_buffers.  So
+ * dm_bufio_write_dirty_buffers guarantees that the buffer is on-disk but
+ * the actual writing may occur earlier.
+ */
+void dm_bufio_mark_buffer_dirty(struct dm_buffer *b);
+
+/*
+ * Initiate writing of dirty buffers, without waiting for completion.
+ */
+void dm_bufio_write_dirty_buffers_async(struct dm_bufio_client *c);
+
+/*
+ * Write all dirty buffers. Guarantees that all dirty buffers created prior
+ * to this call are on disk when this call exits.
+ */
+int dm_bufio_write_dirty_buffers(struct dm_bufio_client *c);
+
+/*
+ * Send an empty write barrier to the device to flush hardware disk cache.
+ */
+int dm_bufio_issue_flush(struct dm_bufio_client *c);
+
+/*
+ * Like dm_bufio_release but also move the buffer to the new
+ * block. dm_bufio_write_dirty_buffers is needed to commit the new block.
+ */
+void dm_bufio_release_move(struct dm_buffer *b, sector_t new_block);
+
+unsigned dm_bufio_get_block_size(struct dm_bufio_client *c);
+sector_t dm_bufio_get_device_size(struct dm_bufio_client *c);
+sector_t dm_bufio_get_block_number(struct dm_buffer *b);
+void *dm_bufio_get_block_data(struct dm_buffer *b);
+void *dm_bufio_get_aux_data(struct dm_buffer *b);
+struct dm_bufio_client *dm_bufio_get_client(struct dm_buffer *b);
+
+/*----------------------------------------------------------------*/
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-builtin.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-builtin.c
new file mode 100755
index 0000000..797daec
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-builtin.c
@@ -0,0 +1,50 @@
+#include "dm.h"
+
+#include <linux/export.h>
+
+/*
+ * The kobject release method must not be placed in the module itself,
+ * otherwise we are subject to module unload races.
+ *
+ * The release method is called when the last reference to the kobject is
+ * dropped. It may be called by any other kernel code that drops the last
+ * reference.
+ *
+ * The release method suffers from module unload race. We may prevent the
+ * module from being unloaded at the start of the release method (using
+ * increased module reference count or synchronizing against the release
+ * method), however there is no way to prevent the module from being
+ * unloaded at the end of the release method.
+ *
+ * If this code were placed in the dm module, the following race may
+ * happen:
+ *  1. Some other process takes a reference to dm kobject
+ *  2. The user issues ioctl function to unload the dm device
+ *  3. dm_sysfs_exit calls kobject_put, however the object is not released
+ *     because of the other reference taken at step 1
+ *  4. dm_sysfs_exit waits on the completion
+ *  5. The other process that took the reference in step 1 drops it,
+ *     dm_kobject_release is called from this process
+ *  6. dm_kobject_release calls complete()
+ *  7. a reschedule happens before dm_kobject_release returns
+ *  8. dm_sysfs_exit continues, the dm device is unloaded, module reference
+ *     count is decremented
+ *  9. The user unloads the dm module
+ * 10. The other process that was rescheduled in step 7 continues to run,
+ *     it is now executing code in unloaded module, so it crashes
+ *
+ * Note that if the process that takes the foreign reference to dm kobject
+ * has a low priority and the system is sufficiently loaded with
+ * higher-priority processes that prevent the low-priority process from
+ * being scheduled long enough, this bug may really happen.
+ *
+ * In order to fix this module unload race, we place the release method
+ * into a helper code that is compiled directly into the kernel.
+ */
+
+void dm_kobject_release(struct kobject *kobj)
+{
+	complete(dm_get_completion_from_kobject(kobj));
+}
+
+EXPORT_SYMBOL(dm_kobject_release);
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-crypt.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-crypt.c
new file mode 100644
index 0000000..a1bd688
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-crypt.c
@@ -0,0 +1,1905 @@
+/*
+ * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
+ * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
+ * Copyright (C) 2006-2009 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/completion.h>
+#include <linux/err.h>
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/bio.h>
+#include <linux/blkdev.h>
+#include <linux/mempool.h>
+#include <linux/slab.h>
+#include <linux/crypto.h>
+#include <linux/workqueue.h>
+#include <linux/backing-dev.h>
+#include <linux/percpu.h>
+#include <linux/atomic.h>
+#include <linux/scatterlist.h>
+#include <asm/page.h>
+#include <asm/unaligned.h>
+#include <crypto/hash.h>
+#include <crypto/md5.h>
+#include <crypto/algapi.h>
+
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "crypt"
+
+/*
+ * context holding the current state of a multi-part conversion
+ */
+struct convert_context {
+	struct completion restart;
+	struct bio *bio_in;
+	struct bio *bio_out;
+	unsigned int offset_in;
+	unsigned int offset_out;
+	unsigned int idx_in;
+	unsigned int idx_out;
+	sector_t sector;
+	atomic_t pending;
+};
+
+/*
+ * per bio private data
+ */
+struct dm_crypt_io {
+	struct dm_target *target;
+	struct bio *base_bio;
+	struct work_struct work;
+
+	struct convert_context ctx;
+
+	atomic_t pending;
+	int error;
+	sector_t sector;
+	struct dm_crypt_io *base_io;
+};
+
+struct dm_crypt_request {
+	struct convert_context *ctx;
+	struct scatterlist sg_in;
+	struct scatterlist sg_out;
+	sector_t iv_sector;
+};
+
+struct crypt_config;
+
+struct crypt_iv_operations {
+	int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
+		   const char *opts);
+	void (*dtr)(struct crypt_config *cc);
+	int (*init)(struct crypt_config *cc);
+	int (*wipe)(struct crypt_config *cc);
+	int (*generator)(struct crypt_config *cc, u8 *iv,
+			 struct dm_crypt_request *dmreq);
+	int (*post)(struct crypt_config *cc, u8 *iv,
+		    struct dm_crypt_request *dmreq);
+};
+
+struct iv_essiv_private {
+	struct crypto_hash *hash_tfm;
+	u8 *salt;
+};
+
+struct iv_benbi_private {
+	int shift;
+};
+
+#define LMK_SEED_SIZE 64 /* hash + 0 */
+struct iv_lmk_private {
+	struct crypto_shash *hash_tfm;
+	u8 *seed;
+};
+
+/*
+ * Crypt: maps a linear range of a block device
+ * and encrypts / decrypts at the same time.
+ */
+enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID };
+
+/*
+ * Duplicated per-CPU state for cipher.
+ */
+struct crypt_cpu {
+	struct ablkcipher_request *req;
+	/* ESSIV: struct crypto_cipher *essiv_tfm */
+	void *iv_private;
+	struct crypto_ablkcipher *tfms[0];
+};
+
+/*
+ * The fields in here must be read only after initialization,
+ * changing state should be in crypt_cpu.
+ */
+struct crypt_config {
+	struct dm_dev *dev;
+	sector_t start;
+
+	/*
+	 * pool for per bio private data, crypto requests and
+	 * encryption requeusts/buffer pages
+	 */
+	mempool_t *io_pool;
+	mempool_t *req_pool;
+	mempool_t *page_pool;
+	struct bio_set *bs;
+
+	struct workqueue_struct *io_queue;
+	struct workqueue_struct *crypt_queue;
+
+	char *cipher;
+	char *cipher_string;
+
+	struct crypt_iv_operations *iv_gen_ops;
+	union {
+		struct iv_essiv_private essiv;
+		struct iv_benbi_private benbi;
+		struct iv_lmk_private lmk;
+	} iv_gen_private;
+	sector_t iv_offset;
+	unsigned int iv_size;
+
+	/*
+	 * Duplicated per cpu state. Access through
+	 * per_cpu_ptr() only.
+	 */
+	struct crypt_cpu __percpu *cpu;
+	unsigned tfms_count;
+
+	/*
+	 * Layout of each crypto request:
+	 *
+	 *   struct ablkcipher_request
+	 *      context
+	 *      padding
+	 *   struct dm_crypt_request
+	 *      padding
+	 *   IV
+	 *
+	 * The padding is added so that dm_crypt_request and the IV are
+	 * correctly aligned.
+	 */
+	unsigned int dmreq_start;
+
+	unsigned long flags;
+	unsigned int key_size;
+	unsigned int key_parts;
+	u8 key[0];
+};
+
+#define MIN_IOS        16
+#define MIN_POOL_PAGES 32
+
+static struct kmem_cache *_crypt_io_pool;
+
+static void clone_init(struct dm_crypt_io *, struct bio *);
+static void kcryptd_queue_crypt(struct dm_crypt_io *io);
+static u8 *iv_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq);
+
+static struct crypt_cpu *this_crypt_config(struct crypt_config *cc)
+{
+	return this_cpu_ptr(cc->cpu);
+}
+
+/*
+ * Use this to access cipher attributes that are the same for each CPU.
+ */
+static struct crypto_ablkcipher *any_tfm(struct crypt_config *cc)
+{
+	return __this_cpu_ptr(cc->cpu)->tfms[0];
+}
+
+/*
+ * Different IV generation algorithms:
+ *
+ * plain: the initial vector is the 32-bit little-endian version of the sector
+ *        number, padded with zeros if necessary.
+ *
+ * plain64: the initial vector is the 64-bit little-endian version of the sector
+ *        number, padded with zeros if necessary.
+ *
+ * essiv: "encrypted sector|salt initial vector", the sector number is
+ *        encrypted with the bulk cipher using a salt as key. The salt
+ *        should be derived from the bulk cipher's key via hashing.
+ *
+ * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
+ *        (needed for LRW-32-AES and possible other narrow block modes)
+ *
+ * null: the initial vector is always zero.  Provides compatibility with
+ *       obsolete loop_fish2 devices.  Do not use for new devices.
+ *
+ * lmk:  Compatible implementation of the block chaining mode used
+ *       by the Loop-AES block device encryption system
+ *       designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
+ *       It operates on full 512 byte sectors and uses CBC
+ *       with an IV derived from the sector number, the data and
+ *       optionally extra IV seed.
+ *       This means that after decryption the first block
+ *       of sector must be tweaked according to decrypted data.
+ *       Loop-AES can use three encryption schemes:
+ *         version 1: is plain aes-cbc mode
+ *         version 2: uses 64 multikey scheme with lmk IV generator
+ *         version 3: the same as version 2 with additional IV seed
+ *                   (it uses 65 keys, last key is used as IV seed)
+ *
+ * plumb: unimplemented, see:
+ * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
+ */
+
+static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
+			      struct dm_crypt_request *dmreq)
+{
+	memset(iv, 0, cc->iv_size);
+	*(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
+
+	return 0;
+}
+
+static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
+				struct dm_crypt_request *dmreq)
+{
+	memset(iv, 0, cc->iv_size);
+	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
+
+	return 0;
+}
+
+/* Initialise ESSIV - compute salt but no local memory allocations */
+static int crypt_iv_essiv_init(struct crypt_config *cc)
+{
+	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
+	struct hash_desc desc;
+	struct scatterlist sg;
+	struct crypto_cipher *essiv_tfm;
+	int err, cpu;
+
+	sg_init_one(&sg, cc->key, cc->key_size);
+	desc.tfm = essiv->hash_tfm;
+	desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
+
+	err = crypto_hash_digest(&desc, &sg, cc->key_size, essiv->salt);
+	if (err)
+		return err;
+
+	for_each_possible_cpu(cpu) {
+		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private,
+
+		err = crypto_cipher_setkey(essiv_tfm, essiv->salt,
+				    crypto_hash_digestsize(essiv->hash_tfm));
+		if (err)
+			return err;
+	}
+
+	return 0;
+}
+
+/* Wipe salt and reset key derived from volume key */
+static int crypt_iv_essiv_wipe(struct crypt_config *cc)
+{
+	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
+	unsigned salt_size = crypto_hash_digestsize(essiv->hash_tfm);
+	struct crypto_cipher *essiv_tfm;
+	int cpu, r, err = 0;
+
+	memset(essiv->salt, 0, salt_size);
+
+	for_each_possible_cpu(cpu) {
+		essiv_tfm = per_cpu_ptr(cc->cpu, cpu)->iv_private;
+		r = crypto_cipher_setkey(essiv_tfm, essiv->salt, salt_size);
+		if (r)
+			err = r;
+	}
+
+	return err;
+}
+
+/* Set up per cpu cipher state */
+static struct crypto_cipher *setup_essiv_cpu(struct crypt_config *cc,
+					     struct dm_target *ti,
+					     u8 *salt, unsigned saltsize)
+{
+	struct crypto_cipher *essiv_tfm;
+	int err;
+
+	/* Setup the essiv_tfm with the given salt */
+	essiv_tfm = crypto_alloc_cipher(cc->cipher, 0, CRYPTO_ALG_ASYNC);
+	if (IS_ERR(essiv_tfm)) {
+		ti->error = "Error allocating crypto tfm for ESSIV";
+		return essiv_tfm;
+	}
+
+	if (crypto_cipher_blocksize(essiv_tfm) !=
+	    crypto_ablkcipher_ivsize(any_tfm(cc))) {
+		ti->error = "Block size of ESSIV cipher does "
+			    "not match IV size of block cipher";
+		crypto_free_cipher(essiv_tfm);
+		return ERR_PTR(-EINVAL);
+	}
+
+	err = crypto_cipher_setkey(essiv_tfm, salt, saltsize);
+	if (err) {
+		ti->error = "Failed to set key for ESSIV cipher";
+		crypto_free_cipher(essiv_tfm);
+		return ERR_PTR(err);
+	}
+
+	return essiv_tfm;
+}
+
+static void crypt_iv_essiv_dtr(struct crypt_config *cc)
+{
+	int cpu;
+	struct crypt_cpu *cpu_cc;
+	struct crypto_cipher *essiv_tfm;
+	struct iv_essiv_private *essiv = &cc->iv_gen_private.essiv;
+
+	crypto_free_hash(essiv->hash_tfm);
+	essiv->hash_tfm = NULL;
+
+	kzfree(essiv->salt);
+	essiv->salt = NULL;
+
+	for_each_possible_cpu(cpu) {
+		cpu_cc = per_cpu_ptr(cc->cpu, cpu);
+		essiv_tfm = cpu_cc->iv_private;
+
+		if (essiv_tfm)
+			crypto_free_cipher(essiv_tfm);
+
+		cpu_cc->iv_private = NULL;
+	}
+}
+
+static int crypt_iv_essiv_ctr(struct crypt_config *cc, struct dm_target *ti,
+			      const char *opts)
+{
+	struct crypto_cipher *essiv_tfm = NULL;
+	struct crypto_hash *hash_tfm = NULL;
+	u8 *salt = NULL;
+	int err, cpu;
+
+	if (!opts) {
+		ti->error = "Digest algorithm missing for ESSIV mode";
+		return -EINVAL;
+	}
+
+	/* Allocate hash algorithm */
+	hash_tfm = crypto_alloc_hash(opts, 0, CRYPTO_ALG_ASYNC);
+	if (IS_ERR(hash_tfm)) {
+		ti->error = "Error initializing ESSIV hash";
+		err = PTR_ERR(hash_tfm);
+		goto bad;
+	}
+
+	salt = kzalloc(crypto_hash_digestsize(hash_tfm), GFP_KERNEL);
+	if (!salt) {
+		ti->error = "Error kmallocing salt storage in ESSIV";
+		err = -ENOMEM;
+		goto bad;
+	}
+
+	cc->iv_gen_private.essiv.salt = salt;
+	cc->iv_gen_private.essiv.hash_tfm = hash_tfm;
+
+	for_each_possible_cpu(cpu) {
+		essiv_tfm = setup_essiv_cpu(cc, ti, salt,
+					crypto_hash_digestsize(hash_tfm));
+		if (IS_ERR(essiv_tfm)) {
+			crypt_iv_essiv_dtr(cc);
+			return PTR_ERR(essiv_tfm);
+		}
+		per_cpu_ptr(cc->cpu, cpu)->iv_private = essiv_tfm;
+	}
+
+	return 0;
+
+bad:
+	if (hash_tfm && !IS_ERR(hash_tfm))
+		crypto_free_hash(hash_tfm);
+	kfree(salt);
+	return err;
+}
+
+static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
+			      struct dm_crypt_request *dmreq)
+{
+	struct crypto_cipher *essiv_tfm = this_crypt_config(cc)->iv_private;
+
+	memset(iv, 0, cc->iv_size);
+	*(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
+	crypto_cipher_encrypt_one(essiv_tfm, iv, iv);
+
+	return 0;
+}
+
+static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
+			      const char *opts)
+{
+	unsigned bs = crypto_ablkcipher_blocksize(any_tfm(cc));
+	int log = ilog2(bs);
+
+	/* we need to calculate how far we must shift the sector count
+	 * to get the cipher block count, we use this shift in _gen */
+
+	if (1 << log != bs) {
+		ti->error = "cypher blocksize is not a power of 2";
+		return -EINVAL;
+	}
+
+	if (log > 9) {
+		ti->error = "cypher blocksize is > 512";
+		return -EINVAL;
+	}
+
+	cc->iv_gen_private.benbi.shift = 9 - log;
+
+	return 0;
+}
+
+static void crypt_iv_benbi_dtr(struct crypt_config *cc)
+{
+}
+
+static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
+			      struct dm_crypt_request *dmreq)
+{
+	__be64 val;
+
+	memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
+
+	val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
+	put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
+
+	return 0;
+}
+
+static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
+			     struct dm_crypt_request *dmreq)
+{
+	memset(iv, 0, cc->iv_size);
+
+	return 0;
+}
+
+static void crypt_iv_lmk_dtr(struct crypt_config *cc)
+{
+	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+
+	if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
+		crypto_free_shash(lmk->hash_tfm);
+	lmk->hash_tfm = NULL;
+
+	kzfree(lmk->seed);
+	lmk->seed = NULL;
+}
+
+static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
+			    const char *opts)
+{
+	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+
+	lmk->hash_tfm = crypto_alloc_shash("md5", 0, 0);
+	if (IS_ERR(lmk->hash_tfm)) {
+		ti->error = "Error initializing LMK hash";
+		return PTR_ERR(lmk->hash_tfm);
+	}
+
+	/* No seed in LMK version 2 */
+	if (cc->key_parts == cc->tfms_count) {
+		lmk->seed = NULL;
+		return 0;
+	}
+
+	lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
+	if (!lmk->seed) {
+		crypt_iv_lmk_dtr(cc);
+		ti->error = "Error kmallocing seed storage in LMK";
+		return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static int crypt_iv_lmk_init(struct crypt_config *cc)
+{
+	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+	int subkey_size = cc->key_size / cc->key_parts;
+
+	/* LMK seed is on the position of LMK_KEYS + 1 key */
+	if (lmk->seed)
+		memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
+		       crypto_shash_digestsize(lmk->hash_tfm));
+
+	return 0;
+}
+
+static int crypt_iv_lmk_wipe(struct crypt_config *cc)
+{
+	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+
+	if (lmk->seed)
+		memset(lmk->seed, 0, LMK_SEED_SIZE);
+
+	return 0;
+}
+
+static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
+			    struct dm_crypt_request *dmreq,
+			    u8 *data)
+{
+	struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
+	struct {
+		struct shash_desc desc;
+		char ctx[crypto_shash_descsize(lmk->hash_tfm)];
+	} sdesc;
+	struct md5_state md5state;
+	u32 buf[4];
+	int i, r;
+
+	sdesc.desc.tfm = lmk->hash_tfm;
+	sdesc.desc.flags = CRYPTO_TFM_REQ_MAY_SLEEP;
+
+	r = crypto_shash_init(&sdesc.desc);
+	if (r)
+		return r;
+
+	if (lmk->seed) {
+		r = crypto_shash_update(&sdesc.desc, lmk->seed, LMK_SEED_SIZE);
+		if (r)
+			return r;
+	}
+
+	/* Sector is always 512B, block size 16, add data of blocks 1-31 */
+	r = crypto_shash_update(&sdesc.desc, data + 16, 16 * 31);
+	if (r)
+		return r;
+
+	/* Sector is cropped to 56 bits here */
+	buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
+	buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
+	buf[2] = cpu_to_le32(4024);
+	buf[3] = 0;
+	r = crypto_shash_update(&sdesc.desc, (u8 *)buf, sizeof(buf));
+	if (r)
+		return r;
+
+	/* No MD5 padding here */
+	r = crypto_shash_export(&sdesc.desc, &md5state);
+	if (r)
+		return r;
+
+	for (i = 0; i < MD5_HASH_WORDS; i++)
+		__cpu_to_le32s(&md5state.hash[i]);
+	memcpy(iv, &md5state.hash, cc->iv_size);
+
+	return 0;
+}
+
+static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
+			    struct dm_crypt_request *dmreq)
+{
+	u8 *src;
+	int r = 0;
+
+	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
+		src = kmap_atomic(sg_page(&dmreq->sg_in));
+		r = crypt_iv_lmk_one(cc, iv, dmreq, src + dmreq->sg_in.offset);
+		kunmap_atomic(src);
+	} else
+		memset(iv, 0, cc->iv_size);
+
+	return r;
+}
+
+static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
+			     struct dm_crypt_request *dmreq)
+{
+	u8 *dst;
+	int r;
+
+	if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
+		return 0;
+
+	dst = kmap_atomic(sg_page(&dmreq->sg_out));
+	r = crypt_iv_lmk_one(cc, iv, dmreq, dst + dmreq->sg_out.offset);
+
+	/* Tweak the first block of plaintext sector */
+	if (!r)
+		crypto_xor(dst + dmreq->sg_out.offset, iv, cc->iv_size);
+
+	kunmap_atomic(dst);
+	return r;
+}
+
+static struct crypt_iv_operations crypt_iv_plain_ops = {
+	.generator = crypt_iv_plain_gen
+};
+
+static struct crypt_iv_operations crypt_iv_plain64_ops = {
+	.generator = crypt_iv_plain64_gen
+};
+
+static struct crypt_iv_operations crypt_iv_essiv_ops = {
+	.ctr       = crypt_iv_essiv_ctr,
+	.dtr       = crypt_iv_essiv_dtr,
+	.init      = crypt_iv_essiv_init,
+	.wipe      = crypt_iv_essiv_wipe,
+	.generator = crypt_iv_essiv_gen
+};
+
+static struct crypt_iv_operations crypt_iv_benbi_ops = {
+	.ctr	   = crypt_iv_benbi_ctr,
+	.dtr	   = crypt_iv_benbi_dtr,
+	.generator = crypt_iv_benbi_gen
+};
+
+static struct crypt_iv_operations crypt_iv_null_ops = {
+	.generator = crypt_iv_null_gen
+};
+
+static struct crypt_iv_operations crypt_iv_lmk_ops = {
+	.ctr	   = crypt_iv_lmk_ctr,
+	.dtr	   = crypt_iv_lmk_dtr,
+	.init	   = crypt_iv_lmk_init,
+	.wipe	   = crypt_iv_lmk_wipe,
+	.generator = crypt_iv_lmk_gen,
+	.post	   = crypt_iv_lmk_post
+};
+
+static void crypt_convert_init(struct crypt_config *cc,
+			       struct convert_context *ctx,
+			       struct bio *bio_out, struct bio *bio_in,
+			       sector_t sector)
+{
+	ctx->bio_in = bio_in;
+	ctx->bio_out = bio_out;
+	ctx->offset_in = 0;
+	ctx->offset_out = 0;
+	ctx->idx_in = bio_in ? bio_in->bi_idx : 0;
+	ctx->idx_out = bio_out ? bio_out->bi_idx : 0;
+	ctx->sector = sector + cc->iv_offset;
+	init_completion(&ctx->restart);
+}
+
+static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
+					     struct ablkcipher_request *req)
+{
+	return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
+}
+
+static struct ablkcipher_request *req_of_dmreq(struct crypt_config *cc,
+					       struct dm_crypt_request *dmreq)
+{
+	return (struct ablkcipher_request *)((char *)dmreq - cc->dmreq_start);
+}
+
+static u8 *iv_of_dmreq(struct crypt_config *cc,
+		       struct dm_crypt_request *dmreq)
+{
+	return (u8 *)ALIGN((unsigned long)(dmreq + 1),
+		crypto_ablkcipher_alignmask(any_tfm(cc)) + 1);
+}
+
+static int crypt_convert_block(struct crypt_config *cc,
+			       struct convert_context *ctx,
+			       struct ablkcipher_request *req)
+{
+	struct bio_vec *bv_in = bio_iovec_idx(ctx->bio_in, ctx->idx_in);
+	struct bio_vec *bv_out = bio_iovec_idx(ctx->bio_out, ctx->idx_out);
+	struct dm_crypt_request *dmreq;
+	u8 *iv;
+	int r = 0;
+
+	dmreq = dmreq_of_req(cc, req);
+	iv = iv_of_dmreq(cc, dmreq);
+
+	dmreq->iv_sector = ctx->sector;
+	dmreq->ctx = ctx;
+	sg_init_table(&dmreq->sg_in, 1);
+	sg_set_page(&dmreq->sg_in, bv_in->bv_page, 1 << SECTOR_SHIFT,
+		    bv_in->bv_offset + ctx->offset_in);
+
+	sg_init_table(&dmreq->sg_out, 1);
+	sg_set_page(&dmreq->sg_out, bv_out->bv_page, 1 << SECTOR_SHIFT,
+		    bv_out->bv_offset + ctx->offset_out);
+
+	ctx->offset_in += 1 << SECTOR_SHIFT;
+	if (ctx->offset_in >= bv_in->bv_len) {
+		ctx->offset_in = 0;
+		ctx->idx_in++;
+	}
+
+	ctx->offset_out += 1 << SECTOR_SHIFT;
+	if (ctx->offset_out >= bv_out->bv_len) {
+		ctx->offset_out = 0;
+		ctx->idx_out++;
+	}
+
+	if (cc->iv_gen_ops) {
+		r = cc->iv_gen_ops->generator(cc, iv, dmreq);
+		if (r < 0)
+			return r;
+	}
+
+	ablkcipher_request_set_crypt(req, &dmreq->sg_in, &dmreq->sg_out,
+				     1 << SECTOR_SHIFT, iv);
+
+	if (bio_data_dir(ctx->bio_in) == WRITE)
+		r = crypto_ablkcipher_encrypt(req);
+	else
+		r = crypto_ablkcipher_decrypt(req);
+
+	if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
+		r = cc->iv_gen_ops->post(cc, iv, dmreq);
+
+	return r;
+}
+
+static void kcryptd_async_done(struct crypto_async_request *async_req,
+			       int error);
+
+static void crypt_alloc_req(struct crypt_config *cc,
+			    struct convert_context *ctx)
+{
+	struct crypt_cpu *this_cc = this_crypt_config(cc);
+	unsigned key_index = ctx->sector & (cc->tfms_count - 1);
+
+	if (!this_cc->req)
+		this_cc->req = mempool_alloc(cc->req_pool, GFP_NOIO);
+
+	ablkcipher_request_set_tfm(this_cc->req, this_cc->tfms[key_index]);
+	ablkcipher_request_set_callback(this_cc->req,
+	    CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
+	    kcryptd_async_done, dmreq_of_req(cc, this_cc->req));
+}
+
+/*
+ * Encrypt / decrypt data from one bio to another one (can be the same one)
+ */
+static int crypt_convert(struct crypt_config *cc,
+			 struct convert_context *ctx)
+{
+	struct crypt_cpu *this_cc = this_crypt_config(cc);
+	int r;
+
+	atomic_set(&ctx->pending, 1);
+
+	while(ctx->idx_in < ctx->bio_in->bi_vcnt &&
+	      ctx->idx_out < ctx->bio_out->bi_vcnt) {
+
+		crypt_alloc_req(cc, ctx);
+
+		atomic_inc(&ctx->pending);
+
+		r = crypt_convert_block(cc, ctx, this_cc->req);
+
+		switch (r) {
+		/* async */
+		case -EINPROGRESS:
+		case -EBUSY:
+			wait_for_completion(&ctx->restart);
+			INIT_COMPLETION(ctx->restart);
+			this_cc->req = NULL;
+			ctx->sector++;
+			continue;
+
+		/* sync */
+		case 0:
+			atomic_dec(&ctx->pending);
+			ctx->sector++;
+			cond_resched();
+			continue;
+
+		/* error */
+		default:
+			atomic_dec(&ctx->pending);
+			return r;
+		}
+	}
+
+	return 0;
+}
+
+static void dm_crypt_bio_destructor(struct bio *bio)
+{
+	struct dm_crypt_io *io = bio->bi_private;
+	struct crypt_config *cc = io->target->private;
+
+	bio_free(bio, cc->bs);
+}
+
+/*
+ * Generate a new unfragmented bio with the given size
+ * This should never violate the device limitations
+ * May return a smaller bio when running out of pages, indicated by
+ * *out_of_pages set to 1.
+ */
+static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size,
+				      unsigned *out_of_pages)
+{
+	struct crypt_config *cc = io->target->private;
+	struct bio *clone;
+	unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
+	gfp_t gfp_mask = GFP_NOIO | __GFP_HIGHMEM;
+	unsigned i, len;
+	struct page *page;
+
+	clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, cc->bs);
+	if (!clone)
+		return NULL;
+
+	clone_init(io, clone);
+	*out_of_pages = 0;
+
+	for (i = 0; i < nr_iovecs; i++) {
+		page = mempool_alloc(cc->page_pool, gfp_mask);
+		if (!page) {
+			*out_of_pages = 1;
+			break;
+		}
+
+		/*
+		 * If additional pages cannot be allocated without waiting,
+		 * return a partially-allocated bio.  The caller will then try
+		 * to allocate more bios while submitting this partial bio.
+		 */
+		gfp_mask = (gfp_mask | __GFP_NOWARN) & ~__GFP_WAIT;
+
+		len = (size > PAGE_SIZE) ? PAGE_SIZE : size;
+
+		if (!bio_add_page(clone, page, len, 0)) {
+			mempool_free(page, cc->page_pool);
+			break;
+		}
+
+		size -= len;
+	}
+
+	if (!clone->bi_size) {
+		bio_put(clone);
+		return NULL;
+	}
+
+	return clone;
+}
+
+static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
+{
+	unsigned int i;
+	struct bio_vec *bv;
+
+	for (i = 0; i < clone->bi_vcnt; i++) {
+		bv = bio_iovec_idx(clone, i);
+		BUG_ON(!bv->bv_page);
+		mempool_free(bv->bv_page, cc->page_pool);
+		bv->bv_page = NULL;
+	}
+}
+
+static struct dm_crypt_io *crypt_io_alloc(struct dm_target *ti,
+					  struct bio *bio, sector_t sector)
+{
+	struct crypt_config *cc = ti->private;
+	struct dm_crypt_io *io;
+
+	io = mempool_alloc(cc->io_pool, GFP_NOIO);
+	io->target = ti;
+	io->base_bio = bio;
+	io->sector = sector;
+	io->error = 0;
+	io->base_io = NULL;
+	atomic_set(&io->pending, 0);
+
+	return io;
+}
+
+static void crypt_inc_pending(struct dm_crypt_io *io)
+{
+	atomic_inc(&io->pending);
+}
+
+/*
+ * One of the bios was finished. Check for completion of
+ * the whole request and correctly clean up the buffer.
+ * If base_io is set, wait for the last fragment to complete.
+ */
+static void crypt_dec_pending(struct dm_crypt_io *io)
+{
+	struct crypt_config *cc = io->target->private;
+	struct bio *base_bio = io->base_bio;
+	struct dm_crypt_io *base_io = io->base_io;
+	int error = io->error;
+
+	if (!atomic_dec_and_test(&io->pending))
+		return;
+
+	mempool_free(io, cc->io_pool);
+
+	if (likely(!base_io))
+		bio_endio(base_bio, error);
+	else {
+		if (error && !base_io->error)
+			base_io->error = error;
+		crypt_dec_pending(base_io);
+	}
+}
+
+/*
+ * kcryptd/kcryptd_io:
+ *
+ * Needed because it would be very unwise to do decryption in an
+ * interrupt context.
+ *
+ * kcryptd performs the actual encryption or decryption.
+ *
+ * kcryptd_io performs the IO submission.
+ *
+ * They must be separated as otherwise the final stages could be
+ * starved by new requests which can block in the first stages due
+ * to memory allocation.
+ *
+ * The work is done per CPU global for all dm-crypt instances.
+ * They should not depend on each other and do not block.
+ */
+static void crypt_endio(struct bio *clone, int error)
+{
+	struct dm_crypt_io *io = clone->bi_private;
+	struct crypt_config *cc = io->target->private;
+	unsigned rw = bio_data_dir(clone);
+
+	if (unlikely(!bio_flagged(clone, BIO_UPTODATE) && !error))
+		error = -EIO;
+
+	/*
+	 * free the processed pages
+	 */
+	if (rw == WRITE)
+		crypt_free_buffer_pages(cc, clone);
+
+	bio_put(clone);
+
+	if (rw == READ && !error) {
+		kcryptd_queue_crypt(io);
+		return;
+	}
+
+	if (unlikely(error))
+		io->error = error;
+
+	crypt_dec_pending(io);
+}
+
+static void clone_init(struct dm_crypt_io *io, struct bio *clone)
+{
+	struct crypt_config *cc = io->target->private;
+
+	clone->bi_private = io;
+	clone->bi_end_io  = crypt_endio;
+	clone->bi_bdev    = cc->dev->bdev;
+	clone->bi_rw      = io->base_bio->bi_rw;
+	clone->bi_destructor = dm_crypt_bio_destructor;
+}
+
+static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
+{
+	struct crypt_config *cc = io->target->private;
+	struct bio *base_bio = io->base_bio;
+	struct bio *clone;
+
+	/*
+	 * The block layer might modify the bvec array, so always
+	 * copy the required bvecs because we need the original
+	 * one in order to decrypt the whole bio data *afterwards*.
+	 */
+	clone = bio_alloc_bioset(gfp, bio_segments(base_bio), cc->bs);
+	if (!clone)
+		return 1;
+
+	crypt_inc_pending(io);
+
+	clone_init(io, clone);
+	clone->bi_idx = 0;
+	clone->bi_vcnt = bio_segments(base_bio);
+	clone->bi_size = base_bio->bi_size;
+	clone->bi_sector = cc->start + io->sector;
+	memcpy(clone->bi_io_vec, bio_iovec(base_bio),
+	       sizeof(struct bio_vec) * clone->bi_vcnt);
+
+	generic_make_request(clone);
+	return 0;
+}
+
+static void kcryptd_io_write(struct dm_crypt_io *io)
+{
+	struct bio *clone = io->ctx.bio_out;
+	generic_make_request(clone);
+}
+
+static void kcryptd_io(struct work_struct *work)
+{
+	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+
+	if (bio_data_dir(io->base_bio) == READ) {
+		crypt_inc_pending(io);
+		if (kcryptd_io_read(io, GFP_NOIO))
+			io->error = -ENOMEM;
+		crypt_dec_pending(io);
+	} else
+		kcryptd_io_write(io);
+}
+
+static void kcryptd_queue_io(struct dm_crypt_io *io)
+{
+	struct crypt_config *cc = io->target->private;
+
+	INIT_WORK(&io->work, kcryptd_io);
+	queue_work(cc->io_queue, &io->work);
+}
+
+static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
+{
+	struct bio *clone = io->ctx.bio_out;
+	struct crypt_config *cc = io->target->private;
+
+	if (unlikely(io->error < 0)) {
+		crypt_free_buffer_pages(cc, clone);
+		bio_put(clone);
+		crypt_dec_pending(io);
+		return;
+	}
+
+	/* crypt_convert should have filled the clone bio */
+	BUG_ON(io->ctx.idx_out < clone->bi_vcnt);
+
+	clone->bi_sector = cc->start + io->sector;
+
+	if (async)
+		kcryptd_queue_io(io);
+	else
+		generic_make_request(clone);
+}
+
+static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
+{
+	struct crypt_config *cc = io->target->private;
+	struct bio *clone;
+	struct dm_crypt_io *new_io;
+	int crypt_finished;
+	unsigned out_of_pages = 0;
+	unsigned remaining = io->base_bio->bi_size;
+	sector_t sector = io->sector;
+	int r;
+
+	/*
+	 * Prevent io from disappearing until this function completes.
+	 */
+	crypt_inc_pending(io);
+	crypt_convert_init(cc, &io->ctx, NULL, io->base_bio, sector);
+
+	/*
+	 * The allocated buffers can be smaller than the whole bio,
+	 * so repeat the whole process until all the data can be handled.
+	 */
+	while (remaining) {
+		clone = crypt_alloc_buffer(io, remaining, &out_of_pages);
+		if (unlikely(!clone)) {
+			io->error = -ENOMEM;
+			break;
+		}
+
+		io->ctx.bio_out = clone;
+		io->ctx.idx_out = 0;
+
+		remaining -= clone->bi_size;
+		sector += bio_sectors(clone);
+
+		crypt_inc_pending(io);
+
+		r = crypt_convert(cc, &io->ctx);
+		if (r < 0)
+			io->error = -EIO;
+
+		crypt_finished = atomic_dec_and_test(&io->ctx.pending);
+
+		/* Encryption was already finished, submit io now */
+		if (crypt_finished) {
+			kcryptd_crypt_write_io_submit(io, 0);
+
+			/*
+			 * If there was an error, do not try next fragments.
+			 * For async, error is processed in async handler.
+			 */
+			if (unlikely(r < 0))
+				break;
+
+			io->sector = sector;
+		}
+
+		/*
+		 * Out of memory -> run queues
+		 * But don't wait if split was due to the io size restriction
+		 */
+		if (unlikely(out_of_pages))
+			congestion_wait(BLK_RW_ASYNC, HZ/100);
+
+		/*
+		 * With async crypto it is unsafe to share the crypto context
+		 * between fragments, so switch to a new dm_crypt_io structure.
+		 */
+		if (unlikely(!crypt_finished && remaining)) {
+			new_io = crypt_io_alloc(io->target, io->base_bio,
+						sector);
+			crypt_inc_pending(new_io);
+			crypt_convert_init(cc, &new_io->ctx, NULL,
+					   io->base_bio, sector);
+			new_io->ctx.idx_in = io->ctx.idx_in;
+			new_io->ctx.offset_in = io->ctx.offset_in;
+
+			/*
+			 * Fragments after the first use the base_io
+			 * pending count.
+			 */
+			if (!io->base_io)
+				new_io->base_io = io;
+			else {
+				new_io->base_io = io->base_io;
+				crypt_inc_pending(io->base_io);
+				crypt_dec_pending(io);
+			}
+
+			io = new_io;
+		}
+	}
+
+	crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
+{
+	crypt_dec_pending(io);
+}
+
+static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
+{
+	struct crypt_config *cc = io->target->private;
+	int r = 0;
+
+	crypt_inc_pending(io);
+
+	crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
+			   io->sector);
+
+	r = crypt_convert(cc, &io->ctx);
+	if (r < 0)
+		io->error = -EIO;
+
+	if (atomic_dec_and_test(&io->ctx.pending))
+		kcryptd_crypt_read_done(io);
+
+	crypt_dec_pending(io);
+}
+
+static void kcryptd_async_done(struct crypto_async_request *async_req,
+			       int error)
+{
+	struct dm_crypt_request *dmreq = async_req->data;
+	struct convert_context *ctx = dmreq->ctx;
+	struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
+	struct crypt_config *cc = io->target->private;
+
+	if (error == -EINPROGRESS)
+		return;
+
+	if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
+		error = cc->iv_gen_ops->post(cc, iv_of_dmreq(cc, dmreq), dmreq);
+
+	if (error < 0)
+		io->error = -EIO;
+
+	mempool_free(req_of_dmreq(cc, dmreq), cc->req_pool);
+
+	if (!atomic_dec_and_test(&ctx->pending))
+		goto done;
+
+	if (bio_data_dir(io->base_bio) == READ)
+		kcryptd_crypt_read_done(io);
+	else
+		kcryptd_crypt_write_io_submit(io, 1);
+done:
+	if (!completion_done(&ctx->restart))
+		complete(&ctx->restart);
+}
+
+static void kcryptd_crypt(struct work_struct *work)
+{
+	struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
+
+	if (bio_data_dir(io->base_bio) == READ)
+		kcryptd_crypt_read_convert(io);
+	else
+		kcryptd_crypt_write_convert(io);
+}
+
+static void kcryptd_queue_crypt(struct dm_crypt_io *io)
+{
+	struct crypt_config *cc = io->target->private;
+
+	INIT_WORK(&io->work, kcryptd_crypt);
+	queue_work(cc->crypt_queue, &io->work);
+}
+
+/*
+ * Decode key from its hex representation
+ */
+static int crypt_decode_key(u8 *key, char *hex, unsigned int size)
+{
+	char buffer[3];
+	char *endp;
+	unsigned int i;
+
+	buffer[2] = '\0';
+
+	for (i = 0; i < size; i++) {
+		buffer[0] = *hex++;
+		buffer[1] = *hex++;
+
+		key[i] = (u8)simple_strtoul(buffer, &endp, 16);
+
+		if (endp != &buffer[2])
+			return -EINVAL;
+	}
+
+	if (*hex != '\0')
+		return -EINVAL;
+
+	return 0;
+}
+
+static void crypt_free_tfms(struct crypt_config *cc, int cpu)
+{
+	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
+	unsigned i;
+
+	for (i = 0; i < cc->tfms_count; i++)
+		if (cpu_cc->tfms[i] && !IS_ERR(cpu_cc->tfms[i])) {
+			crypto_free_ablkcipher(cpu_cc->tfms[i]);
+			cpu_cc->tfms[i] = NULL;
+		}
+}
+
+static int crypt_alloc_tfms(struct crypt_config *cc, int cpu, char *ciphermode)
+{
+	struct crypt_cpu *cpu_cc = per_cpu_ptr(cc->cpu, cpu);
+	unsigned i;
+	int err;
+
+	for (i = 0; i < cc->tfms_count; i++) {
+		cpu_cc->tfms[i] = crypto_alloc_ablkcipher(ciphermode, 0, 0);
+		if (IS_ERR(cpu_cc->tfms[i])) {
+			err = PTR_ERR(cpu_cc->tfms[i]);
+			crypt_free_tfms(cc, cpu);
+			return err;
+		}
+	}
+
+	return 0;
+}
+
+static int crypt_setkey_allcpus(struct crypt_config *cc)
+{
+	unsigned subkey_size = cc->key_size >> ilog2(cc->tfms_count);
+	int cpu, err = 0, i, r;
+
+	for_each_possible_cpu(cpu) {
+		for (i = 0; i < cc->tfms_count; i++) {
+			r = crypto_ablkcipher_setkey(per_cpu_ptr(cc->cpu, cpu)->tfms[i],
+						     cc->key + (i * subkey_size), subkey_size);
+			if (r)
+				err = r;
+		}
+	}
+
+	return err;
+}
+
+static int crypt_set_key(struct crypt_config *cc, char *key)
+{
+	int r = -EINVAL;
+	int key_string_len = strlen(key);
+
+	/* The key size may not be changed. */
+	if (cc->key_size != (key_string_len >> 1))
+		goto out;
+
+	/* Hyphen (which gives a key_size of zero) means there is no key. */
+	if (!cc->key_size && strcmp(key, "-"))
+		goto out;
+
+	if (cc->key_size && crypt_decode_key(cc->key, key, cc->key_size) < 0)
+		goto out;
+
+	set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+
+	r = crypt_setkey_allcpus(cc);
+
+out:
+	/* Hex key string not needed after here, so wipe it. */
+	memset(key, '0', key_string_len);
+
+	return r;
+}
+
+static int crypt_wipe_key(struct crypt_config *cc)
+{
+	clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
+	memset(&cc->key, 0, cc->key_size * sizeof(u8));
+
+	return crypt_setkey_allcpus(cc);
+}
+
+static void crypt_dtr(struct dm_target *ti)
+{
+	struct crypt_config *cc = ti->private;
+	struct crypt_cpu *cpu_cc;
+	int cpu;
+
+	ti->private = NULL;
+
+	if (!cc)
+		return;
+
+	if (cc->io_queue)
+		destroy_workqueue(cc->io_queue);
+	if (cc->crypt_queue)
+		destroy_workqueue(cc->crypt_queue);
+
+	if (cc->cpu)
+		for_each_possible_cpu(cpu) {
+			cpu_cc = per_cpu_ptr(cc->cpu, cpu);
+			if (cpu_cc->req)
+				mempool_free(cpu_cc->req, cc->req_pool);
+			crypt_free_tfms(cc, cpu);
+		}
+
+	if (cc->bs)
+		bioset_free(cc->bs);
+
+	if (cc->page_pool)
+		mempool_destroy(cc->page_pool);
+	if (cc->req_pool)
+		mempool_destroy(cc->req_pool);
+	if (cc->io_pool)
+		mempool_destroy(cc->io_pool);
+
+	if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
+		cc->iv_gen_ops->dtr(cc);
+
+	if (cc->dev)
+		dm_put_device(ti, cc->dev);
+
+	if (cc->cpu)
+		free_percpu(cc->cpu);
+
+	kzfree(cc->cipher);
+	kzfree(cc->cipher_string);
+
+	/* Must zero key material before freeing */
+	kzfree(cc);
+}
+
+static int crypt_ctr_cipher(struct dm_target *ti,
+			    char *cipher_in, char *key)
+{
+	struct crypt_config *cc = ti->private;
+	char *tmp, *cipher, *chainmode, *ivmode, *ivopts, *keycount;
+	char *cipher_api = NULL;
+	int cpu, ret = -EINVAL;
+	char dummy;
+
+	/* Convert to crypto api definition? */
+	if (strchr(cipher_in, '(')) {
+		ti->error = "Bad cipher specification";
+		return -EINVAL;
+	}
+
+	cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
+	if (!cc->cipher_string)
+		goto bad_mem;
+
+	/*
+	 * Legacy dm-crypt cipher specification
+	 * cipher[:keycount]-mode-iv:ivopts
+	 */
+	tmp = cipher_in;
+	keycount = strsep(&tmp, "-");
+	cipher = strsep(&keycount, ":");
+
+	if (!keycount)
+		cc->tfms_count = 1;
+	else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
+		 !is_power_of_2(cc->tfms_count)) {
+		ti->error = "Bad cipher key count specification";
+		return -EINVAL;
+	}
+	cc->key_parts = cc->tfms_count;
+
+	cc->cipher = kstrdup(cipher, GFP_KERNEL);
+	if (!cc->cipher)
+		goto bad_mem;
+
+	chainmode = strsep(&tmp, "-");
+	ivopts = strsep(&tmp, "-");
+	ivmode = strsep(&ivopts, ":");
+
+	if (tmp)
+		DMWARN("Ignoring unexpected additional cipher options");
+
+	cc->cpu = __alloc_percpu(sizeof(*(cc->cpu)) +
+				 cc->tfms_count * sizeof(*(cc->cpu->tfms)),
+				 __alignof__(struct crypt_cpu));
+	if (!cc->cpu) {
+		ti->error = "Cannot allocate per cpu state";
+		goto bad_mem;
+	}
+
+	/*
+	 * For compatibility with the original dm-crypt mapping format, if
+	 * only the cipher name is supplied, use cbc-plain.
+	 */
+	if (!chainmode || (!strcmp(chainmode, "plain") && !ivmode)) {
+		chainmode = "cbc";
+		ivmode = "plain";
+	}
+
+	if (strcmp(chainmode, "ecb") && !ivmode) {
+		ti->error = "IV mechanism required";
+		return -EINVAL;
+	}
+
+	cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
+	if (!cipher_api)
+		goto bad_mem;
+
+	ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
+		       "%s(%s)", chainmode, cipher);
+	if (ret < 0) {
+		kfree(cipher_api);
+		goto bad_mem;
+	}
+
+	/* Allocate cipher */
+	for_each_possible_cpu(cpu) {
+		ret = crypt_alloc_tfms(cc, cpu, cipher_api);
+		if (ret < 0) {
+			ti->error = "Error allocating crypto tfm";
+			goto bad;
+		}
+	}
+
+	/* Initialize and set key */
+	ret = crypt_set_key(cc, key);
+	if (ret < 0) {
+		ti->error = "Error decoding and setting key";
+		goto bad;
+	}
+
+	/* Initialize IV */
+	cc->iv_size = crypto_ablkcipher_ivsize(any_tfm(cc));
+	if (cc->iv_size)
+		/* at least a 64 bit sector number should fit in our buffer */
+		cc->iv_size = max(cc->iv_size,
+				  (unsigned int)(sizeof(u64) / sizeof(u8)));
+	else if (ivmode) {
+		DMWARN("Selected cipher does not support IVs");
+		ivmode = NULL;
+	}
+
+	/* Choose ivmode, see comments at iv code. */
+	if (ivmode == NULL)
+		cc->iv_gen_ops = NULL;
+	else if (strcmp(ivmode, "plain") == 0)
+		cc->iv_gen_ops = &crypt_iv_plain_ops;
+	else if (strcmp(ivmode, "plain64") == 0)
+		cc->iv_gen_ops = &crypt_iv_plain64_ops;
+	else if (strcmp(ivmode, "essiv") == 0)
+		cc->iv_gen_ops = &crypt_iv_essiv_ops;
+	else if (strcmp(ivmode, "benbi") == 0)
+		cc->iv_gen_ops = &crypt_iv_benbi_ops;
+	else if (strcmp(ivmode, "null") == 0)
+		cc->iv_gen_ops = &crypt_iv_null_ops;
+	else if (strcmp(ivmode, "lmk") == 0) {
+		cc->iv_gen_ops = &crypt_iv_lmk_ops;
+		/* Version 2 and 3 is recognised according
+		 * to length of provided multi-key string.
+		 * If present (version 3), last key is used as IV seed.
+		 */
+		if (cc->key_size % cc->key_parts)
+			cc->key_parts++;
+	} else {
+		ret = -EINVAL;
+		ti->error = "Invalid IV mode";
+		goto bad;
+	}
+
+	/* Allocate IV */
+	if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
+		ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
+		if (ret < 0) {
+			ti->error = "Error creating IV";
+			goto bad;
+		}
+	}
+
+	/* Initialize IV (set keys for ESSIV etc) */
+	if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
+		ret = cc->iv_gen_ops->init(cc);
+		if (ret < 0) {
+			ti->error = "Error initialising IV";
+			goto bad;
+		}
+	}
+
+	ret = 0;
+bad:
+	kfree(cipher_api);
+	return ret;
+
+bad_mem:
+	ti->error = "Cannot allocate cipher strings";
+	return -ENOMEM;
+}
+
+/*
+ * Construct an encryption mapping:
+ * <cipher> <key> <iv_offset> <dev_path> <start>
+ */
+static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+	struct crypt_config *cc;
+	unsigned int key_size, opt_params;
+	unsigned long long tmpll;
+	int ret;
+	size_t iv_size_padding;
+	struct dm_arg_set as;
+	const char *opt_string;
+	char dummy;
+
+	static struct dm_arg _args[] = {
+		{0, 1, "Invalid number of feature args"},
+	};
+
+	if (argc < 5) {
+		ti->error = "Not enough arguments";
+		return -EINVAL;
+	}
+
+	key_size = strlen(argv[1]) >> 1;
+
+	cc = kzalloc(sizeof(*cc) + key_size * sizeof(u8), GFP_KERNEL);
+	if (!cc) {
+		ti->error = "Cannot allocate encryption context";
+		return -ENOMEM;
+	}
+	cc->key_size = key_size;
+
+	ti->private = cc;
+	ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
+	if (ret < 0)
+		goto bad;
+
+	ret = -ENOMEM;
+	cc->io_pool = mempool_create_slab_pool(MIN_IOS, _crypt_io_pool);
+	if (!cc->io_pool) {
+		ti->error = "Cannot allocate crypt io mempool";
+		goto bad;
+	}
+
+	cc->dmreq_start = sizeof(struct ablkcipher_request);
+	cc->dmreq_start += crypto_ablkcipher_reqsize(any_tfm(cc));
+	cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
+
+	if (crypto_ablkcipher_alignmask(any_tfm(cc)) < CRYPTO_MINALIGN) {
+		/* Allocate the padding exactly */
+		iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
+				& crypto_ablkcipher_alignmask(any_tfm(cc));
+	} else {
+		/*
+		 * If the cipher requires greater alignment than kmalloc
+		 * alignment, we don't know the exact position of the
+		 * initialization vector. We must assume worst case.
+		 */
+		iv_size_padding = crypto_ablkcipher_alignmask(any_tfm(cc));
+	}
+
+	cc->req_pool = mempool_create_kmalloc_pool(MIN_IOS, cc->dmreq_start +
+			sizeof(struct dm_crypt_request) + iv_size_padding + cc->iv_size);
+	if (!cc->req_pool) {
+		ti->error = "Cannot allocate crypt request mempool";
+		goto bad;
+	}
+
+	cc->page_pool = mempool_create_page_pool(MIN_POOL_PAGES, 0);
+	if (!cc->page_pool) {
+		ti->error = "Cannot allocate page mempool";
+		goto bad;
+	}
+
+	cc->bs = bioset_create(MIN_IOS, 0);
+	if (!cc->bs) {
+		ti->error = "Cannot allocate crypt bioset";
+		goto bad;
+	}
+
+	ret = -EINVAL;
+	if (sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) {
+		ti->error = "Invalid iv_offset sector";
+		goto bad;
+	}
+	cc->iv_offset = tmpll;
+
+	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev)) {
+		ti->error = "Device lookup failed";
+		goto bad;
+	}
+
+	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
+		ti->error = "Invalid device sector";
+		goto bad;
+	}
+	cc->start = tmpll;
+
+	argv += 5;
+	argc -= 5;
+
+	/* Optional parameters */
+	if (argc) {
+		as.argc = argc;
+		as.argv = argv;
+
+		ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
+		if (ret)
+			goto bad;
+
+		opt_string = dm_shift_arg(&as);
+
+		if (opt_params == 1 && opt_string &&
+		    !strcasecmp(opt_string, "allow_discards"))
+			ti->num_discard_requests = 1;
+		else if (opt_params) {
+			ret = -EINVAL;
+			ti->error = "Invalid feature arguments";
+			goto bad;
+		}
+	}
+
+	ret = -ENOMEM;
+	cc->io_queue = alloc_workqueue("kcryptd_io",
+				       WQ_NON_REENTRANT|
+				       WQ_MEM_RECLAIM,
+				       1);
+	if (!cc->io_queue) {
+		ti->error = "Couldn't create kcryptd io queue";
+		goto bad;
+	}
+
+	cc->crypt_queue = alloc_workqueue("kcryptd",
+					  WQ_NON_REENTRANT|
+					  WQ_CPU_INTENSIVE|
+					  WQ_MEM_RECLAIM,
+					  1);
+	if (!cc->crypt_queue) {
+		ti->error = "Couldn't create kcryptd queue";
+		goto bad;
+	}
+
+	ti->num_flush_requests = 1;
+	ti->discard_zeroes_data_unsupported = 1;
+
+	return 0;
+
+bad:
+	crypt_dtr(ti);
+	return ret;
+}
+
+static int crypt_map(struct dm_target *ti, struct bio *bio,
+		     union map_info *map_context)
+{
+	struct dm_crypt_io *io;
+	struct crypt_config *cc;
+
+	/*
+	 * If bio is REQ_FLUSH or REQ_DISCARD, just bypass crypt queues.
+	 * - for REQ_FLUSH device-mapper core ensures that no IO is in-flight
+	 * - for REQ_DISCARD caller must use flush if IO ordering matters
+	 */
+	if (unlikely(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))) {
+		cc = ti->private;
+		bio->bi_bdev = cc->dev->bdev;
+		if (bio_sectors(bio))
+			bio->bi_sector = cc->start + dm_target_offset(ti, bio->bi_sector);
+		return DM_MAPIO_REMAPPED;
+	}
+
+	io = crypt_io_alloc(ti, bio, dm_target_offset(ti, bio->bi_sector));
+
+	if (bio_data_dir(io->base_bio) == READ) {
+		if (kcryptd_io_read(io, GFP_NOWAIT))
+			kcryptd_queue_io(io);
+	} else
+		kcryptd_queue_crypt(io);
+
+	return DM_MAPIO_SUBMITTED;
+}
+
+static void crypt_status(struct dm_target *ti, status_type_t type,
+			 char *result, unsigned int maxlen)
+{
+	struct crypt_config *cc = ti->private;
+	unsigned i, sz = 0;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		result[0] = '\0';
+		break;
+
+	case STATUSTYPE_TABLE:
+		DMEMIT("%s ", cc->cipher_string);
+
+		if (cc->key_size > 0)
+			for (i = 0; i < cc->key_size; i++)
+				DMEMIT("%02x", cc->key[i]);
+		else
+			DMEMIT("-");
+
+		DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
+				cc->dev->name, (unsigned long long)cc->start);
+
+		if (ti->num_discard_requests)
+			DMEMIT(" 1 allow_discards");
+
+		break;
+	}
+}
+
+static void crypt_postsuspend(struct dm_target *ti)
+{
+	struct crypt_config *cc = ti->private;
+
+	set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
+}
+
+static int crypt_preresume(struct dm_target *ti)
+{
+	struct crypt_config *cc = ti->private;
+
+	if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
+		DMERR("aborting resume - crypt key is not set.");
+		return -EAGAIN;
+	}
+
+	return 0;
+}
+
+static void crypt_resume(struct dm_target *ti)
+{
+	struct crypt_config *cc = ti->private;
+
+	clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
+}
+
+/* Message interface
+ *	key set <key>
+ *	key wipe
+ */
+static int crypt_message(struct dm_target *ti, unsigned argc, char **argv)
+{
+	struct crypt_config *cc = ti->private;
+	int ret = -EINVAL;
+
+	if (argc < 2)
+		goto error;
+
+	if (!strcasecmp(argv[0], "key")) {
+		if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
+			DMWARN("not suspended during key manipulation.");
+			return -EINVAL;
+		}
+		if (argc == 3 && !strcasecmp(argv[1], "set")) {
+			ret = crypt_set_key(cc, argv[2]);
+			if (ret)
+				return ret;
+			if (cc->iv_gen_ops && cc->iv_gen_ops->init)
+				ret = cc->iv_gen_ops->init(cc);
+			return ret;
+		}
+		if (argc == 2 && !strcasecmp(argv[1], "wipe")) {
+			if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
+				ret = cc->iv_gen_ops->wipe(cc);
+				if (ret)
+					return ret;
+			}
+			return crypt_wipe_key(cc);
+		}
+	}
+
+error:
+	DMWARN("unrecognised message received.");
+	return -EINVAL;
+}
+
+static int crypt_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
+		       struct bio_vec *biovec, int max_size)
+{
+	struct crypt_config *cc = ti->private;
+	struct request_queue *q = bdev_get_queue(cc->dev->bdev);
+
+	if (!q->merge_bvec_fn)
+		return max_size;
+
+	bvm->bi_bdev = cc->dev->bdev;
+	bvm->bi_sector = cc->start + dm_target_offset(ti, bvm->bi_sector);
+
+	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
+}
+
+static int crypt_iterate_devices(struct dm_target *ti,
+				 iterate_devices_callout_fn fn, void *data)
+{
+	struct crypt_config *cc = ti->private;
+
+	return fn(ti, cc->dev, cc->start, ti->len, data);
+}
+
+static struct target_type crypt_target = {
+	.name   = "crypt",
+	.version = {1, 11, 0},
+	.module = THIS_MODULE,
+	.ctr    = crypt_ctr,
+	.dtr    = crypt_dtr,
+	.map    = crypt_map,
+	.status = crypt_status,
+	.postsuspend = crypt_postsuspend,
+	.preresume = crypt_preresume,
+	.resume = crypt_resume,
+	.message = crypt_message,
+	.merge  = crypt_merge,
+	.iterate_devices = crypt_iterate_devices,
+};
+
+static int __init dm_crypt_init(void)
+{
+	int r;
+
+	_crypt_io_pool = KMEM_CACHE(dm_crypt_io, 0);
+	if (!_crypt_io_pool)
+		return -ENOMEM;
+
+	r = dm_register_target(&crypt_target);
+	if (r < 0) {
+		DMERR("register failed %d", r);
+		kmem_cache_destroy(_crypt_io_pool);
+	}
+
+	return r;
+}
+
+static void __exit dm_crypt_exit(void)
+{
+	dm_unregister_target(&crypt_target);
+	kmem_cache_destroy(_crypt_io_pool);
+}
+
+module_init(dm_crypt_init);
+module_exit(dm_crypt_exit);
+
+MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
+MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-delay.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-delay.c
new file mode 100644
index 0000000..fb4bf9b
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-delay.c
@@ -0,0 +1,394 @@
+/*
+ * Copyright (C) 2005-2007 Red Hat GmbH
+ *
+ * A target that delays reads and/or writes and can send
+ * them to different devices.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/slab.h>
+
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "delay"
+
+struct delay_c {
+	struct timer_list delay_timer;
+	struct mutex timer_lock;
+	struct workqueue_struct *kdelayd_wq;
+	struct work_struct flush_expired_bios;
+	struct list_head delayed_bios;
+	atomic_t may_delay;
+	mempool_t *delayed_pool;
+
+	struct dm_dev *dev_read;
+	sector_t start_read;
+	unsigned read_delay;
+	unsigned reads;
+
+	struct dm_dev *dev_write;
+	sector_t start_write;
+	unsigned write_delay;
+	unsigned writes;
+};
+
+struct dm_delay_info {
+	struct delay_c *context;
+	struct list_head list;
+	struct bio *bio;
+	unsigned long expires;
+};
+
+static DEFINE_MUTEX(delayed_bios_lock);
+
+static struct kmem_cache *delayed_cache;
+
+static void handle_delayed_timer(unsigned long data)
+{
+	struct delay_c *dc = (struct delay_c *)data;
+
+	queue_work(dc->kdelayd_wq, &dc->flush_expired_bios);
+}
+
+static void queue_timeout(struct delay_c *dc, unsigned long expires)
+{
+	mutex_lock(&dc->timer_lock);
+
+	if (!timer_pending(&dc->delay_timer) || expires < dc->delay_timer.expires)
+		mod_timer(&dc->delay_timer, expires);
+
+	mutex_unlock(&dc->timer_lock);
+}
+
+static void flush_bios(struct bio *bio)
+{
+	struct bio *n;
+
+	while (bio) {
+		n = bio->bi_next;
+		bio->bi_next = NULL;
+		generic_make_request(bio);
+		bio = n;
+	}
+}
+
+static struct bio *flush_delayed_bios(struct delay_c *dc, int flush_all)
+{
+	struct dm_delay_info *delayed, *next;
+	unsigned long next_expires = 0;
+	int start_timer = 0;
+	struct bio_list flush_bios = { };
+
+	mutex_lock(&delayed_bios_lock);
+	list_for_each_entry_safe(delayed, next, &dc->delayed_bios, list) {
+		if (flush_all || time_after_eq(jiffies, delayed->expires)) {
+			list_del(&delayed->list);
+			bio_list_add(&flush_bios, delayed->bio);
+			if ((bio_data_dir(delayed->bio) == WRITE))
+				delayed->context->writes--;
+			else
+				delayed->context->reads--;
+			mempool_free(delayed, dc->delayed_pool);
+			continue;
+		}
+
+		if (!start_timer) {
+			start_timer = 1;
+			next_expires = delayed->expires;
+		} else
+			next_expires = min(next_expires, delayed->expires);
+	}
+
+	mutex_unlock(&delayed_bios_lock);
+
+	if (start_timer)
+		queue_timeout(dc, next_expires);
+
+	return bio_list_get(&flush_bios);
+}
+
+static void flush_expired_bios(struct work_struct *work)
+{
+	struct delay_c *dc;
+
+	dc = container_of(work, struct delay_c, flush_expired_bios);
+	flush_bios(flush_delayed_bios(dc, 0));
+}
+
+/*
+ * Mapping parameters:
+ *    <device> <offset> <delay> [<write_device> <write_offset> <write_delay>]
+ *
+ * With separate write parameters, the first set is only used for reads.
+ * Delays are specified in milliseconds.
+ */
+static int delay_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+	struct delay_c *dc;
+	unsigned long long tmpll;
+	char dummy;
+
+	if (argc != 3 && argc != 6) {
+		ti->error = "requires exactly 3 or 6 arguments";
+		return -EINVAL;
+	}
+
+	dc = kmalloc(sizeof(*dc), GFP_KERNEL);
+	if (!dc) {
+		ti->error = "Cannot allocate context";
+		return -ENOMEM;
+	}
+
+	dc->reads = dc->writes = 0;
+
+	if (sscanf(argv[1], "%llu%c", &tmpll, &dummy) != 1) {
+		ti->error = "Invalid device sector";
+		goto bad;
+	}
+	dc->start_read = tmpll;
+
+	if (sscanf(argv[2], "%u%c", &dc->read_delay, &dummy) != 1) {
+		ti->error = "Invalid delay";
+		goto bad;
+	}
+
+	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
+			  &dc->dev_read)) {
+		ti->error = "Device lookup failed";
+		goto bad;
+	}
+
+	dc->dev_write = NULL;
+	if (argc == 3)
+		goto out;
+
+	if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1) {
+		ti->error = "Invalid write device sector";
+		goto bad_dev_read;
+	}
+	dc->start_write = tmpll;
+
+	if (sscanf(argv[5], "%u%c", &dc->write_delay, &dummy) != 1) {
+		ti->error = "Invalid write delay";
+		goto bad_dev_read;
+	}
+
+	if (dm_get_device(ti, argv[3], dm_table_get_mode(ti->table),
+			  &dc->dev_write)) {
+		ti->error = "Write device lookup failed";
+		goto bad_dev_read;
+	}
+
+out:
+	dc->delayed_pool = mempool_create_slab_pool(128, delayed_cache);
+	if (!dc->delayed_pool) {
+		DMERR("Couldn't create delayed bio pool.");
+		goto bad_dev_write;
+	}
+
+	dc->kdelayd_wq = alloc_workqueue("kdelayd", WQ_MEM_RECLAIM, 0);
+	if (!dc->kdelayd_wq) {
+		DMERR("Couldn't start kdelayd");
+		goto bad_queue;
+	}
+
+	setup_timer(&dc->delay_timer, handle_delayed_timer, (unsigned long)dc);
+
+	INIT_WORK(&dc->flush_expired_bios, flush_expired_bios);
+	INIT_LIST_HEAD(&dc->delayed_bios);
+	mutex_init(&dc->timer_lock);
+	atomic_set(&dc->may_delay, 1);
+
+	ti->num_flush_requests = 1;
+	ti->num_discard_requests = 1;
+	ti->private = dc;
+	return 0;
+
+bad_queue:
+	mempool_destroy(dc->delayed_pool);
+bad_dev_write:
+	if (dc->dev_write)
+		dm_put_device(ti, dc->dev_write);
+bad_dev_read:
+	dm_put_device(ti, dc->dev_read);
+bad:
+	kfree(dc);
+	return -EINVAL;
+}
+
+static void delay_dtr(struct dm_target *ti)
+{
+	struct delay_c *dc = ti->private;
+
+	destroy_workqueue(dc->kdelayd_wq);
+
+	dm_put_device(ti, dc->dev_read);
+
+	if (dc->dev_write)
+		dm_put_device(ti, dc->dev_write);
+
+	mempool_destroy(dc->delayed_pool);
+	kfree(dc);
+}
+
+static int delay_bio(struct delay_c *dc, int delay, struct bio *bio)
+{
+	struct dm_delay_info *delayed;
+	unsigned long expires = 0;
+
+	if (!delay || !atomic_read(&dc->may_delay))
+		return 1;
+
+	delayed = mempool_alloc(dc->delayed_pool, GFP_NOIO);
+
+	delayed->context = dc;
+	delayed->bio = bio;
+	delayed->expires = expires = jiffies + (delay * HZ / 1000);
+
+	mutex_lock(&delayed_bios_lock);
+
+	if (bio_data_dir(bio) == WRITE)
+		dc->writes++;
+	else
+		dc->reads++;
+
+	list_add_tail(&delayed->list, &dc->delayed_bios);
+
+	mutex_unlock(&delayed_bios_lock);
+
+	queue_timeout(dc, expires);
+
+	return 0;
+}
+
+static void delay_presuspend(struct dm_target *ti)
+{
+	struct delay_c *dc = ti->private;
+
+	atomic_set(&dc->may_delay, 0);
+	del_timer_sync(&dc->delay_timer);
+	flush_bios(flush_delayed_bios(dc, 1));
+}
+
+static void delay_resume(struct dm_target *ti)
+{
+	struct delay_c *dc = ti->private;
+
+	atomic_set(&dc->may_delay, 1);
+}
+
+static int delay_map(struct dm_target *ti, struct bio *bio,
+		     union map_info *map_context)
+{
+	struct delay_c *dc = ti->private;
+
+	if ((bio_data_dir(bio) == WRITE) && (dc->dev_write)) {
+		bio->bi_bdev = dc->dev_write->bdev;
+		if (bio_sectors(bio))
+			bio->bi_sector = dc->start_write +
+					 dm_target_offset(ti, bio->bi_sector);
+
+		return delay_bio(dc, dc->write_delay, bio);
+	}
+
+	bio->bi_bdev = dc->dev_read->bdev;
+	bio->bi_sector = dc->start_read + dm_target_offset(ti, bio->bi_sector);
+
+	return delay_bio(dc, dc->read_delay, bio);
+}
+
+static void delay_status(struct dm_target *ti, status_type_t type,
+			 char *result, unsigned maxlen)
+{
+	struct delay_c *dc = ti->private;
+	int sz = 0;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		DMEMIT("%u %u", dc->reads, dc->writes);
+		break;
+
+	case STATUSTYPE_TABLE:
+		DMEMIT("%s %llu %u", dc->dev_read->name,
+		       (unsigned long long) dc->start_read,
+		       dc->read_delay);
+		if (dc->dev_write)
+			DMEMIT(" %s %llu %u", dc->dev_write->name,
+			       (unsigned long long) dc->start_write,
+			       dc->write_delay);
+		break;
+	}
+}
+
+static int delay_iterate_devices(struct dm_target *ti,
+				 iterate_devices_callout_fn fn, void *data)
+{
+	struct delay_c *dc = ti->private;
+	int ret = 0;
+
+	ret = fn(ti, dc->dev_read, dc->start_read, ti->len, data);
+	if (ret)
+		goto out;
+
+	if (dc->dev_write)
+		ret = fn(ti, dc->dev_write, dc->start_write, ti->len, data);
+
+out:
+	return ret;
+}
+
+static struct target_type delay_target = {
+	.name	     = "delay",
+	.version     = {1, 1, 0},
+	.module      = THIS_MODULE,
+	.ctr	     = delay_ctr,
+	.dtr	     = delay_dtr,
+	.map	     = delay_map,
+	.presuspend  = delay_presuspend,
+	.resume	     = delay_resume,
+	.status	     = delay_status,
+	.iterate_devices = delay_iterate_devices,
+};
+
+static int __init dm_delay_init(void)
+{
+	int r = -ENOMEM;
+
+	delayed_cache = KMEM_CACHE(dm_delay_info, 0);
+	if (!delayed_cache) {
+		DMERR("Couldn't create delayed bio cache.");
+		goto bad_memcache;
+	}
+
+	r = dm_register_target(&delay_target);
+	if (r < 0) {
+		DMERR("register failed %d", r);
+		goto bad_register;
+	}
+
+	return 0;
+
+bad_register:
+	kmem_cache_destroy(delayed_cache);
+bad_memcache:
+	return r;
+}
+
+static void __exit dm_delay_exit(void)
+{
+	dm_unregister_target(&delay_target);
+	kmem_cache_destroy(delayed_cache);
+}
+
+/* Module hooks */
+module_init(dm_delay_init);
+module_exit(dm_delay_exit);
+
+MODULE_DESCRIPTION(DM_NAME " delay target");
+MODULE_AUTHOR("Heinz Mauelshagen <mauelshagen@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-exception-store.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-exception-store.c
new file mode 100644
index 0000000..aa70f7d
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-exception-store.c
@@ -0,0 +1,295 @@
+/*
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2006-2008 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-exception-store.h"
+
+#include <linux/ctype.h>
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/vmalloc.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+#define DM_MSG_PREFIX "snapshot exception stores"
+
+static LIST_HEAD(_exception_store_types);
+static DEFINE_SPINLOCK(_lock);
+
+static struct dm_exception_store_type *__find_exception_store_type(const char *name)
+{
+	struct dm_exception_store_type *type;
+
+	list_for_each_entry(type, &_exception_store_types, list)
+		if (!strcmp(name, type->name))
+			return type;
+
+	return NULL;
+}
+
+static struct dm_exception_store_type *_get_exception_store_type(const char *name)
+{
+	struct dm_exception_store_type *type;
+
+	spin_lock(&_lock);
+
+	type = __find_exception_store_type(name);
+
+	if (type && !try_module_get(type->module))
+		type = NULL;
+
+	spin_unlock(&_lock);
+
+	return type;
+}
+
+/*
+ * get_type
+ * @type_name
+ *
+ * Attempt to retrieve the dm_exception_store_type by name.  If not already
+ * available, attempt to load the appropriate module.
+ *
+ * Exstore modules are named "dm-exstore-" followed by the 'type_name'.
+ * Modules may contain multiple types.
+ * This function will first try the module "dm-exstore-<type_name>",
+ * then truncate 'type_name' on the last '-' and try again.
+ *
+ * For example, if type_name was "clustered-shared", it would search
+ * 'dm-exstore-clustered-shared' then 'dm-exstore-clustered'.
+ *
+ * 'dm-exception-store-<type_name>' is too long of a name in my
+ * opinion, which is why I've chosen to have the files
+ * containing exception store implementations be 'dm-exstore-<type_name>'.
+ * If you want your module to be autoloaded, you will follow this
+ * naming convention.
+ *
+ * Returns: dm_exception_store_type* on success, NULL on failure
+ */
+static struct dm_exception_store_type *get_type(const char *type_name)
+{
+	char *p, *type_name_dup;
+	struct dm_exception_store_type *type;
+
+	type = _get_exception_store_type(type_name);
+	if (type)
+		return type;
+
+	type_name_dup = kstrdup(type_name, GFP_KERNEL);
+	if (!type_name_dup) {
+		DMERR("No memory left to attempt load for \"%s\"", type_name);
+		return NULL;
+	}
+
+	while (request_module("dm-exstore-%s", type_name_dup) ||
+	       !(type = _get_exception_store_type(type_name))) {
+		p = strrchr(type_name_dup, '-');
+		if (!p)
+			break;
+		p[0] = '\0';
+	}
+
+	if (!type)
+		DMWARN("Module for exstore type \"%s\" not found.", type_name);
+
+	kfree(type_name_dup);
+
+	return type;
+}
+
+static void put_type(struct dm_exception_store_type *type)
+{
+	spin_lock(&_lock);
+	module_put(type->module);
+	spin_unlock(&_lock);
+}
+
+int dm_exception_store_type_register(struct dm_exception_store_type *type)
+{
+	int r = 0;
+
+	spin_lock(&_lock);
+	if (!__find_exception_store_type(type->name))
+		list_add(&type->list, &_exception_store_types);
+	else
+		r = -EEXIST;
+	spin_unlock(&_lock);
+
+	return r;
+}
+EXPORT_SYMBOL(dm_exception_store_type_register);
+
+int dm_exception_store_type_unregister(struct dm_exception_store_type *type)
+{
+	spin_lock(&_lock);
+
+	if (!__find_exception_store_type(type->name)) {
+		spin_unlock(&_lock);
+		return -EINVAL;
+	}
+
+	list_del(&type->list);
+
+	spin_unlock(&_lock);
+
+	return 0;
+}
+EXPORT_SYMBOL(dm_exception_store_type_unregister);
+
+static int set_chunk_size(struct dm_exception_store *store,
+			  const char *chunk_size_arg, char **error)
+{
+	unsigned long chunk_size_ulong;
+	char *value;
+
+	chunk_size_ulong = simple_strtoul(chunk_size_arg, &value, 10);
+	if (*chunk_size_arg == '\0' || *value != '\0' ||
+	    chunk_size_ulong > UINT_MAX) {
+		*error = "Invalid chunk size";
+		return -EINVAL;
+	}
+
+	if (!chunk_size_ulong) {
+		store->chunk_size = store->chunk_mask = store->chunk_shift = 0;
+		return 0;
+	}
+
+	return dm_exception_store_set_chunk_size(store,
+						 (unsigned) chunk_size_ulong,
+						 error);
+}
+
+int dm_exception_store_set_chunk_size(struct dm_exception_store *store,
+				      unsigned chunk_size,
+				      char **error)
+{
+	/* Check chunk_size is a power of 2 */
+	if (!is_power_of_2(chunk_size)) {
+		*error = "Chunk size is not a power of 2";
+		return -EINVAL;
+	}
+
+	/* Validate the chunk size against the device block size */
+	if (chunk_size %
+	    (bdev_logical_block_size(dm_snap_cow(store->snap)->bdev) >> 9) ||
+	    chunk_size %
+	    (bdev_logical_block_size(dm_snap_origin(store->snap)->bdev) >> 9)) {
+		*error = "Chunk size is not a multiple of device blocksize";
+		return -EINVAL;
+	}
+
+	if (chunk_size > INT_MAX >> SECTOR_SHIFT) {
+		*error = "Chunk size is too high";
+		return -EINVAL;
+	}
+
+	store->chunk_size = chunk_size;
+	store->chunk_mask = chunk_size - 1;
+	store->chunk_shift = ffs(chunk_size) - 1;
+
+	return 0;
+}
+
+int dm_exception_store_create(struct dm_target *ti, int argc, char **argv,
+			      struct dm_snapshot *snap,
+			      unsigned *args_used,
+			      struct dm_exception_store **store)
+{
+	int r = 0;
+	struct dm_exception_store_type *type = NULL;
+	struct dm_exception_store *tmp_store;
+	char persistent;
+
+	if (argc < 2) {
+		ti->error = "Insufficient exception store arguments";
+		return -EINVAL;
+	}
+
+	tmp_store = kmalloc(sizeof(*tmp_store), GFP_KERNEL);
+	if (!tmp_store) {
+		ti->error = "Exception store allocation failed";
+		return -ENOMEM;
+	}
+
+	persistent = toupper(*argv[0]);
+	if (persistent == 'P')
+		type = get_type("P");
+	else if (persistent == 'N')
+		type = get_type("N");
+	else {
+		ti->error = "Persistent flag is not P or N";
+		r = -EINVAL;
+		goto bad_type;
+	}
+
+	if (!type) {
+		ti->error = "Exception store type not recognised";
+		r = -EINVAL;
+		goto bad_type;
+	}
+
+	tmp_store->type = type;
+	tmp_store->snap = snap;
+
+	r = set_chunk_size(tmp_store, argv[1], &ti->error);
+	if (r)
+		goto bad;
+
+	r = type->ctr(tmp_store, 0, NULL);
+	if (r) {
+		ti->error = "Exception store type constructor failed";
+		goto bad;
+	}
+
+	*args_used = 2;
+	*store = tmp_store;
+	return 0;
+
+bad:
+	put_type(type);
+bad_type:
+	kfree(tmp_store);
+	return r;
+}
+EXPORT_SYMBOL(dm_exception_store_create);
+
+void dm_exception_store_destroy(struct dm_exception_store *store)
+{
+	store->type->dtr(store);
+	put_type(store->type);
+	kfree(store);
+}
+EXPORT_SYMBOL(dm_exception_store_destroy);
+
+int dm_exception_store_init(void)
+{
+	int r;
+
+	r = dm_transient_snapshot_init();
+	if (r) {
+		DMERR("Unable to register transient exception store type.");
+		goto transient_fail;
+	}
+
+	r = dm_persistent_snapshot_init();
+	if (r) {
+		DMERR("Unable to register persistent exception store type");
+		goto persistent_fail;
+	}
+
+	return 0;
+
+persistent_fail:
+	dm_transient_snapshot_exit();
+transient_fail:
+	return r;
+}
+
+void dm_exception_store_exit(void)
+{
+	dm_persistent_snapshot_exit();
+	dm_transient_snapshot_exit();
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-exception-store.h b/ap/os/linux/linux-3.4.x/drivers/md/dm-exception-store.h
new file mode 100644
index 0000000..0b25362
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-exception-store.h
@@ -0,0 +1,227 @@
+/*
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2008 Red Hat, Inc. All rights reserved.
+ *
+ * Device-mapper snapshot exception store.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_EXCEPTION_STORE
+#define _LINUX_DM_EXCEPTION_STORE
+
+#include <linux/blkdev.h>
+#include <linux/device-mapper.h>
+
+/*
+ * The snapshot code deals with largish chunks of the disk at a
+ * time. Typically 32k - 512k.
+ */
+typedef sector_t chunk_t;
+
+/*
+ * An exception is used where an old chunk of data has been
+ * replaced by a new one.
+ * If chunk_t is 64 bits in size, the top 8 bits of new_chunk hold the number
+ * of chunks that follow contiguously.  Remaining bits hold the number of the
+ * chunk within the device.
+ */
+struct dm_exception {
+	struct list_head hash_list;
+
+	chunk_t old_chunk;
+	chunk_t new_chunk;
+};
+
+/*
+ * Abstraction to handle the meta/layout of exception stores (the
+ * COW device).
+ */
+struct dm_exception_store;
+struct dm_exception_store_type {
+	const char *name;
+	struct module *module;
+
+	int (*ctr) (struct dm_exception_store *store,
+		    unsigned argc, char **argv);
+
+	/*
+	 * Destroys this object when you've finished with it.
+	 */
+	void (*dtr) (struct dm_exception_store *store);
+
+	/*
+	 * The target shouldn't read the COW device until this is
+	 * called.  As exceptions are read from the COW, they are
+	 * reported back via the callback.
+	 */
+	int (*read_metadata) (struct dm_exception_store *store,
+			      int (*callback)(void *callback_context,
+					      chunk_t old, chunk_t new),
+			      void *callback_context);
+
+	/*
+	 * Find somewhere to store the next exception.
+	 */
+	int (*prepare_exception) (struct dm_exception_store *store,
+				  struct dm_exception *e);
+
+	/*
+	 * Update the metadata with this exception.
+	 */
+	void (*commit_exception) (struct dm_exception_store *store,
+				  struct dm_exception *e,
+				  void (*callback) (void *, int success),
+				  void *callback_context);
+
+	/*
+	 * Returns 0 if the exception store is empty.
+	 *
+	 * If there are exceptions still to be merged, sets
+	 * *last_old_chunk and *last_new_chunk to the most recent
+	 * still-to-be-merged chunk and returns the number of
+	 * consecutive previous ones.
+	 */
+	int (*prepare_merge) (struct dm_exception_store *store,
+			      chunk_t *last_old_chunk, chunk_t *last_new_chunk);
+
+	/*
+	 * Clear the last n exceptions.
+	 * nr_merged must be <= the value returned by prepare_merge.
+	 */
+	int (*commit_merge) (struct dm_exception_store *store, int nr_merged);
+
+	/*
+	 * The snapshot is invalid, note this in the metadata.
+	 */
+	void (*drop_snapshot) (struct dm_exception_store *store);
+
+	unsigned (*status) (struct dm_exception_store *store,
+			    status_type_t status, char *result,
+			    unsigned maxlen);
+
+	/*
+	 * Return how full the snapshot is.
+	 */
+	void (*usage) (struct dm_exception_store *store,
+		       sector_t *total_sectors, sector_t *sectors_allocated,
+		       sector_t *metadata_sectors);
+
+	/* For internal device-mapper use only. */
+	struct list_head list;
+};
+
+struct dm_snapshot;
+
+struct dm_exception_store {
+	struct dm_exception_store_type *type;
+	struct dm_snapshot *snap;
+
+	/* Size of data blocks saved - must be a power of 2 */
+	unsigned chunk_size;
+	unsigned chunk_mask;
+	unsigned chunk_shift;
+
+	void *context;
+};
+
+/*
+ * Obtain the origin or cow device used by a given snapshot.
+ */
+struct dm_dev *dm_snap_origin(struct dm_snapshot *snap);
+struct dm_dev *dm_snap_cow(struct dm_snapshot *snap);
+
+/*
+ * Funtions to manipulate consecutive chunks
+ */
+#  if defined(CONFIG_LBDAF) || (BITS_PER_LONG == 64)
+#    define DM_CHUNK_CONSECUTIVE_BITS 8
+#    define DM_CHUNK_NUMBER_BITS 56
+
+static inline chunk_t dm_chunk_number(chunk_t chunk)
+{
+	return chunk & (chunk_t)((1ULL << DM_CHUNK_NUMBER_BITS) - 1ULL);
+}
+
+static inline unsigned dm_consecutive_chunk_count(struct dm_exception *e)
+{
+	return e->new_chunk >> DM_CHUNK_NUMBER_BITS;
+}
+
+static inline void dm_consecutive_chunk_count_inc(struct dm_exception *e)
+{
+	e->new_chunk += (1ULL << DM_CHUNK_NUMBER_BITS);
+
+	BUG_ON(!dm_consecutive_chunk_count(e));
+}
+
+static inline void dm_consecutive_chunk_count_dec(struct dm_exception *e)
+{
+	BUG_ON(!dm_consecutive_chunk_count(e));
+
+	e->new_chunk -= (1ULL << DM_CHUNK_NUMBER_BITS);
+}
+
+#  else
+#    define DM_CHUNK_CONSECUTIVE_BITS 0
+
+static inline chunk_t dm_chunk_number(chunk_t chunk)
+{
+	return chunk;
+}
+
+static inline unsigned dm_consecutive_chunk_count(struct dm_exception *e)
+{
+	return 0;
+}
+
+static inline void dm_consecutive_chunk_count_inc(struct dm_exception *e)
+{
+}
+
+static inline void dm_consecutive_chunk_count_dec(struct dm_exception *e)
+{
+}
+
+#  endif
+
+/*
+ * Return the number of sectors in the device.
+ */
+static inline sector_t get_dev_size(struct block_device *bdev)
+{
+	return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
+}
+
+static inline chunk_t sector_to_chunk(struct dm_exception_store *store,
+				      sector_t sector)
+{
+	return sector >> store->chunk_shift;
+}
+
+int dm_exception_store_type_register(struct dm_exception_store_type *type);
+int dm_exception_store_type_unregister(struct dm_exception_store_type *type);
+
+int dm_exception_store_set_chunk_size(struct dm_exception_store *store,
+				      unsigned chunk_size,
+				      char **error);
+
+int dm_exception_store_create(struct dm_target *ti, int argc, char **argv,
+			      struct dm_snapshot *snap,
+			      unsigned *args_used,
+			      struct dm_exception_store **store);
+void dm_exception_store_destroy(struct dm_exception_store *store);
+
+int dm_exception_store_init(void);
+void dm_exception_store_exit(void);
+
+/*
+ * Two exception store implementations.
+ */
+int dm_persistent_snapshot_init(void);
+void dm_persistent_snapshot_exit(void);
+
+int dm_transient_snapshot_init(void);
+void dm_transient_snapshot_exit(void);
+
+#endif /* _LINUX_DM_EXCEPTION_STORE */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-flakey.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-flakey.c
new file mode 100644
index 0000000..f29d665
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-flakey.c
@@ -0,0 +1,441 @@
+/*
+ * Copyright (C) 2003 Sistina Software (UK) Limited.
+ * Copyright (C) 2004, 2010-2011 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/device-mapper.h>
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/slab.h>
+
+#define DM_MSG_PREFIX "flakey"
+
+#define all_corrupt_bio_flags_match(bio, fc)	\
+	(((bio)->bi_rw & (fc)->corrupt_bio_flags) == (fc)->corrupt_bio_flags)
+
+/*
+ * Flakey: Used for testing only, simulates intermittent,
+ * catastrophic device failure.
+ */
+struct flakey_c {
+	struct dm_dev *dev;
+	unsigned long start_time;
+	sector_t start;
+	unsigned up_interval;
+	unsigned down_interval;
+	unsigned long flags;
+	unsigned corrupt_bio_byte;
+	unsigned corrupt_bio_rw;
+	unsigned corrupt_bio_value;
+	unsigned corrupt_bio_flags;
+};
+
+enum feature_flag_bits {
+	DROP_WRITES
+};
+
+static int parse_features(struct dm_arg_set *as, struct flakey_c *fc,
+			  struct dm_target *ti)
+{
+	int r;
+	unsigned argc;
+	const char *arg_name;
+
+	static struct dm_arg _args[] = {
+		{0, 6, "Invalid number of feature args"},
+		{1, UINT_MAX, "Invalid corrupt bio byte"},
+		{0, 255, "Invalid corrupt value to write into bio byte (0-255)"},
+		{0, UINT_MAX, "Invalid corrupt bio flags mask"},
+	};
+
+	/* No feature arguments supplied. */
+	if (!as->argc)
+		return 0;
+
+	r = dm_read_arg_group(_args, as, &argc, &ti->error);
+	if (r)
+		return r;
+
+	while (argc) {
+		arg_name = dm_shift_arg(as);
+		argc--;
+
+		/*
+		 * drop_writes
+		 */
+		if (!strcasecmp(arg_name, "drop_writes")) {
+			if (test_and_set_bit(DROP_WRITES, &fc->flags)) {
+				ti->error = "Feature drop_writes duplicated";
+				return -EINVAL;
+			}
+
+			continue;
+		}
+
+		/*
+		 * corrupt_bio_byte <Nth_byte> <direction> <value> <bio_flags>
+		 */
+		if (!strcasecmp(arg_name, "corrupt_bio_byte")) {
+			if (!argc) {
+				ti->error = "Feature corrupt_bio_byte requires parameters";
+				return -EINVAL;
+			}
+
+			r = dm_read_arg(_args + 1, as, &fc->corrupt_bio_byte, &ti->error);
+			if (r)
+				return r;
+			argc--;
+
+			/*
+			 * Direction r or w?
+			 */
+			arg_name = dm_shift_arg(as);
+			if (!strcasecmp(arg_name, "w"))
+				fc->corrupt_bio_rw = WRITE;
+			else if (!strcasecmp(arg_name, "r"))
+				fc->corrupt_bio_rw = READ;
+			else {
+				ti->error = "Invalid corrupt bio direction (r or w)";
+				return -EINVAL;
+			}
+			argc--;
+
+			/*
+			 * Value of byte (0-255) to write in place of correct one.
+			 */
+			r = dm_read_arg(_args + 2, as, &fc->corrupt_bio_value, &ti->error);
+			if (r)
+				return r;
+			argc--;
+
+			/*
+			 * Only corrupt bios with these flags set.
+			 */
+			r = dm_read_arg(_args + 3, as, &fc->corrupt_bio_flags, &ti->error);
+			if (r)
+				return r;
+			argc--;
+
+			continue;
+		}
+
+		ti->error = "Unrecognised flakey feature requested";
+		return -EINVAL;
+	}
+
+	if (test_bit(DROP_WRITES, &fc->flags) && (fc->corrupt_bio_rw == WRITE)) {
+		ti->error = "drop_writes is incompatible with corrupt_bio_byte with the WRITE flag set";
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/*
+ * Construct a flakey mapping:
+ * <dev_path> <offset> <up interval> <down interval> [<#feature args> [<arg>]*]
+ *
+ *   Feature args:
+ *     [drop_writes]
+ *     [corrupt_bio_byte <Nth_byte> <direction> <value> <bio_flags>]
+ *
+ *   Nth_byte starts from 1 for the first byte.
+ *   Direction is r for READ or w for WRITE.
+ *   bio_flags is ignored if 0.
+ */
+static int flakey_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+	static struct dm_arg _args[] = {
+		{0, UINT_MAX, "Invalid up interval"},
+		{0, UINT_MAX, "Invalid down interval"},
+	};
+
+	int r;
+	struct flakey_c *fc;
+	unsigned long long tmpll;
+	struct dm_arg_set as;
+	const char *devname;
+	char dummy;
+
+	as.argc = argc;
+	as.argv = argv;
+
+	if (argc < 4) {
+		ti->error = "Invalid argument count";
+		return -EINVAL;
+	}
+
+	fc = kzalloc(sizeof(*fc), GFP_KERNEL);
+	if (!fc) {
+		ti->error = "Cannot allocate linear context";
+		return -ENOMEM;
+	}
+	fc->start_time = jiffies;
+
+	devname = dm_shift_arg(&as);
+
+	if (sscanf(dm_shift_arg(&as), "%llu%c", &tmpll, &dummy) != 1) {
+		ti->error = "Invalid device sector";
+		goto bad;
+	}
+	fc->start = tmpll;
+
+	r = dm_read_arg(_args, &as, &fc->up_interval, &ti->error);
+	if (r)
+		goto bad;
+
+	r = dm_read_arg(_args, &as, &fc->down_interval, &ti->error);
+	if (r)
+		goto bad;
+
+	if (!(fc->up_interval + fc->down_interval)) {
+		ti->error = "Total (up + down) interval is zero";
+		goto bad;
+	}
+
+	if (fc->up_interval + fc->down_interval < fc->up_interval) {
+		ti->error = "Interval overflow";
+		goto bad;
+	}
+
+	r = parse_features(&as, fc, ti);
+	if (r)
+		goto bad;
+
+	if (dm_get_device(ti, devname, dm_table_get_mode(ti->table), &fc->dev)) {
+		ti->error = "Device lookup failed";
+		goto bad;
+	}
+
+	ti->num_flush_requests = 1;
+	ti->num_discard_requests = 1;
+	ti->private = fc;
+	return 0;
+
+bad:
+	kfree(fc);
+	return -EINVAL;
+}
+
+static void flakey_dtr(struct dm_target *ti)
+{
+	struct flakey_c *fc = ti->private;
+
+	dm_put_device(ti, fc->dev);
+	kfree(fc);
+}
+
+static sector_t flakey_map_sector(struct dm_target *ti, sector_t bi_sector)
+{
+	struct flakey_c *fc = ti->private;
+
+	return fc->start + dm_target_offset(ti, bi_sector);
+}
+
+static void flakey_map_bio(struct dm_target *ti, struct bio *bio)
+{
+	struct flakey_c *fc = ti->private;
+
+	bio->bi_bdev = fc->dev->bdev;
+	if (bio_sectors(bio))
+		bio->bi_sector = flakey_map_sector(ti, bio->bi_sector);
+}
+
+static void corrupt_bio_data(struct bio *bio, struct flakey_c *fc)
+{
+	unsigned bio_bytes = bio_cur_bytes(bio);
+	char *data = bio_data(bio);
+
+	/*
+	 * Overwrite the Nth byte of the data returned.
+	 */
+	if (data && bio_bytes >= fc->corrupt_bio_byte) {
+		data[fc->corrupt_bio_byte - 1] = fc->corrupt_bio_value;
+
+		DMDEBUG("Corrupting data bio=%p by writing %u to byte %u "
+			"(rw=%c bi_rw=%lu bi_sector=%llu cur_bytes=%u)\n",
+			bio, fc->corrupt_bio_value, fc->corrupt_bio_byte,
+			(bio_data_dir(bio) == WRITE) ? 'w' : 'r',
+			bio->bi_rw, (unsigned long long)bio->bi_sector, bio_bytes);
+	}
+}
+
+static int flakey_map(struct dm_target *ti, struct bio *bio,
+		      union map_info *map_context)
+{
+	struct flakey_c *fc = ti->private;
+	unsigned elapsed;
+
+	/* Are we alive ? */
+	elapsed = (jiffies - fc->start_time) / HZ;
+	if (elapsed % (fc->up_interval + fc->down_interval) >= fc->up_interval) {
+		/*
+		 * Flag this bio as submitted while down.
+		 */
+		map_context->ll = 1;
+
+		/*
+		 * Map reads as normal.
+		 */
+		if (bio_data_dir(bio) == READ)
+			goto map_bio;
+
+		/*
+		 * Drop writes?
+		 */
+		if (test_bit(DROP_WRITES, &fc->flags)) {
+			bio_endio(bio, 0);
+			return DM_MAPIO_SUBMITTED;
+		}
+
+		/*
+		 * Corrupt matching writes.
+		 */
+		if (fc->corrupt_bio_byte && (fc->corrupt_bio_rw == WRITE)) {
+			if (all_corrupt_bio_flags_match(bio, fc))
+				corrupt_bio_data(bio, fc);
+			goto map_bio;
+		}
+
+		/*
+		 * By default, error all I/O.
+		 */
+		return -EIO;
+	}
+
+map_bio:
+	flakey_map_bio(ti, bio);
+
+	return DM_MAPIO_REMAPPED;
+}
+
+static int flakey_end_io(struct dm_target *ti, struct bio *bio,
+			 int error, union map_info *map_context)
+{
+	struct flakey_c *fc = ti->private;
+	unsigned bio_submitted_while_down = map_context->ll;
+
+	/*
+	 * Corrupt successful READs while in down state.
+	 * If flags were specified, only corrupt those that match.
+	 */
+	if (fc->corrupt_bio_byte && !error && bio_submitted_while_down &&
+	    (bio_data_dir(bio) == READ) && (fc->corrupt_bio_rw == READ) &&
+	    all_corrupt_bio_flags_match(bio, fc))
+		corrupt_bio_data(bio, fc);
+
+	return error;
+}
+
+static void flakey_status(struct dm_target *ti, status_type_t type,
+			  char *result, unsigned int maxlen)
+{
+	unsigned sz = 0;
+	struct flakey_c *fc = ti->private;
+	unsigned drop_writes;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		result[0] = '\0';
+		break;
+
+	case STATUSTYPE_TABLE:
+		DMEMIT("%s %llu %u %u ", fc->dev->name,
+		       (unsigned long long)fc->start, fc->up_interval,
+		       fc->down_interval);
+
+		drop_writes = test_bit(DROP_WRITES, &fc->flags);
+		DMEMIT("%u ", drop_writes + (fc->corrupt_bio_byte > 0) * 5);
+
+		if (drop_writes)
+			DMEMIT("drop_writes ");
+
+		if (fc->corrupt_bio_byte)
+			DMEMIT("corrupt_bio_byte %u %c %u %u ",
+			       fc->corrupt_bio_byte,
+			       (fc->corrupt_bio_rw == WRITE) ? 'w' : 'r',
+			       fc->corrupt_bio_value, fc->corrupt_bio_flags);
+
+		break;
+	}
+}
+
+static int flakey_ioctl(struct dm_target *ti, unsigned int cmd, unsigned long arg)
+{
+	struct flakey_c *fc = ti->private;
+	struct dm_dev *dev = fc->dev;
+	int r = 0;
+
+	/*
+	 * Only pass ioctls through if the device sizes match exactly.
+	 */
+	if (fc->start ||
+	    ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
+		r = scsi_verify_blk_ioctl(NULL, cmd);
+
+	return r ? : __blkdev_driver_ioctl(dev->bdev, dev->mode, cmd, arg);
+}
+
+static int flakey_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
+			struct bio_vec *biovec, int max_size)
+{
+	struct flakey_c *fc = ti->private;
+	struct request_queue *q = bdev_get_queue(fc->dev->bdev);
+
+	if (!q->merge_bvec_fn)
+		return max_size;
+
+	bvm->bi_bdev = fc->dev->bdev;
+	bvm->bi_sector = flakey_map_sector(ti, bvm->bi_sector);
+
+	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
+}
+
+static int flakey_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
+{
+	struct flakey_c *fc = ti->private;
+
+	return fn(ti, fc->dev, fc->start, ti->len, data);
+}
+
+static struct target_type flakey_target = {
+	.name   = "flakey",
+	.version = {1, 2, 0},
+	.module = THIS_MODULE,
+	.ctr    = flakey_ctr,
+	.dtr    = flakey_dtr,
+	.map    = flakey_map,
+	.end_io = flakey_end_io,
+	.status = flakey_status,
+	.ioctl	= flakey_ioctl,
+	.merge	= flakey_merge,
+	.iterate_devices = flakey_iterate_devices,
+};
+
+static int __init dm_flakey_init(void)
+{
+	int r = dm_register_target(&flakey_target);
+
+	if (r < 0)
+		DMERR("register failed %d", r);
+
+	return r;
+}
+
+static void __exit dm_flakey_exit(void)
+{
+	dm_unregister_target(&flakey_target);
+}
+
+/* Module hooks */
+module_init(dm_flakey_init);
+module_exit(dm_flakey_exit);
+
+MODULE_DESCRIPTION(DM_NAME " flakey target");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-io.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-io.c
new file mode 100644
index 0000000..489d7fb
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-io.c
@@ -0,0 +1,535 @@
+/*
+ * Copyright (C) 2003 Sistina Software
+ * Copyright (C) 2006 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+
+#include <linux/device-mapper.h>
+
+#include <linux/bio.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/dm-io.h>
+
+#define DM_MSG_PREFIX "io"
+
+#define DM_IO_MAX_REGIONS	BITS_PER_LONG
+#define MIN_IOS		16
+#define MIN_BIOS	16
+
+struct dm_io_client {
+	mempool_t *pool;
+	struct bio_set *bios;
+};
+
+/*
+ * Aligning 'struct io' reduces the number of bits required to store
+ * its address.  Refer to store_io_and_region_in_bio() below.
+ */
+struct io {
+	unsigned long error_bits;
+	atomic_t count;
+	struct task_struct *sleeper;
+	struct dm_io_client *client;
+	io_notify_fn callback;
+	void *context;
+	void *vma_invalidate_address;
+	unsigned long vma_invalidate_size;
+} __attribute__((aligned(DM_IO_MAX_REGIONS)));
+
+static struct kmem_cache *_dm_io_cache;
+
+/*
+ * Create a client with mempool and bioset.
+ */
+struct dm_io_client *dm_io_client_create(void)
+{
+	struct dm_io_client *client;
+
+	client = kmalloc(sizeof(*client), GFP_KERNEL);
+	if (!client)
+		return ERR_PTR(-ENOMEM);
+
+	client->pool = mempool_create_slab_pool(MIN_IOS, _dm_io_cache);
+	if (!client->pool)
+		goto bad;
+
+	client->bios = bioset_create(MIN_BIOS, 0);
+	if (!client->bios)
+		goto bad;
+
+	return client;
+
+   bad:
+	if (client->pool)
+		mempool_destroy(client->pool);
+	kfree(client);
+	return ERR_PTR(-ENOMEM);
+}
+EXPORT_SYMBOL(dm_io_client_create);
+
+void dm_io_client_destroy(struct dm_io_client *client)
+{
+	mempool_destroy(client->pool);
+	bioset_free(client->bios);
+	kfree(client);
+}
+EXPORT_SYMBOL(dm_io_client_destroy);
+
+/*-----------------------------------------------------------------
+ * We need to keep track of which region a bio is doing io for.
+ * To avoid a memory allocation to store just 5 or 6 bits, we
+ * ensure the 'struct io' pointer is aligned so enough low bits are
+ * always zero and then combine it with the region number directly in
+ * bi_private.
+ *---------------------------------------------------------------*/
+static void store_io_and_region_in_bio(struct bio *bio, struct io *io,
+				       unsigned region)
+{
+	if (unlikely(!IS_ALIGNED((unsigned long)io, DM_IO_MAX_REGIONS))) {
+		DMCRIT("Unaligned struct io pointer %p", io);
+		BUG();
+	}
+
+	bio->bi_private = (void *)((unsigned long)io | region);
+}
+
+static void retrieve_io_and_region_from_bio(struct bio *bio, struct io **io,
+				       unsigned *region)
+{
+	unsigned long val = (unsigned long)bio->bi_private;
+
+	*io = (void *)(val & -(unsigned long)DM_IO_MAX_REGIONS);
+	*region = val & (DM_IO_MAX_REGIONS - 1);
+}
+
+/*-----------------------------------------------------------------
+ * We need an io object to keep track of the number of bios that
+ * have been dispatched for a particular io.
+ *---------------------------------------------------------------*/
+static void dec_count(struct io *io, unsigned int region, int error)
+{
+	if (error)
+		set_bit(region, &io->error_bits);
+
+	if (atomic_dec_and_test(&io->count)) {
+		if (io->vma_invalidate_size)
+			invalidate_kernel_vmap_range(io->vma_invalidate_address,
+						     io->vma_invalidate_size);
+
+		if (io->sleeper)
+			wake_up_process(io->sleeper);
+
+		else {
+			unsigned long r = io->error_bits;
+			io_notify_fn fn = io->callback;
+			void *context = io->context;
+
+			mempool_free(io, io->client->pool);
+			fn(r, context);
+		}
+	}
+}
+
+static void endio(struct bio *bio, int error)
+{
+	struct io *io;
+	unsigned region;
+
+	if (error && bio_data_dir(bio) == READ)
+		zero_fill_bio(bio);
+
+	/*
+	 * The bio destructor in bio_put() may use the io object.
+	 */
+	retrieve_io_and_region_from_bio(bio, &io, &region);
+
+	bio_put(bio);
+
+	dec_count(io, region, error);
+}
+
+/*-----------------------------------------------------------------
+ * These little objects provide an abstraction for getting a new
+ * destination page for io.
+ *---------------------------------------------------------------*/
+struct dpages {
+	void (*get_page)(struct dpages *dp,
+			 struct page **p, unsigned long *len, unsigned *offset);
+	void (*next_page)(struct dpages *dp);
+
+	unsigned context_u;
+	void *context_ptr;
+
+	void *vma_invalidate_address;
+	unsigned long vma_invalidate_size;
+};
+
+/*
+ * Functions for getting the pages from a list.
+ */
+static void list_get_page(struct dpages *dp,
+		  struct page **p, unsigned long *len, unsigned *offset)
+{
+	unsigned o = dp->context_u;
+	struct page_list *pl = (struct page_list *) dp->context_ptr;
+
+	*p = pl->page;
+	*len = PAGE_SIZE - o;
+	*offset = o;
+}
+
+static void list_next_page(struct dpages *dp)
+{
+	struct page_list *pl = (struct page_list *) dp->context_ptr;
+	dp->context_ptr = pl->next;
+	dp->context_u = 0;
+}
+
+static void list_dp_init(struct dpages *dp, struct page_list *pl, unsigned offset)
+{
+	dp->get_page = list_get_page;
+	dp->next_page = list_next_page;
+	dp->context_u = offset;
+	dp->context_ptr = pl;
+}
+
+/*
+ * Functions for getting the pages from a bvec.
+ */
+static void bvec_get_page(struct dpages *dp,
+		  struct page **p, unsigned long *len, unsigned *offset)
+{
+	struct bio_vec *bvec = (struct bio_vec *) dp->context_ptr;
+	*p = bvec->bv_page;
+	*len = bvec->bv_len;
+	*offset = bvec->bv_offset;
+}
+
+static void bvec_next_page(struct dpages *dp)
+{
+	struct bio_vec *bvec = (struct bio_vec *) dp->context_ptr;
+	dp->context_ptr = bvec + 1;
+}
+
+static void bvec_dp_init(struct dpages *dp, struct bio_vec *bvec)
+{
+	dp->get_page = bvec_get_page;
+	dp->next_page = bvec_next_page;
+	dp->context_ptr = bvec;
+}
+
+/*
+ * Functions for getting the pages from a VMA.
+ */
+static void vm_get_page(struct dpages *dp,
+		 struct page **p, unsigned long *len, unsigned *offset)
+{
+	*p = vmalloc_to_page(dp->context_ptr);
+	*offset = dp->context_u;
+	*len = PAGE_SIZE - dp->context_u;
+}
+
+static void vm_next_page(struct dpages *dp)
+{
+	dp->context_ptr += PAGE_SIZE - dp->context_u;
+	dp->context_u = 0;
+}
+
+static void vm_dp_init(struct dpages *dp, void *data)
+{
+	dp->get_page = vm_get_page;
+	dp->next_page = vm_next_page;
+	dp->context_u = ((unsigned long) data) & (PAGE_SIZE - 1);
+	dp->context_ptr = data;
+}
+
+static void dm_bio_destructor(struct bio *bio)
+{
+	unsigned region;
+	struct io *io;
+
+	retrieve_io_and_region_from_bio(bio, &io, &region);
+
+	bio_free(bio, io->client->bios);
+}
+
+/*
+ * Functions for getting the pages from kernel memory.
+ */
+static void km_get_page(struct dpages *dp, struct page **p, unsigned long *len,
+			unsigned *offset)
+{
+	*p = virt_to_page(dp->context_ptr);
+	*offset = dp->context_u;
+	*len = PAGE_SIZE - dp->context_u;
+}
+
+static void km_next_page(struct dpages *dp)
+{
+	dp->context_ptr += PAGE_SIZE - dp->context_u;
+	dp->context_u = 0;
+}
+
+static void km_dp_init(struct dpages *dp, void *data)
+{
+	dp->get_page = km_get_page;
+	dp->next_page = km_next_page;
+	dp->context_u = ((unsigned long) data) & (PAGE_SIZE - 1);
+	dp->context_ptr = data;
+}
+
+/*-----------------------------------------------------------------
+ * IO routines that accept a list of pages.
+ *---------------------------------------------------------------*/
+static void do_region(int rw, unsigned region, struct dm_io_region *where,
+		      struct dpages *dp, struct io *io)
+{
+	struct bio *bio;
+	struct page *page;
+	unsigned long len;
+	unsigned offset;
+	unsigned num_bvecs;
+	sector_t remaining = where->count;
+	struct request_queue *q = bdev_get_queue(where->bdev);
+	sector_t discard_sectors;
+	unsigned int uninitialized_var(special_cmd_max_sectors);
+
+	/*
+	 * Reject unsupported discard and write same requests.
+	 */
+	if (rw & REQ_DISCARD) {
+		special_cmd_max_sectors = q->limits.max_discard_sectors;
+		if (special_cmd_max_sectors == 0) {
+			dec_count(io, region, -EOPNOTSUPP);
+			return;
+		}
+	}
+
+	/*
+	 * where->count may be zero if rw holds a flush and we need to
+	 * send a zero-sized flush.
+	 */
+	do {
+		/*
+		 * Allocate a suitably sized-bio.
+		 */
+		if (rw & REQ_DISCARD)
+			num_bvecs = 1;
+		else
+			num_bvecs = min_t(int, bio_get_nr_vecs(where->bdev),
+					  dm_sector_div_up(remaining, (PAGE_SIZE >> SECTOR_SHIFT)));
+
+		bio = bio_alloc_bioset(GFP_NOIO, num_bvecs, io->client->bios);
+		bio->bi_sector = where->sector + (where->count - remaining);
+		bio->bi_bdev = where->bdev;
+		bio->bi_end_io = endio;
+		bio->bi_destructor = dm_bio_destructor;
+		store_io_and_region_in_bio(bio, io, region);
+
+		if (rw & REQ_DISCARD) {
+			discard_sectors = min_t(sector_t, special_cmd_max_sectors, remaining);
+			bio->bi_size = discard_sectors << SECTOR_SHIFT;
+			remaining -= discard_sectors;
+		} else while (remaining) {
+			/*
+			 * Try and add as many pages as possible.
+			 */
+			dp->get_page(dp, &page, &len, &offset);
+			len = min(len, to_bytes(remaining));
+			if (!bio_add_page(bio, page, len, offset))
+				break;
+
+			offset = 0;
+			remaining -= to_sector(len);
+			dp->next_page(dp);
+		}
+
+		atomic_inc(&io->count);
+		submit_bio(rw, bio);
+	} while (remaining);
+}
+
+static void dispatch_io(int rw, unsigned int num_regions,
+			struct dm_io_region *where, struct dpages *dp,
+			struct io *io, int sync)
+{
+	int i;
+	struct dpages old_pages = *dp;
+
+	BUG_ON(num_regions > DM_IO_MAX_REGIONS);
+
+	if (sync)
+		rw |= REQ_SYNC;
+
+	/*
+	 * For multiple regions we need to be careful to rewind
+	 * the dp object for each call to do_region.
+	 */
+	for (i = 0; i < num_regions; i++) {
+		*dp = old_pages;
+		if (where[i].count || (rw & REQ_FLUSH))
+			do_region(rw, i, where + i, dp, io);
+	}
+
+	/*
+	 * Drop the extra reference that we were holding to avoid
+	 * the io being completed too early.
+	 */
+	dec_count(io, 0, 0);
+}
+
+static int sync_io(struct dm_io_client *client, unsigned int num_regions,
+		   struct dm_io_region *where, int rw, struct dpages *dp,
+		   unsigned long *error_bits)
+{
+	/*
+	 * gcc <= 4.3 can't do the alignment for stack variables, so we must
+	 * align it on our own.
+	 * volatile prevents the optimizer from removing or reusing
+	 * "io_" field from the stack frame (allowed in ANSI C).
+	 */
+	volatile char io_[sizeof(struct io) + __alignof__(struct io) - 1];
+	struct io *io = (struct io *)PTR_ALIGN(&io_, __alignof__(struct io));
+
+	if (num_regions > 1 && (rw & RW_MASK) != WRITE) {
+		WARN_ON(1);
+		return -EIO;
+	}
+
+	io->error_bits = 0;
+	atomic_set(&io->count, 1); /* see dispatch_io() */
+	io->sleeper = current;
+	io->client = client;
+
+	io->vma_invalidate_address = dp->vma_invalidate_address;
+	io->vma_invalidate_size = dp->vma_invalidate_size;
+
+	dispatch_io(rw, num_regions, where, dp, io, 1);
+
+	while (1) {
+		set_current_state(TASK_UNINTERRUPTIBLE);
+
+		if (!atomic_read(&io->count))
+			break;
+
+		io_schedule();
+	}
+	set_current_state(TASK_RUNNING);
+
+	if (error_bits)
+		*error_bits = io->error_bits;
+
+	return io->error_bits ? -EIO : 0;
+}
+
+static int async_io(struct dm_io_client *client, unsigned int num_regions,
+		    struct dm_io_region *where, int rw, struct dpages *dp,
+		    io_notify_fn fn, void *context)
+{
+	struct io *io;
+
+	if (num_regions > 1 && (rw & RW_MASK) != WRITE) {
+		WARN_ON(1);
+		fn(1, context);
+		return -EIO;
+	}
+
+	io = mempool_alloc(client->pool, GFP_NOIO);
+	io->error_bits = 0;
+	atomic_set(&io->count, 1); /* see dispatch_io() */
+	io->sleeper = NULL;
+	io->client = client;
+	io->callback = fn;
+	io->context = context;
+
+	io->vma_invalidate_address = dp->vma_invalidate_address;
+	io->vma_invalidate_size = dp->vma_invalidate_size;
+
+	dispatch_io(rw, num_regions, where, dp, io, 0);
+	return 0;
+}
+
+static int dp_init(struct dm_io_request *io_req, struct dpages *dp,
+		   unsigned long size)
+{
+	/* Set up dpages based on memory type */
+
+	dp->vma_invalidate_address = NULL;
+	dp->vma_invalidate_size = 0;
+
+	switch (io_req->mem.type) {
+	case DM_IO_PAGE_LIST:
+		list_dp_init(dp, io_req->mem.ptr.pl, io_req->mem.offset);
+		break;
+
+	case DM_IO_BVEC:
+		bvec_dp_init(dp, io_req->mem.ptr.bvec);
+		break;
+
+	case DM_IO_VMA:
+		flush_kernel_vmap_range(io_req->mem.ptr.vma, size);
+		if ((io_req->bi_rw & RW_MASK) == READ) {
+			dp->vma_invalidate_address = io_req->mem.ptr.vma;
+			dp->vma_invalidate_size = size;
+		}
+		vm_dp_init(dp, io_req->mem.ptr.vma);
+		break;
+
+	case DM_IO_KMEM:
+		km_dp_init(dp, io_req->mem.ptr.addr);
+		break;
+
+	default:
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/*
+ * New collapsed (a)synchronous interface.
+ *
+ * If the IO is asynchronous (i.e. it has notify.fn), you must either unplug
+ * the queue with blk_unplug() some time later or set REQ_SYNC in
+io_req->bi_rw. If you fail to do one of these, the IO will be submitted to
+ * the disk after q->unplug_delay, which defaults to 3ms in blk-settings.c.
+ */
+int dm_io(struct dm_io_request *io_req, unsigned num_regions,
+	  struct dm_io_region *where, unsigned long *sync_error_bits)
+{
+	int r;
+	struct dpages dp;
+
+	r = dp_init(io_req, &dp, (unsigned long)where->count << SECTOR_SHIFT);
+	if (r)
+		return r;
+
+	if (!io_req->notify.fn)
+		return sync_io(io_req->client, num_regions, where,
+			       io_req->bi_rw, &dp, sync_error_bits);
+
+	return async_io(io_req->client, num_regions, where, io_req->bi_rw,
+			&dp, io_req->notify.fn, io_req->notify.context);
+}
+EXPORT_SYMBOL(dm_io);
+
+int __init dm_io_init(void)
+{
+	_dm_io_cache = KMEM_CACHE(io, 0);
+	if (!_dm_io_cache)
+		return -ENOMEM;
+
+	return 0;
+}
+
+void dm_io_exit(void)
+{
+	kmem_cache_destroy(_dm_io_cache);
+	_dm_io_cache = NULL;
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-ioctl.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-ioctl.c
new file mode 100644
index 0000000..d365365
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-ioctl.c
@@ -0,0 +1,1794 @@
+/*
+ * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2004 - 2006 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/miscdevice.h>
+#include <linux/init.h>
+#include <linux/wait.h>
+#include <linux/slab.h>
+#include <linux/dm-ioctl.h>
+#include <linux/hdreg.h>
+#include <linux/compat.h>
+
+#include <asm/uaccess.h>
+
+#define DM_MSG_PREFIX "ioctl"
+#define DM_DRIVER_EMAIL "dm-devel@redhat.com"
+
+/*-----------------------------------------------------------------
+ * The ioctl interface needs to be able to look up devices by
+ * name or uuid.
+ *---------------------------------------------------------------*/
+struct hash_cell {
+	struct list_head name_list;
+	struct list_head uuid_list;
+
+	char *name;
+	char *uuid;
+	struct mapped_device *md;
+	struct dm_table *new_map;
+};
+
+struct vers_iter {
+    size_t param_size;
+    struct dm_target_versions *vers, *old_vers;
+    char *end;
+    uint32_t flags;
+};
+
+
+#define NUM_BUCKETS 64
+#define MASK_BUCKETS (NUM_BUCKETS - 1)
+static struct list_head _name_buckets[NUM_BUCKETS];
+static struct list_head _uuid_buckets[NUM_BUCKETS];
+
+static void dm_hash_remove_all(int keep_open_devices);
+
+/*
+ * Guards access to both hash tables.
+ */
+static DECLARE_RWSEM(_hash_lock);
+
+/*
+ * Protects use of mdptr to obtain hash cell name and uuid from mapped device.
+ */
+static DEFINE_MUTEX(dm_hash_cells_mutex);
+
+static void init_buckets(struct list_head *buckets)
+{
+	unsigned int i;
+
+	for (i = 0; i < NUM_BUCKETS; i++)
+		INIT_LIST_HEAD(buckets + i);
+}
+
+static int dm_hash_init(void)
+{
+	init_buckets(_name_buckets);
+	init_buckets(_uuid_buckets);
+	return 0;
+}
+
+static void dm_hash_exit(void)
+{
+	dm_hash_remove_all(0);
+}
+
+/*-----------------------------------------------------------------
+ * Hash function:
+ * We're not really concerned with the str hash function being
+ * fast since it's only used by the ioctl interface.
+ *---------------------------------------------------------------*/
+static unsigned int hash_str(const char *str)
+{
+	const unsigned int hash_mult = 2654435387U;
+	unsigned int h = 0;
+
+	while (*str)
+		h = (h + (unsigned int) *str++) * hash_mult;
+
+	return h & MASK_BUCKETS;
+}
+
+/*-----------------------------------------------------------------
+ * Code for looking up a device by name
+ *---------------------------------------------------------------*/
+static struct hash_cell *__get_name_cell(const char *str)
+{
+	struct hash_cell *hc;
+	unsigned int h = hash_str(str);
+
+	list_for_each_entry (hc, _name_buckets + h, name_list)
+		if (!strcmp(hc->name, str)) {
+			dm_get(hc->md);
+			return hc;
+		}
+
+	return NULL;
+}
+
+static struct hash_cell *__get_uuid_cell(const char *str)
+{
+	struct hash_cell *hc;
+	unsigned int h = hash_str(str);
+
+	list_for_each_entry (hc, _uuid_buckets + h, uuid_list)
+		if (!strcmp(hc->uuid, str)) {
+			dm_get(hc->md);
+			return hc;
+		}
+
+	return NULL;
+}
+
+static struct hash_cell *__get_dev_cell(uint64_t dev)
+{
+	struct mapped_device *md;
+	struct hash_cell *hc;
+
+	md = dm_get_md(huge_decode_dev(dev));
+	if (!md)
+		return NULL;
+
+	hc = dm_get_mdptr(md);
+	if (!hc) {
+		dm_put(md);
+		return NULL;
+	}
+
+	return hc;
+}
+
+/*-----------------------------------------------------------------
+ * Inserting, removing and renaming a device.
+ *---------------------------------------------------------------*/
+static struct hash_cell *alloc_cell(const char *name, const char *uuid,
+				    struct mapped_device *md)
+{
+	struct hash_cell *hc;
+
+	hc = kmalloc(sizeof(*hc), GFP_KERNEL);
+	if (!hc)
+		return NULL;
+
+	hc->name = kstrdup(name, GFP_KERNEL);
+	if (!hc->name) {
+		kfree(hc);
+		return NULL;
+	}
+
+	if (!uuid)
+		hc->uuid = NULL;
+
+	else {
+		hc->uuid = kstrdup(uuid, GFP_KERNEL);
+		if (!hc->uuid) {
+			kfree(hc->name);
+			kfree(hc);
+			return NULL;
+		}
+	}
+
+	INIT_LIST_HEAD(&hc->name_list);
+	INIT_LIST_HEAD(&hc->uuid_list);
+	hc->md = md;
+	hc->new_map = NULL;
+	return hc;
+}
+
+static void free_cell(struct hash_cell *hc)
+{
+	if (hc) {
+		kfree(hc->name);
+		kfree(hc->uuid);
+		kfree(hc);
+	}
+}
+
+/*
+ * The kdev_t and uuid of a device can never change once it is
+ * initially inserted.
+ */
+static int dm_hash_insert(const char *name, const char *uuid, struct mapped_device *md)
+{
+	struct hash_cell *cell, *hc;
+
+	/*
+	 * Allocate the new cells.
+	 */
+	cell = alloc_cell(name, uuid, md);
+	if (!cell)
+		return -ENOMEM;
+
+	/*
+	 * Insert the cell into both hash tables.
+	 */
+	down_write(&_hash_lock);
+	hc = __get_name_cell(name);
+	if (hc) {
+		dm_put(hc->md);
+		goto bad;
+	}
+
+	list_add(&cell->name_list, _name_buckets + hash_str(name));
+
+	if (uuid) {
+		hc = __get_uuid_cell(uuid);
+		if (hc) {
+			list_del(&cell->name_list);
+			dm_put(hc->md);
+			goto bad;
+		}
+		list_add(&cell->uuid_list, _uuid_buckets + hash_str(uuid));
+	}
+	dm_get(md);
+	mutex_lock(&dm_hash_cells_mutex);
+	dm_set_mdptr(md, cell);
+	mutex_unlock(&dm_hash_cells_mutex);
+	up_write(&_hash_lock);
+
+	return 0;
+
+ bad:
+	up_write(&_hash_lock);
+	free_cell(cell);
+	return -EBUSY;
+}
+
+static void __hash_remove(struct hash_cell *hc)
+{
+	struct dm_table *table;
+
+	/* remove from the dev hash */
+	list_del(&hc->uuid_list);
+	list_del(&hc->name_list);
+	mutex_lock(&dm_hash_cells_mutex);
+	dm_set_mdptr(hc->md, NULL);
+	mutex_unlock(&dm_hash_cells_mutex);
+
+	table = dm_get_live_table(hc->md);
+	if (table) {
+		dm_table_event(table);
+		dm_table_put(table);
+	}
+
+	if (hc->new_map)
+		dm_table_destroy(hc->new_map);
+	dm_put(hc->md);
+	free_cell(hc);
+}
+
+static void dm_hash_remove_all(int keep_open_devices)
+{
+	int i, dev_skipped;
+	struct hash_cell *hc;
+	struct mapped_device *md;
+
+retry:
+	dev_skipped = 0;
+
+	down_write(&_hash_lock);
+
+	for (i = 0; i < NUM_BUCKETS; i++) {
+		list_for_each_entry(hc, _name_buckets + i, name_list) {
+			md = hc->md;
+			dm_get(md);
+
+			if (keep_open_devices && dm_lock_for_deletion(md)) {
+				dm_put(md);
+				dev_skipped++;
+				continue;
+			}
+
+			__hash_remove(hc);
+
+			up_write(&_hash_lock);
+
+			dm_put(md);
+			if (likely(keep_open_devices))
+				dm_destroy(md);
+			else
+				dm_destroy_immediate(md);
+
+			/*
+			 * Some mapped devices may be using other mapped
+			 * devices, so repeat until we make no further
+			 * progress.  If a new mapped device is created
+			 * here it will also get removed.
+			 */
+			goto retry;
+		}
+	}
+
+	up_write(&_hash_lock);
+
+	if (dev_skipped)
+		DMWARN("remove_all left %d open device(s)", dev_skipped);
+}
+
+/*
+ * Set the uuid of a hash_cell that isn't already set.
+ */
+static void __set_cell_uuid(struct hash_cell *hc, char *new_uuid)
+{
+	mutex_lock(&dm_hash_cells_mutex);
+	hc->uuid = new_uuid;
+	mutex_unlock(&dm_hash_cells_mutex);
+
+	list_add(&hc->uuid_list, _uuid_buckets + hash_str(new_uuid));
+}
+
+/*
+ * Changes the name of a hash_cell and returns the old name for
+ * the caller to free.
+ */
+static char *__change_cell_name(struct hash_cell *hc, char *new_name)
+{
+	char *old_name;
+
+	/*
+	 * Rename and move the name cell.
+	 */
+	list_del(&hc->name_list);
+	old_name = hc->name;
+
+	mutex_lock(&dm_hash_cells_mutex);
+	hc->name = new_name;
+	mutex_unlock(&dm_hash_cells_mutex);
+
+	list_add(&hc->name_list, _name_buckets + hash_str(new_name));
+
+	return old_name;
+}
+
+static struct mapped_device *dm_hash_rename(struct dm_ioctl *param,
+					    const char *new)
+{
+	char *new_data, *old_name = NULL;
+	struct hash_cell *hc;
+	struct dm_table *table;
+	struct mapped_device *md;
+	unsigned change_uuid = (param->flags & DM_UUID_FLAG) ? 1 : 0;
+
+	/*
+	 * duplicate new.
+	 */
+	new_data = kstrdup(new, GFP_KERNEL);
+	if (!new_data)
+		return ERR_PTR(-ENOMEM);
+
+	down_write(&_hash_lock);
+
+	/*
+	 * Is new free ?
+	 */
+	if (change_uuid)
+		hc = __get_uuid_cell(new);
+	else
+		hc = __get_name_cell(new);
+
+	if (hc) {
+		DMWARN("Unable to change %s on mapped device %s to one that "
+		       "already exists: %s",
+		       change_uuid ? "uuid" : "name",
+		       param->name, new);
+		dm_put(hc->md);
+		up_write(&_hash_lock);
+		kfree(new_data);
+		return ERR_PTR(-EBUSY);
+	}
+
+	/*
+	 * Is there such a device as 'old' ?
+	 */
+	hc = __get_name_cell(param->name);
+	if (!hc) {
+		DMWARN("Unable to rename non-existent device, %s to %s%s",
+		       param->name, change_uuid ? "uuid " : "", new);
+		up_write(&_hash_lock);
+		kfree(new_data);
+		return ERR_PTR(-ENXIO);
+	}
+
+	/*
+	 * Does this device already have a uuid?
+	 */
+	if (change_uuid && hc->uuid) {
+		DMWARN("Unable to change uuid of mapped device %s to %s "
+		       "because uuid is already set to %s",
+		       param->name, new, hc->uuid);
+		dm_put(hc->md);
+		up_write(&_hash_lock);
+		kfree(new_data);
+		return ERR_PTR(-EINVAL);
+	}
+
+	if (change_uuid)
+		__set_cell_uuid(hc, new_data);
+	else
+		old_name = __change_cell_name(hc, new_data);
+
+	/*
+	 * Wake up any dm event waiters.
+	 */
+	table = dm_get_live_table(hc->md);
+	if (table) {
+		dm_table_event(table);
+		dm_table_put(table);
+	}
+
+	if (!dm_kobject_uevent(hc->md, KOBJ_CHANGE, param->event_nr))
+		param->flags |= DM_UEVENT_GENERATED_FLAG;
+
+	md = hc->md;
+	up_write(&_hash_lock);
+	kfree(old_name);
+
+	return md;
+}
+
+/*-----------------------------------------------------------------
+ * Implementation of the ioctl commands
+ *---------------------------------------------------------------*/
+/*
+ * All the ioctl commands get dispatched to functions with this
+ * prototype.
+ */
+typedef int (*ioctl_fn)(struct dm_ioctl *param, size_t param_size);
+
+static int remove_all(struct dm_ioctl *param, size_t param_size)
+{
+	dm_hash_remove_all(1);
+	param->data_size = 0;
+	return 0;
+}
+
+/*
+ * Round up the ptr to an 8-byte boundary.
+ */
+#define ALIGN_MASK 7
+static inline void *align_ptr(void *ptr)
+{
+	return (void *) (((size_t) (ptr + ALIGN_MASK)) & ~ALIGN_MASK);
+}
+
+/*
+ * Retrieves the data payload buffer from an already allocated
+ * struct dm_ioctl.
+ */
+static void *get_result_buffer(struct dm_ioctl *param, size_t param_size,
+			       size_t *len)
+{
+	param->data_start = align_ptr(param + 1) - (void *) param;
+
+	if (param->data_start < param_size)
+		*len = param_size - param->data_start;
+	else
+		*len = 0;
+
+	return ((void *) param) + param->data_start;
+}
+
+static int list_devices(struct dm_ioctl *param, size_t param_size)
+{
+	unsigned int i;
+	struct hash_cell *hc;
+	size_t len, needed = 0;
+	struct gendisk *disk;
+	struct dm_name_list *nl, *old_nl = NULL;
+
+	down_write(&_hash_lock);
+
+	/*
+	 * Loop through all the devices working out how much
+	 * space we need.
+	 */
+	for (i = 0; i < NUM_BUCKETS; i++) {
+		list_for_each_entry (hc, _name_buckets + i, name_list) {
+			needed += sizeof(struct dm_name_list);
+			needed += strlen(hc->name) + 1;
+			needed += ALIGN_MASK;
+		}
+	}
+
+	/*
+	 * Grab our output buffer.
+	 */
+	nl = get_result_buffer(param, param_size, &len);
+	if (len < needed) {
+		param->flags |= DM_BUFFER_FULL_FLAG;
+		goto out;
+	}
+	param->data_size = param->data_start + needed;
+
+	nl->dev = 0;	/* Flags no data */
+
+	/*
+	 * Now loop through filling out the names.
+	 */
+	for (i = 0; i < NUM_BUCKETS; i++) {
+		list_for_each_entry (hc, _name_buckets + i, name_list) {
+			if (old_nl)
+				old_nl->next = (uint32_t) ((void *) nl -
+							   (void *) old_nl);
+			disk = dm_disk(hc->md);
+			nl->dev = huge_encode_dev(disk_devt(disk));
+			nl->next = 0;
+			strcpy(nl->name, hc->name);
+
+			old_nl = nl;
+			nl = align_ptr(((void *) ++nl) + strlen(hc->name) + 1);
+		}
+	}
+
+ out:
+	up_write(&_hash_lock);
+	return 0;
+}
+
+static void list_version_get_needed(struct target_type *tt, void *needed_param)
+{
+    size_t *needed = needed_param;
+
+    *needed += sizeof(struct dm_target_versions);
+    *needed += strlen(tt->name);
+    *needed += ALIGN_MASK;
+}
+
+static void list_version_get_info(struct target_type *tt, void *param)
+{
+    struct vers_iter *info = param;
+
+    /* Check space - it might have changed since the first iteration */
+    if ((char *)info->vers + sizeof(tt->version) + strlen(tt->name) + 1 >
+	info->end) {
+
+	info->flags = DM_BUFFER_FULL_FLAG;
+	return;
+    }
+
+    if (info->old_vers)
+	info->old_vers->next = (uint32_t) ((void *)info->vers -
+					   (void *)info->old_vers);
+    info->vers->version[0] = tt->version[0];
+    info->vers->version[1] = tt->version[1];
+    info->vers->version[2] = tt->version[2];
+    info->vers->next = 0;
+    strcpy(info->vers->name, tt->name);
+
+    info->old_vers = info->vers;
+    info->vers = align_ptr(((void *) ++info->vers) + strlen(tt->name) + 1);
+}
+
+static int list_versions(struct dm_ioctl *param, size_t param_size)
+{
+	size_t len, needed = 0;
+	struct dm_target_versions *vers;
+	struct vers_iter iter_info;
+
+	/*
+	 * Loop through all the devices working out how much
+	 * space we need.
+	 */
+	dm_target_iterate(list_version_get_needed, &needed);
+
+	/*
+	 * Grab our output buffer.
+	 */
+	vers = get_result_buffer(param, param_size, &len);
+	if (len < needed) {
+		param->flags |= DM_BUFFER_FULL_FLAG;
+		goto out;
+	}
+	param->data_size = param->data_start + needed;
+
+	iter_info.param_size = param_size;
+	iter_info.old_vers = NULL;
+	iter_info.vers = vers;
+	iter_info.flags = 0;
+	iter_info.end = (char *)vers+len;
+
+	/*
+	 * Now loop through filling out the names & versions.
+	 */
+	dm_target_iterate(list_version_get_info, &iter_info);
+	param->flags |= iter_info.flags;
+
+ out:
+	return 0;
+}
+
+static int check_name(const char *name)
+{
+	if (strchr(name, '/')) {
+		DMWARN("invalid device name");
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/*
+ * On successful return, the caller must not attempt to acquire
+ * _hash_lock without first calling dm_table_put, because dm_table_destroy
+ * waits for this dm_table_put and could be called under this lock.
+ */
+static struct dm_table *dm_get_inactive_table(struct mapped_device *md)
+{
+	struct hash_cell *hc;
+	struct dm_table *table = NULL;
+
+	down_read(&_hash_lock);
+	hc = dm_get_mdptr(md);
+	if (!hc || hc->md != md) {
+		DMWARN("device has been removed from the dev hash table.");
+		goto out;
+	}
+
+	table = hc->new_map;
+	if (table)
+		dm_table_get(table);
+
+out:
+	up_read(&_hash_lock);
+
+	return table;
+}
+
+static struct dm_table *dm_get_live_or_inactive_table(struct mapped_device *md,
+						      struct dm_ioctl *param)
+{
+	return (param->flags & DM_QUERY_INACTIVE_TABLE_FLAG) ?
+		dm_get_inactive_table(md) : dm_get_live_table(md);
+}
+
+/*
+ * Fills in a dm_ioctl structure, ready for sending back to
+ * userland.
+ */
+static void __dev_status(struct mapped_device *md, struct dm_ioctl *param)
+{
+	struct gendisk *disk = dm_disk(md);
+	struct dm_table *table;
+
+	param->flags &= ~(DM_SUSPEND_FLAG | DM_READONLY_FLAG |
+			  DM_ACTIVE_PRESENT_FLAG);
+
+	if (dm_suspended_md(md))
+		param->flags |= DM_SUSPEND_FLAG;
+
+	param->dev = huge_encode_dev(disk_devt(disk));
+
+	/*
+	 * Yes, this will be out of date by the time it gets back
+	 * to userland, but it is still very useful for
+	 * debugging.
+	 */
+	param->open_count = dm_open_count(md);
+
+	param->event_nr = dm_get_event_nr(md);
+	param->target_count = 0;
+
+	table = dm_get_live_table(md);
+	if (table) {
+		if (!(param->flags & DM_QUERY_INACTIVE_TABLE_FLAG)) {
+			if (get_disk_ro(disk))
+				param->flags |= DM_READONLY_FLAG;
+			param->target_count = dm_table_get_num_targets(table);
+		}
+		dm_table_put(table);
+
+		param->flags |= DM_ACTIVE_PRESENT_FLAG;
+	}
+
+	if (param->flags & DM_QUERY_INACTIVE_TABLE_FLAG) {
+		table = dm_get_inactive_table(md);
+		if (table) {
+			if (!(dm_table_get_mode(table) & FMODE_WRITE))
+				param->flags |= DM_READONLY_FLAG;
+			param->target_count = dm_table_get_num_targets(table);
+			dm_table_put(table);
+		}
+	}
+}
+
+static int dev_create(struct dm_ioctl *param, size_t param_size)
+{
+	int r, m = DM_ANY_MINOR;
+	struct mapped_device *md;
+
+	r = check_name(param->name);
+	if (r)
+		return r;
+
+	if (param->flags & DM_PERSISTENT_DEV_FLAG)
+		m = MINOR(huge_decode_dev(param->dev));
+
+	r = dm_create(m, &md);
+	if (r)
+		return r;
+
+	r = dm_hash_insert(param->name, *param->uuid ? param->uuid : NULL, md);
+	if (r) {
+		dm_put(md);
+		dm_destroy(md);
+		return r;
+	}
+
+	param->flags &= ~DM_INACTIVE_PRESENT_FLAG;
+
+	__dev_status(md, param);
+
+	dm_put(md);
+
+	return 0;
+}
+
+/*
+ * Always use UUID for lookups if it's present, otherwise use name or dev.
+ */
+static struct hash_cell *__find_device_hash_cell(struct dm_ioctl *param)
+{
+	struct hash_cell *hc = NULL;
+
+	if (*param->uuid) {
+		if (*param->name || param->dev)
+			return NULL;
+
+		hc = __get_uuid_cell(param->uuid);
+		if (!hc)
+			return NULL;
+	} else if (*param->name) {
+		if (param->dev)
+			return NULL;
+
+		hc = __get_name_cell(param->name);
+		if (!hc)
+			return NULL;
+	} else if (param->dev) {
+		hc = __get_dev_cell(param->dev);
+		if (!hc)
+			return NULL;
+	} else
+		return NULL;
+
+	/*
+	 * Sneakily write in both the name and the uuid
+	 * while we have the cell.
+	 */
+	strlcpy(param->name, hc->name, sizeof(param->name));
+	if (hc->uuid)
+		strlcpy(param->uuid, hc->uuid, sizeof(param->uuid));
+	else
+		param->uuid[0] = '\0';
+
+	if (hc->new_map)
+		param->flags |= DM_INACTIVE_PRESENT_FLAG;
+	else
+		param->flags &= ~DM_INACTIVE_PRESENT_FLAG;
+
+	return hc;
+}
+
+static struct mapped_device *find_device(struct dm_ioctl *param)
+{
+	struct hash_cell *hc;
+	struct mapped_device *md = NULL;
+
+	down_read(&_hash_lock);
+	hc = __find_device_hash_cell(param);
+	if (hc)
+		md = hc->md;
+	up_read(&_hash_lock);
+
+	return md;
+}
+
+static int dev_remove(struct dm_ioctl *param, size_t param_size)
+{
+	struct hash_cell *hc;
+	struct mapped_device *md;
+	int r;
+
+	down_write(&_hash_lock);
+	hc = __find_device_hash_cell(param);
+
+	if (!hc) {
+		DMDEBUG_LIMIT("device doesn't appear to be in the dev hash table.");
+		up_write(&_hash_lock);
+		return -ENXIO;
+	}
+
+	md = hc->md;
+
+	/*
+	 * Ensure the device is not open and nothing further can open it.
+	 */
+	r = dm_lock_for_deletion(md);
+	if (r) {
+		DMDEBUG_LIMIT("unable to remove open device %s", hc->name);
+		up_write(&_hash_lock);
+		dm_put(md);
+		return r;
+	}
+
+	__hash_remove(hc);
+	up_write(&_hash_lock);
+
+	if (!dm_kobject_uevent(md, KOBJ_REMOVE, param->event_nr))
+		param->flags |= DM_UEVENT_GENERATED_FLAG;
+
+	dm_put(md);
+	dm_destroy(md);
+	return 0;
+}
+
+/*
+ * Check a string doesn't overrun the chunk of
+ * memory we copied from userland.
+ */
+static int invalid_str(char *str, void *end)
+{
+	while ((void *) str < end)
+		if (!*str++)
+			return 0;
+
+	return -EINVAL;
+}
+
+static int dev_rename(struct dm_ioctl *param, size_t param_size)
+{
+	int r;
+	char *new_data = (char *) param + param->data_start;
+	struct mapped_device *md;
+	unsigned change_uuid = (param->flags & DM_UUID_FLAG) ? 1 : 0;
+
+	if (new_data < param->data ||
+	    invalid_str(new_data, (void *) param + param_size) ||
+	    strlen(new_data) > (change_uuid ? DM_UUID_LEN - 1 : DM_NAME_LEN - 1)) {
+		DMWARN("Invalid new mapped device name or uuid string supplied.");
+		return -EINVAL;
+	}
+
+	if (!change_uuid) {
+		r = check_name(new_data);
+		if (r)
+			return r;
+	}
+
+	md = dm_hash_rename(param, new_data);
+	if (IS_ERR(md))
+		return PTR_ERR(md);
+
+	__dev_status(md, param);
+	dm_put(md);
+
+	return 0;
+}
+
+static int dev_set_geometry(struct dm_ioctl *param, size_t param_size)
+{
+	int r = -EINVAL, x;
+	struct mapped_device *md;
+	struct hd_geometry geometry;
+	unsigned long indata[4];
+	char *geostr = (char *) param + param->data_start;
+	char dummy;
+
+	md = find_device(param);
+	if (!md)
+		return -ENXIO;
+
+	if (geostr < param->data ||
+	    invalid_str(geostr, (void *) param + param_size)) {
+		DMWARN("Invalid geometry supplied.");
+		goto out;
+	}
+
+	x = sscanf(geostr, "%lu %lu %lu %lu%c", indata,
+		   indata + 1, indata + 2, indata + 3, &dummy);
+
+	if (x != 4) {
+		DMWARN("Unable to interpret geometry settings.");
+		goto out;
+	}
+
+	if (indata[0] > 65535 || indata[1] > 255 ||
+	    indata[2] > 255 || indata[3] > ULONG_MAX) {
+		DMWARN("Geometry exceeds range limits.");
+		goto out;
+	}
+
+	geometry.cylinders = indata[0];
+	geometry.heads = indata[1];
+	geometry.sectors = indata[2];
+	geometry.start = indata[3];
+
+	r = dm_set_geometry(md, &geometry);
+
+	param->data_size = 0;
+
+out:
+	dm_put(md);
+	return r;
+}
+
+static int do_suspend(struct dm_ioctl *param)
+{
+	int r = 0;
+	unsigned suspend_flags = DM_SUSPEND_LOCKFS_FLAG;
+	struct mapped_device *md;
+
+	md = find_device(param);
+	if (!md)
+		return -ENXIO;
+
+	if (param->flags & DM_SKIP_LOCKFS_FLAG)
+		suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
+	if (param->flags & DM_NOFLUSH_FLAG)
+		suspend_flags |= DM_SUSPEND_NOFLUSH_FLAG;
+
+	if (!dm_suspended_md(md)) {
+		r = dm_suspend(md, suspend_flags);
+		if (r)
+			goto out;
+	}
+
+	__dev_status(md, param);
+
+out:
+	dm_put(md);
+
+	return r;
+}
+
+static int do_resume(struct dm_ioctl *param)
+{
+	int r = 0;
+	unsigned suspend_flags = DM_SUSPEND_LOCKFS_FLAG;
+	struct hash_cell *hc;
+	struct mapped_device *md;
+	struct dm_table *new_map, *old_map = NULL;
+
+	down_write(&_hash_lock);
+
+	hc = __find_device_hash_cell(param);
+	if (!hc) {
+		DMDEBUG_LIMIT("device doesn't appear to be in the dev hash table.");
+		up_write(&_hash_lock);
+		return -ENXIO;
+	}
+
+	md = hc->md;
+
+	new_map = hc->new_map;
+	hc->new_map = NULL;
+	param->flags &= ~DM_INACTIVE_PRESENT_FLAG;
+
+	up_write(&_hash_lock);
+
+	/* Do we need to load a new map ? */
+	if (new_map) {
+		/* Suspend if it isn't already suspended */
+		if (param->flags & DM_SKIP_LOCKFS_FLAG)
+			suspend_flags &= ~DM_SUSPEND_LOCKFS_FLAG;
+		if (param->flags & DM_NOFLUSH_FLAG)
+			suspend_flags |= DM_SUSPEND_NOFLUSH_FLAG;
+		if (!dm_suspended_md(md))
+			dm_suspend(md, suspend_flags);
+
+		old_map = dm_swap_table(md, new_map);
+		if (IS_ERR(old_map)) {
+			dm_table_destroy(new_map);
+			dm_put(md);
+			return PTR_ERR(old_map);
+		}
+
+		if (dm_table_get_mode(new_map) & FMODE_WRITE)
+			set_disk_ro(dm_disk(md), 0);
+		else
+			set_disk_ro(dm_disk(md), 1);
+	}
+
+	if (dm_suspended_md(md)) {
+		r = dm_resume(md);
+		if (!r && !dm_kobject_uevent(md, KOBJ_CHANGE, param->event_nr))
+			param->flags |= DM_UEVENT_GENERATED_FLAG;
+	}
+
+	if (old_map)
+		dm_table_destroy(old_map);
+
+	if (!r)
+		__dev_status(md, param);
+
+	dm_put(md);
+	return r;
+}
+
+/*
+ * Set or unset the suspension state of a device.
+ * If the device already is in the requested state we just return its status.
+ */
+static int dev_suspend(struct dm_ioctl *param, size_t param_size)
+{
+	if (param->flags & DM_SUSPEND_FLAG)
+		return do_suspend(param);
+
+	return do_resume(param);
+}
+
+/*
+ * Copies device info back to user space, used by
+ * the create and info ioctls.
+ */
+static int dev_status(struct dm_ioctl *param, size_t param_size)
+{
+	struct mapped_device *md;
+
+	md = find_device(param);
+	if (!md)
+		return -ENXIO;
+
+	__dev_status(md, param);
+	dm_put(md);
+
+	return 0;
+}
+
+/*
+ * Build up the status struct for each target
+ */
+static void retrieve_status(struct dm_table *table,
+			    struct dm_ioctl *param, size_t param_size)
+{
+	unsigned int i, num_targets;
+	struct dm_target_spec *spec;
+	char *outbuf, *outptr;
+	status_type_t type;
+	size_t remaining, len, used = 0;
+
+	outptr = outbuf = get_result_buffer(param, param_size, &len);
+
+	if (param->flags & DM_STATUS_TABLE_FLAG)
+		type = STATUSTYPE_TABLE;
+	else
+		type = STATUSTYPE_INFO;
+
+	/* Get all the target info */
+	num_targets = dm_table_get_num_targets(table);
+	for (i = 0; i < num_targets; i++) {
+		struct dm_target *ti = dm_table_get_target(table, i);
+		size_t l;
+
+		remaining = len - (outptr - outbuf);
+		if (remaining <= sizeof(struct dm_target_spec)) {
+			param->flags |= DM_BUFFER_FULL_FLAG;
+			break;
+		}
+
+		spec = (struct dm_target_spec *) outptr;
+
+		spec->status = 0;
+		spec->sector_start = ti->begin;
+		spec->length = ti->len;
+		strncpy(spec->target_type, ti->type->name,
+			sizeof(spec->target_type));
+
+		outptr += sizeof(struct dm_target_spec);
+		remaining = len - (outptr - outbuf);
+		if (remaining <= 0) {
+			param->flags |= DM_BUFFER_FULL_FLAG;
+			break;
+		}
+
+		/* Get the status/table string from the target driver */
+		if (ti->type->status)
+			ti->type->status(ti, type, outptr, remaining);
+		else
+			outptr[0] = '\0';
+
+		l = strlen(outptr) + 1;
+		if (l == remaining) {
+			param->flags |= DM_BUFFER_FULL_FLAG;
+			break;
+		}
+
+		outptr += l;
+		used = param->data_start + (outptr - outbuf);
+
+		outptr = align_ptr(outptr);
+		spec->next = outptr - outbuf;
+	}
+
+	if (used)
+		param->data_size = used;
+
+	param->target_count = num_targets;
+}
+
+/*
+ * Wait for a device to report an event
+ */
+static int dev_wait(struct dm_ioctl *param, size_t param_size)
+{
+	int r = 0;
+	struct mapped_device *md;
+	struct dm_table *table;
+
+	md = find_device(param);
+	if (!md)
+		return -ENXIO;
+
+	/*
+	 * Wait for a notification event
+	 */
+	if (dm_wait_event(md, param->event_nr)) {
+		r = -ERESTARTSYS;
+		goto out;
+	}
+
+	/*
+	 * The userland program is going to want to know what
+	 * changed to trigger the event, so we may as well tell
+	 * him and save an ioctl.
+	 */
+	__dev_status(md, param);
+
+	table = dm_get_live_or_inactive_table(md, param);
+	if (table) {
+		retrieve_status(table, param, param_size);
+		dm_table_put(table);
+	}
+
+out:
+	dm_put(md);
+
+	return r;
+}
+
+static inline fmode_t get_mode(struct dm_ioctl *param)
+{
+	fmode_t mode = FMODE_READ | FMODE_WRITE;
+
+	if (param->flags & DM_READONLY_FLAG)
+		mode = FMODE_READ;
+
+	return mode;
+}
+
+static int next_target(struct dm_target_spec *last, uint32_t next, void *end,
+		       struct dm_target_spec **spec, char **target_params)
+{
+	*spec = (struct dm_target_spec *) ((unsigned char *) last + next);
+	*target_params = (char *) (*spec + 1);
+
+	if (*spec < (last + 1))
+		return -EINVAL;
+
+	return invalid_str(*target_params, end);
+}
+
+static int populate_table(struct dm_table *table,
+			  struct dm_ioctl *param, size_t param_size)
+{
+	int r;
+	unsigned int i = 0;
+	struct dm_target_spec *spec = (struct dm_target_spec *) param;
+	uint32_t next = param->data_start;
+	void *end = (void *) param + param_size;
+	char *target_params;
+
+	if (!param->target_count) {
+		DMWARN("populate_table: no targets specified");
+		return -EINVAL;
+	}
+
+	for (i = 0; i < param->target_count; i++) {
+
+		r = next_target(spec, next, end, &spec, &target_params);
+		if (r) {
+			DMWARN("unable to find target");
+			return r;
+		}
+
+		r = dm_table_add_target(table, spec->target_type,
+					(sector_t) spec->sector_start,
+					(sector_t) spec->length,
+					target_params);
+		if (r) {
+			DMWARN("error adding target to table");
+			return r;
+		}
+
+		next = spec->next;
+	}
+
+	return dm_table_complete(table);
+}
+
+static int table_load(struct dm_ioctl *param, size_t param_size)
+{
+	int r;
+	struct hash_cell *hc;
+	struct dm_table *t;
+	struct mapped_device *md;
+	struct target_type *immutable_target_type;
+
+	md = find_device(param);
+	if (!md)
+		return -ENXIO;
+
+	r = dm_table_create(&t, get_mode(param), param->target_count, md);
+	if (r)
+		goto out;
+
+	r = populate_table(t, param, param_size);
+	if (r) {
+		dm_table_destroy(t);
+		goto out;
+	}
+
+	immutable_target_type = dm_get_immutable_target_type(md);
+	if (immutable_target_type &&
+	    (immutable_target_type != dm_table_get_immutable_target_type(t))) {
+		DMWARN("can't replace immutable target type %s",
+		       immutable_target_type->name);
+		dm_table_destroy(t);
+		r = -EINVAL;
+		goto out;
+	}
+
+	/* Protect md->type and md->queue against concurrent table loads. */
+	dm_lock_md_type(md);
+	if (dm_get_md_type(md) == DM_TYPE_NONE)
+		/* Initial table load: acquire type of table. */
+		dm_set_md_type(md, dm_table_get_type(t));
+	else if (dm_get_md_type(md) != dm_table_get_type(t)) {
+		DMWARN("can't change device type after initial table load.");
+		dm_table_destroy(t);
+		dm_unlock_md_type(md);
+		r = -EINVAL;
+		goto out;
+	}
+
+	/* setup md->queue to reflect md's type (may block) */
+	r = dm_setup_md_queue(md);
+	if (r) {
+		DMWARN("unable to set up device queue for new table.");
+		dm_table_destroy(t);
+		dm_unlock_md_type(md);
+		goto out;
+	}
+	dm_unlock_md_type(md);
+
+	/* stage inactive table */
+	down_write(&_hash_lock);
+	hc = dm_get_mdptr(md);
+	if (!hc || hc->md != md) {
+		DMWARN("device has been removed from the dev hash table.");
+		dm_table_destroy(t);
+		up_write(&_hash_lock);
+		r = -ENXIO;
+		goto out;
+	}
+
+	if (hc->new_map)
+		dm_table_destroy(hc->new_map);
+	hc->new_map = t;
+	up_write(&_hash_lock);
+
+	param->flags |= DM_INACTIVE_PRESENT_FLAG;
+	__dev_status(md, param);
+
+out:
+	dm_put(md);
+
+	return r;
+}
+
+static int table_clear(struct dm_ioctl *param, size_t param_size)
+{
+	struct hash_cell *hc;
+	struct mapped_device *md;
+
+	down_write(&_hash_lock);
+
+	hc = __find_device_hash_cell(param);
+	if (!hc) {
+		DMDEBUG_LIMIT("device doesn't appear to be in the dev hash table.");
+		up_write(&_hash_lock);
+		return -ENXIO;
+	}
+
+	if (hc->new_map) {
+		dm_table_destroy(hc->new_map);
+		hc->new_map = NULL;
+	}
+
+	param->flags &= ~DM_INACTIVE_PRESENT_FLAG;
+
+	__dev_status(hc->md, param);
+	md = hc->md;
+	up_write(&_hash_lock);
+	dm_put(md);
+
+	return 0;
+}
+
+/*
+ * Retrieves a list of devices used by a particular dm device.
+ */
+static void retrieve_deps(struct dm_table *table,
+			  struct dm_ioctl *param, size_t param_size)
+{
+	unsigned int count = 0;
+	struct list_head *tmp;
+	size_t len, needed;
+	struct dm_dev_internal *dd;
+	struct dm_target_deps *deps;
+
+	deps = get_result_buffer(param, param_size, &len);
+
+	/*
+	 * Count the devices.
+	 */
+	list_for_each (tmp, dm_table_get_devices(table))
+		count++;
+
+	/*
+	 * Check we have enough space.
+	 */
+	needed = sizeof(*deps) + (sizeof(*deps->dev) * count);
+	if (len < needed) {
+		param->flags |= DM_BUFFER_FULL_FLAG;
+		return;
+	}
+
+	/*
+	 * Fill in the devices.
+	 */
+	deps->count = count;
+	count = 0;
+	list_for_each_entry (dd, dm_table_get_devices(table), list)
+		deps->dev[count++] = huge_encode_dev(dd->dm_dev.bdev->bd_dev);
+
+	param->data_size = param->data_start + needed;
+}
+
+static int table_deps(struct dm_ioctl *param, size_t param_size)
+{
+	struct mapped_device *md;
+	struct dm_table *table;
+
+	md = find_device(param);
+	if (!md)
+		return -ENXIO;
+
+	__dev_status(md, param);
+
+	table = dm_get_live_or_inactive_table(md, param);
+	if (table) {
+		retrieve_deps(table, param, param_size);
+		dm_table_put(table);
+	}
+
+	dm_put(md);
+
+	return 0;
+}
+
+/*
+ * Return the status of a device as a text string for each
+ * target.
+ */
+static int table_status(struct dm_ioctl *param, size_t param_size)
+{
+	struct mapped_device *md;
+	struct dm_table *table;
+
+	md = find_device(param);
+	if (!md)
+		return -ENXIO;
+
+	__dev_status(md, param);
+
+	table = dm_get_live_or_inactive_table(md, param);
+	if (table) {
+		retrieve_status(table, param, param_size);
+		dm_table_put(table);
+	}
+
+	dm_put(md);
+
+	return 0;
+}
+
+/*
+ * Pass a message to the target that's at the supplied device offset.
+ */
+static int target_message(struct dm_ioctl *param, size_t param_size)
+{
+	int r, argc;
+	char **argv;
+	struct mapped_device *md;
+	struct dm_table *table;
+	struct dm_target *ti;
+	struct dm_target_msg *tmsg = (void *) param + param->data_start;
+
+	md = find_device(param);
+	if (!md)
+		return -ENXIO;
+
+	if (tmsg < (struct dm_target_msg *) param->data ||
+	    invalid_str(tmsg->message, (void *) param + param_size)) {
+		DMWARN("Invalid target message parameters.");
+		r = -EINVAL;
+		goto out;
+	}
+
+	r = dm_split_args(&argc, &argv, tmsg->message);
+	if (r) {
+		DMWARN("Failed to split target message parameters");
+		goto out;
+	}
+
+	if (!argc) {
+		DMWARN("Empty message received.");
+		goto out_argv;
+	}
+
+	table = dm_get_live_table(md);
+	if (!table)
+		goto out_argv;
+
+	if (dm_deleting_md(md)) {
+		r = -ENXIO;
+		goto out_table;
+	}
+
+	ti = dm_table_find_target(table, tmsg->sector);
+	if (!dm_target_is_valid(ti)) {
+		DMWARN("Target message sector outside device.");
+		r = -EINVAL;
+	} else if (ti->type->message)
+		r = ti->type->message(ti, argc, argv);
+	else {
+		DMWARN("Target type does not support messages");
+		r = -EINVAL;
+	}
+
+ out_table:
+	dm_table_put(table);
+ out_argv:
+	kfree(argv);
+ out:
+	param->data_size = 0;
+	dm_put(md);
+	return r;
+}
+
+/*-----------------------------------------------------------------
+ * Implementation of open/close/ioctl on the special char
+ * device.
+ *---------------------------------------------------------------*/
+static ioctl_fn lookup_ioctl(unsigned int cmd)
+{
+	static struct {
+		int cmd;
+		ioctl_fn fn;
+	} _ioctls[] = {
+		{DM_VERSION_CMD, NULL},	/* version is dealt with elsewhere */
+		{DM_REMOVE_ALL_CMD, remove_all},
+		{DM_LIST_DEVICES_CMD, list_devices},
+
+		{DM_DEV_CREATE_CMD, dev_create},
+		{DM_DEV_REMOVE_CMD, dev_remove},
+		{DM_DEV_RENAME_CMD, dev_rename},
+		{DM_DEV_SUSPEND_CMD, dev_suspend},
+		{DM_DEV_STATUS_CMD, dev_status},
+		{DM_DEV_WAIT_CMD, dev_wait},
+
+		{DM_TABLE_LOAD_CMD, table_load},
+		{DM_TABLE_CLEAR_CMD, table_clear},
+		{DM_TABLE_DEPS_CMD, table_deps},
+		{DM_TABLE_STATUS_CMD, table_status},
+
+		{DM_LIST_VERSIONS_CMD, list_versions},
+
+		{DM_TARGET_MSG_CMD, target_message},
+		{DM_DEV_SET_GEOMETRY_CMD, dev_set_geometry}
+	};
+
+	return (cmd >= ARRAY_SIZE(_ioctls)) ? NULL : _ioctls[cmd].fn;
+}
+
+/*
+ * As well as checking the version compatibility this always
+ * copies the kernel interface version out.
+ */
+static int check_version(unsigned int cmd, struct dm_ioctl __user *user)
+{
+	uint32_t version[3];
+	int r = 0;
+
+	if (copy_from_user(version, user->version, sizeof(version)))
+		return -EFAULT;
+
+	if ((DM_VERSION_MAJOR != version[0]) ||
+	    (DM_VERSION_MINOR < version[1])) {
+		DMWARN("ioctl interface mismatch: "
+		       "kernel(%u.%u.%u), user(%u.%u.%u), cmd(%d)",
+		       DM_VERSION_MAJOR, DM_VERSION_MINOR,
+		       DM_VERSION_PATCHLEVEL,
+		       version[0], version[1], version[2], cmd);
+		r = -EINVAL;
+	}
+
+	/*
+	 * Fill in the kernel version.
+	 */
+	version[0] = DM_VERSION_MAJOR;
+	version[1] = DM_VERSION_MINOR;
+	version[2] = DM_VERSION_PATCHLEVEL;
+	if (copy_to_user(user->version, version, sizeof(version)))
+		return -EFAULT;
+
+	return r;
+}
+
+static int copy_params(struct dm_ioctl __user *user, struct dm_ioctl **param)
+{
+	struct dm_ioctl tmp, *dmi;
+	int secure_data;
+
+	if (copy_from_user(&tmp, user, sizeof(tmp) - sizeof(tmp.data)))
+		return -EFAULT;
+
+	if (tmp.data_size < (sizeof(tmp) - sizeof(tmp.data)))
+		return -EINVAL;
+
+	secure_data = tmp.flags & DM_SECURE_DATA_FLAG;
+
+	dmi = vmalloc(tmp.data_size);
+	if (!dmi) {
+		if (secure_data && clear_user(user, tmp.data_size))
+			return -EFAULT;
+		return -ENOMEM;
+	}
+
+	if (copy_from_user(dmi, user, tmp.data_size))
+		goto bad;
+
+	/*
+	 * Abort if something changed the ioctl data while it was being copied.
+	 */
+	if (dmi->data_size != tmp.data_size) {
+		DMERR("rejecting ioctl: data size modified while processing parameters");
+		goto bad;
+	}
+
+	/* Wipe the user buffer so we do not return it to userspace */
+	if (secure_data && clear_user(user, tmp.data_size))
+		goto bad;
+
+	*param = dmi;
+	return 0;
+
+bad:
+	if (secure_data)
+		memset(dmi, 0, tmp.data_size);
+	vfree(dmi);
+	return -EFAULT;
+}
+
+static int validate_params(uint cmd, struct dm_ioctl *param)
+{
+	/* Always clear this flag */
+	param->flags &= ~DM_BUFFER_FULL_FLAG;
+	param->flags &= ~DM_UEVENT_GENERATED_FLAG;
+	param->flags &= ~DM_SECURE_DATA_FLAG;
+
+	/* Ignores parameters */
+	if (cmd == DM_REMOVE_ALL_CMD ||
+	    cmd == DM_LIST_DEVICES_CMD ||
+	    cmd == DM_LIST_VERSIONS_CMD)
+		return 0;
+
+	if ((cmd == DM_DEV_CREATE_CMD)) {
+		if (!*param->name) {
+			DMWARN("name not supplied when creating device");
+			return -EINVAL;
+		}
+	} else if ((*param->uuid && *param->name)) {
+		DMWARN("only supply one of name or uuid, cmd(%u)", cmd);
+		return -EINVAL;
+	}
+
+	/* Ensure strings are terminated */
+	param->name[DM_NAME_LEN - 1] = '\0';
+	param->uuid[DM_UUID_LEN - 1] = '\0';
+
+	return 0;
+}
+
+static int ctl_ioctl(uint command, struct dm_ioctl __user *user)
+{
+	int r = 0;
+	int wipe_buffer;
+	unsigned int cmd;
+	struct dm_ioctl *uninitialized_var(param);
+	ioctl_fn fn = NULL;
+	size_t input_param_size;
+
+	/* only root can play with this */
+	if (!capable(CAP_SYS_ADMIN))
+		return -EACCES;
+
+	if (_IOC_TYPE(command) != DM_IOCTL)
+		return -ENOTTY;
+
+	cmd = _IOC_NR(command);
+
+	/*
+	 * Check the interface version passed in.  This also
+	 * writes out the kernel's interface version.
+	 */
+	r = check_version(cmd, user);
+	if (r)
+		return r;
+
+	/*
+	 * Nothing more to do for the version command.
+	 */
+	if (cmd == DM_VERSION_CMD)
+		return 0;
+
+	fn = lookup_ioctl(cmd);
+	if (!fn) {
+		DMWARN("dm_ctl_ioctl: unknown command 0x%x", command);
+		return -ENOTTY;
+	}
+
+	/*
+	 * Trying to avoid low memory issues when a device is
+	 * suspended.
+	 */
+	current->flags |= PF_MEMALLOC;
+
+	/*
+	 * Copy the parameters into kernel space.
+	 */
+	r = copy_params(user, &param);
+
+	current->flags &= ~PF_MEMALLOC;
+
+	if (r)
+		return r;
+
+	input_param_size = param->data_size;
+	wipe_buffer = param->flags & DM_SECURE_DATA_FLAG;
+
+	r = validate_params(cmd, param);
+	if (r)
+		goto out;
+
+	param->data_size = sizeof(*param);
+	r = fn(param, input_param_size);
+
+	/*
+	 * Copy the results back to userland.
+	 */
+	if (!r && copy_to_user(user, param, param->data_size))
+		r = -EFAULT;
+
+out:
+	if (wipe_buffer)
+		memset(param, 0, input_param_size);
+
+	vfree(param);
+	return r;
+}
+
+static long dm_ctl_ioctl(struct file *file, uint command, ulong u)
+{
+	return (long)ctl_ioctl(command, (struct dm_ioctl __user *)u);
+}
+
+#ifdef CONFIG_COMPAT
+static long dm_compat_ctl_ioctl(struct file *file, uint command, ulong u)
+{
+	return (long)dm_ctl_ioctl(file, command, (ulong) compat_ptr(u));
+}
+#else
+#define dm_compat_ctl_ioctl NULL
+#endif
+
+static const struct file_operations _ctl_fops = {
+	.open = nonseekable_open,
+	.unlocked_ioctl	 = dm_ctl_ioctl,
+	.compat_ioctl = dm_compat_ctl_ioctl,
+	.owner	 = THIS_MODULE,
+	.llseek  = noop_llseek,
+};
+
+static struct miscdevice _dm_misc = {
+	.minor		= MAPPER_CTRL_MINOR,
+	.name  		= DM_NAME,
+	.nodename	= DM_DIR "/" DM_CONTROL_NODE,
+	.fops  		= &_ctl_fops
+};
+
+MODULE_ALIAS_MISCDEV(MAPPER_CTRL_MINOR);
+MODULE_ALIAS("devname:" DM_DIR "/" DM_CONTROL_NODE);
+
+/*
+ * Create misc character device and link to DM_DIR/control.
+ */
+int __init dm_interface_init(void)
+{
+	int r;
+
+	r = dm_hash_init();
+	if (r)
+		return r;
+
+	r = misc_register(&_dm_misc);
+	if (r) {
+		DMERR("misc_register failed for control device");
+		dm_hash_exit();
+		return r;
+	}
+
+	DMINFO("%d.%d.%d%s initialised: %s", DM_VERSION_MAJOR,
+	       DM_VERSION_MINOR, DM_VERSION_PATCHLEVEL, DM_VERSION_EXTRA,
+	       DM_DRIVER_EMAIL);
+	return 0;
+}
+
+void dm_interface_exit(void)
+{
+	if (misc_deregister(&_dm_misc) < 0)
+		DMERR("misc_deregister failed for control device");
+
+	dm_hash_exit();
+}
+
+/**
+ * dm_copy_name_and_uuid - Copy mapped device name & uuid into supplied buffers
+ * @md: Pointer to mapped_device
+ * @name: Buffer (size DM_NAME_LEN) for name
+ * @uuid: Buffer (size DM_UUID_LEN) for uuid or empty string if uuid not defined
+ */
+int dm_copy_name_and_uuid(struct mapped_device *md, char *name, char *uuid)
+{
+	int r = 0;
+	struct hash_cell *hc;
+
+	if (!md)
+		return -ENXIO;
+
+	mutex_lock(&dm_hash_cells_mutex);
+	hc = dm_get_mdptr(md);
+	if (!hc || hc->md != md) {
+		r = -ENXIO;
+		goto out;
+	}
+
+	if (name)
+		strcpy(name, hc->name);
+	if (uuid)
+		strcpy(uuid, hc->uuid ? : "");
+
+out:
+	mutex_unlock(&dm_hash_cells_mutex);
+
+	return r;
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-kcopyd.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-kcopyd.c
new file mode 100644
index 0000000..bed444c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-kcopyd.c
@@ -0,0 +1,756 @@
+/*
+ * Copyright (C) 2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2006 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ *
+ * Kcopyd provides a simple interface for copying an area of one
+ * block-device to one or more other block-devices, with an asynchronous
+ * completion notification.
+ */
+
+#include <linux/types.h>
+#include <linux/atomic.h>
+#include <linux/blkdev.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/list.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/pagemap.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/workqueue.h>
+#include <linux/mutex.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-kcopyd.h>
+
+#include "dm.h"
+
+#define SUB_JOB_SIZE	128
+#define SPLIT_COUNT	8
+#define MIN_JOBS	8
+#define RESERVE_PAGES	(DIV_ROUND_UP(SUB_JOB_SIZE << SECTOR_SHIFT, PAGE_SIZE))
+
+/*-----------------------------------------------------------------
+ * Each kcopyd client has its own little pool of preallocated
+ * pages for kcopyd io.
+ *---------------------------------------------------------------*/
+struct dm_kcopyd_client {
+	struct page_list *pages;
+	unsigned nr_reserved_pages;
+	unsigned nr_free_pages;
+
+	struct dm_io_client *io_client;
+
+	wait_queue_head_t destroyq;
+	atomic_t nr_jobs;
+
+	mempool_t *job_pool;
+
+	struct workqueue_struct *kcopyd_wq;
+	struct work_struct kcopyd_work;
+
+/*
+ * We maintain three lists of jobs:
+ *
+ * i)   jobs waiting for pages
+ * ii)  jobs that have pages, and are waiting for the io to be issued.
+ * iii) jobs that have completed.
+ *
+ * All three of these are protected by job_lock.
+ */
+	spinlock_t job_lock;
+	struct list_head complete_jobs;
+	struct list_head io_jobs;
+	struct list_head pages_jobs;
+};
+
+static struct page_list zero_page_list;
+
+static void wake(struct dm_kcopyd_client *kc)
+{
+	queue_work(kc->kcopyd_wq, &kc->kcopyd_work);
+}
+
+/*
+ * Obtain one page for the use of kcopyd.
+ */
+static struct page_list *alloc_pl(gfp_t gfp)
+{
+	struct page_list *pl;
+
+	pl = kmalloc(sizeof(*pl), gfp);
+	if (!pl)
+		return NULL;
+
+	pl->page = alloc_page(gfp);
+	if (!pl->page) {
+		kfree(pl);
+		return NULL;
+	}
+
+	return pl;
+}
+
+static void free_pl(struct page_list *pl)
+{
+	__free_page(pl->page);
+	kfree(pl);
+}
+
+/*
+ * Add the provided pages to a client's free page list, releasing
+ * back to the system any beyond the reserved_pages limit.
+ */
+static void kcopyd_put_pages(struct dm_kcopyd_client *kc, struct page_list *pl)
+{
+	struct page_list *next;
+
+	do {
+		next = pl->next;
+
+		if (kc->nr_free_pages >= kc->nr_reserved_pages)
+			free_pl(pl);
+		else {
+			pl->next = kc->pages;
+			kc->pages = pl;
+			kc->nr_free_pages++;
+		}
+
+		pl = next;
+	} while (pl);
+}
+
+static int kcopyd_get_pages(struct dm_kcopyd_client *kc,
+			    unsigned int nr, struct page_list **pages)
+{
+	struct page_list *pl;
+
+	*pages = NULL;
+
+	do {
+		pl = alloc_pl(__GFP_NOWARN | __GFP_NORETRY);
+		if (unlikely(!pl)) {
+			/* Use reserved pages */
+			pl = kc->pages;
+			if (unlikely(!pl))
+				goto out_of_memory;
+			kc->pages = pl->next;
+			kc->nr_free_pages--;
+		}
+		pl->next = *pages;
+		*pages = pl;
+	} while (--nr);
+
+	return 0;
+
+out_of_memory:
+	if (*pages)
+		kcopyd_put_pages(kc, *pages);
+	return -ENOMEM;
+}
+
+/*
+ * These three functions resize the page pool.
+ */
+static void drop_pages(struct page_list *pl)
+{
+	struct page_list *next;
+
+	while (pl) {
+		next = pl->next;
+		free_pl(pl);
+		pl = next;
+	}
+}
+
+/*
+ * Allocate and reserve nr_pages for the use of a specific client.
+ */
+static int client_reserve_pages(struct dm_kcopyd_client *kc, unsigned nr_pages)
+{
+	unsigned i;
+	struct page_list *pl = NULL, *next;
+
+	for (i = 0; i < nr_pages; i++) {
+		next = alloc_pl(GFP_KERNEL);
+		if (!next) {
+			if (pl)
+				drop_pages(pl);
+			return -ENOMEM;
+		}
+		next->next = pl;
+		pl = next;
+	}
+
+	kc->nr_reserved_pages += nr_pages;
+	kcopyd_put_pages(kc, pl);
+
+	return 0;
+}
+
+static void client_free_pages(struct dm_kcopyd_client *kc)
+{
+	BUG_ON(kc->nr_free_pages != kc->nr_reserved_pages);
+	drop_pages(kc->pages);
+	kc->pages = NULL;
+	kc->nr_free_pages = kc->nr_reserved_pages = 0;
+}
+
+/*-----------------------------------------------------------------
+ * kcopyd_jobs need to be allocated by the *clients* of kcopyd,
+ * for this reason we use a mempool to prevent the client from
+ * ever having to do io (which could cause a deadlock).
+ *---------------------------------------------------------------*/
+struct kcopyd_job {
+	struct dm_kcopyd_client *kc;
+	struct list_head list;
+	unsigned long flags;
+
+	/*
+	 * Error state of the job.
+	 */
+	int read_err;
+	unsigned long write_err;
+
+	/*
+	 * Either READ or WRITE
+	 */
+	int rw;
+	struct dm_io_region source;
+
+	/*
+	 * The destinations for the transfer.
+	 */
+	unsigned int num_dests;
+	struct dm_io_region dests[DM_KCOPYD_MAX_REGIONS];
+
+	struct page_list *pages;
+
+	/*
+	 * Set this to ensure you are notified when the job has
+	 * completed.  'context' is for callback to use.
+	 */
+	dm_kcopyd_notify_fn fn;
+	void *context;
+
+	/*
+	 * These fields are only used if the job has been split
+	 * into more manageable parts.
+	 */
+	struct mutex lock;
+	atomic_t sub_jobs;
+	sector_t progress;
+
+	struct kcopyd_job *master_job;
+};
+
+static struct kmem_cache *_job_cache;
+
+int __init dm_kcopyd_init(void)
+{
+	_job_cache = kmem_cache_create("kcopyd_job",
+				sizeof(struct kcopyd_job) * (SPLIT_COUNT + 1),
+				__alignof__(struct kcopyd_job), 0, NULL);
+	if (!_job_cache)
+		return -ENOMEM;
+
+	zero_page_list.next = &zero_page_list;
+	zero_page_list.page = ZERO_PAGE(0);
+
+	return 0;
+}
+
+void dm_kcopyd_exit(void)
+{
+	kmem_cache_destroy(_job_cache);
+	_job_cache = NULL;
+}
+
+/*
+ * Functions to push and pop a job onto the head of a given job
+ * list.
+ */
+static struct kcopyd_job *pop(struct list_head *jobs,
+			      struct dm_kcopyd_client *kc)
+{
+	struct kcopyd_job *job = NULL;
+	unsigned long flags;
+
+	spin_lock_irqsave(&kc->job_lock, flags);
+
+	if (!list_empty(jobs)) {
+		job = list_entry(jobs->next, struct kcopyd_job, list);
+		list_del(&job->list);
+	}
+	spin_unlock_irqrestore(&kc->job_lock, flags);
+
+	return job;
+}
+
+static void push(struct list_head *jobs, struct kcopyd_job *job)
+{
+	unsigned long flags;
+	struct dm_kcopyd_client *kc = job->kc;
+
+	spin_lock_irqsave(&kc->job_lock, flags);
+	list_add_tail(&job->list, jobs);
+	spin_unlock_irqrestore(&kc->job_lock, flags);
+}
+
+
+static void push_head(struct list_head *jobs, struct kcopyd_job *job)
+{
+	unsigned long flags;
+	struct dm_kcopyd_client *kc = job->kc;
+
+	spin_lock_irqsave(&kc->job_lock, flags);
+	list_add(&job->list, jobs);
+	spin_unlock_irqrestore(&kc->job_lock, flags);
+}
+
+/*
+ * These three functions process 1 item from the corresponding
+ * job list.
+ *
+ * They return:
+ * < 0: error
+ *   0: success
+ * > 0: can't process yet.
+ */
+static int run_complete_job(struct kcopyd_job *job)
+{
+	void *context = job->context;
+	int read_err = job->read_err;
+	unsigned long write_err = job->write_err;
+	dm_kcopyd_notify_fn fn = job->fn;
+	struct dm_kcopyd_client *kc = job->kc;
+
+	if (job->pages && job->pages != &zero_page_list)
+		kcopyd_put_pages(kc, job->pages);
+	/*
+	 * If this is the master job, the sub jobs have already
+	 * completed so we can free everything.
+	 */
+	if (job->master_job == job)
+		mempool_free(job, kc->job_pool);
+	fn(read_err, write_err, context);
+
+	if (atomic_dec_and_test(&kc->nr_jobs))
+		wake_up(&kc->destroyq);
+
+	return 0;
+}
+
+static void complete_io(unsigned long error, void *context)
+{
+	struct kcopyd_job *job = (struct kcopyd_job *) context;
+	struct dm_kcopyd_client *kc = job->kc;
+
+	if (error) {
+		if (job->rw == WRITE)
+			job->write_err |= error;
+		else
+			job->read_err = 1;
+
+		if (!test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
+			push(&kc->complete_jobs, job);
+			wake(kc);
+			return;
+		}
+	}
+
+	if (job->rw == WRITE)
+		push(&kc->complete_jobs, job);
+
+	else {
+		job->rw = WRITE;
+		push(&kc->io_jobs, job);
+	}
+
+	wake(kc);
+}
+
+/*
+ * Request io on as many buffer heads as we can currently get for
+ * a particular job.
+ */
+static int run_io_job(struct kcopyd_job *job)
+{
+	int r;
+	struct dm_io_request io_req = {
+		.bi_rw = job->rw,
+		.mem.type = DM_IO_PAGE_LIST,
+		.mem.ptr.pl = job->pages,
+		.mem.offset = 0,
+		.notify.fn = complete_io,
+		.notify.context = job,
+		.client = job->kc->io_client,
+	};
+
+	if (job->rw == READ)
+		r = dm_io(&io_req, 1, &job->source, NULL);
+	else
+		r = dm_io(&io_req, job->num_dests, job->dests, NULL);
+
+	return r;
+}
+
+static int run_pages_job(struct kcopyd_job *job)
+{
+	int r;
+	unsigned nr_pages = dm_div_up(job->dests[0].count, PAGE_SIZE >> 9);
+
+	r = kcopyd_get_pages(job->kc, nr_pages, &job->pages);
+	if (!r) {
+		/* this job is ready for io */
+		push(&job->kc->io_jobs, job);
+		return 0;
+	}
+
+	if (r == -ENOMEM)
+		/* can't complete now */
+		return 1;
+
+	return r;
+}
+
+/*
+ * Run through a list for as long as possible.  Returns the count
+ * of successful jobs.
+ */
+static int process_jobs(struct list_head *jobs, struct dm_kcopyd_client *kc,
+			int (*fn) (struct kcopyd_job *))
+{
+	struct kcopyd_job *job;
+	int r, count = 0;
+
+	while ((job = pop(jobs, kc))) {
+
+		r = fn(job);
+
+		if (r < 0) {
+			/* error this rogue job */
+			if (job->rw == WRITE)
+				job->write_err = (unsigned long) -1L;
+			else
+				job->read_err = 1;
+			push(&kc->complete_jobs, job);
+			break;
+		}
+
+		if (r > 0) {
+			/*
+			 * We couldn't service this job ATM, so
+			 * push this job back onto the list.
+			 */
+			push_head(jobs, job);
+			break;
+		}
+
+		count++;
+	}
+
+	return count;
+}
+
+/*
+ * kcopyd does this every time it's woken up.
+ */
+static void do_work(struct work_struct *work)
+{
+	struct dm_kcopyd_client *kc = container_of(work,
+					struct dm_kcopyd_client, kcopyd_work);
+	struct blk_plug plug;
+
+	/*
+	 * The order that these are called is *very* important.
+	 * complete jobs can free some pages for pages jobs.
+	 * Pages jobs when successful will jump onto the io jobs
+	 * list.  io jobs call wake when they complete and it all
+	 * starts again.
+	 */
+	blk_start_plug(&plug);
+	process_jobs(&kc->complete_jobs, kc, run_complete_job);
+	process_jobs(&kc->pages_jobs, kc, run_pages_job);
+	process_jobs(&kc->io_jobs, kc, run_io_job);
+	blk_finish_plug(&plug);
+}
+
+/*
+ * If we are copying a small region we just dispatch a single job
+ * to do the copy, otherwise the io has to be split up into many
+ * jobs.
+ */
+static void dispatch_job(struct kcopyd_job *job)
+{
+	struct dm_kcopyd_client *kc = job->kc;
+	atomic_inc(&kc->nr_jobs);
+	if (unlikely(!job->source.count))
+		push(&kc->complete_jobs, job);
+	else if (job->pages == &zero_page_list)
+		push(&kc->io_jobs, job);
+	else
+		push(&kc->pages_jobs, job);
+	wake(kc);
+}
+
+static void segment_complete(int read_err, unsigned long write_err,
+			     void *context)
+{
+	/* FIXME: tidy this function */
+	sector_t progress = 0;
+	sector_t count = 0;
+	struct kcopyd_job *sub_job = (struct kcopyd_job *) context;
+	struct kcopyd_job *job = sub_job->master_job;
+	struct dm_kcopyd_client *kc = job->kc;
+
+	mutex_lock(&job->lock);
+
+	/* update the error */
+	if (read_err)
+		job->read_err = 1;
+
+	if (write_err)
+		job->write_err |= write_err;
+
+	/*
+	 * Only dispatch more work if there hasn't been an error.
+	 */
+	if ((!job->read_err && !job->write_err) ||
+	    test_bit(DM_KCOPYD_IGNORE_ERROR, &job->flags)) {
+		/* get the next chunk of work */
+		progress = job->progress;
+		count = job->source.count - progress;
+		if (count) {
+			if (count > SUB_JOB_SIZE)
+				count = SUB_JOB_SIZE;
+
+			job->progress += count;
+		}
+	}
+	mutex_unlock(&job->lock);
+
+	if (count) {
+		int i;
+
+		*sub_job = *job;
+		sub_job->source.sector += progress;
+		sub_job->source.count = count;
+
+		for (i = 0; i < job->num_dests; i++) {
+			sub_job->dests[i].sector += progress;
+			sub_job->dests[i].count = count;
+		}
+
+		sub_job->fn = segment_complete;
+		sub_job->context = sub_job;
+		dispatch_job(sub_job);
+
+	} else if (atomic_dec_and_test(&job->sub_jobs)) {
+
+		/*
+		 * Queue the completion callback to the kcopyd thread.
+		 *
+		 * Some callers assume that all the completions are called
+		 * from a single thread and don't race with each other.
+		 *
+		 * We must not call the callback directly here because this
+		 * code may not be executing in the thread.
+		 */
+		push(&kc->complete_jobs, job);
+		wake(kc);
+	}
+}
+
+/*
+ * Create some sub jobs to share the work between them.
+ */
+static void split_job(struct kcopyd_job *master_job)
+{
+	int i;
+
+	atomic_inc(&master_job->kc->nr_jobs);
+
+	atomic_set(&master_job->sub_jobs, SPLIT_COUNT);
+	for (i = 0; i < SPLIT_COUNT; i++) {
+		master_job[i + 1].master_job = master_job;
+		segment_complete(0, 0u, &master_job[i + 1]);
+	}
+}
+
+int dm_kcopyd_copy(struct dm_kcopyd_client *kc, struct dm_io_region *from,
+		   unsigned int num_dests, struct dm_io_region *dests,
+		   unsigned int flags, dm_kcopyd_notify_fn fn, void *context)
+{
+	struct kcopyd_job *job;
+
+	/*
+	 * Allocate an array of jobs consisting of one master job
+	 * followed by SPLIT_COUNT sub jobs.
+	 */
+	job = mempool_alloc(kc->job_pool, GFP_NOIO);
+
+	/*
+	 * set up for the read.
+	 */
+	job->kc = kc;
+	job->flags = flags;
+	job->read_err = 0;
+	job->write_err = 0;
+
+	job->num_dests = num_dests;
+	memcpy(&job->dests, dests, sizeof(*dests) * num_dests);
+
+	if (from) {
+		job->source = *from;
+		job->pages = NULL;
+		job->rw = READ;
+	} else {
+		memset(&job->source, 0, sizeof job->source);
+		job->source.count = job->dests[0].count;
+		job->pages = &zero_page_list;
+		job->rw = WRITE;
+	}
+
+	job->fn = fn;
+	job->context = context;
+	job->master_job = job;
+
+	if (job->source.count <= SUB_JOB_SIZE)
+		dispatch_job(job);
+	else {
+		mutex_init(&job->lock);
+		job->progress = 0;
+		split_job(job);
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(dm_kcopyd_copy);
+
+int dm_kcopyd_zero(struct dm_kcopyd_client *kc,
+		   unsigned num_dests, struct dm_io_region *dests,
+		   unsigned flags, dm_kcopyd_notify_fn fn, void *context)
+{
+	return dm_kcopyd_copy(kc, NULL, num_dests, dests, flags, fn, context);
+}
+EXPORT_SYMBOL(dm_kcopyd_zero);
+
+void *dm_kcopyd_prepare_callback(struct dm_kcopyd_client *kc,
+				 dm_kcopyd_notify_fn fn, void *context)
+{
+	struct kcopyd_job *job;
+
+	job = mempool_alloc(kc->job_pool, GFP_NOIO);
+
+	memset(job, 0, sizeof(struct kcopyd_job));
+	job->kc = kc;
+	job->fn = fn;
+	job->context = context;
+	job->master_job = job;
+
+	atomic_inc(&kc->nr_jobs);
+
+	return job;
+}
+EXPORT_SYMBOL(dm_kcopyd_prepare_callback);
+
+void dm_kcopyd_do_callback(void *j, int read_err, unsigned long write_err)
+{
+	struct kcopyd_job *job = j;
+	struct dm_kcopyd_client *kc = job->kc;
+
+	job->read_err = read_err;
+	job->write_err = write_err;
+
+	push(&kc->complete_jobs, job);
+	wake(kc);
+}
+EXPORT_SYMBOL(dm_kcopyd_do_callback);
+
+/*
+ * Cancels a kcopyd job, eg. someone might be deactivating a
+ * mirror.
+ */
+#if 0
+int kcopyd_cancel(struct kcopyd_job *job, int block)
+{
+	/* FIXME: finish */
+	return -1;
+}
+#endif  /*  0  */
+
+/*-----------------------------------------------------------------
+ * Client setup
+ *---------------------------------------------------------------*/
+struct dm_kcopyd_client *dm_kcopyd_client_create(void)
+{
+	int r = -ENOMEM;
+	struct dm_kcopyd_client *kc;
+
+	kc = kmalloc(sizeof(*kc), GFP_KERNEL);
+	if (!kc)
+		return ERR_PTR(-ENOMEM);
+
+	spin_lock_init(&kc->job_lock);
+	INIT_LIST_HEAD(&kc->complete_jobs);
+	INIT_LIST_HEAD(&kc->io_jobs);
+	INIT_LIST_HEAD(&kc->pages_jobs);
+
+	kc->job_pool = mempool_create_slab_pool(MIN_JOBS, _job_cache);
+	if (!kc->job_pool)
+		goto bad_slab;
+
+	INIT_WORK(&kc->kcopyd_work, do_work);
+	kc->kcopyd_wq = alloc_workqueue("kcopyd",
+					WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
+	if (!kc->kcopyd_wq)
+		goto bad_workqueue;
+
+	kc->pages = NULL;
+	kc->nr_reserved_pages = kc->nr_free_pages = 0;
+	r = client_reserve_pages(kc, RESERVE_PAGES);
+	if (r)
+		goto bad_client_pages;
+
+	kc->io_client = dm_io_client_create();
+	if (IS_ERR(kc->io_client)) {
+		r = PTR_ERR(kc->io_client);
+		goto bad_io_client;
+	}
+
+	init_waitqueue_head(&kc->destroyq);
+	atomic_set(&kc->nr_jobs, 0);
+
+	return kc;
+
+bad_io_client:
+	client_free_pages(kc);
+bad_client_pages:
+	destroy_workqueue(kc->kcopyd_wq);
+bad_workqueue:
+	mempool_destroy(kc->job_pool);
+bad_slab:
+	kfree(kc);
+
+	return ERR_PTR(r);
+}
+EXPORT_SYMBOL(dm_kcopyd_client_create);
+
+void dm_kcopyd_client_destroy(struct dm_kcopyd_client *kc)
+{
+	/* Wait for completion of all jobs submitted by this client. */
+	wait_event(kc->destroyq, !atomic_read(&kc->nr_jobs));
+
+	BUG_ON(!list_empty(&kc->complete_jobs));
+	BUG_ON(!list_empty(&kc->io_jobs));
+	BUG_ON(!list_empty(&kc->pages_jobs));
+	destroy_workqueue(kc->kcopyd_wq);
+	dm_io_client_destroy(kc->io_client);
+	client_free_pages(kc);
+	mempool_destroy(kc->job_pool);
+	kfree(kc);
+}
+EXPORT_SYMBOL(dm_kcopyd_client_destroy);
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-linear.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-linear.c
new file mode 100644
index 0000000..5a5e9c8
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-linear.c
@@ -0,0 +1,181 @@
+/*
+ * Copyright (C) 2001-2003 Sistina Software (UK) Limited.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/slab.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "linear"
+
+/*
+ * Linear: maps a linear range of a device.
+ */
+struct linear_c {
+	struct dm_dev *dev;
+	sector_t start;
+};
+
+/*
+ * Construct a linear mapping: <dev_path> <offset>
+ */
+static int linear_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+	struct linear_c *lc;
+	unsigned long long tmp;
+	char dummy;
+
+	if (argc != 2) {
+		ti->error = "Invalid argument count";
+		return -EINVAL;
+	}
+
+	lc = kmalloc(sizeof(*lc), GFP_KERNEL);
+	if (lc == NULL) {
+		ti->error = "dm-linear: Cannot allocate linear context";
+		return -ENOMEM;
+	}
+
+	if (sscanf(argv[1], "%llu%c", &tmp, &dummy) != 1) {
+		ti->error = "dm-linear: Invalid device sector";
+		goto bad;
+	}
+	lc->start = tmp;
+
+	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &lc->dev)) {
+		ti->error = "dm-linear: Device lookup failed";
+		goto bad;
+	}
+
+	ti->num_flush_requests = 1;
+	ti->num_discard_requests = 1;
+	ti->private = lc;
+	return 0;
+
+      bad:
+	kfree(lc);
+	return -EINVAL;
+}
+
+static void linear_dtr(struct dm_target *ti)
+{
+	struct linear_c *lc = (struct linear_c *) ti->private;
+
+	dm_put_device(ti, lc->dev);
+	kfree(lc);
+}
+
+static sector_t linear_map_sector(struct dm_target *ti, sector_t bi_sector)
+{
+	struct linear_c *lc = ti->private;
+
+	return lc->start + dm_target_offset(ti, bi_sector);
+}
+
+static void linear_map_bio(struct dm_target *ti, struct bio *bio)
+{
+	struct linear_c *lc = ti->private;
+
+	bio->bi_bdev = lc->dev->bdev;
+	if (bio_sectors(bio))
+		bio->bi_sector = linear_map_sector(ti, bio->bi_sector);
+}
+
+static int linear_map(struct dm_target *ti, struct bio *bio,
+		      union map_info *map_context)
+{
+	linear_map_bio(ti, bio);
+
+	return DM_MAPIO_REMAPPED;
+}
+
+static void linear_status(struct dm_target *ti, status_type_t type,
+			  char *result, unsigned int maxlen)
+{
+	struct linear_c *lc = (struct linear_c *) ti->private;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		result[0] = '\0';
+		break;
+
+	case STATUSTYPE_TABLE:
+		snprintf(result, maxlen, "%s %llu", lc->dev->name,
+				(unsigned long long)lc->start);
+		break;
+	}
+}
+
+static int linear_ioctl(struct dm_target *ti, unsigned int cmd,
+			unsigned long arg)
+{
+	struct linear_c *lc = (struct linear_c *) ti->private;
+	struct dm_dev *dev = lc->dev;
+	int r = 0;
+
+	/*
+	 * Only pass ioctls through if the device sizes match exactly.
+	 */
+	if (lc->start ||
+	    ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
+		r = scsi_verify_blk_ioctl(NULL, cmd);
+
+	return r ? : __blkdev_driver_ioctl(dev->bdev, dev->mode, cmd, arg);
+}
+
+static int linear_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
+			struct bio_vec *biovec, int max_size)
+{
+	struct linear_c *lc = ti->private;
+	struct request_queue *q = bdev_get_queue(lc->dev->bdev);
+
+	if (!q->merge_bvec_fn)
+		return max_size;
+
+	bvm->bi_bdev = lc->dev->bdev;
+	bvm->bi_sector = linear_map_sector(ti, bvm->bi_sector);
+
+	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
+}
+
+static int linear_iterate_devices(struct dm_target *ti,
+				  iterate_devices_callout_fn fn, void *data)
+{
+	struct linear_c *lc = ti->private;
+
+	return fn(ti, lc->dev, lc->start, ti->len, data);
+}
+
+static struct target_type linear_target = {
+	.name   = "linear",
+	.version = {1, 1, 0},
+	.module = THIS_MODULE,
+	.ctr    = linear_ctr,
+	.dtr    = linear_dtr,
+	.map    = linear_map,
+	.status = linear_status,
+	.ioctl  = linear_ioctl,
+	.merge  = linear_merge,
+	.iterate_devices = linear_iterate_devices,
+};
+
+int __init dm_linear_init(void)
+{
+	int r = dm_register_target(&linear_target);
+
+	if (r < 0)
+		DMERR("register failed %d", r);
+
+	return r;
+}
+
+void dm_linear_exit(void)
+{
+	dm_unregister_target(&linear_target);
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-log-userspace-base.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-log-userspace-base.c
new file mode 100644
index 0000000..9429159
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-log-userspace-base.c
@@ -0,0 +1,818 @@
+/*
+ * Copyright (C) 2006-2009 Red Hat, Inc.
+ *
+ * This file is released under the LGPL.
+ */
+
+#include <linux/bio.h>
+#include <linux/slab.h>
+#include <linux/dm-dirty-log.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-log-userspace.h>
+#include <linux/module.h>
+
+#include "dm-log-userspace-transfer.h"
+
+#define DM_LOG_USERSPACE_VSN "1.1.0"
+
+struct flush_entry {
+	int type;
+	region_t region;
+	struct list_head list;
+};
+
+/*
+ * This limit on the number of mark and clear request is, to a degree,
+ * arbitrary.  However, there is some basis for the choice in the limits
+ * imposed on the size of data payload by dm-log-userspace-transfer.c:
+ * dm_consult_userspace().
+ */
+#define MAX_FLUSH_GROUP_COUNT 32
+
+struct log_c {
+	struct dm_target *ti;
+	struct dm_dev *log_dev;
+	uint32_t region_size;
+	region_t region_count;
+	uint64_t luid;
+	char uuid[DM_UUID_LEN];
+
+	char *usr_argv_str;
+	uint32_t usr_argc;
+
+	/*
+	 * in_sync_hint gets set when doing is_remote_recovering.  It
+	 * represents the first region that needs recovery.  IOW, the
+	 * first zero bit of sync_bits.  This can be useful for to limit
+	 * traffic for calls like is_remote_recovering and get_resync_work,
+	 * but be take care in its use for anything else.
+	 */
+	uint64_t in_sync_hint;
+
+	/*
+	 * Mark and clear requests are held until a flush is issued
+	 * so that we can group, and thereby limit, the amount of
+	 * network traffic between kernel and userspace.  The 'flush_lock'
+	 * is used to protect these lists.
+	 */
+	spinlock_t flush_lock;
+	struct list_head mark_list;
+	struct list_head clear_list;
+};
+
+static mempool_t *flush_entry_pool;
+
+static void *flush_entry_alloc(gfp_t gfp_mask, void *pool_data)
+{
+	return kmalloc(sizeof(struct flush_entry), gfp_mask);
+}
+
+static void flush_entry_free(void *element, void *pool_data)
+{
+	kfree(element);
+}
+
+static int userspace_do_request(struct log_c *lc, const char *uuid,
+				int request_type, char *data, size_t data_size,
+				char *rdata, size_t *rdata_size)
+{
+	int r;
+
+	/*
+	 * If the server isn't there, -ESRCH is returned,
+	 * and we must keep trying until the server is
+	 * restored.
+	 */
+retry:
+	r = dm_consult_userspace(uuid, lc->luid, request_type, data,
+				 data_size, rdata, rdata_size);
+
+	if (r != -ESRCH)
+		return r;
+
+	DMERR(" Userspace log server not found.");
+	while (1) {
+		set_current_state(TASK_INTERRUPTIBLE);
+		schedule_timeout(2*HZ);
+		DMWARN("Attempting to contact userspace log server...");
+		r = dm_consult_userspace(uuid, lc->luid, DM_ULOG_CTR,
+					 lc->usr_argv_str,
+					 strlen(lc->usr_argv_str) + 1,
+					 NULL, NULL);
+		if (!r)
+			break;
+	}
+	DMINFO("Reconnected to userspace log server... DM_ULOG_CTR complete");
+	r = dm_consult_userspace(uuid, lc->luid, DM_ULOG_RESUME, NULL,
+				 0, NULL, NULL);
+	if (!r)
+		goto retry;
+
+	DMERR("Error trying to resume userspace log: %d", r);
+
+	return -ESRCH;
+}
+
+static int build_constructor_string(struct dm_target *ti,
+				    unsigned argc, char **argv,
+				    char **ctr_str)
+{
+	int i, str_size;
+	char *str = NULL;
+
+	*ctr_str = NULL;
+
+	for (i = 0, str_size = 0; i < argc; i++)
+		str_size += strlen(argv[i]) + 1; /* +1 for space between args */
+
+	str_size += 20; /* Max number of chars in a printed u64 number */
+
+	str = kzalloc(str_size, GFP_KERNEL);
+	if (!str) {
+		DMWARN("Unable to allocate memory for constructor string");
+		return -ENOMEM;
+	}
+
+	str_size = sprintf(str, "%llu", (unsigned long long)ti->len);
+	for (i = 0; i < argc; i++)
+		str_size += sprintf(str + str_size, " %s", argv[i]);
+
+	*ctr_str = str;
+	return str_size;
+}
+
+/*
+ * userspace_ctr
+ *
+ * argv contains:
+ *	<UUID> <other args>
+ * Where 'other args' is the userspace implementation specific log
+ * arguments.  An example might be:
+ *	<UUID> clustered-disk <arg count> <log dev> <region_size> [[no]sync]
+ *
+ * So, this module will strip off the <UUID> for identification purposes
+ * when communicating with userspace about a log; but will pass on everything
+ * else.
+ */
+static int userspace_ctr(struct dm_dirty_log *log, struct dm_target *ti,
+			 unsigned argc, char **argv)
+{
+	int r = 0;
+	int str_size;
+	char *ctr_str = NULL;
+	struct log_c *lc = NULL;
+	uint64_t rdata;
+	size_t rdata_size = sizeof(rdata);
+	char *devices_rdata = NULL;
+	size_t devices_rdata_size = DM_NAME_LEN;
+
+	if (argc < 3) {
+		DMWARN("Too few arguments to userspace dirty log");
+		return -EINVAL;
+	}
+
+	lc = kzalloc(sizeof(*lc), GFP_KERNEL);
+	if (!lc) {
+		DMWARN("Unable to allocate userspace log context.");
+		return -ENOMEM;
+	}
+
+	/* The ptr value is sufficient for local unique id */
+	lc->luid = (unsigned long)lc;
+
+	lc->ti = ti;
+
+	if (strlen(argv[0]) > (DM_UUID_LEN - 1)) {
+		DMWARN("UUID argument too long.");
+		kfree(lc);
+		return -EINVAL;
+	}
+
+	strncpy(lc->uuid, argv[0], DM_UUID_LEN);
+	spin_lock_init(&lc->flush_lock);
+	INIT_LIST_HEAD(&lc->mark_list);
+	INIT_LIST_HEAD(&lc->clear_list);
+
+	str_size = build_constructor_string(ti, argc - 1, argv + 1, &ctr_str);
+	if (str_size < 0) {
+		kfree(lc);
+		return str_size;
+	}
+
+	devices_rdata = kzalloc(devices_rdata_size, GFP_KERNEL);
+	if (!devices_rdata) {
+		DMERR("Failed to allocate memory for device information");
+		r = -ENOMEM;
+		goto out;
+	}
+
+	/*
+	 * Send table string and get back any opened device.
+	 */
+	r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_CTR,
+				 ctr_str, str_size,
+				 devices_rdata, &devices_rdata_size);
+
+	if (r < 0) {
+		if (r == -ESRCH)
+			DMERR("Userspace log server not found");
+		else
+			DMERR("Userspace log server failed to create log");
+		goto out;
+	}
+
+	/* Since the region size does not change, get it now */
+	rdata_size = sizeof(rdata);
+	r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_GET_REGION_SIZE,
+				 NULL, 0, (char *)&rdata, &rdata_size);
+
+	if (r) {
+		DMERR("Failed to get region size of dirty log");
+		goto out;
+	}
+
+	lc->region_size = (uint32_t)rdata;
+	lc->region_count = dm_sector_div_up(ti->len, lc->region_size);
+
+	if (devices_rdata_size) {
+		if (devices_rdata[devices_rdata_size - 1] != '\0') {
+			DMERR("DM_ULOG_CTR device return string not properly terminated");
+			r = -EINVAL;
+			goto out;
+		}
+		r = dm_get_device(ti, devices_rdata,
+				  dm_table_get_mode(ti->table), &lc->log_dev);
+		if (r)
+			DMERR("Failed to register %s with device-mapper",
+			      devices_rdata);
+	}
+out:
+	kfree(devices_rdata);
+	if (r) {
+		kfree(lc);
+		kfree(ctr_str);
+	} else {
+		lc->usr_argv_str = ctr_str;
+		lc->usr_argc = argc;
+		log->context = lc;
+	}
+
+	return r;
+}
+
+static void userspace_dtr(struct dm_dirty_log *log)
+{
+	struct log_c *lc = log->context;
+
+	(void) dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_DTR,
+				 NULL, 0,
+				 NULL, NULL);
+
+	if (lc->log_dev)
+		dm_put_device(lc->ti, lc->log_dev);
+
+	kfree(lc->usr_argv_str);
+	kfree(lc);
+
+	return;
+}
+
+static int userspace_presuspend(struct dm_dirty_log *log)
+{
+	int r;
+	struct log_c *lc = log->context;
+
+	r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_PRESUSPEND,
+				 NULL, 0,
+				 NULL, NULL);
+
+	return r;
+}
+
+static int userspace_postsuspend(struct dm_dirty_log *log)
+{
+	int r;
+	struct log_c *lc = log->context;
+
+	r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_POSTSUSPEND,
+				 NULL, 0,
+				 NULL, NULL);
+
+	return r;
+}
+
+static int userspace_resume(struct dm_dirty_log *log)
+{
+	int r;
+	struct log_c *lc = log->context;
+
+	lc->in_sync_hint = 0;
+	r = dm_consult_userspace(lc->uuid, lc->luid, DM_ULOG_RESUME,
+				 NULL, 0,
+				 NULL, NULL);
+
+	return r;
+}
+
+static uint32_t userspace_get_region_size(struct dm_dirty_log *log)
+{
+	struct log_c *lc = log->context;
+
+	return lc->region_size;
+}
+
+/*
+ * userspace_is_clean
+ *
+ * Check whether a region is clean.  If there is any sort of
+ * failure when consulting the server, we return not clean.
+ *
+ * Returns: 1 if clean, 0 otherwise
+ */
+static int userspace_is_clean(struct dm_dirty_log *log, region_t region)
+{
+	int r;
+	uint64_t region64 = (uint64_t)region;
+	int64_t is_clean;
+	size_t rdata_size;
+	struct log_c *lc = log->context;
+
+	rdata_size = sizeof(is_clean);
+	r = userspace_do_request(lc, lc->uuid, DM_ULOG_IS_CLEAN,
+				 (char *)&region64, sizeof(region64),
+				 (char *)&is_clean, &rdata_size);
+
+	return (r) ? 0 : (int)is_clean;
+}
+
+/*
+ * userspace_in_sync
+ *
+ * Check if the region is in-sync.  If there is any sort
+ * of failure when consulting the server, we assume that
+ * the region is not in sync.
+ *
+ * If 'can_block' is set, return immediately
+ *
+ * Returns: 1 if in-sync, 0 if not-in-sync, -EWOULDBLOCK
+ */
+static int userspace_in_sync(struct dm_dirty_log *log, region_t region,
+			     int can_block)
+{
+	int r;
+	uint64_t region64 = region;
+	int64_t in_sync;
+	size_t rdata_size;
+	struct log_c *lc = log->context;
+
+	/*
+	 * We can never respond directly - even if in_sync_hint is
+	 * set.  This is because another machine could see a device
+	 * failure and mark the region out-of-sync.  If we don't go
+	 * to userspace to ask, we might think the region is in-sync
+	 * and allow a read to pick up data that is stale.  (This is
+	 * very unlikely if a device actually fails; but it is very
+	 * likely if a connection to one device from one machine fails.)
+	 *
+	 * There still might be a problem if the mirror caches the region
+	 * state as in-sync... but then this call would not be made.  So,
+	 * that is a mirror problem.
+	 */
+	if (!can_block)
+		return -EWOULDBLOCK;
+
+	rdata_size = sizeof(in_sync);
+	r = userspace_do_request(lc, lc->uuid, DM_ULOG_IN_SYNC,
+				 (char *)&region64, sizeof(region64),
+				 (char *)&in_sync, &rdata_size);
+	return (r) ? 0 : (int)in_sync;
+}
+
+static int flush_one_by_one(struct log_c *lc, struct list_head *flush_list)
+{
+	int r = 0;
+	struct flush_entry *fe;
+
+	list_for_each_entry(fe, flush_list, list) {
+		r = userspace_do_request(lc, lc->uuid, fe->type,
+					 (char *)&fe->region,
+					 sizeof(fe->region),
+					 NULL, NULL);
+		if (r)
+			break;
+	}
+
+	return r;
+}
+
+static int flush_by_group(struct log_c *lc, struct list_head *flush_list)
+{
+	int r = 0;
+	int count;
+	uint32_t type = 0;
+	struct flush_entry *fe, *tmp_fe;
+	LIST_HEAD(tmp_list);
+	uint64_t group[MAX_FLUSH_GROUP_COUNT];
+
+	/*
+	 * Group process the requests
+	 */
+	while (!list_empty(flush_list)) {
+		count = 0;
+
+		list_for_each_entry_safe(fe, tmp_fe, flush_list, list) {
+			group[count] = fe->region;
+			count++;
+
+			list_move(&fe->list, &tmp_list);
+
+			type = fe->type;
+			if (count >= MAX_FLUSH_GROUP_COUNT)
+				break;
+		}
+
+		r = userspace_do_request(lc, lc->uuid, type,
+					 (char *)(group),
+					 count * sizeof(uint64_t),
+					 NULL, NULL);
+		if (r) {
+			/* Group send failed.  Attempt one-by-one. */
+			list_splice_init(&tmp_list, flush_list);
+			r = flush_one_by_one(lc, flush_list);
+			break;
+		}
+	}
+
+	/*
+	 * Must collect flush_entrys that were successfully processed
+	 * as a group so that they will be free'd by the caller.
+	 */
+	list_splice_init(&tmp_list, flush_list);
+
+	return r;
+}
+
+/*
+ * userspace_flush
+ *
+ * This function is ok to block.
+ * The flush happens in two stages.  First, it sends all
+ * clear/mark requests that are on the list.  Then it
+ * tells the server to commit them.  This gives the
+ * server a chance to optimise the commit, instead of
+ * doing it for every request.
+ *
+ * Additionally, we could implement another thread that
+ * sends the requests up to the server - reducing the
+ * load on flush.  Then the flush would have less in
+ * the list and be responsible for the finishing commit.
+ *
+ * Returns: 0 on success, < 0 on failure
+ */
+static int userspace_flush(struct dm_dirty_log *log)
+{
+	int r = 0;
+	unsigned long flags;
+	struct log_c *lc = log->context;
+	LIST_HEAD(mark_list);
+	LIST_HEAD(clear_list);
+	struct flush_entry *fe, *tmp_fe;
+
+	spin_lock_irqsave(&lc->flush_lock, flags);
+	list_splice_init(&lc->mark_list, &mark_list);
+	list_splice_init(&lc->clear_list, &clear_list);
+	spin_unlock_irqrestore(&lc->flush_lock, flags);
+
+	if (list_empty(&mark_list) && list_empty(&clear_list))
+		return 0;
+
+	r = flush_by_group(lc, &mark_list);
+	if (r)
+		goto fail;
+
+	r = flush_by_group(lc, &clear_list);
+	if (r)
+		goto fail;
+
+	r = userspace_do_request(lc, lc->uuid, DM_ULOG_FLUSH,
+				 NULL, 0, NULL, NULL);
+
+fail:
+	/*
+	 * We can safely remove these entries, even if failure.
+	 * Calling code will receive an error and will know that
+	 * the log facility has failed.
+	 */
+	list_for_each_entry_safe(fe, tmp_fe, &mark_list, list) {
+		list_del(&fe->list);
+		mempool_free(fe, flush_entry_pool);
+	}
+	list_for_each_entry_safe(fe, tmp_fe, &clear_list, list) {
+		list_del(&fe->list);
+		mempool_free(fe, flush_entry_pool);
+	}
+
+	if (r)
+		dm_table_event(lc->ti->table);
+
+	return r;
+}
+
+/*
+ * userspace_mark_region
+ *
+ * This function should avoid blocking unless absolutely required.
+ * (Memory allocation is valid for blocking.)
+ */
+static void userspace_mark_region(struct dm_dirty_log *log, region_t region)
+{
+	unsigned long flags;
+	struct log_c *lc = log->context;
+	struct flush_entry *fe;
+
+	/* Wait for an allocation, but _never_ fail */
+	fe = mempool_alloc(flush_entry_pool, GFP_NOIO);
+	BUG_ON(!fe);
+
+	spin_lock_irqsave(&lc->flush_lock, flags);
+	fe->type = DM_ULOG_MARK_REGION;
+	fe->region = region;
+	list_add(&fe->list, &lc->mark_list);
+	spin_unlock_irqrestore(&lc->flush_lock, flags);
+
+	return;
+}
+
+/*
+ * userspace_clear_region
+ *
+ * This function must not block.
+ * So, the alloc can't block.  In the worst case, it is ok to
+ * fail.  It would simply mean we can't clear the region.
+ * Does nothing to current sync context, but does mean
+ * the region will be re-sync'ed on a reload of the mirror
+ * even though it is in-sync.
+ */
+static void userspace_clear_region(struct dm_dirty_log *log, region_t region)
+{
+	unsigned long flags;
+	struct log_c *lc = log->context;
+	struct flush_entry *fe;
+
+	/*
+	 * If we fail to allocate, we skip the clearing of
+	 * the region.  This doesn't hurt us in any way, except
+	 * to cause the region to be resync'ed when the
+	 * device is activated next time.
+	 */
+	fe = mempool_alloc(flush_entry_pool, GFP_ATOMIC);
+	if (!fe) {
+		DMERR("Failed to allocate memory to clear region.");
+		return;
+	}
+
+	spin_lock_irqsave(&lc->flush_lock, flags);
+	fe->type = DM_ULOG_CLEAR_REGION;
+	fe->region = region;
+	list_add(&fe->list, &lc->clear_list);
+	spin_unlock_irqrestore(&lc->flush_lock, flags);
+
+	return;
+}
+
+/*
+ * userspace_get_resync_work
+ *
+ * Get a region that needs recovery.  It is valid to return
+ * an error for this function.
+ *
+ * Returns: 1 if region filled, 0 if no work, <0 on error
+ */
+static int userspace_get_resync_work(struct dm_dirty_log *log, region_t *region)
+{
+	int r;
+	size_t rdata_size;
+	struct log_c *lc = log->context;
+	struct {
+		int64_t i; /* 64-bit for mix arch compatibility */
+		region_t r;
+	} pkg;
+
+	if (lc->in_sync_hint >= lc->region_count)
+		return 0;
+
+	rdata_size = sizeof(pkg);
+	r = userspace_do_request(lc, lc->uuid, DM_ULOG_GET_RESYNC_WORK,
+				 NULL, 0,
+				 (char *)&pkg, &rdata_size);
+
+	*region = pkg.r;
+	return (r) ? r : (int)pkg.i;
+}
+
+/*
+ * userspace_set_region_sync
+ *
+ * Set the sync status of a given region.  This function
+ * must not fail.
+ */
+static void userspace_set_region_sync(struct dm_dirty_log *log,
+				      region_t region, int in_sync)
+{
+	int r;
+	struct log_c *lc = log->context;
+	struct {
+		region_t r;
+		int64_t i;
+	} pkg;
+
+	pkg.r = region;
+	pkg.i = (int64_t)in_sync;
+
+	r = userspace_do_request(lc, lc->uuid, DM_ULOG_SET_REGION_SYNC,
+				 (char *)&pkg, sizeof(pkg),
+				 NULL, NULL);
+
+	/*
+	 * It would be nice to be able to report failures.
+	 * However, it is easy emough to detect and resolve.
+	 */
+	return;
+}
+
+/*
+ * userspace_get_sync_count
+ *
+ * If there is any sort of failure when consulting the server,
+ * we assume that the sync count is zero.
+ *
+ * Returns: sync count on success, 0 on failure
+ */
+static region_t userspace_get_sync_count(struct dm_dirty_log *log)
+{
+	int r;
+	size_t rdata_size;
+	uint64_t sync_count;
+	struct log_c *lc = log->context;
+
+	rdata_size = sizeof(sync_count);
+	r = userspace_do_request(lc, lc->uuid, DM_ULOG_GET_SYNC_COUNT,
+				 NULL, 0,
+				 (char *)&sync_count, &rdata_size);
+
+	if (r)
+		return 0;
+
+	if (sync_count >= lc->region_count)
+		lc->in_sync_hint = lc->region_count;
+
+	return (region_t)sync_count;
+}
+
+/*
+ * userspace_status
+ *
+ * Returns: amount of space consumed
+ */
+static int userspace_status(struct dm_dirty_log *log, status_type_t status_type,
+			    char *result, unsigned maxlen)
+{
+	int r = 0;
+	char *table_args;
+	size_t sz = (size_t)maxlen;
+	struct log_c *lc = log->context;
+
+	switch (status_type) {
+	case STATUSTYPE_INFO:
+		r = userspace_do_request(lc, lc->uuid, DM_ULOG_STATUS_INFO,
+					 NULL, 0,
+					 result, &sz);
+
+		if (r) {
+			sz = 0;
+			DMEMIT("%s 1 COM_FAILURE", log->type->name);
+		}
+		break;
+	case STATUSTYPE_TABLE:
+		sz = 0;
+		table_args = strchr(lc->usr_argv_str, ' ');
+		BUG_ON(!table_args); /* There will always be a ' ' */
+		table_args++;
+
+		DMEMIT("%s %u %s %s ", log->type->name, lc->usr_argc,
+		       lc->uuid, table_args);
+		break;
+	}
+	return (r) ? 0 : (int)sz;
+}
+
+/*
+ * userspace_is_remote_recovering
+ *
+ * Returns: 1 if region recovering, 0 otherwise
+ */
+static int userspace_is_remote_recovering(struct dm_dirty_log *log,
+					  region_t region)
+{
+	int r;
+	uint64_t region64 = region;
+	struct log_c *lc = log->context;
+	static unsigned long long limit;
+	struct {
+		int64_t is_recovering;
+		uint64_t in_sync_hint;
+	} pkg;
+	size_t rdata_size = sizeof(pkg);
+
+	/*
+	 * Once the mirror has been reported to be in-sync,
+	 * it will never again ask for recovery work.  So,
+	 * we can safely say there is not a remote machine
+	 * recovering if the device is in-sync.  (in_sync_hint
+	 * must be reset at resume time.)
+	 */
+	if (region < lc->in_sync_hint)
+		return 0;
+	else if (jiffies < limit)
+		return 1;
+
+	limit = jiffies + (HZ / 4);
+	r = userspace_do_request(lc, lc->uuid, DM_ULOG_IS_REMOTE_RECOVERING,
+				 (char *)&region64, sizeof(region64),
+				 (char *)&pkg, &rdata_size);
+	if (r)
+		return 1;
+
+	lc->in_sync_hint = pkg.in_sync_hint;
+
+	return (int)pkg.is_recovering;
+}
+
+static struct dm_dirty_log_type _userspace_type = {
+	.name = "userspace",
+	.module = THIS_MODULE,
+	.ctr = userspace_ctr,
+	.dtr = userspace_dtr,
+	.presuspend = userspace_presuspend,
+	.postsuspend = userspace_postsuspend,
+	.resume = userspace_resume,
+	.get_region_size = userspace_get_region_size,
+	.is_clean = userspace_is_clean,
+	.in_sync = userspace_in_sync,
+	.flush = userspace_flush,
+	.mark_region = userspace_mark_region,
+	.clear_region = userspace_clear_region,
+	.get_resync_work = userspace_get_resync_work,
+	.set_region_sync = userspace_set_region_sync,
+	.get_sync_count = userspace_get_sync_count,
+	.status = userspace_status,
+	.is_remote_recovering = userspace_is_remote_recovering,
+};
+
+static int __init userspace_dirty_log_init(void)
+{
+	int r = 0;
+
+	flush_entry_pool = mempool_create(100, flush_entry_alloc,
+					  flush_entry_free, NULL);
+
+	if (!flush_entry_pool) {
+		DMWARN("Unable to create flush_entry_pool:  No memory.");
+		return -ENOMEM;
+	}
+
+	r = dm_ulog_tfr_init();
+	if (r) {
+		DMWARN("Unable to initialize userspace log communications");
+		mempool_destroy(flush_entry_pool);
+		return r;
+	}
+
+	r = dm_dirty_log_type_register(&_userspace_type);
+	if (r) {
+		DMWARN("Couldn't register userspace dirty log type");
+		dm_ulog_tfr_exit();
+		mempool_destroy(flush_entry_pool);
+		return r;
+	}
+
+	DMINFO("version " DM_LOG_USERSPACE_VSN " loaded");
+	return 0;
+}
+
+static void __exit userspace_dirty_log_exit(void)
+{
+	dm_dirty_log_type_unregister(&_userspace_type);
+	dm_ulog_tfr_exit();
+	mempool_destroy(flush_entry_pool);
+
+	DMINFO("version " DM_LOG_USERSPACE_VSN " unloaded");
+	return;
+}
+
+module_init(userspace_dirty_log_init);
+module_exit(userspace_dirty_log_exit);
+
+MODULE_DESCRIPTION(DM_NAME " userspace dirty log link");
+MODULE_AUTHOR("Jonathan Brassow <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-log-userspace-transfer.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-log-userspace-transfer.c
new file mode 100644
index 0000000..c69d0b7
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-log-userspace-transfer.c
@@ -0,0 +1,286 @@
+/*
+ * Copyright (C) 2006-2009 Red Hat, Inc.
+ *
+ * This file is released under the LGPL.
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <net/sock.h>
+#include <linux/workqueue.h>
+#include <linux/connector.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-log-userspace.h>
+
+#include "dm-log-userspace-transfer.h"
+
+static uint32_t dm_ulog_seq;
+
+/*
+ * Netlink/Connector is an unreliable protocol.  How long should
+ * we wait for a response before assuming it was lost and retrying?
+ * (If we do receive a response after this time, it will be discarded
+ * and the response to the resent request will be waited for.
+ */
+#define DM_ULOG_RETRY_TIMEOUT (15 * HZ)
+
+/*
+ * Pre-allocated space for speed
+ */
+#define DM_ULOG_PREALLOCED_SIZE 512
+static struct cn_msg *prealloced_cn_msg;
+static struct dm_ulog_request *prealloced_ulog_tfr;
+
+static struct cb_id ulog_cn_id = {
+	.idx = CN_IDX_DM,
+	.val = CN_VAL_DM_USERSPACE_LOG
+};
+
+static DEFINE_MUTEX(dm_ulog_lock);
+
+struct receiving_pkg {
+	struct list_head list;
+	struct completion complete;
+
+	uint32_t seq;
+
+	int error;
+	size_t *data_size;
+	char *data;
+};
+
+static DEFINE_SPINLOCK(receiving_list_lock);
+static struct list_head receiving_list;
+
+static int dm_ulog_sendto_server(struct dm_ulog_request *tfr)
+{
+	int r;
+	struct cn_msg *msg = prealloced_cn_msg;
+
+	memset(msg, 0, sizeof(struct cn_msg));
+
+	msg->id.idx = ulog_cn_id.idx;
+	msg->id.val = ulog_cn_id.val;
+	msg->ack = 0;
+	msg->seq = tfr->seq;
+	msg->len = sizeof(struct dm_ulog_request) + tfr->data_size;
+
+	r = cn_netlink_send(msg, 0, gfp_any());
+
+	return r;
+}
+
+/*
+ * Parameters for this function can be either msg or tfr, but not
+ * both.  This function fills in the reply for a waiting request.
+ * If just msg is given, then the reply is simply an ACK from userspace
+ * that the request was received.
+ *
+ * Returns: 0 on success, -ENOENT on failure
+ */
+static int fill_pkg(struct cn_msg *msg, struct dm_ulog_request *tfr)
+{
+	uint32_t rtn_seq = (msg) ? msg->seq : (tfr) ? tfr->seq : 0;
+	struct receiving_pkg *pkg;
+
+	/*
+	 * The 'receiving_pkg' entries in this list are statically
+	 * allocated on the stack in 'dm_consult_userspace'.
+	 * Each process that is waiting for a reply from the user
+	 * space server will have an entry in this list.
+	 *
+	 * We are safe to do it this way because the stack space
+	 * is unique to each process, but still addressable by
+	 * other processes.
+	 */
+	list_for_each_entry(pkg, &receiving_list, list) {
+		if (rtn_seq != pkg->seq)
+			continue;
+
+		if (msg) {
+			pkg->error = -msg->ack;
+			/*
+			 * If we are trying again, we will need to know our
+			 * storage capacity.  Otherwise, along with the
+			 * error code, we make explicit that we have no data.
+			 */
+			if (pkg->error != -EAGAIN)
+				*(pkg->data_size) = 0;
+		} else if (tfr->data_size > *(pkg->data_size)) {
+			DMERR("Insufficient space to receive package [%u] "
+			      "(%u vs %zu)", tfr->request_type,
+			      tfr->data_size, *(pkg->data_size));
+
+			*(pkg->data_size) = 0;
+			pkg->error = -ENOSPC;
+		} else {
+			pkg->error = tfr->error;
+			memcpy(pkg->data, tfr->data, tfr->data_size);
+			*(pkg->data_size) = tfr->data_size;
+		}
+		complete(&pkg->complete);
+		return 0;
+	}
+
+	return -ENOENT;
+}
+
+/*
+ * This is the connector callback that delivers data
+ * that was sent from userspace.
+ */
+static void cn_ulog_callback(struct cn_msg *msg, struct netlink_skb_parms *nsp)
+{
+	struct dm_ulog_request *tfr = (struct dm_ulog_request *)(msg + 1);
+
+	if (!capable(CAP_SYS_ADMIN))
+		return;
+
+	spin_lock(&receiving_list_lock);
+	if (msg->len == 0)
+		fill_pkg(msg, NULL);
+	else if (msg->len < sizeof(*tfr))
+		DMERR("Incomplete message received (expected %u, got %u): [%u]",
+		      (unsigned)sizeof(*tfr), msg->len, msg->seq);
+	else
+		fill_pkg(NULL, tfr);
+	spin_unlock(&receiving_list_lock);
+}
+
+/**
+ * dm_consult_userspace
+ * @uuid: log's universal unique identifier (must be DM_UUID_LEN in size)
+ * @luid: log's local unique identifier
+ * @request_type:  found in include/linux/dm-log-userspace.h
+ * @data: data to tx to the server
+ * @data_size: size of data in bytes
+ * @rdata: place to put return data from server
+ * @rdata_size: value-result (amount of space given/amount of space used)
+ *
+ * rdata_size is undefined on failure.
+ *
+ * Memory used to communicate with userspace is zero'ed
+ * before populating to ensure that no unwanted bits leak
+ * from kernel space to user-space.  All userspace log communications
+ * between kernel and user space go through this function.
+ *
+ * Returns: 0 on success, -EXXX on failure
+ **/
+int dm_consult_userspace(const char *uuid, uint64_t luid, int request_type,
+			 char *data, size_t data_size,
+			 char *rdata, size_t *rdata_size)
+{
+	int r = 0;
+	size_t dummy = 0;
+	int overhead_size = sizeof(struct dm_ulog_request) + sizeof(struct cn_msg);
+	struct dm_ulog_request *tfr = prealloced_ulog_tfr;
+	struct receiving_pkg pkg;
+
+	/*
+	 * Given the space needed to hold the 'struct cn_msg' and
+	 * 'struct dm_ulog_request' - do we have enough payload
+	 * space remaining?
+	 */
+	if (data_size > (DM_ULOG_PREALLOCED_SIZE - overhead_size)) {
+		DMINFO("Size of tfr exceeds preallocated size");
+		return -EINVAL;
+	}
+
+	if (!rdata_size)
+		rdata_size = &dummy;
+resend:
+	/*
+	 * We serialize the sending of requests so we can
+	 * use the preallocated space.
+	 */
+	mutex_lock(&dm_ulog_lock);
+
+	memset(tfr, 0, DM_ULOG_PREALLOCED_SIZE - sizeof(struct cn_msg));
+	memcpy(tfr->uuid, uuid, DM_UUID_LEN);
+	tfr->version = DM_ULOG_REQUEST_VERSION;
+	tfr->luid = luid;
+	tfr->seq = dm_ulog_seq++;
+
+	/*
+	 * Must be valid request type (all other bits set to
+	 * zero).  This reserves other bits for possible future
+	 * use.
+	 */
+	tfr->request_type = request_type & DM_ULOG_REQUEST_MASK;
+
+	tfr->data_size = data_size;
+	if (data && data_size)
+		memcpy(tfr->data, data, data_size);
+
+	memset(&pkg, 0, sizeof(pkg));
+	init_completion(&pkg.complete);
+	pkg.seq = tfr->seq;
+	pkg.data_size = rdata_size;
+	pkg.data = rdata;
+	spin_lock(&receiving_list_lock);
+	list_add(&(pkg.list), &receiving_list);
+	spin_unlock(&receiving_list_lock);
+
+	r = dm_ulog_sendto_server(tfr);
+
+	mutex_unlock(&dm_ulog_lock);
+
+	if (r) {
+		DMERR("Unable to send log request [%u] to userspace: %d",
+		      request_type, r);
+		spin_lock(&receiving_list_lock);
+		list_del_init(&(pkg.list));
+		spin_unlock(&receiving_list_lock);
+
+		goto out;
+	}
+
+	r = wait_for_completion_timeout(&(pkg.complete), DM_ULOG_RETRY_TIMEOUT);
+	spin_lock(&receiving_list_lock);
+	list_del_init(&(pkg.list));
+	spin_unlock(&receiving_list_lock);
+	if (!r) {
+		DMWARN("[%s] Request timed out: [%u/%u] - retrying",
+		       (strlen(uuid) > 8) ?
+		       (uuid + (strlen(uuid) - 8)) : (uuid),
+		       request_type, pkg.seq);
+		goto resend;
+	}
+
+	r = pkg.error;
+	if (r == -EAGAIN)
+		goto resend;
+
+out:
+	return r;
+}
+
+int dm_ulog_tfr_init(void)
+{
+	int r;
+	void *prealloced;
+
+	INIT_LIST_HEAD(&receiving_list);
+
+	prealloced = kmalloc(DM_ULOG_PREALLOCED_SIZE, GFP_KERNEL);
+	if (!prealloced)
+		return -ENOMEM;
+
+	prealloced_cn_msg = prealloced;
+	prealloced_ulog_tfr = prealloced + sizeof(struct cn_msg);
+
+	r = cn_add_callback(&ulog_cn_id, "dmlogusr", cn_ulog_callback);
+	if (r) {
+		kfree(prealloced_cn_msg);
+		return r;
+	}
+
+	return 0;
+}
+
+void dm_ulog_tfr_exit(void)
+{
+	cn_del_callback(&ulog_cn_id);
+	kfree(prealloced_cn_msg);
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-log-userspace-transfer.h b/ap/os/linux/linux-3.4.x/drivers/md/dm-log-userspace-transfer.h
new file mode 100644
index 0000000..04ee874
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-log-userspace-transfer.h
@@ -0,0 +1,18 @@
+/*
+ * Copyright (C) 2006-2009 Red Hat, Inc.
+ *
+ * This file is released under the LGPL.
+ */
+
+#ifndef __DM_LOG_USERSPACE_TRANSFER_H__
+#define __DM_LOG_USERSPACE_TRANSFER_H__
+
+#define DM_MSG_PREFIX "dm-log-userspace"
+
+int dm_ulog_tfr_init(void);
+void dm_ulog_tfr_exit(void);
+int dm_consult_userspace(const char *uuid, uint64_t luid, int request_type,
+			 char *data, size_t data_size,
+			 char *rdata, size_t *rdata_size);
+
+#endif /* __DM_LOG_USERSPACE_TRANSFER_H__ */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-log.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-log.c
new file mode 100644
index 0000000..65ebaeb
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-log.c
@@ -0,0 +1,897 @@
+/*
+ * Copyright (C) 2003 Sistina Software
+ * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the LGPL.
+ */
+
+#include <linux/init.h>
+#include <linux/slab.h>
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/dm-io.h>
+#include <linux/dm-dirty-log.h>
+
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "dirty region log"
+
+static LIST_HEAD(_log_types);
+static DEFINE_SPINLOCK(_lock);
+
+static struct dm_dirty_log_type *__find_dirty_log_type(const char *name)
+{
+	struct dm_dirty_log_type *log_type;
+
+	list_for_each_entry(log_type, &_log_types, list)
+		if (!strcmp(name, log_type->name))
+			return log_type;
+
+	return NULL;
+}
+
+static struct dm_dirty_log_type *_get_dirty_log_type(const char *name)
+{
+	struct dm_dirty_log_type *log_type;
+
+	spin_lock(&_lock);
+
+	log_type = __find_dirty_log_type(name);
+	if (log_type && !try_module_get(log_type->module))
+		log_type = NULL;
+
+	spin_unlock(&_lock);
+
+	return log_type;
+}
+
+/*
+ * get_type
+ * @type_name
+ *
+ * Attempt to retrieve the dm_dirty_log_type by name.  If not already
+ * available, attempt to load the appropriate module.
+ *
+ * Log modules are named "dm-log-" followed by the 'type_name'.
+ * Modules may contain multiple types.
+ * This function will first try the module "dm-log-<type_name>",
+ * then truncate 'type_name' on the last '-' and try again.
+ *
+ * For example, if type_name was "clustered-disk", it would search
+ * 'dm-log-clustered-disk' then 'dm-log-clustered'.
+ *
+ * Returns: dirty_log_type* on success, NULL on failure
+ */
+static struct dm_dirty_log_type *get_type(const char *type_name)
+{
+	char *p, *type_name_dup;
+	struct dm_dirty_log_type *log_type;
+
+	if (!type_name)
+		return NULL;
+
+	log_type = _get_dirty_log_type(type_name);
+	if (log_type)
+		return log_type;
+
+	type_name_dup = kstrdup(type_name, GFP_KERNEL);
+	if (!type_name_dup) {
+		DMWARN("No memory left to attempt log module load for \"%s\"",
+		       type_name);
+		return NULL;
+	}
+
+	while (request_module("dm-log-%s", type_name_dup) ||
+	       !(log_type = _get_dirty_log_type(type_name))) {
+		p = strrchr(type_name_dup, '-');
+		if (!p)
+			break;
+		p[0] = '\0';
+	}
+
+	if (!log_type)
+		DMWARN("Module for logging type \"%s\" not found.", type_name);
+
+	kfree(type_name_dup);
+
+	return log_type;
+}
+
+static void put_type(struct dm_dirty_log_type *type)
+{
+	if (!type)
+		return;
+
+	spin_lock(&_lock);
+	if (!__find_dirty_log_type(type->name))
+		goto out;
+
+	module_put(type->module);
+
+out:
+	spin_unlock(&_lock);
+}
+
+int dm_dirty_log_type_register(struct dm_dirty_log_type *type)
+{
+	int r = 0;
+
+	spin_lock(&_lock);
+	if (!__find_dirty_log_type(type->name))
+		list_add(&type->list, &_log_types);
+	else
+		r = -EEXIST;
+	spin_unlock(&_lock);
+
+	return r;
+}
+EXPORT_SYMBOL(dm_dirty_log_type_register);
+
+int dm_dirty_log_type_unregister(struct dm_dirty_log_type *type)
+{
+	spin_lock(&_lock);
+
+	if (!__find_dirty_log_type(type->name)) {
+		spin_unlock(&_lock);
+		return -EINVAL;
+	}
+
+	list_del(&type->list);
+
+	spin_unlock(&_lock);
+
+	return 0;
+}
+EXPORT_SYMBOL(dm_dirty_log_type_unregister);
+
+struct dm_dirty_log *dm_dirty_log_create(const char *type_name,
+			struct dm_target *ti,
+			int (*flush_callback_fn)(struct dm_target *ti),
+			unsigned int argc, char **argv)
+{
+	struct dm_dirty_log_type *type;
+	struct dm_dirty_log *log;
+
+	log = kmalloc(sizeof(*log), GFP_KERNEL);
+	if (!log)
+		return NULL;
+
+	type = get_type(type_name);
+	if (!type) {
+		kfree(log);
+		return NULL;
+	}
+
+	log->flush_callback_fn = flush_callback_fn;
+	log->type = type;
+	if (type->ctr(log, ti, argc, argv)) {
+		kfree(log);
+		put_type(type);
+		return NULL;
+	}
+
+	return log;
+}
+EXPORT_SYMBOL(dm_dirty_log_create);
+
+void dm_dirty_log_destroy(struct dm_dirty_log *log)
+{
+	log->type->dtr(log);
+	put_type(log->type);
+	kfree(log);
+}
+EXPORT_SYMBOL(dm_dirty_log_destroy);
+
+/*-----------------------------------------------------------------
+ * Persistent and core logs share a lot of their implementation.
+ * FIXME: need a reload method to be called from a resume
+ *---------------------------------------------------------------*/
+/*
+ * Magic for persistent mirrors: "MiRr"
+ */
+#define MIRROR_MAGIC 0x4D695272
+
+/*
+ * The on-disk version of the metadata.
+ */
+#define MIRROR_DISK_VERSION 2
+#define LOG_OFFSET 2
+
+struct log_header_disk {
+	__le32 magic;
+
+	/*
+	 * Simple, incrementing version. no backward
+	 * compatibility.
+	 */
+	__le32 version;
+	__le64 nr_regions;
+} __packed;
+
+struct log_header_core {
+	uint32_t magic;
+	uint32_t version;
+	uint64_t nr_regions;
+};
+
+struct log_c {
+	struct dm_target *ti;
+	int touched_dirtied;
+	int touched_cleaned;
+	int flush_failed;
+	uint32_t region_size;
+	unsigned int region_count;
+	region_t sync_count;
+
+	unsigned bitset_uint32_count;
+	uint32_t *clean_bits;
+	uint32_t *sync_bits;
+	uint32_t *recovering_bits;	/* FIXME: this seems excessive */
+
+	int sync_search;
+
+	/* Resync flag */
+	enum sync {
+		DEFAULTSYNC,	/* Synchronize if necessary */
+		NOSYNC,		/* Devices known to be already in sync */
+		FORCESYNC,	/* Force a sync to happen */
+	} sync;
+
+	struct dm_io_request io_req;
+
+	/*
+	 * Disk log fields
+	 */
+	int log_dev_failed;
+	int log_dev_flush_failed;
+	struct dm_dev *log_dev;
+	struct log_header_core header;
+
+	struct dm_io_region header_location;
+	struct log_header_disk *disk_header;
+};
+
+/*
+ * The touched member needs to be updated every time we access
+ * one of the bitsets.
+ */
+static inline int log_test_bit(uint32_t *bs, unsigned bit)
+{
+	return test_bit_le(bit, bs) ? 1 : 0;
+}
+
+static inline void log_set_bit(struct log_c *l,
+			       uint32_t *bs, unsigned bit)
+{
+	__set_bit_le(bit, bs);
+	l->touched_cleaned = 1;
+}
+
+static inline void log_clear_bit(struct log_c *l,
+				 uint32_t *bs, unsigned bit)
+{
+	__clear_bit_le(bit, bs);
+	l->touched_dirtied = 1;
+}
+
+/*----------------------------------------------------------------
+ * Header IO
+ *--------------------------------------------------------------*/
+static void header_to_disk(struct log_header_core *core, struct log_header_disk *disk)
+{
+	disk->magic = cpu_to_le32(core->magic);
+	disk->version = cpu_to_le32(core->version);
+	disk->nr_regions = cpu_to_le64(core->nr_regions);
+}
+
+static void header_from_disk(struct log_header_core *core, struct log_header_disk *disk)
+{
+	core->magic = le32_to_cpu(disk->magic);
+	core->version = le32_to_cpu(disk->version);
+	core->nr_regions = le64_to_cpu(disk->nr_regions);
+}
+
+static int rw_header(struct log_c *lc, int rw)
+{
+	lc->io_req.bi_rw = rw;
+
+	return dm_io(&lc->io_req, 1, &lc->header_location, NULL);
+}
+
+static int flush_header(struct log_c *lc)
+{
+	struct dm_io_region null_location = {
+		.bdev = lc->header_location.bdev,
+		.sector = 0,
+		.count = 0,
+	};
+
+	lc->io_req.bi_rw = WRITE_FLUSH;
+
+	return dm_io(&lc->io_req, 1, &null_location, NULL);
+}
+
+static int read_header(struct log_c *log)
+{
+	int r;
+
+	r = rw_header(log, READ);
+	if (r)
+		return r;
+
+	header_from_disk(&log->header, log->disk_header);
+
+	/* New log required? */
+	if (log->sync != DEFAULTSYNC || log->header.magic != MIRROR_MAGIC) {
+		log->header.magic = MIRROR_MAGIC;
+		log->header.version = MIRROR_DISK_VERSION;
+		log->header.nr_regions = 0;
+	}
+
+#ifdef __LITTLE_ENDIAN
+	if (log->header.version == 1)
+		log->header.version = 2;
+#endif
+
+	if (log->header.version != MIRROR_DISK_VERSION) {
+		DMWARN("incompatible disk log version");
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int _check_region_size(struct dm_target *ti, uint32_t region_size)
+{
+	if (region_size < 2 || region_size > ti->len)
+		return 0;
+
+	if (!is_power_of_2(region_size))
+		return 0;
+
+	return 1;
+}
+
+/*----------------------------------------------------------------
+ * core log constructor/destructor
+ *
+ * argv contains region_size followed optionally by [no]sync
+ *--------------------------------------------------------------*/
+#define BYTE_SHIFT 3
+static int create_log_context(struct dm_dirty_log *log, struct dm_target *ti,
+			      unsigned int argc, char **argv,
+			      struct dm_dev *dev)
+{
+	enum sync sync = DEFAULTSYNC;
+
+	struct log_c *lc;
+	uint32_t region_size;
+	unsigned int region_count;
+	size_t bitset_size, buf_size;
+	int r;
+	char dummy;
+
+	if (argc < 1 || argc > 2) {
+		DMWARN("wrong number of arguments to dirty region log");
+		return -EINVAL;
+	}
+
+	if (argc > 1) {
+		if (!strcmp(argv[1], "sync"))
+			sync = FORCESYNC;
+		else if (!strcmp(argv[1], "nosync"))
+			sync = NOSYNC;
+		else {
+			DMWARN("unrecognised sync argument to "
+			       "dirty region log: %s", argv[1]);
+			return -EINVAL;
+		}
+	}
+
+	if (sscanf(argv[0], "%u%c", &region_size, &dummy) != 1 ||
+	    !_check_region_size(ti, region_size)) {
+		DMWARN("invalid region size %s", argv[0]);
+		return -EINVAL;
+	}
+
+	region_count = dm_sector_div_up(ti->len, region_size);
+
+	lc = kmalloc(sizeof(*lc), GFP_KERNEL);
+	if (!lc) {
+		DMWARN("couldn't allocate core log");
+		return -ENOMEM;
+	}
+
+	lc->ti = ti;
+	lc->touched_dirtied = 0;
+	lc->touched_cleaned = 0;
+	lc->flush_failed = 0;
+	lc->region_size = region_size;
+	lc->region_count = region_count;
+	lc->sync = sync;
+
+	/*
+	 * Work out how many "unsigned long"s we need to hold the bitset.
+	 */
+	bitset_size = dm_round_up(region_count,
+				  sizeof(*lc->clean_bits) << BYTE_SHIFT);
+	bitset_size >>= BYTE_SHIFT;
+
+	lc->bitset_uint32_count = bitset_size / sizeof(*lc->clean_bits);
+
+	/*
+	 * Disk log?
+	 */
+	if (!dev) {
+		lc->clean_bits = vmalloc(bitset_size);
+		if (!lc->clean_bits) {
+			DMWARN("couldn't allocate clean bitset");
+			kfree(lc);
+			return -ENOMEM;
+		}
+		lc->disk_header = NULL;
+	} else {
+		lc->log_dev = dev;
+		lc->log_dev_failed = 0;
+		lc->log_dev_flush_failed = 0;
+		lc->header_location.bdev = lc->log_dev->bdev;
+		lc->header_location.sector = 0;
+
+		/*
+		 * Buffer holds both header and bitset.
+		 */
+		buf_size =
+		    dm_round_up((LOG_OFFSET << SECTOR_SHIFT) + bitset_size,
+				bdev_logical_block_size(lc->header_location.
+							    bdev));
+
+		if (buf_size > i_size_read(dev->bdev->bd_inode)) {
+			DMWARN("log device %s too small: need %llu bytes",
+				dev->name, (unsigned long long)buf_size);
+			kfree(lc);
+			return -EINVAL;
+		}
+
+		lc->header_location.count = buf_size >> SECTOR_SHIFT;
+
+		lc->io_req.mem.type = DM_IO_VMA;
+		lc->io_req.notify.fn = NULL;
+		lc->io_req.client = dm_io_client_create();
+		if (IS_ERR(lc->io_req.client)) {
+			r = PTR_ERR(lc->io_req.client);
+			DMWARN("couldn't allocate disk io client");
+			kfree(lc);
+			return r;
+		}
+
+		lc->disk_header = vmalloc(buf_size);
+		if (!lc->disk_header) {
+			DMWARN("couldn't allocate disk log buffer");
+			dm_io_client_destroy(lc->io_req.client);
+			kfree(lc);
+			return -ENOMEM;
+		}
+
+		lc->io_req.mem.ptr.vma = lc->disk_header;
+		lc->clean_bits = (void *)lc->disk_header +
+				 (LOG_OFFSET << SECTOR_SHIFT);
+	}
+
+	memset(lc->clean_bits, -1, bitset_size);
+
+	lc->sync_bits = vmalloc(bitset_size);
+	if (!lc->sync_bits) {
+		DMWARN("couldn't allocate sync bitset");
+		if (!dev)
+			vfree(lc->clean_bits);
+		else
+			dm_io_client_destroy(lc->io_req.client);
+		vfree(lc->disk_header);
+		kfree(lc);
+		return -ENOMEM;
+	}
+	memset(lc->sync_bits, (sync == NOSYNC) ? -1 : 0, bitset_size);
+	lc->sync_count = (sync == NOSYNC) ? region_count : 0;
+
+	lc->recovering_bits = vzalloc(bitset_size);
+	if (!lc->recovering_bits) {
+		DMWARN("couldn't allocate sync bitset");
+		vfree(lc->sync_bits);
+		if (!dev)
+			vfree(lc->clean_bits);
+		else
+			dm_io_client_destroy(lc->io_req.client);
+		vfree(lc->disk_header);
+		kfree(lc);
+		return -ENOMEM;
+	}
+	lc->sync_search = 0;
+	log->context = lc;
+
+	return 0;
+}
+
+static int core_ctr(struct dm_dirty_log *log, struct dm_target *ti,
+		    unsigned int argc, char **argv)
+{
+	return create_log_context(log, ti, argc, argv, NULL);
+}
+
+static void destroy_log_context(struct log_c *lc)
+{
+	vfree(lc->sync_bits);
+	vfree(lc->recovering_bits);
+	kfree(lc);
+}
+
+static void core_dtr(struct dm_dirty_log *log)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+
+	vfree(lc->clean_bits);
+	destroy_log_context(lc);
+}
+
+/*----------------------------------------------------------------
+ * disk log constructor/destructor
+ *
+ * argv contains log_device region_size followed optionally by [no]sync
+ *--------------------------------------------------------------*/
+static int disk_ctr(struct dm_dirty_log *log, struct dm_target *ti,
+		    unsigned int argc, char **argv)
+{
+	int r;
+	struct dm_dev *dev;
+
+	if (argc < 2 || argc > 3) {
+		DMWARN("wrong number of arguments to disk dirty region log");
+		return -EINVAL;
+	}
+
+	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &dev);
+	if (r)
+		return r;
+
+	r = create_log_context(log, ti, argc - 1, argv + 1, dev);
+	if (r) {
+		dm_put_device(ti, dev);
+		return r;
+	}
+
+	return 0;
+}
+
+static void disk_dtr(struct dm_dirty_log *log)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+
+	dm_put_device(lc->ti, lc->log_dev);
+	vfree(lc->disk_header);
+	dm_io_client_destroy(lc->io_req.client);
+	destroy_log_context(lc);
+}
+
+static int count_bits32(uint32_t *addr, unsigned size)
+{
+	int count = 0, i;
+
+	for (i = 0; i < size; i++) {
+		count += hweight32(*(addr+i));
+	}
+	return count;
+}
+
+static void fail_log_device(struct log_c *lc)
+{
+	if (lc->log_dev_failed)
+		return;
+
+	lc->log_dev_failed = 1;
+	dm_table_event(lc->ti->table);
+}
+
+static int disk_resume(struct dm_dirty_log *log)
+{
+	int r;
+	unsigned i;
+	struct log_c *lc = (struct log_c *) log->context;
+	size_t size = lc->bitset_uint32_count * sizeof(uint32_t);
+
+	/* read the disk header */
+	r = read_header(lc);
+	if (r) {
+		DMWARN("%s: Failed to read header on dirty region log device",
+		       lc->log_dev->name);
+		fail_log_device(lc);
+		/*
+		 * If the log device cannot be read, we must assume
+		 * all regions are out-of-sync.  If we simply return
+		 * here, the state will be uninitialized and could
+		 * lead us to return 'in-sync' status for regions
+		 * that are actually 'out-of-sync'.
+		 */
+		lc->header.nr_regions = 0;
+	}
+
+	/* set or clear any new bits -- device has grown */
+	if (lc->sync == NOSYNC)
+		for (i = lc->header.nr_regions; i < lc->region_count; i++)
+			/* FIXME: amazingly inefficient */
+			log_set_bit(lc, lc->clean_bits, i);
+	else
+		for (i = lc->header.nr_regions; i < lc->region_count; i++)
+			/* FIXME: amazingly inefficient */
+			log_clear_bit(lc, lc->clean_bits, i);
+
+	/* clear any old bits -- device has shrunk */
+	for (i = lc->region_count; i % (sizeof(*lc->clean_bits) << BYTE_SHIFT); i++)
+		log_clear_bit(lc, lc->clean_bits, i);
+
+	/* copy clean across to sync */
+	memcpy(lc->sync_bits, lc->clean_bits, size);
+	lc->sync_count = count_bits32(lc->clean_bits, lc->bitset_uint32_count);
+	lc->sync_search = 0;
+
+	/* set the correct number of regions in the header */
+	lc->header.nr_regions = lc->region_count;
+
+	header_to_disk(&lc->header, lc->disk_header);
+
+	/* write the new header */
+	r = rw_header(lc, WRITE);
+	if (!r) {
+		r = flush_header(lc);
+		if (r)
+			lc->log_dev_flush_failed = 1;
+	}
+	if (r) {
+		DMWARN("%s: Failed to write header on dirty region log device",
+		       lc->log_dev->name);
+		fail_log_device(lc);
+	}
+
+	return r;
+}
+
+static uint32_t core_get_region_size(struct dm_dirty_log *log)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+	return lc->region_size;
+}
+
+static int core_resume(struct dm_dirty_log *log)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+	lc->sync_search = 0;
+	return 0;
+}
+
+static int core_is_clean(struct dm_dirty_log *log, region_t region)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+	return log_test_bit(lc->clean_bits, region);
+}
+
+static int core_in_sync(struct dm_dirty_log *log, region_t region, int block)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+	return log_test_bit(lc->sync_bits, region);
+}
+
+static int core_flush(struct dm_dirty_log *log)
+{
+	/* no op */
+	return 0;
+}
+
+static int disk_flush(struct dm_dirty_log *log)
+{
+	int r, i;
+	struct log_c *lc = log->context;
+
+	/* only write if the log has changed */
+	if (!lc->touched_cleaned && !lc->touched_dirtied)
+		return 0;
+
+	if (lc->touched_cleaned && log->flush_callback_fn &&
+	    log->flush_callback_fn(lc->ti)) {
+		/*
+		 * At this point it is impossible to determine which
+		 * regions are clean and which are dirty (without
+		 * re-reading the log off disk). So mark all of them
+		 * dirty.
+		 */
+		lc->flush_failed = 1;
+		for (i = 0; i < lc->region_count; i++)
+			log_clear_bit(lc, lc->clean_bits, i);
+	}
+
+	r = rw_header(lc, WRITE);
+	if (r)
+		fail_log_device(lc);
+	else {
+		if (lc->touched_dirtied) {
+			r = flush_header(lc);
+			if (r) {
+				lc->log_dev_flush_failed = 1;
+				fail_log_device(lc);
+			} else
+				lc->touched_dirtied = 0;
+		}
+		lc->touched_cleaned = 0;
+	}
+
+	return r;
+}
+
+static void core_mark_region(struct dm_dirty_log *log, region_t region)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+	log_clear_bit(lc, lc->clean_bits, region);
+}
+
+static void core_clear_region(struct dm_dirty_log *log, region_t region)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+	if (likely(!lc->flush_failed))
+		log_set_bit(lc, lc->clean_bits, region);
+}
+
+static int core_get_resync_work(struct dm_dirty_log *log, region_t *region)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+
+	if (lc->sync_search >= lc->region_count)
+		return 0;
+
+	do {
+		*region = find_next_zero_bit_le(lc->sync_bits,
+					     lc->region_count,
+					     lc->sync_search);
+		lc->sync_search = *region + 1;
+
+		if (*region >= lc->region_count)
+			return 0;
+
+	} while (log_test_bit(lc->recovering_bits, *region));
+
+	log_set_bit(lc, lc->recovering_bits, *region);
+	return 1;
+}
+
+static void core_set_region_sync(struct dm_dirty_log *log, region_t region,
+				 int in_sync)
+{
+	struct log_c *lc = (struct log_c *) log->context;
+
+	log_clear_bit(lc, lc->recovering_bits, region);
+	if (in_sync) {
+		log_set_bit(lc, lc->sync_bits, region);
+                lc->sync_count++;
+        } else if (log_test_bit(lc->sync_bits, region)) {
+		lc->sync_count--;
+		log_clear_bit(lc, lc->sync_bits, region);
+	}
+}
+
+static region_t core_get_sync_count(struct dm_dirty_log *log)
+{
+        struct log_c *lc = (struct log_c *) log->context;
+
+        return lc->sync_count;
+}
+
+#define	DMEMIT_SYNC \
+	if (lc->sync != DEFAULTSYNC) \
+		DMEMIT("%ssync ", lc->sync == NOSYNC ? "no" : "")
+
+static int core_status(struct dm_dirty_log *log, status_type_t status,
+		       char *result, unsigned int maxlen)
+{
+	int sz = 0;
+	struct log_c *lc = log->context;
+
+	switch(status) {
+	case STATUSTYPE_INFO:
+		DMEMIT("1 %s", log->type->name);
+		break;
+
+	case STATUSTYPE_TABLE:
+		DMEMIT("%s %u %u ", log->type->name,
+		       lc->sync == DEFAULTSYNC ? 1 : 2, lc->region_size);
+		DMEMIT_SYNC;
+	}
+
+	return sz;
+}
+
+static int disk_status(struct dm_dirty_log *log, status_type_t status,
+		       char *result, unsigned int maxlen)
+{
+	int sz = 0;
+	struct log_c *lc = log->context;
+
+	switch(status) {
+	case STATUSTYPE_INFO:
+		DMEMIT("3 %s %s %c", log->type->name, lc->log_dev->name,
+		       lc->log_dev_flush_failed ? 'F' :
+		       lc->log_dev_failed ? 'D' :
+		       'A');
+		break;
+
+	case STATUSTYPE_TABLE:
+		DMEMIT("%s %u %s %u ", log->type->name,
+		       lc->sync == DEFAULTSYNC ? 2 : 3, lc->log_dev->name,
+		       lc->region_size);
+		DMEMIT_SYNC;
+	}
+
+	return sz;
+}
+
+static struct dm_dirty_log_type _core_type = {
+	.name = "core",
+	.module = THIS_MODULE,
+	.ctr = core_ctr,
+	.dtr = core_dtr,
+	.resume = core_resume,
+	.get_region_size = core_get_region_size,
+	.is_clean = core_is_clean,
+	.in_sync = core_in_sync,
+	.flush = core_flush,
+	.mark_region = core_mark_region,
+	.clear_region = core_clear_region,
+	.get_resync_work = core_get_resync_work,
+	.set_region_sync = core_set_region_sync,
+	.get_sync_count = core_get_sync_count,
+	.status = core_status,
+};
+
+static struct dm_dirty_log_type _disk_type = {
+	.name = "disk",
+	.module = THIS_MODULE,
+	.ctr = disk_ctr,
+	.dtr = disk_dtr,
+	.postsuspend = disk_flush,
+	.resume = disk_resume,
+	.get_region_size = core_get_region_size,
+	.is_clean = core_is_clean,
+	.in_sync = core_in_sync,
+	.flush = disk_flush,
+	.mark_region = core_mark_region,
+	.clear_region = core_clear_region,
+	.get_resync_work = core_get_resync_work,
+	.set_region_sync = core_set_region_sync,
+	.get_sync_count = core_get_sync_count,
+	.status = disk_status,
+};
+
+static int __init dm_dirty_log_init(void)
+{
+	int r;
+
+	r = dm_dirty_log_type_register(&_core_type);
+	if (r)
+		DMWARN("couldn't register core log");
+
+	r = dm_dirty_log_type_register(&_disk_type);
+	if (r) {
+		DMWARN("couldn't register disk type");
+		dm_dirty_log_type_unregister(&_core_type);
+	}
+
+	return r;
+}
+
+static void __exit dm_dirty_log_exit(void)
+{
+	dm_dirty_log_type_unregister(&_disk_type);
+	dm_dirty_log_type_unregister(&_core_type);
+}
+
+module_init(dm_dirty_log_init);
+module_exit(dm_dirty_log_exit);
+
+MODULE_DESCRIPTION(DM_NAME " dirty region log");
+MODULE_AUTHOR("Joe Thornber, Heinz Mauelshagen <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-mpath.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-mpath.c
new file mode 100644
index 0000000..d5fc3ec
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-mpath.c
@@ -0,0 +1,1736 @@
+/*
+ * Copyright (C) 2003 Sistina Software Limited.
+ * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/device-mapper.h>
+
+#include "dm-path-selector.h"
+#include "dm-uevent.h"
+
+#include <linux/ctype.h>
+#include <linux/init.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/pagemap.h>
+#include <linux/slab.h>
+#include <linux/time.h>
+#include <linux/workqueue.h>
+#include <scsi/scsi_dh.h>
+#include <linux/atomic.h>
+
+#define DM_MSG_PREFIX "multipath"
+#define DM_PG_INIT_DELAY_MSECS 2000
+#define DM_PG_INIT_DELAY_DEFAULT ((unsigned) -1)
+
+/* Path properties */
+struct pgpath {
+	struct list_head list;
+
+	struct priority_group *pg;	/* Owning PG */
+	unsigned is_active;		/* Path status */
+	unsigned fail_count;		/* Cumulative failure count */
+
+	struct dm_path path;
+	struct delayed_work activate_path;
+};
+
+#define path_to_pgpath(__pgp) container_of((__pgp), struct pgpath, path)
+
+/*
+ * Paths are grouped into Priority Groups and numbered from 1 upwards.
+ * Each has a path selector which controls which path gets used.
+ */
+struct priority_group {
+	struct list_head list;
+
+	struct multipath *m;		/* Owning multipath instance */
+	struct path_selector ps;
+
+	unsigned pg_num;		/* Reference number */
+	unsigned bypassed;		/* Temporarily bypass this PG? */
+
+	unsigned nr_pgpaths;		/* Number of paths in PG */
+	struct list_head pgpaths;
+};
+
+/* Multipath context */
+struct multipath {
+	struct list_head list;
+	struct dm_target *ti;
+
+	spinlock_t lock;
+
+	const char *hw_handler_name;
+	char *hw_handler_params;
+
+	unsigned nr_priority_groups;
+	struct list_head priority_groups;
+
+	wait_queue_head_t pg_init_wait;	/* Wait for pg_init completion */
+
+	unsigned pg_init_required;	/* pg_init needs calling? */
+	unsigned pg_init_in_progress;	/* Only one pg_init allowed at once */
+	unsigned pg_init_delay_retry;	/* Delay pg_init retry? */
+
+	unsigned nr_valid_paths;	/* Total number of usable paths */
+	struct pgpath *current_pgpath;
+	struct priority_group *current_pg;
+	struct priority_group *next_pg;	/* Switch to this PG if set */
+	unsigned repeat_count;		/* I/Os left before calling PS again */
+
+	unsigned queue_io;		/* Must we queue all I/O? */
+	unsigned queue_if_no_path;	/* Queue I/O if last path fails? */
+	unsigned saved_queue_if_no_path;/* Saved state during suspension */
+	unsigned pg_init_disabled:1;	/* pg_init is not currently allowed */
+	unsigned pg_init_retries;	/* Number of times to retry pg_init */
+	unsigned pg_init_count;		/* Number of times pg_init called */
+	unsigned pg_init_delay_msecs;	/* Number of msecs before pg_init retry */
+
+	struct work_struct process_queued_ios;
+	struct list_head queued_ios;
+	unsigned queue_size;
+
+	struct work_struct trigger_event;
+
+	/*
+	 * We must use a mempool of dm_mpath_io structs so that we
+	 * can resubmit bios on error.
+	 */
+	mempool_t *mpio_pool;
+
+	struct mutex work_mutex;
+};
+
+/*
+ * Context information attached to each bio we process.
+ */
+struct dm_mpath_io {
+	struct pgpath *pgpath;
+	size_t nr_bytes;
+};
+
+typedef int (*action_fn) (struct pgpath *pgpath);
+
+#define MIN_IOS 256	/* Mempool size */
+
+static struct kmem_cache *_mpio_cache;
+
+static struct workqueue_struct *kmultipathd, *kmpath_handlerd;
+static void process_queued_ios(struct work_struct *work);
+static void trigger_event(struct work_struct *work);
+static void activate_path(struct work_struct *work);
+
+
+/*-----------------------------------------------
+ * Allocation routines
+ *-----------------------------------------------*/
+
+static struct pgpath *alloc_pgpath(void)
+{
+	struct pgpath *pgpath = kzalloc(sizeof(*pgpath), GFP_KERNEL);
+
+	if (pgpath) {
+		pgpath->is_active = 1;
+		INIT_DELAYED_WORK(&pgpath->activate_path, activate_path);
+	}
+
+	return pgpath;
+}
+
+static void free_pgpath(struct pgpath *pgpath)
+{
+	kfree(pgpath);
+}
+
+static struct priority_group *alloc_priority_group(void)
+{
+	struct priority_group *pg;
+
+	pg = kzalloc(sizeof(*pg), GFP_KERNEL);
+
+	if (pg)
+		INIT_LIST_HEAD(&pg->pgpaths);
+
+	return pg;
+}
+
+static void free_pgpaths(struct list_head *pgpaths, struct dm_target *ti)
+{
+	struct pgpath *pgpath, *tmp;
+	struct multipath *m = ti->private;
+
+	list_for_each_entry_safe(pgpath, tmp, pgpaths, list) {
+		list_del(&pgpath->list);
+		if (m->hw_handler_name)
+			scsi_dh_detach(bdev_get_queue(pgpath->path.dev->bdev));
+		dm_put_device(ti, pgpath->path.dev);
+		free_pgpath(pgpath);
+	}
+}
+
+static void free_priority_group(struct priority_group *pg,
+				struct dm_target *ti)
+{
+	struct path_selector *ps = &pg->ps;
+
+	if (ps->type) {
+		ps->type->destroy(ps);
+		dm_put_path_selector(ps->type);
+	}
+
+	free_pgpaths(&pg->pgpaths, ti);
+	kfree(pg);
+}
+
+static struct multipath *alloc_multipath(struct dm_target *ti)
+{
+	struct multipath *m;
+
+	m = kzalloc(sizeof(*m), GFP_KERNEL);
+	if (m) {
+		INIT_LIST_HEAD(&m->priority_groups);
+		INIT_LIST_HEAD(&m->queued_ios);
+		spin_lock_init(&m->lock);
+		m->queue_io = 1;
+		m->pg_init_delay_msecs = DM_PG_INIT_DELAY_DEFAULT;
+		INIT_WORK(&m->process_queued_ios, process_queued_ios);
+		INIT_WORK(&m->trigger_event, trigger_event);
+		init_waitqueue_head(&m->pg_init_wait);
+		mutex_init(&m->work_mutex);
+		m->mpio_pool = mempool_create_slab_pool(MIN_IOS, _mpio_cache);
+		if (!m->mpio_pool) {
+			kfree(m);
+			return NULL;
+		}
+		m->ti = ti;
+		ti->private = m;
+	}
+
+	return m;
+}
+
+static void free_multipath(struct multipath *m)
+{
+	struct priority_group *pg, *tmp;
+
+	list_for_each_entry_safe(pg, tmp, &m->priority_groups, list) {
+		list_del(&pg->list);
+		free_priority_group(pg, m->ti);
+	}
+
+	kfree(m->hw_handler_name);
+	kfree(m->hw_handler_params);
+	mempool_destroy(m->mpio_pool);
+	kfree(m);
+}
+
+static int set_mapinfo(struct multipath *m, union map_info *info)
+{
+	struct dm_mpath_io *mpio;
+
+	mpio = mempool_alloc(m->mpio_pool, GFP_ATOMIC);
+	if (!mpio)
+		return -ENOMEM;
+
+	memset(mpio, 0, sizeof(*mpio));
+	info->ptr = mpio;
+
+	return 0;
+}
+
+static void clear_mapinfo(struct multipath *m, union map_info *info)
+{
+	struct dm_mpath_io *mpio = info->ptr;
+
+	info->ptr = NULL;
+	mempool_free(mpio, m->mpio_pool);
+}
+
+/*-----------------------------------------------
+ * Path selection
+ *-----------------------------------------------*/
+
+static void __pg_init_all_paths(struct multipath *m)
+{
+	struct pgpath *pgpath;
+	unsigned long pg_init_delay = 0;
+
+	m->pg_init_count++;
+	m->pg_init_required = 0;
+	if (m->pg_init_delay_retry)
+		pg_init_delay = msecs_to_jiffies(m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT ?
+						 m->pg_init_delay_msecs : DM_PG_INIT_DELAY_MSECS);
+	list_for_each_entry(pgpath, &m->current_pg->pgpaths, list) {
+		/* Skip failed paths */
+		if (!pgpath->is_active)
+			continue;
+		if (queue_delayed_work(kmpath_handlerd, &pgpath->activate_path,
+				       pg_init_delay))
+			m->pg_init_in_progress++;
+	}
+}
+
+static void __switch_pg(struct multipath *m, struct pgpath *pgpath)
+{
+	m->current_pg = pgpath->pg;
+
+	/* Must we initialise the PG first, and queue I/O till it's ready? */
+	if (m->hw_handler_name) {
+		m->pg_init_required = 1;
+		m->queue_io = 1;
+	} else {
+		m->pg_init_required = 0;
+		m->queue_io = 0;
+	}
+
+	m->pg_init_count = 0;
+}
+
+static int __choose_path_in_pg(struct multipath *m, struct priority_group *pg,
+			       size_t nr_bytes)
+{
+	struct dm_path *path;
+
+	path = pg->ps.type->select_path(&pg->ps, &m->repeat_count, nr_bytes);
+	if (!path)
+		return -ENXIO;
+
+	m->current_pgpath = path_to_pgpath(path);
+
+	if (m->current_pg != pg)
+		__switch_pg(m, m->current_pgpath);
+
+	return 0;
+}
+
+static void __choose_pgpath(struct multipath *m, size_t nr_bytes)
+{
+	struct priority_group *pg;
+	unsigned bypassed = 1;
+
+	if (!m->nr_valid_paths)
+		goto failed;
+
+	/* Were we instructed to switch PG? */
+	if (m->next_pg) {
+		pg = m->next_pg;
+		m->next_pg = NULL;
+		if (!__choose_path_in_pg(m, pg, nr_bytes))
+			return;
+	}
+
+	/* Don't change PG until it has no remaining paths */
+	if (m->current_pg && !__choose_path_in_pg(m, m->current_pg, nr_bytes))
+		return;
+
+	/*
+	 * Loop through priority groups until we find a valid path.
+	 * First time we skip PGs marked 'bypassed'.
+	 * Second time we only try the ones we skipped.
+	 */
+	do {
+		list_for_each_entry(pg, &m->priority_groups, list) {
+			if (pg->bypassed == bypassed)
+				continue;
+			if (!__choose_path_in_pg(m, pg, nr_bytes))
+				return;
+		}
+	} while (bypassed--);
+
+failed:
+	m->current_pgpath = NULL;
+	m->current_pg = NULL;
+}
+
+/*
+ * Check whether bios must be queued in the device-mapper core rather
+ * than here in the target.
+ *
+ * m->lock must be held on entry.
+ *
+ * If m->queue_if_no_path and m->saved_queue_if_no_path hold the
+ * same value then we are not between multipath_presuspend()
+ * and multipath_resume() calls and we have no need to check
+ * for the DMF_NOFLUSH_SUSPENDING flag.
+ */
+static int __must_push_back(struct multipath *m)
+{
+	return (m->queue_if_no_path != m->saved_queue_if_no_path &&
+		dm_noflush_suspending(m->ti));
+}
+
+static int map_io(struct multipath *m, struct request *clone,
+		  union map_info *map_context, unsigned was_queued)
+{
+	int r = DM_MAPIO_REMAPPED;
+	size_t nr_bytes = blk_rq_bytes(clone);
+	unsigned long flags;
+	struct pgpath *pgpath;
+	struct block_device *bdev;
+	struct dm_mpath_io *mpio = map_context->ptr;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	/* Do we need to select a new pgpath? */
+	if (!m->current_pgpath ||
+	    (!m->queue_io && (m->repeat_count && --m->repeat_count == 0)))
+		__choose_pgpath(m, nr_bytes);
+
+	pgpath = m->current_pgpath;
+
+	if (was_queued)
+		m->queue_size--;
+
+	if ((pgpath && m->queue_io) ||
+	    (!pgpath && m->queue_if_no_path)) {
+		/* Queue for the daemon to resubmit */
+		list_add_tail(&clone->queuelist, &m->queued_ios);
+		m->queue_size++;
+		if ((m->pg_init_required && !m->pg_init_in_progress) ||
+		    !m->queue_io)
+			queue_work(kmultipathd, &m->process_queued_ios);
+		pgpath = NULL;
+		r = DM_MAPIO_SUBMITTED;
+	} else if (pgpath) {
+		bdev = pgpath->path.dev->bdev;
+		clone->q = bdev_get_queue(bdev);
+		clone->rq_disk = bdev->bd_disk;
+	} else if (__must_push_back(m))
+		r = DM_MAPIO_REQUEUE;
+	else
+		r = -EIO;	/* Failed */
+
+	mpio->pgpath = pgpath;
+	mpio->nr_bytes = nr_bytes;
+
+	if (r == DM_MAPIO_REMAPPED && pgpath->pg->ps.type->start_io)
+		pgpath->pg->ps.type->start_io(&pgpath->pg->ps, &pgpath->path,
+					      nr_bytes);
+
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	return r;
+}
+
+/*
+ * If we run out of usable paths, should we queue I/O or error it?
+ */
+static int queue_if_no_path(struct multipath *m, unsigned queue_if_no_path,
+			    unsigned save_old_value)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	if (save_old_value)
+		m->saved_queue_if_no_path = m->queue_if_no_path;
+	else
+		m->saved_queue_if_no_path = queue_if_no_path;
+	m->queue_if_no_path = queue_if_no_path;
+	if (!m->queue_if_no_path && m->queue_size)
+		queue_work(kmultipathd, &m->process_queued_ios);
+
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	return 0;
+}
+
+/*-----------------------------------------------------------------
+ * The multipath daemon is responsible for resubmitting queued ios.
+ *---------------------------------------------------------------*/
+
+static void dispatch_queued_ios(struct multipath *m)
+{
+	int r;
+	unsigned long flags;
+	union map_info *info;
+	struct request *clone, *n;
+	LIST_HEAD(cl);
+
+	spin_lock_irqsave(&m->lock, flags);
+	list_splice_init(&m->queued_ios, &cl);
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	list_for_each_entry_safe(clone, n, &cl, queuelist) {
+		list_del_init(&clone->queuelist);
+
+		info = dm_get_rq_mapinfo(clone);
+
+		r = map_io(m, clone, info, 1);
+		if (r < 0) {
+			clear_mapinfo(m, info);
+			dm_kill_unmapped_request(clone, r);
+		} else if (r == DM_MAPIO_REMAPPED)
+			dm_dispatch_request(clone);
+		else if (r == DM_MAPIO_REQUEUE) {
+			clear_mapinfo(m, info);
+			dm_requeue_unmapped_request(clone);
+		}
+	}
+}
+
+static void process_queued_ios(struct work_struct *work)
+{
+	struct multipath *m =
+		container_of(work, struct multipath, process_queued_ios);
+	struct pgpath *pgpath = NULL;
+	unsigned must_queue = 1;
+	unsigned long flags;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	if (!m->queue_size)
+		goto out;
+
+	if (!m->current_pgpath)
+		__choose_pgpath(m, 0);
+
+	pgpath = m->current_pgpath;
+
+	if ((pgpath && !m->queue_io) ||
+	    (!pgpath && !m->queue_if_no_path))
+		must_queue = 0;
+
+	if (m->pg_init_required && !m->pg_init_in_progress && pgpath &&
+	    !m->pg_init_disabled)
+		__pg_init_all_paths(m);
+
+out:
+	spin_unlock_irqrestore(&m->lock, flags);
+	if (!must_queue)
+		dispatch_queued_ios(m);
+}
+
+/*
+ * An event is triggered whenever a path is taken out of use.
+ * Includes path failure and PG bypass.
+ */
+static void trigger_event(struct work_struct *work)
+{
+	struct multipath *m =
+		container_of(work, struct multipath, trigger_event);
+
+	dm_table_event(m->ti->table);
+}
+
+/*-----------------------------------------------------------------
+ * Constructor/argument parsing:
+ * <#multipath feature args> [<arg>]*
+ * <#hw_handler args> [hw_handler [<arg>]*]
+ * <#priority groups>
+ * <initial priority group>
+ *     [<selector> <#selector args> [<arg>]*
+ *      <#paths> <#per-path selector args>
+ *         [<path> [<arg>]* ]+ ]+
+ *---------------------------------------------------------------*/
+static int parse_path_selector(struct dm_arg_set *as, struct priority_group *pg,
+			       struct dm_target *ti)
+{
+	int r;
+	struct path_selector_type *pst;
+	unsigned ps_argc;
+
+	static struct dm_arg _args[] = {
+		{0, 1024, "invalid number of path selector args"},
+	};
+
+	pst = dm_get_path_selector(dm_shift_arg(as));
+	if (!pst) {
+		ti->error = "unknown path selector type";
+		return -EINVAL;
+	}
+
+	r = dm_read_arg_group(_args, as, &ps_argc, &ti->error);
+	if (r) {
+		dm_put_path_selector(pst);
+		return -EINVAL;
+	}
+
+	r = pst->create(&pg->ps, ps_argc, as->argv);
+	if (r) {
+		dm_put_path_selector(pst);
+		ti->error = "path selector constructor failed";
+		return r;
+	}
+
+	pg->ps.type = pst;
+	dm_consume_args(as, ps_argc);
+
+	return 0;
+}
+
+static struct pgpath *parse_path(struct dm_arg_set *as, struct path_selector *ps,
+			       struct dm_target *ti)
+{
+	int r;
+	struct pgpath *p;
+	struct multipath *m = ti->private;
+
+	/* we need at least a path arg */
+	if (as->argc < 1) {
+		ti->error = "no device given";
+		return ERR_PTR(-EINVAL);
+	}
+
+	p = alloc_pgpath();
+	if (!p)
+		return ERR_PTR(-ENOMEM);
+
+	r = dm_get_device(ti, dm_shift_arg(as), dm_table_get_mode(ti->table),
+			  &p->path.dev);
+	if (r) {
+		ti->error = "error getting device";
+		goto bad;
+	}
+
+	if (m->hw_handler_name) {
+		struct request_queue *q = bdev_get_queue(p->path.dev->bdev);
+
+		r = scsi_dh_attach(q, m->hw_handler_name);
+		if (r == -EBUSY) {
+			/*
+			 * Already attached to different hw_handler,
+			 * try to reattach with correct one.
+			 */
+			scsi_dh_detach(q);
+			r = scsi_dh_attach(q, m->hw_handler_name);
+		}
+
+		if (r < 0) {
+			ti->error = "error attaching hardware handler";
+			dm_put_device(ti, p->path.dev);
+			goto bad;
+		}
+
+		if (m->hw_handler_params) {
+			r = scsi_dh_set_params(q, m->hw_handler_params);
+			if (r < 0) {
+				ti->error = "unable to set hardware "
+							"handler parameters";
+				scsi_dh_detach(q);
+				dm_put_device(ti, p->path.dev);
+				goto bad;
+			}
+		}
+	}
+
+	r = ps->type->add_path(ps, &p->path, as->argc, as->argv, &ti->error);
+	if (r) {
+		dm_put_device(ti, p->path.dev);
+		goto bad;
+	}
+
+	return p;
+
+ bad:
+	free_pgpath(p);
+	return ERR_PTR(r);
+}
+
+static struct priority_group *parse_priority_group(struct dm_arg_set *as,
+						   struct multipath *m)
+{
+	static struct dm_arg _args[] = {
+		{1, 1024, "invalid number of paths"},
+		{0, 1024, "invalid number of selector args"}
+	};
+
+	int r;
+	unsigned i, nr_selector_args, nr_args;
+	struct priority_group *pg;
+	struct dm_target *ti = m->ti;
+
+	if (as->argc < 2) {
+		as->argc = 0;
+		ti->error = "not enough priority group arguments";
+		return ERR_PTR(-EINVAL);
+	}
+
+	pg = alloc_priority_group();
+	if (!pg) {
+		ti->error = "couldn't allocate priority group";
+		return ERR_PTR(-ENOMEM);
+	}
+	pg->m = m;
+
+	r = parse_path_selector(as, pg, ti);
+	if (r)
+		goto bad;
+
+	/*
+	 * read the paths
+	 */
+	r = dm_read_arg(_args, as, &pg->nr_pgpaths, &ti->error);
+	if (r)
+		goto bad;
+
+	r = dm_read_arg(_args + 1, as, &nr_selector_args, &ti->error);
+	if (r)
+		goto bad;
+
+	nr_args = 1 + nr_selector_args;
+	for (i = 0; i < pg->nr_pgpaths; i++) {
+		struct pgpath *pgpath;
+		struct dm_arg_set path_args;
+
+		if (as->argc < nr_args) {
+			ti->error = "not enough path parameters";
+			r = -EINVAL;
+			goto bad;
+		}
+
+		path_args.argc = nr_args;
+		path_args.argv = as->argv;
+
+		pgpath = parse_path(&path_args, &pg->ps, ti);
+		if (IS_ERR(pgpath)) {
+			r = PTR_ERR(pgpath);
+			goto bad;
+		}
+
+		pgpath->pg = pg;
+		list_add_tail(&pgpath->list, &pg->pgpaths);
+		dm_consume_args(as, nr_args);
+	}
+
+	return pg;
+
+ bad:
+	free_priority_group(pg, ti);
+	return ERR_PTR(r);
+}
+
+static int parse_hw_handler(struct dm_arg_set *as, struct multipath *m)
+{
+	unsigned hw_argc;
+	int ret;
+	struct dm_target *ti = m->ti;
+
+	static struct dm_arg _args[] = {
+		{0, 1024, "invalid number of hardware handler args"},
+	};
+
+	if (dm_read_arg_group(_args, as, &hw_argc, &ti->error))
+		return -EINVAL;
+
+	if (!hw_argc)
+		return 0;
+
+	m->hw_handler_name = kstrdup(dm_shift_arg(as), GFP_KERNEL);
+	if (!try_then_request_module(scsi_dh_handler_exist(m->hw_handler_name),
+				     "scsi_dh_%s", m->hw_handler_name)) {
+		ti->error = "unknown hardware handler type";
+		ret = -EINVAL;
+		goto fail;
+	}
+
+	if (hw_argc > 1) {
+		char *p;
+		int i, j, len = 4;
+
+		for (i = 0; i <= hw_argc - 2; i++)
+			len += strlen(as->argv[i]) + 1;
+		p = m->hw_handler_params = kzalloc(len, GFP_KERNEL);
+		if (!p) {
+			ti->error = "memory allocation failed";
+			ret = -ENOMEM;
+			goto fail;
+		}
+		j = sprintf(p, "%d", hw_argc - 1);
+		for (i = 0, p+=j+1; i <= hw_argc - 2; i++, p+=j+1)
+			j = sprintf(p, "%s", as->argv[i]);
+	}
+	dm_consume_args(as, hw_argc - 1);
+
+	return 0;
+fail:
+	kfree(m->hw_handler_name);
+	m->hw_handler_name = NULL;
+	return ret;
+}
+
+static int parse_features(struct dm_arg_set *as, struct multipath *m)
+{
+	int r;
+	unsigned argc;
+	struct dm_target *ti = m->ti;
+	const char *arg_name;
+
+	static struct dm_arg _args[] = {
+		{0, 5, "invalid number of feature args"},
+		{1, 50, "pg_init_retries must be between 1 and 50"},
+		{0, 60000, "pg_init_delay_msecs must be between 0 and 60000"},
+	};
+
+	r = dm_read_arg_group(_args, as, &argc, &ti->error);
+	if (r)
+		return -EINVAL;
+
+	if (!argc)
+		return 0;
+
+	do {
+		arg_name = dm_shift_arg(as);
+		argc--;
+
+		if (!strcasecmp(arg_name, "queue_if_no_path")) {
+			r = queue_if_no_path(m, 1, 0);
+			continue;
+		}
+
+		if (!strcasecmp(arg_name, "pg_init_retries") &&
+		    (argc >= 1)) {
+			r = dm_read_arg(_args + 1, as, &m->pg_init_retries, &ti->error);
+			argc--;
+			continue;
+		}
+
+		if (!strcasecmp(arg_name, "pg_init_delay_msecs") &&
+		    (argc >= 1)) {
+			r = dm_read_arg(_args + 2, as, &m->pg_init_delay_msecs, &ti->error);
+			argc--;
+			continue;
+		}
+
+		ti->error = "Unrecognised multipath feature request";
+		r = -EINVAL;
+	} while (argc && !r);
+
+	return r;
+}
+
+static int multipath_ctr(struct dm_target *ti, unsigned int argc,
+			 char **argv)
+{
+	/* target arguments */
+	static struct dm_arg _args[] = {
+		{0, 1024, "invalid number of priority groups"},
+		{0, 1024, "invalid initial priority group number"},
+	};
+
+	int r;
+	struct multipath *m;
+	struct dm_arg_set as;
+	unsigned pg_count = 0;
+	unsigned next_pg_num;
+
+	as.argc = argc;
+	as.argv = argv;
+
+	m = alloc_multipath(ti);
+	if (!m) {
+		ti->error = "can't allocate multipath";
+		return -EINVAL;
+	}
+
+	r = parse_features(&as, m);
+	if (r)
+		goto bad;
+
+	r = parse_hw_handler(&as, m);
+	if (r)
+		goto bad;
+
+	r = dm_read_arg(_args, &as, &m->nr_priority_groups, &ti->error);
+	if (r)
+		goto bad;
+
+	r = dm_read_arg(_args + 1, &as, &next_pg_num, &ti->error);
+	if (r)
+		goto bad;
+
+	if ((!m->nr_priority_groups && next_pg_num) ||
+	    (m->nr_priority_groups && !next_pg_num)) {
+		ti->error = "invalid initial priority group";
+		r = -EINVAL;
+		goto bad;
+	}
+
+	/* parse the priority groups */
+	while (as.argc) {
+		struct priority_group *pg;
+
+		pg = parse_priority_group(&as, m);
+		if (IS_ERR(pg)) {
+			r = PTR_ERR(pg);
+			goto bad;
+		}
+
+		m->nr_valid_paths += pg->nr_pgpaths;
+		list_add_tail(&pg->list, &m->priority_groups);
+		pg_count++;
+		pg->pg_num = pg_count;
+		if (!--next_pg_num)
+			m->next_pg = pg;
+	}
+
+	if (pg_count != m->nr_priority_groups) {
+		ti->error = "priority group count mismatch";
+		r = -EINVAL;
+		goto bad;
+	}
+
+	ti->num_flush_requests = 1;
+	ti->num_discard_requests = 1;
+
+	return 0;
+
+ bad:
+	free_multipath(m);
+	return r;
+}
+
+static void multipath_wait_for_pg_init_completion(struct multipath *m)
+{
+	DECLARE_WAITQUEUE(wait, current);
+	unsigned long flags;
+
+	add_wait_queue(&m->pg_init_wait, &wait);
+
+	while (1) {
+		set_current_state(TASK_UNINTERRUPTIBLE);
+
+		spin_lock_irqsave(&m->lock, flags);
+		if (!m->pg_init_in_progress) {
+			spin_unlock_irqrestore(&m->lock, flags);
+			break;
+		}
+		spin_unlock_irqrestore(&m->lock, flags);
+
+		io_schedule();
+	}
+	set_current_state(TASK_RUNNING);
+
+	remove_wait_queue(&m->pg_init_wait, &wait);
+}
+
+static void flush_multipath_work(struct multipath *m)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&m->lock, flags);
+	m->pg_init_disabled = 1;
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	flush_workqueue(kmpath_handlerd);
+	multipath_wait_for_pg_init_completion(m);
+	flush_workqueue(kmultipathd);
+	flush_work_sync(&m->trigger_event);
+
+	spin_lock_irqsave(&m->lock, flags);
+	m->pg_init_disabled = 0;
+	spin_unlock_irqrestore(&m->lock, flags);
+}
+
+static void multipath_dtr(struct dm_target *ti)
+{
+	struct multipath *m = ti->private;
+
+	flush_multipath_work(m);
+	free_multipath(m);
+}
+
+/*
+ * Map cloned requests
+ */
+static int multipath_map(struct dm_target *ti, struct request *clone,
+			 union map_info *map_context)
+{
+	int r;
+	struct multipath *m = (struct multipath *) ti->private;
+
+	if (set_mapinfo(m, map_context) < 0)
+		/* ENOMEM, requeue */
+		return DM_MAPIO_REQUEUE;
+
+	clone->cmd_flags |= REQ_FAILFAST_TRANSPORT;
+	r = map_io(m, clone, map_context, 0);
+	if (r < 0 || r == DM_MAPIO_REQUEUE)
+		clear_mapinfo(m, map_context);
+
+	return r;
+}
+
+/*
+ * Take a path out of use.
+ */
+static int fail_path(struct pgpath *pgpath)
+{
+	unsigned long flags;
+	struct multipath *m = pgpath->pg->m;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	if (!pgpath->is_active)
+		goto out;
+
+	DMWARN("Failing path %s.", pgpath->path.dev->name);
+
+	pgpath->pg->ps.type->fail_path(&pgpath->pg->ps, &pgpath->path);
+	pgpath->is_active = 0;
+	pgpath->fail_count++;
+
+	m->nr_valid_paths--;
+
+	if (pgpath == m->current_pgpath)
+		m->current_pgpath = NULL;
+
+	dm_path_uevent(DM_UEVENT_PATH_FAILED, m->ti,
+		      pgpath->path.dev->name, m->nr_valid_paths);
+
+	schedule_work(&m->trigger_event);
+
+out:
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	return 0;
+}
+
+/*
+ * Reinstate a previously-failed path
+ */
+static int reinstate_path(struct pgpath *pgpath)
+{
+	int r = 0;
+	unsigned long flags;
+	struct multipath *m = pgpath->pg->m;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	if (pgpath->is_active)
+		goto out;
+
+	if (!pgpath->pg->ps.type->reinstate_path) {
+		DMWARN("Reinstate path not supported by path selector %s",
+		       pgpath->pg->ps.type->name);
+		r = -EINVAL;
+		goto out;
+	}
+
+	r = pgpath->pg->ps.type->reinstate_path(&pgpath->pg->ps, &pgpath->path);
+	if (r)
+		goto out;
+
+	pgpath->is_active = 1;
+
+	if (!m->nr_valid_paths++ && m->queue_size) {
+		m->current_pgpath = NULL;
+		queue_work(kmultipathd, &m->process_queued_ios);
+	} else if (m->hw_handler_name && (m->current_pg == pgpath->pg)) {
+		if (queue_work(kmpath_handlerd, &pgpath->activate_path.work))
+			m->pg_init_in_progress++;
+	}
+
+	dm_path_uevent(DM_UEVENT_PATH_REINSTATED, m->ti,
+		      pgpath->path.dev->name, m->nr_valid_paths);
+
+	schedule_work(&m->trigger_event);
+
+out:
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	return r;
+}
+
+/*
+ * Fail or reinstate all paths that match the provided struct dm_dev.
+ */
+static int action_dev(struct multipath *m, struct dm_dev *dev,
+		      action_fn action)
+{
+	int r = -EINVAL;
+	struct pgpath *pgpath;
+	struct priority_group *pg;
+
+	list_for_each_entry(pg, &m->priority_groups, list) {
+		list_for_each_entry(pgpath, &pg->pgpaths, list) {
+			if (pgpath->path.dev == dev)
+				r = action(pgpath);
+		}
+	}
+
+	return r;
+}
+
+/*
+ * Temporarily try to avoid having to use the specified PG
+ */
+static void bypass_pg(struct multipath *m, struct priority_group *pg,
+		      int bypassed)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	pg->bypassed = bypassed;
+	m->current_pgpath = NULL;
+	m->current_pg = NULL;
+
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	schedule_work(&m->trigger_event);
+}
+
+/*
+ * Switch to using the specified PG from the next I/O that gets mapped
+ */
+static int switch_pg_num(struct multipath *m, const char *pgstr)
+{
+	struct priority_group *pg;
+	unsigned pgnum;
+	unsigned long flags;
+	char dummy;
+
+	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
+	    (pgnum > m->nr_priority_groups)) {
+		DMWARN("invalid PG number supplied to switch_pg_num");
+		return -EINVAL;
+	}
+
+	spin_lock_irqsave(&m->lock, flags);
+	list_for_each_entry(pg, &m->priority_groups, list) {
+		pg->bypassed = 0;
+		if (--pgnum)
+			continue;
+
+		m->current_pgpath = NULL;
+		m->current_pg = NULL;
+		m->next_pg = pg;
+	}
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	schedule_work(&m->trigger_event);
+	return 0;
+}
+
+/*
+ * Set/clear bypassed status of a PG.
+ * PGs are numbered upwards from 1 in the order they were declared.
+ */
+static int bypass_pg_num(struct multipath *m, const char *pgstr, int bypassed)
+{
+	struct priority_group *pg;
+	unsigned pgnum;
+	char dummy;
+
+	if (!pgstr || (sscanf(pgstr, "%u%c", &pgnum, &dummy) != 1) || !pgnum ||
+	    (pgnum > m->nr_priority_groups)) {
+		DMWARN("invalid PG number supplied to bypass_pg");
+		return -EINVAL;
+	}
+
+	list_for_each_entry(pg, &m->priority_groups, list) {
+		if (!--pgnum)
+			break;
+	}
+
+	bypass_pg(m, pg, bypassed);
+	return 0;
+}
+
+/*
+ * Should we retry pg_init immediately?
+ */
+static int pg_init_limit_reached(struct multipath *m, struct pgpath *pgpath)
+{
+	unsigned long flags;
+	int limit_reached = 0;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	if (m->pg_init_count <= m->pg_init_retries && !m->pg_init_disabled)
+		m->pg_init_required = 1;
+	else
+		limit_reached = 1;
+
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	return limit_reached;
+}
+
+static void pg_init_done(void *data, int errors)
+{
+	struct pgpath *pgpath = data;
+	struct priority_group *pg = pgpath->pg;
+	struct multipath *m = pg->m;
+	unsigned long flags;
+	unsigned delay_retry = 0;
+
+	/* device or driver problems */
+	switch (errors) {
+	case SCSI_DH_OK:
+		break;
+	case SCSI_DH_NOSYS:
+		if (!m->hw_handler_name) {
+			errors = 0;
+			break;
+		}
+		DMERR("Could not failover the device: Handler scsi_dh_%s "
+		      "Error %d.", m->hw_handler_name, errors);
+		/*
+		 * Fail path for now, so we do not ping pong
+		 */
+		fail_path(pgpath);
+		break;
+	case SCSI_DH_DEV_TEMP_BUSY:
+		/*
+		 * Probably doing something like FW upgrade on the
+		 * controller so try the other pg.
+		 */
+		bypass_pg(m, pg, 1);
+		break;
+	case SCSI_DH_RETRY:
+		/* Wait before retrying. */
+		delay_retry = 1;
+	case SCSI_DH_IMM_RETRY:
+	case SCSI_DH_RES_TEMP_UNAVAIL:
+		if (pg_init_limit_reached(m, pgpath))
+			fail_path(pgpath);
+		errors = 0;
+		break;
+	default:
+		/*
+		 * We probably do not want to fail the path for a device
+		 * error, but this is what the old dm did. In future
+		 * patches we can do more advanced handling.
+		 */
+		fail_path(pgpath);
+	}
+
+	spin_lock_irqsave(&m->lock, flags);
+	if (errors) {
+		if (pgpath == m->current_pgpath) {
+			DMERR("Could not failover device. Error %d.", errors);
+			m->current_pgpath = NULL;
+			m->current_pg = NULL;
+		}
+	} else if (!m->pg_init_required)
+		pg->bypassed = 0;
+
+	if (--m->pg_init_in_progress)
+		/* Activations of other paths are still on going */
+		goto out;
+
+	if (!m->pg_init_required)
+		m->queue_io = 0;
+
+	m->pg_init_delay_retry = delay_retry;
+	queue_work(kmultipathd, &m->process_queued_ios);
+
+	/*
+	 * Wake up any thread waiting to suspend.
+	 */
+	wake_up(&m->pg_init_wait);
+
+out:
+	spin_unlock_irqrestore(&m->lock, flags);
+}
+
+static void activate_path(struct work_struct *work)
+{
+	struct pgpath *pgpath =
+		container_of(work, struct pgpath, activate_path.work);
+
+	scsi_dh_activate(bdev_get_queue(pgpath->path.dev->bdev),
+				pg_init_done, pgpath);
+}
+
+/*
+ * end_io handling
+ */
+static int do_end_io(struct multipath *m, struct request *clone,
+		     int error, struct dm_mpath_io *mpio)
+{
+	/*
+	 * We don't queue any clone request inside the multipath target
+	 * during end I/O handling, since those clone requests don't have
+	 * bio clones.  If we queue them inside the multipath target,
+	 * we need to make bio clones, that requires memory allocation.
+	 * (See drivers/md/dm.c:end_clone_bio() about why the clone requests
+	 *  don't have bio clones.)
+	 * Instead of queueing the clone request here, we queue the original
+	 * request into dm core, which will remake a clone request and
+	 * clone bios for it and resubmit it later.
+	 */
+	int r = DM_ENDIO_REQUEUE;
+	unsigned long flags;
+
+	if (!error && !clone->errors)
+		return 0;	/* I/O complete */
+
+	if (error == -EOPNOTSUPP || error == -EREMOTEIO || error == -EILSEQ)
+		return error;
+
+	if (mpio->pgpath)
+		fail_path(mpio->pgpath);
+
+	spin_lock_irqsave(&m->lock, flags);
+	if (!m->nr_valid_paths) {
+		if (!m->queue_if_no_path) {
+			if (!__must_push_back(m))
+				r = -EIO;
+		} else {
+			if (error == -EBADE)
+				r = error;
+		}
+	}
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	return r;
+}
+
+static int multipath_end_io(struct dm_target *ti, struct request *clone,
+			    int error, union map_info *map_context)
+{
+	struct multipath *m = ti->private;
+	struct dm_mpath_io *mpio = map_context->ptr;
+	struct pgpath *pgpath = mpio->pgpath;
+	struct path_selector *ps;
+	int r;
+
+	BUG_ON(!mpio);
+
+	r  = do_end_io(m, clone, error, mpio);
+	if (pgpath) {
+		ps = &pgpath->pg->ps;
+		if (ps->type->end_io)
+			ps->type->end_io(ps, &pgpath->path, mpio->nr_bytes);
+	}
+	clear_mapinfo(m, map_context);
+
+	return r;
+}
+
+/*
+ * Suspend can't complete until all the I/O is processed so if
+ * the last path fails we must error any remaining I/O.
+ * Note that if the freeze_bdev fails while suspending, the
+ * queue_if_no_path state is lost - userspace should reset it.
+ */
+static void multipath_presuspend(struct dm_target *ti)
+{
+	struct multipath *m = (struct multipath *) ti->private;
+
+	queue_if_no_path(m, 0, 1);
+}
+
+static void multipath_postsuspend(struct dm_target *ti)
+{
+	struct multipath *m = ti->private;
+
+	mutex_lock(&m->work_mutex);
+	flush_multipath_work(m);
+	mutex_unlock(&m->work_mutex);
+}
+
+/*
+ * Restore the queue_if_no_path setting.
+ */
+static void multipath_resume(struct dm_target *ti)
+{
+	struct multipath *m = (struct multipath *) ti->private;
+	unsigned long flags;
+
+	spin_lock_irqsave(&m->lock, flags);
+	m->queue_if_no_path = m->saved_queue_if_no_path;
+	spin_unlock_irqrestore(&m->lock, flags);
+}
+
+/*
+ * Info output has the following format:
+ * num_multipath_feature_args [multipath_feature_args]*
+ * num_handler_status_args [handler_status_args]*
+ * num_groups init_group_number
+ *            [A|D|E num_ps_status_args [ps_status_args]*
+ *             num_paths num_selector_args
+ *             [path_dev A|F fail_count [selector_args]* ]+ ]+
+ *
+ * Table output has the following format (identical to the constructor string):
+ * num_feature_args [features_args]*
+ * num_handler_args hw_handler [hw_handler_args]*
+ * num_groups init_group_number
+ *     [priority selector-name num_ps_args [ps_args]*
+ *      num_paths num_selector_args [path_dev [selector_args]* ]+ ]+
+ */
+static void multipath_status(struct dm_target *ti, status_type_t type,
+			     char *result, unsigned int maxlen)
+{
+	int sz = 0;
+	unsigned long flags;
+	struct multipath *m = (struct multipath *) ti->private;
+	struct priority_group *pg;
+	struct pgpath *p;
+	unsigned pg_num;
+	char state;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	/* Features */
+	if (type == STATUSTYPE_INFO)
+		DMEMIT("2 %u %u ", m->queue_size, m->pg_init_count);
+	else {
+		DMEMIT("%u ", m->queue_if_no_path +
+			      (m->pg_init_retries > 0) * 2 +
+			      (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT) * 2);
+		if (m->queue_if_no_path)
+			DMEMIT("queue_if_no_path ");
+		if (m->pg_init_retries)
+			DMEMIT("pg_init_retries %u ", m->pg_init_retries);
+		if (m->pg_init_delay_msecs != DM_PG_INIT_DELAY_DEFAULT)
+			DMEMIT("pg_init_delay_msecs %u ", m->pg_init_delay_msecs);
+	}
+
+	if (!m->hw_handler_name || type == STATUSTYPE_INFO)
+		DMEMIT("0 ");
+	else
+		DMEMIT("1 %s ", m->hw_handler_name);
+
+	DMEMIT("%u ", m->nr_priority_groups);
+
+	if (m->next_pg)
+		pg_num = m->next_pg->pg_num;
+	else if (m->current_pg)
+		pg_num = m->current_pg->pg_num;
+	else
+		pg_num = (m->nr_priority_groups ? 1 : 0);
+
+	DMEMIT("%u ", pg_num);
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		list_for_each_entry(pg, &m->priority_groups, list) {
+			if (pg->bypassed)
+				state = 'D';	/* Disabled */
+			else if (pg == m->current_pg)
+				state = 'A';	/* Currently Active */
+			else
+				state = 'E';	/* Enabled */
+
+			DMEMIT("%c ", state);
+
+			if (pg->ps.type->status)
+				sz += pg->ps.type->status(&pg->ps, NULL, type,
+							  result + sz,
+							  maxlen - sz);
+			else
+				DMEMIT("0 ");
+
+			DMEMIT("%u %u ", pg->nr_pgpaths,
+			       pg->ps.type->info_args);
+
+			list_for_each_entry(p, &pg->pgpaths, list) {
+				DMEMIT("%s %s %u ", p->path.dev->name,
+				       p->is_active ? "A" : "F",
+				       p->fail_count);
+				if (pg->ps.type->status)
+					sz += pg->ps.type->status(&pg->ps,
+					      &p->path, type, result + sz,
+					      maxlen - sz);
+			}
+		}
+		break;
+
+	case STATUSTYPE_TABLE:
+		list_for_each_entry(pg, &m->priority_groups, list) {
+			DMEMIT("%s ", pg->ps.type->name);
+
+			if (pg->ps.type->status)
+				sz += pg->ps.type->status(&pg->ps, NULL, type,
+							  result + sz,
+							  maxlen - sz);
+			else
+				DMEMIT("0 ");
+
+			DMEMIT("%u %u ", pg->nr_pgpaths,
+			       pg->ps.type->table_args);
+
+			list_for_each_entry(p, &pg->pgpaths, list) {
+				DMEMIT("%s ", p->path.dev->name);
+				if (pg->ps.type->status)
+					sz += pg->ps.type->status(&pg->ps,
+					      &p->path, type, result + sz,
+					      maxlen - sz);
+			}
+		}
+		break;
+	}
+
+	spin_unlock_irqrestore(&m->lock, flags);
+}
+
+static int multipath_message(struct dm_target *ti, unsigned argc, char **argv)
+{
+	int r = -EINVAL;
+	struct dm_dev *dev;
+	struct multipath *m = (struct multipath *) ti->private;
+	action_fn action;
+
+	mutex_lock(&m->work_mutex);
+
+	if (dm_suspended(ti)) {
+		r = -EBUSY;
+		goto out;
+	}
+
+	if (argc == 1) {
+		if (!strcasecmp(argv[0], "queue_if_no_path")) {
+			r = queue_if_no_path(m, 1, 0);
+			goto out;
+		} else if (!strcasecmp(argv[0], "fail_if_no_path")) {
+			r = queue_if_no_path(m, 0, 0);
+			goto out;
+		}
+	}
+
+	if (argc != 2) {
+		DMWARN("Unrecognised multipath message received.");
+		goto out;
+	}
+
+	if (!strcasecmp(argv[0], "disable_group")) {
+		r = bypass_pg_num(m, argv[1], 1);
+		goto out;
+	} else if (!strcasecmp(argv[0], "enable_group")) {
+		r = bypass_pg_num(m, argv[1], 0);
+		goto out;
+	} else if (!strcasecmp(argv[0], "switch_group")) {
+		r = switch_pg_num(m, argv[1]);
+		goto out;
+	} else if (!strcasecmp(argv[0], "reinstate_path"))
+		action = reinstate_path;
+	else if (!strcasecmp(argv[0], "fail_path"))
+		action = fail_path;
+	else {
+		DMWARN("Unrecognised multipath message received.");
+		goto out;
+	}
+
+	r = dm_get_device(ti, argv[1], dm_table_get_mode(ti->table), &dev);
+	if (r) {
+		DMWARN("message: error getting device %s",
+		       argv[1]);
+		goto out;
+	}
+
+	r = action_dev(m, dev, action);
+
+	dm_put_device(ti, dev);
+
+out:
+	mutex_unlock(&m->work_mutex);
+	return r;
+}
+
+static int multipath_ioctl(struct dm_target *ti, unsigned int cmd,
+			   unsigned long arg)
+{
+	struct multipath *m = (struct multipath *) ti->private;
+	struct block_device *bdev = NULL;
+	fmode_t mode = 0;
+	unsigned long flags;
+	int r = 0;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	if (!m->current_pgpath)
+		__choose_pgpath(m, 0);
+
+	if (m->current_pgpath) {
+		bdev = m->current_pgpath->path.dev->bdev;
+		mode = m->current_pgpath->path.dev->mode;
+	}
+
+	if (m->queue_io)
+		r = -EAGAIN;
+	else if (!bdev)
+		r = -EIO;
+
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	/*
+	 * Only pass ioctls through if the device sizes match exactly.
+	 */
+	if (!bdev || ti->len != i_size_read(bdev->bd_inode) >> SECTOR_SHIFT) {
+		int err = scsi_verify_blk_ioctl(NULL, cmd);
+		if (err)
+			r = err;
+	}
+
+	return r ? : __blkdev_driver_ioctl(bdev, mode, cmd, arg);
+}
+
+static int multipath_iterate_devices(struct dm_target *ti,
+				     iterate_devices_callout_fn fn, void *data)
+{
+	struct multipath *m = ti->private;
+	struct priority_group *pg;
+	struct pgpath *p;
+	int ret = 0;
+
+	list_for_each_entry(pg, &m->priority_groups, list) {
+		list_for_each_entry(p, &pg->pgpaths, list) {
+			ret = fn(ti, p->path.dev, ti->begin, ti->len, data);
+			if (ret)
+				goto out;
+		}
+	}
+
+out:
+	return ret;
+}
+
+static int __pgpath_busy(struct pgpath *pgpath)
+{
+	struct request_queue *q = bdev_get_queue(pgpath->path.dev->bdev);
+
+	return dm_underlying_device_busy(q);
+}
+
+/*
+ * We return "busy", only when we can map I/Os but underlying devices
+ * are busy (so even if we map I/Os now, the I/Os will wait on
+ * the underlying queue).
+ * In other words, if we want to kill I/Os or queue them inside us
+ * due to map unavailability, we don't return "busy".  Otherwise,
+ * dm core won't give us the I/Os and we can't do what we want.
+ */
+static int multipath_busy(struct dm_target *ti)
+{
+	int busy = 0, has_active = 0;
+	struct multipath *m = ti->private;
+	struct priority_group *pg;
+	struct pgpath *pgpath;
+	unsigned long flags;
+
+	spin_lock_irqsave(&m->lock, flags);
+
+	/* Guess which priority_group will be used at next mapping time */
+	if (unlikely(!m->current_pgpath && m->next_pg))
+		pg = m->next_pg;
+	else if (likely(m->current_pg))
+		pg = m->current_pg;
+	else
+		/*
+		 * We don't know which pg will be used at next mapping time.
+		 * We don't call __choose_pgpath() here to avoid to trigger
+		 * pg_init just by busy checking.
+		 * So we don't know whether underlying devices we will be using
+		 * at next mapping time are busy or not. Just try mapping.
+		 */
+		goto out;
+
+	/*
+	 * If there is one non-busy active path at least, the path selector
+	 * will be able to select it. So we consider such a pg as not busy.
+	 */
+	busy = 1;
+	list_for_each_entry(pgpath, &pg->pgpaths, list)
+		if (pgpath->is_active) {
+			has_active = 1;
+
+			if (!__pgpath_busy(pgpath)) {
+				busy = 0;
+				break;
+			}
+		}
+
+	if (!has_active)
+		/*
+		 * No active path in this pg, so this pg won't be used and
+		 * the current_pg will be changed at next mapping time.
+		 * We need to try mapping to determine it.
+		 */
+		busy = 0;
+
+out:
+	spin_unlock_irqrestore(&m->lock, flags);
+
+	return busy;
+}
+
+/*-----------------------------------------------------------------
+ * Module setup
+ *---------------------------------------------------------------*/
+static struct target_type multipath_target = {
+	.name = "multipath",
+	.version = {1, 3, 2},
+	.module = THIS_MODULE,
+	.ctr = multipath_ctr,
+	.dtr = multipath_dtr,
+	.map_rq = multipath_map,
+	.rq_end_io = multipath_end_io,
+	.presuspend = multipath_presuspend,
+	.postsuspend = multipath_postsuspend,
+	.resume = multipath_resume,
+	.status = multipath_status,
+	.message = multipath_message,
+	.ioctl  = multipath_ioctl,
+	.iterate_devices = multipath_iterate_devices,
+	.busy = multipath_busy,
+};
+
+static int __init dm_multipath_init(void)
+{
+	int r;
+
+	/* allocate a slab for the dm_ios */
+	_mpio_cache = KMEM_CACHE(dm_mpath_io, 0);
+	if (!_mpio_cache)
+		return -ENOMEM;
+
+	r = dm_register_target(&multipath_target);
+	if (r < 0) {
+		DMERR("register failed %d", r);
+		kmem_cache_destroy(_mpio_cache);
+		return -EINVAL;
+	}
+
+	kmultipathd = alloc_workqueue("kmpathd", WQ_MEM_RECLAIM, 0);
+	if (!kmultipathd) {
+		DMERR("failed to create workqueue kmpathd");
+		dm_unregister_target(&multipath_target);
+		kmem_cache_destroy(_mpio_cache);
+		return -ENOMEM;
+	}
+
+	/*
+	 * A separate workqueue is used to handle the device handlers
+	 * to avoid overloading existing workqueue. Overloading the
+	 * old workqueue would also create a bottleneck in the
+	 * path of the storage hardware device activation.
+	 */
+	kmpath_handlerd = alloc_ordered_workqueue("kmpath_handlerd",
+						  WQ_MEM_RECLAIM);
+	if (!kmpath_handlerd) {
+		DMERR("failed to create workqueue kmpath_handlerd");
+		destroy_workqueue(kmultipathd);
+		dm_unregister_target(&multipath_target);
+		kmem_cache_destroy(_mpio_cache);
+		return -ENOMEM;
+	}
+
+	DMINFO("version %u.%u.%u loaded",
+	       multipath_target.version[0], multipath_target.version[1],
+	       multipath_target.version[2]);
+
+	return r;
+}
+
+static void __exit dm_multipath_exit(void)
+{
+	destroy_workqueue(kmpath_handlerd);
+	destroy_workqueue(kmultipathd);
+
+	dm_unregister_target(&multipath_target);
+	kmem_cache_destroy(_mpio_cache);
+}
+
+module_init(dm_multipath_init);
+module_exit(dm_multipath_exit);
+
+MODULE_DESCRIPTION(DM_NAME " multipath target");
+MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-mpath.h b/ap/os/linux/linux-3.4.x/drivers/md/dm-mpath.h
new file mode 100644
index 0000000..e230f71
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-mpath.h
@@ -0,0 +1,22 @@
+/*
+ * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ *
+ * Multipath.
+ */
+
+#ifndef	DM_MPATH_H
+#define	DM_MPATH_H
+
+struct dm_dev;
+
+struct dm_path {
+	struct dm_dev *dev;	/* Read-only */
+	void *pscontext;	/* For path-selector use */
+};
+
+/* Callback for hwh_pg_init_fn to use when complete */
+void dm_pg_init_complete(struct dm_path *path, unsigned err_flags);
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-path-selector.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-path-selector.c
new file mode 100644
index 0000000..fa0ccc5
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-path-selector.c
@@ -0,0 +1,140 @@
+/*
+ * Copyright (C) 2003 Sistina Software.
+ * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
+ *
+ * Module Author: Heinz Mauelshagen
+ *
+ * This file is released under the GPL.
+ *
+ * Path selector registration.
+ */
+
+#include <linux/device-mapper.h>
+#include <linux/module.h>
+
+#include "dm-path-selector.h"
+
+#include <linux/slab.h>
+
+struct ps_internal {
+	struct path_selector_type pst;
+	struct list_head list;
+};
+
+#define pst_to_psi(__pst) container_of((__pst), struct ps_internal, pst)
+
+static LIST_HEAD(_path_selectors);
+static DECLARE_RWSEM(_ps_lock);
+
+static struct ps_internal *__find_path_selector_type(const char *name)
+{
+	struct ps_internal *psi;
+
+	list_for_each_entry(psi, &_path_selectors, list) {
+		if (!strcmp(name, psi->pst.name))
+			return psi;
+	}
+
+	return NULL;
+}
+
+static struct ps_internal *get_path_selector(const char *name)
+{
+	struct ps_internal *psi;
+
+	down_read(&_ps_lock);
+	psi = __find_path_selector_type(name);
+	if (psi && !try_module_get(psi->pst.module))
+		psi = NULL;
+	up_read(&_ps_lock);
+
+	return psi;
+}
+
+struct path_selector_type *dm_get_path_selector(const char *name)
+{
+	struct ps_internal *psi;
+
+	if (!name)
+		return NULL;
+
+	psi = get_path_selector(name);
+	if (!psi) {
+		request_module("dm-%s", name);
+		psi = get_path_selector(name);
+	}
+
+	return psi ? &psi->pst : NULL;
+}
+
+void dm_put_path_selector(struct path_selector_type *pst)
+{
+	struct ps_internal *psi;
+
+	if (!pst)
+		return;
+
+	down_read(&_ps_lock);
+	psi = __find_path_selector_type(pst->name);
+	if (!psi)
+		goto out;
+
+	module_put(psi->pst.module);
+out:
+	up_read(&_ps_lock);
+}
+
+static struct ps_internal *_alloc_path_selector(struct path_selector_type *pst)
+{
+	struct ps_internal *psi = kzalloc(sizeof(*psi), GFP_KERNEL);
+
+	if (psi)
+		psi->pst = *pst;
+
+	return psi;
+}
+
+int dm_register_path_selector(struct path_selector_type *pst)
+{
+	int r = 0;
+	struct ps_internal *psi = _alloc_path_selector(pst);
+
+	if (!psi)
+		return -ENOMEM;
+
+	down_write(&_ps_lock);
+
+	if (__find_path_selector_type(pst->name)) {
+		kfree(psi);
+		r = -EEXIST;
+	} else
+		list_add(&psi->list, &_path_selectors);
+
+	up_write(&_ps_lock);
+
+	return r;
+}
+
+int dm_unregister_path_selector(struct path_selector_type *pst)
+{
+	struct ps_internal *psi;
+
+	down_write(&_ps_lock);
+
+	psi = __find_path_selector_type(pst->name);
+	if (!psi) {
+		up_write(&_ps_lock);
+		return -EINVAL;
+	}
+
+	list_del(&psi->list);
+
+	up_write(&_ps_lock);
+
+	kfree(psi);
+
+	return 0;
+}
+
+EXPORT_SYMBOL_GPL(dm_register_path_selector);
+EXPORT_SYMBOL_GPL(dm_unregister_path_selector);
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-path-selector.h b/ap/os/linux/linux-3.4.x/drivers/md/dm-path-selector.h
new file mode 100644
index 0000000..e7d1fa8
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-path-selector.h
@@ -0,0 +1,97 @@
+/*
+ * Copyright (C) 2003 Sistina Software.
+ * Copyright (C) 2004 Red Hat, Inc. All rights reserved.
+ *
+ * Module Author: Heinz Mauelshagen
+ *
+ * This file is released under the GPL.
+ *
+ * Path-Selector registration.
+ */
+
+#ifndef	DM_PATH_SELECTOR_H
+#define	DM_PATH_SELECTOR_H
+
+#include <linux/device-mapper.h>
+
+#include "dm-mpath.h"
+
+/*
+ * We provide an abstraction for the code that chooses which path
+ * to send some io down.
+ */
+struct path_selector_type;
+struct path_selector {
+	struct path_selector_type *type;
+	void *context;
+};
+
+/* Information about a path selector type */
+struct path_selector_type {
+	char *name;
+	struct module *module;
+
+	unsigned int table_args;
+	unsigned int info_args;
+
+	/*
+	 * Constructs a path selector object, takes custom arguments
+	 */
+	int (*create) (struct path_selector *ps, unsigned argc, char **argv);
+	void (*destroy) (struct path_selector *ps);
+
+	/*
+	 * Add an opaque path object, along with some selector specific
+	 * path args (eg, path priority).
+	 */
+	int (*add_path) (struct path_selector *ps, struct dm_path *path,
+			 int argc, char **argv, char **error);
+
+	/*
+	 * Chooses a path for this io, if no paths are available then
+	 * NULL will be returned.
+	 *
+	 * repeat_count is the number of times to use the path before
+	 * calling the function again.  0 means don't call it again unless
+	 * the path fails.
+	 */
+	struct dm_path *(*select_path) (struct path_selector *ps,
+					unsigned *repeat_count,
+					size_t nr_bytes);
+
+	/*
+	 * Notify the selector that a path has failed.
+	 */
+	void (*fail_path) (struct path_selector *ps, struct dm_path *p);
+
+	/*
+	 * Ask selector to reinstate a path.
+	 */
+	int (*reinstate_path) (struct path_selector *ps, struct dm_path *p);
+
+	/*
+	 * Table content based on parameters added in ps_add_path_fn
+	 * or path selector status
+	 */
+	int (*status) (struct path_selector *ps, struct dm_path *path,
+		       status_type_t type, char *result, unsigned int maxlen);
+
+	int (*start_io) (struct path_selector *ps, struct dm_path *path,
+			 size_t nr_bytes);
+	int (*end_io) (struct path_selector *ps, struct dm_path *path,
+		       size_t nr_bytes);
+};
+
+/* Register a path selector */
+int dm_register_path_selector(struct path_selector_type *type);
+
+/* Unregister a path selector */
+int dm_unregister_path_selector(struct path_selector_type *type);
+
+/* Returns a registered path selector type */
+struct path_selector_type *dm_get_path_selector(const char *name);
+
+/* Releases a path selector  */
+void dm_put_path_selector(struct path_selector_type *pst);
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-queue-length.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-queue-length.c
new file mode 100644
index 0000000..3941fae
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-queue-length.c
@@ -0,0 +1,264 @@
+/*
+ * Copyright (C) 2004-2005 IBM Corp.  All Rights Reserved.
+ * Copyright (C) 2006-2009 NEC Corporation.
+ *
+ * dm-queue-length.c
+ *
+ * Module Author: Stefan Bader, IBM
+ * Modified by: Kiyoshi Ueda, NEC
+ *
+ * This file is released under the GPL.
+ *
+ * queue-length path selector - choose a path with the least number of
+ * in-flight I/Os.
+ */
+
+#include "dm.h"
+#include "dm-path-selector.h"
+
+#include <linux/slab.h>
+#include <linux/ctype.h>
+#include <linux/errno.h>
+#include <linux/module.h>
+#include <linux/atomic.h>
+
+#define DM_MSG_PREFIX	"multipath queue-length"
+#define QL_MIN_IO	128
+#define QL_VERSION	"0.1.0"
+
+struct selector {
+	struct list_head	valid_paths;
+	struct list_head	failed_paths;
+};
+
+struct path_info {
+	struct list_head	list;
+	struct dm_path		*path;
+	unsigned		repeat_count;
+	atomic_t		qlen;	/* the number of in-flight I/Os */
+};
+
+static struct selector *alloc_selector(void)
+{
+	struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
+
+	if (s) {
+		INIT_LIST_HEAD(&s->valid_paths);
+		INIT_LIST_HEAD(&s->failed_paths);
+	}
+
+	return s;
+}
+
+static int ql_create(struct path_selector *ps, unsigned argc, char **argv)
+{
+	struct selector *s = alloc_selector();
+
+	if (!s)
+		return -ENOMEM;
+
+	ps->context = s;
+	return 0;
+}
+
+static void ql_free_paths(struct list_head *paths)
+{
+	struct path_info *pi, *next;
+
+	list_for_each_entry_safe(pi, next, paths, list) {
+		list_del(&pi->list);
+		kfree(pi);
+	}
+}
+
+static void ql_destroy(struct path_selector *ps)
+{
+	struct selector *s = ps->context;
+
+	ql_free_paths(&s->valid_paths);
+	ql_free_paths(&s->failed_paths);
+	kfree(s);
+	ps->context = NULL;
+}
+
+static int ql_status(struct path_selector *ps, struct dm_path *path,
+		     status_type_t type, char *result, unsigned maxlen)
+{
+	unsigned sz = 0;
+	struct path_info *pi;
+
+	/* When called with NULL path, return selector status/args. */
+	if (!path)
+		DMEMIT("0 ");
+	else {
+		pi = path->pscontext;
+
+		switch (type) {
+		case STATUSTYPE_INFO:
+			DMEMIT("%d ", atomic_read(&pi->qlen));
+			break;
+		case STATUSTYPE_TABLE:
+			DMEMIT("%u ", pi->repeat_count);
+			break;
+		}
+	}
+
+	return sz;
+}
+
+static int ql_add_path(struct path_selector *ps, struct dm_path *path,
+		       int argc, char **argv, char **error)
+{
+	struct selector *s = ps->context;
+	struct path_info *pi;
+	unsigned repeat_count = QL_MIN_IO;
+	char dummy;
+
+	/*
+	 * Arguments: [<repeat_count>]
+	 * 	<repeat_count>: The number of I/Os before switching path.
+	 * 			If not given, default (QL_MIN_IO) is used.
+	 */
+	if (argc > 1) {
+		*error = "queue-length ps: incorrect number of arguments";
+		return -EINVAL;
+	}
+
+	if ((argc == 1) && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
+		*error = "queue-length ps: invalid repeat count";
+		return -EINVAL;
+	}
+
+	/* Allocate the path information structure */
+	pi = kmalloc(sizeof(*pi), GFP_KERNEL);
+	if (!pi) {
+		*error = "queue-length ps: Error allocating path information";
+		return -ENOMEM;
+	}
+
+	pi->path = path;
+	pi->repeat_count = repeat_count;
+	atomic_set(&pi->qlen, 0);
+
+	path->pscontext = pi;
+
+	list_add_tail(&pi->list, &s->valid_paths);
+
+	return 0;
+}
+
+static void ql_fail_path(struct path_selector *ps, struct dm_path *path)
+{
+	struct selector *s = ps->context;
+	struct path_info *pi = path->pscontext;
+
+	list_move(&pi->list, &s->failed_paths);
+}
+
+static int ql_reinstate_path(struct path_selector *ps, struct dm_path *path)
+{
+	struct selector *s = ps->context;
+	struct path_info *pi = path->pscontext;
+
+	list_move_tail(&pi->list, &s->valid_paths);
+
+	return 0;
+}
+
+/*
+ * Select a path having the minimum number of in-flight I/Os
+ */
+static struct dm_path *ql_select_path(struct path_selector *ps,
+				      unsigned *repeat_count, size_t nr_bytes)
+{
+	struct selector *s = ps->context;
+	struct path_info *pi = NULL, *best = NULL;
+
+	if (list_empty(&s->valid_paths))
+		return NULL;
+
+	/* Change preferred (first in list) path to evenly balance. */
+	list_move_tail(s->valid_paths.next, &s->valid_paths);
+
+	list_for_each_entry(pi, &s->valid_paths, list) {
+		if (!best ||
+		    (atomic_read(&pi->qlen) < atomic_read(&best->qlen)))
+			best = pi;
+
+		if (!atomic_read(&best->qlen))
+			break;
+	}
+
+	if (!best)
+		return NULL;
+
+	*repeat_count = best->repeat_count;
+
+	return best->path;
+}
+
+static int ql_start_io(struct path_selector *ps, struct dm_path *path,
+		       size_t nr_bytes)
+{
+	struct path_info *pi = path->pscontext;
+
+	atomic_inc(&pi->qlen);
+
+	return 0;
+}
+
+static int ql_end_io(struct path_selector *ps, struct dm_path *path,
+		     size_t nr_bytes)
+{
+	struct path_info *pi = path->pscontext;
+
+	atomic_dec(&pi->qlen);
+
+	return 0;
+}
+
+static struct path_selector_type ql_ps = {
+	.name		= "queue-length",
+	.module		= THIS_MODULE,
+	.table_args	= 1,
+	.info_args	= 1,
+	.create		= ql_create,
+	.destroy	= ql_destroy,
+	.status		= ql_status,
+	.add_path	= ql_add_path,
+	.fail_path	= ql_fail_path,
+	.reinstate_path	= ql_reinstate_path,
+	.select_path	= ql_select_path,
+	.start_io	= ql_start_io,
+	.end_io		= ql_end_io,
+};
+
+static int __init dm_ql_init(void)
+{
+	int r = dm_register_path_selector(&ql_ps);
+
+	if (r < 0)
+		DMERR("register failed %d", r);
+
+	DMINFO("version " QL_VERSION " loaded");
+
+	return r;
+}
+
+static void __exit dm_ql_exit(void)
+{
+	int r = dm_unregister_path_selector(&ql_ps);
+
+	if (r < 0)
+		DMERR("unregister failed %d", r);
+}
+
+module_init(dm_ql_init);
+module_exit(dm_ql_exit);
+
+MODULE_AUTHOR("Stefan Bader <Stefan.Bader at de.ibm.com>");
+MODULE_DESCRIPTION(
+	"(C) Copyright IBM Corp. 2004,2005   All Rights Reserved.\n"
+	DM_NAME " path selector to balance the number of in-flight I/Os"
+);
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-raid.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-raid.c
new file mode 100644
index 0000000..5dea02c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-raid.c
@@ -0,0 +1,1298 @@
+/*
+ * Copyright (C) 2010-2011 Neil Brown
+ * Copyright (C) 2010-2011 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/slab.h>
+#include <linux/module.h>
+
+#include "md.h"
+#include "raid1.h"
+#include "raid5.h"
+#include "bitmap.h"
+
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "raid"
+
+/*
+ * The following flags are used by dm-raid.c to set up the array state.
+ * They must be cleared before md_run is called.
+ */
+#define FirstUse 10             /* rdev flag */
+
+struct raid_dev {
+	/*
+	 * Two DM devices, one to hold metadata and one to hold the
+	 * actual data/parity.  The reason for this is to not confuse
+	 * ti->len and give more flexibility in altering size and
+	 * characteristics.
+	 *
+	 * While it is possible for this device to be associated
+	 * with a different physical device than the data_dev, it
+	 * is intended for it to be the same.
+	 *    |--------- Physical Device ---------|
+	 *    |- meta_dev -|------ data_dev ------|
+	 */
+	struct dm_dev *meta_dev;
+	struct dm_dev *data_dev;
+	struct md_rdev rdev;
+};
+
+/*
+ * Flags for rs->print_flags field.
+ */
+#define DMPF_SYNC              0x1
+#define DMPF_NOSYNC            0x2
+#define DMPF_REBUILD           0x4
+#define DMPF_DAEMON_SLEEP      0x8
+#define DMPF_MIN_RECOVERY_RATE 0x10
+#define DMPF_MAX_RECOVERY_RATE 0x20
+#define DMPF_MAX_WRITE_BEHIND  0x40
+#define DMPF_STRIPE_CACHE      0x80
+#define DMPF_REGION_SIZE       0X100
+struct raid_set {
+	struct dm_target *ti;
+
+	uint32_t bitmap_loaded;
+	uint32_t print_flags;
+
+	struct mddev md;
+	struct raid_type *raid_type;
+	struct dm_target_callbacks callbacks;
+
+	struct raid_dev dev[0];
+};
+
+/* Supported raid types and properties. */
+static struct raid_type {
+	const char *name;		/* RAID algorithm. */
+	const char *descr;		/* Descriptor text for logging. */
+	const unsigned parity_devs;	/* # of parity devices. */
+	const unsigned minimal_devs;	/* minimal # of devices in set. */
+	const unsigned level;		/* RAID level. */
+	const unsigned algorithm;	/* RAID algorithm. */
+} raid_types[] = {
+	{"raid1",    "RAID1 (mirroring)",               0, 2, 1, 0 /* NONE */},
+	{"raid4",    "RAID4 (dedicated parity disk)",	1, 2, 5, ALGORITHM_PARITY_0},
+	{"raid5_la", "RAID5 (left asymmetric)",		1, 2, 5, ALGORITHM_LEFT_ASYMMETRIC},
+	{"raid5_ra", "RAID5 (right asymmetric)",	1, 2, 5, ALGORITHM_RIGHT_ASYMMETRIC},
+	{"raid5_ls", "RAID5 (left symmetric)",		1, 2, 5, ALGORITHM_LEFT_SYMMETRIC},
+	{"raid5_rs", "RAID5 (right symmetric)",		1, 2, 5, ALGORITHM_RIGHT_SYMMETRIC},
+	{"raid6_zr", "RAID6 (zero restart)",		2, 4, 6, ALGORITHM_ROTATING_ZERO_RESTART},
+	{"raid6_nr", "RAID6 (N restart)",		2, 4, 6, ALGORITHM_ROTATING_N_RESTART},
+	{"raid6_nc", "RAID6 (N continue)",		2, 4, 6, ALGORITHM_ROTATING_N_CONTINUE}
+};
+
+static struct raid_type *get_raid_type(char *name)
+{
+	int i;
+
+	for (i = 0; i < ARRAY_SIZE(raid_types); i++)
+		if (!strcmp(raid_types[i].name, name))
+			return &raid_types[i];
+
+	return NULL;
+}
+
+static struct raid_set *context_alloc(struct dm_target *ti, struct raid_type *raid_type, unsigned raid_devs)
+{
+	unsigned i;
+	struct raid_set *rs;
+	sector_t sectors_per_dev;
+
+	if (raid_devs <= raid_type->parity_devs) {
+		ti->error = "Insufficient number of devices";
+		return ERR_PTR(-EINVAL);
+	}
+
+	sectors_per_dev = ti->len;
+	if ((raid_type->level > 1) &&
+	    sector_div(sectors_per_dev, (raid_devs - raid_type->parity_devs))) {
+		ti->error = "Target length not divisible by number of data devices";
+		return ERR_PTR(-EINVAL);
+	}
+
+	rs = kzalloc(sizeof(*rs) + raid_devs * sizeof(rs->dev[0]), GFP_KERNEL);
+	if (!rs) {
+		ti->error = "Cannot allocate raid context";
+		return ERR_PTR(-ENOMEM);
+	}
+
+	mddev_init(&rs->md);
+
+	rs->ti = ti;
+	rs->raid_type = raid_type;
+	rs->md.raid_disks = raid_devs;
+	rs->md.level = raid_type->level;
+	rs->md.new_level = rs->md.level;
+	rs->md.dev_sectors = sectors_per_dev;
+	rs->md.layout = raid_type->algorithm;
+	rs->md.new_layout = rs->md.layout;
+	rs->md.delta_disks = 0;
+	rs->md.recovery_cp = 0;
+
+	for (i = 0; i < raid_devs; i++)
+		md_rdev_init(&rs->dev[i].rdev);
+
+	/*
+	 * Remaining items to be initialized by further RAID params:
+	 *  rs->md.persistent
+	 *  rs->md.external
+	 *  rs->md.chunk_sectors
+	 *  rs->md.new_chunk_sectors
+	 */
+
+	return rs;
+}
+
+static void context_free(struct raid_set *rs)
+{
+	int i;
+
+	for (i = 0; i < rs->md.raid_disks; i++) {
+		if (rs->dev[i].meta_dev)
+			dm_put_device(rs->ti, rs->dev[i].meta_dev);
+		if (rs->dev[i].rdev.sb_page)
+			put_page(rs->dev[i].rdev.sb_page);
+		rs->dev[i].rdev.sb_page = NULL;
+		rs->dev[i].rdev.sb_loaded = 0;
+		if (rs->dev[i].data_dev)
+			dm_put_device(rs->ti, rs->dev[i].data_dev);
+	}
+
+	kfree(rs);
+}
+
+/*
+ * For every device we have two words
+ *  <meta_dev>: meta device name or '-' if missing
+ *  <data_dev>: data device name or '-' if missing
+ *
+ * The following are permitted:
+ *    - -
+ *    - <data_dev>
+ *    <meta_dev> <data_dev>
+ *
+ * The following is not allowed:
+ *    <meta_dev> -
+ *
+ * This code parses those words.  If there is a failure,
+ * the caller must use context_free to unwind the operations.
+ */
+static int dev_parms(struct raid_set *rs, char **argv)
+{
+	int i;
+	int rebuild = 0;
+	int metadata_available = 0;
+	int ret = 0;
+
+	for (i = 0; i < rs->md.raid_disks; i++, argv += 2) {
+		rs->dev[i].rdev.raid_disk = i;
+
+		rs->dev[i].meta_dev = NULL;
+		rs->dev[i].data_dev = NULL;
+
+		/*
+		 * There are no offsets, since there is a separate device
+		 * for data and metadata.
+		 */
+		rs->dev[i].rdev.data_offset = 0;
+		rs->dev[i].rdev.mddev = &rs->md;
+
+		if (strcmp(argv[0], "-")) {
+			ret = dm_get_device(rs->ti, argv[0],
+					    dm_table_get_mode(rs->ti->table),
+					    &rs->dev[i].meta_dev);
+			rs->ti->error = "RAID metadata device lookup failure";
+			if (ret)
+				return ret;
+
+			rs->dev[i].rdev.sb_page = alloc_page(GFP_KERNEL);
+			if (!rs->dev[i].rdev.sb_page)
+				return -ENOMEM;
+		}
+
+		if (!strcmp(argv[1], "-")) {
+			if (!test_bit(In_sync, &rs->dev[i].rdev.flags) &&
+			    (!rs->dev[i].rdev.recovery_offset)) {
+				rs->ti->error = "Drive designated for rebuild not specified";
+				return -EINVAL;
+			}
+
+			rs->ti->error = "No data device supplied with metadata device";
+			if (rs->dev[i].meta_dev)
+				return -EINVAL;
+
+			continue;
+		}
+
+		ret = dm_get_device(rs->ti, argv[1],
+				    dm_table_get_mode(rs->ti->table),
+				    &rs->dev[i].data_dev);
+		if (ret) {
+			rs->ti->error = "RAID device lookup failure";
+			return ret;
+		}
+
+		if (rs->dev[i].meta_dev) {
+			metadata_available = 1;
+			rs->dev[i].rdev.meta_bdev = rs->dev[i].meta_dev->bdev;
+		}
+		rs->dev[i].rdev.bdev = rs->dev[i].data_dev->bdev;
+		list_add(&rs->dev[i].rdev.same_set, &rs->md.disks);
+		if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
+			rebuild++;
+	}
+
+	if (metadata_available) {
+		rs->md.external = 0;
+		rs->md.persistent = 1;
+		rs->md.major_version = 2;
+	} else if (rebuild && !rs->md.recovery_cp) {
+		/*
+		 * Without metadata, we will not be able to tell if the array
+		 * is in-sync or not - we must assume it is not.  Therefore,
+		 * it is impossible to rebuild a drive.
+		 *
+		 * Even if there is metadata, the on-disk information may
+		 * indicate that the array is not in-sync and it will then
+		 * fail at that time.
+		 *
+		 * User could specify 'nosync' option if desperate.
+		 */
+		DMERR("Unable to rebuild drive while array is not in-sync");
+		rs->ti->error = "RAID device lookup failure";
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+/*
+ * validate_region_size
+ * @rs
+ * @region_size:  region size in sectors.  If 0, pick a size (4MiB default).
+ *
+ * Set rs->md.bitmap_info.chunksize (which really refers to 'region size').
+ * Ensure that (ti->len/region_size < 2^21) - required by MD bitmap.
+ *
+ * Returns: 0 on success, -EINVAL on failure.
+ */
+static int validate_region_size(struct raid_set *rs, unsigned long region_size)
+{
+	unsigned long min_region_size = rs->ti->len / (1 << 21);
+
+	if (!region_size) {
+		/*
+		 * Choose a reasonable default.  All figures in sectors.
+		 */
+		if (min_region_size > (1 << 13)) {
+			DMINFO("Choosing default region size of %lu sectors",
+			       region_size);
+			region_size = min_region_size;
+		} else {
+			DMINFO("Choosing default region size of 4MiB");
+			region_size = 1 << 13; /* sectors */
+		}
+	} else {
+		/*
+		 * Validate user-supplied value.
+		 */
+		if (region_size > rs->ti->len) {
+			rs->ti->error = "Supplied region size is too large";
+			return -EINVAL;
+		}
+
+		if (region_size < min_region_size) {
+			DMERR("Supplied region_size (%lu sectors) below minimum (%lu)",
+			      region_size, min_region_size);
+			rs->ti->error = "Supplied region size is too small";
+			return -EINVAL;
+		}
+
+		if (!is_power_of_2(region_size)) {
+			rs->ti->error = "Region size is not a power of 2";
+			return -EINVAL;
+		}
+
+		if (region_size < rs->md.chunk_sectors) {
+			rs->ti->error = "Region size is smaller than the chunk size";
+			return -EINVAL;
+		}
+	}
+
+	/*
+	 * Convert sectors to bytes.
+	 */
+	rs->md.bitmap_info.chunksize = (region_size << 9);
+
+	return 0;
+}
+
+/*
+ * Possible arguments are...
+ *	<chunk_size> [optional_args]
+ *
+ * Argument definitions
+ *    <chunk_size>			The number of sectors per disk that
+ *                                      will form the "stripe"
+ *    [[no]sync]			Force or prevent recovery of the
+ *                                      entire array
+ *    [rebuild <idx>]			Rebuild the drive indicated by the index
+ *    [daemon_sleep <ms>]		Time between bitmap daemon work to
+ *                                      clear bits
+ *    [min_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
+ *    [max_recovery_rate <kB/sec/disk>]	Throttle RAID initialization
+ *    [write_mostly <idx>]		Indicate a write mostly drive via index
+ *    [max_write_behind <sectors>]	See '-write-behind=' (man mdadm)
+ *    [stripe_cache <sectors>]		Stripe cache size for higher RAIDs
+ *    [region_size <sectors>]           Defines granularity of bitmap
+ */
+static int parse_raid_params(struct raid_set *rs, char **argv,
+			     unsigned num_raid_params)
+{
+	unsigned i, rebuild_cnt = 0;
+	unsigned long value, region_size = 0;
+	char *key;
+
+	/*
+	 * First, parse the in-order required arguments
+	 * "chunk_size" is the only argument of this type.
+	 */
+	if ((strict_strtoul(argv[0], 10, &value) < 0)) {
+		rs->ti->error = "Bad chunk size";
+		return -EINVAL;
+	} else if (rs->raid_type->level == 1) {
+		if (value)
+			DMERR("Ignoring chunk size parameter for RAID 1");
+		value = 0;
+	} else if (!is_power_of_2(value)) {
+		rs->ti->error = "Chunk size must be a power of 2";
+		return -EINVAL;
+	} else if (value < 8) {
+		rs->ti->error = "Chunk size value is too small";
+		return -EINVAL;
+	}
+
+	rs->md.new_chunk_sectors = rs->md.chunk_sectors = value;
+	argv++;
+	num_raid_params--;
+
+	/*
+	 * We set each individual device as In_sync with a completed
+	 * 'recovery_offset'.  If there has been a device failure or
+	 * replacement then one of the following cases applies:
+	 *
+	 *   1) User specifies 'rebuild'.
+	 *      - Device is reset when param is read.
+	 *   2) A new device is supplied.
+	 *      - No matching superblock found, resets device.
+	 *   3) Device failure was transient and returns on reload.
+	 *      - Failure noticed, resets device for bitmap replay.
+	 *   4) Device hadn't completed recovery after previous failure.
+	 *      - Superblock is read and overrides recovery_offset.
+	 *
+	 * What is found in the superblocks of the devices is always
+	 * authoritative, unless 'rebuild' or '[no]sync' was specified.
+	 */
+	for (i = 0; i < rs->md.raid_disks; i++) {
+		set_bit(In_sync, &rs->dev[i].rdev.flags);
+		rs->dev[i].rdev.recovery_offset = MaxSector;
+	}
+
+	/*
+	 * Second, parse the unordered optional arguments
+	 */
+	for (i = 0; i < num_raid_params; i++) {
+		if (!strcasecmp(argv[i], "nosync")) {
+			rs->md.recovery_cp = MaxSector;
+			rs->print_flags |= DMPF_NOSYNC;
+			continue;
+		}
+		if (!strcasecmp(argv[i], "sync")) {
+			rs->md.recovery_cp = 0;
+			rs->print_flags |= DMPF_SYNC;
+			continue;
+		}
+
+		/* The rest of the optional arguments come in key/value pairs */
+		if ((i + 1) >= num_raid_params) {
+			rs->ti->error = "Wrong number of raid parameters given";
+			return -EINVAL;
+		}
+
+		key = argv[i++];
+		if (strict_strtoul(argv[i], 10, &value) < 0) {
+			rs->ti->error = "Bad numerical argument given in raid params";
+			return -EINVAL;
+		}
+
+		if (!strcasecmp(key, "rebuild")) {
+			rebuild_cnt++;
+			if (((rs->raid_type->level != 1) &&
+			     (rebuild_cnt > rs->raid_type->parity_devs)) ||
+			    ((rs->raid_type->level == 1) &&
+			     (rebuild_cnt > (rs->md.raid_disks - 1)))) {
+				rs->ti->error = "Too many rebuild devices specified for given RAID type";
+				return -EINVAL;
+			}
+			if (value > rs->md.raid_disks) {
+				rs->ti->error = "Invalid rebuild index given";
+				return -EINVAL;
+			}
+			clear_bit(In_sync, &rs->dev[value].rdev.flags);
+			rs->dev[value].rdev.recovery_offset = 0;
+			rs->print_flags |= DMPF_REBUILD;
+		} else if (!strcasecmp(key, "write_mostly")) {
+			if (rs->raid_type->level != 1) {
+				rs->ti->error = "write_mostly option is only valid for RAID1";
+				return -EINVAL;
+			}
+			if (value >= rs->md.raid_disks) {
+				rs->ti->error = "Invalid write_mostly drive index given";
+				return -EINVAL;
+			}
+			set_bit(WriteMostly, &rs->dev[value].rdev.flags);
+		} else if (!strcasecmp(key, "max_write_behind")) {
+			if (rs->raid_type->level != 1) {
+				rs->ti->error = "max_write_behind option is only valid for RAID1";
+				return -EINVAL;
+			}
+			rs->print_flags |= DMPF_MAX_WRITE_BEHIND;
+
+			/*
+			 * In device-mapper, we specify things in sectors, but
+			 * MD records this value in kB
+			 */
+			value /= 2;
+			if (value > COUNTER_MAX) {
+				rs->ti->error = "Max write-behind limit out of range";
+				return -EINVAL;
+			}
+			rs->md.bitmap_info.max_write_behind = value;
+		} else if (!strcasecmp(key, "daemon_sleep")) {
+			rs->print_flags |= DMPF_DAEMON_SLEEP;
+			if (!value || (value > MAX_SCHEDULE_TIMEOUT)) {
+				rs->ti->error = "daemon sleep period out of range";
+				return -EINVAL;
+			}
+			rs->md.bitmap_info.daemon_sleep = value;
+		} else if (!strcasecmp(key, "stripe_cache")) {
+			rs->print_flags |= DMPF_STRIPE_CACHE;
+
+			/*
+			 * In device-mapper, we specify things in sectors, but
+			 * MD records this value in kB
+			 */
+			value /= 2;
+
+			if (rs->raid_type->level < 5) {
+				rs->ti->error = "Inappropriate argument: stripe_cache";
+				return -EINVAL;
+			}
+			if (raid5_set_cache_size(&rs->md, (int)value)) {
+				rs->ti->error = "Bad stripe_cache size";
+				return -EINVAL;
+			}
+		} else if (!strcasecmp(key, "min_recovery_rate")) {
+			rs->print_flags |= DMPF_MIN_RECOVERY_RATE;
+			if (value > INT_MAX) {
+				rs->ti->error = "min_recovery_rate out of range";
+				return -EINVAL;
+			}
+			rs->md.sync_speed_min = (int)value;
+		} else if (!strcasecmp(key, "max_recovery_rate")) {
+			rs->print_flags |= DMPF_MAX_RECOVERY_RATE;
+			if (value > INT_MAX) {
+				rs->ti->error = "max_recovery_rate out of range";
+				return -EINVAL;
+			}
+			rs->md.sync_speed_max = (int)value;
+		} else if (!strcasecmp(key, "region_size")) {
+			rs->print_flags |= DMPF_REGION_SIZE;
+			region_size = value;
+		} else {
+			DMERR("Unable to parse RAID parameter: %s", key);
+			rs->ti->error = "Unable to parse RAID parameters";
+			return -EINVAL;
+		}
+	}
+
+	if (validate_region_size(rs, region_size))
+		return -EINVAL;
+
+	if (rs->md.chunk_sectors)
+		rs->ti->split_io = rs->md.chunk_sectors;
+	else
+		rs->ti->split_io = region_size;
+
+	if (rs->md.chunk_sectors)
+		rs->ti->split_io = rs->md.chunk_sectors;
+	else
+		rs->ti->split_io = region_size;
+
+	/* Assume there are no metadata devices until the drives are parsed */
+	rs->md.persistent = 0;
+	rs->md.external = 1;
+
+	return 0;
+}
+
+static void do_table_event(struct work_struct *ws)
+{
+	struct raid_set *rs = container_of(ws, struct raid_set, md.event_work);
+
+	dm_table_event(rs->ti->table);
+}
+
+static int raid_is_congested(struct dm_target_callbacks *cb, int bits)
+{
+	struct raid_set *rs = container_of(cb, struct raid_set, callbacks);
+
+	if (rs->raid_type->level == 1)
+		return md_raid1_congested(&rs->md, bits);
+
+	return md_raid5_congested(&rs->md, bits);
+}
+
+/*
+ * This structure is never routinely used by userspace, unlike md superblocks.
+ * Devices with this superblock should only ever be accessed via device-mapper.
+ */
+#define DM_RAID_MAGIC 0x64526D44
+struct dm_raid_superblock {
+	__le32 magic;		/* "DmRd" */
+	__le32 features;	/* Used to indicate possible future changes */
+
+	__le32 num_devices;	/* Number of devices in this array. (Max 64) */
+	__le32 array_position;	/* The position of this drive in the array */
+
+	__le64 events;		/* Incremented by md when superblock updated */
+	__le64 failed_devices;	/* Bit field of devices to indicate failures */
+
+	/*
+	 * This offset tracks the progress of the repair or replacement of
+	 * an individual drive.
+	 */
+	__le64 disk_recovery_offset;
+
+	/*
+	 * This offset tracks the progress of the initial array
+	 * synchronisation/parity calculation.
+	 */
+	__le64 array_resync_offset;
+
+	/*
+	 * RAID characteristics
+	 */
+	__le32 level;
+	__le32 layout;
+	__le32 stripe_sectors;
+
+	/* Remainder of a logical block is zero-filled when writing (see super_sync()). */
+} __packed;
+
+static int read_disk_sb(struct md_rdev *rdev, int size)
+{
+	BUG_ON(!rdev->sb_page);
+
+	if (rdev->sb_loaded)
+		return 0;
+
+	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, 1)) {
+		DMERR("Failed to read superblock of device at position %d",
+		      rdev->raid_disk);
+		set_bit(Faulty, &rdev->flags);
+		return -EINVAL;
+	}
+
+	rdev->sb_loaded = 1;
+
+	return 0;
+}
+
+static void super_sync(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct md_rdev *r;
+	uint64_t failed_devices;
+	struct dm_raid_superblock *sb;
+
+	sb = page_address(rdev->sb_page);
+	failed_devices = le64_to_cpu(sb->failed_devices);
+
+	rdev_for_each(r, mddev)
+		if ((r->raid_disk >= 0) && test_bit(Faulty, &r->flags))
+			failed_devices |= (1ULL << r->raid_disk);
+
+	memset(sb + 1, 0, rdev->sb_size - sizeof(*sb));
+
+	sb->magic = cpu_to_le32(DM_RAID_MAGIC);
+	sb->features = cpu_to_le32(0);	/* No features yet */
+
+	sb->num_devices = cpu_to_le32(mddev->raid_disks);
+	sb->array_position = cpu_to_le32(rdev->raid_disk);
+
+	sb->events = cpu_to_le64(mddev->events);
+	sb->failed_devices = cpu_to_le64(failed_devices);
+
+	sb->disk_recovery_offset = cpu_to_le64(rdev->recovery_offset);
+	sb->array_resync_offset = cpu_to_le64(mddev->recovery_cp);
+
+	sb->level = cpu_to_le32(mddev->level);
+	sb->layout = cpu_to_le32(mddev->layout);
+	sb->stripe_sectors = cpu_to_le32(mddev->chunk_sectors);
+}
+
+/*
+ * super_load
+ *
+ * This function creates a superblock if one is not found on the device
+ * and will decide which superblock to use if there's a choice.
+ *
+ * Return: 1 if use rdev, 0 if use refdev, -Exxx otherwise
+ */
+static int super_load(struct md_rdev *rdev, struct md_rdev *refdev)
+{
+	int ret;
+	struct dm_raid_superblock *sb;
+	struct dm_raid_superblock *refsb;
+	uint64_t events_sb, events_refsb;
+
+	rdev->sb_start = 0;
+	rdev->sb_size = bdev_logical_block_size(rdev->meta_bdev);
+	if (rdev->sb_size < sizeof(*sb) || rdev->sb_size > PAGE_SIZE) {
+		DMERR("superblock size of a logical block is no longer valid");
+		return -EINVAL;
+	}
+
+	ret = read_disk_sb(rdev, rdev->sb_size);
+	if (ret)
+		return ret;
+
+	sb = page_address(rdev->sb_page);
+
+	/*
+	 * Two cases that we want to write new superblocks and rebuild:
+	 * 1) New device (no matching magic number)
+	 * 2) Device specified for rebuild (!In_sync w/ offset == 0)
+	 */
+	if ((sb->magic != cpu_to_le32(DM_RAID_MAGIC)) ||
+	    (!test_bit(In_sync, &rdev->flags) && !rdev->recovery_offset)) {
+		super_sync(rdev->mddev, rdev);
+
+		set_bit(FirstUse, &rdev->flags);
+
+		/* Force writing of superblocks to disk */
+		set_bit(MD_CHANGE_DEVS, &rdev->mddev->flags);
+
+		/* Any superblock is better than none, choose that if given */
+		return refdev ? 0 : 1;
+	}
+
+	if (!refdev)
+		return 1;
+
+	events_sb = le64_to_cpu(sb->events);
+
+	refsb = page_address(refdev->sb_page);
+	events_refsb = le64_to_cpu(refsb->events);
+
+	return (events_sb > events_refsb) ? 1 : 0;
+}
+
+static int super_init_validation(struct mddev *mddev, struct md_rdev *rdev)
+{
+	int role;
+	struct raid_set *rs = container_of(mddev, struct raid_set, md);
+	uint64_t events_sb;
+	uint64_t failed_devices;
+	struct dm_raid_superblock *sb;
+	uint32_t new_devs = 0;
+	uint32_t rebuilds = 0;
+	struct md_rdev *r;
+	struct dm_raid_superblock *sb2;
+
+	sb = page_address(rdev->sb_page);
+	events_sb = le64_to_cpu(sb->events);
+	failed_devices = le64_to_cpu(sb->failed_devices);
+
+	/*
+	 * Initialise to 1 if this is a new superblock.
+	 */
+	mddev->events = events_sb ? : 1;
+
+	/*
+	 * Reshaping is not currently allowed
+	 */
+	if ((le32_to_cpu(sb->level) != mddev->level) ||
+	    (le32_to_cpu(sb->layout) != mddev->layout) ||
+	    (le32_to_cpu(sb->stripe_sectors) != mddev->chunk_sectors)) {
+		DMERR("Reshaping arrays not yet supported.");
+		return -EINVAL;
+	}
+
+	/* We can only change the number of devices in RAID1 right now */
+	if ((rs->raid_type->level != 1) &&
+	    (le32_to_cpu(sb->num_devices) != mddev->raid_disks)) {
+		DMERR("Reshaping arrays not yet supported.");
+		return -EINVAL;
+	}
+
+	if (!(rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC)))
+		mddev->recovery_cp = le64_to_cpu(sb->array_resync_offset);
+
+	/*
+	 * During load, we set FirstUse if a new superblock was written.
+	 * There are two reasons we might not have a superblock:
+	 * 1) The array is brand new - in which case, all of the
+	 *    devices must have their In_sync bit set.  Also,
+	 *    recovery_cp must be 0, unless forced.
+	 * 2) This is a new device being added to an old array
+	 *    and the new device needs to be rebuilt - in which
+	 *    case the In_sync bit will /not/ be set and
+	 *    recovery_cp must be MaxSector.
+	 */
+	rdev_for_each(r, mddev) {
+		if (!test_bit(In_sync, &r->flags)) {
+			DMINFO("Device %d specified for rebuild: "
+			       "Clearing superblock", r->raid_disk);
+			rebuilds++;
+		} else if (test_bit(FirstUse, &r->flags))
+			new_devs++;
+	}
+
+	if (!rebuilds) {
+		if (new_devs == mddev->raid_disks) {
+			DMINFO("Superblocks created for new array");
+			set_bit(MD_ARRAY_FIRST_USE, &mddev->flags);
+		} else if (new_devs) {
+			DMERR("New device injected "
+			      "into existing array without 'rebuild' "
+			      "parameter specified");
+			return -EINVAL;
+		}
+	} else if (new_devs) {
+		DMERR("'rebuild' devices cannot be "
+		      "injected into an array with other first-time devices");
+		return -EINVAL;
+	} else if (mddev->recovery_cp != MaxSector) {
+		DMERR("'rebuild' specified while array is not in-sync");
+		return -EINVAL;
+	}
+
+	/*
+	 * Now we set the Faulty bit for those devices that are
+	 * recorded in the superblock as failed.
+	 */
+	rdev_for_each(r, mddev) {
+		if (!r->sb_page)
+			continue;
+		sb2 = page_address(r->sb_page);
+		sb2->failed_devices = 0;
+
+		/*
+		 * Check for any device re-ordering.
+		 */
+		if (!test_bit(FirstUse, &r->flags) && (r->raid_disk >= 0)) {
+			role = le32_to_cpu(sb2->array_position);
+			if (role != r->raid_disk) {
+				if (rs->raid_type->level != 1) {
+					rs->ti->error = "Cannot change device "
+						"positions in RAID array";
+					return -EINVAL;
+				}
+				DMINFO("RAID1 device #%d now at position #%d",
+				       role, r->raid_disk);
+			}
+
+			/*
+			 * Partial recovery is performed on
+			 * returning failed devices.
+			 */
+			if (failed_devices & (1 << role))
+				set_bit(Faulty, &r->flags);
+		}
+	}
+
+	return 0;
+}
+
+static int super_validate(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct dm_raid_superblock *sb = page_address(rdev->sb_page);
+
+	/*
+	 * If mddev->events is not set, we know we have not yet initialized
+	 * the array.
+	 */
+	if (!mddev->events && super_init_validation(mddev, rdev))
+		return -EINVAL;
+
+	mddev->bitmap_info.offset = 4096 >> 9; /* Enable bitmap creation */
+	rdev->mddev->bitmap_info.default_offset = 4096 >> 9;
+	if (!test_bit(FirstUse, &rdev->flags)) {
+		rdev->recovery_offset = le64_to_cpu(sb->disk_recovery_offset);
+		if (rdev->recovery_offset != MaxSector)
+			clear_bit(In_sync, &rdev->flags);
+	}
+
+	/*
+	 * If a device comes back, set it as not In_sync and no longer faulty.
+	 */
+	if (test_bit(Faulty, &rdev->flags)) {
+		clear_bit(Faulty, &rdev->flags);
+		clear_bit(In_sync, &rdev->flags);
+		rdev->saved_raid_disk = rdev->raid_disk;
+		rdev->recovery_offset = 0;
+	}
+
+	clear_bit(FirstUse, &rdev->flags);
+
+	return 0;
+}
+
+/*
+ * Analyse superblocks and select the freshest.
+ */
+static int analyse_superblocks(struct dm_target *ti, struct raid_set *rs)
+{
+	int ret;
+	unsigned redundancy = 0;
+	struct raid_dev *dev;
+	struct md_rdev *rdev, *tmp, *freshest;
+	struct mddev *mddev = &rs->md;
+
+	switch (rs->raid_type->level) {
+	case 1:
+		redundancy = rs->md.raid_disks - 1;
+		break;
+	case 4:
+	case 5:
+	case 6:
+		redundancy = rs->raid_type->parity_devs;
+		break;
+	default:
+		ti->error = "Unknown RAID type";
+		return -EINVAL;
+	}
+
+	freshest = NULL;
+	rdev_for_each_safe(rdev, tmp, mddev) {
+		if (!rdev->meta_bdev)
+			continue;
+
+		ret = super_load(rdev, freshest);
+
+		switch (ret) {
+		case 1:
+			freshest = rdev;
+			break;
+		case 0:
+			break;
+		default:
+			dev = container_of(rdev, struct raid_dev, rdev);
+			if (redundancy--) {
+				if (dev->meta_dev)
+					dm_put_device(ti, dev->meta_dev);
+
+				dev->meta_dev = NULL;
+				rdev->meta_bdev = NULL;
+
+				if (rdev->sb_page)
+					put_page(rdev->sb_page);
+
+				rdev->sb_page = NULL;
+
+				rdev->sb_loaded = 0;
+
+				/*
+				 * We might be able to salvage the data device
+				 * even though the meta device has failed.  For
+				 * now, we behave as though '- -' had been
+				 * set for this device in the table.
+				 */
+				if (dev->data_dev)
+					dm_put_device(ti, dev->data_dev);
+
+				dev->data_dev = NULL;
+				rdev->bdev = NULL;
+
+				list_del(&rdev->same_set);
+
+				continue;
+			}
+			ti->error = "Failed to load superblock";
+			return ret;
+		}
+	}
+
+	if (!freshest)
+		return 0;
+
+	/*
+	 * Validation of the freshest device provides the source of
+	 * validation for the remaining devices.
+	 */
+	ti->error = "Unable to assemble array: Invalid superblocks";
+	if (super_validate(mddev, freshest))
+		return -EINVAL;
+
+	rdev_for_each(rdev, mddev)
+		if ((rdev != freshest) && super_validate(mddev, rdev))
+			return -EINVAL;
+
+	return 0;
+}
+
+/*
+ * Construct a RAID4/5/6 mapping:
+ * Args:
+ *	<raid_type> <#raid_params> <raid_params>		\
+ *	<#raid_devs> { <meta_dev1> <dev1> .. <meta_devN> <devN> }
+ *
+ * <raid_params> varies by <raid_type>.  See 'parse_raid_params' for
+ * details on possible <raid_params>.
+ */
+static int raid_ctr(struct dm_target *ti, unsigned argc, char **argv)
+{
+	int ret;
+	struct raid_type *rt;
+	unsigned long num_raid_params, num_raid_devs;
+	struct raid_set *rs = NULL;
+
+	/* Must have at least <raid_type> <#raid_params> */
+	if (argc < 2) {
+		ti->error = "Too few arguments";
+		return -EINVAL;
+	}
+
+	/* raid type */
+	rt = get_raid_type(argv[0]);
+	if (!rt) {
+		ti->error = "Unrecognised raid_type";
+		return -EINVAL;
+	}
+	argc--;
+	argv++;
+
+	/* number of RAID parameters */
+	if (strict_strtoul(argv[0], 10, &num_raid_params) < 0) {
+		ti->error = "Cannot understand number of RAID parameters";
+		return -EINVAL;
+	}
+	argc--;
+	argv++;
+
+	/* Skip over RAID params for now and find out # of devices */
+	if (num_raid_params + 1 > argc) {
+		ti->error = "Arguments do not agree with counts given";
+		return -EINVAL;
+	}
+
+	if ((strict_strtoul(argv[num_raid_params], 10, &num_raid_devs) < 0) ||
+	    (num_raid_devs >= INT_MAX)) {
+		ti->error = "Cannot understand number of raid devices";
+		return -EINVAL;
+	}
+
+	rs = context_alloc(ti, rt, (unsigned)num_raid_devs);
+	if (IS_ERR(rs))
+		return PTR_ERR(rs);
+
+	ret = parse_raid_params(rs, argv, (unsigned)num_raid_params);
+	if (ret)
+		goto bad;
+
+	ret = -EINVAL;
+
+	argc -= num_raid_params + 1; /* +1: we already have num_raid_devs */
+	argv += num_raid_params + 1;
+
+	if (argc != (num_raid_devs * 2)) {
+		ti->error = "Supplied RAID devices does not match the count given";
+		goto bad;
+	}
+
+	ret = dev_parms(rs, argv);
+	if (ret)
+		goto bad;
+
+	rs->md.sync_super = super_sync;
+	ret = analyse_superblocks(ti, rs);
+	if (ret)
+		goto bad;
+
+	INIT_WORK(&rs->md.event_work, do_table_event);
+	ti->private = rs;
+	ti->num_flush_requests = 1;
+
+	mutex_lock(&rs->md.reconfig_mutex);
+	ret = md_run(&rs->md);
+	rs->md.in_sync = 0; /* Assume already marked dirty */
+	mutex_unlock(&rs->md.reconfig_mutex);
+
+	if (ret) {
+		ti->error = "Fail to run raid array";
+		goto bad;
+	}
+
+	rs->callbacks.congested_fn = raid_is_congested;
+	dm_table_add_target_callbacks(ti->table, &rs->callbacks);
+
+	mddev_suspend(&rs->md);
+	return 0;
+
+bad:
+	context_free(rs);
+
+	return ret;
+}
+
+static void raid_dtr(struct dm_target *ti)
+{
+	struct raid_set *rs = ti->private;
+
+	list_del_init(&rs->callbacks.list);
+	md_stop(&rs->md);
+	context_free(rs);
+}
+
+static int raid_map(struct dm_target *ti, struct bio *bio, union map_info *map_context)
+{
+	struct raid_set *rs = ti->private;
+	struct mddev *mddev = &rs->md;
+
+	mddev->pers->make_request(mddev, bio);
+
+	return DM_MAPIO_SUBMITTED;
+}
+
+static void raid_status(struct dm_target *ti, status_type_t type,
+			char *result, unsigned maxlen)
+{
+	struct raid_set *rs = ti->private;
+	unsigned raid_param_cnt = 1; /* at least 1 for chunksize */
+	unsigned sz = 0;
+	int i, array_in_sync = 0;
+	sector_t sync;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		DMEMIT("%s %d ", rs->raid_type->name, rs->md.raid_disks);
+
+		if (test_bit(MD_RECOVERY_RUNNING, &rs->md.recovery))
+			sync = rs->md.curr_resync_completed;
+		else
+			sync = rs->md.recovery_cp;
+
+		if (sync >= rs->md.resync_max_sectors) {
+			array_in_sync = 1;
+			sync = rs->md.resync_max_sectors;
+		} else {
+			/*
+			 * The array may be doing an initial sync, or it may
+			 * be rebuilding individual components.  If all the
+			 * devices are In_sync, then it is the array that is
+			 * being initialized.
+			 */
+			for (i = 0; i < rs->md.raid_disks; i++)
+				if (!test_bit(In_sync, &rs->dev[i].rdev.flags))
+					array_in_sync = 1;
+		}
+		/*
+		 * Status characters:
+		 *  'D' = Dead/Failed device
+		 *  'a' = Alive but not in-sync
+		 *  'A' = Alive and in-sync
+		 */
+		for (i = 0; i < rs->md.raid_disks; i++) {
+			if (test_bit(Faulty, &rs->dev[i].rdev.flags))
+				DMEMIT("D");
+			else if (!array_in_sync ||
+				 !test_bit(In_sync, &rs->dev[i].rdev.flags))
+				DMEMIT("a");
+			else
+				DMEMIT("A");
+		}
+
+		/*
+		 * In-sync ratio:
+		 *  The in-sync ratio shows the progress of:
+		 *   - Initializing the array
+		 *   - Rebuilding a subset of devices of the array
+		 *  The user can distinguish between the two by referring
+		 *  to the status characters.
+		 */
+		DMEMIT(" %llu/%llu",
+		       (unsigned long long) sync,
+		       (unsigned long long) rs->md.resync_max_sectors);
+
+		break;
+	case STATUSTYPE_TABLE:
+		/* The string you would use to construct this array */
+		for (i = 0; i < rs->md.raid_disks; i++) {
+			if ((rs->print_flags & DMPF_REBUILD) &&
+			    rs->dev[i].data_dev &&
+			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
+				raid_param_cnt += 2; /* for rebuilds */
+			if (rs->dev[i].data_dev &&
+			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
+				raid_param_cnt += 2;
+		}
+
+		raid_param_cnt += (hweight32(rs->print_flags & ~DMPF_REBUILD) * 2);
+		if (rs->print_flags & (DMPF_SYNC | DMPF_NOSYNC))
+			raid_param_cnt--;
+
+		DMEMIT("%s %u %u", rs->raid_type->name,
+		       raid_param_cnt, rs->md.chunk_sectors);
+
+		if ((rs->print_flags & DMPF_SYNC) &&
+		    (rs->md.recovery_cp == MaxSector))
+			DMEMIT(" sync");
+		if (rs->print_flags & DMPF_NOSYNC)
+			DMEMIT(" nosync");
+
+		for (i = 0; i < rs->md.raid_disks; i++)
+			if ((rs->print_flags & DMPF_REBUILD) &&
+			    rs->dev[i].data_dev &&
+			    !test_bit(In_sync, &rs->dev[i].rdev.flags))
+				DMEMIT(" rebuild %u", i);
+
+		if (rs->print_flags & DMPF_DAEMON_SLEEP)
+			DMEMIT(" daemon_sleep %lu",
+			       rs->md.bitmap_info.daemon_sleep);
+
+		if (rs->print_flags & DMPF_MIN_RECOVERY_RATE)
+			DMEMIT(" min_recovery_rate %d", rs->md.sync_speed_min);
+
+		if (rs->print_flags & DMPF_MAX_RECOVERY_RATE)
+			DMEMIT(" max_recovery_rate %d", rs->md.sync_speed_max);
+
+		for (i = 0; i < rs->md.raid_disks; i++)
+			if (rs->dev[i].data_dev &&
+			    test_bit(WriteMostly, &rs->dev[i].rdev.flags))
+				DMEMIT(" write_mostly %u", i);
+
+		if (rs->print_flags & DMPF_MAX_WRITE_BEHIND)
+			DMEMIT(" max_write_behind %lu",
+			       rs->md.bitmap_info.max_write_behind);
+
+		if (rs->print_flags & DMPF_STRIPE_CACHE) {
+			struct r5conf *conf = rs->md.private;
+
+			/* convert from kiB to sectors */
+			DMEMIT(" stripe_cache %d",
+			       conf ? conf->max_nr_stripes * 2 : 0);
+		}
+
+		if (rs->print_flags & DMPF_REGION_SIZE)
+			DMEMIT(" region_size %lu",
+			       rs->md.bitmap_info.chunksize >> 9);
+
+		DMEMIT(" %d", rs->md.raid_disks);
+		for (i = 0; i < rs->md.raid_disks; i++) {
+			if (rs->dev[i].meta_dev)
+				DMEMIT(" %s", rs->dev[i].meta_dev->name);
+			else
+				DMEMIT(" -");
+
+			if (rs->dev[i].data_dev)
+				DMEMIT(" %s", rs->dev[i].data_dev->name);
+			else
+				DMEMIT(" -");
+		}
+	}
+}
+
+static int raid_iterate_devices(struct dm_target *ti, iterate_devices_callout_fn fn, void *data)
+{
+	struct raid_set *rs = ti->private;
+	unsigned i;
+	int ret = 0;
+
+	for (i = 0; !ret && i < rs->md.raid_disks; i++)
+		if (rs->dev[i].data_dev)
+			ret = fn(ti,
+				 rs->dev[i].data_dev,
+				 0, /* No offset on data devs */
+				 rs->md.dev_sectors,
+				 data);
+
+	return ret;
+}
+
+static void raid_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+	struct raid_set *rs = ti->private;
+	unsigned chunk_size = rs->md.chunk_sectors << 9;
+	struct r5conf *conf = rs->md.private;
+
+	blk_limits_io_min(limits, chunk_size);
+	blk_limits_io_opt(limits, chunk_size * (conf->raid_disks - conf->max_degraded));
+}
+
+static void raid_presuspend(struct dm_target *ti)
+{
+	struct raid_set *rs = ti->private;
+
+	md_stop_writes(&rs->md);
+}
+
+static void raid_postsuspend(struct dm_target *ti)
+{
+	struct raid_set *rs = ti->private;
+
+	mddev_suspend(&rs->md);
+}
+
+static void raid_resume(struct dm_target *ti)
+{
+	struct raid_set *rs = ti->private;
+
+	if (!rs->bitmap_loaded) {
+		bitmap_load(&rs->md);
+		rs->bitmap_loaded = 1;
+	} else
+		md_wakeup_thread(rs->md.thread);
+
+	mddev_resume(&rs->md);
+}
+
+static struct target_type raid_target = {
+	.name = "raid",
+	.version = {1, 2, 0},
+	.module = THIS_MODULE,
+	.ctr = raid_ctr,
+	.dtr = raid_dtr,
+	.map = raid_map,
+	.status = raid_status,
+	.iterate_devices = raid_iterate_devices,
+	.io_hints = raid_io_hints,
+	.presuspend = raid_presuspend,
+	.postsuspend = raid_postsuspend,
+	.resume = raid_resume,
+};
+
+static int __init dm_raid_init(void)
+{
+	return dm_register_target(&raid_target);
+}
+
+static void __exit dm_raid_exit(void)
+{
+	dm_unregister_target(&raid_target);
+}
+
+module_init(dm_raid_init);
+module_exit(dm_raid_exit);
+
+MODULE_DESCRIPTION(DM_NAME " raid4/5/6 target");
+MODULE_ALIAS("dm-raid4");
+MODULE_ALIAS("dm-raid5");
+MODULE_ALIAS("dm-raid6");
+MODULE_AUTHOR("Neil Brown <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-raid1.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-raid1.c
new file mode 100644
index 0000000..3afb9cd
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-raid1.c
@@ -0,0 +1,1478 @@
+/*
+ * Copyright (C) 2003 Sistina Software Limited.
+ * Copyright (C) 2005-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-bio-record.h"
+
+#include <linux/init.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/pagemap.h>
+#include <linux/slab.h>
+#include <linux/workqueue.h>
+#include <linux/device-mapper.h>
+#include <linux/dm-io.h>
+#include <linux/dm-dirty-log.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/dm-region-hash.h>
+
+#define DM_MSG_PREFIX "raid1"
+
+#define MAX_RECOVERY 1	/* Maximum number of regions recovered in parallel. */
+
+#define DM_RAID1_HANDLE_ERRORS 0x01
+#define errors_handled(p)	((p)->features & DM_RAID1_HANDLE_ERRORS)
+
+static DECLARE_WAIT_QUEUE_HEAD(_kmirrord_recovery_stopped);
+
+/*-----------------------------------------------------------------
+ * Mirror set structures.
+ *---------------------------------------------------------------*/
+enum dm_raid1_error {
+	DM_RAID1_WRITE_ERROR,
+	DM_RAID1_FLUSH_ERROR,
+	DM_RAID1_SYNC_ERROR,
+	DM_RAID1_READ_ERROR
+};
+
+struct mirror {
+	struct mirror_set *ms;
+	atomic_t error_count;
+	unsigned long error_type;
+	struct dm_dev *dev;
+	sector_t offset;
+};
+
+struct mirror_set {
+	struct dm_target *ti;
+	struct list_head list;
+
+	uint64_t features;
+
+	spinlock_t lock;	/* protects the lists */
+	struct bio_list reads;
+	struct bio_list writes;
+	struct bio_list failures;
+	struct bio_list holds;	/* bios are waiting until suspend */
+
+	struct dm_region_hash *rh;
+	struct dm_kcopyd_client *kcopyd_client;
+	struct dm_io_client *io_client;
+	mempool_t *read_record_pool;
+
+	/* recovery */
+	region_t nr_regions;
+	int in_sync;
+	int log_failure;
+	int leg_failure;
+	atomic_t suspend;
+
+	atomic_t default_mirror;	/* Default mirror */
+
+	struct workqueue_struct *kmirrord_wq;
+	struct work_struct kmirrord_work;
+	struct timer_list timer;
+	unsigned long timer_pending;
+
+	struct work_struct trigger_event;
+
+	unsigned nr_mirrors;
+	struct mirror mirror[0];
+};
+
+static void wakeup_mirrord(void *context)
+{
+	struct mirror_set *ms = context;
+
+	queue_work(ms->kmirrord_wq, &ms->kmirrord_work);
+}
+
+static void delayed_wake_fn(unsigned long data)
+{
+	struct mirror_set *ms = (struct mirror_set *) data;
+
+	clear_bit(0, &ms->timer_pending);
+	wakeup_mirrord(ms);
+}
+
+static void delayed_wake(struct mirror_set *ms)
+{
+	if (test_and_set_bit(0, &ms->timer_pending))
+		return;
+
+	ms->timer.expires = jiffies + HZ / 5;
+	ms->timer.data = (unsigned long) ms;
+	ms->timer.function = delayed_wake_fn;
+	add_timer(&ms->timer);
+}
+
+static void wakeup_all_recovery_waiters(void *context)
+{
+	wake_up_all(&_kmirrord_recovery_stopped);
+}
+
+static void queue_bio(struct mirror_set *ms, struct bio *bio, int rw)
+{
+	unsigned long flags;
+	int should_wake = 0;
+	struct bio_list *bl;
+
+	bl = (rw == WRITE) ? &ms->writes : &ms->reads;
+	spin_lock_irqsave(&ms->lock, flags);
+	should_wake = !(bl->head);
+	bio_list_add(bl, bio);
+	spin_unlock_irqrestore(&ms->lock, flags);
+
+	if (should_wake)
+		wakeup_mirrord(ms);
+}
+
+static void dispatch_bios(void *context, struct bio_list *bio_list)
+{
+	struct mirror_set *ms = context;
+	struct bio *bio;
+
+	while ((bio = bio_list_pop(bio_list)))
+		queue_bio(ms, bio, WRITE);
+}
+
+#define MIN_READ_RECORDS 20
+struct dm_raid1_read_record {
+	struct mirror *m;
+	struct dm_bio_details details;
+};
+
+static struct kmem_cache *_dm_raid1_read_record_cache;
+
+/*
+ * Every mirror should look like this one.
+ */
+#define DEFAULT_MIRROR 0
+
+/*
+ * This is yucky.  We squirrel the mirror struct away inside
+ * bi_next for read/write buffers.  This is safe since the bh
+ * doesn't get submitted to the lower levels of block layer.
+ */
+static struct mirror *bio_get_m(struct bio *bio)
+{
+	return (struct mirror *) bio->bi_next;
+}
+
+static void bio_set_m(struct bio *bio, struct mirror *m)
+{
+	bio->bi_next = (struct bio *) m;
+}
+
+static struct mirror *get_default_mirror(struct mirror_set *ms)
+{
+	return &ms->mirror[atomic_read(&ms->default_mirror)];
+}
+
+static void set_default_mirror(struct mirror *m)
+{
+	struct mirror_set *ms = m->ms;
+	struct mirror *m0 = &(ms->mirror[0]);
+
+	atomic_set(&ms->default_mirror, m - m0);
+}
+
+static struct mirror *get_valid_mirror(struct mirror_set *ms)
+{
+	struct mirror *m;
+
+	for (m = ms->mirror; m < ms->mirror + ms->nr_mirrors; m++)
+		if (!atomic_read(&m->error_count))
+			return m;
+
+	return NULL;
+}
+
+/* fail_mirror
+ * @m: mirror device to fail
+ * @error_type: one of the enum's, DM_RAID1_*_ERROR
+ *
+ * If errors are being handled, record the type of
+ * error encountered for this device.  If this type
+ * of error has already been recorded, we can return;
+ * otherwise, we must signal userspace by triggering
+ * an event.  Additionally, if the device is the
+ * primary device, we must choose a new primary, but
+ * only if the mirror is in-sync.
+ *
+ * This function must not block.
+ */
+static void fail_mirror(struct mirror *m, enum dm_raid1_error error_type)
+{
+	struct mirror_set *ms = m->ms;
+	struct mirror *new;
+
+	ms->leg_failure = 1;
+
+	/*
+	 * error_count is used for nothing more than a
+	 * simple way to tell if a device has encountered
+	 * errors.
+	 */
+	atomic_inc(&m->error_count);
+
+	if (test_and_set_bit(error_type, &m->error_type))
+		return;
+
+	if (!errors_handled(ms))
+		return;
+
+	if (m != get_default_mirror(ms))
+		goto out;
+
+	if (!ms->in_sync) {
+		/*
+		 * Better to issue requests to same failing device
+		 * than to risk returning corrupt data.
+		 */
+		DMERR("Primary mirror (%s) failed while out-of-sync: "
+		      "Reads may fail.", m->dev->name);
+		goto out;
+	}
+
+	new = get_valid_mirror(ms);
+	if (new)
+		set_default_mirror(new);
+	else
+		DMWARN("All sides of mirror have failed.");
+
+out:
+	schedule_work(&ms->trigger_event);
+}
+
+static int mirror_flush(struct dm_target *ti)
+{
+	struct mirror_set *ms = ti->private;
+	unsigned long error_bits;
+
+	unsigned int i;
+	struct dm_io_region io[ms->nr_mirrors];
+	struct mirror *m;
+	struct dm_io_request io_req = {
+		.bi_rw = WRITE_FLUSH,
+		.mem.type = DM_IO_KMEM,
+		.mem.ptr.addr = NULL,
+		.client = ms->io_client,
+	};
+
+	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++) {
+		io[i].bdev = m->dev->bdev;
+		io[i].sector = 0;
+		io[i].count = 0;
+	}
+
+	error_bits = -1;
+	dm_io(&io_req, ms->nr_mirrors, io, &error_bits);
+	if (unlikely(error_bits != 0)) {
+		for (i = 0; i < ms->nr_mirrors; i++)
+			if (test_bit(i, &error_bits))
+				fail_mirror(ms->mirror + i,
+					    DM_RAID1_FLUSH_ERROR);
+		return -EIO;
+	}
+
+	return 0;
+}
+
+/*-----------------------------------------------------------------
+ * Recovery.
+ *
+ * When a mirror is first activated we may find that some regions
+ * are in the no-sync state.  We have to recover these by
+ * recopying from the default mirror to all the others.
+ *---------------------------------------------------------------*/
+static void recovery_complete(int read_err, unsigned long write_err,
+			      void *context)
+{
+	struct dm_region *reg = context;
+	struct mirror_set *ms = dm_rh_region_context(reg);
+	int m, bit = 0;
+
+	if (read_err) {
+		/* Read error means the failure of default mirror. */
+		DMERR_LIMIT("Unable to read primary mirror during recovery");
+		fail_mirror(get_default_mirror(ms), DM_RAID1_SYNC_ERROR);
+	}
+
+	if (write_err) {
+		DMERR_LIMIT("Write error during recovery (error = 0x%lx)",
+			    write_err);
+		/*
+		 * Bits correspond to devices (excluding default mirror).
+		 * The default mirror cannot change during recovery.
+		 */
+		for (m = 0; m < ms->nr_mirrors; m++) {
+			if (&ms->mirror[m] == get_default_mirror(ms))
+				continue;
+			if (test_bit(bit, &write_err))
+				fail_mirror(ms->mirror + m,
+					    DM_RAID1_SYNC_ERROR);
+			bit++;
+		}
+	}
+
+	dm_rh_recovery_end(reg, !(read_err || write_err));
+}
+
+static int recover(struct mirror_set *ms, struct dm_region *reg)
+{
+	int r;
+	unsigned i;
+	struct dm_io_region from, to[DM_KCOPYD_MAX_REGIONS], *dest;
+	struct mirror *m;
+	unsigned long flags = 0;
+	region_t key = dm_rh_get_region_key(reg);
+	sector_t region_size = dm_rh_get_region_size(ms->rh);
+
+	/* fill in the source */
+	m = get_default_mirror(ms);
+	from.bdev = m->dev->bdev;
+	from.sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
+	if (key == (ms->nr_regions - 1)) {
+		/*
+		 * The final region may be smaller than
+		 * region_size.
+		 */
+		from.count = ms->ti->len & (region_size - 1);
+		if (!from.count)
+			from.count = region_size;
+	} else
+		from.count = region_size;
+
+	/* fill in the destinations */
+	for (i = 0, dest = to; i < ms->nr_mirrors; i++) {
+		if (&ms->mirror[i] == get_default_mirror(ms))
+			continue;
+
+		m = ms->mirror + i;
+		dest->bdev = m->dev->bdev;
+		dest->sector = m->offset + dm_rh_region_to_sector(ms->rh, key);
+		dest->count = from.count;
+		dest++;
+	}
+
+	/* hand to kcopyd */
+	if (!errors_handled(ms))
+		set_bit(DM_KCOPYD_IGNORE_ERROR, &flags);
+
+	r = dm_kcopyd_copy(ms->kcopyd_client, &from, ms->nr_mirrors - 1, to,
+			   flags, recovery_complete, reg);
+
+	return r;
+}
+
+static void do_recovery(struct mirror_set *ms)
+{
+	struct dm_region *reg;
+	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+	int r;
+
+	/*
+	 * Start quiescing some regions.
+	 */
+	dm_rh_recovery_prepare(ms->rh);
+
+	/*
+	 * Copy any already quiesced regions.
+	 */
+	while ((reg = dm_rh_recovery_start(ms->rh))) {
+		r = recover(ms, reg);
+		if (r)
+			dm_rh_recovery_end(reg, 0);
+	}
+
+	/*
+	 * Update the in sync flag.
+	 */
+	if (!ms->in_sync &&
+	    (log->type->get_sync_count(log) == ms->nr_regions)) {
+		/* the sync is complete */
+		dm_table_event(ms->ti->table);
+		ms->in_sync = 1;
+	}
+}
+
+/*-----------------------------------------------------------------
+ * Reads
+ *---------------------------------------------------------------*/
+static struct mirror *choose_mirror(struct mirror_set *ms, sector_t sector)
+{
+	struct mirror *m = get_default_mirror(ms);
+
+	do {
+		if (likely(!atomic_read(&m->error_count)))
+			return m;
+
+		if (m-- == ms->mirror)
+			m += ms->nr_mirrors;
+	} while (m != get_default_mirror(ms));
+
+	return NULL;
+}
+
+static int default_ok(struct mirror *m)
+{
+	struct mirror *default_mirror = get_default_mirror(m->ms);
+
+	return !atomic_read(&default_mirror->error_count);
+}
+
+static int mirror_available(struct mirror_set *ms, struct bio *bio)
+{
+	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+	region_t region = dm_rh_bio_to_region(ms->rh, bio);
+
+	if (log->type->in_sync(log, region, 0))
+		return choose_mirror(ms,  bio->bi_sector) ? 1 : 0;
+
+	return 0;
+}
+
+/*
+ * remap a buffer to a particular mirror.
+ */
+static sector_t map_sector(struct mirror *m, struct bio *bio)
+{
+	if (unlikely(!bio->bi_size))
+		return 0;
+	return m->offset + dm_target_offset(m->ms->ti, bio->bi_sector);
+}
+
+static void map_bio(struct mirror *m, struct bio *bio)
+{
+	bio->bi_bdev = m->dev->bdev;
+	bio->bi_sector = map_sector(m, bio);
+}
+
+static void map_region(struct dm_io_region *io, struct mirror *m,
+		       struct bio *bio)
+{
+	io->bdev = m->dev->bdev;
+	io->sector = map_sector(m, bio);
+	io->count = bio->bi_size >> 9;
+}
+
+static void hold_bio(struct mirror_set *ms, struct bio *bio)
+{
+	/*
+	 * Lock is required to avoid race condition during suspend
+	 * process.
+	 */
+	spin_lock_irq(&ms->lock);
+
+	if (atomic_read(&ms->suspend)) {
+		spin_unlock_irq(&ms->lock);
+
+		/*
+		 * If device is suspended, complete the bio.
+		 */
+		if (dm_noflush_suspending(ms->ti))
+			bio_endio(bio, DM_ENDIO_REQUEUE);
+		else
+			bio_endio(bio, -EIO);
+		return;
+	}
+
+	/*
+	 * Hold bio until the suspend is complete.
+	 */
+	bio_list_add(&ms->holds, bio);
+	spin_unlock_irq(&ms->lock);
+}
+
+/*-----------------------------------------------------------------
+ * Reads
+ *---------------------------------------------------------------*/
+static void read_callback(unsigned long error, void *context)
+{
+	struct bio *bio = context;
+	struct mirror *m;
+
+	m = bio_get_m(bio);
+	bio_set_m(bio, NULL);
+
+	if (likely(!error)) {
+		bio_endio(bio, 0);
+		return;
+	}
+
+	fail_mirror(m, DM_RAID1_READ_ERROR);
+
+	if (likely(default_ok(m)) || mirror_available(m->ms, bio)) {
+		DMWARN_LIMIT("Read failure on mirror device %s.  "
+			     "Trying alternative device.",
+			     m->dev->name);
+		queue_bio(m->ms, bio, bio_rw(bio));
+		return;
+	}
+
+	DMERR_LIMIT("Read failure on mirror device %s.  Failing I/O.",
+		    m->dev->name);
+	bio_endio(bio, -EIO);
+}
+
+/* Asynchronous read. */
+static void read_async_bio(struct mirror *m, struct bio *bio)
+{
+	struct dm_io_region io;
+	struct dm_io_request io_req = {
+		.bi_rw = READ,
+		.mem.type = DM_IO_BVEC,
+		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
+		.notify.fn = read_callback,
+		.notify.context = bio,
+		.client = m->ms->io_client,
+	};
+
+	map_region(&io, m, bio);
+	bio_set_m(bio, m);
+	BUG_ON(dm_io(&io_req, 1, &io, NULL));
+}
+
+static inline int region_in_sync(struct mirror_set *ms, region_t region,
+				 int may_block)
+{
+	int state = dm_rh_get_state(ms->rh, region, may_block);
+	return state == DM_RH_CLEAN || state == DM_RH_DIRTY;
+}
+
+static void do_reads(struct mirror_set *ms, struct bio_list *reads)
+{
+	region_t region;
+	struct bio *bio;
+	struct mirror *m;
+
+	while ((bio = bio_list_pop(reads))) {
+		region = dm_rh_bio_to_region(ms->rh, bio);
+		m = get_default_mirror(ms);
+
+		/*
+		 * We can only read balance if the region is in sync.
+		 */
+		if (likely(region_in_sync(ms, region, 1)))
+			m = choose_mirror(ms, bio->bi_sector);
+		else if (m && atomic_read(&m->error_count))
+			m = NULL;
+
+		if (likely(m))
+			read_async_bio(m, bio);
+		else
+			bio_endio(bio, -EIO);
+	}
+}
+
+/*-----------------------------------------------------------------
+ * Writes.
+ *
+ * We do different things with the write io depending on the
+ * state of the region that it's in:
+ *
+ * SYNC: 	increment pending, use kcopyd to write to *all* mirrors
+ * RECOVERING:	delay the io until recovery completes
+ * NOSYNC:	increment pending, just write to the default mirror
+ *---------------------------------------------------------------*/
+
+
+static void write_callback(unsigned long error, void *context)
+{
+	unsigned i, ret = 0;
+	struct bio *bio = (struct bio *) context;
+	struct mirror_set *ms;
+	int should_wake = 0;
+	unsigned long flags;
+
+	ms = bio_get_m(bio)->ms;
+	bio_set_m(bio, NULL);
+
+	/*
+	 * NOTE: We don't decrement the pending count here,
+	 * instead it is done by the targets endio function.
+	 * This way we handle both writes to SYNC and NOSYNC
+	 * regions with the same code.
+	 */
+	if (likely(!error)) {
+		bio_endio(bio, ret);
+		return;
+	}
+
+	/*
+	 * If the bio is discard, return an error, but do not
+	 * degrade the array.
+	 */
+	if (bio->bi_rw & REQ_DISCARD) {
+		bio_endio(bio, -EOPNOTSUPP);
+		return;
+	}
+
+	for (i = 0; i < ms->nr_mirrors; i++)
+		if (test_bit(i, &error))
+			fail_mirror(ms->mirror + i, DM_RAID1_WRITE_ERROR);
+
+	/*
+	 * Need to raise event.  Since raising
+	 * events can block, we need to do it in
+	 * the main thread.
+	 */
+	spin_lock_irqsave(&ms->lock, flags);
+	if (!ms->failures.head)
+		should_wake = 1;
+	bio_list_add(&ms->failures, bio);
+	spin_unlock_irqrestore(&ms->lock, flags);
+	if (should_wake)
+		wakeup_mirrord(ms);
+}
+
+static void do_write(struct mirror_set *ms, struct bio *bio)
+{
+	unsigned int i;
+	struct dm_io_region io[ms->nr_mirrors], *dest = io;
+	struct mirror *m;
+	struct dm_io_request io_req = {
+		.bi_rw = WRITE | (bio->bi_rw & WRITE_FLUSH_FUA),
+		.mem.type = DM_IO_BVEC,
+		.mem.ptr.bvec = bio->bi_io_vec + bio->bi_idx,
+		.notify.fn = write_callback,
+		.notify.context = bio,
+		.client = ms->io_client,
+	};
+
+	if (bio->bi_rw & REQ_DISCARD) {
+		io_req.bi_rw |= REQ_DISCARD;
+		io_req.mem.type = DM_IO_KMEM;
+		io_req.mem.ptr.addr = NULL;
+	}
+
+	for (i = 0, m = ms->mirror; i < ms->nr_mirrors; i++, m++)
+		map_region(dest++, m, bio);
+
+	/*
+	 * Use default mirror because we only need it to retrieve the reference
+	 * to the mirror set in write_callback().
+	 */
+	bio_set_m(bio, get_default_mirror(ms));
+
+	BUG_ON(dm_io(&io_req, ms->nr_mirrors, io, NULL));
+}
+
+static void do_writes(struct mirror_set *ms, struct bio_list *writes)
+{
+	int state;
+	struct bio *bio;
+	struct bio_list sync, nosync, recover, *this_list = NULL;
+	struct bio_list requeue;
+	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+	region_t region;
+
+	if (!writes->head)
+		return;
+
+	/*
+	 * Classify each write.
+	 */
+	bio_list_init(&sync);
+	bio_list_init(&nosync);
+	bio_list_init(&recover);
+	bio_list_init(&requeue);
+
+	while ((bio = bio_list_pop(writes))) {
+		if ((bio->bi_rw & REQ_FLUSH) ||
+		    (bio->bi_rw & REQ_DISCARD)) {
+			bio_list_add(&sync, bio);
+			continue;
+		}
+
+		region = dm_rh_bio_to_region(ms->rh, bio);
+
+		if (log->type->is_remote_recovering &&
+		    log->type->is_remote_recovering(log, region)) {
+			bio_list_add(&requeue, bio);
+			continue;
+		}
+
+		state = dm_rh_get_state(ms->rh, region, 1);
+		switch (state) {
+		case DM_RH_CLEAN:
+		case DM_RH_DIRTY:
+			this_list = &sync;
+			break;
+
+		case DM_RH_NOSYNC:
+			this_list = &nosync;
+			break;
+
+		case DM_RH_RECOVERING:
+			this_list = &recover;
+			break;
+		}
+
+		bio_list_add(this_list, bio);
+	}
+
+	/*
+	 * Add bios that are delayed due to remote recovery
+	 * back on to the write queue
+	 */
+	if (unlikely(requeue.head)) {
+		spin_lock_irq(&ms->lock);
+		bio_list_merge(&ms->writes, &requeue);
+		spin_unlock_irq(&ms->lock);
+		delayed_wake(ms);
+	}
+
+	/*
+	 * Increment the pending counts for any regions that will
+	 * be written to (writes to recover regions are going to
+	 * be delayed).
+	 */
+	dm_rh_inc_pending(ms->rh, &sync);
+	dm_rh_inc_pending(ms->rh, &nosync);
+
+	/*
+	 * If the flush fails on a previous call and succeeds here,
+	 * we must not reset the log_failure variable.  We need
+	 * userspace interaction to do that.
+	 */
+	ms->log_failure = dm_rh_flush(ms->rh) ? 1 : ms->log_failure;
+
+	/*
+	 * Dispatch io.
+	 */
+	if (unlikely(ms->log_failure) && errors_handled(ms)) {
+		spin_lock_irq(&ms->lock);
+		bio_list_merge(&ms->failures, &sync);
+		spin_unlock_irq(&ms->lock);
+		wakeup_mirrord(ms);
+	} else
+		while ((bio = bio_list_pop(&sync)))
+			do_write(ms, bio);
+
+	while ((bio = bio_list_pop(&recover)))
+		dm_rh_delay(ms->rh, bio);
+
+	while ((bio = bio_list_pop(&nosync))) {
+		if (unlikely(ms->leg_failure) && errors_handled(ms)) {
+			spin_lock_irq(&ms->lock);
+			bio_list_add(&ms->failures, bio);
+			spin_unlock_irq(&ms->lock);
+			wakeup_mirrord(ms);
+		} else {
+			map_bio(get_default_mirror(ms), bio);
+			generic_make_request(bio);
+		}
+	}
+}
+
+static void do_failures(struct mirror_set *ms, struct bio_list *failures)
+{
+	struct bio *bio;
+
+	if (likely(!failures->head))
+		return;
+
+	/*
+	 * If the log has failed, unattempted writes are being
+	 * put on the holds list.  We can't issue those writes
+	 * until a log has been marked, so we must store them.
+	 *
+	 * If a 'noflush' suspend is in progress, we can requeue
+	 * the I/O's to the core.  This give userspace a chance
+	 * to reconfigure the mirror, at which point the core
+	 * will reissue the writes.  If the 'noflush' flag is
+	 * not set, we have no choice but to return errors.
+	 *
+	 * Some writes on the failures list may have been
+	 * submitted before the log failure and represent a
+	 * failure to write to one of the devices.  It is ok
+	 * for us to treat them the same and requeue them
+	 * as well.
+	 */
+	while ((bio = bio_list_pop(failures))) {
+		if (!ms->log_failure) {
+			ms->in_sync = 0;
+			dm_rh_mark_nosync(ms->rh, bio);
+		}
+
+		/*
+		 * If all the legs are dead, fail the I/O.
+		 * If we have been told to handle errors, hold the bio
+		 * and wait for userspace to deal with the problem.
+		 * Otherwise pretend that the I/O succeeded. (This would
+		 * be wrong if the failed leg returned after reboot and
+		 * got replicated back to the good legs.)
+		 */
+		if (!get_valid_mirror(ms))
+			bio_endio(bio, -EIO);
+		else if (errors_handled(ms))
+			hold_bio(ms, bio);
+		else
+			bio_endio(bio, 0);
+	}
+}
+
+static void trigger_event(struct work_struct *work)
+{
+	struct mirror_set *ms =
+		container_of(work, struct mirror_set, trigger_event);
+
+	dm_table_event(ms->ti->table);
+}
+
+/*-----------------------------------------------------------------
+ * kmirrord
+ *---------------------------------------------------------------*/
+static void do_mirror(struct work_struct *work)
+{
+	struct mirror_set *ms = container_of(work, struct mirror_set,
+					     kmirrord_work);
+	struct bio_list reads, writes, failures;
+	unsigned long flags;
+
+	spin_lock_irqsave(&ms->lock, flags);
+	reads = ms->reads;
+	writes = ms->writes;
+	failures = ms->failures;
+	bio_list_init(&ms->reads);
+	bio_list_init(&ms->writes);
+	bio_list_init(&ms->failures);
+	spin_unlock_irqrestore(&ms->lock, flags);
+
+	dm_rh_update_states(ms->rh, errors_handled(ms));
+	do_recovery(ms);
+	do_reads(ms, &reads);
+	do_writes(ms, &writes);
+	do_failures(ms, &failures);
+}
+
+/*-----------------------------------------------------------------
+ * Target functions
+ *---------------------------------------------------------------*/
+static struct mirror_set *alloc_context(unsigned int nr_mirrors,
+					uint32_t region_size,
+					struct dm_target *ti,
+					struct dm_dirty_log *dl)
+{
+	size_t len;
+	struct mirror_set *ms = NULL;
+
+	len = sizeof(*ms) + (sizeof(ms->mirror[0]) * nr_mirrors);
+
+	ms = kzalloc(len, GFP_KERNEL);
+	if (!ms) {
+		ti->error = "Cannot allocate mirror context";
+		return NULL;
+	}
+
+	spin_lock_init(&ms->lock);
+	bio_list_init(&ms->reads);
+	bio_list_init(&ms->writes);
+	bio_list_init(&ms->failures);
+	bio_list_init(&ms->holds);
+
+	ms->ti = ti;
+	ms->nr_mirrors = nr_mirrors;
+	ms->nr_regions = dm_sector_div_up(ti->len, region_size);
+	ms->in_sync = 0;
+	ms->log_failure = 0;
+	ms->leg_failure = 0;
+	atomic_set(&ms->suspend, 0);
+	atomic_set(&ms->default_mirror, DEFAULT_MIRROR);
+
+	ms->read_record_pool = mempool_create_slab_pool(MIN_READ_RECORDS,
+						_dm_raid1_read_record_cache);
+
+	if (!ms->read_record_pool) {
+		ti->error = "Error creating mirror read_record_pool";
+		kfree(ms);
+		return NULL;
+	}
+
+	ms->io_client = dm_io_client_create();
+	if (IS_ERR(ms->io_client)) {
+		ti->error = "Error creating dm_io client";
+		mempool_destroy(ms->read_record_pool);
+		kfree(ms);
+ 		return NULL;
+	}
+
+	ms->rh = dm_region_hash_create(ms, dispatch_bios, wakeup_mirrord,
+				       wakeup_all_recovery_waiters,
+				       ms->ti->begin, MAX_RECOVERY,
+				       dl, region_size, ms->nr_regions);
+	if (IS_ERR(ms->rh)) {
+		ti->error = "Error creating dirty region hash";
+		dm_io_client_destroy(ms->io_client);
+		mempool_destroy(ms->read_record_pool);
+		kfree(ms);
+		return NULL;
+	}
+
+	return ms;
+}
+
+static void free_context(struct mirror_set *ms, struct dm_target *ti,
+			 unsigned int m)
+{
+	while (m--)
+		dm_put_device(ti, ms->mirror[m].dev);
+
+	dm_io_client_destroy(ms->io_client);
+	dm_region_hash_destroy(ms->rh);
+	mempool_destroy(ms->read_record_pool);
+	kfree(ms);
+}
+
+static int get_mirror(struct mirror_set *ms, struct dm_target *ti,
+		      unsigned int mirror, char **argv)
+{
+	unsigned long long offset;
+	char dummy;
+
+	if (sscanf(argv[1], "%llu%c", &offset, &dummy) != 1) {
+		ti->error = "Invalid offset";
+		return -EINVAL;
+	}
+
+	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
+			  &ms->mirror[mirror].dev)) {
+		ti->error = "Device lookup failure";
+		return -ENXIO;
+	}
+
+	ms->mirror[mirror].ms = ms;
+	atomic_set(&(ms->mirror[mirror].error_count), 0);
+	ms->mirror[mirror].error_type = 0;
+	ms->mirror[mirror].offset = offset;
+
+	return 0;
+}
+
+/*
+ * Create dirty log: log_type #log_params <log_params>
+ */
+static struct dm_dirty_log *create_dirty_log(struct dm_target *ti,
+					     unsigned argc, char **argv,
+					     unsigned *args_used)
+{
+	unsigned param_count;
+	struct dm_dirty_log *dl;
+	char dummy;
+
+	if (argc < 2) {
+		ti->error = "Insufficient mirror log arguments";
+		return NULL;
+	}
+
+	if (sscanf(argv[1], "%u%c", &param_count, &dummy) != 1) {
+		ti->error = "Invalid mirror log argument count";
+		return NULL;
+	}
+
+	*args_used = 2 + param_count;
+
+	if (argc < *args_used) {
+		ti->error = "Insufficient mirror log arguments";
+		return NULL;
+	}
+
+	dl = dm_dirty_log_create(argv[0], ti, mirror_flush, param_count,
+				 argv + 2);
+	if (!dl) {
+		ti->error = "Error creating mirror dirty log";
+		return NULL;
+	}
+
+	return dl;
+}
+
+static int parse_features(struct mirror_set *ms, unsigned argc, char **argv,
+			  unsigned *args_used)
+{
+	unsigned num_features;
+	struct dm_target *ti = ms->ti;
+	char dummy;
+
+	*args_used = 0;
+
+	if (!argc)
+		return 0;
+
+	if (sscanf(argv[0], "%u%c", &num_features, &dummy) != 1) {
+		ti->error = "Invalid number of features";
+		return -EINVAL;
+	}
+
+	argc--;
+	argv++;
+	(*args_used)++;
+
+	if (num_features > argc) {
+		ti->error = "Not enough arguments to support feature count";
+		return -EINVAL;
+	}
+
+	if (!strcmp("handle_errors", argv[0]))
+		ms->features |= DM_RAID1_HANDLE_ERRORS;
+	else {
+		ti->error = "Unrecognised feature requested";
+		return -EINVAL;
+	}
+
+	(*args_used)++;
+
+	return 0;
+}
+
+/*
+ * Construct a mirror mapping:
+ *
+ * log_type #log_params <log_params>
+ * #mirrors [mirror_path offset]{2,}
+ * [#features <features>]
+ *
+ * log_type is "core" or "disk"
+ * #log_params is between 1 and 3
+ *
+ * If present, features must be "handle_errors".
+ */
+static int mirror_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+	int r;
+	unsigned int nr_mirrors, m, args_used;
+	struct mirror_set *ms;
+	struct dm_dirty_log *dl;
+	char dummy;
+
+	dl = create_dirty_log(ti, argc, argv, &args_used);
+	if (!dl)
+		return -EINVAL;
+
+	argv += args_used;
+	argc -= args_used;
+
+	if (!argc || sscanf(argv[0], "%u%c", &nr_mirrors, &dummy) != 1 ||
+	    nr_mirrors < 2 || nr_mirrors > DM_KCOPYD_MAX_REGIONS + 1) {
+		ti->error = "Invalid number of mirrors";
+		dm_dirty_log_destroy(dl);
+		return -EINVAL;
+	}
+
+	argv++, argc--;
+
+	if (argc < nr_mirrors * 2) {
+		ti->error = "Too few mirror arguments";
+		dm_dirty_log_destroy(dl);
+		return -EINVAL;
+	}
+
+	ms = alloc_context(nr_mirrors, dl->type->get_region_size(dl), ti, dl);
+	if (!ms) {
+		dm_dirty_log_destroy(dl);
+		return -ENOMEM;
+	}
+
+	/* Get the mirror parameter sets */
+	for (m = 0; m < nr_mirrors; m++) {
+		r = get_mirror(ms, ti, m, argv);
+		if (r) {
+			free_context(ms, ti, m);
+			return r;
+		}
+		argv += 2;
+		argc -= 2;
+	}
+
+	ti->private = ms;
+	ti->split_io = dm_rh_get_region_size(ms->rh);
+	ti->num_flush_requests = 1;
+	ti->num_discard_requests = 1;
+	ti->discard_zeroes_data_unsupported = 1;
+
+	ms->kmirrord_wq = alloc_workqueue("kmirrord",
+					  WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
+	if (!ms->kmirrord_wq) {
+		DMERR("couldn't start kmirrord");
+		r = -ENOMEM;
+		goto err_free_context;
+	}
+	INIT_WORK(&ms->kmirrord_work, do_mirror);
+	init_timer(&ms->timer);
+	ms->timer_pending = 0;
+	INIT_WORK(&ms->trigger_event, trigger_event);
+
+	r = parse_features(ms, argc, argv, &args_used);
+	if (r)
+		goto err_destroy_wq;
+
+	argv += args_used;
+	argc -= args_used;
+
+	/*
+	 * Any read-balancing addition depends on the
+	 * DM_RAID1_HANDLE_ERRORS flag being present.
+	 * This is because the decision to balance depends
+	 * on the sync state of a region.  If the above
+	 * flag is not present, we ignore errors; and
+	 * the sync state may be inaccurate.
+	 */
+
+	if (argc) {
+		ti->error = "Too many mirror arguments";
+		r = -EINVAL;
+		goto err_destroy_wq;
+	}
+
+	ms->kcopyd_client = dm_kcopyd_client_create();
+	if (IS_ERR(ms->kcopyd_client)) {
+		r = PTR_ERR(ms->kcopyd_client);
+		goto err_destroy_wq;
+	}
+
+	wakeup_mirrord(ms);
+	return 0;
+
+err_destroy_wq:
+	destroy_workqueue(ms->kmirrord_wq);
+err_free_context:
+	free_context(ms, ti, ms->nr_mirrors);
+	return r;
+}
+
+static void mirror_dtr(struct dm_target *ti)
+{
+	struct mirror_set *ms = (struct mirror_set *) ti->private;
+
+	del_timer_sync(&ms->timer);
+	flush_workqueue(ms->kmirrord_wq);
+	flush_work_sync(&ms->trigger_event);
+	dm_kcopyd_client_destroy(ms->kcopyd_client);
+	destroy_workqueue(ms->kmirrord_wq);
+	free_context(ms, ti, ms->nr_mirrors);
+}
+
+/*
+ * Mirror mapping function
+ */
+static int mirror_map(struct dm_target *ti, struct bio *bio,
+		      union map_info *map_context)
+{
+	int r, rw = bio_rw(bio);
+	struct mirror *m;
+	struct mirror_set *ms = ti->private;
+	struct dm_raid1_read_record *read_record = NULL;
+	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+
+	if (rw == WRITE) {
+		/* Save region for mirror_end_io() handler */
+		map_context->ll = dm_rh_bio_to_region(ms->rh, bio);
+		queue_bio(ms, bio, rw);
+		return DM_MAPIO_SUBMITTED;
+	}
+
+	r = log->type->in_sync(log, dm_rh_bio_to_region(ms->rh, bio), 0);
+	if (r < 0 && r != -EWOULDBLOCK)
+		return r;
+
+	/*
+	 * If region is not in-sync queue the bio.
+	 */
+	if (!r || (r == -EWOULDBLOCK)) {
+		if (rw == READA)
+			return -EWOULDBLOCK;
+
+		queue_bio(ms, bio, rw);
+		return DM_MAPIO_SUBMITTED;
+	}
+
+	/*
+	 * The region is in-sync and we can perform reads directly.
+	 * Store enough information so we can retry if it fails.
+	 */
+	m = choose_mirror(ms, bio->bi_sector);
+	if (unlikely(!m))
+		return -EIO;
+
+	read_record = mempool_alloc(ms->read_record_pool, GFP_NOIO);
+	if (likely(read_record)) {
+		dm_bio_record(&read_record->details, bio);
+		map_context->ptr = read_record;
+		read_record->m = m;
+	}
+
+	map_bio(m, bio);
+
+	return DM_MAPIO_REMAPPED;
+}
+
+static int mirror_end_io(struct dm_target *ti, struct bio *bio,
+			 int error, union map_info *map_context)
+{
+	int rw = bio_rw(bio);
+	struct mirror_set *ms = (struct mirror_set *) ti->private;
+	struct mirror *m = NULL;
+	struct dm_bio_details *bd = NULL;
+	struct dm_raid1_read_record *read_record = map_context->ptr;
+
+	/*
+	 * We need to dec pending if this was a write.
+	 */
+	if (rw == WRITE) {
+		if (!(bio->bi_rw & (REQ_FLUSH | REQ_DISCARD)))
+			dm_rh_dec(ms->rh, map_context->ll);
+		return error;
+	}
+
+	if (error == -EOPNOTSUPP)
+		goto out;
+
+	if ((error == -EWOULDBLOCK) && (bio->bi_rw & REQ_RAHEAD))
+		goto out;
+
+	if (unlikely(error)) {
+		if (!read_record) {
+			/*
+			 * There wasn't enough memory to record necessary
+			 * information for a retry or there was no other
+			 * mirror in-sync.
+			 */
+			DMERR_LIMIT("Mirror read failed.");
+			return -EIO;
+		}
+
+		m = read_record->m;
+
+		DMERR("Mirror read failed from %s. Trying alternative device.",
+		      m->dev->name);
+
+		fail_mirror(m, DM_RAID1_READ_ERROR);
+
+		/*
+		 * A failed read is requeued for another attempt using an intact
+		 * mirror.
+		 */
+		if (default_ok(m) || mirror_available(ms, bio)) {
+			bd = &read_record->details;
+
+			dm_bio_restore(bd, bio);
+			mempool_free(read_record, ms->read_record_pool);
+			map_context->ptr = NULL;
+			queue_bio(ms, bio, rw);
+			return 1;
+		}
+		DMERR("All replicated volumes dead, failing I/O");
+	}
+
+out:
+	if (read_record) {
+		mempool_free(read_record, ms->read_record_pool);
+		map_context->ptr = NULL;
+	}
+
+	return error;
+}
+
+static void mirror_presuspend(struct dm_target *ti)
+{
+	struct mirror_set *ms = (struct mirror_set *) ti->private;
+	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+
+	struct bio_list holds;
+	struct bio *bio;
+
+	atomic_set(&ms->suspend, 1);
+
+	/*
+	 * Process bios in the hold list to start recovery waiting
+	 * for bios in the hold list. After the process, no bio has
+	 * a chance to be added in the hold list because ms->suspend
+	 * is set.
+	 */
+	spin_lock_irq(&ms->lock);
+	holds = ms->holds;
+	bio_list_init(&ms->holds);
+	spin_unlock_irq(&ms->lock);
+
+	while ((bio = bio_list_pop(&holds)))
+		hold_bio(ms, bio);
+
+	/*
+	 * We must finish up all the work that we've
+	 * generated (i.e. recovery work).
+	 */
+	dm_rh_stop_recovery(ms->rh);
+
+	wait_event(_kmirrord_recovery_stopped,
+		   !dm_rh_recovery_in_flight(ms->rh));
+
+	if (log->type->presuspend && log->type->presuspend(log))
+		/* FIXME: need better error handling */
+		DMWARN("log presuspend failed");
+
+	/*
+	 * Now that recovery is complete/stopped and the
+	 * delayed bios are queued, we need to wait for
+	 * the worker thread to complete.  This way,
+	 * we know that all of our I/O has been pushed.
+	 */
+	flush_workqueue(ms->kmirrord_wq);
+}
+
+static void mirror_postsuspend(struct dm_target *ti)
+{
+	struct mirror_set *ms = ti->private;
+	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+
+	if (log->type->postsuspend && log->type->postsuspend(log))
+		/* FIXME: need better error handling */
+		DMWARN("log postsuspend failed");
+}
+
+static void mirror_resume(struct dm_target *ti)
+{
+	struct mirror_set *ms = ti->private;
+	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+
+	atomic_set(&ms->suspend, 0);
+	if (log->type->resume && log->type->resume(log))
+		/* FIXME: need better error handling */
+		DMWARN("log resume failed");
+	dm_rh_start_recovery(ms->rh);
+}
+
+/*
+ * device_status_char
+ * @m: mirror device/leg we want the status of
+ *
+ * We return one character representing the most severe error
+ * we have encountered.
+ *    A => Alive - No failures
+ *    D => Dead - A write failure occurred leaving mirror out-of-sync
+ *    S => Sync - A sychronization failure occurred, mirror out-of-sync
+ *    R => Read - A read failure occurred, mirror data unaffected
+ *
+ * Returns: <char>
+ */
+static char device_status_char(struct mirror *m)
+{
+	if (!atomic_read(&(m->error_count)))
+		return 'A';
+
+	return (test_bit(DM_RAID1_FLUSH_ERROR, &(m->error_type))) ? 'F' :
+		(test_bit(DM_RAID1_WRITE_ERROR, &(m->error_type))) ? 'D' :
+		(test_bit(DM_RAID1_SYNC_ERROR, &(m->error_type))) ? 'S' :
+		(test_bit(DM_RAID1_READ_ERROR, &(m->error_type))) ? 'R' : 'U';
+}
+
+
+static void mirror_status(struct dm_target *ti, status_type_t type,
+			  char *result, unsigned int maxlen)
+{
+	unsigned int m, sz = 0;
+	struct mirror_set *ms = (struct mirror_set *) ti->private;
+	struct dm_dirty_log *log = dm_rh_dirty_log(ms->rh);
+	char buffer[ms->nr_mirrors + 1];
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		DMEMIT("%d ", ms->nr_mirrors);
+		for (m = 0; m < ms->nr_mirrors; m++) {
+			DMEMIT("%s ", ms->mirror[m].dev->name);
+			buffer[m] = device_status_char(&(ms->mirror[m]));
+		}
+		buffer[m] = '\0';
+
+		DMEMIT("%llu/%llu 1 %s ",
+		      (unsigned long long)log->type->get_sync_count(log),
+		      (unsigned long long)ms->nr_regions, buffer);
+
+		sz += log->type->status(log, type, result+sz, maxlen-sz);
+
+		break;
+
+	case STATUSTYPE_TABLE:
+		sz = log->type->status(log, type, result, maxlen);
+
+		DMEMIT("%d", ms->nr_mirrors);
+		for (m = 0; m < ms->nr_mirrors; m++)
+			DMEMIT(" %s %llu", ms->mirror[m].dev->name,
+			       (unsigned long long)ms->mirror[m].offset);
+
+		if (ms->features & DM_RAID1_HANDLE_ERRORS)
+			DMEMIT(" 1 handle_errors");
+	}
+}
+
+static int mirror_iterate_devices(struct dm_target *ti,
+				  iterate_devices_callout_fn fn, void *data)
+{
+	struct mirror_set *ms = ti->private;
+	int ret = 0;
+	unsigned i;
+
+	for (i = 0; !ret && i < ms->nr_mirrors; i++)
+		ret = fn(ti, ms->mirror[i].dev,
+			 ms->mirror[i].offset, ti->len, data);
+
+	return ret;
+}
+
+static struct target_type mirror_target = {
+	.name	 = "mirror",
+	.version = {1, 12, 1},
+	.module	 = THIS_MODULE,
+	.ctr	 = mirror_ctr,
+	.dtr	 = mirror_dtr,
+	.map	 = mirror_map,
+	.end_io	 = mirror_end_io,
+	.presuspend = mirror_presuspend,
+	.postsuspend = mirror_postsuspend,
+	.resume	 = mirror_resume,
+	.status	 = mirror_status,
+	.iterate_devices = mirror_iterate_devices,
+};
+
+static int __init dm_mirror_init(void)
+{
+	int r;
+
+	_dm_raid1_read_record_cache = KMEM_CACHE(dm_raid1_read_record, 0);
+	if (!_dm_raid1_read_record_cache) {
+		DMERR("Can't allocate dm_raid1_read_record cache");
+		r = -ENOMEM;
+		goto bad_cache;
+	}
+
+	r = dm_register_target(&mirror_target);
+	if (r < 0) {
+		DMERR("Failed to register mirror target");
+		goto bad_target;
+	}
+
+	return 0;
+
+bad_target:
+	kmem_cache_destroy(_dm_raid1_read_record_cache);
+bad_cache:
+	return r;
+}
+
+static void __exit dm_mirror_exit(void)
+{
+	dm_unregister_target(&mirror_target);
+	kmem_cache_destroy(_dm_raid1_read_record_cache);
+}
+
+/* Module hooks */
+module_init(dm_mirror_init);
+module_exit(dm_mirror_exit);
+
+MODULE_DESCRIPTION(DM_NAME " mirror target");
+MODULE_AUTHOR("Joe Thornber");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-region-hash.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-region-hash.c
new file mode 100644
index 0000000..69732e0
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-region-hash.c
@@ -0,0 +1,723 @@
+/*
+ * Copyright (C) 2003 Sistina Software Limited.
+ * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/dm-dirty-log.h>
+#include <linux/dm-region-hash.h>
+
+#include <linux/ctype.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+
+#include "dm.h"
+
+#define	DM_MSG_PREFIX	"region hash"
+
+/*-----------------------------------------------------------------
+ * Region hash
+ *
+ * The mirror splits itself up into discrete regions.  Each
+ * region can be in one of three states: clean, dirty,
+ * nosync.  There is no need to put clean regions in the hash.
+ *
+ * In addition to being present in the hash table a region _may_
+ * be present on one of three lists.
+ *
+ *   clean_regions: Regions on this list have no io pending to
+ *   them, they are in sync, we are no longer interested in them,
+ *   they are dull.  dm_rh_update_states() will remove them from the
+ *   hash table.
+ *
+ *   quiesced_regions: These regions have been spun down, ready
+ *   for recovery.  rh_recovery_start() will remove regions from
+ *   this list and hand them to kmirrord, which will schedule the
+ *   recovery io with kcopyd.
+ *
+ *   recovered_regions: Regions that kcopyd has successfully
+ *   recovered.  dm_rh_update_states() will now schedule any delayed
+ *   io, up the recovery_count, and remove the region from the
+ *   hash.
+ *
+ * There are 2 locks:
+ *   A rw spin lock 'hash_lock' protects just the hash table,
+ *   this is never held in write mode from interrupt context,
+ *   which I believe means that we only have to disable irqs when
+ *   doing a write lock.
+ *
+ *   An ordinary spin lock 'region_lock' that protects the three
+ *   lists in the region_hash, with the 'state', 'list' and
+ *   'delayed_bios' fields of the regions.  This is used from irq
+ *   context, so all other uses will have to suspend local irqs.
+ *---------------------------------------------------------------*/
+struct dm_region_hash {
+	uint32_t region_size;
+	unsigned region_shift;
+
+	/* holds persistent region state */
+	struct dm_dirty_log *log;
+
+	/* hash table */
+	rwlock_t hash_lock;
+	mempool_t *region_pool;
+	unsigned mask;
+	unsigned nr_buckets;
+	unsigned prime;
+	unsigned shift;
+	struct list_head *buckets;
+
+	unsigned max_recovery; /* Max # of regions to recover in parallel */
+
+	spinlock_t region_lock;
+	atomic_t recovery_in_flight;
+	struct semaphore recovery_count;
+	struct list_head clean_regions;
+	struct list_head quiesced_regions;
+	struct list_head recovered_regions;
+	struct list_head failed_recovered_regions;
+
+	/*
+	 * If there was a flush failure no regions can be marked clean.
+	 */
+	int flush_failure;
+
+	void *context;
+	sector_t target_begin;
+
+	/* Callback function to schedule bios writes */
+	void (*dispatch_bios)(void *context, struct bio_list *bios);
+
+	/* Callback function to wakeup callers worker thread. */
+	void (*wakeup_workers)(void *context);
+
+	/* Callback function to wakeup callers recovery waiters. */
+	void (*wakeup_all_recovery_waiters)(void *context);
+};
+
+struct dm_region {
+	struct dm_region_hash *rh;	/* FIXME: can we get rid of this ? */
+	region_t key;
+	int state;
+
+	struct list_head hash_list;
+	struct list_head list;
+
+	atomic_t pending;
+	struct bio_list delayed_bios;
+};
+
+/*
+ * Conversion fns
+ */
+static region_t dm_rh_sector_to_region(struct dm_region_hash *rh, sector_t sector)
+{
+	return sector >> rh->region_shift;
+}
+
+sector_t dm_rh_region_to_sector(struct dm_region_hash *rh, region_t region)
+{
+	return region << rh->region_shift;
+}
+EXPORT_SYMBOL_GPL(dm_rh_region_to_sector);
+
+region_t dm_rh_bio_to_region(struct dm_region_hash *rh, struct bio *bio)
+{
+	return dm_rh_sector_to_region(rh, bio->bi_sector - rh->target_begin);
+}
+EXPORT_SYMBOL_GPL(dm_rh_bio_to_region);
+
+void *dm_rh_region_context(struct dm_region *reg)
+{
+	return reg->rh->context;
+}
+EXPORT_SYMBOL_GPL(dm_rh_region_context);
+
+region_t dm_rh_get_region_key(struct dm_region *reg)
+{
+	return reg->key;
+}
+EXPORT_SYMBOL_GPL(dm_rh_get_region_key);
+
+sector_t dm_rh_get_region_size(struct dm_region_hash *rh)
+{
+	return rh->region_size;
+}
+EXPORT_SYMBOL_GPL(dm_rh_get_region_size);
+
+/*
+ * FIXME: shall we pass in a structure instead of all these args to
+ * dm_region_hash_create()????
+ */
+#define RH_HASH_MULT 2654435387U
+#define RH_HASH_SHIFT 12
+
+#define MIN_REGIONS 64
+struct dm_region_hash *dm_region_hash_create(
+		void *context, void (*dispatch_bios)(void *context,
+						     struct bio_list *bios),
+		void (*wakeup_workers)(void *context),
+		void (*wakeup_all_recovery_waiters)(void *context),
+		sector_t target_begin, unsigned max_recovery,
+		struct dm_dirty_log *log, uint32_t region_size,
+		region_t nr_regions)
+{
+	struct dm_region_hash *rh;
+	unsigned nr_buckets, max_buckets;
+	size_t i;
+
+	/*
+	 * Calculate a suitable number of buckets for our hash
+	 * table.
+	 */
+	max_buckets = nr_regions >> 6;
+	for (nr_buckets = 128u; nr_buckets < max_buckets; nr_buckets <<= 1)
+		;
+	nr_buckets >>= 1;
+
+	rh = kmalloc(sizeof(*rh), GFP_KERNEL);
+	if (!rh) {
+		DMERR("unable to allocate region hash memory");
+		return ERR_PTR(-ENOMEM);
+	}
+
+	rh->context = context;
+	rh->dispatch_bios = dispatch_bios;
+	rh->wakeup_workers = wakeup_workers;
+	rh->wakeup_all_recovery_waiters = wakeup_all_recovery_waiters;
+	rh->target_begin = target_begin;
+	rh->max_recovery = max_recovery;
+	rh->log = log;
+	rh->region_size = region_size;
+	rh->region_shift = ffs(region_size) - 1;
+	rwlock_init(&rh->hash_lock);
+	rh->mask = nr_buckets - 1;
+	rh->nr_buckets = nr_buckets;
+
+	rh->shift = RH_HASH_SHIFT;
+	rh->prime = RH_HASH_MULT;
+
+	rh->buckets = vmalloc(nr_buckets * sizeof(*rh->buckets));
+	if (!rh->buckets) {
+		DMERR("unable to allocate region hash bucket memory");
+		kfree(rh);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	for (i = 0; i < nr_buckets; i++)
+		INIT_LIST_HEAD(rh->buckets + i);
+
+	spin_lock_init(&rh->region_lock);
+	sema_init(&rh->recovery_count, 0);
+	atomic_set(&rh->recovery_in_flight, 0);
+	INIT_LIST_HEAD(&rh->clean_regions);
+	INIT_LIST_HEAD(&rh->quiesced_regions);
+	INIT_LIST_HEAD(&rh->recovered_regions);
+	INIT_LIST_HEAD(&rh->failed_recovered_regions);
+	rh->flush_failure = 0;
+
+	rh->region_pool = mempool_create_kmalloc_pool(MIN_REGIONS,
+						      sizeof(struct dm_region));
+	if (!rh->region_pool) {
+		vfree(rh->buckets);
+		kfree(rh);
+		rh = ERR_PTR(-ENOMEM);
+	}
+
+	return rh;
+}
+EXPORT_SYMBOL_GPL(dm_region_hash_create);
+
+void dm_region_hash_destroy(struct dm_region_hash *rh)
+{
+	unsigned h;
+	struct dm_region *reg, *nreg;
+
+	BUG_ON(!list_empty(&rh->quiesced_regions));
+	for (h = 0; h < rh->nr_buckets; h++) {
+		list_for_each_entry_safe(reg, nreg, rh->buckets + h,
+					 hash_list) {
+			BUG_ON(atomic_read(&reg->pending));
+			mempool_free(reg, rh->region_pool);
+		}
+	}
+
+	if (rh->log)
+		dm_dirty_log_destroy(rh->log);
+
+	if (rh->region_pool)
+		mempool_destroy(rh->region_pool);
+
+	vfree(rh->buckets);
+	kfree(rh);
+}
+EXPORT_SYMBOL_GPL(dm_region_hash_destroy);
+
+struct dm_dirty_log *dm_rh_dirty_log(struct dm_region_hash *rh)
+{
+	return rh->log;
+}
+EXPORT_SYMBOL_GPL(dm_rh_dirty_log);
+
+static unsigned rh_hash(struct dm_region_hash *rh, region_t region)
+{
+	return (unsigned) ((region * rh->prime) >> rh->shift) & rh->mask;
+}
+
+static struct dm_region *__rh_lookup(struct dm_region_hash *rh, region_t region)
+{
+	struct dm_region *reg;
+	struct list_head *bucket = rh->buckets + rh_hash(rh, region);
+
+	list_for_each_entry(reg, bucket, hash_list)
+		if (reg->key == region)
+			return reg;
+
+	return NULL;
+}
+
+static void __rh_insert(struct dm_region_hash *rh, struct dm_region *reg)
+{
+	list_add(&reg->hash_list, rh->buckets + rh_hash(rh, reg->key));
+}
+
+static struct dm_region *__rh_alloc(struct dm_region_hash *rh, region_t region)
+{
+	struct dm_region *reg, *nreg;
+
+	nreg = mempool_alloc(rh->region_pool, GFP_ATOMIC);
+	if (unlikely(!nreg))
+		nreg = kmalloc(sizeof(*nreg), GFP_NOIO | __GFP_NOFAIL);
+
+	nreg->state = rh->log->type->in_sync(rh->log, region, 1) ?
+		      DM_RH_CLEAN : DM_RH_NOSYNC;
+	nreg->rh = rh;
+	nreg->key = region;
+	INIT_LIST_HEAD(&nreg->list);
+	atomic_set(&nreg->pending, 0);
+	bio_list_init(&nreg->delayed_bios);
+
+	write_lock_irq(&rh->hash_lock);
+	reg = __rh_lookup(rh, region);
+	if (reg)
+		/* We lost the race. */
+		mempool_free(nreg, rh->region_pool);
+	else {
+		__rh_insert(rh, nreg);
+		if (nreg->state == DM_RH_CLEAN) {
+			spin_lock(&rh->region_lock);
+			list_add(&nreg->list, &rh->clean_regions);
+			spin_unlock(&rh->region_lock);
+		}
+
+		reg = nreg;
+	}
+	write_unlock_irq(&rh->hash_lock);
+
+	return reg;
+}
+
+static struct dm_region *__rh_find(struct dm_region_hash *rh, region_t region)
+{
+	struct dm_region *reg;
+
+	reg = __rh_lookup(rh, region);
+	if (!reg) {
+		read_unlock(&rh->hash_lock);
+		reg = __rh_alloc(rh, region);
+		read_lock(&rh->hash_lock);
+	}
+
+	return reg;
+}
+
+int dm_rh_get_state(struct dm_region_hash *rh, region_t region, int may_block)
+{
+	int r;
+	struct dm_region *reg;
+
+	read_lock(&rh->hash_lock);
+	reg = __rh_lookup(rh, region);
+	read_unlock(&rh->hash_lock);
+
+	if (reg)
+		return reg->state;
+
+	/*
+	 * The region wasn't in the hash, so we fall back to the
+	 * dirty log.
+	 */
+	r = rh->log->type->in_sync(rh->log, region, may_block);
+
+	/*
+	 * Any error from the dirty log (eg. -EWOULDBLOCK) gets
+	 * taken as a DM_RH_NOSYNC
+	 */
+	return r == 1 ? DM_RH_CLEAN : DM_RH_NOSYNC;
+}
+EXPORT_SYMBOL_GPL(dm_rh_get_state);
+
+static void complete_resync_work(struct dm_region *reg, int success)
+{
+	struct dm_region_hash *rh = reg->rh;
+
+	rh->log->type->set_region_sync(rh->log, reg->key, success);
+
+	/*
+	 * Dispatch the bios before we call 'wake_up_all'.
+	 * This is important because if we are suspending,
+	 * we want to know that recovery is complete and
+	 * the work queue is flushed.  If we wake_up_all
+	 * before we dispatch_bios (queue bios and call wake()),
+	 * then we risk suspending before the work queue
+	 * has been properly flushed.
+	 */
+	rh->dispatch_bios(rh->context, &reg->delayed_bios);
+	if (atomic_dec_and_test(&rh->recovery_in_flight))
+		rh->wakeup_all_recovery_waiters(rh->context);
+	up(&rh->recovery_count);
+}
+
+/* dm_rh_mark_nosync
+ * @ms
+ * @bio
+ *
+ * The bio was written on some mirror(s) but failed on other mirror(s).
+ * We can successfully endio the bio but should avoid the region being
+ * marked clean by setting the state DM_RH_NOSYNC.
+ *
+ * This function is _not_ safe in interrupt context!
+ */
+void dm_rh_mark_nosync(struct dm_region_hash *rh, struct bio *bio)
+{
+	unsigned long flags;
+	struct dm_dirty_log *log = rh->log;
+	struct dm_region *reg;
+	region_t region = dm_rh_bio_to_region(rh, bio);
+	int recovering = 0;
+
+	if (bio->bi_rw & REQ_FLUSH) {
+		rh->flush_failure = 1;
+		return;
+	}
+
+	if (bio->bi_rw & REQ_DISCARD)
+		return;
+
+	/* We must inform the log that the sync count has changed. */
+	log->type->set_region_sync(log, region, 0);
+
+	read_lock(&rh->hash_lock);
+	reg = __rh_find(rh, region);
+	read_unlock(&rh->hash_lock);
+
+	/* region hash entry should exist because write was in-flight */
+	BUG_ON(!reg);
+	BUG_ON(!list_empty(&reg->list));
+
+	spin_lock_irqsave(&rh->region_lock, flags);
+	/*
+	 * Possible cases:
+	 *   1) DM_RH_DIRTY
+	 *   2) DM_RH_NOSYNC: was dirty, other preceding writes failed
+	 *   3) DM_RH_RECOVERING: flushing pending writes
+	 * Either case, the region should have not been connected to list.
+	 */
+	recovering = (reg->state == DM_RH_RECOVERING);
+	reg->state = DM_RH_NOSYNC;
+	BUG_ON(!list_empty(&reg->list));
+	spin_unlock_irqrestore(&rh->region_lock, flags);
+
+	if (recovering)
+		complete_resync_work(reg, 0);
+}
+EXPORT_SYMBOL_GPL(dm_rh_mark_nosync);
+
+void dm_rh_update_states(struct dm_region_hash *rh, int errors_handled)
+{
+	struct dm_region *reg, *next;
+
+	LIST_HEAD(clean);
+	LIST_HEAD(recovered);
+	LIST_HEAD(failed_recovered);
+
+	/*
+	 * Quickly grab the lists.
+	 */
+	write_lock_irq(&rh->hash_lock);
+	spin_lock(&rh->region_lock);
+	if (!list_empty(&rh->clean_regions)) {
+		list_splice_init(&rh->clean_regions, &clean);
+
+		list_for_each_entry(reg, &clean, list)
+			list_del(&reg->hash_list);
+	}
+
+	if (!list_empty(&rh->recovered_regions)) {
+		list_splice_init(&rh->recovered_regions, &recovered);
+
+		list_for_each_entry(reg, &recovered, list)
+			list_del(&reg->hash_list);
+	}
+
+	if (!list_empty(&rh->failed_recovered_regions)) {
+		list_splice_init(&rh->failed_recovered_regions,
+				 &failed_recovered);
+
+		list_for_each_entry(reg, &failed_recovered, list)
+			list_del(&reg->hash_list);
+	}
+
+	spin_unlock(&rh->region_lock);
+	write_unlock_irq(&rh->hash_lock);
+
+	/*
+	 * All the regions on the recovered and clean lists have
+	 * now been pulled out of the system, so no need to do
+	 * any more locking.
+	 */
+	list_for_each_entry_safe(reg, next, &recovered, list) {
+		rh->log->type->clear_region(rh->log, reg->key);
+		complete_resync_work(reg, 1);
+		mempool_free(reg, rh->region_pool);
+	}
+
+	list_for_each_entry_safe(reg, next, &failed_recovered, list) {
+		complete_resync_work(reg, errors_handled ? 0 : 1);
+		mempool_free(reg, rh->region_pool);
+	}
+
+	list_for_each_entry_safe(reg, next, &clean, list) {
+		rh->log->type->clear_region(rh->log, reg->key);
+		mempool_free(reg, rh->region_pool);
+	}
+
+	rh->log->type->flush(rh->log);
+}
+EXPORT_SYMBOL_GPL(dm_rh_update_states);
+
+static void rh_inc(struct dm_region_hash *rh, region_t region)
+{
+	struct dm_region *reg;
+
+	read_lock(&rh->hash_lock);
+	reg = __rh_find(rh, region);
+
+	spin_lock_irq(&rh->region_lock);
+	atomic_inc(&reg->pending);
+
+	if (reg->state == DM_RH_CLEAN) {
+		reg->state = DM_RH_DIRTY;
+		list_del_init(&reg->list);	/* take off the clean list */
+		spin_unlock_irq(&rh->region_lock);
+
+		rh->log->type->mark_region(rh->log, reg->key);
+	} else
+		spin_unlock_irq(&rh->region_lock);
+
+
+	read_unlock(&rh->hash_lock);
+}
+
+void dm_rh_inc_pending(struct dm_region_hash *rh, struct bio_list *bios)
+{
+	struct bio *bio;
+
+	for (bio = bios->head; bio; bio = bio->bi_next) {
+		if (bio->bi_rw & (REQ_FLUSH | REQ_DISCARD))
+			continue;
+		rh_inc(rh, dm_rh_bio_to_region(rh, bio));
+	}
+}
+EXPORT_SYMBOL_GPL(dm_rh_inc_pending);
+
+void dm_rh_dec(struct dm_region_hash *rh, region_t region)
+{
+	unsigned long flags;
+	struct dm_region *reg;
+	int should_wake = 0;
+
+	read_lock(&rh->hash_lock);
+	reg = __rh_lookup(rh, region);
+	read_unlock(&rh->hash_lock);
+
+	spin_lock_irqsave(&rh->region_lock, flags);
+	if (atomic_dec_and_test(&reg->pending)) {
+		/*
+		 * There is no pending I/O for this region.
+		 * We can move the region to corresponding list for next action.
+		 * At this point, the region is not yet connected to any list.
+		 *
+		 * If the state is DM_RH_NOSYNC, the region should be kept off
+		 * from clean list.
+		 * The hash entry for DM_RH_NOSYNC will remain in memory
+		 * until the region is recovered or the map is reloaded.
+		 */
+
+		/* do nothing for DM_RH_NOSYNC */
+		if (unlikely(rh->flush_failure)) {
+			/*
+			 * If a write flush failed some time ago, we
+			 * don't know whether or not this write made it
+			 * to the disk, so we must resync the device.
+			 */
+			reg->state = DM_RH_NOSYNC;
+		} else if (reg->state == DM_RH_RECOVERING) {
+			list_add_tail(&reg->list, &rh->quiesced_regions);
+		} else if (reg->state == DM_RH_DIRTY) {
+			reg->state = DM_RH_CLEAN;
+			list_add(&reg->list, &rh->clean_regions);
+		}
+		should_wake = 1;
+	}
+	spin_unlock_irqrestore(&rh->region_lock, flags);
+
+	if (should_wake)
+		rh->wakeup_workers(rh->context);
+}
+EXPORT_SYMBOL_GPL(dm_rh_dec);
+
+/*
+ * Starts quiescing a region in preparation for recovery.
+ */
+static int __rh_recovery_prepare(struct dm_region_hash *rh)
+{
+	int r;
+	region_t region;
+	struct dm_region *reg;
+
+	/*
+	 * Ask the dirty log what's next.
+	 */
+	r = rh->log->type->get_resync_work(rh->log, &region);
+	if (r <= 0)
+		return r;
+
+	/*
+	 * Get this region, and start it quiescing by setting the
+	 * recovering flag.
+	 */
+	read_lock(&rh->hash_lock);
+	reg = __rh_find(rh, region);
+	read_unlock(&rh->hash_lock);
+
+	spin_lock_irq(&rh->region_lock);
+	reg->state = DM_RH_RECOVERING;
+
+	/* Already quiesced ? */
+	if (atomic_read(&reg->pending))
+		list_del_init(&reg->list);
+	else
+		list_move(&reg->list, &rh->quiesced_regions);
+
+	spin_unlock_irq(&rh->region_lock);
+
+	return 1;
+}
+
+void dm_rh_recovery_prepare(struct dm_region_hash *rh)
+{
+	/* Extra reference to avoid race with dm_rh_stop_recovery */
+	atomic_inc(&rh->recovery_in_flight);
+
+	while (!down_trylock(&rh->recovery_count)) {
+		atomic_inc(&rh->recovery_in_flight);
+		if (__rh_recovery_prepare(rh) <= 0) {
+			atomic_dec(&rh->recovery_in_flight);
+			up(&rh->recovery_count);
+			break;
+		}
+	}
+
+	/* Drop the extra reference */
+	if (atomic_dec_and_test(&rh->recovery_in_flight))
+		rh->wakeup_all_recovery_waiters(rh->context);
+}
+EXPORT_SYMBOL_GPL(dm_rh_recovery_prepare);
+
+/*
+ * Returns any quiesced regions.
+ */
+struct dm_region *dm_rh_recovery_start(struct dm_region_hash *rh)
+{
+	struct dm_region *reg = NULL;
+
+	spin_lock_irq(&rh->region_lock);
+	if (!list_empty(&rh->quiesced_regions)) {
+		reg = list_entry(rh->quiesced_regions.next,
+				 struct dm_region, list);
+		list_del_init(&reg->list);  /* remove from the quiesced list */
+	}
+	spin_unlock_irq(&rh->region_lock);
+
+	return reg;
+}
+EXPORT_SYMBOL_GPL(dm_rh_recovery_start);
+
+void dm_rh_recovery_end(struct dm_region *reg, int success)
+{
+	struct dm_region_hash *rh = reg->rh;
+
+	spin_lock_irq(&rh->region_lock);
+	if (success)
+		list_add(&reg->list, &reg->rh->recovered_regions);
+	else
+		list_add(&reg->list, &reg->rh->failed_recovered_regions);
+
+	spin_unlock_irq(&rh->region_lock);
+
+	rh->wakeup_workers(rh->context);
+}
+EXPORT_SYMBOL_GPL(dm_rh_recovery_end);
+
+/* Return recovery in flight count. */
+int dm_rh_recovery_in_flight(struct dm_region_hash *rh)
+{
+	return atomic_read(&rh->recovery_in_flight);
+}
+EXPORT_SYMBOL_GPL(dm_rh_recovery_in_flight);
+
+int dm_rh_flush(struct dm_region_hash *rh)
+{
+	return rh->log->type->flush(rh->log);
+}
+EXPORT_SYMBOL_GPL(dm_rh_flush);
+
+void dm_rh_delay(struct dm_region_hash *rh, struct bio *bio)
+{
+	struct dm_region *reg;
+
+	read_lock(&rh->hash_lock);
+	reg = __rh_find(rh, dm_rh_bio_to_region(rh, bio));
+	bio_list_add(&reg->delayed_bios, bio);
+	read_unlock(&rh->hash_lock);
+}
+EXPORT_SYMBOL_GPL(dm_rh_delay);
+
+void dm_rh_stop_recovery(struct dm_region_hash *rh)
+{
+	int i;
+
+	/* wait for any recovering regions */
+	for (i = 0; i < rh->max_recovery; i++)
+		down(&rh->recovery_count);
+}
+EXPORT_SYMBOL_GPL(dm_rh_stop_recovery);
+
+void dm_rh_start_recovery(struct dm_region_hash *rh)
+{
+	int i;
+
+	for (i = 0; i < rh->max_recovery; i++)
+		up(&rh->recovery_count);
+
+	rh->wakeup_workers(rh->context);
+}
+EXPORT_SYMBOL_GPL(dm_rh_start_recovery);
+
+MODULE_DESCRIPTION(DM_NAME " region hash");
+MODULE_AUTHOR("Joe Thornber/Heinz Mauelshagen <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-round-robin.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-round-robin.c
new file mode 100644
index 0000000..6ab1192
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-round-robin.c
@@ -0,0 +1,219 @@
+/*
+ * Copyright (C) 2003 Sistina Software.
+ * Copyright (C) 2004-2005 Red Hat, Inc. All rights reserved.
+ *
+ * Module Author: Heinz Mauelshagen
+ *
+ * This file is released under the GPL.
+ *
+ * Round-robin path selector.
+ */
+
+#include <linux/device-mapper.h>
+
+#include "dm-path-selector.h"
+
+#include <linux/slab.h>
+#include <linux/module.h>
+
+#define DM_MSG_PREFIX "multipath round-robin"
+
+/*-----------------------------------------------------------------
+ * Path-handling code, paths are held in lists
+ *---------------------------------------------------------------*/
+struct path_info {
+	struct list_head list;
+	struct dm_path *path;
+	unsigned repeat_count;
+};
+
+static void free_paths(struct list_head *paths)
+{
+	struct path_info *pi, *next;
+
+	list_for_each_entry_safe(pi, next, paths, list) {
+		list_del(&pi->list);
+		kfree(pi);
+	}
+}
+
+/*-----------------------------------------------------------------
+ * Round-robin selector
+ *---------------------------------------------------------------*/
+
+#define RR_MIN_IO		1000
+
+struct selector {
+	struct list_head valid_paths;
+	struct list_head invalid_paths;
+};
+
+static struct selector *alloc_selector(void)
+{
+	struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
+
+	if (s) {
+		INIT_LIST_HEAD(&s->valid_paths);
+		INIT_LIST_HEAD(&s->invalid_paths);
+	}
+
+	return s;
+}
+
+static int rr_create(struct path_selector *ps, unsigned argc, char **argv)
+{
+	struct selector *s;
+
+	s = alloc_selector();
+	if (!s)
+		return -ENOMEM;
+
+	ps->context = s;
+	return 0;
+}
+
+static void rr_destroy(struct path_selector *ps)
+{
+	struct selector *s = (struct selector *) ps->context;
+
+	free_paths(&s->valid_paths);
+	free_paths(&s->invalid_paths);
+	kfree(s);
+	ps->context = NULL;
+}
+
+static int rr_status(struct path_selector *ps, struct dm_path *path,
+		     status_type_t type, char *result, unsigned int maxlen)
+{
+	struct path_info *pi;
+	int sz = 0;
+
+	if (!path)
+		DMEMIT("0 ");
+	else {
+		switch(type) {
+		case STATUSTYPE_INFO:
+			break;
+		case STATUSTYPE_TABLE:
+			pi = path->pscontext;
+			DMEMIT("%u ", pi->repeat_count);
+			break;
+		}
+	}
+
+	return sz;
+}
+
+/*
+ * Called during initialisation to register each path with an
+ * optional repeat_count.
+ */
+static int rr_add_path(struct path_selector *ps, struct dm_path *path,
+		       int argc, char **argv, char **error)
+{
+	struct selector *s = (struct selector *) ps->context;
+	struct path_info *pi;
+	unsigned repeat_count = RR_MIN_IO;
+	char dummy;
+
+	if (argc > 1) {
+		*error = "round-robin ps: incorrect number of arguments";
+		return -EINVAL;
+	}
+
+	/* First path argument is number of I/Os before switching path */
+	if ((argc == 1) && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
+		*error = "round-robin ps: invalid repeat count";
+		return -EINVAL;
+	}
+
+	/* allocate the path */
+	pi = kmalloc(sizeof(*pi), GFP_KERNEL);
+	if (!pi) {
+		*error = "round-robin ps: Error allocating path context";
+		return -ENOMEM;
+	}
+
+	pi->path = path;
+	pi->repeat_count = repeat_count;
+
+	path->pscontext = pi;
+
+	list_add_tail(&pi->list, &s->valid_paths);
+
+	return 0;
+}
+
+static void rr_fail_path(struct path_selector *ps, struct dm_path *p)
+{
+	struct selector *s = (struct selector *) ps->context;
+	struct path_info *pi = p->pscontext;
+
+	list_move(&pi->list, &s->invalid_paths);
+}
+
+static int rr_reinstate_path(struct path_selector *ps, struct dm_path *p)
+{
+	struct selector *s = (struct selector *) ps->context;
+	struct path_info *pi = p->pscontext;
+
+	list_move(&pi->list, &s->valid_paths);
+
+	return 0;
+}
+
+static struct dm_path *rr_select_path(struct path_selector *ps,
+				      unsigned *repeat_count, size_t nr_bytes)
+{
+	struct selector *s = (struct selector *) ps->context;
+	struct path_info *pi = NULL;
+
+	if (!list_empty(&s->valid_paths)) {
+		pi = list_entry(s->valid_paths.next, struct path_info, list);
+		list_move_tail(&pi->list, &s->valid_paths);
+		*repeat_count = pi->repeat_count;
+	}
+
+	return pi ? pi->path : NULL;
+}
+
+static struct path_selector_type rr_ps = {
+	.name = "round-robin",
+	.module = THIS_MODULE,
+	.table_args = 1,
+	.info_args = 0,
+	.create = rr_create,
+	.destroy = rr_destroy,
+	.status = rr_status,
+	.add_path = rr_add_path,
+	.fail_path = rr_fail_path,
+	.reinstate_path = rr_reinstate_path,
+	.select_path = rr_select_path,
+};
+
+static int __init dm_rr_init(void)
+{
+	int r = dm_register_path_selector(&rr_ps);
+
+	if (r < 0)
+		DMERR("register failed %d", r);
+
+	DMINFO("version 1.0.0 loaded");
+
+	return r;
+}
+
+static void __exit dm_rr_exit(void)
+{
+	int r = dm_unregister_path_selector(&rr_ps);
+
+	if (r < 0)
+		DMERR("unregister failed %d", r);
+}
+
+module_init(dm_rr_init);
+module_exit(dm_rr_exit);
+
+MODULE_DESCRIPTION(DM_NAME " round-robin multipath path selector");
+MODULE_AUTHOR("Sistina Software <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-service-time.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-service-time.c
new file mode 100644
index 0000000..9df8f6b
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-service-time.c
@@ -0,0 +1,343 @@
+/*
+ * Copyright (C) 2007-2009 NEC Corporation.  All Rights Reserved.
+ *
+ * Module Author: Kiyoshi Ueda
+ *
+ * This file is released under the GPL.
+ *
+ * Throughput oriented path selector.
+ */
+
+#include "dm.h"
+#include "dm-path-selector.h"
+
+#include <linux/slab.h>
+#include <linux/module.h>
+
+#define DM_MSG_PREFIX	"multipath service-time"
+#define ST_MIN_IO	1
+#define ST_MAX_RELATIVE_THROUGHPUT	100
+#define ST_MAX_RELATIVE_THROUGHPUT_SHIFT	7
+#define ST_MAX_INFLIGHT_SIZE	((size_t)-1 >> ST_MAX_RELATIVE_THROUGHPUT_SHIFT)
+#define ST_VERSION	"0.2.0"
+
+struct selector {
+	struct list_head valid_paths;
+	struct list_head failed_paths;
+};
+
+struct path_info {
+	struct list_head list;
+	struct dm_path *path;
+	unsigned repeat_count;
+	unsigned relative_throughput;
+	atomic_t in_flight_size;	/* Total size of in-flight I/Os */
+};
+
+static struct selector *alloc_selector(void)
+{
+	struct selector *s = kmalloc(sizeof(*s), GFP_KERNEL);
+
+	if (s) {
+		INIT_LIST_HEAD(&s->valid_paths);
+		INIT_LIST_HEAD(&s->failed_paths);
+	}
+
+	return s;
+}
+
+static int st_create(struct path_selector *ps, unsigned argc, char **argv)
+{
+	struct selector *s = alloc_selector();
+
+	if (!s)
+		return -ENOMEM;
+
+	ps->context = s;
+	return 0;
+}
+
+static void free_paths(struct list_head *paths)
+{
+	struct path_info *pi, *next;
+
+	list_for_each_entry_safe(pi, next, paths, list) {
+		list_del(&pi->list);
+		kfree(pi);
+	}
+}
+
+static void st_destroy(struct path_selector *ps)
+{
+	struct selector *s = ps->context;
+
+	free_paths(&s->valid_paths);
+	free_paths(&s->failed_paths);
+	kfree(s);
+	ps->context = NULL;
+}
+
+static int st_status(struct path_selector *ps, struct dm_path *path,
+		     status_type_t type, char *result, unsigned maxlen)
+{
+	unsigned sz = 0;
+	struct path_info *pi;
+
+	if (!path)
+		DMEMIT("0 ");
+	else {
+		pi = path->pscontext;
+
+		switch (type) {
+		case STATUSTYPE_INFO:
+			DMEMIT("%d %u ", atomic_read(&pi->in_flight_size),
+			       pi->relative_throughput);
+			break;
+		case STATUSTYPE_TABLE:
+			DMEMIT("%u %u ", pi->repeat_count,
+			       pi->relative_throughput);
+			break;
+		}
+	}
+
+	return sz;
+}
+
+static int st_add_path(struct path_selector *ps, struct dm_path *path,
+		       int argc, char **argv, char **error)
+{
+	struct selector *s = ps->context;
+	struct path_info *pi;
+	unsigned repeat_count = ST_MIN_IO;
+	unsigned relative_throughput = 1;
+	char dummy;
+
+	/*
+	 * Arguments: [<repeat_count> [<relative_throughput>]]
+	 * 	<repeat_count>: The number of I/Os before switching path.
+	 * 			If not given, default (ST_MIN_IO) is used.
+	 * 	<relative_throughput>: The relative throughput value of
+	 *			the path among all paths in the path-group.
+	 * 			The valid range: 0-<ST_MAX_RELATIVE_THROUGHPUT>
+	 *			If not given, minimum value '1' is used.
+	 *			If '0' is given, the path isn't selected while
+	 * 			other paths having a positive value are
+	 * 			available.
+	 */
+	if (argc > 2) {
+		*error = "service-time ps: incorrect number of arguments";
+		return -EINVAL;
+	}
+
+	if (argc && (sscanf(argv[0], "%u%c", &repeat_count, &dummy) != 1)) {
+		*error = "service-time ps: invalid repeat count";
+		return -EINVAL;
+	}
+
+	if ((argc == 2) &&
+	    (sscanf(argv[1], "%u%c", &relative_throughput, &dummy) != 1 ||
+	     relative_throughput > ST_MAX_RELATIVE_THROUGHPUT)) {
+		*error = "service-time ps: invalid relative_throughput value";
+		return -EINVAL;
+	}
+
+	/* allocate the path */
+	pi = kmalloc(sizeof(*pi), GFP_KERNEL);
+	if (!pi) {
+		*error = "service-time ps: Error allocating path context";
+		return -ENOMEM;
+	}
+
+	pi->path = path;
+	pi->repeat_count = repeat_count;
+	pi->relative_throughput = relative_throughput;
+	atomic_set(&pi->in_flight_size, 0);
+
+	path->pscontext = pi;
+
+	list_add_tail(&pi->list, &s->valid_paths);
+
+	return 0;
+}
+
+static void st_fail_path(struct path_selector *ps, struct dm_path *path)
+{
+	struct selector *s = ps->context;
+	struct path_info *pi = path->pscontext;
+
+	list_move(&pi->list, &s->failed_paths);
+}
+
+static int st_reinstate_path(struct path_selector *ps, struct dm_path *path)
+{
+	struct selector *s = ps->context;
+	struct path_info *pi = path->pscontext;
+
+	list_move_tail(&pi->list, &s->valid_paths);
+
+	return 0;
+}
+
+/*
+ * Compare the estimated service time of 2 paths, pi1 and pi2,
+ * for the incoming I/O.
+ *
+ * Returns:
+ * < 0 : pi1 is better
+ * 0   : no difference between pi1 and pi2
+ * > 0 : pi2 is better
+ *
+ * Description:
+ * Basically, the service time is estimated by:
+ *     ('pi->in-flight-size' + 'incoming') / 'pi->relative_throughput'
+ * To reduce the calculation, some optimizations are made.
+ * (See comments inline)
+ */
+static int st_compare_load(struct path_info *pi1, struct path_info *pi2,
+			   size_t incoming)
+{
+	size_t sz1, sz2, st1, st2;
+
+	sz1 = atomic_read(&pi1->in_flight_size);
+	sz2 = atomic_read(&pi2->in_flight_size);
+
+	/*
+	 * Case 1: Both have same throughput value. Choose less loaded path.
+	 */
+	if (pi1->relative_throughput == pi2->relative_throughput)
+		return sz1 - sz2;
+
+	/*
+	 * Case 2a: Both have same load. Choose higher throughput path.
+	 * Case 2b: One path has no throughput value. Choose the other one.
+	 */
+	if (sz1 == sz2 ||
+	    !pi1->relative_throughput || !pi2->relative_throughput)
+		return pi2->relative_throughput - pi1->relative_throughput;
+
+	/*
+	 * Case 3: Calculate service time. Choose faster path.
+	 *         Service time using pi1:
+	 *             st1 = (sz1 + incoming) / pi1->relative_throughput
+	 *         Service time using pi2:
+	 *             st2 = (sz2 + incoming) / pi2->relative_throughput
+	 *
+	 *         To avoid the division, transform the expression to use
+	 *         multiplication.
+	 *         Because ->relative_throughput > 0 here, if st1 < st2,
+	 *         the expressions below are the same meaning:
+	 *             (sz1 + incoming) / pi1->relative_throughput <
+	 *                 (sz2 + incoming) / pi2->relative_throughput
+	 *             (sz1 + incoming) * pi2->relative_throughput <
+	 *                 (sz2 + incoming) * pi1->relative_throughput
+	 *         So use the later one.
+	 */
+	sz1 += incoming;
+	sz2 += incoming;
+	if (unlikely(sz1 >= ST_MAX_INFLIGHT_SIZE ||
+		     sz2 >= ST_MAX_INFLIGHT_SIZE)) {
+		/*
+		 * Size may be too big for multiplying pi->relative_throughput
+		 * and overflow.
+		 * To avoid the overflow and mis-selection, shift down both.
+		 */
+		sz1 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
+		sz2 >>= ST_MAX_RELATIVE_THROUGHPUT_SHIFT;
+	}
+	st1 = sz1 * pi2->relative_throughput;
+	st2 = sz2 * pi1->relative_throughput;
+	if (st1 != st2)
+		return st1 - st2;
+
+	/*
+	 * Case 4: Service time is equal. Choose higher throughput path.
+	 */
+	return pi2->relative_throughput - pi1->relative_throughput;
+}
+
+static struct dm_path *st_select_path(struct path_selector *ps,
+				      unsigned *repeat_count, size_t nr_bytes)
+{
+	struct selector *s = ps->context;
+	struct path_info *pi = NULL, *best = NULL;
+
+	if (list_empty(&s->valid_paths))
+		return NULL;
+
+	/* Change preferred (first in list) path to evenly balance. */
+	list_move_tail(s->valid_paths.next, &s->valid_paths);
+
+	list_for_each_entry(pi, &s->valid_paths, list)
+		if (!best || (st_compare_load(pi, best, nr_bytes) < 0))
+			best = pi;
+
+	if (!best)
+		return NULL;
+
+	*repeat_count = best->repeat_count;
+
+	return best->path;
+}
+
+static int st_start_io(struct path_selector *ps, struct dm_path *path,
+		       size_t nr_bytes)
+{
+	struct path_info *pi = path->pscontext;
+
+	atomic_add(nr_bytes, &pi->in_flight_size);
+
+	return 0;
+}
+
+static int st_end_io(struct path_selector *ps, struct dm_path *path,
+		     size_t nr_bytes)
+{
+	struct path_info *pi = path->pscontext;
+
+	atomic_sub(nr_bytes, &pi->in_flight_size);
+
+	return 0;
+}
+
+static struct path_selector_type st_ps = {
+	.name		= "service-time",
+	.module		= THIS_MODULE,
+	.table_args	= 2,
+	.info_args	= 2,
+	.create		= st_create,
+	.destroy	= st_destroy,
+	.status		= st_status,
+	.add_path	= st_add_path,
+	.fail_path	= st_fail_path,
+	.reinstate_path	= st_reinstate_path,
+	.select_path	= st_select_path,
+	.start_io	= st_start_io,
+	.end_io		= st_end_io,
+};
+
+static int __init dm_st_init(void)
+{
+	int r = dm_register_path_selector(&st_ps);
+
+	if (r < 0)
+		DMERR("register failed %d", r);
+
+	DMINFO("version " ST_VERSION " loaded");
+
+	return r;
+}
+
+static void __exit dm_st_exit(void)
+{
+	int r = dm_unregister_path_selector(&st_ps);
+
+	if (r < 0)
+		DMERR("unregister failed %d", r);
+}
+
+module_init(dm_st_init);
+module_exit(dm_st_exit);
+
+MODULE_DESCRIPTION(DM_NAME " throughput oriented path selector");
+MODULE_AUTHOR("Kiyoshi Ueda <k-ueda@ct.jp.nec.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-snap-persistent.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-snap-persistent.c
new file mode 100644
index 0000000..2d2b1b7
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-snap-persistent.c
@@ -0,0 +1,904 @@
+/*
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2006-2008 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-exception-store.h"
+
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/vmalloc.h>
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/dm-io.h>
+
+#define DM_MSG_PREFIX "persistent snapshot"
+#define DM_CHUNK_SIZE_DEFAULT_SECTORS 32	/* 16KB */
+
+/*-----------------------------------------------------------------
+ * Persistent snapshots, by persistent we mean that the snapshot
+ * will survive a reboot.
+ *---------------------------------------------------------------*/
+
+/*
+ * We need to store a record of which parts of the origin have
+ * been copied to the snapshot device.  The snapshot code
+ * requires that we copy exception chunks to chunk aligned areas
+ * of the COW store.  It makes sense therefore, to store the
+ * metadata in chunk size blocks.
+ *
+ * There is no backward or forward compatibility implemented,
+ * snapshots with different disk versions than the kernel will
+ * not be usable.  It is expected that "lvcreate" will blank out
+ * the start of a fresh COW device before calling the snapshot
+ * constructor.
+ *
+ * The first chunk of the COW device just contains the header.
+ * After this there is a chunk filled with exception metadata,
+ * followed by as many exception chunks as can fit in the
+ * metadata areas.
+ *
+ * All on disk structures are in little-endian format.  The end
+ * of the exceptions info is indicated by an exception with a
+ * new_chunk of 0, which is invalid since it would point to the
+ * header chunk.
+ */
+
+/*
+ * Magic for persistent snapshots: "SnAp" - Feeble isn't it.
+ */
+#define SNAP_MAGIC 0x70416e53
+
+/*
+ * The on-disk version of the metadata.
+ */
+#define SNAPSHOT_DISK_VERSION 1
+
+#define NUM_SNAPSHOT_HDR_CHUNKS 1
+
+struct disk_header {
+	__le32 magic;
+
+	/*
+	 * Is this snapshot valid.  There is no way of recovering
+	 * an invalid snapshot.
+	 */
+	__le32 valid;
+
+	/*
+	 * Simple, incrementing version. no backward
+	 * compatibility.
+	 */
+	__le32 version;
+
+	/* In sectors */
+	__le32 chunk_size;
+} __packed;
+
+struct disk_exception {
+	__le64 old_chunk;
+	__le64 new_chunk;
+} __packed;
+
+struct core_exception {
+	uint64_t old_chunk;
+	uint64_t new_chunk;
+};
+
+struct commit_callback {
+	void (*callback)(void *, int success);
+	void *context;
+};
+
+/*
+ * The top level structure for a persistent exception store.
+ */
+struct pstore {
+	struct dm_exception_store *store;
+	int version;
+	int valid;
+	uint32_t exceptions_per_area;
+
+	/*
+	 * Now that we have an asynchronous kcopyd there is no
+	 * need for large chunk sizes, so it wont hurt to have a
+	 * whole chunks worth of metadata in memory at once.
+	 */
+	void *area;
+
+	/*
+	 * An area of zeros used to clear the next area.
+	 */
+	void *zero_area;
+
+	/*
+	 * An area used for header. The header can be written
+	 * concurrently with metadata (when invalidating the snapshot),
+	 * so it needs a separate buffer.
+	 */
+	void *header_area;
+
+	/*
+	 * Used to keep track of which metadata area the data in
+	 * 'chunk' refers to.
+	 */
+	chunk_t current_area;
+
+	/*
+	 * The next free chunk for an exception.
+	 *
+	 * When creating exceptions, all the chunks here and above are
+	 * free.  It holds the next chunk to be allocated.  On rare
+	 * occasions (e.g. after a system crash) holes can be left in
+	 * the exception store because chunks can be committed out of
+	 * order.
+	 *
+	 * When merging exceptions, it does not necessarily mean all the
+	 * chunks here and above are free.  It holds the value it would
+	 * have held if all chunks had been committed in order of
+	 * allocation.  Consequently the value may occasionally be
+	 * slightly too low, but since it's only used for 'status' and
+	 * it can never reach its minimum value too early this doesn't
+	 * matter.
+	 */
+
+	chunk_t next_free;
+
+	/*
+	 * The index of next free exception in the current
+	 * metadata area.
+	 */
+	uint32_t current_committed;
+
+	atomic_t pending_count;
+	uint32_t callback_count;
+	struct commit_callback *callbacks;
+	struct dm_io_client *io_client;
+
+	struct workqueue_struct *metadata_wq;
+};
+
+static int alloc_area(struct pstore *ps)
+{
+	int r = -ENOMEM;
+	size_t len;
+
+	len = ps->store->chunk_size << SECTOR_SHIFT;
+
+	/*
+	 * Allocate the chunk_size block of memory that will hold
+	 * a single metadata area.
+	 */
+	ps->area = vmalloc(len);
+	if (!ps->area)
+		goto err_area;
+
+	ps->zero_area = vzalloc(len);
+	if (!ps->zero_area)
+		goto err_zero_area;
+
+	ps->header_area = vmalloc(len);
+	if (!ps->header_area)
+		goto err_header_area;
+
+	return 0;
+
+err_header_area:
+	vfree(ps->zero_area);
+
+err_zero_area:
+	vfree(ps->area);
+
+err_area:
+	return r;
+}
+
+static void free_area(struct pstore *ps)
+{
+	if (ps->area)
+		vfree(ps->area);
+	ps->area = NULL;
+
+	if (ps->zero_area)
+		vfree(ps->zero_area);
+	ps->zero_area = NULL;
+
+	if (ps->header_area)
+		vfree(ps->header_area);
+	ps->header_area = NULL;
+}
+
+struct mdata_req {
+	struct dm_io_region *where;
+	struct dm_io_request *io_req;
+	struct work_struct work;
+	int result;
+};
+
+static void do_metadata(struct work_struct *work)
+{
+	struct mdata_req *req = container_of(work, struct mdata_req, work);
+
+	req->result = dm_io(req->io_req, 1, req->where, NULL);
+}
+
+/*
+ * Read or write a chunk aligned and sized block of data from a device.
+ */
+static int chunk_io(struct pstore *ps, void *area, chunk_t chunk, int rw,
+		    int metadata)
+{
+	struct dm_io_region where = {
+		.bdev = dm_snap_cow(ps->store->snap)->bdev,
+		.sector = ps->store->chunk_size * chunk,
+		.count = ps->store->chunk_size,
+	};
+	struct dm_io_request io_req = {
+		.bi_rw = rw,
+		.mem.type = DM_IO_VMA,
+		.mem.ptr.vma = area,
+		.client = ps->io_client,
+		.notify.fn = NULL,
+	};
+	struct mdata_req req;
+
+	if (!metadata)
+		return dm_io(&io_req, 1, &where, NULL);
+
+	req.where = &where;
+	req.io_req = &io_req;
+
+	/*
+	 * Issue the synchronous I/O from a different thread
+	 * to avoid generic_make_request recursion.
+	 */
+	INIT_WORK_ONSTACK(&req.work, do_metadata);
+	queue_work(ps->metadata_wq, &req.work);
+	flush_workqueue(ps->metadata_wq);
+
+	return req.result;
+}
+
+/*
+ * Convert a metadata area index to a chunk index.
+ */
+static chunk_t area_location(struct pstore *ps, chunk_t area)
+{
+	return NUM_SNAPSHOT_HDR_CHUNKS + ((ps->exceptions_per_area + 1) * area);
+}
+
+static void skip_metadata(struct pstore *ps)
+{
+	uint32_t stride = ps->exceptions_per_area + 1;
+	chunk_t next_free = ps->next_free;
+	if (sector_div(next_free, stride) == NUM_SNAPSHOT_HDR_CHUNKS)
+		ps->next_free++;
+}
+
+/*
+ * Read or write a metadata area.  Remembering to skip the first
+ * chunk which holds the header.
+ */
+static int area_io(struct pstore *ps, int rw)
+{
+	int r;
+	chunk_t chunk;
+
+	chunk = area_location(ps, ps->current_area);
+
+	r = chunk_io(ps, ps->area, chunk, rw, 0);
+	if (r)
+		return r;
+
+	return 0;
+}
+
+static void zero_memory_area(struct pstore *ps)
+{
+	memset(ps->area, 0, ps->store->chunk_size << SECTOR_SHIFT);
+}
+
+static int zero_disk_area(struct pstore *ps, chunk_t area)
+{
+	return chunk_io(ps, ps->zero_area, area_location(ps, area), WRITE, 0);
+}
+
+static int read_header(struct pstore *ps, int *new_snapshot)
+{
+	int r;
+	struct disk_header *dh;
+	unsigned chunk_size;
+	int chunk_size_supplied = 1;
+	char *chunk_err;
+
+	/*
+	 * Use default chunk size (or logical_block_size, if larger)
+	 * if none supplied
+	 */
+	if (!ps->store->chunk_size) {
+		ps->store->chunk_size = max(DM_CHUNK_SIZE_DEFAULT_SECTORS,
+		    bdev_logical_block_size(dm_snap_cow(ps->store->snap)->
+					    bdev) >> 9);
+		ps->store->chunk_mask = ps->store->chunk_size - 1;
+		ps->store->chunk_shift = ffs(ps->store->chunk_size) - 1;
+		chunk_size_supplied = 0;
+	}
+
+	ps->io_client = dm_io_client_create();
+	if (IS_ERR(ps->io_client))
+		return PTR_ERR(ps->io_client);
+
+	r = alloc_area(ps);
+	if (r)
+		return r;
+
+	r = chunk_io(ps, ps->header_area, 0, READ, 1);
+	if (r)
+		goto bad;
+
+	dh = ps->header_area;
+
+	if (le32_to_cpu(dh->magic) == 0) {
+		*new_snapshot = 1;
+		return 0;
+	}
+
+	if (le32_to_cpu(dh->magic) != SNAP_MAGIC) {
+		DMWARN("Invalid or corrupt snapshot");
+		r = -ENXIO;
+		goto bad;
+	}
+
+	*new_snapshot = 0;
+	ps->valid = le32_to_cpu(dh->valid);
+	ps->version = le32_to_cpu(dh->version);
+	chunk_size = le32_to_cpu(dh->chunk_size);
+
+	if (ps->store->chunk_size == chunk_size)
+		return 0;
+
+	if (chunk_size_supplied)
+		DMWARN("chunk size %u in device metadata overrides "
+		       "table chunk size of %u.",
+		       chunk_size, ps->store->chunk_size);
+
+	/* We had a bogus chunk_size. Fix stuff up. */
+	free_area(ps);
+
+	r = dm_exception_store_set_chunk_size(ps->store, chunk_size,
+					      &chunk_err);
+	if (r) {
+		DMERR("invalid on-disk chunk size %u: %s.",
+		      chunk_size, chunk_err);
+		return r;
+	}
+
+	r = alloc_area(ps);
+	return r;
+
+bad:
+	free_area(ps);
+	return r;
+}
+
+static int write_header(struct pstore *ps)
+{
+	struct disk_header *dh;
+
+	memset(ps->header_area, 0, ps->store->chunk_size << SECTOR_SHIFT);
+
+	dh = ps->header_area;
+	dh->magic = cpu_to_le32(SNAP_MAGIC);
+	dh->valid = cpu_to_le32(ps->valid);
+	dh->version = cpu_to_le32(ps->version);
+	dh->chunk_size = cpu_to_le32(ps->store->chunk_size);
+
+	return chunk_io(ps, ps->header_area, 0, WRITE, 1);
+}
+
+/*
+ * Access functions for the disk exceptions, these do the endian conversions.
+ */
+static struct disk_exception *get_exception(struct pstore *ps, uint32_t index)
+{
+	BUG_ON(index >= ps->exceptions_per_area);
+
+	return ((struct disk_exception *) ps->area) + index;
+}
+
+static void read_exception(struct pstore *ps,
+			   uint32_t index, struct core_exception *result)
+{
+	struct disk_exception *de = get_exception(ps, index);
+
+	/* copy it */
+	result->old_chunk = le64_to_cpu(de->old_chunk);
+	result->new_chunk = le64_to_cpu(de->new_chunk);
+}
+
+static void write_exception(struct pstore *ps,
+			    uint32_t index, struct core_exception *e)
+{
+	struct disk_exception *de = get_exception(ps, index);
+
+	/* copy it */
+	de->old_chunk = cpu_to_le64(e->old_chunk);
+	de->new_chunk = cpu_to_le64(e->new_chunk);
+}
+
+static void clear_exception(struct pstore *ps, uint32_t index)
+{
+	struct disk_exception *de = get_exception(ps, index);
+
+	/* clear it */
+	de->old_chunk = 0;
+	de->new_chunk = 0;
+}
+
+/*
+ * Registers the exceptions that are present in the current area.
+ * 'full' is filled in to indicate if the area has been
+ * filled.
+ */
+static int insert_exceptions(struct pstore *ps,
+			     int (*callback)(void *callback_context,
+					     chunk_t old, chunk_t new),
+			     void *callback_context,
+			     int *full)
+{
+	int r;
+	unsigned int i;
+	struct core_exception e;
+
+	/* presume the area is full */
+	*full = 1;
+
+	for (i = 0; i < ps->exceptions_per_area; i++) {
+		read_exception(ps, i, &e);
+
+		/*
+		 * If the new_chunk is pointing at the start of
+		 * the COW device, where the first metadata area
+		 * is we know that we've hit the end of the
+		 * exceptions.  Therefore the area is not full.
+		 */
+		if (e.new_chunk == 0LL) {
+			ps->current_committed = i;
+			*full = 0;
+			break;
+		}
+
+		/*
+		 * Keep track of the start of the free chunks.
+		 */
+		if (ps->next_free <= e.new_chunk)
+			ps->next_free = e.new_chunk + 1;
+
+		/*
+		 * Otherwise we add the exception to the snapshot.
+		 */
+		r = callback(callback_context, e.old_chunk, e.new_chunk);
+		if (r)
+			return r;
+	}
+
+	return 0;
+}
+
+static int read_exceptions(struct pstore *ps,
+			   int (*callback)(void *callback_context, chunk_t old,
+					   chunk_t new),
+			   void *callback_context)
+{
+	int r, full = 1;
+
+	/*
+	 * Keeping reading chunks and inserting exceptions until
+	 * we find a partially full area.
+	 */
+	for (ps->current_area = 0; full; ps->current_area++) {
+		r = area_io(ps, READ);
+		if (r)
+			return r;
+
+		r = insert_exceptions(ps, callback, callback_context, &full);
+		if (r)
+			return r;
+	}
+
+	ps->current_area--;
+
+	skip_metadata(ps);
+
+	return 0;
+}
+
+static struct pstore *get_info(struct dm_exception_store *store)
+{
+	return (struct pstore *) store->context;
+}
+
+static void persistent_usage(struct dm_exception_store *store,
+			     sector_t *total_sectors,
+			     sector_t *sectors_allocated,
+			     sector_t *metadata_sectors)
+{
+	struct pstore *ps = get_info(store);
+
+	*sectors_allocated = ps->next_free * store->chunk_size;
+	*total_sectors = get_dev_size(dm_snap_cow(store->snap)->bdev);
+
+	/*
+	 * First chunk is the fixed header.
+	 * Then there are (ps->current_area + 1) metadata chunks, each one
+	 * separated from the next by ps->exceptions_per_area data chunks.
+	 */
+	*metadata_sectors = (ps->current_area + 1 + NUM_SNAPSHOT_HDR_CHUNKS) *
+			    store->chunk_size;
+}
+
+static void persistent_dtr(struct dm_exception_store *store)
+{
+	struct pstore *ps = get_info(store);
+
+	destroy_workqueue(ps->metadata_wq);
+
+	/* Created in read_header */
+	if (ps->io_client)
+		dm_io_client_destroy(ps->io_client);
+	free_area(ps);
+
+	/* Allocated in persistent_read_metadata */
+	if (ps->callbacks)
+		vfree(ps->callbacks);
+
+	kfree(ps);
+}
+
+static int persistent_read_metadata(struct dm_exception_store *store,
+				    int (*callback)(void *callback_context,
+						    chunk_t old, chunk_t new),
+				    void *callback_context)
+{
+	int r, uninitialized_var(new_snapshot);
+	struct pstore *ps = get_info(store);
+
+	/*
+	 * Read the snapshot header.
+	 */
+	r = read_header(ps, &new_snapshot);
+	if (r)
+		return r;
+
+	/*
+	 * Now we know correct chunk_size, complete the initialisation.
+	 */
+	ps->exceptions_per_area = (ps->store->chunk_size << SECTOR_SHIFT) /
+				  sizeof(struct disk_exception);
+	ps->callbacks = dm_vcalloc(ps->exceptions_per_area,
+				   sizeof(*ps->callbacks));
+	if (!ps->callbacks)
+		return -ENOMEM;
+
+	/*
+	 * Do we need to setup a new snapshot ?
+	 */
+	if (new_snapshot) {
+		r = write_header(ps);
+		if (r) {
+			DMWARN("write_header failed");
+			return r;
+		}
+
+		ps->current_area = 0;
+		zero_memory_area(ps);
+		r = zero_disk_area(ps, 0);
+		if (r)
+			DMWARN("zero_disk_area(0) failed");
+		return r;
+	}
+	/*
+	 * Sanity checks.
+	 */
+	if (ps->version != SNAPSHOT_DISK_VERSION) {
+		DMWARN("unable to handle snapshot disk version %d",
+		       ps->version);
+		return -EINVAL;
+	}
+
+	/*
+	 * Metadata are valid, but snapshot is invalidated
+	 */
+	if (!ps->valid)
+		return 1;
+
+	/*
+	 * Read the metadata.
+	 */
+	r = read_exceptions(ps, callback, callback_context);
+
+	return r;
+}
+
+static int persistent_prepare_exception(struct dm_exception_store *store,
+					struct dm_exception *e)
+{
+	struct pstore *ps = get_info(store);
+	sector_t size = get_dev_size(dm_snap_cow(store->snap)->bdev);
+
+	/* Is there enough room ? */
+	if (size < ((ps->next_free + 1) * store->chunk_size))
+		return -ENOSPC;
+
+	e->new_chunk = ps->next_free;
+
+	/*
+	 * Move onto the next free pending, making sure to take
+	 * into account the location of the metadata chunks.
+	 */
+	ps->next_free++;
+	skip_metadata(ps);
+
+	atomic_inc(&ps->pending_count);
+	return 0;
+}
+
+static void persistent_commit_exception(struct dm_exception_store *store,
+					struct dm_exception *e,
+					void (*callback) (void *, int success),
+					void *callback_context)
+{
+	unsigned int i;
+	struct pstore *ps = get_info(store);
+	struct core_exception ce;
+	struct commit_callback *cb;
+
+	ce.old_chunk = e->old_chunk;
+	ce.new_chunk = e->new_chunk;
+	write_exception(ps, ps->current_committed++, &ce);
+
+	/*
+	 * Add the callback to the back of the array.  This code
+	 * is the only place where the callback array is
+	 * manipulated, and we know that it will never be called
+	 * multiple times concurrently.
+	 */
+	cb = ps->callbacks + ps->callback_count++;
+	cb->callback = callback;
+	cb->context = callback_context;
+
+	/*
+	 * If there are exceptions in flight and we have not yet
+	 * filled this metadata area there's nothing more to do.
+	 */
+	if (!atomic_dec_and_test(&ps->pending_count) &&
+	    (ps->current_committed != ps->exceptions_per_area))
+		return;
+
+	/*
+	 * If we completely filled the current area, then wipe the next one.
+	 */
+	if ((ps->current_committed == ps->exceptions_per_area) &&
+	    zero_disk_area(ps, ps->current_area + 1))
+		ps->valid = 0;
+
+	/*
+	 * Commit exceptions to disk.
+	 */
+	if (ps->valid && area_io(ps, WRITE_FLUSH_FUA))
+		ps->valid = 0;
+
+	/*
+	 * Advance to the next area if this one is full.
+	 */
+	if (ps->current_committed == ps->exceptions_per_area) {
+		ps->current_committed = 0;
+		ps->current_area++;
+		zero_memory_area(ps);
+	}
+
+	for (i = 0; i < ps->callback_count; i++) {
+		cb = ps->callbacks + i;
+		cb->callback(cb->context, ps->valid);
+	}
+
+	ps->callback_count = 0;
+}
+
+static int persistent_prepare_merge(struct dm_exception_store *store,
+				    chunk_t *last_old_chunk,
+				    chunk_t *last_new_chunk)
+{
+	struct pstore *ps = get_info(store);
+	struct core_exception ce;
+	int nr_consecutive;
+	int r;
+
+	/*
+	 * When current area is empty, move back to preceding area.
+	 */
+	if (!ps->current_committed) {
+		/*
+		 * Have we finished?
+		 */
+		if (!ps->current_area)
+			return 0;
+
+		ps->current_area--;
+		r = area_io(ps, READ);
+		if (r < 0)
+			return r;
+		ps->current_committed = ps->exceptions_per_area;
+	}
+
+	read_exception(ps, ps->current_committed - 1, &ce);
+	*last_old_chunk = ce.old_chunk;
+	*last_new_chunk = ce.new_chunk;
+
+	/*
+	 * Find number of consecutive chunks within the current area,
+	 * working backwards.
+	 */
+	for (nr_consecutive = 1; nr_consecutive < ps->current_committed;
+	     nr_consecutive++) {
+		read_exception(ps, ps->current_committed - 1 - nr_consecutive,
+			       &ce);
+		if (ce.old_chunk != *last_old_chunk - nr_consecutive ||
+		    ce.new_chunk != *last_new_chunk - nr_consecutive)
+			break;
+	}
+
+	return nr_consecutive;
+}
+
+static int persistent_commit_merge(struct dm_exception_store *store,
+				   int nr_merged)
+{
+	int r, i;
+	struct pstore *ps = get_info(store);
+
+	BUG_ON(nr_merged > ps->current_committed);
+
+	for (i = 0; i < nr_merged; i++)
+		clear_exception(ps, ps->current_committed - 1 - i);
+
+	r = area_io(ps, WRITE_FLUSH_FUA);
+	if (r < 0)
+		return r;
+
+	ps->current_committed -= nr_merged;
+
+	/*
+	 * At this stage, only persistent_usage() uses ps->next_free, so
+	 * we make no attempt to keep ps->next_free strictly accurate
+	 * as exceptions may have been committed out-of-order originally.
+	 * Once a snapshot has become merging, we set it to the value it
+	 * would have held had all the exceptions been committed in order.
+	 *
+	 * ps->current_area does not get reduced by prepare_merge() until
+	 * after commit_merge() has removed the nr_merged previous exceptions.
+	 */
+	ps->next_free = area_location(ps, ps->current_area) +
+			ps->current_committed + 1;
+
+	return 0;
+}
+
+static void persistent_drop_snapshot(struct dm_exception_store *store)
+{
+	struct pstore *ps = get_info(store);
+
+	ps->valid = 0;
+	if (write_header(ps))
+		DMWARN("write header failed");
+}
+
+static int persistent_ctr(struct dm_exception_store *store,
+			  unsigned argc, char **argv)
+{
+	struct pstore *ps;
+
+	/* allocate the pstore */
+	ps = kzalloc(sizeof(*ps), GFP_KERNEL);
+	if (!ps)
+		return -ENOMEM;
+
+	ps->store = store;
+	ps->valid = 1;
+	ps->version = SNAPSHOT_DISK_VERSION;
+	ps->area = NULL;
+	ps->zero_area = NULL;
+	ps->header_area = NULL;
+	ps->next_free = NUM_SNAPSHOT_HDR_CHUNKS + 1; /* header and 1st area */
+	ps->current_committed = 0;
+
+	ps->callback_count = 0;
+	atomic_set(&ps->pending_count, 0);
+	ps->callbacks = NULL;
+
+	ps->metadata_wq = alloc_workqueue("ksnaphd", WQ_MEM_RECLAIM, 0);
+	if (!ps->metadata_wq) {
+		kfree(ps);
+		DMERR("couldn't start header metadata update thread");
+		return -ENOMEM;
+	}
+
+	store->context = ps;
+
+	return 0;
+}
+
+static unsigned persistent_status(struct dm_exception_store *store,
+				  status_type_t status, char *result,
+				  unsigned maxlen)
+{
+	unsigned sz = 0;
+
+	switch (status) {
+	case STATUSTYPE_INFO:
+		break;
+	case STATUSTYPE_TABLE:
+		DMEMIT(" P %llu", (unsigned long long)store->chunk_size);
+	}
+
+	return sz;
+}
+
+static struct dm_exception_store_type _persistent_type = {
+	.name = "persistent",
+	.module = THIS_MODULE,
+	.ctr = persistent_ctr,
+	.dtr = persistent_dtr,
+	.read_metadata = persistent_read_metadata,
+	.prepare_exception = persistent_prepare_exception,
+	.commit_exception = persistent_commit_exception,
+	.prepare_merge = persistent_prepare_merge,
+	.commit_merge = persistent_commit_merge,
+	.drop_snapshot = persistent_drop_snapshot,
+	.usage = persistent_usage,
+	.status = persistent_status,
+};
+
+static struct dm_exception_store_type _persistent_compat_type = {
+	.name = "P",
+	.module = THIS_MODULE,
+	.ctr = persistent_ctr,
+	.dtr = persistent_dtr,
+	.read_metadata = persistent_read_metadata,
+	.prepare_exception = persistent_prepare_exception,
+	.commit_exception = persistent_commit_exception,
+	.prepare_merge = persistent_prepare_merge,
+	.commit_merge = persistent_commit_merge,
+	.drop_snapshot = persistent_drop_snapshot,
+	.usage = persistent_usage,
+	.status = persistent_status,
+};
+
+int dm_persistent_snapshot_init(void)
+{
+	int r;
+
+	r = dm_exception_store_type_register(&_persistent_type);
+	if (r) {
+		DMERR("Unable to register persistent exception store type");
+		return r;
+	}
+
+	r = dm_exception_store_type_register(&_persistent_compat_type);
+	if (r) {
+		DMERR("Unable to register old-style persistent exception "
+		      "store type");
+		dm_exception_store_type_unregister(&_persistent_type);
+		return r;
+	}
+
+	return r;
+}
+
+void dm_persistent_snapshot_exit(void)
+{
+	dm_exception_store_type_unregister(&_persistent_type);
+	dm_exception_store_type_unregister(&_persistent_compat_type);
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-snap-transient.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-snap-transient.c
new file mode 100644
index 0000000..1ce9a25
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-snap-transient.c
@@ -0,0 +1,153 @@
+/*
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2006-2008 Red Hat GmbH
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-exception-store.h"
+
+#include <linux/mm.h>
+#include <linux/pagemap.h>
+#include <linux/vmalloc.h>
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/dm-io.h>
+
+#define DM_MSG_PREFIX "transient snapshot"
+
+/*-----------------------------------------------------------------
+ * Implementation of the store for non-persistent snapshots.
+ *---------------------------------------------------------------*/
+struct transient_c {
+	sector_t next_free;
+};
+
+static void transient_dtr(struct dm_exception_store *store)
+{
+	kfree(store->context);
+}
+
+static int transient_read_metadata(struct dm_exception_store *store,
+				   int (*callback)(void *callback_context,
+						   chunk_t old, chunk_t new),
+				   void *callback_context)
+{
+	return 0;
+}
+
+static int transient_prepare_exception(struct dm_exception_store *store,
+				       struct dm_exception *e)
+{
+	struct transient_c *tc = store->context;
+	sector_t size = get_dev_size(dm_snap_cow(store->snap)->bdev);
+
+	if (size < (tc->next_free + store->chunk_size))
+		return -1;
+
+	e->new_chunk = sector_to_chunk(store, tc->next_free);
+	tc->next_free += store->chunk_size;
+
+	return 0;
+}
+
+static void transient_commit_exception(struct dm_exception_store *store,
+				       struct dm_exception *e,
+				       void (*callback) (void *, int success),
+				       void *callback_context)
+{
+	/* Just succeed */
+	callback(callback_context, 1);
+}
+
+static void transient_usage(struct dm_exception_store *store,
+			    sector_t *total_sectors,
+			    sector_t *sectors_allocated,
+			    sector_t *metadata_sectors)
+{
+	*sectors_allocated = ((struct transient_c *) store->context)->next_free;
+	*total_sectors = get_dev_size(dm_snap_cow(store->snap)->bdev);
+	*metadata_sectors = 0;
+}
+
+static int transient_ctr(struct dm_exception_store *store,
+			 unsigned argc, char **argv)
+{
+	struct transient_c *tc;
+
+	tc = kmalloc(sizeof(struct transient_c), GFP_KERNEL);
+	if (!tc)
+		return -ENOMEM;
+
+	tc->next_free = 0;
+	store->context = tc;
+
+	return 0;
+}
+
+static unsigned transient_status(struct dm_exception_store *store,
+				 status_type_t status, char *result,
+				 unsigned maxlen)
+{
+	unsigned sz = 0;
+
+	switch (status) {
+	case STATUSTYPE_INFO:
+		break;
+	case STATUSTYPE_TABLE:
+		DMEMIT(" N %llu", (unsigned long long)store->chunk_size);
+	}
+
+	return sz;
+}
+
+static struct dm_exception_store_type _transient_type = {
+	.name = "transient",
+	.module = THIS_MODULE,
+	.ctr = transient_ctr,
+	.dtr = transient_dtr,
+	.read_metadata = transient_read_metadata,
+	.prepare_exception = transient_prepare_exception,
+	.commit_exception = transient_commit_exception,
+	.usage = transient_usage,
+	.status = transient_status,
+};
+
+static struct dm_exception_store_type _transient_compat_type = {
+	.name = "N",
+	.module = THIS_MODULE,
+	.ctr = transient_ctr,
+	.dtr = transient_dtr,
+	.read_metadata = transient_read_metadata,
+	.prepare_exception = transient_prepare_exception,
+	.commit_exception = transient_commit_exception,
+	.usage = transient_usage,
+	.status = transient_status,
+};
+
+int dm_transient_snapshot_init(void)
+{
+	int r;
+
+	r = dm_exception_store_type_register(&_transient_type);
+	if (r) {
+		DMWARN("Unable to register transient exception store type");
+		return r;
+	}
+
+	r = dm_exception_store_type_register(&_transient_compat_type);
+	if (r) {
+		DMWARN("Unable to register old-style transient "
+		       "exception store type");
+		dm_exception_store_type_unregister(&_transient_type);
+		return r;
+	}
+
+	return r;
+}
+
+void dm_transient_snapshot_exit(void)
+{
+	dm_exception_store_type_unregister(&_transient_type);
+	dm_exception_store_type_unregister(&_transient_compat_type);
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-snap.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-snap.c
new file mode 100644
index 0000000..696a16b
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-snap.c
@@ -0,0 +1,2384 @@
+/*
+ * dm-snapshot.c
+ *
+ * Copyright (C) 2001-2002 Sistina Software (UK) Limited.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/device-mapper.h>
+#include <linux/delay.h>
+#include <linux/fs.h>
+#include <linux/init.h>
+#include <linux/kdev_t.h>
+#include <linux/list.h>
+#include <linux/mempool.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/vmalloc.h>
+#include <linux/log2.h>
+#include <linux/dm-kcopyd.h>
+
+#include "dm-exception-store.h"
+
+#define DM_MSG_PREFIX "snapshots"
+
+static const char dm_snapshot_merge_target_name[] = "snapshot-merge";
+
+#define dm_target_is_snapshot_merge(ti) \
+	((ti)->type->name == dm_snapshot_merge_target_name)
+
+/*
+ * The size of the mempool used to track chunks in use.
+ */
+#define MIN_IOS 256
+
+#define DM_TRACKED_CHUNK_HASH_SIZE	16
+#define DM_TRACKED_CHUNK_HASH(x)	((unsigned long)(x) & \
+					 (DM_TRACKED_CHUNK_HASH_SIZE - 1))
+
+struct dm_exception_table {
+	uint32_t hash_mask;
+	unsigned hash_shift;
+	struct list_head *table;
+};
+
+struct dm_snapshot {
+	struct rw_semaphore lock;
+
+	struct dm_dev *origin;
+	struct dm_dev *cow;
+
+	struct dm_target *ti;
+
+	/* List of snapshots per Origin */
+	struct list_head list;
+
+	/*
+	 * You can't use a snapshot if this is 0 (e.g. if full).
+	 * A snapshot-merge target never clears this.
+	 */
+	int valid;
+
+	/* Origin writes don't trigger exceptions until this is set */
+	int active;
+
+	atomic_t pending_exceptions_count;
+
+	/* Protected by "lock" */
+	sector_t exception_start_sequence;
+
+	/* Protected by kcopyd single-threaded callback */
+	sector_t exception_complete_sequence;
+
+	/*
+	 * A list of pending exceptions that completed out of order.
+	 * Protected by kcopyd single-threaded callback.
+	 */
+	struct list_head out_of_order_list;
+
+	mempool_t *pending_pool;
+
+	struct dm_exception_table pending;
+	struct dm_exception_table complete;
+
+	/*
+	 * pe_lock protects all pending_exception operations and access
+	 * as well as the snapshot_bios list.
+	 */
+	spinlock_t pe_lock;
+
+	/* Chunks with outstanding reads */
+	spinlock_t tracked_chunk_lock;
+	mempool_t *tracked_chunk_pool;
+	struct hlist_head tracked_chunk_hash[DM_TRACKED_CHUNK_HASH_SIZE];
+
+	/* The on disk metadata handler */
+	struct dm_exception_store *store;
+
+	struct dm_kcopyd_client *kcopyd_client;
+
+	/* Wait for events based on state_bits */
+	unsigned long state_bits;
+
+	/* Range of chunks currently being merged. */
+	chunk_t first_merging_chunk;
+	int num_merging_chunks;
+
+	/*
+	 * The merge operation failed if this flag is set.
+	 * Failure modes are handled as follows:
+	 * - I/O error reading the header
+	 *   	=> don't load the target; abort.
+	 * - Header does not have "valid" flag set
+	 *   	=> use the origin; forget about the snapshot.
+	 * - I/O error when reading exceptions
+	 *   	=> don't load the target; abort.
+	 *         (We can't use the intermediate origin state.)
+	 * - I/O error while merging
+	 *	=> stop merging; set merge_failed; process I/O normally.
+	 */
+	int merge_failed;
+
+	/*
+	 * Incoming bios that overlap with chunks being merged must wait
+	 * for them to be committed.
+	 */
+	struct bio_list bios_queued_during_merge;
+};
+
+/*
+ * state_bits:
+ *   RUNNING_MERGE  - Merge operation is in progress.
+ *   SHUTDOWN_MERGE - Set to signal that merge needs to be stopped;
+ *                    cleared afterwards.
+ */
+#define RUNNING_MERGE          0
+#define SHUTDOWN_MERGE         1
+
+struct dm_dev *dm_snap_origin(struct dm_snapshot *s)
+{
+	return s->origin;
+}
+EXPORT_SYMBOL(dm_snap_origin);
+
+struct dm_dev *dm_snap_cow(struct dm_snapshot *s)
+{
+	return s->cow;
+}
+EXPORT_SYMBOL(dm_snap_cow);
+
+static sector_t chunk_to_sector(struct dm_exception_store *store,
+				chunk_t chunk)
+{
+	return chunk << store->chunk_shift;
+}
+
+static int bdev_equal(struct block_device *lhs, struct block_device *rhs)
+{
+	/*
+	 * There is only ever one instance of a particular block
+	 * device so we can compare pointers safely.
+	 */
+	return lhs == rhs;
+}
+
+struct dm_snap_pending_exception {
+	struct dm_exception e;
+
+	/*
+	 * Origin buffers waiting for this to complete are held
+	 * in a bio list
+	 */
+	struct bio_list origin_bios;
+	struct bio_list snapshot_bios;
+
+	/* Pointer back to snapshot context */
+	struct dm_snapshot *snap;
+
+	/*
+	 * 1 indicates the exception has already been sent to
+	 * kcopyd.
+	 */
+	int started;
+
+	/* There was copying error. */
+	int copy_error;
+
+	/* A sequence number, it is used for in-order completion. */
+	sector_t exception_sequence;
+
+	struct list_head out_of_order_entry;
+
+	/*
+	 * For writing a complete chunk, bypassing the copy.
+	 */
+	struct bio *full_bio;
+	bio_end_io_t *full_bio_end_io;
+	void *full_bio_private;
+};
+
+/*
+ * Hash table mapping origin volumes to lists of snapshots and
+ * a lock to protect it
+ */
+static struct kmem_cache *exception_cache;
+static struct kmem_cache *pending_cache;
+
+struct dm_snap_tracked_chunk {
+	struct hlist_node node;
+	chunk_t chunk;
+};
+
+static struct kmem_cache *tracked_chunk_cache;
+
+static struct dm_snap_tracked_chunk *track_chunk(struct dm_snapshot *s,
+						 chunk_t chunk)
+{
+	struct dm_snap_tracked_chunk *c = mempool_alloc(s->tracked_chunk_pool,
+							GFP_NOIO);
+	unsigned long flags;
+
+	c->chunk = chunk;
+
+	spin_lock_irqsave(&s->tracked_chunk_lock, flags);
+	hlist_add_head(&c->node,
+		       &s->tracked_chunk_hash[DM_TRACKED_CHUNK_HASH(chunk)]);
+	spin_unlock_irqrestore(&s->tracked_chunk_lock, flags);
+
+	return c;
+}
+
+static void stop_tracking_chunk(struct dm_snapshot *s,
+				struct dm_snap_tracked_chunk *c)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&s->tracked_chunk_lock, flags);
+	hlist_del(&c->node);
+	spin_unlock_irqrestore(&s->tracked_chunk_lock, flags);
+
+	mempool_free(c, s->tracked_chunk_pool);
+}
+
+static int __chunk_is_tracked(struct dm_snapshot *s, chunk_t chunk)
+{
+	struct dm_snap_tracked_chunk *c;
+	struct hlist_node *hn;
+	int found = 0;
+
+	spin_lock_irq(&s->tracked_chunk_lock);
+
+	hlist_for_each_entry(c, hn,
+	    &s->tracked_chunk_hash[DM_TRACKED_CHUNK_HASH(chunk)], node) {
+		if (c->chunk == chunk) {
+			found = 1;
+			break;
+		}
+	}
+
+	spin_unlock_irq(&s->tracked_chunk_lock);
+
+	return found;
+}
+
+/*
+ * This conflicting I/O is extremely improbable in the caller,
+ * so msleep(1) is sufficient and there is no need for a wait queue.
+ */
+static void __check_for_conflicting_io(struct dm_snapshot *s, chunk_t chunk)
+{
+	while (__chunk_is_tracked(s, chunk))
+		msleep(1);
+}
+
+/*
+ * One of these per registered origin, held in the snapshot_origins hash
+ */
+struct origin {
+	/* The origin device */
+	struct block_device *bdev;
+
+	struct list_head hash_list;
+
+	/* List of snapshots for this origin */
+	struct list_head snapshots;
+};
+
+/*
+ * Size of the hash table for origin volumes. If we make this
+ * the size of the minors list then it should be nearly perfect
+ */
+#define ORIGIN_HASH_SIZE 256
+#define ORIGIN_MASK      0xFF
+static struct list_head *_origins;
+static struct rw_semaphore _origins_lock;
+
+static DECLARE_WAIT_QUEUE_HEAD(_pending_exceptions_done);
+static DEFINE_SPINLOCK(_pending_exceptions_done_spinlock);
+static uint64_t _pending_exceptions_done_count;
+
+static int init_origin_hash(void)
+{
+	int i;
+
+	_origins = kmalloc(ORIGIN_HASH_SIZE * sizeof(struct list_head),
+			   GFP_KERNEL);
+	if (!_origins) {
+		DMERR("unable to allocate memory");
+		return -ENOMEM;
+	}
+
+	for (i = 0; i < ORIGIN_HASH_SIZE; i++)
+		INIT_LIST_HEAD(_origins + i);
+	init_rwsem(&_origins_lock);
+
+	return 0;
+}
+
+static void exit_origin_hash(void)
+{
+	kfree(_origins);
+}
+
+static unsigned origin_hash(struct block_device *bdev)
+{
+	return bdev->bd_dev & ORIGIN_MASK;
+}
+
+static struct origin *__lookup_origin(struct block_device *origin)
+{
+	struct list_head *ol;
+	struct origin *o;
+
+	ol = &_origins[origin_hash(origin)];
+	list_for_each_entry (o, ol, hash_list)
+		if (bdev_equal(o->bdev, origin))
+			return o;
+
+	return NULL;
+}
+
+static void __insert_origin(struct origin *o)
+{
+	struct list_head *sl = &_origins[origin_hash(o->bdev)];
+	list_add_tail(&o->hash_list, sl);
+}
+
+/*
+ * _origins_lock must be held when calling this function.
+ * Returns number of snapshots registered using the supplied cow device, plus:
+ * snap_src - a snapshot suitable for use as a source of exception handover
+ * snap_dest - a snapshot capable of receiving exception handover.
+ * snap_merge - an existing snapshot-merge target linked to the same origin.
+ *   There can be at most one snapshot-merge target. The parameter is optional.
+ *
+ * Possible return values and states of snap_src and snap_dest.
+ *   0: NULL, NULL  - first new snapshot
+ *   1: snap_src, NULL - normal snapshot
+ *   2: snap_src, snap_dest  - waiting for handover
+ *   2: snap_src, NULL - handed over, waiting for old to be deleted
+ *   1: NULL, snap_dest - source got destroyed without handover
+ */
+static int __find_snapshots_sharing_cow(struct dm_snapshot *snap,
+					struct dm_snapshot **snap_src,
+					struct dm_snapshot **snap_dest,
+					struct dm_snapshot **snap_merge)
+{
+	struct dm_snapshot *s;
+	struct origin *o;
+	int count = 0;
+	int active;
+
+	o = __lookup_origin(snap->origin->bdev);
+	if (!o)
+		goto out;
+
+	list_for_each_entry(s, &o->snapshots, list) {
+		if (dm_target_is_snapshot_merge(s->ti) && snap_merge)
+			*snap_merge = s;
+		if (!bdev_equal(s->cow->bdev, snap->cow->bdev))
+			continue;
+
+		down_read(&s->lock);
+		active = s->active;
+		up_read(&s->lock);
+
+		if (active) {
+			if (snap_src)
+				*snap_src = s;
+		} else if (snap_dest)
+			*snap_dest = s;
+
+		count++;
+	}
+
+out:
+	return count;
+}
+
+/*
+ * On success, returns 1 if this snapshot is a handover destination,
+ * otherwise returns 0.
+ */
+static int __validate_exception_handover(struct dm_snapshot *snap)
+{
+	struct dm_snapshot *snap_src = NULL, *snap_dest = NULL;
+	struct dm_snapshot *snap_merge = NULL;
+
+	/* Does snapshot need exceptions handed over to it? */
+	if ((__find_snapshots_sharing_cow(snap, &snap_src, &snap_dest,
+					  &snap_merge) == 2) ||
+	    snap_dest) {
+		snap->ti->error = "Snapshot cow pairing for exception "
+				  "table handover failed";
+		return -EINVAL;
+	}
+
+	/*
+	 * If no snap_src was found, snap cannot become a handover
+	 * destination.
+	 */
+	if (!snap_src)
+		return 0;
+
+	/*
+	 * Non-snapshot-merge handover?
+	 */
+	if (!dm_target_is_snapshot_merge(snap->ti))
+		return 1;
+
+	/*
+	 * Do not allow more than one merging snapshot.
+	 */
+	if (snap_merge) {
+		snap->ti->error = "A snapshot is already merging.";
+		return -EINVAL;
+	}
+
+	if (!snap_src->store->type->prepare_merge ||
+	    !snap_src->store->type->commit_merge) {
+		snap->ti->error = "Snapshot exception store does not "
+				  "support snapshot-merge.";
+		return -EINVAL;
+	}
+
+	return 1;
+}
+
+static void __insert_snapshot(struct origin *o, struct dm_snapshot *s)
+{
+	struct dm_snapshot *l;
+
+	/* Sort the list according to chunk size, largest-first smallest-last */
+	list_for_each_entry(l, &o->snapshots, list)
+		if (l->store->chunk_size < s->store->chunk_size)
+			break;
+	list_add_tail(&s->list, &l->list);
+}
+
+/*
+ * Make a note of the snapshot and its origin so we can look it
+ * up when the origin has a write on it.
+ *
+ * Also validate snapshot exception store handovers.
+ * On success, returns 1 if this registration is a handover destination,
+ * otherwise returns 0.
+ */
+static int register_snapshot(struct dm_snapshot *snap)
+{
+	struct origin *o, *new_o = NULL;
+	struct block_device *bdev = snap->origin->bdev;
+	int r = 0;
+
+	new_o = kmalloc(sizeof(*new_o), GFP_KERNEL);
+	if (!new_o)
+		return -ENOMEM;
+
+	down_write(&_origins_lock);
+
+	r = __validate_exception_handover(snap);
+	if (r < 0) {
+		kfree(new_o);
+		goto out;
+	}
+
+	o = __lookup_origin(bdev);
+	if (o)
+		kfree(new_o);
+	else {
+		/* New origin */
+		o = new_o;
+
+		/* Initialise the struct */
+		INIT_LIST_HEAD(&o->snapshots);
+		o->bdev = bdev;
+
+		__insert_origin(o);
+	}
+
+	__insert_snapshot(o, snap);
+
+out:
+	up_write(&_origins_lock);
+
+	return r;
+}
+
+/*
+ * Move snapshot to correct place in list according to chunk size.
+ */
+static void reregister_snapshot(struct dm_snapshot *s)
+{
+	struct block_device *bdev = s->origin->bdev;
+
+	down_write(&_origins_lock);
+
+	list_del(&s->list);
+	__insert_snapshot(__lookup_origin(bdev), s);
+
+	up_write(&_origins_lock);
+}
+
+static void unregister_snapshot(struct dm_snapshot *s)
+{
+	struct origin *o;
+
+	down_write(&_origins_lock);
+	o = __lookup_origin(s->origin->bdev);
+
+	list_del(&s->list);
+	if (o && list_empty(&o->snapshots)) {
+		list_del(&o->hash_list);
+		kfree(o);
+	}
+
+	up_write(&_origins_lock);
+}
+
+/*
+ * Implementation of the exception hash tables.
+ * The lowest hash_shift bits of the chunk number are ignored, allowing
+ * some consecutive chunks to be grouped together.
+ */
+static int dm_exception_table_init(struct dm_exception_table *et,
+				   uint32_t size, unsigned hash_shift)
+{
+	unsigned int i;
+
+	et->hash_shift = hash_shift;
+	et->hash_mask = size - 1;
+	et->table = dm_vcalloc(size, sizeof(struct list_head));
+	if (!et->table)
+		return -ENOMEM;
+
+	for (i = 0; i < size; i++)
+		INIT_LIST_HEAD(et->table + i);
+
+	return 0;
+}
+
+static void dm_exception_table_exit(struct dm_exception_table *et,
+				    struct kmem_cache *mem)
+{
+	struct list_head *slot;
+	struct dm_exception *ex, *next;
+	int i, size;
+
+	size = et->hash_mask + 1;
+	for (i = 0; i < size; i++) {
+		slot = et->table + i;
+
+		list_for_each_entry_safe (ex, next, slot, hash_list)
+			kmem_cache_free(mem, ex);
+	}
+
+	vfree(et->table);
+}
+
+static uint32_t exception_hash(struct dm_exception_table *et, chunk_t chunk)
+{
+	return (chunk >> et->hash_shift) & et->hash_mask;
+}
+
+static void dm_remove_exception(struct dm_exception *e)
+{
+	list_del(&e->hash_list);
+}
+
+/*
+ * Return the exception data for a sector, or NULL if not
+ * remapped.
+ */
+static struct dm_exception *dm_lookup_exception(struct dm_exception_table *et,
+						chunk_t chunk)
+{
+	struct list_head *slot;
+	struct dm_exception *e;
+
+	slot = &et->table[exception_hash(et, chunk)];
+	list_for_each_entry (e, slot, hash_list)
+		if (chunk >= e->old_chunk &&
+		    chunk <= e->old_chunk + dm_consecutive_chunk_count(e))
+			return e;
+
+	return NULL;
+}
+
+static struct dm_exception *alloc_completed_exception(void)
+{
+	struct dm_exception *e;
+
+	e = kmem_cache_alloc(exception_cache, GFP_NOIO);
+	if (!e)
+		e = kmem_cache_alloc(exception_cache, GFP_ATOMIC);
+
+	return e;
+}
+
+static void free_completed_exception(struct dm_exception *e)
+{
+	kmem_cache_free(exception_cache, e);
+}
+
+static struct dm_snap_pending_exception *alloc_pending_exception(struct dm_snapshot *s)
+{
+	struct dm_snap_pending_exception *pe = mempool_alloc(s->pending_pool,
+							     GFP_NOIO);
+
+	atomic_inc(&s->pending_exceptions_count);
+	pe->snap = s;
+
+	return pe;
+}
+
+static void free_pending_exception(struct dm_snap_pending_exception *pe)
+{
+	struct dm_snapshot *s = pe->snap;
+
+	mempool_free(pe, s->pending_pool);
+	smp_mb__before_atomic_dec();
+	atomic_dec(&s->pending_exceptions_count);
+}
+
+static void dm_insert_exception(struct dm_exception_table *eh,
+				struct dm_exception *new_e)
+{
+	struct list_head *l;
+	struct dm_exception *e = NULL;
+
+	l = &eh->table[exception_hash(eh, new_e->old_chunk)];
+
+	/* Add immediately if this table doesn't support consecutive chunks */
+	if (!eh->hash_shift)
+		goto out;
+
+	/* List is ordered by old_chunk */
+	list_for_each_entry_reverse(e, l, hash_list) {
+		/* Insert after an existing chunk? */
+		if (new_e->old_chunk == (e->old_chunk +
+					 dm_consecutive_chunk_count(e) + 1) &&
+		    new_e->new_chunk == (dm_chunk_number(e->new_chunk) +
+					 dm_consecutive_chunk_count(e) + 1)) {
+			dm_consecutive_chunk_count_inc(e);
+			free_completed_exception(new_e);
+			return;
+		}
+
+		/* Insert before an existing chunk? */
+		if (new_e->old_chunk == (e->old_chunk - 1) &&
+		    new_e->new_chunk == (dm_chunk_number(e->new_chunk) - 1)) {
+			dm_consecutive_chunk_count_inc(e);
+			e->old_chunk--;
+			e->new_chunk--;
+			free_completed_exception(new_e);
+			return;
+		}
+
+		if (new_e->old_chunk > e->old_chunk)
+			break;
+	}
+
+out:
+	list_add(&new_e->hash_list, e ? &e->hash_list : l);
+}
+
+/*
+ * Callback used by the exception stores to load exceptions when
+ * initialising.
+ */
+static int dm_add_exception(void *context, chunk_t old, chunk_t new)
+{
+	struct dm_snapshot *s = context;
+	struct dm_exception *e;
+
+	e = alloc_completed_exception();
+	if (!e)
+		return -ENOMEM;
+
+	e->old_chunk = old;
+
+	/* Consecutive_count is implicitly initialised to zero */
+	e->new_chunk = new;
+
+	dm_insert_exception(&s->complete, e);
+
+	return 0;
+}
+
+/*
+ * Return a minimum chunk size of all snapshots that have the specified origin.
+ * Return zero if the origin has no snapshots.
+ */
+static sector_t __minimum_chunk_size(struct origin *o)
+{
+	struct dm_snapshot *snap;
+	unsigned chunk_size = 0;
+
+	if (o)
+		list_for_each_entry(snap, &o->snapshots, list)
+			chunk_size = min_not_zero(chunk_size,
+						  snap->store->chunk_size);
+
+	return chunk_size;
+}
+
+/*
+ * Hard coded magic.
+ */
+static int calc_max_buckets(void)
+{
+	/* use a fixed size of 2MB */
+	unsigned long mem = 2 * 1024 * 1024;
+	mem /= sizeof(struct list_head);
+
+	return mem;
+}
+
+/*
+ * Allocate room for a suitable hash table.
+ */
+static int init_hash_tables(struct dm_snapshot *s)
+{
+	sector_t hash_size, cow_dev_size, max_buckets;
+
+	/*
+	 * Calculate based on the size of the original volume or
+	 * the COW volume...
+	 */
+	cow_dev_size = get_dev_size(s->cow->bdev);
+	max_buckets = calc_max_buckets();
+
+	hash_size = cow_dev_size >> s->store->chunk_shift;
+	hash_size = min(hash_size, max_buckets);
+
+	if (hash_size < 64)
+		hash_size = 64;
+	hash_size = rounddown_pow_of_two(hash_size);
+	if (dm_exception_table_init(&s->complete, hash_size,
+				    DM_CHUNK_CONSECUTIVE_BITS))
+		return -ENOMEM;
+
+	/*
+	 * Allocate hash table for in-flight exceptions
+	 * Make this smaller than the real hash table
+	 */
+	hash_size >>= 3;
+	if (hash_size < 64)
+		hash_size = 64;
+
+	if (dm_exception_table_init(&s->pending, hash_size, 0)) {
+		dm_exception_table_exit(&s->complete, exception_cache);
+		return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static void merge_shutdown(struct dm_snapshot *s)
+{
+	clear_bit_unlock(RUNNING_MERGE, &s->state_bits);
+	smp_mb__after_clear_bit();
+	wake_up_bit(&s->state_bits, RUNNING_MERGE);
+}
+
+static struct bio *__release_queued_bios_after_merge(struct dm_snapshot *s)
+{
+	s->first_merging_chunk = 0;
+	s->num_merging_chunks = 0;
+
+	return bio_list_get(&s->bios_queued_during_merge);
+}
+
+/*
+ * Remove one chunk from the index of completed exceptions.
+ */
+static int __remove_single_exception_chunk(struct dm_snapshot *s,
+					   chunk_t old_chunk)
+{
+	struct dm_exception *e;
+
+	e = dm_lookup_exception(&s->complete, old_chunk);
+	if (!e) {
+		DMERR("Corruption detected: exception for block %llu is "
+		      "on disk but not in memory",
+		      (unsigned long long)old_chunk);
+		return -EINVAL;
+	}
+
+	/*
+	 * If this is the only chunk using this exception, remove exception.
+	 */
+	if (!dm_consecutive_chunk_count(e)) {
+		dm_remove_exception(e);
+		free_completed_exception(e);
+		return 0;
+	}
+
+	/*
+	 * The chunk may be either at the beginning or the end of a
+	 * group of consecutive chunks - never in the middle.  We are
+	 * removing chunks in the opposite order to that in which they
+	 * were added, so this should always be true.
+	 * Decrement the consecutive chunk counter and adjust the
+	 * starting point if necessary.
+	 */
+	if (old_chunk == e->old_chunk) {
+		e->old_chunk++;
+		e->new_chunk++;
+	} else if (old_chunk != e->old_chunk +
+		   dm_consecutive_chunk_count(e)) {
+		DMERR("Attempt to merge block %llu from the "
+		      "middle of a chunk range [%llu - %llu]",
+		      (unsigned long long)old_chunk,
+		      (unsigned long long)e->old_chunk,
+		      (unsigned long long)
+		      e->old_chunk + dm_consecutive_chunk_count(e));
+		return -EINVAL;
+	}
+
+	dm_consecutive_chunk_count_dec(e);
+
+	return 0;
+}
+
+static void flush_bios(struct bio *bio);
+
+static int remove_single_exception_chunk(struct dm_snapshot *s)
+{
+	struct bio *b = NULL;
+	int r;
+	chunk_t old_chunk = s->first_merging_chunk + s->num_merging_chunks - 1;
+
+	down_write(&s->lock);
+
+	/*
+	 * Process chunks (and associated exceptions) in reverse order
+	 * so that dm_consecutive_chunk_count_dec() accounting works.
+	 */
+	do {
+		r = __remove_single_exception_chunk(s, old_chunk);
+		if (r)
+			goto out;
+	} while (old_chunk-- > s->first_merging_chunk);
+
+	b = __release_queued_bios_after_merge(s);
+
+out:
+	up_write(&s->lock);
+	if (b)
+		flush_bios(b);
+
+	return r;
+}
+
+static int origin_write_extent(struct dm_snapshot *merging_snap,
+			       sector_t sector, unsigned chunk_size);
+
+static void merge_callback(int read_err, unsigned long write_err,
+			   void *context);
+
+static uint64_t read_pending_exceptions_done_count(void)
+{
+	uint64_t pending_exceptions_done;
+
+	spin_lock(&_pending_exceptions_done_spinlock);
+	pending_exceptions_done = _pending_exceptions_done_count;
+	spin_unlock(&_pending_exceptions_done_spinlock);
+
+	return pending_exceptions_done;
+}
+
+static void increment_pending_exceptions_done_count(void)
+{
+	spin_lock(&_pending_exceptions_done_spinlock);
+	_pending_exceptions_done_count++;
+	spin_unlock(&_pending_exceptions_done_spinlock);
+
+	wake_up_all(&_pending_exceptions_done);
+}
+
+static void snapshot_merge_next_chunks(struct dm_snapshot *s)
+{
+	int i, linear_chunks;
+	chunk_t old_chunk, new_chunk;
+	struct dm_io_region src, dest;
+	sector_t io_size;
+	uint64_t previous_count;
+
+	BUG_ON(!test_bit(RUNNING_MERGE, &s->state_bits));
+	if (unlikely(test_bit(SHUTDOWN_MERGE, &s->state_bits)))
+		goto shut;
+
+	/*
+	 * valid flag never changes during merge, so no lock required.
+	 */
+	if (!s->valid) {
+		DMERR("Snapshot is invalid: can't merge");
+		goto shut;
+	}
+
+	linear_chunks = s->store->type->prepare_merge(s->store, &old_chunk,
+						      &new_chunk);
+	if (linear_chunks <= 0) {
+		if (linear_chunks < 0) {
+			DMERR("Read error in exception store: "
+			      "shutting down merge");
+			down_write(&s->lock);
+			s->merge_failed = 1;
+			up_write(&s->lock);
+		}
+		goto shut;
+	}
+
+	/* Adjust old_chunk and new_chunk to reflect start of linear region */
+	old_chunk = old_chunk + 1 - linear_chunks;
+	new_chunk = new_chunk + 1 - linear_chunks;
+
+	/*
+	 * Use one (potentially large) I/O to copy all 'linear_chunks'
+	 * from the exception store to the origin
+	 */
+	io_size = linear_chunks * s->store->chunk_size;
+
+	dest.bdev = s->origin->bdev;
+	dest.sector = chunk_to_sector(s->store, old_chunk);
+	dest.count = min(io_size, get_dev_size(dest.bdev) - dest.sector);
+
+	src.bdev = s->cow->bdev;
+	src.sector = chunk_to_sector(s->store, new_chunk);
+	src.count = dest.count;
+
+	/*
+	 * Reallocate any exceptions needed in other snapshots then
+	 * wait for the pending exceptions to complete.
+	 * Each time any pending exception (globally on the system)
+	 * completes we are woken and repeat the process to find out
+	 * if we can proceed.  While this may not seem a particularly
+	 * efficient algorithm, it is not expected to have any
+	 * significant impact on performance.
+	 */
+	previous_count = read_pending_exceptions_done_count();
+	while (origin_write_extent(s, dest.sector, io_size)) {
+		wait_event(_pending_exceptions_done,
+			   (read_pending_exceptions_done_count() !=
+			    previous_count));
+		/* Retry after the wait, until all exceptions are done. */
+		previous_count = read_pending_exceptions_done_count();
+	}
+
+	down_write(&s->lock);
+	s->first_merging_chunk = old_chunk;
+	s->num_merging_chunks = linear_chunks;
+	up_write(&s->lock);
+
+	/* Wait until writes to all 'linear_chunks' drain */
+	for (i = 0; i < linear_chunks; i++)
+		__check_for_conflicting_io(s, old_chunk + i);
+
+	dm_kcopyd_copy(s->kcopyd_client, &src, 1, &dest, 0, merge_callback, s);
+	return;
+
+shut:
+	merge_shutdown(s);
+}
+
+static void error_bios(struct bio *bio);
+
+static void merge_callback(int read_err, unsigned long write_err, void *context)
+{
+	struct dm_snapshot *s = context;
+	struct bio *b = NULL;
+
+	if (read_err || write_err) {
+		if (read_err)
+			DMERR("Read error: shutting down merge.");
+		else
+			DMERR("Write error: shutting down merge.");
+		goto shut;
+	}
+
+	if (s->store->type->commit_merge(s->store,
+					 s->num_merging_chunks) < 0) {
+		DMERR("Write error in exception store: shutting down merge");
+		goto shut;
+	}
+
+	if (remove_single_exception_chunk(s) < 0)
+		goto shut;
+
+	snapshot_merge_next_chunks(s);
+
+	return;
+
+shut:
+	down_write(&s->lock);
+	s->merge_failed = 1;
+	b = __release_queued_bios_after_merge(s);
+	up_write(&s->lock);
+	error_bios(b);
+
+	merge_shutdown(s);
+}
+
+static void start_merge(struct dm_snapshot *s)
+{
+	if (!test_and_set_bit(RUNNING_MERGE, &s->state_bits))
+		snapshot_merge_next_chunks(s);
+}
+
+static int wait_schedule(void *ptr)
+{
+	schedule();
+
+	return 0;
+}
+
+/*
+ * Stop the merging process and wait until it finishes.
+ */
+static void stop_merge(struct dm_snapshot *s)
+{
+	set_bit(SHUTDOWN_MERGE, &s->state_bits);
+	wait_on_bit(&s->state_bits, RUNNING_MERGE, wait_schedule,
+		    TASK_UNINTERRUPTIBLE);
+	clear_bit(SHUTDOWN_MERGE, &s->state_bits);
+}
+
+/*
+ * Construct a snapshot mapping: <origin_dev> <COW-dev> <p/n> <chunk-size>
+ */
+static int snapshot_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+	struct dm_snapshot *s;
+	int i;
+	int r = -EINVAL;
+	char *origin_path, *cow_path;
+	unsigned args_used, num_flush_requests = 1;
+	fmode_t origin_mode = FMODE_READ;
+
+	if (argc != 4) {
+		ti->error = "requires exactly 4 arguments";
+		r = -EINVAL;
+		goto bad;
+	}
+
+	if (dm_target_is_snapshot_merge(ti)) {
+		num_flush_requests = 2;
+		origin_mode = FMODE_WRITE;
+	}
+
+	s = kmalloc(sizeof(*s), GFP_KERNEL);
+	if (!s) {
+		ti->error = "Cannot allocate private snapshot structure";
+		r = -ENOMEM;
+		goto bad;
+	}
+
+	origin_path = argv[0];
+	argv++;
+	argc--;
+
+	r = dm_get_device(ti, origin_path, origin_mode, &s->origin);
+	if (r) {
+		ti->error = "Cannot get origin device";
+		goto bad_origin;
+	}
+
+	cow_path = argv[0];
+	argv++;
+	argc--;
+
+	r = dm_get_device(ti, cow_path, dm_table_get_mode(ti->table), &s->cow);
+	if (r) {
+		ti->error = "Cannot get COW device";
+		goto bad_cow;
+	}
+
+	r = dm_exception_store_create(ti, argc, argv, s, &args_used, &s->store);
+	if (r) {
+		ti->error = "Couldn't create exception store";
+		r = -EINVAL;
+		goto bad_store;
+	}
+
+	argv += args_used;
+	argc -= args_used;
+
+	s->ti = ti;
+	s->valid = 1;
+	s->active = 0;
+	atomic_set(&s->pending_exceptions_count, 0);
+	s->exception_start_sequence = 0;
+	s->exception_complete_sequence = 0;
+	INIT_LIST_HEAD(&s->out_of_order_list);
+	init_rwsem(&s->lock);
+	INIT_LIST_HEAD(&s->list);
+	spin_lock_init(&s->pe_lock);
+	s->state_bits = 0;
+	s->merge_failed = 0;
+	s->first_merging_chunk = 0;
+	s->num_merging_chunks = 0;
+	bio_list_init(&s->bios_queued_during_merge);
+
+	/* Allocate hash table for COW data */
+	if (init_hash_tables(s)) {
+		ti->error = "Unable to allocate hash table space";
+		r = -ENOMEM;
+		goto bad_hash_tables;
+	}
+
+	s->kcopyd_client = dm_kcopyd_client_create();
+	if (IS_ERR(s->kcopyd_client)) {
+		r = PTR_ERR(s->kcopyd_client);
+		ti->error = "Could not create kcopyd client";
+		goto bad_kcopyd;
+	}
+
+	s->pending_pool = mempool_create_slab_pool(MIN_IOS, pending_cache);
+	if (!s->pending_pool) {
+		ti->error = "Could not allocate mempool for pending exceptions";
+		r = -ENOMEM;
+		goto bad_pending_pool;
+	}
+
+	s->tracked_chunk_pool = mempool_create_slab_pool(MIN_IOS,
+							 tracked_chunk_cache);
+	if (!s->tracked_chunk_pool) {
+		ti->error = "Could not allocate tracked_chunk mempool for "
+			    "tracking reads";
+		goto bad_tracked_chunk_pool;
+	}
+
+	for (i = 0; i < DM_TRACKED_CHUNK_HASH_SIZE; i++)
+		INIT_HLIST_HEAD(&s->tracked_chunk_hash[i]);
+
+	spin_lock_init(&s->tracked_chunk_lock);
+
+	ti->private = s;
+	ti->num_flush_requests = num_flush_requests;
+
+	/* Add snapshot to the list of snapshots for this origin */
+	/* Exceptions aren't triggered till snapshot_resume() is called */
+	r = register_snapshot(s);
+	if (r == -ENOMEM) {
+		ti->error = "Snapshot origin struct allocation failed";
+		goto bad_load_and_register;
+	} else if (r < 0) {
+		/* invalid handover, register_snapshot has set ti->error */
+		goto bad_load_and_register;
+	}
+
+	/*
+	 * Metadata must only be loaded into one table at once, so skip this
+	 * if metadata will be handed over during resume.
+	 * Chunk size will be set during the handover - set it to zero to
+	 * ensure it's ignored.
+	 */
+	if (r > 0) {
+		s->store->chunk_size = 0;
+		return 0;
+	}
+
+	r = s->store->type->read_metadata(s->store, dm_add_exception,
+					  (void *)s);
+	if (r < 0) {
+		ti->error = "Failed to read snapshot metadata";
+		goto bad_read_metadata;
+	} else if (r > 0) {
+		s->valid = 0;
+		DMWARN("Snapshot is marked invalid.");
+	}
+
+	if (!s->store->chunk_size) {
+		ti->error = "Chunk size not set";
+		goto bad_read_metadata;
+	}
+	ti->split_io = s->store->chunk_size;
+
+	return 0;
+
+bad_read_metadata:
+	unregister_snapshot(s);
+
+bad_load_and_register:
+	mempool_destroy(s->tracked_chunk_pool);
+
+bad_tracked_chunk_pool:
+	mempool_destroy(s->pending_pool);
+
+bad_pending_pool:
+	dm_kcopyd_client_destroy(s->kcopyd_client);
+
+bad_kcopyd:
+	dm_exception_table_exit(&s->pending, pending_cache);
+	dm_exception_table_exit(&s->complete, exception_cache);
+
+bad_hash_tables:
+	dm_exception_store_destroy(s->store);
+
+bad_store:
+	dm_put_device(ti, s->cow);
+
+bad_cow:
+	dm_put_device(ti, s->origin);
+
+bad_origin:
+	kfree(s);
+
+bad:
+	return r;
+}
+
+static void __free_exceptions(struct dm_snapshot *s)
+{
+	dm_kcopyd_client_destroy(s->kcopyd_client);
+	s->kcopyd_client = NULL;
+
+	dm_exception_table_exit(&s->pending, pending_cache);
+	dm_exception_table_exit(&s->complete, exception_cache);
+}
+
+static void __handover_exceptions(struct dm_snapshot *snap_src,
+				  struct dm_snapshot *snap_dest)
+{
+	union {
+		struct dm_exception_table table_swap;
+		struct dm_exception_store *store_swap;
+	} u;
+
+	/*
+	 * Swap all snapshot context information between the two instances.
+	 */
+	u.table_swap = snap_dest->complete;
+	snap_dest->complete = snap_src->complete;
+	snap_src->complete = u.table_swap;
+
+	u.store_swap = snap_dest->store;
+	snap_dest->store = snap_src->store;
+	snap_src->store = u.store_swap;
+
+	snap_dest->store->snap = snap_dest;
+	snap_src->store->snap = snap_src;
+
+	snap_dest->ti->split_io = snap_dest->store->chunk_size;
+	snap_dest->valid = snap_src->valid;
+
+	/*
+	 * Set source invalid to ensure it receives no further I/O.
+	 */
+	snap_src->valid = 0;
+}
+
+static void snapshot_dtr(struct dm_target *ti)
+{
+#ifdef CONFIG_DM_DEBUG
+	int i;
+#endif
+	struct dm_snapshot *s = ti->private;
+	struct dm_snapshot *snap_src = NULL, *snap_dest = NULL;
+
+	down_read(&_origins_lock);
+	/* Check whether exception handover must be cancelled */
+	(void) __find_snapshots_sharing_cow(s, &snap_src, &snap_dest, NULL);
+	if (snap_src && snap_dest && (s == snap_src)) {
+		down_write(&snap_dest->lock);
+		snap_dest->valid = 0;
+		up_write(&snap_dest->lock);
+		DMERR("Cancelling snapshot handover.");
+	}
+	up_read(&_origins_lock);
+
+	if (dm_target_is_snapshot_merge(ti))
+		stop_merge(s);
+
+	/* Prevent further origin writes from using this snapshot. */
+	/* After this returns there can be no new kcopyd jobs. */
+	unregister_snapshot(s);
+
+	while (atomic_read(&s->pending_exceptions_count))
+		msleep(1);
+	/*
+	 * Ensure instructions in mempool_destroy aren't reordered
+	 * before atomic_read.
+	 */
+	smp_mb();
+
+#ifdef CONFIG_DM_DEBUG
+	for (i = 0; i < DM_TRACKED_CHUNK_HASH_SIZE; i++)
+		BUG_ON(!hlist_empty(&s->tracked_chunk_hash[i]));
+#endif
+
+	mempool_destroy(s->tracked_chunk_pool);
+
+	__free_exceptions(s);
+
+	mempool_destroy(s->pending_pool);
+
+	dm_exception_store_destroy(s->store);
+
+	dm_put_device(ti, s->cow);
+
+	dm_put_device(ti, s->origin);
+
+	kfree(s);
+}
+
+/*
+ * Flush a list of buffers.
+ */
+static void flush_bios(struct bio *bio)
+{
+	struct bio *n;
+
+	while (bio) {
+		n = bio->bi_next;
+		bio->bi_next = NULL;
+		generic_make_request(bio);
+		bio = n;
+	}
+}
+
+static int do_origin(struct dm_dev *origin, struct bio *bio);
+
+/*
+ * Flush a list of buffers.
+ */
+static void retry_origin_bios(struct dm_snapshot *s, struct bio *bio)
+{
+	struct bio *n;
+	int r;
+
+	while (bio) {
+		n = bio->bi_next;
+		bio->bi_next = NULL;
+		r = do_origin(s->origin, bio);
+		if (r == DM_MAPIO_REMAPPED)
+			generic_make_request(bio);
+		bio = n;
+	}
+}
+
+/*
+ * Error a list of buffers.
+ */
+static void error_bios(struct bio *bio)
+{
+	struct bio *n;
+
+	while (bio) {
+		n = bio->bi_next;
+		bio->bi_next = NULL;
+		bio_io_error(bio);
+		bio = n;
+	}
+}
+
+static void __invalidate_snapshot(struct dm_snapshot *s, int err)
+{
+	if (!s->valid)
+		return;
+
+	if (err == -EIO)
+		DMERR("Invalidating snapshot: Error reading/writing.");
+	else if (err == -ENOMEM)
+		DMERR("Invalidating snapshot: Unable to allocate exception.");
+
+	if (s->store->type->drop_snapshot)
+		s->store->type->drop_snapshot(s->store);
+
+	s->valid = 0;
+
+	dm_table_event(s->ti->table);
+}
+
+static void pending_complete(struct dm_snap_pending_exception *pe, int success)
+{
+	struct dm_exception *e;
+	struct dm_snapshot *s = pe->snap;
+	struct bio *origin_bios = NULL;
+	struct bio *snapshot_bios = NULL;
+	struct bio *full_bio = NULL;
+	int error = 0;
+
+	if (!success) {
+		/* Read/write error - snapshot is unusable */
+		down_write(&s->lock);
+		__invalidate_snapshot(s, -EIO);
+		error = 1;
+		goto out;
+	}
+
+	e = alloc_completed_exception();
+	if (!e) {
+		down_write(&s->lock);
+		__invalidate_snapshot(s, -ENOMEM);
+		error = 1;
+		goto out;
+	}
+	*e = pe->e;
+
+	down_write(&s->lock);
+	if (!s->valid) {
+		free_completed_exception(e);
+		error = 1;
+		goto out;
+	}
+
+	/* Check for conflicting reads */
+	__check_for_conflicting_io(s, pe->e.old_chunk);
+
+	/*
+	 * Add a proper exception, and remove the
+	 * in-flight exception from the list.
+	 */
+	dm_insert_exception(&s->complete, e);
+
+out:
+	dm_remove_exception(&pe->e);
+	snapshot_bios = bio_list_get(&pe->snapshot_bios);
+	origin_bios = bio_list_get(&pe->origin_bios);
+	full_bio = pe->full_bio;
+	if (full_bio) {
+		full_bio->bi_end_io = pe->full_bio_end_io;
+		full_bio->bi_private = pe->full_bio_private;
+	}
+	increment_pending_exceptions_done_count();
+
+	up_write(&s->lock);
+
+	/* Submit any pending write bios */
+	if (error) {
+		if (full_bio)
+			bio_io_error(full_bio);
+		error_bios(snapshot_bios);
+	} else {
+		if (full_bio)
+			bio_endio(full_bio, 0);
+		flush_bios(snapshot_bios);
+	}
+
+	retry_origin_bios(s, origin_bios);
+
+	free_pending_exception(pe);
+}
+
+static void commit_callback(void *context, int success)
+{
+	struct dm_snap_pending_exception *pe = context;
+
+	pending_complete(pe, success);
+}
+
+static void complete_exception(struct dm_snap_pending_exception *pe)
+{
+	struct dm_snapshot *s = pe->snap;
+
+	if (unlikely(pe->copy_error))
+		pending_complete(pe, 0);
+
+	else
+		/* Update the metadata if we are persistent */
+		s->store->type->commit_exception(s->store, &pe->e,
+						 commit_callback, pe);
+}
+
+/*
+ * Called when the copy I/O has finished.  kcopyd actually runs
+ * this code so don't block.
+ */
+static void copy_callback(int read_err, unsigned long write_err, void *context)
+{
+	struct dm_snap_pending_exception *pe = context;
+	struct dm_snapshot *s = pe->snap;
+
+	pe->copy_error = read_err || write_err;
+
+	if (pe->exception_sequence == s->exception_complete_sequence) {
+		s->exception_complete_sequence++;
+		complete_exception(pe);
+
+		while (!list_empty(&s->out_of_order_list)) {
+			pe = list_entry(s->out_of_order_list.next,
+					struct dm_snap_pending_exception, out_of_order_entry);
+			if (pe->exception_sequence != s->exception_complete_sequence)
+				break;
+			s->exception_complete_sequence++;
+			list_del(&pe->out_of_order_entry);
+			complete_exception(pe);
+		}
+	} else {
+		struct list_head *lh;
+		struct dm_snap_pending_exception *pe2;
+
+		list_for_each_prev(lh, &s->out_of_order_list) {
+			pe2 = list_entry(lh, struct dm_snap_pending_exception, out_of_order_entry);
+			if (pe2->exception_sequence < pe->exception_sequence)
+				break;
+		}
+		list_add(&pe->out_of_order_entry, lh);
+	}
+}
+
+/*
+ * Dispatches the copy operation to kcopyd.
+ */
+static void start_copy(struct dm_snap_pending_exception *pe)
+{
+	struct dm_snapshot *s = pe->snap;
+	struct dm_io_region src, dest;
+	struct block_device *bdev = s->origin->bdev;
+	sector_t dev_size;
+
+	dev_size = get_dev_size(bdev);
+
+	src.bdev = bdev;
+	src.sector = chunk_to_sector(s->store, pe->e.old_chunk);
+	src.count = min((sector_t)s->store->chunk_size, dev_size - src.sector);
+
+	dest.bdev = s->cow->bdev;
+	dest.sector = chunk_to_sector(s->store, pe->e.new_chunk);
+	dest.count = src.count;
+
+	/* Hand over to kcopyd */
+	dm_kcopyd_copy(s->kcopyd_client, &src, 1, &dest, 0, copy_callback, pe);
+}
+
+static void full_bio_end_io(struct bio *bio, int error)
+{
+	void *callback_data = bio->bi_private;
+
+	dm_kcopyd_do_callback(callback_data, 0, error ? 1 : 0);
+}
+
+static void start_full_bio(struct dm_snap_pending_exception *pe,
+			   struct bio *bio)
+{
+	struct dm_snapshot *s = pe->snap;
+	void *callback_data;
+
+	pe->full_bio = bio;
+	pe->full_bio_end_io = bio->bi_end_io;
+	pe->full_bio_private = bio->bi_private;
+
+	callback_data = dm_kcopyd_prepare_callback(s->kcopyd_client,
+						   copy_callback, pe);
+
+	bio->bi_end_io = full_bio_end_io;
+	bio->bi_private = callback_data;
+
+	generic_make_request(bio);
+}
+
+static struct dm_snap_pending_exception *
+__lookup_pending_exception(struct dm_snapshot *s, chunk_t chunk)
+{
+	struct dm_exception *e = dm_lookup_exception(&s->pending, chunk);
+
+	if (!e)
+		return NULL;
+
+	return container_of(e, struct dm_snap_pending_exception, e);
+}
+
+/*
+ * Looks to see if this snapshot already has a pending exception
+ * for this chunk, otherwise it allocates a new one and inserts
+ * it into the pending table.
+ *
+ * NOTE: a write lock must be held on snap->lock before calling
+ * this.
+ */
+static struct dm_snap_pending_exception *
+__find_pending_exception(struct dm_snapshot *s,
+			 struct dm_snap_pending_exception *pe, chunk_t chunk)
+{
+	struct dm_snap_pending_exception *pe2;
+
+	pe2 = __lookup_pending_exception(s, chunk);
+	if (pe2) {
+		free_pending_exception(pe);
+		return pe2;
+	}
+
+	pe->e.old_chunk = chunk;
+	bio_list_init(&pe->origin_bios);
+	bio_list_init(&pe->snapshot_bios);
+	pe->started = 0;
+	pe->full_bio = NULL;
+
+	if (s->store->type->prepare_exception(s->store, &pe->e)) {
+		free_pending_exception(pe);
+		return NULL;
+	}
+
+	pe->exception_sequence = s->exception_start_sequence++;
+
+	dm_insert_exception(&s->pending, &pe->e);
+
+	return pe;
+}
+
+static void remap_exception(struct dm_snapshot *s, struct dm_exception *e,
+			    struct bio *bio, chunk_t chunk)
+{
+	bio->bi_bdev = s->cow->bdev;
+	bio->bi_sector = chunk_to_sector(s->store,
+					 dm_chunk_number(e->new_chunk) +
+					 (chunk - e->old_chunk)) +
+					 (bio->bi_sector &
+					  s->store->chunk_mask);
+}
+
+static int snapshot_map(struct dm_target *ti, struct bio *bio,
+			union map_info *map_context)
+{
+	struct dm_exception *e;
+	struct dm_snapshot *s = ti->private;
+	int r = DM_MAPIO_REMAPPED;
+	chunk_t chunk;
+	struct dm_snap_pending_exception *pe = NULL;
+
+	if (bio->bi_rw & REQ_FLUSH) {
+		bio->bi_bdev = s->cow->bdev;
+		return DM_MAPIO_REMAPPED;
+	}
+
+	chunk = sector_to_chunk(s->store, bio->bi_sector);
+
+	/* Full snapshots are not usable */
+	/* To get here the table must be live so s->active is always set. */
+	if (!s->valid)
+		return -EIO;
+
+	/* FIXME: should only take write lock if we need
+	 * to copy an exception */
+	down_write(&s->lock);
+
+	if (!s->valid) {
+		r = -EIO;
+		goto out_unlock;
+	}
+
+	/* If the block is already remapped - use that, else remap it */
+	e = dm_lookup_exception(&s->complete, chunk);
+	if (e) {
+		remap_exception(s, e, bio, chunk);
+		goto out_unlock;
+	}
+
+	/*
+	 * Write to snapshot - higher level takes care of RW/RO
+	 * flags so we should only get this if we are
+	 * writeable.
+	 */
+	if (bio_rw(bio) == WRITE) {
+		pe = __lookup_pending_exception(s, chunk);
+		if (!pe) {
+			up_write(&s->lock);
+			pe = alloc_pending_exception(s);
+			down_write(&s->lock);
+
+			if (!s->valid) {
+				free_pending_exception(pe);
+				r = -EIO;
+				goto out_unlock;
+			}
+
+			e = dm_lookup_exception(&s->complete, chunk);
+			if (e) {
+				free_pending_exception(pe);
+				remap_exception(s, e, bio, chunk);
+				goto out_unlock;
+			}
+
+			pe = __find_pending_exception(s, pe, chunk);
+			if (!pe) {
+				__invalidate_snapshot(s, -ENOMEM);
+				r = -EIO;
+				goto out_unlock;
+			}
+		}
+
+		remap_exception(s, &pe->e, bio, chunk);
+
+		r = DM_MAPIO_SUBMITTED;
+
+		if (!pe->started &&
+		    bio->bi_size == (s->store->chunk_size << SECTOR_SHIFT)) {
+			pe->started = 1;
+			up_write(&s->lock);
+			start_full_bio(pe, bio);
+			goto out;
+		}
+
+		bio_list_add(&pe->snapshot_bios, bio);
+
+		if (!pe->started) {
+			/* this is protected by snap->lock */
+			pe->started = 1;
+			up_write(&s->lock);
+			start_copy(pe);
+			goto out;
+		}
+	} else {
+		bio->bi_bdev = s->origin->bdev;
+		map_context->ptr = track_chunk(s, chunk);
+	}
+
+out_unlock:
+	up_write(&s->lock);
+out:
+	return r;
+}
+
+/*
+ * A snapshot-merge target behaves like a combination of a snapshot
+ * target and a snapshot-origin target.  It only generates new
+ * exceptions in other snapshots and not in the one that is being
+ * merged.
+ *
+ * For each chunk, if there is an existing exception, it is used to
+ * redirect I/O to the cow device.  Otherwise I/O is sent to the origin,
+ * which in turn might generate exceptions in other snapshots.
+ * If merging is currently taking place on the chunk in question, the
+ * I/O is deferred by adding it to s->bios_queued_during_merge.
+ */
+static int snapshot_merge_map(struct dm_target *ti, struct bio *bio,
+			      union map_info *map_context)
+{
+	struct dm_exception *e;
+	struct dm_snapshot *s = ti->private;
+	int r = DM_MAPIO_REMAPPED;
+	chunk_t chunk;
+
+	if (bio->bi_rw & REQ_FLUSH) {
+		if (!map_context->target_request_nr)
+			bio->bi_bdev = s->origin->bdev;
+		else
+			bio->bi_bdev = s->cow->bdev;
+		map_context->ptr = NULL;
+		return DM_MAPIO_REMAPPED;
+	}
+
+	chunk = sector_to_chunk(s->store, bio->bi_sector);
+
+	down_write(&s->lock);
+
+	/* Full merging snapshots are redirected to the origin */
+	if (!s->valid)
+		goto redirect_to_origin;
+
+	/* If the block is already remapped - use that */
+	e = dm_lookup_exception(&s->complete, chunk);
+	if (e) {
+		/* Queue writes overlapping with chunks being merged */
+		if (bio_rw(bio) == WRITE &&
+		    chunk >= s->first_merging_chunk &&
+		    chunk < (s->first_merging_chunk +
+			     s->num_merging_chunks)) {
+			bio->bi_bdev = s->origin->bdev;
+			bio_list_add(&s->bios_queued_during_merge, bio);
+			r = DM_MAPIO_SUBMITTED;
+			goto out_unlock;
+		}
+
+		remap_exception(s, e, bio, chunk);
+
+		if (bio_rw(bio) == WRITE)
+			map_context->ptr = track_chunk(s, chunk);
+		goto out_unlock;
+	}
+
+redirect_to_origin:
+	bio->bi_bdev = s->origin->bdev;
+
+	if (bio_rw(bio) == WRITE) {
+		up_write(&s->lock);
+		return do_origin(s->origin, bio);
+	}
+
+out_unlock:
+	up_write(&s->lock);
+
+	return r;
+}
+
+static int snapshot_end_io(struct dm_target *ti, struct bio *bio,
+			   int error, union map_info *map_context)
+{
+	struct dm_snapshot *s = ti->private;
+	struct dm_snap_tracked_chunk *c = map_context->ptr;
+
+	if (c)
+		stop_tracking_chunk(s, c);
+
+	return 0;
+}
+
+static void snapshot_merge_presuspend(struct dm_target *ti)
+{
+	struct dm_snapshot *s = ti->private;
+
+	stop_merge(s);
+}
+
+static int snapshot_preresume(struct dm_target *ti)
+{
+	int r = 0;
+	struct dm_snapshot *s = ti->private;
+	struct dm_snapshot *snap_src = NULL, *snap_dest = NULL;
+
+	down_read(&_origins_lock);
+	(void) __find_snapshots_sharing_cow(s, &snap_src, &snap_dest, NULL);
+	if (snap_src && snap_dest) {
+		down_read(&snap_src->lock);
+		if (s == snap_src) {
+			DMERR("Unable to resume snapshot source until "
+			      "handover completes.");
+			r = -EINVAL;
+		} else if (!dm_suspended(snap_src->ti)) {
+			DMERR("Unable to perform snapshot handover until "
+			      "source is suspended.");
+			r = -EINVAL;
+		}
+		up_read(&snap_src->lock);
+	}
+	up_read(&_origins_lock);
+
+	return r;
+}
+
+static void snapshot_resume(struct dm_target *ti)
+{
+	struct dm_snapshot *s = ti->private;
+	struct dm_snapshot *snap_src = NULL, *snap_dest = NULL;
+
+	down_read(&_origins_lock);
+	(void) __find_snapshots_sharing_cow(s, &snap_src, &snap_dest, NULL);
+	if (snap_src && snap_dest) {
+		down_write(&snap_src->lock);
+		down_write_nested(&snap_dest->lock, SINGLE_DEPTH_NESTING);
+		__handover_exceptions(snap_src, snap_dest);
+		up_write(&snap_dest->lock);
+		up_write(&snap_src->lock);
+	}
+	up_read(&_origins_lock);
+
+	/* Now we have correct chunk size, reregister */
+	reregister_snapshot(s);
+
+	down_write(&s->lock);
+	s->active = 1;
+	up_write(&s->lock);
+}
+
+static sector_t get_origin_minimum_chunksize(struct block_device *bdev)
+{
+	sector_t min_chunksize;
+
+	down_read(&_origins_lock);
+	min_chunksize = __minimum_chunk_size(__lookup_origin(bdev));
+	up_read(&_origins_lock);
+
+	return min_chunksize;
+}
+
+static void snapshot_merge_resume(struct dm_target *ti)
+{
+	struct dm_snapshot *s = ti->private;
+
+	/*
+	 * Handover exceptions from existing snapshot.
+	 */
+	snapshot_resume(ti);
+
+	/*
+	 * snapshot-merge acts as an origin, so set ti->split_io
+	 */
+	ti->split_io = get_origin_minimum_chunksize(s->origin->bdev);
+
+	start_merge(s);
+}
+
+static void snapshot_status(struct dm_target *ti, status_type_t type,
+			    char *result, unsigned int maxlen)
+{
+	unsigned sz = 0;
+	struct dm_snapshot *snap = ti->private;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+
+		down_write(&snap->lock);
+
+		if (!snap->valid)
+			DMEMIT("Invalid");
+		else if (snap->merge_failed)
+			DMEMIT("Merge failed");
+		else {
+			if (snap->store->type->usage) {
+				sector_t total_sectors, sectors_allocated,
+					 metadata_sectors;
+				snap->store->type->usage(snap->store,
+							 &total_sectors,
+							 &sectors_allocated,
+							 &metadata_sectors);
+				DMEMIT("%llu/%llu %llu",
+				       (unsigned long long)sectors_allocated,
+				       (unsigned long long)total_sectors,
+				       (unsigned long long)metadata_sectors);
+			}
+			else
+				DMEMIT("Unknown");
+		}
+
+		up_write(&snap->lock);
+
+		break;
+
+	case STATUSTYPE_TABLE:
+		/*
+		 * kdevname returns a static pointer so we need
+		 * to make private copies if the output is to
+		 * make sense.
+		 */
+		DMEMIT("%s %s", snap->origin->name, snap->cow->name);
+		snap->store->type->status(snap->store, type, result + sz,
+					  maxlen - sz);
+		break;
+	}
+}
+
+static int snapshot_iterate_devices(struct dm_target *ti,
+				    iterate_devices_callout_fn fn, void *data)
+{
+	struct dm_snapshot *snap = ti->private;
+	int r;
+
+	r = fn(ti, snap->origin, 0, ti->len, data);
+
+	if (!r)
+		r = fn(ti, snap->cow, 0, get_dev_size(snap->cow->bdev), data);
+
+	return r;
+}
+
+
+/*-----------------------------------------------------------------
+ * Origin methods
+ *---------------------------------------------------------------*/
+
+/*
+ * If no exceptions need creating, DM_MAPIO_REMAPPED is returned and any
+ * supplied bio was ignored.  The caller may submit it immediately.
+ * (No remapping actually occurs as the origin is always a direct linear
+ * map.)
+ *
+ * If further exceptions are required, DM_MAPIO_SUBMITTED is returned
+ * and any supplied bio is added to a list to be submitted once all
+ * the necessary exceptions exist.
+ */
+static int __origin_write(struct list_head *snapshots, sector_t sector,
+			  struct bio *bio)
+{
+	int r = DM_MAPIO_REMAPPED;
+	struct dm_snapshot *snap;
+	struct dm_exception *e;
+	struct dm_snap_pending_exception *pe;
+	struct dm_snap_pending_exception *pe_to_start_now = NULL;
+	struct dm_snap_pending_exception *pe_to_start_last = NULL;
+	chunk_t chunk;
+
+	/* Do all the snapshots on this origin */
+	list_for_each_entry (snap, snapshots, list) {
+		/*
+		 * Don't make new exceptions in a merging snapshot
+		 * because it has effectively been deleted
+		 */
+		if (dm_target_is_snapshot_merge(snap->ti))
+			continue;
+
+		down_write(&snap->lock);
+
+		/* Only deal with valid and active snapshots */
+		if (!snap->valid || !snap->active)
+			goto next_snapshot;
+
+		/* Nothing to do if writing beyond end of snapshot */
+		if (sector >= dm_table_get_size(snap->ti->table))
+			goto next_snapshot;
+
+		/*
+		 * Remember, different snapshots can have
+		 * different chunk sizes.
+		 */
+		chunk = sector_to_chunk(snap->store, sector);
+
+		/*
+		 * Check exception table to see if block
+		 * is already remapped in this snapshot
+		 * and trigger an exception if not.
+		 */
+		e = dm_lookup_exception(&snap->complete, chunk);
+		if (e)
+			goto next_snapshot;
+
+		pe = __lookup_pending_exception(snap, chunk);
+		if (!pe) {
+			up_write(&snap->lock);
+			pe = alloc_pending_exception(snap);
+			down_write(&snap->lock);
+
+			if (!snap->valid) {
+				free_pending_exception(pe);
+				goto next_snapshot;
+			}
+
+			e = dm_lookup_exception(&snap->complete, chunk);
+			if (e) {
+				free_pending_exception(pe);
+				goto next_snapshot;
+			}
+
+			pe = __find_pending_exception(snap, pe, chunk);
+			if (!pe) {
+				__invalidate_snapshot(snap, -ENOMEM);
+				goto next_snapshot;
+			}
+		}
+
+		r = DM_MAPIO_SUBMITTED;
+
+		/*
+		 * If an origin bio was supplied, queue it to wait for the
+		 * completion of this exception, and start this one last,
+		 * at the end of the function.
+		 */
+		if (bio) {
+			bio_list_add(&pe->origin_bios, bio);
+			bio = NULL;
+
+			if (!pe->started) {
+				pe->started = 1;
+				pe_to_start_last = pe;
+			}
+		}
+
+		if (!pe->started) {
+			pe->started = 1;
+			pe_to_start_now = pe;
+		}
+
+next_snapshot:
+		up_write(&snap->lock);
+
+		if (pe_to_start_now) {
+			start_copy(pe_to_start_now);
+			pe_to_start_now = NULL;
+		}
+	}
+
+	/*
+	 * Submit the exception against which the bio is queued last,
+	 * to give the other exceptions a head start.
+	 */
+	if (pe_to_start_last)
+		start_copy(pe_to_start_last);
+
+	return r;
+}
+
+/*
+ * Called on a write from the origin driver.
+ */
+static int do_origin(struct dm_dev *origin, struct bio *bio)
+{
+	struct origin *o;
+	int r = DM_MAPIO_REMAPPED;
+
+	down_read(&_origins_lock);
+	o = __lookup_origin(origin->bdev);
+	if (o)
+		r = __origin_write(&o->snapshots, bio->bi_sector, bio);
+	up_read(&_origins_lock);
+
+	return r;
+}
+
+/*
+ * Trigger exceptions in all non-merging snapshots.
+ *
+ * The chunk size of the merging snapshot may be larger than the chunk
+ * size of some other snapshot so we may need to reallocate multiple
+ * chunks in other snapshots.
+ *
+ * We scan all the overlapping exceptions in the other snapshots.
+ * Returns 1 if anything was reallocated and must be waited for,
+ * otherwise returns 0.
+ *
+ * size must be a multiple of merging_snap's chunk_size.
+ */
+static int origin_write_extent(struct dm_snapshot *merging_snap,
+			       sector_t sector, unsigned size)
+{
+	int must_wait = 0;
+	sector_t n;
+	struct origin *o;
+
+	/*
+	 * The origin's __minimum_chunk_size() got stored in split_io
+	 * by snapshot_merge_resume().
+	 */
+	down_read(&_origins_lock);
+	o = __lookup_origin(merging_snap->origin->bdev);
+	for (n = 0; n < size; n += merging_snap->ti->split_io)
+		if (__origin_write(&o->snapshots, sector + n, NULL) ==
+		    DM_MAPIO_SUBMITTED)
+			must_wait = 1;
+	up_read(&_origins_lock);
+
+	return must_wait;
+}
+
+/*
+ * Origin: maps a linear range of a device, with hooks for snapshotting.
+ */
+
+/*
+ * Construct an origin mapping: <dev_path>
+ * The context for an origin is merely a 'struct dm_dev *'
+ * pointing to the real device.
+ */
+static int origin_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+	int r;
+	struct dm_dev *dev;
+
+	if (argc != 1) {
+		ti->error = "origin: incorrect number of arguments";
+		return -EINVAL;
+	}
+
+	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &dev);
+	if (r) {
+		ti->error = "Cannot get target device";
+		return r;
+	}
+
+	ti->private = dev;
+	ti->num_flush_requests = 1;
+
+	return 0;
+}
+
+static void origin_dtr(struct dm_target *ti)
+{
+	struct dm_dev *dev = ti->private;
+	dm_put_device(ti, dev);
+}
+
+static int origin_map(struct dm_target *ti, struct bio *bio,
+		      union map_info *map_context)
+{
+	struct dm_dev *dev = ti->private;
+	bio->bi_bdev = dev->bdev;
+
+	if (bio->bi_rw & REQ_FLUSH)
+		return DM_MAPIO_REMAPPED;
+
+	/* Only tell snapshots if this is a write */
+	return (bio_rw(bio) == WRITE) ? do_origin(dev, bio) : DM_MAPIO_REMAPPED;
+}
+
+/*
+ * Set the target "split_io" field to the minimum of all the snapshots'
+ * chunk sizes.
+ */
+static void origin_resume(struct dm_target *ti)
+{
+	struct dm_dev *dev = ti->private;
+
+	ti->split_io = get_origin_minimum_chunksize(dev->bdev);
+}
+
+static void origin_status(struct dm_target *ti, status_type_t type, char *result,
+			  unsigned int maxlen)
+{
+	struct dm_dev *dev = ti->private;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		result[0] = '\0';
+		break;
+
+	case STATUSTYPE_TABLE:
+		snprintf(result, maxlen, "%s", dev->name);
+		break;
+	}
+}
+
+static int origin_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
+			struct bio_vec *biovec, int max_size)
+{
+	struct dm_dev *dev = ti->private;
+	struct request_queue *q = bdev_get_queue(dev->bdev);
+
+	if (!q->merge_bvec_fn)
+		return max_size;
+
+	bvm->bi_bdev = dev->bdev;
+	bvm->bi_sector = bvm->bi_sector;
+
+	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
+}
+
+static int origin_iterate_devices(struct dm_target *ti,
+				  iterate_devices_callout_fn fn, void *data)
+{
+	struct dm_dev *dev = ti->private;
+
+	return fn(ti, dev, 0, ti->len, data);
+}
+
+static struct target_type origin_target = {
+	.name    = "snapshot-origin",
+	.version = {1, 7, 1},
+	.module  = THIS_MODULE,
+	.ctr     = origin_ctr,
+	.dtr     = origin_dtr,
+	.map     = origin_map,
+	.resume  = origin_resume,
+	.status  = origin_status,
+	.merge	 = origin_merge,
+	.iterate_devices = origin_iterate_devices,
+};
+
+static struct target_type snapshot_target = {
+	.name    = "snapshot",
+	.version = {1, 10, 2},
+	.module  = THIS_MODULE,
+	.ctr     = snapshot_ctr,
+	.dtr     = snapshot_dtr,
+	.map     = snapshot_map,
+	.end_io  = snapshot_end_io,
+	.preresume  = snapshot_preresume,
+	.resume  = snapshot_resume,
+	.status  = snapshot_status,
+	.iterate_devices = snapshot_iterate_devices,
+};
+
+static struct target_type merge_target = {
+	.name    = dm_snapshot_merge_target_name,
+	.version = {1, 1, 0},
+	.module  = THIS_MODULE,
+	.ctr     = snapshot_ctr,
+	.dtr     = snapshot_dtr,
+	.map     = snapshot_merge_map,
+	.end_io  = snapshot_end_io,
+	.presuspend = snapshot_merge_presuspend,
+	.preresume  = snapshot_preresume,
+	.resume  = snapshot_merge_resume,
+	.status  = snapshot_status,
+	.iterate_devices = snapshot_iterate_devices,
+};
+
+static int __init dm_snapshot_init(void)
+{
+	int r;
+
+	r = dm_exception_store_init();
+	if (r) {
+		DMERR("Failed to initialize exception stores");
+		return r;
+	}
+
+	r = dm_register_target(&snapshot_target);
+	if (r < 0) {
+		DMERR("snapshot target register failed %d", r);
+		goto bad_register_snapshot_target;
+	}
+
+	r = dm_register_target(&origin_target);
+	if (r < 0) {
+		DMERR("Origin target register failed %d", r);
+		goto bad_register_origin_target;
+	}
+
+	r = dm_register_target(&merge_target);
+	if (r < 0) {
+		DMERR("Merge target register failed %d", r);
+		goto bad_register_merge_target;
+	}
+
+	r = init_origin_hash();
+	if (r) {
+		DMERR("init_origin_hash failed.");
+		goto bad_origin_hash;
+	}
+
+	exception_cache = KMEM_CACHE(dm_exception, 0);
+	if (!exception_cache) {
+		DMERR("Couldn't create exception cache.");
+		r = -ENOMEM;
+		goto bad_exception_cache;
+	}
+
+	pending_cache = KMEM_CACHE(dm_snap_pending_exception, 0);
+	if (!pending_cache) {
+		DMERR("Couldn't create pending cache.");
+		r = -ENOMEM;
+		goto bad_pending_cache;
+	}
+
+	tracked_chunk_cache = KMEM_CACHE(dm_snap_tracked_chunk, 0);
+	if (!tracked_chunk_cache) {
+		DMERR("Couldn't create cache to track chunks in use.");
+		r = -ENOMEM;
+		goto bad_tracked_chunk_cache;
+	}
+
+	return 0;
+
+bad_tracked_chunk_cache:
+	kmem_cache_destroy(pending_cache);
+bad_pending_cache:
+	kmem_cache_destroy(exception_cache);
+bad_exception_cache:
+	exit_origin_hash();
+bad_origin_hash:
+	dm_unregister_target(&merge_target);
+bad_register_merge_target:
+	dm_unregister_target(&origin_target);
+bad_register_origin_target:
+	dm_unregister_target(&snapshot_target);
+bad_register_snapshot_target:
+	dm_exception_store_exit();
+
+	return r;
+}
+
+static void __exit dm_snapshot_exit(void)
+{
+	dm_unregister_target(&snapshot_target);
+	dm_unregister_target(&origin_target);
+	dm_unregister_target(&merge_target);
+
+	exit_origin_hash();
+	kmem_cache_destroy(pending_cache);
+	kmem_cache_destroy(exception_cache);
+	kmem_cache_destroy(tracked_chunk_cache);
+
+	dm_exception_store_exit();
+}
+
+/* Module hooks */
+module_init(dm_snapshot_init);
+module_exit(dm_snapshot_exit);
+
+MODULE_DESCRIPTION(DM_NAME " snapshot target");
+MODULE_AUTHOR("Joe Thornber");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("dm-snapshot-origin");
+MODULE_ALIAS("dm-snapshot-merge");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-stripe.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-stripe.c
new file mode 100644
index 0000000..58ffcda
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-stripe.c
@@ -0,0 +1,449 @@
+/*
+ * Copyright (C) 2001-2003 Sistina Software (UK) Limited.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/device-mapper.h>
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/blkdev.h>
+#include <linux/bio.h>
+#include <linux/slab.h>
+#include <linux/log2.h>
+
+#define DM_MSG_PREFIX "striped"
+#define DM_IO_ERROR_THRESHOLD 15
+
+struct stripe {
+	struct dm_dev *dev;
+	sector_t physical_start;
+
+	atomic_t error_count;
+};
+
+struct stripe_c {
+	uint32_t stripes;
+	int stripes_shift;
+	sector_t stripes_mask;
+
+	/* The size of this target / num. stripes */
+	sector_t stripe_width;
+
+	/* stripe chunk size */
+	uint32_t chunk_shift;
+	sector_t chunk_mask;
+
+	/* Needed for handling events */
+	struct dm_target *ti;
+
+	/* Work struct used for triggering events*/
+	struct work_struct trigger_event;
+
+	struct stripe stripe[0];
+};
+
+/*
+ * An event is triggered whenever a drive
+ * drops out of a stripe volume.
+ */
+static void trigger_event(struct work_struct *work)
+{
+	struct stripe_c *sc = container_of(work, struct stripe_c,
+					   trigger_event);
+	dm_table_event(sc->ti->table);
+}
+
+static inline struct stripe_c *alloc_context(unsigned int stripes)
+{
+	size_t len;
+
+	if (dm_array_too_big(sizeof(struct stripe_c), sizeof(struct stripe),
+			     stripes))
+		return NULL;
+
+	len = sizeof(struct stripe_c) + (sizeof(struct stripe) * stripes);
+
+	return kmalloc(len, GFP_KERNEL);
+}
+
+/*
+ * Parse a single <dev> <sector> pair
+ */
+static int get_stripe(struct dm_target *ti, struct stripe_c *sc,
+		      unsigned int stripe, char **argv)
+{
+	unsigned long long start;
+	char dummy;
+
+	if (sscanf(argv[1], "%llu%c", &start, &dummy) != 1)
+		return -EINVAL;
+
+	if (dm_get_device(ti, argv[0], dm_table_get_mode(ti->table),
+			  &sc->stripe[stripe].dev))
+		return -ENXIO;
+
+	sc->stripe[stripe].physical_start = start;
+
+	return 0;
+}
+
+/*
+ * Construct a striped mapping.
+ * <number of stripes> <chunk size (2^^n)> [<dev_path> <offset>]+
+ */
+static int stripe_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+	struct stripe_c *sc;
+	sector_t width;
+	uint32_t stripes;
+	uint32_t chunk_size;
+	char *end;
+	int r;
+	unsigned int i;
+
+	if (argc < 2) {
+		ti->error = "Not enough arguments";
+		return -EINVAL;
+	}
+
+	stripes = simple_strtoul(argv[0], &end, 10);
+	if (!stripes || *end) {
+		ti->error = "Invalid stripe count";
+		return -EINVAL;
+	}
+
+	chunk_size = simple_strtoul(argv[1], &end, 10);
+	if (*end) {
+		ti->error = "Invalid chunk_size";
+		return -EINVAL;
+	}
+
+	/*
+	 * chunk_size is a power of two
+	 */
+	if (!is_power_of_2(chunk_size) ||
+	    (chunk_size < (PAGE_SIZE >> SECTOR_SHIFT))) {
+		ti->error = "Invalid chunk size";
+		return -EINVAL;
+	}
+
+	if (ti->len & (chunk_size - 1)) {
+		ti->error = "Target length not divisible by "
+		    "chunk size";
+		return -EINVAL;
+	}
+
+	width = ti->len;
+	if (sector_div(width, stripes)) {
+		ti->error = "Target length not divisible by "
+		    "number of stripes";
+		return -EINVAL;
+	}
+
+	/*
+	 * Do we have enough arguments for that many stripes ?
+	 */
+	if (argc != (2 + 2 * stripes)) {
+		ti->error = "Not enough destinations "
+			"specified";
+		return -EINVAL;
+	}
+
+	sc = alloc_context(stripes);
+	if (!sc) {
+		ti->error = "Memory allocation for striped context "
+		    "failed";
+		return -ENOMEM;
+	}
+
+	INIT_WORK(&sc->trigger_event, trigger_event);
+
+	/* Set pointer to dm target; used in trigger_event */
+	sc->ti = ti;
+	sc->stripes = stripes;
+	sc->stripe_width = width;
+
+	if (stripes & (stripes - 1))
+		sc->stripes_shift = -1;
+	else {
+		sc->stripes_shift = ffs(stripes) - 1;
+		sc->stripes_mask = ((sector_t) stripes) - 1;
+	}
+
+	ti->split_io = chunk_size;
+	ti->num_flush_requests = stripes;
+	ti->num_discard_requests = stripes;
+
+	sc->chunk_shift = ffs(chunk_size) - 1;
+	sc->chunk_mask = ((sector_t) chunk_size) - 1;
+
+	/*
+	 * Get the stripe destinations.
+	 */
+	for (i = 0; i < stripes; i++) {
+		argv += 2;
+
+		r = get_stripe(ti, sc, i, argv);
+		if (r < 0) {
+			ti->error = "Couldn't parse stripe destination";
+			while (i--)
+				dm_put_device(ti, sc->stripe[i].dev);
+			kfree(sc);
+			return r;
+		}
+		atomic_set(&(sc->stripe[i].error_count), 0);
+	}
+
+	ti->private = sc;
+
+	return 0;
+}
+
+static void stripe_dtr(struct dm_target *ti)
+{
+	unsigned int i;
+	struct stripe_c *sc = (struct stripe_c *) ti->private;
+
+	for (i = 0; i < sc->stripes; i++)
+		dm_put_device(ti, sc->stripe[i].dev);
+
+	flush_work_sync(&sc->trigger_event);
+	kfree(sc);
+}
+
+static void stripe_map_sector(struct stripe_c *sc, sector_t sector,
+			      uint32_t *stripe, sector_t *result)
+{
+	sector_t offset = dm_target_offset(sc->ti, sector);
+	sector_t chunk = offset >> sc->chunk_shift;
+
+	if (sc->stripes_shift < 0)
+		*stripe = sector_div(chunk, sc->stripes);
+	else {
+		*stripe = chunk & sc->stripes_mask;
+		chunk >>= sc->stripes_shift;
+	}
+
+	*result = (chunk << sc->chunk_shift) | (offset & sc->chunk_mask);
+}
+
+static void stripe_map_range_sector(struct stripe_c *sc, sector_t sector,
+				    uint32_t target_stripe, sector_t *result)
+{
+	uint32_t stripe;
+
+	stripe_map_sector(sc, sector, &stripe, result);
+	if (stripe == target_stripe)
+		return;
+	*result &= ~sc->chunk_mask;			/* round down */
+	if (target_stripe < stripe)
+		*result += sc->chunk_mask + 1;		/* next chunk */
+}
+
+static int stripe_map_discard(struct stripe_c *sc, struct bio *bio,
+			      uint32_t target_stripe)
+{
+	sector_t begin, end;
+
+	stripe_map_range_sector(sc, bio->bi_sector, target_stripe, &begin);
+	stripe_map_range_sector(sc, bio->bi_sector + bio_sectors(bio),
+				target_stripe, &end);
+	if (begin < end) {
+		bio->bi_bdev = sc->stripe[target_stripe].dev->bdev;
+		bio->bi_sector = begin + sc->stripe[target_stripe].physical_start;
+		bio->bi_size = to_bytes(end - begin);
+		return DM_MAPIO_REMAPPED;
+	} else {
+		/* The range doesn't map to the target stripe */
+		bio_endio(bio, 0);
+		return DM_MAPIO_SUBMITTED;
+	}
+}
+
+static int stripe_map(struct dm_target *ti, struct bio *bio,
+		      union map_info *map_context)
+{
+	struct stripe_c *sc = ti->private;
+	uint32_t stripe;
+	unsigned target_request_nr;
+
+	if (bio->bi_rw & REQ_FLUSH) {
+		target_request_nr = map_context->target_request_nr;
+		BUG_ON(target_request_nr >= sc->stripes);
+		bio->bi_bdev = sc->stripe[target_request_nr].dev->bdev;
+		return DM_MAPIO_REMAPPED;
+	}
+	if (unlikely(bio->bi_rw & REQ_DISCARD)) {
+		target_request_nr = map_context->target_request_nr;
+		BUG_ON(target_request_nr >= sc->stripes);
+		return stripe_map_discard(sc, bio, target_request_nr);
+	}
+
+	stripe_map_sector(sc, bio->bi_sector, &stripe, &bio->bi_sector);
+
+	bio->bi_sector += sc->stripe[stripe].physical_start;
+	bio->bi_bdev = sc->stripe[stripe].dev->bdev;
+
+	return DM_MAPIO_REMAPPED;
+}
+
+/*
+ * Stripe status:
+ *
+ * INFO
+ * #stripes [stripe_name <stripe_name>] [group word count]
+ * [error count 'A|D' <error count 'A|D'>]
+ *
+ * TABLE
+ * #stripes [stripe chunk size]
+ * [stripe_name physical_start <stripe_name physical_start>]
+ *
+ */
+
+static void stripe_status(struct dm_target *ti,
+			  status_type_t type, char *result, unsigned int maxlen)
+{
+	struct stripe_c *sc = (struct stripe_c *) ti->private;
+	char buffer[sc->stripes + 1];
+	unsigned int sz = 0;
+	unsigned int i;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		DMEMIT("%d ", sc->stripes);
+		for (i = 0; i < sc->stripes; i++)  {
+			DMEMIT("%s ", sc->stripe[i].dev->name);
+			buffer[i] = atomic_read(&(sc->stripe[i].error_count)) ?
+				'D' : 'A';
+		}
+		buffer[i] = '\0';
+		DMEMIT("1 %s", buffer);
+		break;
+
+	case STATUSTYPE_TABLE:
+		DMEMIT("%d %llu", sc->stripes,
+			(unsigned long long)sc->chunk_mask + 1);
+		for (i = 0; i < sc->stripes; i++)
+			DMEMIT(" %s %llu", sc->stripe[i].dev->name,
+			    (unsigned long long)sc->stripe[i].physical_start);
+		break;
+	}
+}
+
+static int stripe_end_io(struct dm_target *ti, struct bio *bio,
+			 int error, union map_info *map_context)
+{
+	unsigned i;
+	char major_minor[16];
+	struct stripe_c *sc = ti->private;
+
+	if (!error)
+		return 0; /* I/O complete */
+
+	if ((error == -EWOULDBLOCK) && (bio->bi_rw & REQ_RAHEAD))
+		return error;
+
+	if (error == -EOPNOTSUPP)
+		return error;
+
+	memset(major_minor, 0, sizeof(major_minor));
+	sprintf(major_minor, "%d:%d",
+		MAJOR(disk_devt(bio->bi_bdev->bd_disk)),
+		MINOR(disk_devt(bio->bi_bdev->bd_disk)));
+
+	/*
+	 * Test to see which stripe drive triggered the event
+	 * and increment error count for all stripes on that device.
+	 * If the error count for a given device exceeds the threshold
+	 * value we will no longer trigger any further events.
+	 */
+	for (i = 0; i < sc->stripes; i++)
+		if (!strcmp(sc->stripe[i].dev->name, major_minor)) {
+			atomic_inc(&(sc->stripe[i].error_count));
+			if (atomic_read(&(sc->stripe[i].error_count)) <
+			    DM_IO_ERROR_THRESHOLD)
+				schedule_work(&sc->trigger_event);
+		}
+
+	return error;
+}
+
+static int stripe_iterate_devices(struct dm_target *ti,
+				  iterate_devices_callout_fn fn, void *data)
+{
+	struct stripe_c *sc = ti->private;
+	int ret = 0;
+	unsigned i = 0;
+
+	do {
+		ret = fn(ti, sc->stripe[i].dev,
+			 sc->stripe[i].physical_start,
+			 sc->stripe_width, data);
+	} while (!ret && ++i < sc->stripes);
+
+	return ret;
+}
+
+static void stripe_io_hints(struct dm_target *ti,
+			    struct queue_limits *limits)
+{
+	struct stripe_c *sc = ti->private;
+	unsigned chunk_size = (sc->chunk_mask + 1) << 9;
+
+	blk_limits_io_min(limits, chunk_size);
+	blk_limits_io_opt(limits, chunk_size * sc->stripes);
+}
+
+static int stripe_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
+			struct bio_vec *biovec, int max_size)
+{
+	struct stripe_c *sc = ti->private;
+	sector_t bvm_sector = bvm->bi_sector;
+	uint32_t stripe;
+	struct request_queue *q;
+
+	stripe_map_sector(sc, bvm_sector, &stripe, &bvm_sector);
+
+	q = bdev_get_queue(sc->stripe[stripe].dev->bdev);
+	if (!q->merge_bvec_fn)
+		return max_size;
+
+	bvm->bi_bdev = sc->stripe[stripe].dev->bdev;
+	bvm->bi_sector = sc->stripe[stripe].physical_start + bvm_sector;
+
+	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
+}
+
+static struct target_type stripe_target = {
+	.name   = "striped",
+	.version = {1, 4, 0},
+	.module = THIS_MODULE,
+	.ctr    = stripe_ctr,
+	.dtr    = stripe_dtr,
+	.map    = stripe_map,
+	.end_io = stripe_end_io,
+	.status = stripe_status,
+	.iterate_devices = stripe_iterate_devices,
+	.io_hints = stripe_io_hints,
+	.merge  = stripe_merge,
+};
+
+int __init dm_stripe_init(void)
+{
+	int r;
+
+	r = dm_register_target(&stripe_target);
+	if (r < 0) {
+		DMWARN("target registration failed");
+		return r;
+	}
+
+	return r;
+}
+
+void dm_stripe_exit(void)
+{
+	dm_unregister_target(&stripe_target);
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-sysfs.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-sysfs.c
new file mode 100644
index 0000000..c62c5ab
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-sysfs.c
@@ -0,0 +1,111 @@
+/*
+ * Copyright (C) 2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/sysfs.h>
+#include <linux/dm-ioctl.h>
+#include "dm.h"
+
+struct dm_sysfs_attr {
+	struct attribute attr;
+	ssize_t (*show)(struct mapped_device *, char *);
+	ssize_t (*store)(struct mapped_device *, char *);
+};
+
+#define DM_ATTR_RO(_name) \
+struct dm_sysfs_attr dm_attr_##_name = \
+	__ATTR(_name, S_IRUGO, dm_attr_##_name##_show, NULL)
+
+static ssize_t dm_attr_show(struct kobject *kobj, struct attribute *attr,
+			    char *page)
+{
+	struct dm_sysfs_attr *dm_attr;
+	struct mapped_device *md;
+	ssize_t ret;
+
+	dm_attr = container_of(attr, struct dm_sysfs_attr, attr);
+	if (!dm_attr->show)
+		return -EIO;
+
+	md = dm_get_from_kobject(kobj);
+	if (!md)
+		return -EINVAL;
+
+	ret = dm_attr->show(md, page);
+	dm_put(md);
+
+	return ret;
+}
+
+static ssize_t dm_attr_name_show(struct mapped_device *md, char *buf)
+{
+	if (dm_copy_name_and_uuid(md, buf, NULL))
+		return -EIO;
+
+	strcat(buf, "\n");
+	return strlen(buf);
+}
+
+static ssize_t dm_attr_uuid_show(struct mapped_device *md, char *buf)
+{
+	if (dm_copy_name_and_uuid(md, NULL, buf))
+		return -EIO;
+
+	strcat(buf, "\n");
+	return strlen(buf);
+}
+
+static ssize_t dm_attr_suspended_show(struct mapped_device *md, char *buf)
+{
+	sprintf(buf, "%d\n", dm_suspended_md(md));
+
+	return strlen(buf);
+}
+
+static DM_ATTR_RO(name);
+static DM_ATTR_RO(uuid);
+static DM_ATTR_RO(suspended);
+
+static struct attribute *dm_attrs[] = {
+	&dm_attr_name.attr,
+	&dm_attr_uuid.attr,
+	&dm_attr_suspended.attr,
+	NULL,
+};
+
+static const struct sysfs_ops dm_sysfs_ops = {
+	.show	= dm_attr_show,
+};
+
+/*
+ * dm kobject is embedded in mapped_device structure
+ * no need to define release function here
+ */
+static struct kobj_type dm_ktype = {
+	.sysfs_ops	= &dm_sysfs_ops,
+	.default_attrs	= dm_attrs,
+	.release	= dm_kobject_release,
+};
+
+/*
+ * Initialize kobj
+ * because nobody using md yet, no need to call explicit dm_get/put
+ */
+int dm_sysfs_init(struct mapped_device *md)
+{
+	return kobject_init_and_add(dm_kobject(md), &dm_ktype,
+				    &disk_to_dev(dm_disk(md))->kobj,
+				    "%s", "dm");
+}
+
+/*
+ * Remove kobj, called after all references removed
+ */
+void dm_sysfs_exit(struct mapped_device *md)
+{
+	struct kobject *kobj = dm_kobject(md);
+	kobject_put(kobj);
+	wait_for_completion(dm_get_completion_from_kobject(kobj));
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-table.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-table.c
new file mode 100644
index 0000000..43e19b7
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-table.c
@@ -0,0 +1,1614 @@
+/*
+ * Copyright (C) 2001 Sistina Software (UK) Limited.
+ * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+
+#include <linux/module.h>
+#include <linux/vmalloc.h>
+#include <linux/blkdev.h>
+#include <linux/namei.h>
+#include <linux/ctype.h>
+#include <linux/string.h>
+#include <linux/slab.h>
+#include <linux/interrupt.h>
+#include <linux/mutex.h>
+#include <linux/delay.h>
+#include <linux/atomic.h>
+
+#define DM_MSG_PREFIX "table"
+
+#define MAX_DEPTH 16
+#define NODE_SIZE L1_CACHE_BYTES
+#define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
+#define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
+
+/*
+ * The table has always exactly one reference from either mapped_device->map
+ * or hash_cell->new_map. This reference is not counted in table->holders.
+ * A pair of dm_create_table/dm_destroy_table functions is used for table
+ * creation/destruction.
+ *
+ * Temporary references from the other code increase table->holders. A pair
+ * of dm_table_get/dm_table_put functions is used to manipulate it.
+ *
+ * When the table is about to be destroyed, we wait for table->holders to
+ * drop to zero.
+ */
+
+struct dm_table {
+	struct mapped_device *md;
+	atomic_t holders;
+	unsigned type;
+
+	/* btree table */
+	unsigned int depth;
+	unsigned int counts[MAX_DEPTH];	/* in nodes */
+	sector_t *index[MAX_DEPTH];
+
+	unsigned int num_targets;
+	unsigned int num_allocated;
+	sector_t *highs;
+	struct dm_target *targets;
+
+	struct target_type *immutable_target_type;
+	unsigned integrity_supported:1;
+	unsigned singleton:1;
+
+	/*
+	 * Indicates the rw permissions for the new logical
+	 * device.  This should be a combination of FMODE_READ
+	 * and FMODE_WRITE.
+	 */
+	fmode_t mode;
+
+	/* a list of devices used by this table */
+	struct list_head devices;
+
+	/* events get handed up using this callback */
+	void (*event_fn)(void *);
+	void *event_context;
+
+	struct dm_md_mempools *mempools;
+
+	struct list_head target_callbacks;
+};
+
+/*
+ * Similar to ceiling(log_size(n))
+ */
+static unsigned int int_log(unsigned int n, unsigned int base)
+{
+	int result = 0;
+
+	while (n > 1) {
+		n = dm_div_up(n, base);
+		result++;
+	}
+
+	return result;
+}
+
+/*
+ * Calculate the index of the child node of the n'th node k'th key.
+ */
+static inline unsigned int get_child(unsigned int n, unsigned int k)
+{
+	return (n * CHILDREN_PER_NODE) + k;
+}
+
+/*
+ * Return the n'th node of level l from table t.
+ */
+static inline sector_t *get_node(struct dm_table *t,
+				 unsigned int l, unsigned int n)
+{
+	return t->index[l] + (n * KEYS_PER_NODE);
+}
+
+/*
+ * Return the highest key that you could lookup from the n'th
+ * node on level l of the btree.
+ */
+static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
+{
+	for (; l < t->depth - 1; l++)
+		n = get_child(n, CHILDREN_PER_NODE - 1);
+
+	if (n >= t->counts[l])
+		return (sector_t) - 1;
+
+	return get_node(t, l, n)[KEYS_PER_NODE - 1];
+}
+
+/*
+ * Fills in a level of the btree based on the highs of the level
+ * below it.
+ */
+static int setup_btree_index(unsigned int l, struct dm_table *t)
+{
+	unsigned int n, k;
+	sector_t *node;
+
+	for (n = 0U; n < t->counts[l]; n++) {
+		node = get_node(t, l, n);
+
+		for (k = 0U; k < KEYS_PER_NODE; k++)
+			node[k] = high(t, l + 1, get_child(n, k));
+	}
+
+	return 0;
+}
+
+void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
+{
+	unsigned long size;
+	void *addr;
+
+	/*
+	 * Check that we're not going to overflow.
+	 */
+	if (nmemb > (ULONG_MAX / elem_size))
+		return NULL;
+
+	size = nmemb * elem_size;
+	addr = vzalloc(size);
+
+	return addr;
+}
+EXPORT_SYMBOL(dm_vcalloc);
+
+/*
+ * highs, and targets are managed as dynamic arrays during a
+ * table load.
+ */
+static int alloc_targets(struct dm_table *t, unsigned int num)
+{
+	sector_t *n_highs;
+	struct dm_target *n_targets;
+	int n = t->num_targets;
+
+	/*
+	 * Allocate both the target array and offset array at once.
+	 * Append an empty entry to catch sectors beyond the end of
+	 * the device.
+	 */
+	n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
+					  sizeof(sector_t));
+	if (!n_highs)
+		return -ENOMEM;
+
+	n_targets = (struct dm_target *) (n_highs + num);
+
+	if (n) {
+		memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
+		memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
+	}
+
+	memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
+	vfree(t->highs);
+
+	t->num_allocated = num;
+	t->highs = n_highs;
+	t->targets = n_targets;
+
+	return 0;
+}
+
+int dm_table_create(struct dm_table **result, fmode_t mode,
+		    unsigned num_targets, struct mapped_device *md)
+{
+	struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
+
+	if (!t)
+		return -ENOMEM;
+
+	INIT_LIST_HEAD(&t->devices);
+	INIT_LIST_HEAD(&t->target_callbacks);
+	atomic_set(&t->holders, 0);
+
+	if (!num_targets)
+		num_targets = KEYS_PER_NODE;
+
+	num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
+
+	if (!num_targets) {
+		kfree(t);
+		return -ENOMEM;
+	}
+
+	if (alloc_targets(t, num_targets)) {
+		kfree(t);
+		t = NULL;
+		return -ENOMEM;
+	}
+
+	t->mode = mode;
+	t->md = md;
+	*result = t;
+	return 0;
+}
+
+static void free_devices(struct list_head *devices)
+{
+	struct list_head *tmp, *next;
+
+	list_for_each_safe(tmp, next, devices) {
+		struct dm_dev_internal *dd =
+		    list_entry(tmp, struct dm_dev_internal, list);
+		DMWARN("dm_table_destroy: dm_put_device call missing for %s",
+		       dd->dm_dev.name);
+		kfree(dd);
+	}
+}
+
+void dm_table_destroy(struct dm_table *t)
+{
+	unsigned int i;
+
+	if (!t)
+		return;
+
+	while (atomic_read(&t->holders))
+		msleep(1);
+	smp_mb();
+
+	/* free the indexes */
+	if (t->depth >= 2)
+		vfree(t->index[t->depth - 2]);
+
+	/* free the targets */
+	for (i = 0; i < t->num_targets; i++) {
+		struct dm_target *tgt = t->targets + i;
+
+		if (tgt->type->dtr)
+			tgt->type->dtr(tgt);
+
+		dm_put_target_type(tgt->type);
+	}
+
+	vfree(t->highs);
+
+	/* free the device list */
+	free_devices(&t->devices);
+
+	dm_free_md_mempools(t->mempools);
+
+	kfree(t);
+}
+
+void dm_table_get(struct dm_table *t)
+{
+	atomic_inc(&t->holders);
+}
+EXPORT_SYMBOL(dm_table_get);
+
+void dm_table_put(struct dm_table *t)
+{
+	if (!t)
+		return;
+
+	smp_mb__before_atomic_dec();
+	atomic_dec(&t->holders);
+}
+EXPORT_SYMBOL(dm_table_put);
+
+/*
+ * Checks to see if we need to extend highs or targets.
+ */
+static inline int check_space(struct dm_table *t)
+{
+	if (t->num_targets >= t->num_allocated)
+		return alloc_targets(t, t->num_allocated * 2);
+
+	return 0;
+}
+
+/*
+ * See if we've already got a device in the list.
+ */
+static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
+{
+	struct dm_dev_internal *dd;
+
+	list_for_each_entry (dd, l, list)
+		if (dd->dm_dev.bdev->bd_dev == dev)
+			return dd;
+
+	return NULL;
+}
+
+/*
+ * Open a device so we can use it as a map destination.
+ */
+static int open_dev(struct dm_dev_internal *d, dev_t dev,
+		    struct mapped_device *md)
+{
+	static char *_claim_ptr = "I belong to device-mapper";
+	struct block_device *bdev;
+
+	int r;
+
+	BUG_ON(d->dm_dev.bdev);
+
+	bdev = blkdev_get_by_dev(dev, d->dm_dev.mode | FMODE_EXCL, _claim_ptr);
+	if (IS_ERR(bdev))
+		return PTR_ERR(bdev);
+
+	r = bd_link_disk_holder(bdev, dm_disk(md));
+	if (r) {
+		blkdev_put(bdev, d->dm_dev.mode | FMODE_EXCL);
+		return r;
+	}
+
+	d->dm_dev.bdev = bdev;
+	return 0;
+}
+
+/*
+ * Close a device that we've been using.
+ */
+static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
+{
+	if (!d->dm_dev.bdev)
+		return;
+
+	bd_unlink_disk_holder(d->dm_dev.bdev, dm_disk(md));
+	blkdev_put(d->dm_dev.bdev, d->dm_dev.mode | FMODE_EXCL);
+	d->dm_dev.bdev = NULL;
+}
+
+/*
+ * If possible, this checks an area of a destination device is invalid.
+ */
+static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
+				  sector_t start, sector_t len, void *data)
+{
+	struct request_queue *q;
+	struct queue_limits *limits = data;
+	struct block_device *bdev = dev->bdev;
+	sector_t dev_size =
+		i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
+	unsigned short logical_block_size_sectors =
+		limits->logical_block_size >> SECTOR_SHIFT;
+	char b[BDEVNAME_SIZE];
+
+	/*
+	 * Some devices exist without request functions,
+	 * such as loop devices not yet bound to backing files.
+	 * Forbid the use of such devices.
+	 */
+	q = bdev_get_queue(bdev);
+	if (!q || !q->make_request_fn) {
+		DMWARN("%s: %s is not yet initialised: "
+		       "start=%llu, len=%llu, dev_size=%llu",
+		       dm_device_name(ti->table->md), bdevname(bdev, b),
+		       (unsigned long long)start,
+		       (unsigned long long)len,
+		       (unsigned long long)dev_size);
+		return 1;
+	}
+
+	if (!dev_size)
+		return 0;
+
+	if ((start >= dev_size) || (start + len > dev_size)) {
+		DMWARN("%s: %s too small for target: "
+		       "start=%llu, len=%llu, dev_size=%llu",
+		       dm_device_name(ti->table->md), bdevname(bdev, b),
+		       (unsigned long long)start,
+		       (unsigned long long)len,
+		       (unsigned long long)dev_size);
+		return 1;
+	}
+
+	if (logical_block_size_sectors <= 1)
+		return 0;
+
+	if (start & (logical_block_size_sectors - 1)) {
+		DMWARN("%s: start=%llu not aligned to h/w "
+		       "logical block size %u of %s",
+		       dm_device_name(ti->table->md),
+		       (unsigned long long)start,
+		       limits->logical_block_size, bdevname(bdev, b));
+		return 1;
+	}
+
+	if (len & (logical_block_size_sectors - 1)) {
+		DMWARN("%s: len=%llu not aligned to h/w "
+		       "logical block size %u of %s",
+		       dm_device_name(ti->table->md),
+		       (unsigned long long)len,
+		       limits->logical_block_size, bdevname(bdev, b));
+		return 1;
+	}
+
+	return 0;
+}
+
+/*
+ * This upgrades the mode on an already open dm_dev, being
+ * careful to leave things as they were if we fail to reopen the
+ * device and not to touch the existing bdev field in case
+ * it is accessed concurrently inside dm_table_any_congested().
+ */
+static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
+			struct mapped_device *md)
+{
+	int r;
+	struct dm_dev_internal dd_new, dd_old;
+
+	dd_new = dd_old = *dd;
+
+	dd_new.dm_dev.mode |= new_mode;
+	dd_new.dm_dev.bdev = NULL;
+
+	r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
+	if (r)
+		return r;
+
+	dd->dm_dev.mode |= new_mode;
+	close_dev(&dd_old, md);
+
+	return 0;
+}
+
+/*
+ * Add a device to the list, or just increment the usage count if
+ * it's already present.
+ */
+int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
+		  struct dm_dev **result)
+{
+	int r;
+	dev_t uninitialized_var(dev);
+	struct dm_dev_internal *dd;
+	unsigned int major, minor;
+	struct dm_table *t = ti->table;
+	char dummy;
+
+	BUG_ON(!t);
+
+	if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
+		/* Extract the major/minor numbers */
+		dev = MKDEV(major, minor);
+		if (MAJOR(dev) != major || MINOR(dev) != minor)
+			return -EOVERFLOW;
+	} else {
+		/* convert the path to a device */
+		struct block_device *bdev = lookup_bdev(path);
+
+		if (IS_ERR(bdev))
+			return PTR_ERR(bdev);
+		dev = bdev->bd_dev;
+		bdput(bdev);
+	}
+
+	dd = find_device(&t->devices, dev);
+	if (!dd) {
+		dd = kmalloc(sizeof(*dd), GFP_KERNEL);
+		if (!dd)
+			return -ENOMEM;
+
+		dd->dm_dev.mode = mode;
+		dd->dm_dev.bdev = NULL;
+
+		if ((r = open_dev(dd, dev, t->md))) {
+			kfree(dd);
+			return r;
+		}
+
+		format_dev_t(dd->dm_dev.name, dev);
+
+		atomic_set(&dd->count, 0);
+		list_add(&dd->list, &t->devices);
+
+	} else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
+		r = upgrade_mode(dd, mode, t->md);
+		if (r)
+			return r;
+	}
+	atomic_inc(&dd->count);
+
+	*result = &dd->dm_dev;
+	return 0;
+}
+EXPORT_SYMBOL(dm_get_device);
+
+int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
+			 sector_t start, sector_t len, void *data)
+{
+	struct queue_limits *limits = data;
+	struct block_device *bdev = dev->bdev;
+	struct request_queue *q = bdev_get_queue(bdev);
+	char b[BDEVNAME_SIZE];
+
+	if (unlikely(!q)) {
+		DMWARN("%s: Cannot set limits for nonexistent device %s",
+		       dm_device_name(ti->table->md), bdevname(bdev, b));
+		return 0;
+	}
+
+	if (bdev_stack_limits(limits, bdev, start) < 0)
+		DMWARN("%s: adding target device %s caused an alignment inconsistency: "
+		       "physical_block_size=%u, logical_block_size=%u, "
+		       "alignment_offset=%u, start=%llu",
+		       dm_device_name(ti->table->md), bdevname(bdev, b),
+		       q->limits.physical_block_size,
+		       q->limits.logical_block_size,
+		       q->limits.alignment_offset,
+		       (unsigned long long) start << SECTOR_SHIFT);
+
+	/*
+	 * Check if merge fn is supported.
+	 * If not we'll force DM to use PAGE_SIZE or
+	 * smaller I/O, just to be safe.
+	 */
+	if (dm_queue_merge_is_compulsory(q) && !ti->type->merge)
+		blk_limits_max_hw_sectors(limits,
+					  (unsigned int) (PAGE_SIZE >> 9));
+	return 0;
+}
+EXPORT_SYMBOL_GPL(dm_set_device_limits);
+
+/*
+ * Decrement a device's use count and remove it if necessary.
+ */
+void dm_put_device(struct dm_target *ti, struct dm_dev *d)
+{
+	struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
+						  dm_dev);
+
+	if (atomic_dec_and_test(&dd->count)) {
+		close_dev(dd, ti->table->md);
+		list_del(&dd->list);
+		kfree(dd);
+	}
+}
+EXPORT_SYMBOL(dm_put_device);
+
+/*
+ * Checks to see if the target joins onto the end of the table.
+ */
+static int adjoin(struct dm_table *table, struct dm_target *ti)
+{
+	struct dm_target *prev;
+
+	if (!table->num_targets)
+		return !ti->begin;
+
+	prev = &table->targets[table->num_targets - 1];
+	return (ti->begin == (prev->begin + prev->len));
+}
+
+/*
+ * Used to dynamically allocate the arg array.
+ *
+ * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
+ * process messages even if some device is suspended. These messages have a
+ * small fixed number of arguments.
+ *
+ * On the other hand, dm-switch needs to process bulk data using messages and
+ * excessive use of GFP_NOIO could cause trouble.
+ */
+static char **realloc_argv(unsigned *array_size, char **old_argv)
+{
+	char **argv;
+	unsigned new_size;
+	gfp_t gfp;
+
+	if (*array_size) {
+		new_size = *array_size * 2;
+		gfp = GFP_KERNEL;
+	} else {
+		new_size = 8;
+		gfp = GFP_NOIO;
+	}
+	argv = kmalloc(new_size * sizeof(*argv), gfp);
+	if (argv) {
+		memcpy(argv, old_argv, *array_size * sizeof(*argv));
+		*array_size = new_size;
+	}
+
+	kfree(old_argv);
+	return argv;
+}
+
+/*
+ * Destructively splits up the argument list to pass to ctr.
+ */
+int dm_split_args(int *argc, char ***argvp, char *input)
+{
+	char *start, *end = input, *out, **argv = NULL;
+	unsigned array_size = 0;
+
+	*argc = 0;
+
+	if (!input) {
+		*argvp = NULL;
+		return 0;
+	}
+
+	argv = realloc_argv(&array_size, argv);
+	if (!argv)
+		return -ENOMEM;
+
+	while (1) {
+		/* Skip whitespace */
+		start = skip_spaces(end);
+
+		if (!*start)
+			break;	/* success, we hit the end */
+
+		/* 'out' is used to remove any back-quotes */
+		end = out = start;
+		while (*end) {
+			/* Everything apart from '\0' can be quoted */
+			if (*end == '\\' && *(end + 1)) {
+				*out++ = *(end + 1);
+				end += 2;
+				continue;
+			}
+
+			if (isspace(*end))
+				break;	/* end of token */
+
+			*out++ = *end++;
+		}
+
+		/* have we already filled the array ? */
+		if ((*argc + 1) > array_size) {
+			argv = realloc_argv(&array_size, argv);
+			if (!argv)
+				return -ENOMEM;
+		}
+
+		/* we know this is whitespace */
+		if (*end)
+			end++;
+
+		/* terminate the string and put it in the array */
+		*out = '\0';
+		argv[*argc] = start;
+		(*argc)++;
+	}
+
+	*argvp = argv;
+	return 0;
+}
+
+/*
+ * Impose necessary and sufficient conditions on a devices's table such
+ * that any incoming bio which respects its logical_block_size can be
+ * processed successfully.  If it falls across the boundary between
+ * two or more targets, the size of each piece it gets split into must
+ * be compatible with the logical_block_size of the target processing it.
+ */
+static int validate_hardware_logical_block_alignment(struct dm_table *table,
+						 struct queue_limits *limits)
+{
+	/*
+	 * This function uses arithmetic modulo the logical_block_size
+	 * (in units of 512-byte sectors).
+	 */
+	unsigned short device_logical_block_size_sects =
+		limits->logical_block_size >> SECTOR_SHIFT;
+
+	/*
+	 * Offset of the start of the next table entry, mod logical_block_size.
+	 */
+	unsigned short next_target_start = 0;
+
+	/*
+	 * Given an aligned bio that extends beyond the end of a
+	 * target, how many sectors must the next target handle?
+	 */
+	unsigned short remaining = 0;
+
+	struct dm_target *uninitialized_var(ti);
+	struct queue_limits ti_limits;
+	unsigned i = 0;
+
+	/*
+	 * Check each entry in the table in turn.
+	 */
+	while (i < dm_table_get_num_targets(table)) {
+		ti = dm_table_get_target(table, i++);
+
+		blk_set_stacking_limits(&ti_limits);
+
+		/* combine all target devices' limits */
+		if (ti->type->iterate_devices)
+			ti->type->iterate_devices(ti, dm_set_device_limits,
+						  &ti_limits);
+
+		/*
+		 * If the remaining sectors fall entirely within this
+		 * table entry are they compatible with its logical_block_size?
+		 */
+		if (remaining < ti->len &&
+		    remaining & ((ti_limits.logical_block_size >>
+				  SECTOR_SHIFT) - 1))
+			break;	/* Error */
+
+		next_target_start =
+		    (unsigned short) ((next_target_start + ti->len) &
+				      (device_logical_block_size_sects - 1));
+		remaining = next_target_start ?
+		    device_logical_block_size_sects - next_target_start : 0;
+	}
+
+	if (remaining) {
+		DMWARN("%s: table line %u (start sect %llu len %llu) "
+		       "not aligned to h/w logical block size %u",
+		       dm_device_name(table->md), i,
+		       (unsigned long long) ti->begin,
+		       (unsigned long long) ti->len,
+		       limits->logical_block_size);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+int dm_table_add_target(struct dm_table *t, const char *type,
+			sector_t start, sector_t len, char *params)
+{
+	int r = -EINVAL, argc;
+	char **argv;
+	struct dm_target *tgt;
+
+	if (t->singleton) {
+		DMERR("%s: target type %s must appear alone in table",
+		      dm_device_name(t->md), t->targets->type->name);
+		return -EINVAL;
+	}
+
+	if ((r = check_space(t)))
+		return r;
+
+	tgt = t->targets + t->num_targets;
+	memset(tgt, 0, sizeof(*tgt));
+
+	if (!len) {
+		DMERR("%s: zero-length target", dm_device_name(t->md));
+		return -EINVAL;
+	}
+
+	tgt->type = dm_get_target_type(type);
+	if (!tgt->type) {
+		DMERR("%s: %s: unknown target type", dm_device_name(t->md),
+		      type);
+		return -EINVAL;
+	}
+
+	if (dm_target_needs_singleton(tgt->type)) {
+		if (t->num_targets) {
+			DMERR("%s: target type %s must appear alone in table",
+			      dm_device_name(t->md), type);
+			return -EINVAL;
+		}
+		t->singleton = 1;
+	}
+
+	if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
+		DMERR("%s: target type %s may not be included in read-only tables",
+		      dm_device_name(t->md), type);
+		return -EINVAL;
+	}
+
+	if (t->immutable_target_type) {
+		if (t->immutable_target_type != tgt->type) {
+			DMERR("%s: immutable target type %s cannot be mixed with other target types",
+			      dm_device_name(t->md), t->immutable_target_type->name);
+			return -EINVAL;
+		}
+	} else if (dm_target_is_immutable(tgt->type)) {
+		if (t->num_targets) {
+			DMERR("%s: immutable target type %s cannot be mixed with other target types",
+			      dm_device_name(t->md), tgt->type->name);
+			return -EINVAL;
+		}
+		t->immutable_target_type = tgt->type;
+	}
+
+	tgt->table = t;
+	tgt->begin = start;
+	tgt->len = len;
+	tgt->error = "Unknown error";
+
+	/*
+	 * Does this target adjoin the previous one ?
+	 */
+	if (!adjoin(t, tgt)) {
+		tgt->error = "Gap in table";
+		r = -EINVAL;
+		goto bad;
+	}
+
+	r = dm_split_args(&argc, &argv, params);
+	if (r) {
+		tgt->error = "couldn't split parameters (insufficient memory)";
+		goto bad;
+	}
+
+	r = tgt->type->ctr(tgt, argc, argv);
+	kfree(argv);
+	if (r)
+		goto bad;
+
+	t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
+
+	if (!tgt->num_discard_requests && tgt->discards_supported)
+		DMWARN("%s: %s: ignoring discards_supported because num_discard_requests is zero.",
+		       dm_device_name(t->md), type);
+
+	return 0;
+
+ bad:
+	DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
+	dm_put_target_type(tgt->type);
+	return r;
+}
+
+/*
+ * Target argument parsing helpers.
+ */
+static int validate_next_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
+			     unsigned *value, char **error, unsigned grouped)
+{
+	const char *arg_str = dm_shift_arg(arg_set);
+	char dummy;
+
+	if (!arg_str ||
+	    (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
+	    (*value < arg->min) ||
+	    (*value > arg->max) ||
+	    (grouped && arg_set->argc < *value)) {
+		*error = arg->error;
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+int dm_read_arg(struct dm_arg *arg, struct dm_arg_set *arg_set,
+		unsigned *value, char **error)
+{
+	return validate_next_arg(arg, arg_set, value, error, 0);
+}
+EXPORT_SYMBOL(dm_read_arg);
+
+int dm_read_arg_group(struct dm_arg *arg, struct dm_arg_set *arg_set,
+		      unsigned *value, char **error)
+{
+	return validate_next_arg(arg, arg_set, value, error, 1);
+}
+EXPORT_SYMBOL(dm_read_arg_group);
+
+const char *dm_shift_arg(struct dm_arg_set *as)
+{
+	char *r;
+
+	if (as->argc) {
+		as->argc--;
+		r = *as->argv;
+		as->argv++;
+		return r;
+	}
+
+	return NULL;
+}
+EXPORT_SYMBOL(dm_shift_arg);
+
+void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
+{
+	BUG_ON(as->argc < num_args);
+	as->argc -= num_args;
+	as->argv += num_args;
+}
+EXPORT_SYMBOL(dm_consume_args);
+
+static int dm_table_set_type(struct dm_table *t)
+{
+	unsigned i;
+	unsigned bio_based = 0, request_based = 0;
+	struct dm_target *tgt;
+	struct dm_dev_internal *dd;
+	struct list_head *devices;
+
+	for (i = 0; i < t->num_targets; i++) {
+		tgt = t->targets + i;
+		if (dm_target_request_based(tgt))
+			request_based = 1;
+		else
+			bio_based = 1;
+
+		if (bio_based && request_based) {
+			DMWARN("Inconsistent table: different target types"
+			       " can't be mixed up");
+			return -EINVAL;
+		}
+	}
+
+	if (bio_based) {
+		/* We must use this table as bio-based */
+		t->type = DM_TYPE_BIO_BASED;
+		return 0;
+	}
+
+	BUG_ON(!request_based); /* No targets in this table */
+
+	/* Non-request-stackable devices can't be used for request-based dm */
+	devices = dm_table_get_devices(t);
+	list_for_each_entry(dd, devices, list) {
+		if (!blk_queue_stackable(bdev_get_queue(dd->dm_dev.bdev))) {
+			DMWARN("table load rejected: including"
+			       " non-request-stackable devices");
+			return -EINVAL;
+		}
+	}
+
+	/*
+	 * Request-based dm supports only tables that have a single target now.
+	 * To support multiple targets, request splitting support is needed,
+	 * and that needs lots of changes in the block-layer.
+	 * (e.g. request completion process for partial completion.)
+	 */
+	if (t->num_targets > 1) {
+		DMWARN("Request-based dm doesn't support multiple targets yet");
+		return -EINVAL;
+	}
+
+	t->type = DM_TYPE_REQUEST_BASED;
+
+	return 0;
+}
+
+unsigned dm_table_get_type(struct dm_table *t)
+{
+	return t->type;
+}
+
+struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
+{
+	return t->immutable_target_type;
+}
+
+bool dm_table_request_based(struct dm_table *t)
+{
+	return dm_table_get_type(t) == DM_TYPE_REQUEST_BASED;
+}
+
+int dm_table_alloc_md_mempools(struct dm_table *t)
+{
+	unsigned type = dm_table_get_type(t);
+
+	if (unlikely(type == DM_TYPE_NONE)) {
+		DMWARN("no table type is set, can't allocate mempools");
+		return -EINVAL;
+	}
+
+	t->mempools = dm_alloc_md_mempools(type, t->integrity_supported);
+	if (!t->mempools)
+		return -ENOMEM;
+
+	return 0;
+}
+
+void dm_table_free_md_mempools(struct dm_table *t)
+{
+	dm_free_md_mempools(t->mempools);
+	t->mempools = NULL;
+}
+
+struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
+{
+	return t->mempools;
+}
+
+static int setup_indexes(struct dm_table *t)
+{
+	int i;
+	unsigned int total = 0;
+	sector_t *indexes;
+
+	/* allocate the space for *all* the indexes */
+	for (i = t->depth - 2; i >= 0; i--) {
+		t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
+		total += t->counts[i];
+	}
+
+	indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
+	if (!indexes)
+		return -ENOMEM;
+
+	/* set up internal nodes, bottom-up */
+	for (i = t->depth - 2; i >= 0; i--) {
+		t->index[i] = indexes;
+		indexes += (KEYS_PER_NODE * t->counts[i]);
+		setup_btree_index(i, t);
+	}
+
+	return 0;
+}
+
+/*
+ * Builds the btree to index the map.
+ */
+static int dm_table_build_index(struct dm_table *t)
+{
+	int r = 0;
+	unsigned int leaf_nodes;
+
+	/* how many indexes will the btree have ? */
+	leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
+	t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
+
+	/* leaf layer has already been set up */
+	t->counts[t->depth - 1] = leaf_nodes;
+	t->index[t->depth - 1] = t->highs;
+
+	if (t->depth >= 2)
+		r = setup_indexes(t);
+
+	return r;
+}
+
+/*
+ * Get a disk whose integrity profile reflects the table's profile.
+ * If %match_all is true, all devices' profiles must match.
+ * If %match_all is false, all devices must at least have an
+ * allocated integrity profile; but uninitialized is ok.
+ * Returns NULL if integrity support was inconsistent or unavailable.
+ */
+static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t,
+						    bool match_all)
+{
+	struct list_head *devices = dm_table_get_devices(t);
+	struct dm_dev_internal *dd = NULL;
+	struct gendisk *prev_disk = NULL, *template_disk = NULL;
+
+	list_for_each_entry(dd, devices, list) {
+		template_disk = dd->dm_dev.bdev->bd_disk;
+		if (!blk_get_integrity(template_disk))
+			goto no_integrity;
+		if (!match_all && !blk_integrity_is_initialized(template_disk))
+			continue; /* skip uninitialized profiles */
+		else if (prev_disk &&
+			 blk_integrity_compare(prev_disk, template_disk) < 0)
+			goto no_integrity;
+		prev_disk = template_disk;
+	}
+
+	return template_disk;
+
+no_integrity:
+	if (prev_disk)
+		DMWARN("%s: integrity not set: %s and %s profile mismatch",
+		       dm_device_name(t->md),
+		       prev_disk->disk_name,
+		       template_disk->disk_name);
+	return NULL;
+}
+
+/*
+ * Register the mapped device for blk_integrity support if
+ * the underlying devices have an integrity profile.  But all devices
+ * may not have matching profiles (checking all devices isn't reliable
+ * during table load because this table may use other DM device(s) which
+ * must be resumed before they will have an initialized integity profile).
+ * Stacked DM devices force a 2 stage integrity profile validation:
+ * 1 - during load, validate all initialized integrity profiles match
+ * 2 - during resume, validate all integrity profiles match
+ */
+static int dm_table_prealloc_integrity(struct dm_table *t, struct mapped_device *md)
+{
+	struct gendisk *template_disk = NULL;
+
+	template_disk = dm_table_get_integrity_disk(t, false);
+	if (!template_disk)
+		return 0;
+
+	if (!blk_integrity_is_initialized(dm_disk(md))) {
+		t->integrity_supported = 1;
+		return blk_integrity_register(dm_disk(md), NULL);
+	}
+
+	/*
+	 * If DM device already has an initalized integrity
+	 * profile the new profile should not conflict.
+	 */
+	if (blk_integrity_is_initialized(template_disk) &&
+	    blk_integrity_compare(dm_disk(md), template_disk) < 0) {
+		DMWARN("%s: conflict with existing integrity profile: "
+		       "%s profile mismatch",
+		       dm_device_name(t->md),
+		       template_disk->disk_name);
+		return 1;
+	}
+
+	/* Preserve existing initialized integrity profile */
+	t->integrity_supported = 1;
+	return 0;
+}
+
+/*
+ * Prepares the table for use by building the indices,
+ * setting the type, and allocating mempools.
+ */
+int dm_table_complete(struct dm_table *t)
+{
+	int r;
+
+	r = dm_table_set_type(t);
+	if (r) {
+		DMERR("unable to set table type");
+		return r;
+	}
+
+	r = dm_table_build_index(t);
+	if (r) {
+		DMERR("unable to build btrees");
+		return r;
+	}
+
+	r = dm_table_prealloc_integrity(t, t->md);
+	if (r) {
+		DMERR("could not register integrity profile.");
+		return r;
+	}
+
+	r = dm_table_alloc_md_mempools(t);
+	if (r)
+		DMERR("unable to allocate mempools");
+
+	return r;
+}
+
+static DEFINE_MUTEX(_event_lock);
+void dm_table_event_callback(struct dm_table *t,
+			     void (*fn)(void *), void *context)
+{
+	mutex_lock(&_event_lock);
+	t->event_fn = fn;
+	t->event_context = context;
+	mutex_unlock(&_event_lock);
+}
+
+void dm_table_event(struct dm_table *t)
+{
+	/*
+	 * You can no longer call dm_table_event() from interrupt
+	 * context, use a bottom half instead.
+	 */
+	BUG_ON(in_interrupt());
+
+	mutex_lock(&_event_lock);
+	if (t->event_fn)
+		t->event_fn(t->event_context);
+	mutex_unlock(&_event_lock);
+}
+EXPORT_SYMBOL(dm_table_event);
+
+sector_t dm_table_get_size(struct dm_table *t)
+{
+	return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
+}
+EXPORT_SYMBOL(dm_table_get_size);
+
+struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
+{
+	if (index >= t->num_targets)
+		return NULL;
+
+	return t->targets + index;
+}
+
+/*
+ * Search the btree for the correct target.
+ *
+ * Caller should check returned pointer with dm_target_is_valid()
+ * to trap I/O beyond end of device.
+ */
+struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
+{
+	unsigned int l, n = 0, k = 0;
+	sector_t *node;
+
+	for (l = 0; l < t->depth; l++) {
+		n = get_child(n, k);
+		node = get_node(t, l, n);
+
+		for (k = 0; k < KEYS_PER_NODE; k++)
+			if (node[k] >= sector)
+				break;
+	}
+
+	return &t->targets[(KEYS_PER_NODE * n) + k];
+}
+
+/*
+ * Establish the new table's queue_limits and validate them.
+ */
+int dm_calculate_queue_limits(struct dm_table *table,
+			      struct queue_limits *limits)
+{
+	struct dm_target *uninitialized_var(ti);
+	struct queue_limits ti_limits;
+	unsigned i = 0;
+
+	blk_set_stacking_limits(limits);
+
+	while (i < dm_table_get_num_targets(table)) {
+		blk_set_stacking_limits(&ti_limits);
+
+		ti = dm_table_get_target(table, i++);
+
+		if (!ti->type->iterate_devices)
+			goto combine_limits;
+
+		/*
+		 * Combine queue limits of all the devices this target uses.
+		 */
+		ti->type->iterate_devices(ti, dm_set_device_limits,
+					  &ti_limits);
+
+		/* Set I/O hints portion of queue limits */
+		if (ti->type->io_hints)
+			ti->type->io_hints(ti, &ti_limits);
+
+		/*
+		 * Check each device area is consistent with the target's
+		 * overall queue limits.
+		 */
+		if (ti->type->iterate_devices(ti, device_area_is_invalid,
+					      &ti_limits))
+			return -EINVAL;
+
+combine_limits:
+		/*
+		 * Merge this target's queue limits into the overall limits
+		 * for the table.
+		 */
+		if (blk_stack_limits(limits, &ti_limits, 0) < 0)
+			DMWARN("%s: adding target device "
+			       "(start sect %llu len %llu) "
+			       "caused an alignment inconsistency",
+			       dm_device_name(table->md),
+			       (unsigned long long) ti->begin,
+			       (unsigned long long) ti->len);
+	}
+
+	return validate_hardware_logical_block_alignment(table, limits);
+}
+
+/*
+ * Set the integrity profile for this device if all devices used have
+ * matching profiles.  We're quite deep in the resume path but still
+ * don't know if all devices (particularly DM devices this device
+ * may be stacked on) have matching profiles.  Even if the profiles
+ * don't match we have no way to fail (to resume) at this point.
+ */
+static void dm_table_set_integrity(struct dm_table *t)
+{
+	struct gendisk *template_disk = NULL;
+
+	if (!blk_get_integrity(dm_disk(t->md)))
+		return;
+
+	template_disk = dm_table_get_integrity_disk(t, true);
+	if (template_disk)
+		blk_integrity_register(dm_disk(t->md),
+				       blk_get_integrity(template_disk));
+	else if (blk_integrity_is_initialized(dm_disk(t->md)))
+		DMWARN("%s: device no longer has a valid integrity profile",
+		       dm_device_name(t->md));
+	else
+		DMWARN("%s: unable to establish an integrity profile",
+		       dm_device_name(t->md));
+}
+
+static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
+				sector_t start, sector_t len, void *data)
+{
+	unsigned flush = (*(unsigned *)data);
+	struct request_queue *q = bdev_get_queue(dev->bdev);
+
+	return q && (q->flush_flags & flush);
+}
+
+static bool dm_table_supports_flush(struct dm_table *t, unsigned flush)
+{
+	struct dm_target *ti;
+	unsigned i = 0;
+
+	/*
+	 * Require at least one underlying device to support flushes.
+	 * t->devices includes internal dm devices such as mirror logs
+	 * so we need to use iterate_devices here, which targets
+	 * supporting flushes must provide.
+	 */
+	while (i < dm_table_get_num_targets(t)) {
+		ti = dm_table_get_target(t, i++);
+
+		if (!ti->num_flush_requests)
+			continue;
+
+		if (ti->type->iterate_devices &&
+		    ti->type->iterate_devices(ti, device_flush_capable, &flush))
+			return 1;
+	}
+
+	return 0;
+}
+
+static bool dm_table_discard_zeroes_data(struct dm_table *t)
+{
+	struct dm_target *ti;
+	unsigned i = 0;
+
+	/* Ensure that all targets supports discard_zeroes_data. */
+	while (i < dm_table_get_num_targets(t)) {
+		ti = dm_table_get_target(t, i++);
+
+		if (ti->discard_zeroes_data_unsupported)
+			return 0;
+	}
+
+	return 1;
+}
+
+static int device_is_nonrot(struct dm_target *ti, struct dm_dev *dev,
+			    sector_t start, sector_t len, void *data)
+{
+	struct request_queue *q = bdev_get_queue(dev->bdev);
+
+	return q && blk_queue_nonrot(q);
+}
+
+static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
+			     sector_t start, sector_t len, void *data)
+{
+	struct request_queue *q = bdev_get_queue(dev->bdev);
+
+	return q && !blk_queue_add_random(q);
+}
+
+static bool dm_table_all_devices_attribute(struct dm_table *t,
+					   iterate_devices_callout_fn func)
+{
+	struct dm_target *ti;
+	unsigned i = 0;
+
+	while (i < dm_table_get_num_targets(t)) {
+		ti = dm_table_get_target(t, i++);
+
+		if (!ti->type->iterate_devices ||
+		    !ti->type->iterate_devices(ti, func, NULL))
+			return 0;
+	}
+
+	return 1;
+}
+
+void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
+			       struct queue_limits *limits)
+{
+	unsigned flush = 0;
+
+	/*
+	 * Copy table's limits to the DM device's request_queue
+	 */
+	q->limits = *limits;
+
+	if (!dm_table_supports_discards(t))
+		queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
+	else
+		queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
+
+	if (dm_table_supports_flush(t, REQ_FLUSH)) {
+		flush |= REQ_FLUSH;
+		if (dm_table_supports_flush(t, REQ_FUA))
+			flush |= REQ_FUA;
+	}
+	blk_queue_flush(q, flush);
+
+	if (!dm_table_discard_zeroes_data(t))
+		q->limits.discard_zeroes_data = 0;
+
+	/* Ensure that all underlying devices are non-rotational. */
+	if (dm_table_all_devices_attribute(t, device_is_nonrot))
+		queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
+	else
+		queue_flag_clear_unlocked(QUEUE_FLAG_NONROT, q);
+
+	dm_table_set_integrity(t);
+
+	/*
+	 * Determine whether or not this queue's I/O timings contribute
+	 * to the entropy pool, Only request-based targets use this.
+	 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
+	 * have it set.
+	 */
+	if (blk_queue_add_random(q) && dm_table_all_devices_attribute(t, device_is_not_random))
+		queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
+
+	/*
+	 * QUEUE_FLAG_STACKABLE must be set after all queue settings are
+	 * visible to other CPUs because, once the flag is set, incoming bios
+	 * are processed by request-based dm, which refers to the queue
+	 * settings.
+	 * Until the flag set, bios are passed to bio-based dm and queued to
+	 * md->deferred where queue settings are not needed yet.
+	 * Those bios are passed to request-based dm at the resume time.
+	 */
+	smp_mb();
+	if (dm_table_request_based(t))
+		queue_flag_set_unlocked(QUEUE_FLAG_STACKABLE, q);
+}
+
+unsigned int dm_table_get_num_targets(struct dm_table *t)
+{
+	return t->num_targets;
+}
+
+struct list_head *dm_table_get_devices(struct dm_table *t)
+{
+	return &t->devices;
+}
+
+fmode_t dm_table_get_mode(struct dm_table *t)
+{
+	return t->mode;
+}
+EXPORT_SYMBOL(dm_table_get_mode);
+
+static void suspend_targets(struct dm_table *t, unsigned postsuspend)
+{
+	int i = t->num_targets;
+	struct dm_target *ti = t->targets;
+
+	while (i--) {
+		if (postsuspend) {
+			if (ti->type->postsuspend)
+				ti->type->postsuspend(ti);
+		} else if (ti->type->presuspend)
+			ti->type->presuspend(ti);
+
+		ti++;
+	}
+}
+
+void dm_table_presuspend_targets(struct dm_table *t)
+{
+	if (!t)
+		return;
+
+	suspend_targets(t, 0);
+}
+
+void dm_table_postsuspend_targets(struct dm_table *t)
+{
+	if (!t)
+		return;
+
+	suspend_targets(t, 1);
+}
+
+int dm_table_resume_targets(struct dm_table *t)
+{
+	int i, r = 0;
+
+	for (i = 0; i < t->num_targets; i++) {
+		struct dm_target *ti = t->targets + i;
+
+		if (!ti->type->preresume)
+			continue;
+
+		r = ti->type->preresume(ti);
+		if (r)
+			return r;
+	}
+
+	for (i = 0; i < t->num_targets; i++) {
+		struct dm_target *ti = t->targets + i;
+
+		if (ti->type->resume)
+			ti->type->resume(ti);
+	}
+
+	return 0;
+}
+
+void dm_table_add_target_callbacks(struct dm_table *t, struct dm_target_callbacks *cb)
+{
+	list_add(&cb->list, &t->target_callbacks);
+}
+EXPORT_SYMBOL_GPL(dm_table_add_target_callbacks);
+
+int dm_table_any_congested(struct dm_table *t, int bdi_bits)
+{
+	struct dm_dev_internal *dd;
+	struct list_head *devices = dm_table_get_devices(t);
+	struct dm_target_callbacks *cb;
+	int r = 0;
+
+	list_for_each_entry(dd, devices, list) {
+		struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
+		char b[BDEVNAME_SIZE];
+
+		if (likely(q))
+			r |= bdi_congested(&q->backing_dev_info, bdi_bits);
+		else
+			DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
+				     dm_device_name(t->md),
+				     bdevname(dd->dm_dev.bdev, b));
+	}
+
+	list_for_each_entry(cb, &t->target_callbacks, list)
+		if (cb->congested_fn)
+			r |= cb->congested_fn(cb, bdi_bits);
+
+	return r;
+}
+
+int dm_table_any_busy_target(struct dm_table *t)
+{
+	unsigned i;
+	struct dm_target *ti;
+
+	for (i = 0; i < t->num_targets; i++) {
+		ti = t->targets + i;
+		if (ti->type->busy && ti->type->busy(ti))
+			return 1;
+	}
+
+	return 0;
+}
+
+struct mapped_device *dm_table_get_md(struct dm_table *t)
+{
+	return t->md;
+}
+EXPORT_SYMBOL(dm_table_get_md);
+
+static int device_discard_capable(struct dm_target *ti, struct dm_dev *dev,
+				  sector_t start, sector_t len, void *data)
+{
+	struct request_queue *q = bdev_get_queue(dev->bdev);
+
+	return q && blk_queue_discard(q);
+}
+
+bool dm_table_supports_discards(struct dm_table *t)
+{
+	struct dm_target *ti;
+	unsigned i = 0;
+
+	/*
+	 * Unless any target used by the table set discards_supported,
+	 * require at least one underlying device to support discards.
+	 * t->devices includes internal dm devices such as mirror logs
+	 * so we need to use iterate_devices here, which targets
+	 * supporting discard selectively must provide.
+	 */
+	while (i < dm_table_get_num_targets(t)) {
+		ti = dm_table_get_target(t, i++);
+
+		if (!ti->num_discard_requests)
+			continue;
+
+		if (ti->discards_supported)
+			return 1;
+
+		if (ti->type->iterate_devices &&
+		    ti->type->iterate_devices(ti, device_discard_capable, NULL))
+			return 1;
+	}
+
+	return 0;
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-target.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-target.c
new file mode 100644
index 0000000..8da366c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-target.c
@@ -0,0 +1,154 @@
+/*
+ * Copyright (C) 2001 Sistina Software (UK) Limited
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/kmod.h>
+#include <linux/bio.h>
+
+#define DM_MSG_PREFIX "target"
+
+static LIST_HEAD(_targets);
+static DECLARE_RWSEM(_lock);
+
+#define DM_MOD_NAME_SIZE 32
+
+static inline struct target_type *__find_target_type(const char *name)
+{
+	struct target_type *tt;
+
+	list_for_each_entry(tt, &_targets, list)
+		if (!strcmp(name, tt->name))
+			return tt;
+
+	return NULL;
+}
+
+static struct target_type *get_target_type(const char *name)
+{
+	struct target_type *tt;
+
+	down_read(&_lock);
+
+	tt = __find_target_type(name);
+	if (tt && !try_module_get(tt->module))
+		tt = NULL;
+
+	up_read(&_lock);
+	return tt;
+}
+
+static void load_module(const char *name)
+{
+	request_module("dm-%s", name);
+}
+
+struct target_type *dm_get_target_type(const char *name)
+{
+	struct target_type *tt = get_target_type(name);
+
+	if (!tt) {
+		load_module(name);
+		tt = get_target_type(name);
+	}
+
+	return tt;
+}
+
+void dm_put_target_type(struct target_type *tt)
+{
+	down_read(&_lock);
+	module_put(tt->module);
+	up_read(&_lock);
+}
+
+int dm_target_iterate(void (*iter_func)(struct target_type *tt,
+					void *param), void *param)
+{
+	struct target_type *tt;
+
+	down_read(&_lock);
+	list_for_each_entry(tt, &_targets, list)
+		iter_func(tt, param);
+	up_read(&_lock);
+
+	return 0;
+}
+
+int dm_register_target(struct target_type *tt)
+{
+	int rv = 0;
+
+	down_write(&_lock);
+	if (__find_target_type(tt->name))
+		rv = -EEXIST;
+	else
+		list_add(&tt->list, &_targets);
+
+	up_write(&_lock);
+	return rv;
+}
+
+void dm_unregister_target(struct target_type *tt)
+{
+	down_write(&_lock);
+	if (!__find_target_type(tt->name)) {
+		DMCRIT("Unregistering unrecognised target: %s", tt->name);
+		BUG();
+	}
+
+	list_del(&tt->list);
+
+	up_write(&_lock);
+}
+
+/*
+ * io-err: always fails an io, useful for bringing
+ * up LVs that have holes in them.
+ */
+static int io_err_ctr(struct dm_target *tt, unsigned int argc, char **args)
+{
+	/*
+	 * Return error for discards instead of -EOPNOTSUPP
+	 */
+	tt->num_discard_requests = 1;
+
+	return 0;
+}
+
+static void io_err_dtr(struct dm_target *tt)
+{
+	/* empty */
+}
+
+static int io_err_map(struct dm_target *tt, struct bio *bio,
+		      union map_info *map_context)
+{
+	return -EIO;
+}
+
+static struct target_type error_target = {
+	.name = "error",
+	.version = {1, 0, 1},
+	.ctr  = io_err_ctr,
+	.dtr  = io_err_dtr,
+	.map  = io_err_map,
+};
+
+int __init dm_target_init(void)
+{
+	return dm_register_target(&error_target);
+}
+
+void dm_target_exit(void)
+{
+	dm_unregister_target(&error_target);
+}
+
+EXPORT_SYMBOL(dm_register_target);
+EXPORT_SYMBOL(dm_unregister_target);
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-thin-metadata.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-thin-metadata.c
new file mode 100644
index 0000000..737d388
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-thin-metadata.c
@@ -0,0 +1,1409 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-thin-metadata.h"
+#include "persistent-data/dm-btree.h"
+#include "persistent-data/dm-space-map.h"
+#include "persistent-data/dm-space-map-disk.h"
+#include "persistent-data/dm-transaction-manager.h"
+
+#include <linux/list.h>
+#include <linux/device-mapper.h>
+#include <linux/workqueue.h>
+
+/*--------------------------------------------------------------------------
+ * As far as the metadata goes, there is:
+ *
+ * - A superblock in block zero, taking up fewer than 512 bytes for
+ *   atomic writes.
+ *
+ * - A space map managing the metadata blocks.
+ *
+ * - A space map managing the data blocks.
+ *
+ * - A btree mapping our internal thin dev ids onto struct disk_device_details.
+ *
+ * - A hierarchical btree, with 2 levels which effectively maps (thin
+ *   dev id, virtual block) -> block_time.  Block time is a 64-bit
+ *   field holding the time in the low 24 bits, and block in the top 48
+ *   bits.
+ *
+ * BTrees consist solely of btree_nodes, that fill a block.  Some are
+ * internal nodes, as such their values are a __le64 pointing to other
+ * nodes.  Leaf nodes can store data of any reasonable size (ie. much
+ * smaller than the block size).  The nodes consist of the header,
+ * followed by an array of keys, followed by an array of values.  We have
+ * to binary search on the keys so they're all held together to help the
+ * cpu cache.
+ *
+ * Space maps have 2 btrees:
+ *
+ * - One maps a uint64_t onto a struct index_entry.  Which points to a
+ *   bitmap block, and has some details about how many free entries there
+ *   are etc.
+ *
+ * - The bitmap blocks have a header (for the checksum).  Then the rest
+ *   of the block is pairs of bits.  With the meaning being:
+ *
+ *   0 - ref count is 0
+ *   1 - ref count is 1
+ *   2 - ref count is 2
+ *   3 - ref count is higher than 2
+ *
+ * - If the count is higher than 2 then the ref count is entered in a
+ *   second btree that directly maps the block_address to a uint32_t ref
+ *   count.
+ *
+ * The space map metadata variant doesn't have a bitmaps btree.  Instead
+ * it has one single blocks worth of index_entries.  This avoids
+ * recursive issues with the bitmap btree needing to allocate space in
+ * order to insert.  With a small data block size such as 64k the
+ * metadata support data devices that are hundreds of terrabytes.
+ *
+ * The space maps allocate space linearly from front to back.  Space that
+ * is freed in a transaction is never recycled within that transaction.
+ * To try and avoid fragmenting _free_ space the allocator always goes
+ * back and fills in gaps.
+ *
+ * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
+ * from the block manager.
+ *--------------------------------------------------------------------------*/
+
+#define DM_MSG_PREFIX   "thin metadata"
+
+#define THIN_SUPERBLOCK_MAGIC 27022010
+#define THIN_SUPERBLOCK_LOCATION 0
+#define THIN_VERSION 1
+#define THIN_METADATA_CACHE_SIZE 64
+#define SECTOR_TO_BLOCK_SHIFT 3
+
+/* This should be plenty */
+#define SPACE_MAP_ROOT_SIZE 128
+
+/*
+ * Little endian on-disk superblock and device details.
+ */
+struct thin_disk_superblock {
+	__le32 csum;	/* Checksum of superblock except for this field. */
+	__le32 flags;
+	__le64 blocknr;	/* This block number, dm_block_t. */
+
+	__u8 uuid[16];
+	__le64 magic;
+	__le32 version;
+	__le32 time;
+
+	__le64 trans_id;
+
+	/*
+	 * Root held by userspace transactions.
+	 */
+	__le64 held_root;
+
+	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
+	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
+
+	/*
+	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
+	 */
+	__le64 data_mapping_root;
+
+	/*
+	 * Device detail root mapping dev_id -> device_details
+	 */
+	__le64 device_details_root;
+
+	__le32 data_block_size;		/* In 512-byte sectors. */
+
+	__le32 metadata_block_size;	/* In 512-byte sectors. */
+	__le64 metadata_nr_blocks;
+
+	__le32 compat_flags;
+	__le32 compat_ro_flags;
+	__le32 incompat_flags;
+} __packed;
+
+struct disk_device_details {
+	__le64 mapped_blocks;
+	__le64 transaction_id;		/* When created. */
+	__le32 creation_time;
+	__le32 snapshotted_time;
+} __packed;
+
+struct dm_pool_metadata {
+	struct hlist_node hash;
+
+	struct block_device *bdev;
+	struct dm_block_manager *bm;
+	struct dm_space_map *metadata_sm;
+	struct dm_space_map *data_sm;
+	struct dm_transaction_manager *tm;
+	struct dm_transaction_manager *nb_tm;
+
+	/*
+	 * Two-level btree.
+	 * First level holds thin_dev_t.
+	 * Second level holds mappings.
+	 */
+	struct dm_btree_info info;
+
+	/*
+	 * Non-blocking version of the above.
+	 */
+	struct dm_btree_info nb_info;
+
+	/*
+	 * Just the top level for deleting whole devices.
+	 */
+	struct dm_btree_info tl_info;
+
+	/*
+	 * Just the bottom level for creating new devices.
+	 */
+	struct dm_btree_info bl_info;
+
+	/*
+	 * Describes the device details btree.
+	 */
+	struct dm_btree_info details_info;
+
+	struct rw_semaphore root_lock;
+	uint32_t time;
+	int need_commit;
+	dm_block_t root;
+	dm_block_t details_root;
+	struct list_head thin_devices;
+	uint64_t trans_id;
+	unsigned long flags;
+	sector_t data_block_size;
+};
+
+struct dm_thin_device {
+	struct list_head list;
+	struct dm_pool_metadata *pmd;
+	dm_thin_id id;
+
+	int open_count;
+	int changed;
+	uint64_t mapped_blocks;
+	uint64_t transaction_id;
+	uint32_t creation_time;
+	uint32_t snapshotted_time;
+};
+
+/*----------------------------------------------------------------
+ * superblock validator
+ *--------------------------------------------------------------*/
+
+#define SUPERBLOCK_CSUM_XOR 160774
+
+static void sb_prepare_for_write(struct dm_block_validator *v,
+				 struct dm_block *b,
+				 size_t block_size)
+{
+	struct thin_disk_superblock *disk_super = dm_block_data(b);
+
+	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
+	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
+						      block_size - sizeof(__le32),
+						      SUPERBLOCK_CSUM_XOR));
+}
+
+static int sb_check(struct dm_block_validator *v,
+		    struct dm_block *b,
+		    size_t block_size)
+{
+	struct thin_disk_superblock *disk_super = dm_block_data(b);
+	__le32 csum_le;
+
+	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
+		DMERR("sb_check failed: blocknr %llu: "
+		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
+		      (unsigned long long)dm_block_location(b));
+		return -ENOTBLK;
+	}
+
+	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
+		DMERR("sb_check failed: magic %llu: "
+		      "wanted %llu", le64_to_cpu(disk_super->magic),
+		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
+		return -EILSEQ;
+	}
+
+	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
+					     block_size - sizeof(__le32),
+					     SUPERBLOCK_CSUM_XOR));
+	if (csum_le != disk_super->csum) {
+		DMERR("sb_check failed: csum %u: wanted %u",
+		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
+		return -EILSEQ;
+	}
+
+	return 0;
+}
+
+static struct dm_block_validator sb_validator = {
+	.name = "superblock",
+	.prepare_for_write = sb_prepare_for_write,
+	.check = sb_check
+};
+
+/*----------------------------------------------------------------
+ * Methods for the btree value types
+ *--------------------------------------------------------------*/
+
+static uint64_t pack_block_time(dm_block_t b, uint32_t t)
+{
+	return (b << 24) | t;
+}
+
+static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
+{
+	*b = v >> 24;
+	*t = v & ((1 << 24) - 1);
+}
+
+static void data_block_inc(void *context, void *value_le)
+{
+	struct dm_space_map *sm = context;
+	__le64 v_le;
+	uint64_t b;
+	uint32_t t;
+
+	memcpy(&v_le, value_le, sizeof(v_le));
+	unpack_block_time(le64_to_cpu(v_le), &b, &t);
+	dm_sm_inc_block(sm, b);
+}
+
+static void data_block_dec(void *context, void *value_le)
+{
+	struct dm_space_map *sm = context;
+	__le64 v_le;
+	uint64_t b;
+	uint32_t t;
+
+	memcpy(&v_le, value_le, sizeof(v_le));
+	unpack_block_time(le64_to_cpu(v_le), &b, &t);
+	dm_sm_dec_block(sm, b);
+}
+
+static int data_block_equal(void *context, void *value1_le, void *value2_le)
+{
+	__le64 v1_le, v2_le;
+	uint64_t b1, b2;
+	uint32_t t;
+
+	memcpy(&v1_le, value1_le, sizeof(v1_le));
+	memcpy(&v2_le, value2_le, sizeof(v2_le));
+	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
+	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
+
+	return b1 == b2;
+}
+
+static void subtree_inc(void *context, void *value)
+{
+	struct dm_btree_info *info = context;
+	__le64 root_le;
+	uint64_t root;
+
+	memcpy(&root_le, value, sizeof(root_le));
+	root = le64_to_cpu(root_le);
+	dm_tm_inc(info->tm, root);
+}
+
+static void subtree_dec(void *context, void *value)
+{
+	struct dm_btree_info *info = context;
+	__le64 root_le;
+	uint64_t root;
+
+	memcpy(&root_le, value, sizeof(root_le));
+	root = le64_to_cpu(root_le);
+	if (dm_btree_del(info, root))
+		DMERR("btree delete failed\n");
+}
+
+static int subtree_equal(void *context, void *value1_le, void *value2_le)
+{
+	__le64 v1_le, v2_le;
+	memcpy(&v1_le, value1_le, sizeof(v1_le));
+	memcpy(&v2_le, value2_le, sizeof(v2_le));
+
+	return v1_le == v2_le;
+}
+
+/*----------------------------------------------------------------*/
+
+static int superblock_all_zeroes(struct dm_block_manager *bm, int *result)
+{
+	int r;
+	unsigned i;
+	struct dm_block *b;
+	__le64 *data_le, zero = cpu_to_le64(0);
+	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
+
+	/*
+	 * We can't use a validator here - it may be all zeroes.
+	 */
+	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
+	if (r)
+		return r;
+
+	data_le = dm_block_data(b);
+	*result = 1;
+	for (i = 0; i < block_size; i++) {
+		if (data_le[i] != zero) {
+			*result = 0;
+			break;
+		}
+	}
+
+	return dm_bm_unlock(b);
+}
+
+static int init_pmd(struct dm_pool_metadata *pmd,
+		    struct dm_block_manager *bm,
+		    dm_block_t nr_blocks, int create)
+{
+	int r;
+	struct dm_space_map *sm, *data_sm;
+	struct dm_transaction_manager *tm;
+	struct dm_block *sblock;
+
+	if (create) {
+		r = dm_tm_create_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
+					 &sb_validator, &tm, &sm, &sblock);
+		if (r < 0) {
+			DMERR("tm_create_with_sm failed");
+			return r;
+		}
+
+		data_sm = dm_sm_disk_create(tm, nr_blocks);
+		if (IS_ERR(data_sm)) {
+			DMERR("sm_disk_create failed");
+			dm_tm_unlock(tm, sblock);
+			r = PTR_ERR(data_sm);
+			goto bad;
+		}
+	} else {
+		struct thin_disk_superblock *disk_super = NULL;
+		size_t space_map_root_offset =
+			offsetof(struct thin_disk_superblock, metadata_space_map_root);
+
+		r = dm_tm_open_with_sm(bm, THIN_SUPERBLOCK_LOCATION,
+				       &sb_validator, space_map_root_offset,
+				       SPACE_MAP_ROOT_SIZE, &tm, &sm, &sblock);
+		if (r < 0) {
+			DMERR("tm_open_with_sm failed");
+			return r;
+		}
+
+		disk_super = dm_block_data(sblock);
+		data_sm = dm_sm_disk_open(tm, disk_super->data_space_map_root,
+					  sizeof(disk_super->data_space_map_root));
+		if (IS_ERR(data_sm)) {
+			DMERR("sm_disk_open failed");
+			r = PTR_ERR(data_sm);
+			goto bad;
+		}
+	}
+
+
+	r = dm_tm_unlock(tm, sblock);
+	if (r < 0) {
+		DMERR("couldn't unlock superblock");
+		goto bad_data_sm;
+	}
+
+	pmd->bm = bm;
+	pmd->metadata_sm = sm;
+	pmd->data_sm = data_sm;
+	pmd->tm = tm;
+	pmd->nb_tm = dm_tm_create_non_blocking_clone(tm);
+	if (!pmd->nb_tm) {
+		DMERR("could not create clone tm");
+		r = -ENOMEM;
+		goto bad_data_sm;
+	}
+
+	pmd->info.tm = tm;
+	pmd->info.levels = 2;
+	pmd->info.value_type.context = pmd->data_sm;
+	pmd->info.value_type.size = sizeof(__le64);
+	pmd->info.value_type.inc = data_block_inc;
+	pmd->info.value_type.dec = data_block_dec;
+	pmd->info.value_type.equal = data_block_equal;
+
+	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
+	pmd->nb_info.tm = pmd->nb_tm;
+
+	pmd->tl_info.tm = tm;
+	pmd->tl_info.levels = 1;
+	pmd->tl_info.value_type.context = &pmd->info;
+	pmd->tl_info.value_type.size = sizeof(__le64);
+	pmd->tl_info.value_type.inc = subtree_inc;
+	pmd->tl_info.value_type.dec = subtree_dec;
+	pmd->tl_info.value_type.equal = subtree_equal;
+
+	pmd->bl_info.tm = tm;
+	pmd->bl_info.levels = 1;
+	pmd->bl_info.value_type.context = pmd->data_sm;
+	pmd->bl_info.value_type.size = sizeof(__le64);
+	pmd->bl_info.value_type.inc = data_block_inc;
+	pmd->bl_info.value_type.dec = data_block_dec;
+	pmd->bl_info.value_type.equal = data_block_equal;
+
+	pmd->details_info.tm = tm;
+	pmd->details_info.levels = 1;
+	pmd->details_info.value_type.context = NULL;
+	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
+	pmd->details_info.value_type.inc = NULL;
+	pmd->details_info.value_type.dec = NULL;
+	pmd->details_info.value_type.equal = NULL;
+
+	pmd->root = 0;
+
+	init_rwsem(&pmd->root_lock);
+	pmd->time = 0;
+	pmd->need_commit = 0;
+	pmd->details_root = 0;
+	pmd->trans_id = 0;
+	pmd->flags = 0;
+	INIT_LIST_HEAD(&pmd->thin_devices);
+
+	return 0;
+
+bad_data_sm:
+	dm_sm_destroy(data_sm);
+bad:
+	dm_tm_destroy(tm);
+	dm_sm_destroy(sm);
+
+	return r;
+}
+
+static int __begin_transaction(struct dm_pool_metadata *pmd)
+{
+	int r;
+	u32 features;
+	struct thin_disk_superblock *disk_super;
+	struct dm_block *sblock;
+
+	/*
+	 * __maybe_commit_transaction() resets these
+	 */
+	WARN_ON(pmd->need_commit);
+
+	/*
+	 * We re-read the superblock every time.  Shouldn't need to do this
+	 * really.
+	 */
+	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+			    &sb_validator, &sblock);
+	if (r)
+		return r;
+
+	disk_super = dm_block_data(sblock);
+	pmd->time = le32_to_cpu(disk_super->time);
+	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
+	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
+	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
+	pmd->flags = le32_to_cpu(disk_super->flags);
+	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
+
+	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
+	if (features) {
+		DMERR("could not access metadata due to "
+		      "unsupported optional features (%lx).",
+		      (unsigned long)features);
+		r = -EINVAL;
+		goto out;
+	}
+
+	/*
+	 * Check for read-only metadata to skip the following RDWR checks.
+	 */
+	if (get_disk_ro(pmd->bdev->bd_disk))
+		goto out;
+
+	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
+	if (features) {
+		DMERR("could not access metadata RDWR due to "
+		      "unsupported optional features (%lx).",
+		      (unsigned long)features);
+		r = -EINVAL;
+	}
+
+out:
+	dm_bm_unlock(sblock);
+	return r;
+}
+
+static int __write_changed_details(struct dm_pool_metadata *pmd)
+{
+	int r;
+	struct dm_thin_device *td, *tmp;
+	struct disk_device_details details;
+	uint64_t key;
+
+	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
+		if (!td->changed)
+			continue;
+
+		key = td->id;
+
+		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
+		details.transaction_id = cpu_to_le64(td->transaction_id);
+		details.creation_time = cpu_to_le32(td->creation_time);
+		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
+		__dm_bless_for_disk(&details);
+
+		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
+				    &key, &details, &pmd->details_root);
+		if (r)
+			return r;
+
+		if (td->open_count)
+			td->changed = 0;
+		else {
+			list_del(&td->list);
+			kfree(td);
+		}
+
+		pmd->need_commit = 1;
+	}
+
+	return 0;
+}
+
+static int __commit_transaction(struct dm_pool_metadata *pmd)
+{
+	/*
+	 * FIXME: Associated pool should be made read-only on failure.
+	 */
+	int r;
+	size_t metadata_len, data_len;
+	struct thin_disk_superblock *disk_super;
+	struct dm_block *sblock;
+
+	/*
+	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
+	 */
+	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
+
+	r = __write_changed_details(pmd);
+	if (r < 0)
+		goto out;
+
+	if (!pmd->need_commit)
+		goto out;
+
+	r = dm_sm_commit(pmd->data_sm);
+	if (r < 0)
+		goto out;
+
+	r = dm_tm_pre_commit(pmd->tm);
+	if (r < 0)
+		goto out;
+
+	r = dm_sm_root_size(pmd->metadata_sm, &metadata_len);
+	if (r < 0)
+		goto out;
+
+	r = dm_sm_root_size(pmd->data_sm, &data_len);
+	if (r < 0)
+		goto out;
+
+	r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+			     &sb_validator, &sblock);
+	if (r)
+		goto out;
+
+	disk_super = dm_block_data(sblock);
+	disk_super->time = cpu_to_le32(pmd->time);
+	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
+	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
+	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
+	disk_super->flags = cpu_to_le32(pmd->flags);
+
+	r = dm_sm_copy_root(pmd->metadata_sm, &disk_super->metadata_space_map_root,
+			    metadata_len);
+	if (r < 0)
+		goto out_locked;
+
+	r = dm_sm_copy_root(pmd->data_sm, &disk_super->data_space_map_root,
+			    data_len);
+	if (r < 0)
+		goto out_locked;
+
+	r = dm_tm_commit(pmd->tm, sblock);
+	if (!r)
+		pmd->need_commit = 0;
+
+out:
+	return r;
+
+out_locked:
+	dm_bm_unlock(sblock);
+	return r;
+}
+
+struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
+					       sector_t data_block_size)
+{
+	int r;
+	struct thin_disk_superblock *disk_super;
+	struct dm_pool_metadata *pmd;
+	sector_t bdev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
+	struct dm_block_manager *bm;
+	int create;
+	struct dm_block *sblock;
+
+	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
+	if (!pmd) {
+		DMERR("could not allocate metadata struct");
+		return ERR_PTR(-ENOMEM);
+	}
+
+	/*
+	 * Max hex locks:
+	 *  3 for btree insert +
+	 *  2 for btree lookup used within space map
+	 */
+	bm = dm_block_manager_create(bdev, THIN_METADATA_BLOCK_SIZE,
+				     THIN_METADATA_CACHE_SIZE, 5);
+	if (!bm) {
+		DMERR("could not create block manager");
+		kfree(pmd);
+		return ERR_PTR(-ENOMEM);
+	}
+
+	r = superblock_all_zeroes(bm, &create);
+	if (r) {
+		dm_block_manager_destroy(bm);
+		kfree(pmd);
+		return ERR_PTR(r);
+	}
+
+
+	r = init_pmd(pmd, bm, 0, create);
+	if (r) {
+		dm_block_manager_destroy(bm);
+		kfree(pmd);
+		return ERR_PTR(r);
+	}
+	pmd->bdev = bdev;
+
+	if (!create) {
+		r = __begin_transaction(pmd);
+		if (r < 0)
+			goto bad;
+		return pmd;
+	}
+
+	/*
+	 * Create.
+	 */
+	r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+			     &sb_validator, &sblock);
+	if (r)
+		goto bad;
+
+	if (bdev_size > THIN_METADATA_MAX_SECTORS)
+		bdev_size = THIN_METADATA_MAX_SECTORS;
+
+	disk_super = dm_block_data(sblock);
+	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
+	disk_super->version = cpu_to_le32(THIN_VERSION);
+	disk_super->time = 0;
+	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE >> SECTOR_SHIFT);
+	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
+	disk_super->data_block_size = cpu_to_le32(data_block_size);
+
+	r = dm_bm_unlock(sblock);
+	if (r < 0)
+		goto bad;
+
+	r = dm_btree_empty(&pmd->info, &pmd->root);
+	if (r < 0)
+		goto bad;
+
+	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
+	if (r < 0) {
+		DMERR("couldn't create devices root");
+		goto bad;
+	}
+
+	pmd->flags = 0;
+	pmd->need_commit = 1;
+	r = dm_pool_commit_metadata(pmd);
+	if (r < 0) {
+		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
+		      __func__, r);
+		goto bad;
+	}
+
+	return pmd;
+
+bad:
+	if (dm_pool_metadata_close(pmd) < 0)
+		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
+	return ERR_PTR(r);
+}
+
+int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
+{
+	int r;
+	unsigned open_devices = 0;
+	struct dm_thin_device *td, *tmp;
+
+	down_read(&pmd->root_lock);
+	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
+		if (td->open_count)
+			open_devices++;
+		else {
+			list_del(&td->list);
+			kfree(td);
+		}
+	}
+	up_read(&pmd->root_lock);
+
+	if (open_devices) {
+		DMERR("attempt to close pmd when %u device(s) are still open",
+		       open_devices);
+		return -EBUSY;
+	}
+
+	r = __commit_transaction(pmd);
+	if (r < 0)
+		DMWARN("%s: __commit_transaction() failed, error = %d",
+		       __func__, r);
+
+	dm_tm_destroy(pmd->tm);
+	dm_tm_destroy(pmd->nb_tm);
+	dm_block_manager_destroy(pmd->bm);
+	dm_sm_destroy(pmd->metadata_sm);
+	dm_sm_destroy(pmd->data_sm);
+	kfree(pmd);
+
+	return 0;
+}
+
+/*
+ * __open_device: Returns @td corresponding to device with id @dev,
+ * creating it if @create is set and incrementing @td->open_count.
+ * On failure, @td is undefined.
+ */
+static int __open_device(struct dm_pool_metadata *pmd,
+			 dm_thin_id dev, int create,
+			 struct dm_thin_device **td)
+{
+	int r, changed = 0;
+	struct dm_thin_device *td2;
+	uint64_t key = dev;
+	struct disk_device_details details_le;
+
+	/*
+	 * If the device is already open, return it.
+	 */
+	list_for_each_entry(td2, &pmd->thin_devices, list)
+		if (td2->id == dev) {
+			/*
+			 * May not create an already-open device.
+			 */
+			if (create)
+				return -EEXIST;
+
+			td2->open_count++;
+			*td = td2;
+			return 0;
+		}
+
+	/*
+	 * Check the device exists.
+	 */
+	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
+			    &key, &details_le);
+	if (r) {
+		if (r != -ENODATA || !create)
+			return r;
+
+		/*
+		 * Create new device.
+		 */
+		changed = 1;
+		details_le.mapped_blocks = 0;
+		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
+		details_le.creation_time = cpu_to_le32(pmd->time);
+		details_le.snapshotted_time = cpu_to_le32(pmd->time);
+	}
+
+	*td = kmalloc(sizeof(**td), GFP_NOIO);
+	if (!*td)
+		return -ENOMEM;
+
+	(*td)->pmd = pmd;
+	(*td)->id = dev;
+	(*td)->open_count = 1;
+	(*td)->changed = changed;
+	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
+	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
+	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
+	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
+
+	list_add(&(*td)->list, &pmd->thin_devices);
+
+	return 0;
+}
+
+static void __close_device(struct dm_thin_device *td)
+{
+	--td->open_count;
+}
+
+static int __create_thin(struct dm_pool_metadata *pmd,
+			 dm_thin_id dev)
+{
+	int r;
+	dm_block_t dev_root;
+	uint64_t key = dev;
+	struct disk_device_details details_le;
+	struct dm_thin_device *td;
+	__le64 value;
+
+	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
+			    &key, &details_le);
+	if (!r)
+		return -EEXIST;
+
+	/*
+	 * Create an empty btree for the mappings.
+	 */
+	r = dm_btree_empty(&pmd->bl_info, &dev_root);
+	if (r)
+		return r;
+
+	/*
+	 * Insert it into the main mapping tree.
+	 */
+	value = cpu_to_le64(dev_root);
+	__dm_bless_for_disk(&value);
+	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
+	if (r) {
+		dm_btree_del(&pmd->bl_info, dev_root);
+		return r;
+	}
+
+	r = __open_device(pmd, dev, 1, &td);
+	if (r) {
+		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
+		dm_btree_del(&pmd->bl_info, dev_root);
+		return r;
+	}
+	__close_device(td);
+
+	return r;
+}
+
+int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
+{
+	int r;
+
+	down_write(&pmd->root_lock);
+	r = __create_thin(pmd, dev);
+	up_write(&pmd->root_lock);
+
+	return r;
+}
+
+static int __set_snapshot_details(struct dm_pool_metadata *pmd,
+				  struct dm_thin_device *snap,
+				  dm_thin_id origin, uint32_t time)
+{
+	int r;
+	struct dm_thin_device *td;
+
+	r = __open_device(pmd, origin, 0, &td);
+	if (r)
+		return r;
+
+	td->changed = 1;
+	td->snapshotted_time = time;
+
+	snap->mapped_blocks = td->mapped_blocks;
+	snap->snapshotted_time = time;
+	__close_device(td);
+
+	return 0;
+}
+
+static int __create_snap(struct dm_pool_metadata *pmd,
+			 dm_thin_id dev, dm_thin_id origin)
+{
+	int r;
+	dm_block_t origin_root;
+	uint64_t key = origin, dev_key = dev;
+	struct dm_thin_device *td;
+	struct disk_device_details details_le;
+	__le64 value;
+
+	/* check this device is unused */
+	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
+			    &dev_key, &details_le);
+	if (!r)
+		return -EEXIST;
+
+	/* find the mapping tree for the origin */
+	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
+	if (r)
+		return r;
+	origin_root = le64_to_cpu(value);
+
+	/* clone the origin, an inc will do */
+	dm_tm_inc(pmd->tm, origin_root);
+
+	/* insert into the main mapping tree */
+	value = cpu_to_le64(origin_root);
+	__dm_bless_for_disk(&value);
+	key = dev;
+	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
+	if (r) {
+		dm_tm_dec(pmd->tm, origin_root);
+		return r;
+	}
+
+	pmd->time++;
+
+	r = __open_device(pmd, dev, 1, &td);
+	if (r)
+		goto bad;
+
+	r = __set_snapshot_details(pmd, td, origin, pmd->time);
+	__close_device(td);
+
+	if (r)
+		goto bad;
+
+	return 0;
+
+bad:
+	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
+	dm_btree_remove(&pmd->details_info, pmd->details_root,
+			&key, &pmd->details_root);
+	return r;
+}
+
+int dm_pool_create_snap(struct dm_pool_metadata *pmd,
+				 dm_thin_id dev,
+				 dm_thin_id origin)
+{
+	int r;
+
+	down_write(&pmd->root_lock);
+	r = __create_snap(pmd, dev, origin);
+	up_write(&pmd->root_lock);
+
+	return r;
+}
+
+static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
+{
+	int r;
+	uint64_t key = dev;
+	struct dm_thin_device *td;
+
+	/* TODO: failure should mark the transaction invalid */
+	r = __open_device(pmd, dev, 0, &td);
+	if (r)
+		return r;
+
+	if (td->open_count > 1) {
+		__close_device(td);
+		return -EBUSY;
+	}
+
+	list_del(&td->list);
+	kfree(td);
+	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
+			    &key, &pmd->details_root);
+	if (r)
+		return r;
+
+	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
+	if (r)
+		return r;
+
+	pmd->need_commit = 1;
+
+	return 0;
+}
+
+int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
+			       dm_thin_id dev)
+{
+	int r;
+
+	down_write(&pmd->root_lock);
+	r = __delete_device(pmd, dev);
+	up_write(&pmd->root_lock);
+
+	return r;
+}
+
+int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
+					uint64_t current_id,
+					uint64_t new_id)
+{
+	down_write(&pmd->root_lock);
+	if (pmd->trans_id != current_id) {
+		up_write(&pmd->root_lock);
+		DMERR("mismatched transaction id");
+		return -EINVAL;
+	}
+
+	pmd->trans_id = new_id;
+	pmd->need_commit = 1;
+	up_write(&pmd->root_lock);
+
+	return 0;
+}
+
+int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
+					uint64_t *result)
+{
+	down_read(&pmd->root_lock);
+	*result = pmd->trans_id;
+	up_read(&pmd->root_lock);
+
+	return 0;
+}
+
+static int __get_held_metadata_root(struct dm_pool_metadata *pmd,
+				    dm_block_t *result)
+{
+	int r;
+	struct thin_disk_superblock *disk_super;
+	struct dm_block *sblock;
+
+	r = dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
+			     &sb_validator, &sblock);
+	if (r)
+		return r;
+
+	disk_super = dm_block_data(sblock);
+	*result = le64_to_cpu(disk_super->held_root);
+
+	return dm_bm_unlock(sblock);
+}
+
+int dm_pool_get_held_metadata_root(struct dm_pool_metadata *pmd,
+				   dm_block_t *result)
+{
+	int r;
+
+	down_read(&pmd->root_lock);
+	r = __get_held_metadata_root(pmd, result);
+	up_read(&pmd->root_lock);
+
+	return r;
+}
+
+int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
+			     struct dm_thin_device **td)
+{
+	int r;
+
+	down_write(&pmd->root_lock);
+	r = __open_device(pmd, dev, 0, td);
+	up_write(&pmd->root_lock);
+
+	return r;
+}
+
+int dm_pool_close_thin_device(struct dm_thin_device *td)
+{
+	down_write(&td->pmd->root_lock);
+	__close_device(td);
+	up_write(&td->pmd->root_lock);
+
+	return 0;
+}
+
+dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
+{
+	return td->id;
+}
+
+static int __snapshotted_since(struct dm_thin_device *td, uint32_t time)
+{
+	return td->snapshotted_time > time;
+}
+
+int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
+		       int can_block, struct dm_thin_lookup_result *result)
+{
+	int r;
+	uint64_t block_time = 0;
+	__le64 value;
+	struct dm_pool_metadata *pmd = td->pmd;
+	dm_block_t keys[2] = { td->id, block };
+
+	if (can_block) {
+		down_read(&pmd->root_lock);
+		r = dm_btree_lookup(&pmd->info, pmd->root, keys, &value);
+		if (!r)
+			block_time = le64_to_cpu(value);
+		up_read(&pmd->root_lock);
+
+	} else if (down_read_trylock(&pmd->root_lock)) {
+		r = dm_btree_lookup(&pmd->nb_info, pmd->root, keys, &value);
+		if (!r)
+			block_time = le64_to_cpu(value);
+		up_read(&pmd->root_lock);
+
+	} else
+		return -EWOULDBLOCK;
+
+	if (!r) {
+		dm_block_t exception_block;
+		uint32_t exception_time;
+		unpack_block_time(block_time, &exception_block,
+				  &exception_time);
+		result->block = exception_block;
+		result->shared = __snapshotted_since(td, exception_time);
+	}
+
+	return r;
+}
+
+static int __insert(struct dm_thin_device *td, dm_block_t block,
+		    dm_block_t data_block)
+{
+	int r, inserted;
+	__le64 value;
+	struct dm_pool_metadata *pmd = td->pmd;
+	dm_block_t keys[2] = { td->id, block };
+
+	pmd->need_commit = 1;
+	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
+	__dm_bless_for_disk(&value);
+
+	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
+				   &pmd->root, &inserted);
+	if (r)
+		return r;
+
+	if (inserted) {
+		td->mapped_blocks++;
+		td->changed = 1;
+	}
+
+	return 0;
+}
+
+int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
+			 dm_block_t data_block)
+{
+	int r;
+
+	down_write(&td->pmd->root_lock);
+	r = __insert(td, block, data_block);
+	up_write(&td->pmd->root_lock);
+
+	return r;
+}
+
+static int __remove(struct dm_thin_device *td, dm_block_t block)
+{
+	int r;
+	struct dm_pool_metadata *pmd = td->pmd;
+	dm_block_t keys[2] = { td->id, block };
+
+	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
+	if (r)
+		return r;
+
+	td->mapped_blocks--;
+	td->changed = 1;
+	pmd->need_commit = 1;
+
+	return 0;
+}
+
+int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
+{
+	int r;
+
+	down_write(&td->pmd->root_lock);
+	r = __remove(td, block);
+	up_write(&td->pmd->root_lock);
+
+	return r;
+}
+
+int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
+{
+	int r;
+
+	down_write(&pmd->root_lock);
+
+	r = dm_sm_new_block(pmd->data_sm, result);
+	pmd->need_commit = 1;
+
+	up_write(&pmd->root_lock);
+
+	return r;
+}
+
+int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
+{
+	int r;
+
+	down_write(&pmd->root_lock);
+
+	r = __commit_transaction(pmd);
+	if (r <= 0)
+		goto out;
+
+	/*
+	 * Open the next transaction.
+	 */
+	r = __begin_transaction(pmd);
+out:
+	up_write(&pmd->root_lock);
+	return r;
+}
+
+int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
+{
+	int r;
+
+	down_read(&pmd->root_lock);
+	r = dm_sm_get_nr_free(pmd->data_sm, result);
+	up_read(&pmd->root_lock);
+
+	return r;
+}
+
+int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
+					  dm_block_t *result)
+{
+	int r;
+
+	down_read(&pmd->root_lock);
+	r = dm_sm_get_nr_free(pmd->metadata_sm, result);
+	up_read(&pmd->root_lock);
+
+	return r;
+}
+
+int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
+				  dm_block_t *result)
+{
+	int r;
+
+	down_read(&pmd->root_lock);
+	r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
+	up_read(&pmd->root_lock);
+
+	return r;
+}
+
+int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result)
+{
+	down_read(&pmd->root_lock);
+	*result = pmd->data_block_size;
+	up_read(&pmd->root_lock);
+
+	return 0;
+}
+
+int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
+{
+	int r;
+
+	down_read(&pmd->root_lock);
+	r = dm_sm_get_nr_blocks(pmd->data_sm, result);
+	up_read(&pmd->root_lock);
+
+	return r;
+}
+
+int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
+{
+	struct dm_pool_metadata *pmd = td->pmd;
+
+	down_read(&pmd->root_lock);
+	*result = td->mapped_blocks;
+	up_read(&pmd->root_lock);
+
+	return 0;
+}
+
+static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
+{
+	int r;
+	__le64 value_le;
+	dm_block_t thin_root;
+	struct dm_pool_metadata *pmd = td->pmd;
+
+	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
+	if (r)
+		return r;
+
+	thin_root = le64_to_cpu(value_le);
+
+	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
+}
+
+int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
+				     dm_block_t *result)
+{
+	int r;
+	struct dm_pool_metadata *pmd = td->pmd;
+
+	down_read(&pmd->root_lock);
+	r = __highest_block(td, result);
+	up_read(&pmd->root_lock);
+
+	return r;
+}
+
+static int __resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
+{
+	int r;
+	dm_block_t old_count;
+
+	r = dm_sm_get_nr_blocks(pmd->data_sm, &old_count);
+	if (r)
+		return r;
+
+	if (new_count == old_count)
+		return 0;
+
+	if (new_count < old_count) {
+		DMERR("cannot reduce size of data device");
+		return -EINVAL;
+	}
+
+	r = dm_sm_extend(pmd->data_sm, new_count - old_count);
+	if (!r)
+		pmd->need_commit = 1;
+
+	return r;
+}
+
+int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
+{
+	int r;
+
+	down_write(&pmd->root_lock);
+	r = __resize_data_dev(pmd, new_count);
+	up_write(&pmd->root_lock);
+
+	return r;
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-thin-metadata.h b/ap/os/linux/linux-3.4.x/drivers/md/dm-thin-metadata.h
new file mode 100644
index 0000000..ed4725e
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-thin-metadata.h
@@ -0,0 +1,169 @@
+/*
+ * Copyright (C) 2010-2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_THIN_METADATA_H
+#define DM_THIN_METADATA_H
+
+#include "persistent-data/dm-block-manager.h"
+
+#define THIN_METADATA_BLOCK_SIZE 4096
+
+/*
+ * The metadata device is currently limited in size.
+ *
+ * We have one block of index, which can hold 255 index entries.  Each
+ * index entry contains allocation info about 16k metadata blocks.
+ */
+#define THIN_METADATA_MAX_SECTORS (255 * (1 << 14) * (THIN_METADATA_BLOCK_SIZE / (1 << SECTOR_SHIFT)))
+
+/*
+ * A metadata device larger than 16GB triggers a warning.
+ */
+#define THIN_METADATA_MAX_SECTORS_WARNING (16 * (1024 * 1024 * 1024 >> SECTOR_SHIFT))
+
+/*----------------------------------------------------------------*/
+
+struct dm_pool_metadata;
+struct dm_thin_device;
+
+/*
+ * Device identifier
+ */
+typedef uint64_t dm_thin_id;
+
+/*
+ * Reopens or creates a new, empty metadata volume.
+ */
+struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
+					       sector_t data_block_size);
+
+int dm_pool_metadata_close(struct dm_pool_metadata *pmd);
+
+/*
+ * Compat feature flags.  Any incompat flags beyond the ones
+ * specified below will prevent use of the thin metadata.
+ */
+#define THIN_FEATURE_COMPAT_SUPP	  0UL
+#define THIN_FEATURE_COMPAT_RO_SUPP	  0UL
+#define THIN_FEATURE_INCOMPAT_SUPP	  0UL
+
+/*
+ * Device creation/deletion.
+ */
+int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev);
+
+/*
+ * An internal snapshot.
+ *
+ * You can only snapshot a quiesced origin i.e. one that is either
+ * suspended or not instanced at all.
+ */
+int dm_pool_create_snap(struct dm_pool_metadata *pmd, dm_thin_id dev,
+			dm_thin_id origin);
+
+/*
+ * Deletes a virtual device from the metadata.  It _is_ safe to call this
+ * when that device is open.  Operations on that device will just start
+ * failing.  You still need to call close() on the device.
+ */
+int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
+			       dm_thin_id dev);
+
+/*
+ * Commits _all_ metadata changes: device creation, deletion, mapping
+ * updates.
+ */
+int dm_pool_commit_metadata(struct dm_pool_metadata *pmd);
+
+/*
+ * Set/get userspace transaction id.
+ */
+int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
+					uint64_t current_id,
+					uint64_t new_id);
+
+int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
+					uint64_t *result);
+
+/*
+ * Hold/get root for userspace transaction.
+ */
+int dm_pool_hold_metadata_root(struct dm_pool_metadata *pmd);
+
+int dm_pool_get_held_metadata_root(struct dm_pool_metadata *pmd,
+				   dm_block_t *result);
+
+/*
+ * Actions on a single virtual device.
+ */
+
+/*
+ * Opening the same device more than once will fail with -EBUSY.
+ */
+int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
+			     struct dm_thin_device **td);
+
+int dm_pool_close_thin_device(struct dm_thin_device *td);
+
+dm_thin_id dm_thin_dev_id(struct dm_thin_device *td);
+
+struct dm_thin_lookup_result {
+	dm_block_t block;
+	int shared;
+};
+
+/*
+ * Returns:
+ *   -EWOULDBLOCK iff @can_block is set and would block.
+ *   -ENODATA iff that mapping is not present.
+ *   0 success
+ */
+int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
+		       int can_block, struct dm_thin_lookup_result *result);
+
+/*
+ * Obtain an unused block.
+ */
+int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result);
+
+/*
+ * Insert or remove block.
+ */
+int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
+			 dm_block_t data_block);
+
+int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block);
+
+/*
+ * Queries.
+ */
+int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
+				     dm_block_t *highest_mapped);
+
+int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result);
+
+int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd,
+				 dm_block_t *result);
+
+int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
+					  dm_block_t *result);
+
+int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
+				  dm_block_t *result);
+
+int dm_pool_get_data_block_size(struct dm_pool_metadata *pmd, sector_t *result);
+
+int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result);
+
+/*
+ * Returns -ENOSPC if the new size is too small and already allocated
+ * blocks would be lost.
+ */
+int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_size);
+
+/*----------------------------------------------------------------*/
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-thin.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-thin.c
new file mode 100644
index 0000000..e811e44
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-thin.c
@@ -0,0 +1,2797 @@
+/*
+ * Copyright (C) 2011 Red Hat UK.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-thin-metadata.h"
+
+#include <linux/device-mapper.h>
+#include <linux/dm-io.h>
+#include <linux/dm-kcopyd.h>
+#include <linux/list.h>
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+
+#define	DM_MSG_PREFIX	"thin"
+
+/*
+ * Tunable constants
+ */
+#define ENDIO_HOOK_POOL_SIZE 1024
+#define DEFERRED_SET_SIZE 64
+#define MAPPING_POOL_SIZE 1024
+#define PRISON_CELLS 1024
+#define COMMIT_PERIOD HZ
+
+/*
+ * The block size of the device holding pool data must be
+ * between 64KB and 1GB.
+ */
+#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
+#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
+
+/*
+ * Device id is restricted to 24 bits.
+ */
+#define MAX_DEV_ID ((1 << 24) - 1)
+
+/*
+ * How do we handle breaking sharing of data blocks?
+ * =================================================
+ *
+ * We use a standard copy-on-write btree to store the mappings for the
+ * devices (note I'm talking about copy-on-write of the metadata here, not
+ * the data).  When you take an internal snapshot you clone the root node
+ * of the origin btree.  After this there is no concept of an origin or a
+ * snapshot.  They are just two device trees that happen to point to the
+ * same data blocks.
+ *
+ * When we get a write in we decide if it's to a shared data block using
+ * some timestamp magic.  If it is, we have to break sharing.
+ *
+ * Let's say we write to a shared block in what was the origin.  The
+ * steps are:
+ *
+ * i) plug io further to this physical block. (see bio_prison code).
+ *
+ * ii) quiesce any read io to that shared data block.  Obviously
+ * including all devices that share this block.  (see deferred_set code)
+ *
+ * iii) copy the data block to a newly allocate block.  This step can be
+ * missed out if the io covers the block. (schedule_copy).
+ *
+ * iv) insert the new mapping into the origin's btree
+ * (process_prepared_mapping).  This act of inserting breaks some
+ * sharing of btree nodes between the two devices.  Breaking sharing only
+ * effects the btree of that specific device.  Btrees for the other
+ * devices that share the block never change.  The btree for the origin
+ * device as it was after the last commit is untouched, ie. we're using
+ * persistent data structures in the functional programming sense.
+ *
+ * v) unplug io to this physical block, including the io that triggered
+ * the breaking of sharing.
+ *
+ * Steps (ii) and (iii) occur in parallel.
+ *
+ * The metadata _doesn't_ need to be committed before the io continues.  We
+ * get away with this because the io is always written to a _new_ block.
+ * If there's a crash, then:
+ *
+ * - The origin mapping will point to the old origin block (the shared
+ * one).  This will contain the data as it was before the io that triggered
+ * the breaking of sharing came in.
+ *
+ * - The snap mapping still points to the old block.  As it would after
+ * the commit.
+ *
+ * The downside of this scheme is the timestamp magic isn't perfect, and
+ * will continue to think that data block in the snapshot device is shared
+ * even after the write to the origin has broken sharing.  I suspect data
+ * blocks will typically be shared by many different devices, so we're
+ * breaking sharing n + 1 times, rather than n, where n is the number of
+ * devices that reference this data block.  At the moment I think the
+ * benefits far, far outweigh the disadvantages.
+ */
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Sometimes we can't deal with a bio straight away.  We put them in prison
+ * where they can't cause any mischief.  Bios are put in a cell identified
+ * by a key, multiple bios can be in the same cell.  When the cell is
+ * subsequently unlocked the bios become available.
+ */
+struct bio_prison;
+
+struct cell_key {
+	int virtual;
+	dm_thin_id dev;
+	dm_block_t block;
+};
+
+struct cell {
+	struct hlist_node list;
+	struct bio_prison *prison;
+	struct cell_key key;
+	struct bio *holder;
+	struct bio_list bios;
+};
+
+struct bio_prison {
+	spinlock_t lock;
+	mempool_t *cell_pool;
+
+	unsigned nr_buckets;
+	unsigned hash_mask;
+	struct hlist_head *cells;
+};
+
+static uint32_t calc_nr_buckets(unsigned nr_cells)
+{
+	uint32_t n = 128;
+
+	nr_cells /= 4;
+	nr_cells = min(nr_cells, 8192u);
+
+	while (n < nr_cells)
+		n <<= 1;
+
+	return n;
+}
+
+/*
+ * @nr_cells should be the number of cells you want in use _concurrently_.
+ * Don't confuse it with the number of distinct keys.
+ */
+static struct bio_prison *prison_create(unsigned nr_cells)
+{
+	unsigned i;
+	uint32_t nr_buckets = calc_nr_buckets(nr_cells);
+	size_t len = sizeof(struct bio_prison) +
+		(sizeof(struct hlist_head) * nr_buckets);
+	struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
+
+	if (!prison)
+		return NULL;
+
+	spin_lock_init(&prison->lock);
+	prison->cell_pool = mempool_create_kmalloc_pool(nr_cells,
+							sizeof(struct cell));
+	if (!prison->cell_pool) {
+		kfree(prison);
+		return NULL;
+	}
+
+	prison->nr_buckets = nr_buckets;
+	prison->hash_mask = nr_buckets - 1;
+	prison->cells = (struct hlist_head *) (prison + 1);
+	for (i = 0; i < nr_buckets; i++)
+		INIT_HLIST_HEAD(prison->cells + i);
+
+	return prison;
+}
+
+static void prison_destroy(struct bio_prison *prison)
+{
+	mempool_destroy(prison->cell_pool);
+	kfree(prison);
+}
+
+static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
+{
+	const unsigned long BIG_PRIME = 4294967291UL;
+	uint64_t hash = key->block * BIG_PRIME;
+
+	return (uint32_t) (hash & prison->hash_mask);
+}
+
+static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
+{
+	       return (lhs->virtual == rhs->virtual) &&
+		       (lhs->dev == rhs->dev) &&
+		       (lhs->block == rhs->block);
+}
+
+static struct cell *__search_bucket(struct hlist_head *bucket,
+				    struct cell_key *key)
+{
+	struct cell *cell;
+	struct hlist_node *tmp;
+
+	hlist_for_each_entry(cell, tmp, bucket, list)
+		if (keys_equal(&cell->key, key))
+			return cell;
+
+	return NULL;
+}
+
+/*
+ * This may block if a new cell needs allocating.  You must ensure that
+ * cells will be unlocked even if the calling thread is blocked.
+ *
+ * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
+ */
+static int bio_detain(struct bio_prison *prison, struct cell_key *key,
+		      struct bio *inmate, struct cell **ref)
+{
+	int r = 1;
+	unsigned long flags;
+	uint32_t hash = hash_key(prison, key);
+	struct cell *cell, *cell2;
+
+	BUG_ON(hash > prison->nr_buckets);
+
+	spin_lock_irqsave(&prison->lock, flags);
+
+	cell = __search_bucket(prison->cells + hash, key);
+	if (cell) {
+		bio_list_add(&cell->bios, inmate);
+		goto out;
+	}
+
+	/*
+	 * Allocate a new cell
+	 */
+	spin_unlock_irqrestore(&prison->lock, flags);
+	cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
+	spin_lock_irqsave(&prison->lock, flags);
+
+	/*
+	 * We've been unlocked, so we have to double check that
+	 * nobody else has inserted this cell in the meantime.
+	 */
+	cell = __search_bucket(prison->cells + hash, key);
+	if (cell) {
+		mempool_free(cell2, prison->cell_pool);
+		bio_list_add(&cell->bios, inmate);
+		goto out;
+	}
+
+	/*
+	 * Use new cell.
+	 */
+	cell = cell2;
+
+	cell->prison = prison;
+	memcpy(&cell->key, key, sizeof(cell->key));
+	cell->holder = inmate;
+	bio_list_init(&cell->bios);
+	hlist_add_head(&cell->list, prison->cells + hash);
+
+	r = 0;
+
+out:
+	spin_unlock_irqrestore(&prison->lock, flags);
+
+	*ref = cell;
+
+	return r;
+}
+
+/*
+ * @inmates must have been initialised prior to this call
+ */
+static void __cell_release(struct cell *cell, struct bio_list *inmates)
+{
+	struct bio_prison *prison = cell->prison;
+
+	hlist_del(&cell->list);
+
+	if (inmates) {
+		bio_list_add(inmates, cell->holder);
+		bio_list_merge(inmates, &cell->bios);
+	}
+
+	mempool_free(cell, prison->cell_pool);
+}
+
+static void cell_release(struct cell *cell, struct bio_list *bios)
+{
+	unsigned long flags;
+	struct bio_prison *prison = cell->prison;
+
+	spin_lock_irqsave(&prison->lock, flags);
+	__cell_release(cell, bios);
+	spin_unlock_irqrestore(&prison->lock, flags);
+}
+
+/*
+ * There are a couple of places where we put a bio into a cell briefly
+ * before taking it out again.  In these situations we know that no other
+ * bio may be in the cell.  This function releases the cell, and also does
+ * a sanity check.
+ */
+static void __cell_release_singleton(struct cell *cell, struct bio *bio)
+{
+	BUG_ON(cell->holder != bio);
+	BUG_ON(!bio_list_empty(&cell->bios));
+
+	__cell_release(cell, NULL);
+}
+
+static void cell_release_singleton(struct cell *cell, struct bio *bio)
+{
+	unsigned long flags;
+	struct bio_prison *prison = cell->prison;
+
+	spin_lock_irqsave(&prison->lock, flags);
+	__cell_release_singleton(cell, bio);
+	spin_unlock_irqrestore(&prison->lock, flags);
+}
+
+/*
+ * Sometimes we don't want the holder, just the additional bios.
+ */
+static void __cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
+{
+	struct bio_prison *prison = cell->prison;
+
+	hlist_del(&cell->list);
+	bio_list_merge(inmates, &cell->bios);
+
+	mempool_free(cell, prison->cell_pool);
+}
+
+static void cell_release_no_holder(struct cell *cell, struct bio_list *inmates)
+{
+	unsigned long flags;
+	struct bio_prison *prison = cell->prison;
+
+	spin_lock_irqsave(&prison->lock, flags);
+	__cell_release_no_holder(cell, inmates);
+	spin_unlock_irqrestore(&prison->lock, flags);
+}
+
+static void cell_error(struct cell *cell)
+{
+	struct bio_prison *prison = cell->prison;
+	struct bio_list bios;
+	struct bio *bio;
+	unsigned long flags;
+
+	bio_list_init(&bios);
+
+	spin_lock_irqsave(&prison->lock, flags);
+	__cell_release(cell, &bios);
+	spin_unlock_irqrestore(&prison->lock, flags);
+
+	while ((bio = bio_list_pop(&bios)))
+		bio_io_error(bio);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We use the deferred set to keep track of pending reads to shared blocks.
+ * We do this to ensure the new mapping caused by a write isn't performed
+ * until these prior reads have completed.  Otherwise the insertion of the
+ * new mapping could free the old block that the read bios are mapped to.
+ */
+
+struct deferred_set;
+struct deferred_entry {
+	struct deferred_set *ds;
+	unsigned count;
+	struct list_head work_items;
+};
+
+struct deferred_set {
+	spinlock_t lock;
+	unsigned current_entry;
+	unsigned sweeper;
+	struct deferred_entry entries[DEFERRED_SET_SIZE];
+};
+
+static void ds_init(struct deferred_set *ds)
+{
+	int i;
+
+	spin_lock_init(&ds->lock);
+	ds->current_entry = 0;
+	ds->sweeper = 0;
+	for (i = 0; i < DEFERRED_SET_SIZE; i++) {
+		ds->entries[i].ds = ds;
+		ds->entries[i].count = 0;
+		INIT_LIST_HEAD(&ds->entries[i].work_items);
+	}
+}
+
+static struct deferred_entry *ds_inc(struct deferred_set *ds)
+{
+	unsigned long flags;
+	struct deferred_entry *entry;
+
+	spin_lock_irqsave(&ds->lock, flags);
+	entry = ds->entries + ds->current_entry;
+	entry->count++;
+	spin_unlock_irqrestore(&ds->lock, flags);
+
+	return entry;
+}
+
+static unsigned ds_next(unsigned index)
+{
+	return (index + 1) % DEFERRED_SET_SIZE;
+}
+
+static void __sweep(struct deferred_set *ds, struct list_head *head)
+{
+	while ((ds->sweeper != ds->current_entry) &&
+	       !ds->entries[ds->sweeper].count) {
+		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
+		ds->sweeper = ds_next(ds->sweeper);
+	}
+
+	if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
+		list_splice_init(&ds->entries[ds->sweeper].work_items, head);
+}
+
+static void ds_dec(struct deferred_entry *entry, struct list_head *head)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&entry->ds->lock, flags);
+	BUG_ON(!entry->count);
+	--entry->count;
+	__sweep(entry->ds, head);
+	spin_unlock_irqrestore(&entry->ds->lock, flags);
+}
+
+/*
+ * Returns 1 if deferred or 0 if no pending items to delay job.
+ */
+static int ds_add_work(struct deferred_set *ds, struct list_head *work)
+{
+	int r = 1;
+	unsigned long flags;
+	unsigned next_entry;
+
+	spin_lock_irqsave(&ds->lock, flags);
+	if ((ds->sweeper == ds->current_entry) &&
+	    !ds->entries[ds->current_entry].count)
+		r = 0;
+	else {
+		list_add(work, &ds->entries[ds->current_entry].work_items);
+		next_entry = ds_next(ds->current_entry);
+		if (!ds->entries[next_entry].count)
+			ds->current_entry = next_entry;
+	}
+	spin_unlock_irqrestore(&ds->lock, flags);
+
+	return r;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Key building.
+ */
+static void build_data_key(struct dm_thin_device *td,
+			   dm_block_t b, struct cell_key *key)
+{
+	key->virtual = 0;
+	key->dev = dm_thin_dev_id(td);
+	key->block = b;
+}
+
+static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
+			      struct cell_key *key)
+{
+	key->virtual = 1;
+	key->dev = dm_thin_dev_id(td);
+	key->block = b;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * A pool device ties together a metadata device and a data device.  It
+ * also provides the interface for creating and destroying internal
+ * devices.
+ */
+struct new_mapping;
+
+struct pool_features {
+	unsigned zero_new_blocks:1;
+	unsigned discard_enabled:1;
+	unsigned discard_passdown:1;
+};
+
+struct pool {
+	struct list_head list;
+	struct dm_target *ti;	/* Only set if a pool target is bound */
+
+	struct mapped_device *pool_md;
+	struct block_device *md_dev;
+	struct dm_pool_metadata *pmd;
+
+	uint32_t sectors_per_block;
+	unsigned block_shift;
+	dm_block_t offset_mask;
+	dm_block_t low_water_blocks;
+
+	struct pool_features pf;
+	unsigned low_water_triggered:1;	/* A dm event has been sent */
+	unsigned no_free_space:1;	/* A -ENOSPC warning has been issued */
+
+	struct bio_prison *prison;
+	struct dm_kcopyd_client *copier;
+
+	struct workqueue_struct *wq;
+	struct work_struct worker;
+	struct delayed_work waker;
+
+	unsigned ref_count;
+	unsigned long last_commit_jiffies;
+
+	spinlock_t lock;
+	struct bio_list deferred_bios;
+	struct bio_list deferred_flush_bios;
+	struct list_head prepared_mappings;
+	struct list_head prepared_discards;
+
+	struct bio_list retry_on_resume_list;
+
+	struct deferred_set shared_read_ds;
+	struct deferred_set all_io_ds;
+
+	struct new_mapping *next_mapping;
+	mempool_t *mapping_pool;
+	mempool_t *endio_hook_pool;
+};
+
+/*
+ * Target context for a pool.
+ */
+struct pool_c {
+	struct dm_target *ti;
+	struct pool *pool;
+	struct dm_dev *data_dev;
+	struct dm_dev *metadata_dev;
+	struct dm_target_callbacks callbacks;
+
+	dm_block_t low_water_blocks;
+	struct pool_features pf;
+};
+
+/*
+ * Target context for a thin.
+ */
+struct thin_c {
+	struct dm_dev *pool_dev;
+	struct dm_dev *origin_dev;
+	dm_thin_id dev_id;
+
+	struct pool *pool;
+	struct dm_thin_device *td;
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * A global list of pools that uses a struct mapped_device as a key.
+ */
+static struct dm_thin_pool_table {
+	struct mutex mutex;
+	struct list_head pools;
+} dm_thin_pool_table;
+
+static void pool_table_init(void)
+{
+	mutex_init(&dm_thin_pool_table.mutex);
+	INIT_LIST_HEAD(&dm_thin_pool_table.pools);
+}
+
+static void __pool_table_insert(struct pool *pool)
+{
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+	list_add(&pool->list, &dm_thin_pool_table.pools);
+}
+
+static void __pool_table_remove(struct pool *pool)
+{
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+	list_del(&pool->list);
+}
+
+static struct pool *__pool_table_lookup(struct mapped_device *md)
+{
+	struct pool *pool = NULL, *tmp;
+
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+
+	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
+		if (tmp->pool_md == md) {
+			pool = tmp;
+			break;
+		}
+	}
+
+	return pool;
+}
+
+static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
+{
+	struct pool *pool = NULL, *tmp;
+
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+
+	list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
+		if (tmp->md_dev == md_dev) {
+			pool = tmp;
+			break;
+		}
+	}
+
+	return pool;
+}
+
+/*----------------------------------------------------------------*/
+
+struct endio_hook {
+	struct thin_c *tc;
+	struct deferred_entry *shared_read_entry;
+	struct deferred_entry *all_io_entry;
+	struct new_mapping *overwrite_mapping;
+};
+
+static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
+{
+	struct bio *bio;
+	struct bio_list bios;
+
+	bio_list_init(&bios);
+	bio_list_merge(&bios, master);
+	bio_list_init(master);
+
+	while ((bio = bio_list_pop(&bios))) {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+		if (h->tc == tc)
+			bio_endio(bio, DM_ENDIO_REQUEUE);
+		else
+			bio_list_add(master, bio);
+	}
+}
+
+static void requeue_io(struct thin_c *tc)
+{
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	__requeue_bio_list(tc, &pool->deferred_bios);
+	__requeue_bio_list(tc, &pool->retry_on_resume_list);
+	spin_unlock_irqrestore(&pool->lock, flags);
+}
+
+/*
+ * This section of code contains the logic for processing a thin device's IO.
+ * Much of the code depends on pool object resources (lists, workqueues, etc)
+ * but most is exclusively called from the thin target rather than the thin-pool
+ * target.
+ */
+
+static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
+{
+	return bio->bi_sector >> tc->pool->block_shift;
+}
+
+static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
+{
+	struct pool *pool = tc->pool;
+
+	bio->bi_bdev = tc->pool_dev->bdev;
+	bio->bi_sector = (block << pool->block_shift) +
+		(bio->bi_sector & pool->offset_mask);
+}
+
+static void remap_to_origin(struct thin_c *tc, struct bio *bio)
+{
+	bio->bi_bdev = tc->origin_dev->bdev;
+}
+
+static void issue(struct thin_c *tc, struct bio *bio)
+{
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	/*
+	 * Batch together any FUA/FLUSH bios we find and then issue
+	 * a single commit for them in process_deferred_bios().
+	 */
+	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
+		spin_lock_irqsave(&pool->lock, flags);
+		bio_list_add(&pool->deferred_flush_bios, bio);
+		spin_unlock_irqrestore(&pool->lock, flags);
+	} else
+		generic_make_request(bio);
+}
+
+static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
+{
+	remap_to_origin(tc, bio);
+	issue(tc, bio);
+}
+
+static void remap_and_issue(struct thin_c *tc, struct bio *bio,
+			    dm_block_t block)
+{
+	remap(tc, bio, block);
+	issue(tc, bio);
+}
+
+/*
+ * wake_worker() is used when new work is queued and when pool_resume is
+ * ready to continue deferred IO processing.
+ */
+static void wake_worker(struct pool *pool)
+{
+	queue_work(pool->wq, &pool->worker);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Bio endio functions.
+ */
+struct new_mapping {
+	struct list_head list;
+
+	unsigned quiesced:1;
+	unsigned prepared:1;
+	unsigned pass_discard:1;
+
+	struct thin_c *tc;
+	dm_block_t virt_block;
+	dm_block_t data_block;
+	struct cell *cell, *cell2;
+	int err;
+
+	/*
+	 * If the bio covers the whole area of a block then we can avoid
+	 * zeroing or copying.  Instead this bio is hooked.  The bio will
+	 * still be in the cell, so care has to be taken to avoid issuing
+	 * the bio twice.
+	 */
+	struct bio *bio;
+	bio_end_io_t *saved_bi_end_io;
+};
+
+static void __maybe_add_mapping(struct new_mapping *m)
+{
+	struct pool *pool = m->tc->pool;
+
+	if (m->quiesced && m->prepared) {
+		list_add(&m->list, &pool->prepared_mappings);
+		wake_worker(pool);
+	}
+}
+
+static void copy_complete(int read_err, unsigned long write_err, void *context)
+{
+	unsigned long flags;
+	struct new_mapping *m = context;
+	struct pool *pool = m->tc->pool;
+
+	m->err = read_err || write_err ? -EIO : 0;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	m->prepared = 1;
+	__maybe_add_mapping(m);
+	spin_unlock_irqrestore(&pool->lock, flags);
+}
+
+static void overwrite_endio(struct bio *bio, int err)
+{
+	unsigned long flags;
+	struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+	struct new_mapping *m = h->overwrite_mapping;
+	struct pool *pool = m->tc->pool;
+
+	m->err = err;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	m->prepared = 1;
+	__maybe_add_mapping(m);
+	spin_unlock_irqrestore(&pool->lock, flags);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Workqueue.
+ */
+
+/*
+ * Prepared mapping jobs.
+ */
+
+/*
+ * This sends the bios in the cell back to the deferred_bios list.
+ */
+static void cell_defer(struct thin_c *tc, struct cell *cell,
+		       dm_block_t data_block)
+{
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	cell_release(cell, &pool->deferred_bios);
+	spin_unlock_irqrestore(&tc->pool->lock, flags);
+
+	wake_worker(pool);
+}
+
+/*
+ * Same as cell_defer above, except it omits one particular detainee,
+ * a write bio that covers the block and has already been processed.
+ */
+static void cell_defer_except(struct thin_c *tc, struct cell *cell)
+{
+	struct bio_list bios;
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	bio_list_init(&bios);
+
+	spin_lock_irqsave(&pool->lock, flags);
+	cell_release_no_holder(cell, &pool->deferred_bios);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	wake_worker(pool);
+}
+
+static void process_prepared_mapping(struct new_mapping *m)
+{
+	struct thin_c *tc = m->tc;
+	struct bio *bio;
+	int r;
+
+	bio = m->bio;
+	if (bio)
+		bio->bi_end_io = m->saved_bi_end_io;
+
+	if (m->err) {
+		cell_error(m->cell);
+		goto out;
+	}
+
+	/*
+	 * Commit the prepared block into the mapping btree.
+	 * Any I/O for this block arriving after this point will get
+	 * remapped to it directly.
+	 */
+	r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
+	if (r) {
+		DMERR("dm_thin_insert_block() failed");
+		cell_error(m->cell);
+		goto out;
+	}
+
+	/*
+	 * Release any bios held while the block was being provisioned.
+	 * If we are processing a write bio that completely covers the block,
+	 * we already processed it so can ignore it now when processing
+	 * the bios in the cell.
+	 */
+	if (bio) {
+		cell_defer_except(tc, m->cell);
+		bio_endio(bio, 0);
+	} else
+		cell_defer(tc, m->cell, m->data_block);
+
+out:
+	list_del(&m->list);
+	mempool_free(m, tc->pool->mapping_pool);
+}
+
+static void process_prepared_discard(struct new_mapping *m)
+{
+	int r;
+	struct thin_c *tc = m->tc;
+
+	r = dm_thin_remove_block(tc->td, m->virt_block);
+	if (r)
+		DMERR("dm_thin_remove_block() failed");
+
+	/*
+	 * Pass the discard down to the underlying device?
+	 */
+	if (m->pass_discard)
+		remap_and_issue(tc, m->bio, m->data_block);
+	else
+		bio_endio(m->bio, 0);
+
+	cell_defer_except(tc, m->cell);
+	cell_defer_except(tc, m->cell2);
+	mempool_free(m, tc->pool->mapping_pool);
+}
+
+static void process_prepared(struct pool *pool, struct list_head *head,
+			     void (*fn)(struct new_mapping *))
+{
+	unsigned long flags;
+	struct list_head maps;
+	struct new_mapping *m, *tmp;
+
+	INIT_LIST_HEAD(&maps);
+	spin_lock_irqsave(&pool->lock, flags);
+	list_splice_init(head, &maps);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	list_for_each_entry_safe(m, tmp, &maps, list)
+		fn(m);
+}
+
+/*
+ * Deferred bio jobs.
+ */
+static int io_overlaps_block(struct pool *pool, struct bio *bio)
+{
+	return !(bio->bi_sector & pool->offset_mask) &&
+		(bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
+
+}
+
+static int io_overwrites_block(struct pool *pool, struct bio *bio)
+{
+	return (bio_data_dir(bio) == WRITE) &&
+		io_overlaps_block(pool, bio);
+}
+
+static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
+			       bio_end_io_t *fn)
+{
+	*save = bio->bi_end_io;
+	bio->bi_end_io = fn;
+}
+
+static int ensure_next_mapping(struct pool *pool)
+{
+	if (pool->next_mapping)
+		return 0;
+
+	pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
+
+	return pool->next_mapping ? 0 : -ENOMEM;
+}
+
+static struct new_mapping *get_next_mapping(struct pool *pool)
+{
+	struct new_mapping *r = pool->next_mapping;
+
+	BUG_ON(!pool->next_mapping);
+
+	pool->next_mapping = NULL;
+
+	return r;
+}
+
+static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
+			  struct dm_dev *origin, dm_block_t data_origin,
+			  dm_block_t data_dest,
+			  struct cell *cell, struct bio *bio)
+{
+	int r;
+	struct pool *pool = tc->pool;
+	struct new_mapping *m = get_next_mapping(pool);
+
+	INIT_LIST_HEAD(&m->list);
+	m->quiesced = 0;
+	m->prepared = 0;
+	m->tc = tc;
+	m->virt_block = virt_block;
+	m->data_block = data_dest;
+	m->cell = cell;
+	m->err = 0;
+	m->bio = NULL;
+
+	if (!ds_add_work(&pool->shared_read_ds, &m->list))
+		m->quiesced = 1;
+
+	/*
+	 * IO to pool_dev remaps to the pool target's data_dev.
+	 *
+	 * If the whole block of data is being overwritten, we can issue the
+	 * bio immediately. Otherwise we use kcopyd to clone the data first.
+	 */
+	if (io_overwrites_block(pool, bio)) {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+		h->overwrite_mapping = m;
+		m->bio = bio;
+		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
+		remap_and_issue(tc, bio, data_dest);
+	} else {
+		struct dm_io_region from, to;
+
+		from.bdev = origin->bdev;
+		from.sector = data_origin * pool->sectors_per_block;
+		from.count = pool->sectors_per_block;
+
+		to.bdev = tc->pool_dev->bdev;
+		to.sector = data_dest * pool->sectors_per_block;
+		to.count = pool->sectors_per_block;
+
+		r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
+				   0, copy_complete, m);
+		if (r < 0) {
+			mempool_free(m, pool->mapping_pool);
+			DMERR("dm_kcopyd_copy() failed");
+			cell_error(cell);
+		}
+	}
+}
+
+static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
+				   dm_block_t data_origin, dm_block_t data_dest,
+				   struct cell *cell, struct bio *bio)
+{
+	schedule_copy(tc, virt_block, tc->pool_dev,
+		      data_origin, data_dest, cell, bio);
+}
+
+static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
+				   dm_block_t data_dest,
+				   struct cell *cell, struct bio *bio)
+{
+	schedule_copy(tc, virt_block, tc->origin_dev,
+		      virt_block, data_dest, cell, bio);
+}
+
+static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
+			  dm_block_t data_block, struct cell *cell,
+			  struct bio *bio)
+{
+	struct pool *pool = tc->pool;
+	struct new_mapping *m = get_next_mapping(pool);
+
+	INIT_LIST_HEAD(&m->list);
+	m->quiesced = 1;
+	m->prepared = 0;
+	m->tc = tc;
+	m->virt_block = virt_block;
+	m->data_block = data_block;
+	m->cell = cell;
+	m->err = 0;
+	m->bio = NULL;
+
+	/*
+	 * If the whole block of data is being overwritten or we are not
+	 * zeroing pre-existing data, we can issue the bio immediately.
+	 * Otherwise we use kcopyd to zero the data first.
+	 */
+	if (!pool->pf.zero_new_blocks)
+		process_prepared_mapping(m);
+
+	else if (io_overwrites_block(pool, bio)) {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+		h->overwrite_mapping = m;
+		m->bio = bio;
+		save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
+		remap_and_issue(tc, bio, data_block);
+
+	} else {
+		int r;
+		struct dm_io_region to;
+
+		to.bdev = tc->pool_dev->bdev;
+		to.sector = data_block * pool->sectors_per_block;
+		to.count = pool->sectors_per_block;
+
+		r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
+		if (r < 0) {
+			mempool_free(m, pool->mapping_pool);
+			DMERR("dm_kcopyd_zero() failed");
+			cell_error(cell);
+		}
+	}
+}
+
+static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
+{
+	int r;
+	dm_block_t free_blocks;
+	unsigned long flags;
+	struct pool *pool = tc->pool;
+
+	r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
+	if (r)
+		return r;
+
+	if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
+		DMWARN("%s: reached low water mark, sending event.",
+		       dm_device_name(pool->pool_md));
+		spin_lock_irqsave(&pool->lock, flags);
+		pool->low_water_triggered = 1;
+		spin_unlock_irqrestore(&pool->lock, flags);
+		dm_table_event(pool->ti->table);
+	}
+
+	if (!free_blocks) {
+		if (pool->no_free_space)
+			return -ENOSPC;
+		else {
+			/*
+			 * Try to commit to see if that will free up some
+			 * more space.
+			 */
+			r = dm_pool_commit_metadata(pool->pmd);
+			if (r) {
+				DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
+				      __func__, r);
+				return r;
+			}
+
+			r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
+			if (r)
+				return r;
+
+			/*
+			 * If we still have no space we set a flag to avoid
+			 * doing all this checking and return -ENOSPC.
+			 */
+			if (!free_blocks) {
+				DMWARN("%s: no free space available.",
+				       dm_device_name(pool->pool_md));
+				spin_lock_irqsave(&pool->lock, flags);
+				pool->no_free_space = 1;
+				spin_unlock_irqrestore(&pool->lock, flags);
+				return -ENOSPC;
+			}
+		}
+	}
+
+	r = dm_pool_alloc_data_block(pool->pmd, result);
+	if (r)
+		return r;
+
+	return 0;
+}
+
+/*
+ * If we have run out of space, queue bios until the device is
+ * resumed, presumably after having been reloaded with more space.
+ */
+static void retry_on_resume(struct bio *bio)
+{
+	struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+	struct thin_c *tc = h->tc;
+	struct pool *pool = tc->pool;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	bio_list_add(&pool->retry_on_resume_list, bio);
+	spin_unlock_irqrestore(&pool->lock, flags);
+}
+
+static void no_space(struct cell *cell)
+{
+	struct bio *bio;
+	struct bio_list bios;
+
+	bio_list_init(&bios);
+	cell_release(cell, &bios);
+
+	while ((bio = bio_list_pop(&bios)))
+		retry_on_resume(bio);
+}
+
+static void process_discard(struct thin_c *tc, struct bio *bio)
+{
+	int r;
+	unsigned long flags;
+	struct pool *pool = tc->pool;
+	struct cell *cell, *cell2;
+	struct cell_key key, key2;
+	dm_block_t block = get_bio_block(tc, bio);
+	struct dm_thin_lookup_result lookup_result;
+	struct new_mapping *m;
+
+	build_virtual_key(tc->td, block, &key);
+	if (bio_detain(tc->pool->prison, &key, bio, &cell))
+		return;
+
+	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
+	switch (r) {
+	case 0:
+		/*
+		 * Check nobody is fiddling with this pool block.  This can
+		 * happen if someone's in the process of breaking sharing
+		 * on this block.
+		 */
+		build_data_key(tc->td, lookup_result.block, &key2);
+		if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
+			cell_release_singleton(cell, bio);
+			break;
+		}
+
+		if (io_overlaps_block(pool, bio)) {
+			/*
+			 * IO may still be going to the destination block.  We must
+			 * quiesce before we can do the removal.
+			 */
+			m = get_next_mapping(pool);
+			m->tc = tc;
+			m->pass_discard = (!lookup_result.shared) & pool->pf.discard_passdown;
+			m->virt_block = block;
+			m->data_block = lookup_result.block;
+			m->cell = cell;
+			m->cell2 = cell2;
+			m->err = 0;
+			m->bio = bio;
+
+			if (!ds_add_work(&pool->all_io_ds, &m->list)) {
+				spin_lock_irqsave(&pool->lock, flags);
+				list_add(&m->list, &pool->prepared_discards);
+				spin_unlock_irqrestore(&pool->lock, flags);
+				wake_worker(pool);
+			}
+		} else {
+			/*
+			 * This path is hit if people are ignoring
+			 * limits->discard_granularity.  It ignores any
+			 * part of the discard that is in a subsequent
+			 * block.
+			 */
+			sector_t offset = bio->bi_sector - (block << pool->block_shift);
+			unsigned remaining = (pool->sectors_per_block - offset) << 9;
+			bio->bi_size = min(bio->bi_size, remaining);
+
+			cell_release_singleton(cell, bio);
+			cell_release_singleton(cell2, bio);
+			if ((!lookup_result.shared) && pool->pf.discard_passdown)
+				remap_and_issue(tc, bio, lookup_result.block);
+			else
+				bio_endio(bio, 0);
+		}
+		break;
+
+	case -ENODATA:
+		/*
+		 * It isn't provisioned, just forget it.
+		 */
+		cell_release_singleton(cell, bio);
+		bio_endio(bio, 0);
+		break;
+
+	default:
+		DMERR("discard: find block unexpectedly returned %d", r);
+		cell_release_singleton(cell, bio);
+		bio_io_error(bio);
+		break;
+	}
+}
+
+static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
+			  struct cell_key *key,
+			  struct dm_thin_lookup_result *lookup_result,
+			  struct cell *cell)
+{
+	int r;
+	dm_block_t data_block;
+
+	r = alloc_data_block(tc, &data_block);
+	switch (r) {
+	case 0:
+		schedule_internal_copy(tc, block, lookup_result->block,
+				       data_block, cell, bio);
+		break;
+
+	case -ENOSPC:
+		no_space(cell);
+		break;
+
+	default:
+		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
+		cell_error(cell);
+		break;
+	}
+}
+
+static void process_shared_bio(struct thin_c *tc, struct bio *bio,
+			       dm_block_t block,
+			       struct dm_thin_lookup_result *lookup_result)
+{
+	struct cell *cell;
+	struct pool *pool = tc->pool;
+	struct cell_key key;
+
+	/*
+	 * If cell is already occupied, then sharing is already in the process
+	 * of being broken so we have nothing further to do here.
+	 */
+	build_data_key(tc->td, lookup_result->block, &key);
+	if (bio_detain(pool->prison, &key, bio, &cell))
+		return;
+
+	if (bio_data_dir(bio) == WRITE)
+		break_sharing(tc, bio, block, &key, lookup_result, cell);
+	else {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+
+		h->shared_read_entry = ds_inc(&pool->shared_read_ds);
+
+		cell_release_singleton(cell, bio);
+		remap_and_issue(tc, bio, lookup_result->block);
+	}
+}
+
+static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
+			    struct cell *cell)
+{
+	int r;
+	dm_block_t data_block;
+
+	/*
+	 * Remap empty bios (flushes) immediately, without provisioning.
+	 */
+	if (!bio->bi_size) {
+		cell_release_singleton(cell, bio);
+		remap_and_issue(tc, bio, 0);
+		return;
+	}
+
+	/*
+	 * Fill read bios with zeroes and complete them immediately.
+	 */
+	if (bio_data_dir(bio) == READ) {
+		zero_fill_bio(bio);
+		cell_release_singleton(cell, bio);
+		bio_endio(bio, 0);
+		return;
+	}
+
+	r = alloc_data_block(tc, &data_block);
+	switch (r) {
+	case 0:
+		if (tc->origin_dev)
+			schedule_external_copy(tc, block, data_block, cell, bio);
+		else
+			schedule_zero(tc, block, data_block, cell, bio);
+		break;
+
+	case -ENOSPC:
+		no_space(cell);
+		break;
+
+	default:
+		DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
+		cell_error(cell);
+		break;
+	}
+}
+
+static void process_bio(struct thin_c *tc, struct bio *bio)
+{
+	int r;
+	dm_block_t block = get_bio_block(tc, bio);
+	struct cell *cell;
+	struct cell_key key;
+	struct dm_thin_lookup_result lookup_result;
+
+	/*
+	 * If cell is already occupied, then the block is already
+	 * being provisioned so we have nothing further to do here.
+	 */
+	build_virtual_key(tc->td, block, &key);
+	if (bio_detain(tc->pool->prison, &key, bio, &cell))
+		return;
+
+	r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
+	switch (r) {
+	case 0:
+		/*
+		 * We can release this cell now.  This thread is the only
+		 * one that puts bios into a cell, and we know there were
+		 * no preceding bios.
+		 */
+		/*
+		 * TODO: this will probably have to change when discard goes
+		 * back in.
+		 */
+		cell_release_singleton(cell, bio);
+
+		if (lookup_result.shared)
+			process_shared_bio(tc, bio, block, &lookup_result);
+		else
+			remap_and_issue(tc, bio, lookup_result.block);
+		break;
+
+	case -ENODATA:
+		if (bio_data_dir(bio) == READ && tc->origin_dev) {
+			cell_release_singleton(cell, bio);
+			remap_to_origin_and_issue(tc, bio);
+		} else
+			provision_block(tc, bio, block, cell);
+		break;
+
+	default:
+		DMERR("dm_thin_find_block() failed, error = %d", r);
+		cell_release_singleton(cell, bio);
+		bio_io_error(bio);
+		break;
+	}
+}
+
+static int need_commit_due_to_time(struct pool *pool)
+{
+	return jiffies < pool->last_commit_jiffies ||
+	       jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
+}
+
+static void process_deferred_bios(struct pool *pool)
+{
+	unsigned long flags;
+	struct bio *bio;
+	struct bio_list bios;
+	int r;
+
+	bio_list_init(&bios);
+
+	spin_lock_irqsave(&pool->lock, flags);
+	bio_list_merge(&bios, &pool->deferred_bios);
+	bio_list_init(&pool->deferred_bios);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	while ((bio = bio_list_pop(&bios))) {
+		struct endio_hook *h = dm_get_mapinfo(bio)->ptr;
+		struct thin_c *tc = h->tc;
+
+		/*
+		 * If we've got no free new_mapping structs, and processing
+		 * this bio might require one, we pause until there are some
+		 * prepared mappings to process.
+		 */
+		if (ensure_next_mapping(pool)) {
+			spin_lock_irqsave(&pool->lock, flags);
+			bio_list_add(&pool->deferred_bios, bio);
+			bio_list_merge(&pool->deferred_bios, &bios);
+			spin_unlock_irqrestore(&pool->lock, flags);
+			break;
+		}
+
+		if (bio->bi_rw & REQ_DISCARD)
+			process_discard(tc, bio);
+		else
+			process_bio(tc, bio);
+	}
+
+	/*
+	 * If there are any deferred flush bios, we must commit
+	 * the metadata before issuing them.
+	 */
+	bio_list_init(&bios);
+	spin_lock_irqsave(&pool->lock, flags);
+	bio_list_merge(&bios, &pool->deferred_flush_bios);
+	bio_list_init(&pool->deferred_flush_bios);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
+		return;
+
+	r = dm_pool_commit_metadata(pool->pmd);
+	if (r) {
+		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
+		      __func__, r);
+		while ((bio = bio_list_pop(&bios)))
+			bio_io_error(bio);
+		return;
+	}
+	pool->last_commit_jiffies = jiffies;
+
+	while ((bio = bio_list_pop(&bios)))
+		generic_make_request(bio);
+}
+
+static void do_worker(struct work_struct *ws)
+{
+	struct pool *pool = container_of(ws, struct pool, worker);
+
+	process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
+	process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
+	process_deferred_bios(pool);
+}
+
+/*
+ * We want to commit periodically so that not too much
+ * unwritten data builds up.
+ */
+static void do_waker(struct work_struct *ws)
+{
+	struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
+	wake_worker(pool);
+	queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Mapping functions.
+ */
+
+/*
+ * Called only while mapping a thin bio to hand it over to the workqueue.
+ */
+static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
+{
+	unsigned long flags;
+	struct pool *pool = tc->pool;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	bio_list_add(&pool->deferred_bios, bio);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	wake_worker(pool);
+}
+
+static struct endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
+{
+	struct pool *pool = tc->pool;
+	struct endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
+
+	h->tc = tc;
+	h->shared_read_entry = NULL;
+	h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
+	h->overwrite_mapping = NULL;
+
+	return h;
+}
+
+/*
+ * Non-blocking function called from the thin target's map function.
+ */
+static int thin_bio_map(struct dm_target *ti, struct bio *bio,
+			union map_info *map_context)
+{
+	int r;
+	struct thin_c *tc = ti->private;
+	dm_block_t block = get_bio_block(tc, bio);
+	struct dm_thin_device *td = tc->td;
+	struct dm_thin_lookup_result result;
+
+	map_context->ptr = thin_hook_bio(tc, bio);
+	if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
+		thin_defer_bio(tc, bio);
+		return DM_MAPIO_SUBMITTED;
+	}
+
+	r = dm_thin_find_block(td, block, 0, &result);
+
+	/*
+	 * Note that we defer readahead too.
+	 */
+	switch (r) {
+	case 0:
+		if (unlikely(result.shared)) {
+			/*
+			 * We have a race condition here between the
+			 * result.shared value returned by the lookup and
+			 * snapshot creation, which may cause new
+			 * sharing.
+			 *
+			 * To avoid this always quiesce the origin before
+			 * taking the snap.  You want to do this anyway to
+			 * ensure a consistent application view
+			 * (i.e. lockfs).
+			 *
+			 * More distant ancestors are irrelevant. The
+			 * shared flag will be set in their case.
+			 */
+			thin_defer_bio(tc, bio);
+			r = DM_MAPIO_SUBMITTED;
+		} else {
+			remap(tc, bio, result.block);
+			r = DM_MAPIO_REMAPPED;
+		}
+		break;
+
+	case -ENODATA:
+		/*
+		 * In future, the failed dm_thin_find_block above could
+		 * provide the hint to load the metadata into cache.
+		 */
+	case -EWOULDBLOCK:
+		thin_defer_bio(tc, bio);
+		r = DM_MAPIO_SUBMITTED;
+		break;
+	}
+
+	return r;
+}
+
+static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
+{
+	int r;
+	unsigned long flags;
+	struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
+
+	spin_lock_irqsave(&pt->pool->lock, flags);
+	r = !bio_list_empty(&pt->pool->retry_on_resume_list);
+	spin_unlock_irqrestore(&pt->pool->lock, flags);
+
+	if (!r) {
+		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
+		r = bdi_congested(&q->backing_dev_info, bdi_bits);
+	}
+
+	return r;
+}
+
+static void __requeue_bios(struct pool *pool)
+{
+	bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
+	bio_list_init(&pool->retry_on_resume_list);
+}
+
+/*----------------------------------------------------------------
+ * Binding of control targets to a pool object
+ *--------------------------------------------------------------*/
+static int bind_control_target(struct pool *pool, struct dm_target *ti)
+{
+	struct pool_c *pt = ti->private;
+
+	pool->ti = ti;
+	pool->low_water_blocks = pt->low_water_blocks;
+	pool->pf = pt->pf;
+
+	/*
+	 * If discard_passdown was enabled verify that the data device
+	 * supports discards.  Disable discard_passdown if not; otherwise
+	 * -EOPNOTSUPP will be returned.
+	 */
+	if (pt->pf.discard_passdown) {
+		struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
+		if (!q || !blk_queue_discard(q)) {
+			char buf[BDEVNAME_SIZE];
+			DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
+			       bdevname(pt->data_dev->bdev, buf));
+			pool->pf.discard_passdown = 0;
+		}
+	}
+
+	return 0;
+}
+
+static void unbind_control_target(struct pool *pool, struct dm_target *ti)
+{
+	if (pool->ti == ti)
+		pool->ti = NULL;
+}
+
+/*----------------------------------------------------------------
+ * Pool creation
+ *--------------------------------------------------------------*/
+/* Initialize pool features. */
+static void pool_features_init(struct pool_features *pf)
+{
+	pf->zero_new_blocks = 1;
+	pf->discard_enabled = 1;
+	pf->discard_passdown = 1;
+}
+
+static void __pool_destroy(struct pool *pool)
+{
+	__pool_table_remove(pool);
+
+	if (dm_pool_metadata_close(pool->pmd) < 0)
+		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
+
+	prison_destroy(pool->prison);
+	dm_kcopyd_client_destroy(pool->copier);
+
+	if (pool->wq)
+		destroy_workqueue(pool->wq);
+
+	if (pool->next_mapping)
+		mempool_free(pool->next_mapping, pool->mapping_pool);
+	mempool_destroy(pool->mapping_pool);
+	mempool_destroy(pool->endio_hook_pool);
+	kfree(pool);
+}
+
+static struct pool *pool_create(struct mapped_device *pool_md,
+				struct block_device *metadata_dev,
+				unsigned long block_size, char **error)
+{
+	int r;
+	void *err_p;
+	struct pool *pool;
+	struct dm_pool_metadata *pmd;
+
+	pmd = dm_pool_metadata_open(metadata_dev, block_size);
+	if (IS_ERR(pmd)) {
+		*error = "Error creating metadata object";
+		return (struct pool *)pmd;
+	}
+
+	pool = kmalloc(sizeof(*pool), GFP_KERNEL);
+	if (!pool) {
+		*error = "Error allocating memory for pool";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_pool;
+	}
+
+	pool->pmd = pmd;
+	pool->sectors_per_block = block_size;
+	pool->block_shift = ffs(block_size) - 1;
+	pool->offset_mask = block_size - 1;
+	pool->low_water_blocks = 0;
+	pool_features_init(&pool->pf);
+	pool->prison = prison_create(PRISON_CELLS);
+	if (!pool->prison) {
+		*error = "Error creating pool's bio prison";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_prison;
+	}
+
+	pool->copier = dm_kcopyd_client_create();
+	if (IS_ERR(pool->copier)) {
+		r = PTR_ERR(pool->copier);
+		*error = "Error creating pool's kcopyd client";
+		err_p = ERR_PTR(r);
+		goto bad_kcopyd_client;
+	}
+
+	/*
+	 * Create singlethreaded workqueue that will service all devices
+	 * that use this metadata.
+	 */
+	pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
+	if (!pool->wq) {
+		*error = "Error creating pool's workqueue";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_wq;
+	}
+
+	INIT_WORK(&pool->worker, do_worker);
+	INIT_DELAYED_WORK(&pool->waker, do_waker);
+	spin_lock_init(&pool->lock);
+	bio_list_init(&pool->deferred_bios);
+	bio_list_init(&pool->deferred_flush_bios);
+	INIT_LIST_HEAD(&pool->prepared_mappings);
+	INIT_LIST_HEAD(&pool->prepared_discards);
+	pool->low_water_triggered = 0;
+	pool->no_free_space = 0;
+	bio_list_init(&pool->retry_on_resume_list);
+	ds_init(&pool->shared_read_ds);
+	ds_init(&pool->all_io_ds);
+
+	pool->next_mapping = NULL;
+	pool->mapping_pool =
+		mempool_create_kmalloc_pool(MAPPING_POOL_SIZE, sizeof(struct new_mapping));
+	if (!pool->mapping_pool) {
+		*error = "Error creating pool's mapping mempool";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_mapping_pool;
+	}
+
+	pool->endio_hook_pool =
+		mempool_create_kmalloc_pool(ENDIO_HOOK_POOL_SIZE, sizeof(struct endio_hook));
+	if (!pool->endio_hook_pool) {
+		*error = "Error creating pool's endio_hook mempool";
+		err_p = ERR_PTR(-ENOMEM);
+		goto bad_endio_hook_pool;
+	}
+	pool->ref_count = 1;
+	pool->last_commit_jiffies = jiffies;
+	pool->pool_md = pool_md;
+	pool->md_dev = metadata_dev;
+	__pool_table_insert(pool);
+
+	return pool;
+
+bad_endio_hook_pool:
+	mempool_destroy(pool->mapping_pool);
+bad_mapping_pool:
+	destroy_workqueue(pool->wq);
+bad_wq:
+	dm_kcopyd_client_destroy(pool->copier);
+bad_kcopyd_client:
+	prison_destroy(pool->prison);
+bad_prison:
+	kfree(pool);
+bad_pool:
+	if (dm_pool_metadata_close(pmd))
+		DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
+
+	return err_p;
+}
+
+static void __pool_inc(struct pool *pool)
+{
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+	pool->ref_count++;
+}
+
+static void __pool_dec(struct pool *pool)
+{
+	BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
+	BUG_ON(!pool->ref_count);
+	if (!--pool->ref_count)
+		__pool_destroy(pool);
+}
+
+static struct pool *__pool_find(struct mapped_device *pool_md,
+				struct block_device *metadata_dev,
+				unsigned long block_size, char **error,
+				int *created)
+{
+	struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
+
+	if (pool) {
+		if (pool->pool_md != pool_md)
+			return ERR_PTR(-EBUSY);
+		__pool_inc(pool);
+
+	} else {
+		pool = __pool_table_lookup(pool_md);
+		if (pool) {
+			if (pool->md_dev != metadata_dev)
+				return ERR_PTR(-EINVAL);
+			__pool_inc(pool);
+
+		} else {
+			pool = pool_create(pool_md, metadata_dev, block_size, error);
+			*created = 1;
+		}
+	}
+
+	return pool;
+}
+
+/*----------------------------------------------------------------
+ * Pool target methods
+ *--------------------------------------------------------------*/
+static void pool_dtr(struct dm_target *ti)
+{
+	struct pool_c *pt = ti->private;
+
+	mutex_lock(&dm_thin_pool_table.mutex);
+
+	unbind_control_target(pt->pool, ti);
+	__pool_dec(pt->pool);
+	dm_put_device(ti, pt->metadata_dev);
+	dm_put_device(ti, pt->data_dev);
+	kfree(pt);
+
+	mutex_unlock(&dm_thin_pool_table.mutex);
+}
+
+static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
+			       struct dm_target *ti)
+{
+	int r;
+	unsigned argc;
+	const char *arg_name;
+
+	static struct dm_arg _args[] = {
+		{0, 3, "Invalid number of pool feature arguments"},
+	};
+
+	/*
+	 * No feature arguments supplied.
+	 */
+	if (!as->argc)
+		return 0;
+
+	r = dm_read_arg_group(_args, as, &argc, &ti->error);
+	if (r)
+		return -EINVAL;
+
+	while (argc && !r) {
+		arg_name = dm_shift_arg(as);
+		argc--;
+
+		if (!strcasecmp(arg_name, "skip_block_zeroing")) {
+			pf->zero_new_blocks = 0;
+			continue;
+		} else if (!strcasecmp(arg_name, "ignore_discard")) {
+			pf->discard_enabled = 0;
+			continue;
+		} else if (!strcasecmp(arg_name, "no_discard_passdown")) {
+			pf->discard_passdown = 0;
+			continue;
+		}
+
+		ti->error = "Unrecognised pool feature requested";
+		r = -EINVAL;
+	}
+
+	return r;
+}
+
+/*
+ * thin-pool <metadata dev> <data dev>
+ *	     <data block size (sectors)>
+ *	     <low water mark (blocks)>
+ *	     [<#feature args> [<arg>]*]
+ *
+ * Optional feature arguments are:
+ *	     skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
+ *	     ignore_discard: disable discard
+ *	     no_discard_passdown: don't pass discards down to the data device
+ */
+static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
+{
+	int r, pool_created = 0;
+	struct pool_c *pt;
+	struct pool *pool;
+	struct pool_features pf;
+	struct dm_arg_set as;
+	struct dm_dev *data_dev;
+	unsigned long block_size;
+	dm_block_t low_water_blocks;
+	struct dm_dev *metadata_dev;
+	sector_t metadata_dev_size;
+	char b[BDEVNAME_SIZE];
+
+	/*
+	 * FIXME Remove validation from scope of lock.
+	 */
+	mutex_lock(&dm_thin_pool_table.mutex);
+
+	if (argc < 4) {
+		ti->error = "Invalid argument count";
+		r = -EINVAL;
+		goto out_unlock;
+	}
+	as.argc = argc;
+	as.argv = argv;
+
+	r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
+	if (r) {
+		ti->error = "Error opening metadata block device";
+		goto out_unlock;
+	}
+
+	metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
+	if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
+		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
+		       bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
+
+	r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
+	if (r) {
+		ti->error = "Error getting data device";
+		goto out_metadata;
+	}
+
+	if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
+	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
+	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
+	    !is_power_of_2(block_size)) {
+		ti->error = "Invalid block size";
+		r = -EINVAL;
+		goto out;
+	}
+
+	if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
+		ti->error = "Invalid low water mark";
+		r = -EINVAL;
+		goto out;
+	}
+
+	/*
+	 * Set default pool features.
+	 */
+	pool_features_init(&pf);
+
+	dm_consume_args(&as, 4);
+	r = parse_pool_features(&as, &pf, ti);
+	if (r)
+		goto out;
+
+	pt = kzalloc(sizeof(*pt), GFP_KERNEL);
+	if (!pt) {
+		r = -ENOMEM;
+		goto out;
+	}
+
+	pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
+			   block_size, &ti->error, &pool_created);
+	if (IS_ERR(pool)) {
+		r = PTR_ERR(pool);
+		goto out_free_pt;
+	}
+
+	/*
+	 * 'pool_created' reflects whether this is the first table load.
+	 * Top level discard support is not allowed to be changed after
+	 * initial load.  This would require a pool reload to trigger thin
+	 * device changes.
+	 */
+	if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
+		ti->error = "Discard support cannot be disabled once enabled";
+		r = -EINVAL;
+		goto out_flags_changed;
+	}
+
+	pt->pool = pool;
+	pt->ti = ti;
+	pt->metadata_dev = metadata_dev;
+	pt->data_dev = data_dev;
+	pt->low_water_blocks = low_water_blocks;
+	pt->pf = pf;
+	ti->num_flush_requests = 1;
+	/*
+	 * Only need to enable discards if the pool should pass
+	 * them down to the data device.  The thin device's discard
+	 * processing will cause mappings to be removed from the btree.
+	 */
+	if (pf.discard_enabled && pf.discard_passdown) {
+		ti->num_discard_requests = 1;
+		/*
+		 * Setting 'discards_supported' circumvents the normal
+		 * stacking of discard limits (this keeps the pool and
+		 * thin devices' discard limits consistent).
+		 */
+		ti->discards_supported = 1;
+		ti->discard_zeroes_data_unsupported = 1;
+	}
+	ti->private = pt;
+
+	pt->callbacks.congested_fn = pool_is_congested;
+	dm_table_add_target_callbacks(ti->table, &pt->callbacks);
+
+	mutex_unlock(&dm_thin_pool_table.mutex);
+
+	return 0;
+
+out_flags_changed:
+	__pool_dec(pool);
+out_free_pt:
+	kfree(pt);
+out:
+	dm_put_device(ti, data_dev);
+out_metadata:
+	dm_put_device(ti, metadata_dev);
+out_unlock:
+	mutex_unlock(&dm_thin_pool_table.mutex);
+
+	return r;
+}
+
+static int pool_map(struct dm_target *ti, struct bio *bio,
+		    union map_info *map_context)
+{
+	int r;
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+	unsigned long flags;
+
+	/*
+	 * As this is a singleton target, ti->begin is always zero.
+	 */
+	spin_lock_irqsave(&pool->lock, flags);
+	bio->bi_bdev = pt->data_dev->bdev;
+	r = DM_MAPIO_REMAPPED;
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	return r;
+}
+
+/*
+ * Retrieves the number of blocks of the data device from
+ * the superblock and compares it to the actual device size,
+ * thus resizing the data device in case it has grown.
+ *
+ * This both copes with opening preallocated data devices in the ctr
+ * being followed by a resume
+ * -and-
+ * calling the resume method individually after userspace has
+ * grown the data device in reaction to a table event.
+ */
+static int pool_preresume(struct dm_target *ti)
+{
+	int r;
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+	dm_block_t data_size, sb_data_size;
+
+	/*
+	 * Take control of the pool object.
+	 */
+	r = bind_control_target(pool, ti);
+	if (r)
+		return r;
+
+	data_size = ti->len >> pool->block_shift;
+	r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
+	if (r) {
+		DMERR("failed to retrieve data device size");
+		return r;
+	}
+
+	if (data_size < sb_data_size) {
+		DMERR("pool target too small, is %llu blocks (expected %llu)",
+		      data_size, sb_data_size);
+		return -EINVAL;
+
+	} else if (data_size > sb_data_size) {
+		r = dm_pool_resize_data_dev(pool->pmd, data_size);
+		if (r) {
+			DMERR("failed to resize data device");
+			return r;
+		}
+
+		r = dm_pool_commit_metadata(pool->pmd);
+		if (r) {
+			DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
+			      __func__, r);
+			return r;
+		}
+	}
+
+	return 0;
+}
+
+static void pool_resume(struct dm_target *ti)
+{
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+	unsigned long flags;
+
+	spin_lock_irqsave(&pool->lock, flags);
+	pool->low_water_triggered = 0;
+	pool->no_free_space = 0;
+	__requeue_bios(pool);
+	spin_unlock_irqrestore(&pool->lock, flags);
+
+	do_waker(&pool->waker.work);
+}
+
+static void pool_postsuspend(struct dm_target *ti)
+{
+	int r;
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+
+	cancel_delayed_work(&pool->waker);
+	flush_workqueue(pool->wq);
+
+	r = dm_pool_commit_metadata(pool->pmd);
+	if (r < 0) {
+		DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
+		      __func__, r);
+		/* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
+	}
+}
+
+static int check_arg_count(unsigned argc, unsigned args_required)
+{
+	if (argc != args_required) {
+		DMWARN("Message received with %u arguments instead of %u.",
+		       argc, args_required);
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
+{
+	if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
+	    *dev_id <= MAX_DEV_ID)
+		return 0;
+
+	if (warning)
+		DMWARN("Message received with invalid device id: %s", arg);
+
+	return -EINVAL;
+}
+
+static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
+{
+	dm_thin_id dev_id;
+	int r;
+
+	r = check_arg_count(argc, 2);
+	if (r)
+		return r;
+
+	r = read_dev_id(argv[1], &dev_id, 1);
+	if (r)
+		return r;
+
+	r = dm_pool_create_thin(pool->pmd, dev_id);
+	if (r) {
+		DMWARN("Creation of new thinly-provisioned device with id %s failed.",
+		       argv[1]);
+		return r;
+	}
+
+	return 0;
+}
+
+static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
+{
+	dm_thin_id dev_id;
+	dm_thin_id origin_dev_id;
+	int r;
+
+	r = check_arg_count(argc, 3);
+	if (r)
+		return r;
+
+	r = read_dev_id(argv[1], &dev_id, 1);
+	if (r)
+		return r;
+
+	r = read_dev_id(argv[2], &origin_dev_id, 1);
+	if (r)
+		return r;
+
+	r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
+	if (r) {
+		DMWARN("Creation of new snapshot %s of device %s failed.",
+		       argv[1], argv[2]);
+		return r;
+	}
+
+	return 0;
+}
+
+static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
+{
+	dm_thin_id dev_id;
+	int r;
+
+	r = check_arg_count(argc, 2);
+	if (r)
+		return r;
+
+	r = read_dev_id(argv[1], &dev_id, 1);
+	if (r)
+		return r;
+
+	r = dm_pool_delete_thin_device(pool->pmd, dev_id);
+	if (r)
+		DMWARN("Deletion of thin device %s failed.", argv[1]);
+
+	return r;
+}
+
+static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
+{
+	dm_thin_id old_id, new_id;
+	int r;
+
+	r = check_arg_count(argc, 3);
+	if (r)
+		return r;
+
+	if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
+		DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
+		return -EINVAL;
+	}
+
+	if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
+		DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
+		return -EINVAL;
+	}
+
+	r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
+	if (r) {
+		DMWARN("Failed to change transaction id from %s to %s.",
+		       argv[1], argv[2]);
+		return r;
+	}
+
+	return 0;
+}
+
+/*
+ * Messages supported:
+ *   create_thin	<dev_id>
+ *   create_snap	<dev_id> <origin_id>
+ *   delete		<dev_id>
+ *   trim		<dev_id> <new_size_in_sectors>
+ *   set_transaction_id <current_trans_id> <new_trans_id>
+ */
+static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
+{
+	int r = -EINVAL;
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+
+	if (!strcasecmp(argv[0], "create_thin"))
+		r = process_create_thin_mesg(argc, argv, pool);
+
+	else if (!strcasecmp(argv[0], "create_snap"))
+		r = process_create_snap_mesg(argc, argv, pool);
+
+	else if (!strcasecmp(argv[0], "delete"))
+		r = process_delete_mesg(argc, argv, pool);
+
+	else if (!strcasecmp(argv[0], "set_transaction_id"))
+		r = process_set_transaction_id_mesg(argc, argv, pool);
+
+	else
+		DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
+
+	if (!r) {
+		r = dm_pool_commit_metadata(pool->pmd);
+		if (r)
+			DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
+			      argv[0], r);
+	}
+
+	return r;
+}
+
+/*
+ * Status line is:
+ *    <transaction id> <used metadata sectors>/<total metadata sectors>
+ *    <used data sectors>/<total data sectors> <held metadata root>
+ */
+static void pool_status(struct dm_target *ti, status_type_t type,
+			char *result, unsigned maxlen)
+{
+	int r, count;
+	unsigned sz = 0;
+	uint64_t transaction_id;
+	dm_block_t nr_free_blocks_data;
+	dm_block_t nr_free_blocks_metadata;
+	dm_block_t nr_blocks_data;
+	dm_block_t nr_blocks_metadata;
+	dm_block_t held_root;
+	char buf[BDEVNAME_SIZE];
+	char buf2[BDEVNAME_SIZE];
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
+		if (r) {
+			DMERR("dm_pool_get_metadata_transaction_id returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
+		if (r) {
+			DMERR("dm_pool_get_free_metadata_block_count returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
+		if (r) {
+			DMERR("dm_pool_get_metadata_dev_size returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
+		if (r) {
+			DMERR("dm_pool_get_free_block_count returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
+		if (r) {
+			DMERR("dm_pool_get_data_dev_size returned %d", r);
+			goto err;
+		}
+
+		r = dm_pool_get_held_metadata_root(pool->pmd, &held_root);
+		if (r) {
+			DMERR("dm_pool_get_metadata_snap returned %d", r);
+			goto err;
+		}
+
+		DMEMIT("%llu %llu/%llu %llu/%llu ",
+		       (unsigned long long)transaction_id,
+		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
+		       (unsigned long long)nr_blocks_metadata,
+		       (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
+		       (unsigned long long)nr_blocks_data);
+
+		if (held_root)
+			DMEMIT("%llu", held_root);
+		else
+			DMEMIT("-");
+
+		break;
+
+	case STATUSTYPE_TABLE:
+		DMEMIT("%s %s %lu %llu ",
+		       format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
+		       format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
+		       (unsigned long)pool->sectors_per_block,
+		       (unsigned long long)pt->low_water_blocks);
+
+		count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
+			!pt->pf.discard_passdown;
+		DMEMIT("%u ", count);
+
+		if (!pool->pf.zero_new_blocks)
+			DMEMIT("skip_block_zeroing ");
+
+		if (!pool->pf.discard_enabled)
+			DMEMIT("ignore_discard ");
+
+		if (!pt->pf.discard_passdown)
+			DMEMIT("no_discard_passdown ");
+
+		break;
+	}
+	return;
+
+err:
+	DMEMIT("Error");
+}
+
+static int pool_iterate_devices(struct dm_target *ti,
+				iterate_devices_callout_fn fn, void *data)
+{
+	struct pool_c *pt = ti->private;
+
+	return fn(ti, pt->data_dev, 0, ti->len, data);
+}
+
+static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
+		      struct bio_vec *biovec, int max_size)
+{
+	struct pool_c *pt = ti->private;
+	struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
+
+	if (!q->merge_bvec_fn)
+		return max_size;
+
+	bvm->bi_bdev = pt->data_dev->bdev;
+
+	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
+}
+
+static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
+{
+	/*
+	 * FIXME: these limits may be incompatible with the pool's data device
+	 */
+	limits->max_discard_sectors = pool->sectors_per_block;
+
+	/*
+	 * This is just a hint, and not enforced.  We have to cope with
+	 * bios that overlap 2 blocks.
+	 */
+	limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
+}
+
+static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+	struct pool_c *pt = ti->private;
+	struct pool *pool = pt->pool;
+
+	blk_limits_io_min(limits, 0);
+	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
+	if (pool->pf.discard_enabled)
+		set_discard_limits(pool, limits);
+}
+
+static struct target_type pool_target = {
+	.name = "thin-pool",
+	.features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
+		    DM_TARGET_IMMUTABLE,
+	.version = {1, 1, 1},
+	.module = THIS_MODULE,
+	.ctr = pool_ctr,
+	.dtr = pool_dtr,
+	.map = pool_map,
+	.postsuspend = pool_postsuspend,
+	.preresume = pool_preresume,
+	.resume = pool_resume,
+	.message = pool_message,
+	.status = pool_status,
+	.merge = pool_merge,
+	.iterate_devices = pool_iterate_devices,
+	.io_hints = pool_io_hints,
+};
+
+/*----------------------------------------------------------------
+ * Thin target methods
+ *--------------------------------------------------------------*/
+static void thin_dtr(struct dm_target *ti)
+{
+	struct thin_c *tc = ti->private;
+
+	mutex_lock(&dm_thin_pool_table.mutex);
+
+	__pool_dec(tc->pool);
+	dm_pool_close_thin_device(tc->td);
+	dm_put_device(ti, tc->pool_dev);
+	if (tc->origin_dev)
+		dm_put_device(ti, tc->origin_dev);
+	kfree(tc);
+
+	mutex_unlock(&dm_thin_pool_table.mutex);
+}
+
+/*
+ * Thin target parameters:
+ *
+ * <pool_dev> <dev_id> [origin_dev]
+ *
+ * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
+ * dev_id: the internal device identifier
+ * origin_dev: a device external to the pool that should act as the origin
+ *
+ * If the pool device has discards disabled, they get disabled for the thin
+ * device as well.
+ */
+static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
+{
+	int r;
+	struct thin_c *tc;
+	struct dm_dev *pool_dev, *origin_dev;
+	struct mapped_device *pool_md;
+
+	mutex_lock(&dm_thin_pool_table.mutex);
+
+	if (argc != 2 && argc != 3) {
+		ti->error = "Invalid argument count";
+		r = -EINVAL;
+		goto out_unlock;
+	}
+
+	tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
+	if (!tc) {
+		ti->error = "Out of memory";
+		r = -ENOMEM;
+		goto out_unlock;
+	}
+
+	if (argc == 3) {
+		r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
+		if (r) {
+			ti->error = "Error opening origin device";
+			goto bad_origin_dev;
+		}
+		tc->origin_dev = origin_dev;
+	}
+
+	r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
+	if (r) {
+		ti->error = "Error opening pool device";
+		goto bad_pool_dev;
+	}
+	tc->pool_dev = pool_dev;
+
+	if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
+		ti->error = "Invalid device id";
+		r = -EINVAL;
+		goto bad_common;
+	}
+
+	pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
+	if (!pool_md) {
+		ti->error = "Couldn't get pool mapped device";
+		r = -EINVAL;
+		goto bad_common;
+	}
+
+	tc->pool = __pool_table_lookup(pool_md);
+	if (!tc->pool) {
+		ti->error = "Couldn't find pool object";
+		r = -EINVAL;
+		goto bad_pool_lookup;
+	}
+	__pool_inc(tc->pool);
+
+	r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
+	if (r) {
+		ti->error = "Couldn't open thin internal device";
+		goto bad_thin_open;
+	}
+
+	ti->split_io = tc->pool->sectors_per_block;
+	ti->num_flush_requests = 1;
+
+	/* In case the pool supports discards, pass them on. */
+	if (tc->pool->pf.discard_enabled) {
+		ti->discards_supported = 1;
+		ti->num_discard_requests = 1;
+		ti->discard_zeroes_data_unsupported = 1;
+	}
+
+	dm_put(pool_md);
+
+	mutex_unlock(&dm_thin_pool_table.mutex);
+
+	return 0;
+
+bad_thin_open:
+	__pool_dec(tc->pool);
+bad_pool_lookup:
+	dm_put(pool_md);
+bad_common:
+	dm_put_device(ti, tc->pool_dev);
+bad_pool_dev:
+	if (tc->origin_dev)
+		dm_put_device(ti, tc->origin_dev);
+bad_origin_dev:
+	kfree(tc);
+out_unlock:
+	mutex_unlock(&dm_thin_pool_table.mutex);
+
+	return r;
+}
+
+static int thin_map(struct dm_target *ti, struct bio *bio,
+		    union map_info *map_context)
+{
+	bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
+
+	return thin_bio_map(ti, bio, map_context);
+}
+
+static int thin_endio(struct dm_target *ti,
+		      struct bio *bio, int err,
+		      union map_info *map_context)
+{
+	unsigned long flags;
+	struct endio_hook *h = map_context->ptr;
+	struct list_head work;
+	struct new_mapping *m, *tmp;
+	struct pool *pool = h->tc->pool;
+
+	if (h->shared_read_entry) {
+		INIT_LIST_HEAD(&work);
+		ds_dec(h->shared_read_entry, &work);
+
+		spin_lock_irqsave(&pool->lock, flags);
+		list_for_each_entry_safe(m, tmp, &work, list) {
+			list_del(&m->list);
+			m->quiesced = 1;
+			__maybe_add_mapping(m);
+		}
+		spin_unlock_irqrestore(&pool->lock, flags);
+	}
+
+	if (h->all_io_entry) {
+		INIT_LIST_HEAD(&work);
+		ds_dec(h->all_io_entry, &work);
+		spin_lock_irqsave(&pool->lock, flags);
+		list_for_each_entry_safe(m, tmp, &work, list)
+			list_add(&m->list, &pool->prepared_discards);
+		spin_unlock_irqrestore(&pool->lock, flags);
+	}
+
+	mempool_free(h, pool->endio_hook_pool);
+
+	return 0;
+}
+
+static void thin_postsuspend(struct dm_target *ti)
+{
+	if (dm_noflush_suspending(ti))
+		requeue_io((struct thin_c *)ti->private);
+}
+
+/*
+ * <nr mapped sectors> <highest mapped sector>
+ */
+static void thin_status(struct dm_target *ti, status_type_t type,
+			char *result, unsigned maxlen)
+{
+	int r;
+	ssize_t sz = 0;
+	dm_block_t mapped, highest;
+	char buf[BDEVNAME_SIZE];
+	struct thin_c *tc = ti->private;
+
+	if (!tc->td)
+		DMEMIT("-");
+	else {
+		switch (type) {
+		case STATUSTYPE_INFO:
+			r = dm_thin_get_mapped_count(tc->td, &mapped);
+			if (r) {
+				DMERR("dm_thin_get_mapped_count returned %d", r);
+				goto err;
+			}
+
+			r = dm_thin_get_highest_mapped_block(tc->td, &highest);
+			if (r < 0) {
+				DMERR("dm_thin_get_highest_mapped_block returned %d", r);
+				goto err;
+			}
+
+			DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
+			if (r)
+				DMEMIT("%llu", ((highest + 1) *
+						tc->pool->sectors_per_block) - 1);
+			else
+				DMEMIT("-");
+			break;
+
+		case STATUSTYPE_TABLE:
+			DMEMIT("%s %lu",
+			       format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
+			       (unsigned long) tc->dev_id);
+			if (tc->origin_dev)
+				DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
+			break;
+		}
+	}
+
+	return;
+
+err:
+	DMEMIT("Error");
+}
+
+static int thin_iterate_devices(struct dm_target *ti,
+				iterate_devices_callout_fn fn, void *data)
+{
+	dm_block_t blocks;
+	struct thin_c *tc = ti->private;
+
+	/*
+	 * We can't call dm_pool_get_data_dev_size() since that blocks.  So
+	 * we follow a more convoluted path through to the pool's target.
+	 */
+	if (!tc->pool->ti)
+		return 0;	/* nothing is bound */
+
+	blocks = tc->pool->ti->len >> tc->pool->block_shift;
+	if (blocks)
+		return fn(ti, tc->pool_dev, 0, tc->pool->sectors_per_block * blocks, data);
+
+	return 0;
+}
+
+static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+	struct thin_c *tc = ti->private;
+	struct pool *pool = tc->pool;
+
+	blk_limits_io_min(limits, 0);
+	blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
+	set_discard_limits(pool, limits);
+}
+
+static struct target_type thin_target = {
+	.name = "thin",
+	.version = {1, 1, 1},
+	.module	= THIS_MODULE,
+	.ctr = thin_ctr,
+	.dtr = thin_dtr,
+	.map = thin_map,
+	.end_io = thin_endio,
+	.postsuspend = thin_postsuspend,
+	.status = thin_status,
+	.iterate_devices = thin_iterate_devices,
+	.io_hints = thin_io_hints,
+};
+
+/*----------------------------------------------------------------*/
+
+static int __init dm_thin_init(void)
+{
+	int r;
+
+	pool_table_init();
+
+	r = dm_register_target(&thin_target);
+	if (r)
+		return r;
+
+	r = dm_register_target(&pool_target);
+	if (r)
+		dm_unregister_target(&thin_target);
+
+	return r;
+}
+
+static void dm_thin_exit(void)
+{
+	dm_unregister_target(&thin_target);
+	dm_unregister_target(&pool_target);
+}
+
+module_init(dm_thin_init);
+module_exit(dm_thin_exit);
+
+MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-uevent.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-uevent.c
new file mode 100644
index 0000000..8efe033
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-uevent.c
@@ -0,0 +1,219 @@
+/*
+ * Device Mapper Uevent Support (dm-uevent)
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * Copyright IBM Corporation, 2007
+ * 	Author: Mike Anderson <andmike@linux.vnet.ibm.com>
+ */
+#include <linux/list.h>
+#include <linux/slab.h>
+#include <linux/kobject.h>
+#include <linux/dm-ioctl.h>
+#include <linux/export.h>
+
+#include "dm.h"
+#include "dm-uevent.h"
+
+#define DM_MSG_PREFIX "uevent"
+
+static const struct {
+	enum dm_uevent_type type;
+	enum kobject_action action;
+	char *name;
+} _dm_uevent_type_names[] = {
+	{DM_UEVENT_PATH_FAILED, KOBJ_CHANGE, "PATH_FAILED"},
+	{DM_UEVENT_PATH_REINSTATED, KOBJ_CHANGE, "PATH_REINSTATED"},
+};
+
+static struct kmem_cache *_dm_event_cache;
+
+struct dm_uevent {
+	struct mapped_device *md;
+	enum kobject_action action;
+	struct kobj_uevent_env ku_env;
+	struct list_head elist;
+	char name[DM_NAME_LEN];
+	char uuid[DM_UUID_LEN];
+};
+
+static void dm_uevent_free(struct dm_uevent *event)
+{
+	kmem_cache_free(_dm_event_cache, event);
+}
+
+static struct dm_uevent *dm_uevent_alloc(struct mapped_device *md)
+{
+	struct dm_uevent *event;
+
+	event = kmem_cache_zalloc(_dm_event_cache, GFP_ATOMIC);
+	if (!event)
+		return NULL;
+
+	INIT_LIST_HEAD(&event->elist);
+	event->md = md;
+
+	return event;
+}
+
+static struct dm_uevent *dm_build_path_uevent(struct mapped_device *md,
+					      struct dm_target *ti,
+					      enum kobject_action action,
+					      const char *dm_action,
+					      const char *path,
+					      unsigned nr_valid_paths)
+{
+	struct dm_uevent *event;
+
+	event = dm_uevent_alloc(md);
+	if (!event) {
+		DMERR("%s: dm_uevent_alloc() failed", __func__);
+		goto err_nomem;
+	}
+
+	event->action = action;
+
+	if (add_uevent_var(&event->ku_env, "DM_TARGET=%s", ti->type->name)) {
+		DMERR("%s: add_uevent_var() for DM_TARGET failed",
+		      __func__);
+		goto err_add;
+	}
+
+	if (add_uevent_var(&event->ku_env, "DM_ACTION=%s", dm_action)) {
+		DMERR("%s: add_uevent_var() for DM_ACTION failed",
+		      __func__);
+		goto err_add;
+	}
+
+	if (add_uevent_var(&event->ku_env, "DM_SEQNUM=%u",
+			   dm_next_uevent_seq(md))) {
+		DMERR("%s: add_uevent_var() for DM_SEQNUM failed",
+		      __func__);
+		goto err_add;
+	}
+
+	if (add_uevent_var(&event->ku_env, "DM_PATH=%s", path)) {
+		DMERR("%s: add_uevent_var() for DM_PATH failed", __func__);
+		goto err_add;
+	}
+
+	if (add_uevent_var(&event->ku_env, "DM_NR_VALID_PATHS=%d",
+			   nr_valid_paths)) {
+		DMERR("%s: add_uevent_var() for DM_NR_VALID_PATHS failed",
+		      __func__);
+		goto err_add;
+	}
+
+	return event;
+
+err_add:
+	dm_uevent_free(event);
+err_nomem:
+	return ERR_PTR(-ENOMEM);
+}
+
+/**
+ * dm_send_uevents - send uevents for given list
+ *
+ * @events:	list of events to send
+ * @kobj:	kobject generating event
+ *
+ */
+void dm_send_uevents(struct list_head *events, struct kobject *kobj)
+{
+	int r;
+	struct dm_uevent *event, *next;
+
+	list_for_each_entry_safe(event, next, events, elist) {
+		list_del_init(&event->elist);
+
+		/*
+		 * When a device is being removed this copy fails and we
+		 * discard these unsent events.
+		 */
+		if (dm_copy_name_and_uuid(event->md, event->name,
+					  event->uuid)) {
+			DMINFO("%s: skipping sending uevent for lost device",
+			       __func__);
+			goto uevent_free;
+		}
+
+		if (add_uevent_var(&event->ku_env, "DM_NAME=%s", event->name)) {
+			DMERR("%s: add_uevent_var() for DM_NAME failed",
+			      __func__);
+			goto uevent_free;
+		}
+
+		if (add_uevent_var(&event->ku_env, "DM_UUID=%s", event->uuid)) {
+			DMERR("%s: add_uevent_var() for DM_UUID failed",
+			      __func__);
+			goto uevent_free;
+		}
+
+		r = kobject_uevent_env(kobj, event->action, event->ku_env.envp);
+		if (r)
+			DMERR("%s: kobject_uevent_env failed", __func__);
+uevent_free:
+		dm_uevent_free(event);
+	}
+}
+EXPORT_SYMBOL_GPL(dm_send_uevents);
+
+/**
+ * dm_path_uevent - called to create a new path event and queue it
+ *
+ * @event_type:	path event type enum
+ * @ti:			pointer to a dm_target
+ * @path:		string containing pathname
+ * @nr_valid_paths:	number of valid paths remaining
+ *
+ */
+void dm_path_uevent(enum dm_uevent_type event_type, struct dm_target *ti,
+		   const char *path, unsigned nr_valid_paths)
+{
+	struct mapped_device *md = dm_table_get_md(ti->table);
+	struct dm_uevent *event;
+
+	if (event_type >= ARRAY_SIZE(_dm_uevent_type_names)) {
+		DMERR("%s: Invalid event_type %d", __func__, event_type);
+		return;
+	}
+
+	event = dm_build_path_uevent(md, ti,
+				     _dm_uevent_type_names[event_type].action,
+				     _dm_uevent_type_names[event_type].name,
+				     path, nr_valid_paths);
+	if (IS_ERR(event))
+		return;
+
+	dm_uevent_add(md, &event->elist);
+}
+EXPORT_SYMBOL_GPL(dm_path_uevent);
+
+int dm_uevent_init(void)
+{
+	_dm_event_cache = KMEM_CACHE(dm_uevent, 0);
+	if (!_dm_event_cache)
+		return -ENOMEM;
+
+	DMINFO("version 1.0.3");
+
+	return 0;
+}
+
+void dm_uevent_exit(void)
+{
+	kmem_cache_destroy(_dm_event_cache);
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-uevent.h b/ap/os/linux/linux-3.4.x/drivers/md/dm-uevent.h
new file mode 100644
index 0000000..2eccc8b
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-uevent.h
@@ -0,0 +1,59 @@
+/*
+ * Device Mapper Uevent Support
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms of the GNU General Public License as published by the
+ * Free Software Foundation; either version 2 of the License, or (at your
+ * option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful, but
+ * WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License along
+ * with this program; if not, write to the Free Software Foundation, Inc.,
+ * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
+ *
+ * Copyright IBM Corporation, 2007
+ * 	Author: Mike Anderson <andmike@linux.vnet.ibm.com>
+ */
+#ifndef DM_UEVENT_H
+#define DM_UEVENT_H
+
+enum dm_uevent_type {
+	DM_UEVENT_PATH_FAILED,
+	DM_UEVENT_PATH_REINSTATED,
+};
+
+#ifdef CONFIG_DM_UEVENT
+
+extern int dm_uevent_init(void);
+extern void dm_uevent_exit(void);
+extern void dm_send_uevents(struct list_head *events, struct kobject *kobj);
+extern void dm_path_uevent(enum dm_uevent_type event_type,
+			   struct dm_target *ti, const char *path,
+			   unsigned nr_valid_paths);
+
+#else
+
+static inline int dm_uevent_init(void)
+{
+	return 0;
+}
+static inline void dm_uevent_exit(void)
+{
+}
+static inline void dm_send_uevents(struct list_head *events,
+				   struct kobject *kobj)
+{
+}
+static inline void dm_path_uevent(enum dm_uevent_type event_type,
+				  struct dm_target *ti, const char *path,
+				  unsigned nr_valid_paths)
+{
+}
+
+#endif	/* CONFIG_DM_UEVENT */
+
+#endif	/* DM_UEVENT_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-verity.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-verity.c
new file mode 100644
index 0000000..ac09984
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-verity.c
@@ -0,0 +1,910 @@
+/*
+ * Copyright (C) 2012 Red Hat, Inc.
+ *
+ * Author: Mikulas Patocka <mpatocka@redhat.com>
+ *
+ * Based on Chromium dm-verity driver (C) 2011 The Chromium OS Authors
+ *
+ * This file is released under the GPLv2.
+ *
+ * In the file "/sys/module/dm_verity/parameters/prefetch_cluster" you can set
+ * default prefetch value. Data are read in "prefetch_cluster" chunks from the
+ * hash device. Setting this greatly improves performance when data and hash
+ * are on the same disk on different partitions on devices with poor random
+ * access behavior.
+ */
+
+#include "dm-bufio.h"
+
+#include <linux/module.h>
+#include <linux/device-mapper.h>
+#include <crypto/hash.h>
+
+#define DM_MSG_PREFIX			"verity"
+
+#define DM_VERITY_IO_VEC_INLINE		16
+#define DM_VERITY_MEMPOOL_SIZE		4
+#define DM_VERITY_DEFAULT_PREFETCH_SIZE	262144
+
+#define DM_VERITY_MAX_LEVELS		63
+
+static unsigned dm_verity_prefetch_cluster = DM_VERITY_DEFAULT_PREFETCH_SIZE;
+
+module_param_named(prefetch_cluster, dm_verity_prefetch_cluster, uint, S_IRUGO | S_IWUSR);
+
+struct dm_verity {
+	struct dm_dev *data_dev;
+	struct dm_dev *hash_dev;
+	struct dm_target *ti;
+	struct dm_bufio_client *bufio;
+	char *alg_name;
+	struct crypto_shash *tfm;
+	u8 *root_digest;	/* digest of the root block */
+	u8 *salt;		/* salt: its size is salt_size */
+	unsigned salt_size;
+	sector_t data_start;	/* data offset in 512-byte sectors */
+	sector_t hash_start;	/* hash start in blocks */
+	sector_t data_blocks;	/* the number of data blocks */
+	sector_t hash_blocks;	/* the number of hash blocks */
+	unsigned char data_dev_block_bits;	/* log2(data blocksize) */
+	unsigned char hash_dev_block_bits;	/* log2(hash blocksize) */
+	unsigned char hash_per_block_bits;	/* log2(hashes in hash block) */
+	unsigned char levels;	/* the number of tree levels */
+	unsigned char version;
+	unsigned digest_size;	/* digest size for the current hash algorithm */
+	unsigned shash_descsize;/* the size of temporary space for crypto */
+	int hash_failed;	/* set to 1 if hash of any block failed */
+
+	mempool_t *io_mempool;	/* mempool of struct dm_verity_io */
+	mempool_t *vec_mempool;	/* mempool of bio vector */
+
+	struct workqueue_struct *verify_wq;
+
+	/* starting blocks for each tree level. 0 is the lowest level. */
+	sector_t hash_level_block[DM_VERITY_MAX_LEVELS];
+};
+
+struct dm_verity_io {
+	struct dm_verity *v;
+	struct bio *bio;
+
+	/* original values of bio->bi_end_io and bio->bi_private */
+	bio_end_io_t *orig_bi_end_io;
+	void *orig_bi_private;
+
+	sector_t block;
+	unsigned n_blocks;
+
+	/* saved bio vector */
+	struct bio_vec *io_vec;
+	unsigned io_vec_size;
+
+	struct work_struct work;
+
+	/* A space for short vectors; longer vectors are allocated separately. */
+	struct bio_vec io_vec_inline[DM_VERITY_IO_VEC_INLINE];
+
+	/*
+	 * Three variably-size fields follow this struct:
+	 *
+	 * u8 hash_desc[v->shash_descsize];
+	 * u8 real_digest[v->digest_size];
+	 * u8 want_digest[v->digest_size];
+	 *
+	 * To access them use: io_hash_desc(), io_real_digest() and io_want_digest().
+	 */
+};
+
+static struct shash_desc *io_hash_desc(struct dm_verity *v, struct dm_verity_io *io)
+{
+	return (struct shash_desc *)(io + 1);
+}
+
+static u8 *io_real_digest(struct dm_verity *v, struct dm_verity_io *io)
+{
+	return (u8 *)(io + 1) + v->shash_descsize;
+}
+
+static u8 *io_want_digest(struct dm_verity *v, struct dm_verity_io *io)
+{
+	return (u8 *)(io + 1) + v->shash_descsize + v->digest_size;
+}
+
+/*
+ * Auxiliary structure appended to each dm-bufio buffer. If the value
+ * hash_verified is nonzero, hash of the block has been verified.
+ *
+ * The variable hash_verified is set to 0 when allocating the buffer, then
+ * it can be changed to 1 and it is never reset to 0 again.
+ *
+ * There is no lock around this value, a race condition can at worst cause
+ * that multiple processes verify the hash of the same buffer simultaneously
+ * and write 1 to hash_verified simultaneously.
+ * This condition is harmless, so we don't need locking.
+ */
+struct buffer_aux {
+	int hash_verified;
+};
+
+/*
+ * Initialize struct buffer_aux for a freshly created buffer.
+ */
+static void dm_bufio_alloc_callback(struct dm_buffer *buf)
+{
+	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
+
+	aux->hash_verified = 0;
+}
+
+/*
+ * Translate input sector number to the sector number on the target device.
+ */
+static sector_t verity_map_sector(struct dm_verity *v, sector_t bi_sector)
+{
+	return v->data_start + dm_target_offset(v->ti, bi_sector);
+}
+
+/*
+ * Return hash position of a specified block at a specified tree level
+ * (0 is the lowest level).
+ * The lowest "hash_per_block_bits"-bits of the result denote hash position
+ * inside a hash block. The remaining bits denote location of the hash block.
+ */
+static sector_t verity_position_at_level(struct dm_verity *v, sector_t block,
+					 int level)
+{
+	return block >> (level * v->hash_per_block_bits);
+}
+
+static void verity_hash_at_level(struct dm_verity *v, sector_t block, int level,
+				 sector_t *hash_block, unsigned *offset)
+{
+	sector_t position = verity_position_at_level(v, block, level);
+	unsigned idx;
+
+	*hash_block = v->hash_level_block[level] + (position >> v->hash_per_block_bits);
+
+	if (!offset)
+		return;
+
+	idx = position & ((1 << v->hash_per_block_bits) - 1);
+	if (!v->version)
+		*offset = idx * v->digest_size;
+	else
+		*offset = idx << (v->hash_dev_block_bits - v->hash_per_block_bits);
+}
+
+/*
+ * Verify hash of a metadata block pertaining to the specified data block
+ * ("block" argument) at a specified level ("level" argument).
+ *
+ * On successful return, io_want_digest(v, io) contains the hash value for
+ * a lower tree level or for the data block (if we're at the lowest leve).
+ *
+ * If "skip_unverified" is true, unverified buffer is skipped and 1 is returned.
+ * If "skip_unverified" is false, unverified buffer is hashed and verified
+ * against current value of io_want_digest(v, io).
+ */
+static int verity_verify_level(struct dm_verity_io *io, sector_t block,
+			       int level, bool skip_unverified)
+{
+	struct dm_verity *v = io->v;
+	struct dm_buffer *buf;
+	struct buffer_aux *aux;
+	u8 *data;
+	int r;
+	sector_t hash_block;
+	unsigned offset;
+
+	verity_hash_at_level(v, block, level, &hash_block, &offset);
+
+	data = dm_bufio_read(v->bufio, hash_block, &buf);
+	if (unlikely(IS_ERR(data)))
+		return PTR_ERR(data);
+
+	aux = dm_bufio_get_aux_data(buf);
+
+	if (!aux->hash_verified) {
+		struct shash_desc *desc;
+		u8 *result;
+
+		if (skip_unverified) {
+			r = 1;
+			goto release_ret_r;
+		}
+
+		desc = io_hash_desc(v, io);
+		desc->tfm = v->tfm;
+		desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
+		r = crypto_shash_init(desc);
+		if (r < 0) {
+			DMERR("crypto_shash_init failed: %d", r);
+			goto release_ret_r;
+		}
+
+		if (likely(v->version >= 1)) {
+			r = crypto_shash_update(desc, v->salt, v->salt_size);
+			if (r < 0) {
+				DMERR("crypto_shash_update failed: %d", r);
+				goto release_ret_r;
+			}
+		}
+
+		r = crypto_shash_update(desc, data, 1 << v->hash_dev_block_bits);
+		if (r < 0) {
+			DMERR("crypto_shash_update failed: %d", r);
+			goto release_ret_r;
+		}
+
+		if (!v->version) {
+			r = crypto_shash_update(desc, v->salt, v->salt_size);
+			if (r < 0) {
+				DMERR("crypto_shash_update failed: %d", r);
+				goto release_ret_r;
+			}
+		}
+
+		result = io_real_digest(v, io);
+		r = crypto_shash_final(desc, result);
+		if (r < 0) {
+			DMERR("crypto_shash_final failed: %d", r);
+			goto release_ret_r;
+		}
+		if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
+			DMERR_LIMIT("metadata block %llu is corrupted",
+				(unsigned long long)hash_block);
+			v->hash_failed = 1;
+			r = -EIO;
+			goto release_ret_r;
+		} else
+			aux->hash_verified = 1;
+	}
+
+	data += offset;
+
+	memcpy(io_want_digest(v, io), data, v->digest_size);
+
+	dm_bufio_release(buf);
+	return 0;
+
+release_ret_r:
+	dm_bufio_release(buf);
+
+	return r;
+}
+
+/*
+ * Verify one "dm_verity_io" structure.
+ */
+static int verity_verify_io(struct dm_verity_io *io)
+{
+	struct dm_verity *v = io->v;
+	unsigned b;
+	int i;
+	unsigned vector = 0, offset = 0;
+
+	for (b = 0; b < io->n_blocks; b++) {
+		struct shash_desc *desc;
+		u8 *result;
+		int r;
+		unsigned todo;
+
+		if (likely(v->levels)) {
+			/*
+			 * First, we try to get the requested hash for
+			 * the current block. If the hash block itself is
+			 * verified, zero is returned. If it isn't, this
+			 * function returns 0 and we fall back to whole
+			 * chain verification.
+			 */
+			int r = verity_verify_level(io, io->block + b, 0, true);
+			if (likely(!r))
+				goto test_block_hash;
+			if (r < 0)
+				return r;
+		}
+
+		memcpy(io_want_digest(v, io), v->root_digest, v->digest_size);
+
+		for (i = v->levels - 1; i >= 0; i--) {
+			int r = verity_verify_level(io, io->block + b, i, false);
+			if (unlikely(r))
+				return r;
+		}
+
+test_block_hash:
+		desc = io_hash_desc(v, io);
+		desc->tfm = v->tfm;
+		desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
+		r = crypto_shash_init(desc);
+		if (r < 0) {
+			DMERR("crypto_shash_init failed: %d", r);
+			return r;
+		}
+
+		if (likely(v->version >= 1)) {
+			r = crypto_shash_update(desc, v->salt, v->salt_size);
+			if (r < 0) {
+				DMERR("crypto_shash_update failed: %d", r);
+				return r;
+			}
+		}
+
+		todo = 1 << v->data_dev_block_bits;
+		do {
+			struct bio_vec *bv;
+			u8 *page;
+			unsigned len;
+
+			BUG_ON(vector >= io->io_vec_size);
+			bv = &io->io_vec[vector];
+			page = kmap_atomic(bv->bv_page);
+			len = bv->bv_len - offset;
+			if (likely(len >= todo))
+				len = todo;
+			r = crypto_shash_update(desc,
+					page + bv->bv_offset + offset, len);
+			kunmap_atomic(page);
+			if (r < 0) {
+				DMERR("crypto_shash_update failed: %d", r);
+				return r;
+			}
+			offset += len;
+			if (likely(offset == bv->bv_len)) {
+				offset = 0;
+				vector++;
+			}
+			todo -= len;
+		} while (todo);
+
+		if (!v->version) {
+			r = crypto_shash_update(desc, v->salt, v->salt_size);
+			if (r < 0) {
+				DMERR("crypto_shash_update failed: %d", r);
+				return r;
+			}
+		}
+
+		result = io_real_digest(v, io);
+		r = crypto_shash_final(desc, result);
+		if (r < 0) {
+			DMERR("crypto_shash_final failed: %d", r);
+			return r;
+		}
+		if (unlikely(memcmp(result, io_want_digest(v, io), v->digest_size))) {
+			DMERR_LIMIT("data block %llu is corrupted",
+				(unsigned long long)(io->block + b));
+			v->hash_failed = 1;
+			return -EIO;
+		}
+	}
+	BUG_ON(vector != io->io_vec_size);
+	BUG_ON(offset);
+
+	return 0;
+}
+
+/*
+ * End one "io" structure with a given error.
+ */
+static void verity_finish_io(struct dm_verity_io *io, int error)
+{
+	struct bio *bio = io->bio;
+	struct dm_verity *v = io->v;
+
+	bio->bi_end_io = io->orig_bi_end_io;
+	bio->bi_private = io->orig_bi_private;
+
+	if (io->io_vec != io->io_vec_inline)
+		mempool_free(io->io_vec, v->vec_mempool);
+
+	mempool_free(io, v->io_mempool);
+
+	bio_endio(bio, error);
+}
+
+static void verity_work(struct work_struct *w)
+{
+	struct dm_verity_io *io = container_of(w, struct dm_verity_io, work);
+
+	verity_finish_io(io, verity_verify_io(io));
+}
+
+static void verity_end_io(struct bio *bio, int error)
+{
+	struct dm_verity_io *io = bio->bi_private;
+
+	if (error) {
+		verity_finish_io(io, error);
+		return;
+	}
+
+	INIT_WORK(&io->work, verity_work);
+	queue_work(io->v->verify_wq, &io->work);
+}
+
+/*
+ * Prefetch buffers for the specified io.
+ * The root buffer is not prefetched, it is assumed that it will be cached
+ * all the time.
+ */
+static void verity_prefetch_io(struct dm_verity *v, struct dm_verity_io *io)
+{
+	int i;
+
+	for (i = v->levels - 2; i >= 0; i--) {
+		sector_t hash_block_start;
+		sector_t hash_block_end;
+		verity_hash_at_level(v, io->block, i, &hash_block_start, NULL);
+		verity_hash_at_level(v, io->block + io->n_blocks - 1, i, &hash_block_end, NULL);
+		if (!i) {
+			unsigned cluster = *(volatile unsigned *)&dm_verity_prefetch_cluster;
+
+			cluster >>= v->data_dev_block_bits;
+			if (unlikely(!cluster))
+				goto no_prefetch_cluster;
+
+			if (unlikely(cluster & (cluster - 1)))
+				cluster = 1 << (fls(cluster) - 1);
+
+			hash_block_start &= ~(sector_t)(cluster - 1);
+			hash_block_end |= cluster - 1;
+			if (unlikely(hash_block_end >= v->hash_blocks))
+				hash_block_end = v->hash_blocks - 1;
+		}
+no_prefetch_cluster:
+		dm_bufio_prefetch(v->bufio, hash_block_start,
+				  hash_block_end - hash_block_start + 1);
+	}
+}
+
+/*
+ * Bio map function. It allocates dm_verity_io structure and bio vector and
+ * fills them. Then it issues prefetches and the I/O.
+ */
+static int verity_map(struct dm_target *ti, struct bio *bio,
+		      union map_info *map_context)
+{
+	struct dm_verity *v = ti->private;
+	struct dm_verity_io *io;
+
+	bio->bi_bdev = v->data_dev->bdev;
+	bio->bi_sector = verity_map_sector(v, bio->bi_sector);
+
+	if (((unsigned)bio->bi_sector | bio_sectors(bio)) &
+	    ((1 << (v->data_dev_block_bits - SECTOR_SHIFT)) - 1)) {
+		DMERR_LIMIT("unaligned io");
+		return -EIO;
+	}
+
+	if ((bio->bi_sector + bio_sectors(bio)) >>
+	    (v->data_dev_block_bits - SECTOR_SHIFT) > v->data_blocks) {
+		DMERR_LIMIT("io out of range");
+		return -EIO;
+	}
+
+	if (bio_data_dir(bio) == WRITE)
+		return -EIO;
+
+	io = mempool_alloc(v->io_mempool, GFP_NOIO);
+	io->v = v;
+	io->bio = bio;
+	io->orig_bi_end_io = bio->bi_end_io;
+	io->orig_bi_private = bio->bi_private;
+	io->block = bio->bi_sector >> (v->data_dev_block_bits - SECTOR_SHIFT);
+	io->n_blocks = bio->bi_size >> v->data_dev_block_bits;
+
+	bio->bi_end_io = verity_end_io;
+	bio->bi_private = io;
+	io->io_vec_size = bio->bi_vcnt - bio->bi_idx;
+	if (io->io_vec_size < DM_VERITY_IO_VEC_INLINE)
+		io->io_vec = io->io_vec_inline;
+	else
+		io->io_vec = mempool_alloc(v->vec_mempool, GFP_NOIO);
+	memcpy(io->io_vec, bio_iovec(bio),
+	       io->io_vec_size * sizeof(struct bio_vec));
+
+	verity_prefetch_io(v, io);
+
+	generic_make_request(bio);
+
+	return DM_MAPIO_SUBMITTED;
+}
+
+/*
+ * Status: V (valid) or C (corruption found)
+ */
+static void verity_status(struct dm_target *ti, status_type_t type,
+			  char *result, unsigned maxlen)
+{
+	struct dm_verity *v = ti->private;
+	unsigned sz = 0;
+	unsigned x;
+
+	switch (type) {
+	case STATUSTYPE_INFO:
+		DMEMIT("%c", v->hash_failed ? 'C' : 'V');
+		break;
+	case STATUSTYPE_TABLE:
+		DMEMIT("%u %s %s %u %u %llu %llu %s ",
+			v->version,
+			v->data_dev->name,
+			v->hash_dev->name,
+			1 << v->data_dev_block_bits,
+			1 << v->hash_dev_block_bits,
+			(unsigned long long)v->data_blocks,
+			(unsigned long long)v->hash_start,
+			v->alg_name
+			);
+		for (x = 0; x < v->digest_size; x++)
+			DMEMIT("%02x", v->root_digest[x]);
+		DMEMIT(" ");
+		if (!v->salt_size)
+			DMEMIT("-");
+		else
+			for (x = 0; x < v->salt_size; x++)
+				DMEMIT("%02x", v->salt[x]);
+		break;
+	}
+}
+
+static int verity_ioctl(struct dm_target *ti, unsigned cmd,
+			unsigned long arg)
+{
+	struct dm_verity *v = ti->private;
+	int r = 0;
+
+	if (v->data_start ||
+	    ti->len != i_size_read(v->data_dev->bdev->bd_inode) >> SECTOR_SHIFT)
+		r = scsi_verify_blk_ioctl(NULL, cmd);
+
+	return r ? : __blkdev_driver_ioctl(v->data_dev->bdev, v->data_dev->mode,
+				     cmd, arg);
+}
+
+static int verity_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
+			struct bio_vec *biovec, int max_size)
+{
+	struct dm_verity *v = ti->private;
+	struct request_queue *q = bdev_get_queue(v->data_dev->bdev);
+
+	if (!q->merge_bvec_fn)
+		return max_size;
+
+	bvm->bi_bdev = v->data_dev->bdev;
+	bvm->bi_sector = verity_map_sector(v, bvm->bi_sector);
+
+	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
+}
+
+static int verity_iterate_devices(struct dm_target *ti,
+				  iterate_devices_callout_fn fn, void *data)
+{
+	struct dm_verity *v = ti->private;
+
+	return fn(ti, v->data_dev, v->data_start, ti->len, data);
+}
+
+static void verity_io_hints(struct dm_target *ti, struct queue_limits *limits)
+{
+	struct dm_verity *v = ti->private;
+
+	if (limits->logical_block_size < 1 << v->data_dev_block_bits)
+		limits->logical_block_size = 1 << v->data_dev_block_bits;
+
+	if (limits->physical_block_size < 1 << v->data_dev_block_bits)
+		limits->physical_block_size = 1 << v->data_dev_block_bits;
+
+	blk_limits_io_min(limits, limits->logical_block_size);
+}
+
+static void verity_dtr(struct dm_target *ti)
+{
+	struct dm_verity *v = ti->private;
+
+	if (v->verify_wq)
+		destroy_workqueue(v->verify_wq);
+
+	if (v->vec_mempool)
+		mempool_destroy(v->vec_mempool);
+
+	if (v->io_mempool)
+		mempool_destroy(v->io_mempool);
+
+	if (v->bufio)
+		dm_bufio_client_destroy(v->bufio);
+
+	kfree(v->salt);
+	kfree(v->root_digest);
+
+	if (v->tfm)
+		crypto_free_shash(v->tfm);
+
+	kfree(v->alg_name);
+
+	if (v->hash_dev)
+		dm_put_device(ti, v->hash_dev);
+
+	if (v->data_dev)
+		dm_put_device(ti, v->data_dev);
+
+	kfree(v);
+}
+
+/*
+ * Target parameters:
+ *	<version>	The current format is version 1.
+ *			Vsn 0 is compatible with original Chromium OS releases.
+ *	<data device>
+ *	<hash device>
+ *	<data block size>
+ *	<hash block size>
+ *	<the number of data blocks>
+ *	<hash start block>
+ *	<algorithm>
+ *	<digest>
+ *	<salt>		Hex string or "-" if no salt.
+ */
+static int verity_ctr(struct dm_target *ti, unsigned argc, char **argv)
+{
+	struct dm_verity *v;
+	unsigned num;
+	unsigned long long num_ll;
+	int r;
+	int i;
+	sector_t hash_position;
+	char dummy;
+
+	v = kzalloc(sizeof(struct dm_verity), GFP_KERNEL);
+	if (!v) {
+		ti->error = "Cannot allocate verity structure";
+		return -ENOMEM;
+	}
+	ti->private = v;
+	v->ti = ti;
+
+	if ((dm_table_get_mode(ti->table) & ~FMODE_READ)) {
+		ti->error = "Device must be readonly";
+		r = -EINVAL;
+		goto bad;
+	}
+
+	if (argc != 10) {
+		ti->error = "Invalid argument count: exactly 10 arguments required";
+		r = -EINVAL;
+		goto bad;
+	}
+
+	if (sscanf(argv[0], "%d%c", &num, &dummy) != 1 ||
+	    num < 0 || num > 1) {
+		ti->error = "Invalid version";
+		r = -EINVAL;
+		goto bad;
+	}
+	v->version = num;
+
+	r = dm_get_device(ti, argv[1], FMODE_READ, &v->data_dev);
+	if (r) {
+		ti->error = "Data device lookup failed";
+		goto bad;
+	}
+
+	r = dm_get_device(ti, argv[2], FMODE_READ, &v->hash_dev);
+	if (r) {
+		ti->error = "Data device lookup failed";
+		goto bad;
+	}
+
+	if (sscanf(argv[3], "%u%c", &num, &dummy) != 1 ||
+	    !num || (num & (num - 1)) ||
+	    num < bdev_logical_block_size(v->data_dev->bdev) ||
+	    num > PAGE_SIZE) {
+		ti->error = "Invalid data device block size";
+		r = -EINVAL;
+		goto bad;
+	}
+	v->data_dev_block_bits = ffs(num) - 1;
+
+	if (sscanf(argv[4], "%u%c", &num, &dummy) != 1 ||
+	    !num || (num & (num - 1)) ||
+	    num < bdev_logical_block_size(v->hash_dev->bdev) ||
+	    num > INT_MAX) {
+		ti->error = "Invalid hash device block size";
+		r = -EINVAL;
+		goto bad;
+	}
+	v->hash_dev_block_bits = ffs(num) - 1;
+
+	if (sscanf(argv[5], "%llu%c", &num_ll, &dummy) != 1 ||
+	    (sector_t)(num_ll << (v->data_dev_block_bits - SECTOR_SHIFT))
+	    >> (v->data_dev_block_bits - SECTOR_SHIFT) != num_ll) {
+		ti->error = "Invalid data blocks";
+		r = -EINVAL;
+		goto bad;
+	}
+	v->data_blocks = num_ll;
+
+	if (ti->len > (v->data_blocks << (v->data_dev_block_bits - SECTOR_SHIFT))) {
+		ti->error = "Data device is too small";
+		r = -EINVAL;
+		goto bad;
+	}
+
+	if (sscanf(argv[6], "%llu%c", &num_ll, &dummy) != 1 ||
+	    (sector_t)(num_ll << (v->hash_dev_block_bits - SECTOR_SHIFT))
+	    >> (v->hash_dev_block_bits - SECTOR_SHIFT) != num_ll) {
+		ti->error = "Invalid hash start";
+		r = -EINVAL;
+		goto bad;
+	}
+	v->hash_start = num_ll;
+
+	v->alg_name = kstrdup(argv[7], GFP_KERNEL);
+	if (!v->alg_name) {
+		ti->error = "Cannot allocate algorithm name";
+		r = -ENOMEM;
+		goto bad;
+	}
+
+	v->tfm = crypto_alloc_shash(v->alg_name, 0, 0);
+	if (IS_ERR(v->tfm)) {
+		ti->error = "Cannot initialize hash function";
+		r = PTR_ERR(v->tfm);
+		v->tfm = NULL;
+		goto bad;
+	}
+	v->digest_size = crypto_shash_digestsize(v->tfm);
+	if ((1 << v->hash_dev_block_bits) < v->digest_size * 2) {
+		ti->error = "Digest size too big";
+		r = -EINVAL;
+		goto bad;
+	}
+	v->shash_descsize =
+		sizeof(struct shash_desc) + crypto_shash_descsize(v->tfm);
+
+	v->root_digest = kmalloc(v->digest_size, GFP_KERNEL);
+	if (!v->root_digest) {
+		ti->error = "Cannot allocate root digest";
+		r = -ENOMEM;
+		goto bad;
+	}
+	if (strlen(argv[8]) != v->digest_size * 2 ||
+	    hex2bin(v->root_digest, argv[8], v->digest_size)) {
+		ti->error = "Invalid root digest";
+		r = -EINVAL;
+		goto bad;
+	}
+
+	if (strcmp(argv[9], "-")) {
+		v->salt_size = strlen(argv[9]) / 2;
+		v->salt = kmalloc(v->salt_size, GFP_KERNEL);
+		if (!v->salt) {
+			ti->error = "Cannot allocate salt";
+			r = -ENOMEM;
+			goto bad;
+		}
+		if (strlen(argv[9]) != v->salt_size * 2 ||
+		    hex2bin(v->salt, argv[9], v->salt_size)) {
+			ti->error = "Invalid salt";
+			r = -EINVAL;
+			goto bad;
+		}
+	}
+
+	v->hash_per_block_bits =
+		fls((1 << v->hash_dev_block_bits) / v->digest_size) - 1;
+
+	v->levels = 0;
+	if (v->data_blocks)
+		while (v->hash_per_block_bits * v->levels < 64 &&
+		       (unsigned long long)(v->data_blocks - 1) >>
+		       (v->hash_per_block_bits * v->levels))
+			v->levels++;
+
+	if (v->levels > DM_VERITY_MAX_LEVELS) {
+		ti->error = "Too many tree levels";
+		r = -E2BIG;
+		goto bad;
+	}
+
+	hash_position = v->hash_start;
+	for (i = v->levels - 1; i >= 0; i--) {
+		sector_t s;
+		v->hash_level_block[i] = hash_position;
+		s = (v->data_blocks + ((sector_t)1 << ((i + 1) * v->hash_per_block_bits)) - 1)
+					>> ((i + 1) * v->hash_per_block_bits);
+		if (hash_position + s < hash_position) {
+			ti->error = "Hash device offset overflow";
+			r = -E2BIG;
+			goto bad;
+		}
+		hash_position += s;
+	}
+	v->hash_blocks = hash_position;
+
+	v->bufio = dm_bufio_client_create(v->hash_dev->bdev,
+		1 << v->hash_dev_block_bits, 1, sizeof(struct buffer_aux),
+		dm_bufio_alloc_callback, NULL);
+	if (IS_ERR(v->bufio)) {
+		ti->error = "Cannot initialize dm-bufio";
+		r = PTR_ERR(v->bufio);
+		v->bufio = NULL;
+		goto bad;
+	}
+
+	if (dm_bufio_get_device_size(v->bufio) < v->hash_blocks) {
+		ti->error = "Hash device is too small";
+		r = -E2BIG;
+		goto bad;
+	}
+
+	v->io_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
+	  sizeof(struct dm_verity_io) + v->shash_descsize + v->digest_size * 2);
+	if (!v->io_mempool) {
+		ti->error = "Cannot allocate io mempool";
+		r = -ENOMEM;
+		goto bad;
+	}
+
+	v->vec_mempool = mempool_create_kmalloc_pool(DM_VERITY_MEMPOOL_SIZE,
+					BIO_MAX_PAGES * sizeof(struct bio_vec));
+	if (!v->vec_mempool) {
+		ti->error = "Cannot allocate vector mempool";
+		r = -ENOMEM;
+		goto bad;
+	}
+
+	/* WQ_UNBOUND greatly improves performance when running on ramdisk */
+	v->verify_wq = alloc_workqueue("kverityd", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND, num_online_cpus());
+	if (!v->verify_wq) {
+		ti->error = "Cannot allocate workqueue";
+		r = -ENOMEM;
+		goto bad;
+	}
+
+	return 0;
+
+bad:
+	verity_dtr(ti);
+
+	return r;
+}
+
+static struct target_type verity_target = {
+	.name		= "verity",
+	.version	= {1, 0, 0},
+	.module		= THIS_MODULE,
+	.ctr		= verity_ctr,
+	.dtr		= verity_dtr,
+	.map		= verity_map,
+	.status		= verity_status,
+	.ioctl		= verity_ioctl,
+	.merge		= verity_merge,
+	.iterate_devices = verity_iterate_devices,
+	.io_hints	= verity_io_hints,
+};
+
+static int __init dm_verity_init(void)
+{
+	int r;
+
+	r = dm_register_target(&verity_target);
+	if (r < 0)
+		DMERR("register failed %d", r);
+
+	return r;
+}
+
+static void __exit dm_verity_exit(void)
+{
+	dm_unregister_target(&verity_target);
+}
+
+module_init(dm_verity_init);
+module_exit(dm_verity_exit);
+
+MODULE_AUTHOR("Mikulas Patocka <mpatocka@redhat.com>");
+MODULE_AUTHOR("Mandeep Baines <msb@chromium.org>");
+MODULE_AUTHOR("Will Drewry <wad@chromium.org>");
+MODULE_DESCRIPTION(DM_NAME " target for transparent disk integrity checking");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm-zero.c b/ap/os/linux/linux-3.4.x/drivers/md/dm-zero.c
new file mode 100644
index 0000000..cc2b3cb
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm-zero.c
@@ -0,0 +1,85 @@
+/*
+ * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
+ *
+ * This file is released under the GPL.
+ */
+
+#include <linux/device-mapper.h>
+
+#include <linux/module.h>
+#include <linux/init.h>
+#include <linux/bio.h>
+
+#define DM_MSG_PREFIX "zero"
+
+/*
+ * Construct a dummy mapping that only returns zeros
+ */
+static int zero_ctr(struct dm_target *ti, unsigned int argc, char **argv)
+{
+	if (argc != 0) {
+		ti->error = "No arguments required";
+		return -EINVAL;
+	}
+
+	/*
+	 * Silently drop discards, avoiding -EOPNOTSUPP.
+	 */
+	ti->num_discard_requests = 1;
+
+	return 0;
+}
+
+/*
+ * Return zeros only on reads
+ */
+static int zero_map(struct dm_target *ti, struct bio *bio,
+		      union map_info *map_context)
+{
+	switch(bio_rw(bio)) {
+	case READ:
+		zero_fill_bio(bio);
+		break;
+	case READA:
+		/* readahead of null bytes only wastes buffer cache */
+		return -EIO;
+	case WRITE:
+		/* writes get silently dropped */
+		break;
+	}
+
+	bio_endio(bio, 0);
+
+	/* accepted bio, don't make new request */
+	return DM_MAPIO_SUBMITTED;
+}
+
+static struct target_type zero_target = {
+	.name   = "zero",
+	.version = {1, 0, 0},
+	.module = THIS_MODULE,
+	.ctr    = zero_ctr,
+	.map    = zero_map,
+};
+
+static int __init dm_zero_init(void)
+{
+	int r = dm_register_target(&zero_target);
+
+	if (r < 0)
+		DMERR("register failed %d", r);
+
+	return r;
+}
+
+static void __exit dm_zero_exit(void)
+{
+	dm_unregister_target(&zero_target);
+}
+
+module_init(dm_zero_init)
+module_exit(dm_zero_exit)
+
+MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
+MODULE_DESCRIPTION(DM_NAME " dummy target returning zeros");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm.c b/ap/os/linux/linux-3.4.x/drivers/md/dm.c
new file mode 100644
index 0000000..a335e68
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm.c
@@ -0,0 +1,2800 @@
+/*
+ * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
+ * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm.h"
+#include "dm-uevent.h"
+
+#include <linux/init.h>
+#include <linux/module.h>
+#include <linux/mutex.h>
+#include <linux/moduleparam.h>
+#include <linux/blkpg.h>
+#include <linux/bio.h>
+#include <linux/mempool.h>
+#include <linux/slab.h>
+#include <linux/idr.h>
+#include <linux/hdreg.h>
+#include <linux/delay.h>
+
+#include <trace/events/block.h>
+
+#define DM_MSG_PREFIX "core"
+
+#ifdef CONFIG_PRINTK
+/*
+ * ratelimit state to be used in DMXXX_LIMIT().
+ */
+DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
+		       DEFAULT_RATELIMIT_INTERVAL,
+		       DEFAULT_RATELIMIT_BURST);
+EXPORT_SYMBOL(dm_ratelimit_state);
+#endif
+
+/*
+ * Cookies are numeric values sent with CHANGE and REMOVE
+ * uevents while resuming, removing or renaming the device.
+ */
+#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
+#define DM_COOKIE_LENGTH 24
+
+static const char *_name = DM_NAME;
+
+static unsigned int major = 0;
+static unsigned int _major = 0;
+
+static DEFINE_IDR(_minor_idr);
+
+static DEFINE_SPINLOCK(_minor_lock);
+/*
+ * For bio-based dm.
+ * One of these is allocated per bio.
+ */
+struct dm_io {
+	struct mapped_device *md;
+	int error;
+	atomic_t io_count;
+	struct bio *bio;
+	unsigned long start_time;
+	spinlock_t endio_lock;
+};
+
+/*
+ * For bio-based dm.
+ * One of these is allocated per target within a bio.  Hopefully
+ * this will be simplified out one day.
+ */
+struct dm_target_io {
+	struct dm_io *io;
+	struct dm_target *ti;
+	union map_info info;
+};
+
+/*
+ * For request-based dm.
+ * One of these is allocated per request.
+ */
+struct dm_rq_target_io {
+	struct mapped_device *md;
+	struct dm_target *ti;
+	struct request *orig, clone;
+	int error;
+	union map_info info;
+};
+
+/*
+ * For request-based dm.
+ * One of these is allocated per bio.
+ */
+struct dm_rq_clone_bio_info {
+	struct bio *orig;
+	struct dm_rq_target_io *tio;
+};
+
+union map_info *dm_get_mapinfo(struct bio *bio)
+{
+	if (bio && bio->bi_private)
+		return &((struct dm_target_io *)bio->bi_private)->info;
+	return NULL;
+}
+
+union map_info *dm_get_rq_mapinfo(struct request *rq)
+{
+	if (rq && rq->end_io_data)
+		return &((struct dm_rq_target_io *)rq->end_io_data)->info;
+	return NULL;
+}
+EXPORT_SYMBOL_GPL(dm_get_rq_mapinfo);
+
+#define MINOR_ALLOCED ((void *)-1)
+
+/*
+ * Bits for the md->flags field.
+ */
+#define DMF_BLOCK_IO_FOR_SUSPEND 0
+#define DMF_SUSPENDED 1
+#define DMF_FROZEN 2
+#define DMF_FREEING 3
+#define DMF_DELETING 4
+#define DMF_NOFLUSH_SUSPENDING 5
+#define DMF_MERGE_IS_OPTIONAL 6
+
+/*
+ * Work processed by per-device workqueue.
+ */
+struct mapped_device {
+	struct rw_semaphore io_lock;
+	struct mutex suspend_lock;
+	rwlock_t map_lock;
+	atomic_t holders;
+	atomic_t open_count;
+
+	unsigned long flags;
+
+	struct request_queue *queue;
+	unsigned type;
+	/* Protect queue and type against concurrent access. */
+	struct mutex type_lock;
+
+	struct target_type *immutable_target_type;
+
+	struct gendisk *disk;
+	char name[16];
+
+	void *interface_ptr;
+
+	/*
+	 * A list of ios that arrived while we were suspended.
+	 */
+	atomic_t pending[2];
+	wait_queue_head_t wait;
+	struct work_struct work;
+	struct bio_list deferred;
+	spinlock_t deferred_lock;
+
+	/*
+	 * Processing queue (flush)
+	 */
+	struct workqueue_struct *wq;
+
+	/*
+	 * The current mapping.
+	 */
+	struct dm_table *map;
+
+	/*
+	 * io objects are allocated from here.
+	 */
+	mempool_t *io_pool;
+	mempool_t *tio_pool;
+
+	struct bio_set *bs;
+
+	/*
+	 * Event handling.
+	 */
+	atomic_t event_nr;
+	wait_queue_head_t eventq;
+	atomic_t uevent_seq;
+	struct list_head uevent_list;
+	spinlock_t uevent_lock; /* Protect access to uevent_list */
+
+	/*
+	 * freeze/thaw support require holding onto a super block
+	 */
+	struct super_block *frozen_sb;
+	struct block_device *bdev;
+
+	/* forced geometry settings */
+	struct hd_geometry geometry;
+
+	/* kobject and completion */
+	struct dm_kobject_holder kobj_holder;
+
+	/* zero-length flush that will be cloned and submitted to targets */
+	struct bio flush_bio;
+};
+
+/*
+ * For mempools pre-allocation at the table loading time.
+ */
+struct dm_md_mempools {
+	mempool_t *io_pool;
+	mempool_t *tio_pool;
+	struct bio_set *bs;
+};
+
+#define MIN_IOS 256
+static struct kmem_cache *_io_cache;
+static struct kmem_cache *_tio_cache;
+static struct kmem_cache *_rq_tio_cache;
+static struct kmem_cache *_rq_bio_info_cache;
+
+static int __init local_init(void)
+{
+	int r = -ENOMEM;
+
+	/* allocate a slab for the dm_ios */
+	_io_cache = KMEM_CACHE(dm_io, 0);
+	if (!_io_cache)
+		return r;
+
+	/* allocate a slab for the target ios */
+	_tio_cache = KMEM_CACHE(dm_target_io, 0);
+	if (!_tio_cache)
+		goto out_free_io_cache;
+
+	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
+	if (!_rq_tio_cache)
+		goto out_free_tio_cache;
+
+	_rq_bio_info_cache = KMEM_CACHE(dm_rq_clone_bio_info, 0);
+	if (!_rq_bio_info_cache)
+		goto out_free_rq_tio_cache;
+
+	r = dm_uevent_init();
+	if (r)
+		goto out_free_rq_bio_info_cache;
+
+	_major = major;
+	r = register_blkdev(_major, _name);
+	if (r < 0)
+		goto out_uevent_exit;
+
+	if (!_major)
+		_major = r;
+
+	return 0;
+
+out_uevent_exit:
+	dm_uevent_exit();
+out_free_rq_bio_info_cache:
+	kmem_cache_destroy(_rq_bio_info_cache);
+out_free_rq_tio_cache:
+	kmem_cache_destroy(_rq_tio_cache);
+out_free_tio_cache:
+	kmem_cache_destroy(_tio_cache);
+out_free_io_cache:
+	kmem_cache_destroy(_io_cache);
+
+	return r;
+}
+
+static void local_exit(void)
+{
+	kmem_cache_destroy(_rq_bio_info_cache);
+	kmem_cache_destroy(_rq_tio_cache);
+	kmem_cache_destroy(_tio_cache);
+	kmem_cache_destroy(_io_cache);
+	unregister_blkdev(_major, _name);
+	dm_uevent_exit();
+
+	_major = 0;
+
+	DMINFO("cleaned up");
+}
+
+static int (*_inits[])(void) __initdata = {
+	local_init,
+	dm_target_init,
+	dm_linear_init,
+	dm_stripe_init,
+	dm_io_init,
+	dm_kcopyd_init,
+	dm_interface_init,
+};
+
+static void (*_exits[])(void) = {
+	local_exit,
+	dm_target_exit,
+	dm_linear_exit,
+	dm_stripe_exit,
+	dm_io_exit,
+	dm_kcopyd_exit,
+	dm_interface_exit,
+};
+
+static int __init dm_init(void)
+{
+	const int count = ARRAY_SIZE(_inits);
+
+	int r, i;
+
+	for (i = 0; i < count; i++) {
+		r = _inits[i]();
+		if (r)
+			goto bad;
+	}
+
+	return 0;
+
+      bad:
+	while (i--)
+		_exits[i]();
+
+	return r;
+}
+
+static void __exit dm_exit(void)
+{
+	int i = ARRAY_SIZE(_exits);
+
+	while (i--)
+		_exits[i]();
+
+	/*
+	 * Should be empty by this point.
+	 */
+	idr_remove_all(&_minor_idr);
+	idr_destroy(&_minor_idr);
+}
+
+/*
+ * Block device functions
+ */
+int dm_deleting_md(struct mapped_device *md)
+{
+	return test_bit(DMF_DELETING, &md->flags);
+}
+
+static int dm_blk_open(struct block_device *bdev, fmode_t mode)
+{
+	struct mapped_device *md;
+
+	spin_lock(&_minor_lock);
+
+	md = bdev->bd_disk->private_data;
+	if (!md)
+		goto out;
+
+	if (test_bit(DMF_FREEING, &md->flags) ||
+	    dm_deleting_md(md)) {
+		md = NULL;
+		goto out;
+	}
+
+	dm_get(md);
+	atomic_inc(&md->open_count);
+
+out:
+	spin_unlock(&_minor_lock);
+
+	return md ? 0 : -ENXIO;
+}
+
+static int dm_blk_close(struct gendisk *disk, fmode_t mode)
+{
+	struct mapped_device *md = disk->private_data;
+
+	spin_lock(&_minor_lock);
+
+	atomic_dec(&md->open_count);
+	dm_put(md);
+
+	spin_unlock(&_minor_lock);
+
+	return 0;
+}
+
+int dm_open_count(struct mapped_device *md)
+{
+	return atomic_read(&md->open_count);
+}
+
+/*
+ * Guarantees nothing is using the device before it's deleted.
+ */
+int dm_lock_for_deletion(struct mapped_device *md)
+{
+	int r = 0;
+
+	spin_lock(&_minor_lock);
+
+	if (dm_open_count(md))
+		r = -EBUSY;
+	else
+		set_bit(DMF_DELETING, &md->flags);
+
+	spin_unlock(&_minor_lock);
+
+	return r;
+}
+
+static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
+{
+	struct mapped_device *md = bdev->bd_disk->private_data;
+
+	return dm_get_geometry(md, geo);
+}
+
+static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
+			unsigned int cmd, unsigned long arg)
+{
+	struct mapped_device *md = bdev->bd_disk->private_data;
+	struct dm_table *map = dm_get_live_table(md);
+	struct dm_target *tgt;
+	int r = -ENOTTY;
+
+	if (!map || !dm_table_get_size(map))
+		goto out;
+
+	/* We only support devices that have a single target */
+	if (dm_table_get_num_targets(map) != 1)
+		goto out;
+
+	tgt = dm_table_get_target(map, 0);
+
+	if (dm_suspended_md(md)) {
+		r = -EAGAIN;
+		goto out;
+	}
+
+	if (tgt->type->ioctl)
+		r = tgt->type->ioctl(tgt, cmd, arg);
+
+out:
+	dm_table_put(map);
+
+	return r;
+}
+
+static struct dm_io *alloc_io(struct mapped_device *md)
+{
+	return mempool_alloc(md->io_pool, GFP_NOIO);
+}
+
+static void free_io(struct mapped_device *md, struct dm_io *io)
+{
+	mempool_free(io, md->io_pool);
+}
+
+static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
+{
+	mempool_free(tio, md->tio_pool);
+}
+
+static struct dm_rq_target_io *alloc_rq_tio(struct mapped_device *md,
+					    gfp_t gfp_mask)
+{
+	return mempool_alloc(md->tio_pool, gfp_mask);
+}
+
+static void free_rq_tio(struct dm_rq_target_io *tio)
+{
+	mempool_free(tio, tio->md->tio_pool);
+}
+
+static struct dm_rq_clone_bio_info *alloc_bio_info(struct mapped_device *md)
+{
+	return mempool_alloc(md->io_pool, GFP_ATOMIC);
+}
+
+static void free_bio_info(struct dm_rq_clone_bio_info *info)
+{
+	mempool_free(info, info->tio->md->io_pool);
+}
+
+static int md_in_flight(struct mapped_device *md)
+{
+	return atomic_read(&md->pending[READ]) +
+	       atomic_read(&md->pending[WRITE]);
+}
+
+static void start_io_acct(struct dm_io *io)
+{
+	struct mapped_device *md = io->md;
+	int cpu;
+	int rw = bio_data_dir(io->bio);
+
+	io->start_time = jiffies;
+
+	cpu = part_stat_lock();
+	part_round_stats(cpu, &dm_disk(md)->part0);
+	part_stat_unlock();
+	atomic_set(&dm_disk(md)->part0.in_flight[rw],
+		atomic_inc_return(&md->pending[rw]));
+}
+
+static void end_io_acct(struct dm_io *io)
+{
+	struct mapped_device *md = io->md;
+	struct bio *bio = io->bio;
+	unsigned long duration = jiffies - io->start_time;
+	int pending, cpu;
+	int rw = bio_data_dir(bio);
+
+	cpu = part_stat_lock();
+	part_round_stats(cpu, &dm_disk(md)->part0);
+	part_stat_add(cpu, &dm_disk(md)->part0, ticks[rw], duration);
+	part_stat_unlock();
+
+	/*
+	 * After this is decremented the bio must not be touched if it is
+	 * a flush.
+	 */
+	pending = atomic_dec_return(&md->pending[rw]);
+	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
+	pending += atomic_read(&md->pending[rw^0x1]);
+
+	/* nudge anyone waiting on suspend queue */
+	if (!pending)
+		wake_up(&md->wait);
+}
+
+/*
+ * Add the bio to the list of deferred io.
+ */
+static void queue_io(struct mapped_device *md, struct bio *bio)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&md->deferred_lock, flags);
+	bio_list_add(&md->deferred, bio);
+	spin_unlock_irqrestore(&md->deferred_lock, flags);
+	queue_work(md->wq, &md->work);
+}
+
+/*
+ * Everyone (including functions in this file), should use this
+ * function to access the md->map field, and make sure they call
+ * dm_table_put() when finished.
+ */
+struct dm_table *dm_get_live_table(struct mapped_device *md)
+{
+	struct dm_table *t;
+	unsigned long flags;
+
+	read_lock_irqsave(&md->map_lock, flags);
+	t = md->map;
+	if (t)
+		dm_table_get(t);
+	read_unlock_irqrestore(&md->map_lock, flags);
+
+	return t;
+}
+
+/*
+ * Get the geometry associated with a dm device
+ */
+int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
+{
+	*geo = md->geometry;
+
+	return 0;
+}
+
+/*
+ * Set the geometry of a device.
+ */
+int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
+{
+	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
+
+	if (geo->start > sz) {
+		DMWARN("Start sector is beyond the geometry limits.");
+		return -EINVAL;
+	}
+
+	md->geometry = *geo;
+
+	return 0;
+}
+
+/*-----------------------------------------------------------------
+ * CRUD START:
+ *   A more elegant soln is in the works that uses the queue
+ *   merge fn, unfortunately there are a couple of changes to
+ *   the block layer that I want to make for this.  So in the
+ *   interests of getting something for people to use I give
+ *   you this clearly demarcated crap.
+ *---------------------------------------------------------------*/
+
+static int __noflush_suspending(struct mapped_device *md)
+{
+	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
+}
+
+/*
+ * Decrements the number of outstanding ios that a bio has been
+ * cloned into, completing the original io if necc.
+ */
+static void dec_pending(struct dm_io *io, int error)
+{
+	unsigned long flags;
+	int io_error;
+	struct bio *bio;
+	struct mapped_device *md = io->md;
+
+	/* Push-back supersedes any I/O errors */
+	if (unlikely(error)) {
+		spin_lock_irqsave(&io->endio_lock, flags);
+		if (!(io->error > 0 && __noflush_suspending(md)))
+			io->error = error;
+		spin_unlock_irqrestore(&io->endio_lock, flags);
+	}
+
+	if (atomic_dec_and_test(&io->io_count)) {
+		if (io->error == DM_ENDIO_REQUEUE) {
+			/*
+			 * Target requested pushing back the I/O.
+			 */
+			spin_lock_irqsave(&md->deferred_lock, flags);
+			if (__noflush_suspending(md))
+				bio_list_add_head(&md->deferred, io->bio);
+			else
+				/* noflush suspend was interrupted. */
+				io->error = -EIO;
+			spin_unlock_irqrestore(&md->deferred_lock, flags);
+		}
+
+		io_error = io->error;
+		bio = io->bio;
+		end_io_acct(io);
+		free_io(md, io);
+
+		if (io_error == DM_ENDIO_REQUEUE)
+			return;
+
+		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_size) {
+			/*
+			 * Preflush done for flush with data, reissue
+			 * without REQ_FLUSH.
+			 */
+			bio->bi_rw &= ~REQ_FLUSH;
+			queue_io(md, bio);
+		} else {
+			/* done with normal IO or empty flush */
+			trace_block_bio_complete(md->queue, bio, io_error);
+			bio_endio(bio, io_error);
+		}
+	}
+}
+
+static void clone_endio(struct bio *bio, int error)
+{
+	int r = 0;
+	struct dm_target_io *tio = bio->bi_private;
+	struct dm_io *io = tio->io;
+	struct mapped_device *md = tio->io->md;
+	dm_endio_fn endio = tio->ti->type->end_io;
+
+	if (!bio_flagged(bio, BIO_UPTODATE) && !error)
+		error = -EIO;
+
+	if (endio) {
+		r = endio(tio->ti, bio, error, &tio->info);
+		if (r < 0 || r == DM_ENDIO_REQUEUE)
+			/*
+			 * error and requeue request are handled
+			 * in dec_pending().
+			 */
+			error = r;
+		else if (r == DM_ENDIO_INCOMPLETE)
+			/* The target will handle the io */
+			return;
+		else if (r) {
+			DMWARN("unimplemented target endio return value: %d", r);
+			BUG();
+		}
+	}
+
+	/*
+	 * Store md for cleanup instead of tio which is about to get freed.
+	 */
+	bio->bi_private = md->bs;
+
+	free_tio(md, tio);
+	bio_put(bio);
+	dec_pending(io, error);
+}
+
+/*
+ * Partial completion handling for request-based dm
+ */
+static void end_clone_bio(struct bio *clone, int error)
+{
+	struct dm_rq_clone_bio_info *info = clone->bi_private;
+	struct dm_rq_target_io *tio = info->tio;
+	struct bio *bio = info->orig;
+	unsigned int nr_bytes = info->orig->bi_size;
+
+	bio_put(clone);
+
+	if (tio->error)
+		/*
+		 * An error has already been detected on the request.
+		 * Once error occurred, just let clone->end_io() handle
+		 * the remainder.
+		 */
+		return;
+	else if (error) {
+		/*
+		 * Don't notice the error to the upper layer yet.
+		 * The error handling decision is made by the target driver,
+		 * when the request is completed.
+		 */
+		tio->error = error;
+		return;
+	}
+
+	/*
+	 * I/O for the bio successfully completed.
+	 * Notice the data completion to the upper layer.
+	 */
+
+	/*
+	 * bios are processed from the head of the list.
+	 * So the completing bio should always be rq->bio.
+	 * If it's not, something wrong is happening.
+	 */
+	if (tio->orig->bio != bio)
+		DMERR("bio completion is going in the middle of the request");
+
+	/*
+	 * Update the original request.
+	 * Do not use blk_end_request() here, because it may complete
+	 * the original request before the clone, and break the ordering.
+	 */
+	blk_update_request(tio->orig, 0, nr_bytes);
+}
+
+/*
+ * Don't touch any member of the md after calling this function because
+ * the md may be freed in dm_put() at the end of this function.
+ * Or do dm_get() before calling this function and dm_put() later.
+ */
+static void rq_completed(struct mapped_device *md, int rw, int run_queue)
+{
+	atomic_dec(&md->pending[rw]);
+
+	/* nudge anyone waiting on suspend queue */
+	if (!md_in_flight(md))
+		wake_up(&md->wait);
+
+	/*
+	 * Run this off this callpath, as drivers could invoke end_io while
+	 * inside their request_fn (and holding the queue lock). Calling
+	 * back into ->request_fn() could deadlock attempting to grab the
+	 * queue lock again.
+	 */
+	if (run_queue)
+		blk_run_queue_async(md->queue);
+
+	/*
+	 * dm_put() must be at the end of this function. See the comment above
+	 */
+	dm_put(md);
+}
+
+static void free_rq_clone(struct request *clone)
+{
+	struct dm_rq_target_io *tio = clone->end_io_data;
+
+	blk_rq_unprep_clone(clone);
+	free_rq_tio(tio);
+}
+
+/*
+ * Complete the clone and the original request.
+ * Must be called without queue lock.
+ */
+static void dm_end_request(struct request *clone, int error)
+{
+	int rw = rq_data_dir(clone);
+	struct dm_rq_target_io *tio = clone->end_io_data;
+	struct mapped_device *md = tio->md;
+	struct request *rq = tio->orig;
+
+	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
+		rq->errors = clone->errors;
+		rq->resid_len = clone->resid_len;
+
+		if (rq->sense)
+			/*
+			 * We are using the sense buffer of the original
+			 * request.
+			 * So setting the length of the sense data is enough.
+			 */
+			rq->sense_len = clone->sense_len;
+	}
+
+	free_rq_clone(clone);
+	blk_end_request_all(rq, error);
+	rq_completed(md, rw, true);
+}
+
+static void dm_unprep_request(struct request *rq)
+{
+	struct request *clone = rq->special;
+
+	rq->special = NULL;
+	rq->cmd_flags &= ~REQ_DONTPREP;
+
+	free_rq_clone(clone);
+}
+
+/*
+ * Requeue the original request of a clone.
+ */
+void dm_requeue_unmapped_request(struct request *clone)
+{
+	int rw = rq_data_dir(clone);
+	struct dm_rq_target_io *tio = clone->end_io_data;
+	struct mapped_device *md = tio->md;
+	struct request *rq = tio->orig;
+	struct request_queue *q = rq->q;
+	unsigned long flags;
+
+	dm_unprep_request(rq);
+
+	spin_lock_irqsave(q->queue_lock, flags);
+	blk_requeue_request(q, rq);
+	spin_unlock_irqrestore(q->queue_lock, flags);
+
+	rq_completed(md, rw, 0);
+}
+EXPORT_SYMBOL_GPL(dm_requeue_unmapped_request);
+
+static void __stop_queue(struct request_queue *q)
+{
+	blk_stop_queue(q);
+}
+
+static void stop_queue(struct request_queue *q)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(q->queue_lock, flags);
+	__stop_queue(q);
+	spin_unlock_irqrestore(q->queue_lock, flags);
+}
+
+static void __start_queue(struct request_queue *q)
+{
+	if (blk_queue_stopped(q))
+		blk_start_queue(q);
+}
+
+static void start_queue(struct request_queue *q)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(q->queue_lock, flags);
+	__start_queue(q);
+	spin_unlock_irqrestore(q->queue_lock, flags);
+}
+
+static void dm_done(struct request *clone, int error, bool mapped)
+{
+	int r = error;
+	struct dm_rq_target_io *tio = clone->end_io_data;
+	dm_request_endio_fn rq_end_io = NULL;
+
+	if (tio->ti) {
+		rq_end_io = tio->ti->type->rq_end_io;
+
+		if (mapped && rq_end_io)
+			r = rq_end_io(tio->ti, clone, error, &tio->info);
+	}
+
+	if (r <= 0)
+		/* The target wants to complete the I/O */
+		dm_end_request(clone, r);
+	else if (r == DM_ENDIO_INCOMPLETE)
+		/* The target will handle the I/O */
+		return;
+	else if (r == DM_ENDIO_REQUEUE)
+		/* The target wants to requeue the I/O */
+		dm_requeue_unmapped_request(clone);
+	else {
+		DMWARN("unimplemented target endio return value: %d", r);
+		BUG();
+	}
+}
+
+/*
+ * Request completion handler for request-based dm
+ */
+static void dm_softirq_done(struct request *rq)
+{
+	bool mapped = true;
+	struct request *clone = rq->completion_data;
+	struct dm_rq_target_io *tio = clone->end_io_data;
+
+	if (rq->cmd_flags & REQ_FAILED)
+		mapped = false;
+
+	dm_done(clone, tio->error, mapped);
+}
+
+/*
+ * Complete the clone and the original request with the error status
+ * through softirq context.
+ */
+static void dm_complete_request(struct request *clone, int error)
+{
+	struct dm_rq_target_io *tio = clone->end_io_data;
+	struct request *rq = tio->orig;
+
+	tio->error = error;
+	rq->completion_data = clone;
+	blk_complete_request(rq);
+}
+
+/*
+ * Complete the not-mapped clone and the original request with the error status
+ * through softirq context.
+ * Target's rq_end_io() function isn't called.
+ * This may be used when the target's map_rq() function fails.
+ */
+void dm_kill_unmapped_request(struct request *clone, int error)
+{
+	struct dm_rq_target_io *tio = clone->end_io_data;
+	struct request *rq = tio->orig;
+
+	rq->cmd_flags |= REQ_FAILED;
+	dm_complete_request(clone, error);
+}
+EXPORT_SYMBOL_GPL(dm_kill_unmapped_request);
+
+/*
+ * Called with the queue lock held
+ */
+static void end_clone_request(struct request *clone, int error)
+{
+	/*
+	 * For just cleaning up the information of the queue in which
+	 * the clone was dispatched.
+	 * The clone is *NOT* freed actually here because it is alloced from
+	 * dm own mempool and REQ_ALLOCED isn't set in clone->cmd_flags.
+	 */
+	__blk_put_request(clone->q, clone);
+
+	/*
+	 * Actual request completion is done in a softirq context which doesn't
+	 * hold the queue lock.  Otherwise, deadlock could occur because:
+	 *     - another request may be submitted by the upper level driver
+	 *       of the stacking during the completion
+	 *     - the submission which requires queue lock may be done
+	 *       against this queue
+	 */
+	dm_complete_request(clone, error);
+}
+
+/*
+ * Return maximum size of I/O possible at the supplied sector up to the current
+ * target boundary.
+ */
+static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
+{
+	sector_t target_offset = dm_target_offset(ti, sector);
+
+	return ti->len - target_offset;
+}
+
+static sector_t max_io_len(sector_t sector, struct dm_target *ti)
+{
+	sector_t len = max_io_len_target_boundary(sector, ti);
+
+	/*
+	 * Does the target need to split even further ?
+	 */
+	if (ti->split_io) {
+		sector_t boundary;
+		sector_t offset = dm_target_offset(ti, sector);
+		boundary = ((offset + ti->split_io) & ~(ti->split_io - 1))
+			   - offset;
+		if (len > boundary)
+			len = boundary;
+	}
+
+	return len;
+}
+
+static void __map_bio(struct dm_target *ti, struct bio *clone,
+		      struct dm_target_io *tio)
+{
+	int r;
+	sector_t sector;
+	struct mapped_device *md;
+
+	clone->bi_end_io = clone_endio;
+	clone->bi_private = tio;
+
+	/*
+	 * Map the clone.  If r == 0 we don't need to do
+	 * anything, the target has assumed ownership of
+	 * this io.
+	 */
+	atomic_inc(&tio->io->io_count);
+	sector = clone->bi_sector;
+	r = ti->type->map(ti, clone, &tio->info);
+	if (r == DM_MAPIO_REMAPPED) {
+		/* the bio has been remapped so dispatch it */
+
+		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
+				      tio->io->bio->bi_bdev->bd_dev, sector);
+
+		generic_make_request(clone);
+	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
+		/* error the io and bail out, or requeue it if needed */
+		md = tio->io->md;
+		dec_pending(tio->io, r);
+		/*
+		 * Store bio_set for cleanup.
+		 */
+		clone->bi_end_io = NULL;
+		clone->bi_private = md->bs;
+		bio_put(clone);
+		free_tio(md, tio);
+	} else if (r) {
+		DMWARN("unimplemented target map return value: %d", r);
+		BUG();
+	}
+}
+
+struct clone_info {
+	struct mapped_device *md;
+	struct dm_table *map;
+	struct bio *bio;
+	struct dm_io *io;
+	sector_t sector;
+	sector_t sector_count;
+	unsigned short idx;
+};
+
+static void dm_bio_destructor(struct bio *bio)
+{
+	struct bio_set *bs = bio->bi_private;
+
+	bio_free(bio, bs);
+}
+
+/*
+ * Creates a little bio that just does part of a bvec.
+ */
+static struct bio *split_bvec(struct bio *bio, sector_t sector,
+			      unsigned short idx, unsigned int offset,
+			      unsigned int len, struct bio_set *bs)
+{
+	struct bio *clone;
+	struct bio_vec *bv = bio->bi_io_vec + idx;
+
+	clone = bio_alloc_bioset(GFP_NOIO, 1, bs);
+	clone->bi_destructor = dm_bio_destructor;
+	*clone->bi_io_vec = *bv;
+
+	clone->bi_sector = sector;
+	clone->bi_bdev = bio->bi_bdev;
+	clone->bi_rw = bio->bi_rw;
+	clone->bi_vcnt = 1;
+	clone->bi_size = to_bytes(len);
+	clone->bi_io_vec->bv_offset = offset;
+	clone->bi_io_vec->bv_len = clone->bi_size;
+	clone->bi_flags |= 1 << BIO_CLONED;
+
+	if (bio_integrity(bio)) {
+		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
+		bio_integrity_trim(clone,
+				   bio_sector_offset(bio, idx, offset), len);
+	}
+
+	return clone;
+}
+
+/*
+ * Creates a bio that consists of range of complete bvecs.
+ */
+static struct bio *clone_bio(struct bio *bio, sector_t sector,
+			     unsigned short idx, unsigned short bv_count,
+			     unsigned int len, struct bio_set *bs)
+{
+	struct bio *clone;
+
+	clone = bio_alloc_bioset(GFP_NOIO, bio->bi_max_vecs, bs);
+	__bio_clone(clone, bio);
+	clone->bi_destructor = dm_bio_destructor;
+	clone->bi_sector = sector;
+	clone->bi_idx = idx;
+	clone->bi_vcnt = idx + bv_count;
+	clone->bi_size = to_bytes(len);
+	clone->bi_flags &= ~(1 << BIO_SEG_VALID);
+
+	if (bio_integrity(bio)) {
+		bio_integrity_clone(clone, bio, GFP_NOIO, bs);
+
+		if (idx != bio->bi_idx || clone->bi_size < bio->bi_size)
+			bio_integrity_trim(clone,
+					   bio_sector_offset(bio, idx, 0), len);
+	}
+
+	return clone;
+}
+
+static struct dm_target_io *alloc_tio(struct clone_info *ci,
+				      struct dm_target *ti)
+{
+	struct dm_target_io *tio = mempool_alloc(ci->md->tio_pool, GFP_NOIO);
+
+	tio->io = ci->io;
+	tio->ti = ti;
+	memset(&tio->info, 0, sizeof(tio->info));
+
+	return tio;
+}
+
+static void __issue_target_request(struct clone_info *ci, struct dm_target *ti,
+				   unsigned request_nr, sector_t len)
+{
+	struct dm_target_io *tio = alloc_tio(ci, ti);
+	struct bio *clone;
+
+	tio->info.target_request_nr = request_nr;
+
+	/*
+	 * Discard requests require the bio's inline iovecs be initialized.
+	 * ci->bio->bi_max_vecs is BIO_INLINE_VECS anyway, for both flush
+	 * and discard, so no need for concern about wasted bvec allocations.
+	 */
+	clone = bio_alloc_bioset(GFP_NOIO, ci->bio->bi_max_vecs, ci->md->bs);
+	__bio_clone(clone, ci->bio);
+	clone->bi_destructor = dm_bio_destructor;
+	if (len) {
+		clone->bi_sector = ci->sector;
+		clone->bi_size = to_bytes(len);
+	}
+
+	__map_bio(ti, clone, tio);
+}
+
+static void __issue_target_requests(struct clone_info *ci, struct dm_target *ti,
+				    unsigned num_requests, sector_t len)
+{
+	unsigned request_nr;
+
+	for (request_nr = 0; request_nr < num_requests; request_nr++)
+		__issue_target_request(ci, ti, request_nr, len);
+}
+
+static int __clone_and_map_empty_flush(struct clone_info *ci)
+{
+	unsigned target_nr = 0;
+	struct dm_target *ti;
+
+	BUG_ON(bio_has_data(ci->bio));
+	while ((ti = dm_table_get_target(ci->map, target_nr++)))
+		__issue_target_requests(ci, ti, ti->num_flush_requests, 0);
+
+	return 0;
+}
+
+/*
+ * Perform all io with a single clone.
+ */
+static void __clone_and_map_simple(struct clone_info *ci, struct dm_target *ti)
+{
+	struct bio *clone, *bio = ci->bio;
+	struct dm_target_io *tio;
+
+	tio = alloc_tio(ci, ti);
+	clone = clone_bio(bio, ci->sector, ci->idx,
+			  bio->bi_vcnt - ci->idx, ci->sector_count,
+			  ci->md->bs);
+	__map_bio(ti, clone, tio);
+	ci->sector_count = 0;
+}
+
+static int __clone_and_map_discard(struct clone_info *ci)
+{
+	struct dm_target *ti;
+	sector_t len;
+
+	do {
+		ti = dm_table_find_target(ci->map, ci->sector);
+		if (!dm_target_is_valid(ti))
+			return -EIO;
+
+		/*
+		 * Even though the device advertised discard support,
+		 * that does not mean every target supports it, and
+		 * reconfiguration might also have changed that since the
+		 * check was performed.
+		 */
+		if (!ti->num_discard_requests)
+			return -EOPNOTSUPP;
+
+		len = min(ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
+
+		__issue_target_requests(ci, ti, ti->num_discard_requests, len);
+
+		ci->sector += len;
+	} while (ci->sector_count -= len);
+
+	return 0;
+}
+
+static int __clone_and_map(struct clone_info *ci)
+{
+	struct bio *clone, *bio = ci->bio;
+	struct dm_target *ti;
+	sector_t len = 0, max;
+	struct dm_target_io *tio;
+
+	if (unlikely(bio->bi_rw & REQ_DISCARD))
+		return __clone_and_map_discard(ci);
+
+	ti = dm_table_find_target(ci->map, ci->sector);
+	if (!dm_target_is_valid(ti))
+		return -EIO;
+
+	max = max_io_len(ci->sector, ti);
+
+	if (ci->sector_count <= max) {
+		/*
+		 * Optimise for the simple case where we can do all of
+		 * the remaining io with a single clone.
+		 */
+		__clone_and_map_simple(ci, ti);
+
+	} else if (to_sector(bio->bi_io_vec[ci->idx].bv_len) <= max) {
+		/*
+		 * There are some bvecs that don't span targets.
+		 * Do as many of these as possible.
+		 */
+		int i;
+		sector_t remaining = max;
+		sector_t bv_len;
+
+		for (i = ci->idx; remaining && (i < bio->bi_vcnt); i++) {
+			bv_len = to_sector(bio->bi_io_vec[i].bv_len);
+
+			if (bv_len > remaining)
+				break;
+
+			remaining -= bv_len;
+			len += bv_len;
+		}
+
+		tio = alloc_tio(ci, ti);
+		clone = clone_bio(bio, ci->sector, ci->idx, i - ci->idx, len,
+				  ci->md->bs);
+		__map_bio(ti, clone, tio);
+
+		ci->sector += len;
+		ci->sector_count -= len;
+		ci->idx = i;
+
+	} else {
+		/*
+		 * Handle a bvec that must be split between two or more targets.
+		 */
+		struct bio_vec *bv = bio->bi_io_vec + ci->idx;
+		sector_t remaining = to_sector(bv->bv_len);
+		unsigned int offset = 0;
+
+		do {
+			if (offset) {
+				ti = dm_table_find_target(ci->map, ci->sector);
+				if (!dm_target_is_valid(ti))
+					return -EIO;
+
+				max = max_io_len(ci->sector, ti);
+			}
+
+			len = min(remaining, max);
+
+			tio = alloc_tio(ci, ti);
+			clone = split_bvec(bio, ci->sector, ci->idx,
+					   bv->bv_offset + offset, len,
+					   ci->md->bs);
+
+			__map_bio(ti, clone, tio);
+
+			ci->sector += len;
+			ci->sector_count -= len;
+			offset += to_bytes(len);
+		} while (remaining -= len);
+
+		ci->idx++;
+	}
+
+	return 0;
+}
+
+/*
+ * Split the bio into several clones and submit it to targets.
+ */
+static void __split_and_process_bio(struct mapped_device *md, struct bio *bio)
+{
+	struct clone_info ci;
+	int error = 0;
+
+	ci.map = dm_get_live_table(md);
+	if (unlikely(!ci.map)) {
+		bio_io_error(bio);
+		return;
+	}
+
+	ci.md = md;
+	ci.io = alloc_io(md);
+	ci.io->error = 0;
+	atomic_set(&ci.io->io_count, 1);
+	ci.io->bio = bio;
+	ci.io->md = md;
+	spin_lock_init(&ci.io->endio_lock);
+	ci.sector = bio->bi_sector;
+	ci.idx = bio->bi_idx;
+
+	start_io_acct(ci.io);
+	if (bio->bi_rw & REQ_FLUSH) {
+		ci.bio = &ci.md->flush_bio;
+		ci.sector_count = 0;
+		error = __clone_and_map_empty_flush(&ci);
+		/* dec_pending submits any data associated with flush */
+	} else {
+		ci.bio = bio;
+		ci.sector_count = bio_sectors(bio);
+		while (ci.sector_count && !error)
+			error = __clone_and_map(&ci);
+	}
+
+	/* drop the extra reference count */
+	dec_pending(ci.io, error);
+	dm_table_put(ci.map);
+}
+/*-----------------------------------------------------------------
+ * CRUD END
+ *---------------------------------------------------------------*/
+
+static int dm_merge_bvec(struct request_queue *q,
+			 struct bvec_merge_data *bvm,
+			 struct bio_vec *biovec)
+{
+	struct mapped_device *md = q->queuedata;
+	struct dm_table *map = dm_get_live_table(md);
+	struct dm_target *ti;
+	sector_t max_sectors;
+	int max_size = 0;
+
+	if (unlikely(!map))
+		goto out;
+
+	ti = dm_table_find_target(map, bvm->bi_sector);
+	if (!dm_target_is_valid(ti))
+		goto out_table;
+
+	/*
+	 * Find maximum amount of I/O that won't need splitting
+	 */
+	max_sectors = min(max_io_len(bvm->bi_sector, ti),
+			  (sector_t) BIO_MAX_SECTORS);
+	max_size = (max_sectors << SECTOR_SHIFT) - bvm->bi_size;
+	if (max_size < 0)
+		max_size = 0;
+
+	/*
+	 * merge_bvec_fn() returns number of bytes
+	 * it can accept at this offset
+	 * max is precomputed maximal io size
+	 */
+	if (max_size && ti->type->merge)
+		max_size = ti->type->merge(ti, bvm, biovec, max_size);
+	/*
+	 * If the target doesn't support merge method and some of the devices
+	 * provided their merge_bvec method (we know this by looking at
+	 * queue_max_hw_sectors), then we can't allow bios with multiple vector
+	 * entries.  So always set max_size to 0, and the code below allows
+	 * just one page.
+	 */
+	else if (queue_max_hw_sectors(q) <= PAGE_SIZE >> 9)
+
+		max_size = 0;
+
+out_table:
+	dm_table_put(map);
+
+out:
+	/*
+	 * Always allow an entire first page
+	 */
+	if (max_size <= biovec->bv_len && !(bvm->bi_size >> SECTOR_SHIFT))
+		max_size = biovec->bv_len;
+
+	return max_size;
+}
+
+/*
+ * The request function that just remaps the bio built up by
+ * dm_merge_bvec.
+ */
+static void _dm_request(struct request_queue *q, struct bio *bio)
+{
+	int rw = bio_data_dir(bio);
+	struct mapped_device *md = q->queuedata;
+	int cpu;
+
+	down_read(&md->io_lock);
+
+	cpu = part_stat_lock();
+	part_stat_inc(cpu, &dm_disk(md)->part0, ios[rw]);
+	part_stat_add(cpu, &dm_disk(md)->part0, sectors[rw], bio_sectors(bio));
+	part_stat_unlock();
+
+	/* if we're suspended, we have to queue this io for later */
+	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
+		up_read(&md->io_lock);
+
+		if (bio_rw(bio) != READA)
+			queue_io(md, bio);
+		else
+			bio_io_error(bio);
+		return;
+	}
+
+	__split_and_process_bio(md, bio);
+	up_read(&md->io_lock);
+	return;
+}
+
+static int dm_request_based(struct mapped_device *md)
+{
+	return blk_queue_stackable(md->queue);
+}
+
+static void dm_request(struct request_queue *q, struct bio *bio)
+{
+	struct mapped_device *md = q->queuedata;
+
+	if (dm_request_based(md))
+		blk_queue_bio(q, bio);
+	else
+		_dm_request(q, bio);
+}
+
+void dm_dispatch_request(struct request *rq)
+{
+	int r;
+
+	if (blk_queue_io_stat(rq->q))
+		rq->cmd_flags |= REQ_IO_STAT;
+
+	rq->start_time = jiffies;
+	r = blk_insert_cloned_request(rq->q, rq);
+	if (r)
+		dm_complete_request(rq, r);
+}
+EXPORT_SYMBOL_GPL(dm_dispatch_request);
+
+static void dm_rq_bio_destructor(struct bio *bio)
+{
+	struct dm_rq_clone_bio_info *info = bio->bi_private;
+	struct mapped_device *md = info->tio->md;
+
+	free_bio_info(info);
+	bio_free(bio, md->bs);
+}
+
+static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
+				 void *data)
+{
+	struct dm_rq_target_io *tio = data;
+	struct mapped_device *md = tio->md;
+	struct dm_rq_clone_bio_info *info = alloc_bio_info(md);
+
+	if (!info)
+		return -ENOMEM;
+
+	info->orig = bio_orig;
+	info->tio = tio;
+	bio->bi_end_io = end_clone_bio;
+	bio->bi_private = info;
+	bio->bi_destructor = dm_rq_bio_destructor;
+
+	return 0;
+}
+
+static int setup_clone(struct request *clone, struct request *rq,
+		       struct dm_rq_target_io *tio)
+{
+	int r;
+
+	r = blk_rq_prep_clone(clone, rq, tio->md->bs, GFP_ATOMIC,
+			      dm_rq_bio_constructor, tio);
+	if (r)
+		return r;
+
+	clone->cmd = rq->cmd;
+	clone->cmd_len = rq->cmd_len;
+	clone->sense = rq->sense;
+	clone->buffer = rq->buffer;
+	clone->end_io = end_clone_request;
+	clone->end_io_data = tio;
+
+	return 0;
+}
+
+static struct request *clone_rq(struct request *rq, struct mapped_device *md,
+				gfp_t gfp_mask)
+{
+	struct request *clone;
+	struct dm_rq_target_io *tio;
+
+	tio = alloc_rq_tio(md, gfp_mask);
+	if (!tio)
+		return NULL;
+
+	tio->md = md;
+	tio->ti = NULL;
+	tio->orig = rq;
+	tio->error = 0;
+	memset(&tio->info, 0, sizeof(tio->info));
+
+	clone = &tio->clone;
+	if (setup_clone(clone, rq, tio)) {
+		/* -ENOMEM */
+		free_rq_tio(tio);
+		return NULL;
+	}
+
+	return clone;
+}
+
+/*
+ * Called with the queue lock held.
+ */
+static int dm_prep_fn(struct request_queue *q, struct request *rq)
+{
+	struct mapped_device *md = q->queuedata;
+	struct request *clone;
+
+	if (unlikely(rq->special)) {
+		DMWARN("Already has something in rq->special.");
+		return BLKPREP_KILL;
+	}
+
+	clone = clone_rq(rq, md, GFP_ATOMIC);
+	if (!clone)
+		return BLKPREP_DEFER;
+
+	rq->special = clone;
+	rq->cmd_flags |= REQ_DONTPREP;
+
+	return BLKPREP_OK;
+}
+
+/*
+ * Returns:
+ * 0  : the request has been processed (not requeued)
+ * !0 : the request has been requeued
+ */
+static int map_request(struct dm_target *ti, struct request *clone,
+		       struct mapped_device *md)
+{
+	int r, requeued = 0;
+	struct dm_rq_target_io *tio = clone->end_io_data;
+
+	tio->ti = ti;
+	r = ti->type->map_rq(ti, clone, &tio->info);
+	switch (r) {
+	case DM_MAPIO_SUBMITTED:
+		/* The target has taken the I/O to submit by itself later */
+		break;
+	case DM_MAPIO_REMAPPED:
+		/* The target has remapped the I/O so dispatch it */
+		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
+				     blk_rq_pos(tio->orig));
+		dm_dispatch_request(clone);
+		break;
+	case DM_MAPIO_REQUEUE:
+		/* The target wants to requeue the I/O */
+		dm_requeue_unmapped_request(clone);
+		requeued = 1;
+		break;
+	default:
+		if (r > 0) {
+			DMWARN("unimplemented target map return value: %d", r);
+			BUG();
+		}
+
+		/* The target wants to complete the I/O */
+		dm_kill_unmapped_request(clone, r);
+		break;
+	}
+
+	return requeued;
+}
+
+static struct request *dm_start_request(struct mapped_device *md, struct request *orig)
+{
+	struct request *clone;
+
+	blk_start_request(orig);
+	clone = orig->special;
+	atomic_inc(&md->pending[rq_data_dir(clone)]);
+
+	/*
+	 * Hold the md reference here for the in-flight I/O.
+	 * We can't rely on the reference count by device opener,
+	 * because the device may be closed during the request completion
+	 * when all bios are completed.
+	 * See the comment in rq_completed() too.
+	 */
+	dm_get(md);
+
+	return clone;
+}
+
+/*
+ * q->request_fn for request-based dm.
+ * Called with the queue lock held.
+ */
+static void dm_request_fn(struct request_queue *q)
+{
+	struct mapped_device *md = q->queuedata;
+	struct dm_table *map = dm_get_live_table(md);
+	struct dm_target *ti;
+	struct request *rq, *clone;
+	sector_t pos;
+
+	/*
+	 * For suspend, check blk_queue_stopped() and increment
+	 * ->pending within a single queue_lock not to increment the
+	 * number of in-flight I/Os after the queue is stopped in
+	 * dm_suspend().
+	 */
+	while (!blk_queue_stopped(q)) {
+		rq = blk_peek_request(q);
+		if (!rq)
+			goto delay_and_out;
+
+		/* always use block 0 to find the target for flushes for now */
+		pos = 0;
+		if (!(rq->cmd_flags & REQ_FLUSH))
+			pos = blk_rq_pos(rq);
+
+		ti = dm_table_find_target(map, pos);
+		if (!dm_target_is_valid(ti)) {
+			/*
+			 * Must perform setup, that dm_done() requires,
+			 * before calling dm_kill_unmapped_request
+			 */
+			DMERR_LIMIT("request attempted access beyond the end of device");
+			clone = dm_start_request(md, rq);
+			dm_kill_unmapped_request(clone, -EIO);
+			continue;
+		}
+
+		if (ti->type->busy && ti->type->busy(ti))
+			goto delay_and_out;
+
+		clone = dm_start_request(md, rq);
+
+		spin_unlock(q->queue_lock);
+		if (map_request(ti, clone, md))
+			goto requeued;
+
+		BUG_ON_NONRT(!irqs_disabled());
+		spin_lock(q->queue_lock);
+	}
+
+	goto out;
+
+requeued:
+	BUG_ON_NONRT(!irqs_disabled());
+	spin_lock(q->queue_lock);
+
+delay_and_out:
+	blk_delay_queue(q, HZ / 10);
+out:
+	dm_table_put(map);
+}
+
+int dm_underlying_device_busy(struct request_queue *q)
+{
+	return blk_lld_busy(q);
+}
+EXPORT_SYMBOL_GPL(dm_underlying_device_busy);
+
+static int dm_lld_busy(struct request_queue *q)
+{
+	int r;
+	struct mapped_device *md = q->queuedata;
+	struct dm_table *map = dm_get_live_table(md);
+
+	if (!map || test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))
+		r = 1;
+	else
+		r = dm_table_any_busy_target(map);
+
+	dm_table_put(map);
+
+	return r;
+}
+
+static int dm_any_congested(void *congested_data, int bdi_bits)
+{
+	int r = bdi_bits;
+	struct mapped_device *md = congested_data;
+	struct dm_table *map;
+
+	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
+		map = dm_get_live_table(md);
+		if (map) {
+			/*
+			 * Request-based dm cares about only own queue for
+			 * the query about congestion status of request_queue
+			 */
+			if (dm_request_based(md))
+				r = md->queue->backing_dev_info.state &
+				    bdi_bits;
+			else
+				r = dm_table_any_congested(map, bdi_bits);
+
+			dm_table_put(map);
+		}
+	}
+
+	return r;
+}
+
+/*-----------------------------------------------------------------
+ * An IDR is used to keep track of allocated minor numbers.
+ *---------------------------------------------------------------*/
+static void free_minor(int minor)
+{
+	spin_lock(&_minor_lock);
+	idr_remove(&_minor_idr, minor);
+	spin_unlock(&_minor_lock);
+}
+
+/*
+ * See if the device with a specific minor # is free.
+ */
+static int specific_minor(int minor)
+{
+	int r, m;
+
+	if (minor >= (1 << MINORBITS))
+		return -EINVAL;
+
+	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
+	if (!r)
+		return -ENOMEM;
+
+	spin_lock(&_minor_lock);
+
+	if (idr_find(&_minor_idr, minor)) {
+		r = -EBUSY;
+		goto out;
+	}
+
+	r = idr_get_new_above(&_minor_idr, MINOR_ALLOCED, minor, &m);
+	if (r)
+		goto out;
+
+	if (m != minor) {
+		idr_remove(&_minor_idr, m);
+		r = -EBUSY;
+		goto out;
+	}
+
+out:
+	spin_unlock(&_minor_lock);
+	return r;
+}
+
+static int next_free_minor(int *minor)
+{
+	int r, m;
+
+	r = idr_pre_get(&_minor_idr, GFP_KERNEL);
+	if (!r)
+		return -ENOMEM;
+
+	spin_lock(&_minor_lock);
+
+	r = idr_get_new(&_minor_idr, MINOR_ALLOCED, &m);
+	if (r)
+		goto out;
+
+	if (m >= (1 << MINORBITS)) {
+		idr_remove(&_minor_idr, m);
+		r = -ENOSPC;
+		goto out;
+	}
+
+	*minor = m;
+
+out:
+	spin_unlock(&_minor_lock);
+	return r;
+}
+
+static const struct block_device_operations dm_blk_dops;
+
+static void dm_wq_work(struct work_struct *work);
+
+static void dm_init_md_queue(struct mapped_device *md)
+{
+	/*
+	 * Request-based dm devices cannot be stacked on top of bio-based dm
+	 * devices.  The type of this dm device has not been decided yet.
+	 * The type is decided at the first table loading time.
+	 * To prevent problematic device stacking, clear the queue flag
+	 * for request stacking support until then.
+	 *
+	 * This queue is new, so no concurrency on the queue_flags.
+	 */
+	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
+
+	md->queue->queuedata = md;
+	md->queue->backing_dev_info.congested_fn = dm_any_congested;
+	md->queue->backing_dev_info.congested_data = md;
+	blk_queue_make_request(md->queue, dm_request);
+	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
+	blk_queue_merge_bvec(md->queue, dm_merge_bvec);
+}
+
+/*
+ * Allocate and initialise a blank device with a given minor.
+ */
+static struct mapped_device *alloc_dev(int minor)
+{
+	int r;
+	struct mapped_device *md = kzalloc(sizeof(*md), GFP_KERNEL);
+	void *old_md;
+
+	if (!md) {
+		DMWARN("unable to allocate device, out of memory.");
+		return NULL;
+	}
+
+	if (!try_module_get(THIS_MODULE))
+		goto bad_module_get;
+
+	/* get a minor number for the dev */
+	if (minor == DM_ANY_MINOR)
+		r = next_free_minor(&minor);
+	else
+		r = specific_minor(minor);
+	if (r < 0)
+		goto bad_minor;
+
+	md->type = DM_TYPE_NONE;
+	init_rwsem(&md->io_lock);
+	mutex_init(&md->suspend_lock);
+	mutex_init(&md->type_lock);
+	spin_lock_init(&md->deferred_lock);
+	rwlock_init(&md->map_lock);
+	atomic_set(&md->holders, 1);
+	atomic_set(&md->open_count, 0);
+	atomic_set(&md->event_nr, 0);
+	atomic_set(&md->uevent_seq, 0);
+	INIT_LIST_HEAD(&md->uevent_list);
+	spin_lock_init(&md->uevent_lock);
+
+	md->queue = blk_alloc_queue(GFP_KERNEL);
+	if (!md->queue)
+		goto bad_queue;
+
+	dm_init_md_queue(md);
+
+	md->disk = alloc_disk(1);
+	if (!md->disk)
+		goto bad_disk;
+
+	atomic_set(&md->pending[0], 0);
+	atomic_set(&md->pending[1], 0);
+	init_waitqueue_head(&md->wait);
+	INIT_WORK(&md->work, dm_wq_work);
+	init_waitqueue_head(&md->eventq);
+	init_completion(&md->kobj_holder.completion);
+
+	md->disk->major = _major;
+	md->disk->first_minor = minor;
+	md->disk->fops = &dm_blk_dops;
+	md->disk->queue = md->queue;
+	md->disk->private_data = md;
+	sprintf(md->disk->disk_name, "dm-%d", minor);
+	add_disk(md->disk);
+	format_dev_t(md->name, MKDEV(_major, minor));
+
+	md->wq = alloc_workqueue("kdmflush",
+				 WQ_NON_REENTRANT | WQ_MEM_RECLAIM, 0);
+	if (!md->wq)
+		goto bad_thread;
+
+	md->bdev = bdget_disk(md->disk, 0);
+	if (!md->bdev)
+		goto bad_bdev;
+
+	bio_init(&md->flush_bio);
+	md->flush_bio.bi_bdev = md->bdev;
+	md->flush_bio.bi_rw = WRITE_FLUSH;
+
+	/* Populate the mapping, nobody knows we exist yet */
+	spin_lock(&_minor_lock);
+	old_md = idr_replace(&_minor_idr, md, minor);
+	spin_unlock(&_minor_lock);
+
+	BUG_ON(old_md != MINOR_ALLOCED);
+
+	return md;
+
+bad_bdev:
+	destroy_workqueue(md->wq);
+bad_thread:
+	del_gendisk(md->disk);
+	put_disk(md->disk);
+bad_disk:
+	blk_cleanup_queue(md->queue);
+bad_queue:
+	free_minor(minor);
+bad_minor:
+	module_put(THIS_MODULE);
+bad_module_get:
+	kfree(md);
+	return NULL;
+}
+
+static void unlock_fs(struct mapped_device *md);
+
+static void free_dev(struct mapped_device *md)
+{
+	int minor = MINOR(disk_devt(md->disk));
+
+	unlock_fs(md);
+	bdput(md->bdev);
+	destroy_workqueue(md->wq);
+	if (md->tio_pool)
+		mempool_destroy(md->tio_pool);
+	if (md->io_pool)
+		mempool_destroy(md->io_pool);
+	if (md->bs)
+		bioset_free(md->bs);
+	blk_integrity_unregister(md->disk);
+	del_gendisk(md->disk);
+	free_minor(minor);
+
+	spin_lock(&_minor_lock);
+	md->disk->private_data = NULL;
+	spin_unlock(&_minor_lock);
+
+	put_disk(md->disk);
+	blk_cleanup_queue(md->queue);
+	module_put(THIS_MODULE);
+	kfree(md);
+}
+
+static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
+{
+	struct dm_md_mempools *p;
+
+	if (md->io_pool && md->tio_pool && md->bs)
+		/* the md already has necessary mempools */
+		goto out;
+
+	p = dm_table_get_md_mempools(t);
+	BUG_ON(!p || md->io_pool || md->tio_pool || md->bs);
+
+	md->io_pool = p->io_pool;
+	p->io_pool = NULL;
+	md->tio_pool = p->tio_pool;
+	p->tio_pool = NULL;
+	md->bs = p->bs;
+	p->bs = NULL;
+
+out:
+	/* mempool bind completed, now no need any mempools in the table */
+	dm_table_free_md_mempools(t);
+}
+
+/*
+ * Bind a table to the device.
+ */
+static void event_callback(void *context)
+{
+	unsigned long flags;
+	LIST_HEAD(uevents);
+	struct mapped_device *md = (struct mapped_device *) context;
+
+	spin_lock_irqsave(&md->uevent_lock, flags);
+	list_splice_init(&md->uevent_list, &uevents);
+	spin_unlock_irqrestore(&md->uevent_lock, flags);
+
+	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
+
+	atomic_inc(&md->event_nr);
+	wake_up(&md->eventq);
+}
+
+/*
+ * Protected by md->suspend_lock obtained by dm_swap_table().
+ */
+static void __set_size(struct mapped_device *md, sector_t size)
+{
+	set_capacity(md->disk, size);
+
+	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
+}
+
+/*
+ * Return 1 if the queue has a compulsory merge_bvec_fn function.
+ *
+ * If this function returns 0, then the device is either a non-dm
+ * device without a merge_bvec_fn, or it is a dm device that is
+ * able to split any bios it receives that are too big.
+ */
+int dm_queue_merge_is_compulsory(struct request_queue *q)
+{
+	struct mapped_device *dev_md;
+
+	if (!q->merge_bvec_fn)
+		return 0;
+
+	if (q->make_request_fn == dm_request) {
+		dev_md = q->queuedata;
+		if (test_bit(DMF_MERGE_IS_OPTIONAL, &dev_md->flags))
+			return 0;
+	}
+
+	return 1;
+}
+
+static int dm_device_merge_is_compulsory(struct dm_target *ti,
+					 struct dm_dev *dev, sector_t start,
+					 sector_t len, void *data)
+{
+	struct block_device *bdev = dev->bdev;
+	struct request_queue *q = bdev_get_queue(bdev);
+
+	return dm_queue_merge_is_compulsory(q);
+}
+
+/*
+ * Return 1 if it is acceptable to ignore merge_bvec_fn based
+ * on the properties of the underlying devices.
+ */
+static int dm_table_merge_is_optional(struct dm_table *table)
+{
+	unsigned i = 0;
+	struct dm_target *ti;
+
+	while (i < dm_table_get_num_targets(table)) {
+		ti = dm_table_get_target(table, i++);
+
+		if (ti->type->iterate_devices &&
+		    ti->type->iterate_devices(ti, dm_device_merge_is_compulsory, NULL))
+			return 0;
+	}
+
+	return 1;
+}
+
+/*
+ * Returns old map, which caller must destroy.
+ */
+static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
+			       struct queue_limits *limits)
+{
+	struct dm_table *old_map;
+	struct request_queue *q = md->queue;
+	sector_t size;
+	unsigned long flags;
+	int merge_is_optional;
+
+	size = dm_table_get_size(t);
+
+	/*
+	 * Wipe any geometry if the size of the table changed.
+	 */
+	if (size != get_capacity(md->disk))
+		memset(&md->geometry, 0, sizeof(md->geometry));
+
+	__set_size(md, size);
+
+	dm_table_event_callback(t, event_callback, md);
+
+	/*
+	 * The queue hasn't been stopped yet, if the old table type wasn't
+	 * for request-based during suspension.  So stop it to prevent
+	 * I/O mapping before resume.
+	 * This must be done before setting the queue restrictions,
+	 * because request-based dm may be run just after the setting.
+	 */
+	if (dm_table_request_based(t) && !blk_queue_stopped(q))
+		stop_queue(q);
+
+	__bind_mempools(md, t);
+
+	merge_is_optional = dm_table_merge_is_optional(t);
+
+	write_lock_irqsave(&md->map_lock, flags);
+	old_map = md->map;
+	md->map = t;
+	md->immutable_target_type = dm_table_get_immutable_target_type(t);
+
+	dm_table_set_restrictions(t, q, limits);
+	if (merge_is_optional)
+		set_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
+	else
+		clear_bit(DMF_MERGE_IS_OPTIONAL, &md->flags);
+	write_unlock_irqrestore(&md->map_lock, flags);
+
+	return old_map;
+}
+
+/*
+ * Returns unbound table for the caller to free.
+ */
+static struct dm_table *__unbind(struct mapped_device *md)
+{
+	struct dm_table *map = md->map;
+	unsigned long flags;
+
+	if (!map)
+		return NULL;
+
+	dm_table_event_callback(map, NULL, NULL);
+	write_lock_irqsave(&md->map_lock, flags);
+	md->map = NULL;
+	write_unlock_irqrestore(&md->map_lock, flags);
+
+	return map;
+}
+
+/*
+ * Constructor for a new device.
+ */
+int dm_create(int minor, struct mapped_device **result)
+{
+	struct mapped_device *md;
+
+	md = alloc_dev(minor);
+	if (!md)
+		return -ENXIO;
+
+	dm_sysfs_init(md);
+
+	*result = md;
+	return 0;
+}
+
+/*
+ * Functions to manage md->type.
+ * All are required to hold md->type_lock.
+ */
+void dm_lock_md_type(struct mapped_device *md)
+{
+	mutex_lock(&md->type_lock);
+}
+
+void dm_unlock_md_type(struct mapped_device *md)
+{
+	mutex_unlock(&md->type_lock);
+}
+
+void dm_set_md_type(struct mapped_device *md, unsigned type)
+{
+	md->type = type;
+}
+
+unsigned dm_get_md_type(struct mapped_device *md)
+{
+	return md->type;
+}
+
+struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
+{
+	return md->immutable_target_type;
+}
+
+/*
+ * Fully initialize a request-based queue (->elevator, ->request_fn, etc).
+ */
+static int dm_init_request_based_queue(struct mapped_device *md)
+{
+	struct request_queue *q = NULL;
+
+	if (md->queue->elevator)
+		return 1;
+
+	/* Fully initialize the queue */
+	q = blk_init_allocated_queue(md->queue, dm_request_fn, NULL);
+	if (!q)
+		return 0;
+
+	md->queue = q;
+	dm_init_md_queue(md);
+	blk_queue_softirq_done(md->queue, dm_softirq_done);
+	blk_queue_prep_rq(md->queue, dm_prep_fn);
+	blk_queue_lld_busy(md->queue, dm_lld_busy);
+
+	elv_register_queue(md->queue);
+
+	return 1;
+}
+
+/*
+ * Setup the DM device's queue based on md's type
+ */
+int dm_setup_md_queue(struct mapped_device *md)
+{
+	if ((dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) &&
+	    !dm_init_request_based_queue(md)) {
+		DMWARN("Cannot initialize queue for request-based mapped device");
+		return -EINVAL;
+	}
+
+	return 0;
+}
+
+struct mapped_device *dm_get_md(dev_t dev)
+{
+	struct mapped_device *md;
+	unsigned minor = MINOR(dev);
+
+	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
+		return NULL;
+
+	spin_lock(&_minor_lock);
+
+	md = idr_find(&_minor_idr, minor);
+	if (md) {
+		if ((md == MINOR_ALLOCED ||
+		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
+		     dm_deleting_md(md) ||
+		     test_bit(DMF_FREEING, &md->flags))) {
+			md = NULL;
+			goto out;
+		}
+		dm_get(md);
+	}
+
+out:
+	spin_unlock(&_minor_lock);
+
+	return md;
+}
+EXPORT_SYMBOL_GPL(dm_get_md);
+
+void *dm_get_mdptr(struct mapped_device *md)
+{
+	return md->interface_ptr;
+}
+
+void dm_set_mdptr(struct mapped_device *md, void *ptr)
+{
+	md->interface_ptr = ptr;
+}
+
+void dm_get(struct mapped_device *md)
+{
+	atomic_inc(&md->holders);
+	BUG_ON(test_bit(DMF_FREEING, &md->flags));
+}
+
+const char *dm_device_name(struct mapped_device *md)
+{
+	return md->name;
+}
+EXPORT_SYMBOL_GPL(dm_device_name);
+
+static void __dm_destroy(struct mapped_device *md, bool wait)
+{
+	struct dm_table *map;
+
+	might_sleep();
+
+	spin_lock(&_minor_lock);
+	map = dm_get_live_table(md);
+	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
+	set_bit(DMF_FREEING, &md->flags);
+	spin_unlock(&_minor_lock);
+
+	/*
+	 * Take suspend_lock so that presuspend and postsuspend methods
+	 * do not race with internal suspend.
+	 */
+	mutex_lock(&md->suspend_lock);
+	if (!dm_suspended_md(md)) {
+		dm_table_presuspend_targets(map);
+		dm_table_postsuspend_targets(map);
+	}
+	mutex_unlock(&md->suspend_lock);
+
+	/*
+	 * Rare, but there may be I/O requests still going to complete,
+	 * for example.  Wait for all references to disappear.
+	 * No one should increment the reference count of the mapped_device,
+	 * after the mapped_device state becomes DMF_FREEING.
+	 */
+	if (wait)
+		while (atomic_read(&md->holders))
+			msleep(1);
+	else if (atomic_read(&md->holders))
+		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
+		       dm_device_name(md), atomic_read(&md->holders));
+
+	dm_sysfs_exit(md);
+	dm_table_put(map);
+	dm_table_destroy(__unbind(md));
+	free_dev(md);
+}
+
+void dm_destroy(struct mapped_device *md)
+{
+	__dm_destroy(md, true);
+}
+
+void dm_destroy_immediate(struct mapped_device *md)
+{
+	__dm_destroy(md, false);
+}
+
+void dm_put(struct mapped_device *md)
+{
+	atomic_dec(&md->holders);
+}
+EXPORT_SYMBOL_GPL(dm_put);
+
+static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
+{
+	int r = 0;
+	DECLARE_WAITQUEUE(wait, current);
+
+	add_wait_queue(&md->wait, &wait);
+
+	while (1) {
+		set_current_state(interruptible);
+
+		if (!md_in_flight(md))
+			break;
+
+		if (interruptible == TASK_INTERRUPTIBLE &&
+		    signal_pending(current)) {
+			r = -EINTR;
+			break;
+		}
+
+		io_schedule();
+	}
+	set_current_state(TASK_RUNNING);
+
+	remove_wait_queue(&md->wait, &wait);
+
+	return r;
+}
+
+/*
+ * Process the deferred bios
+ */
+static void dm_wq_work(struct work_struct *work)
+{
+	struct mapped_device *md = container_of(work, struct mapped_device,
+						work);
+	struct bio *c;
+
+	down_read(&md->io_lock);
+
+	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
+		spin_lock_irq(&md->deferred_lock);
+		c = bio_list_pop(&md->deferred);
+		spin_unlock_irq(&md->deferred_lock);
+
+		if (!c)
+			break;
+
+		up_read(&md->io_lock);
+
+		if (dm_request_based(md))
+			generic_make_request(c);
+		else
+			__split_and_process_bio(md, c);
+
+		down_read(&md->io_lock);
+	}
+
+	up_read(&md->io_lock);
+}
+
+static void dm_queue_flush(struct mapped_device *md)
+{
+	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
+	smp_mb__after_clear_bit();
+	queue_work(md->wq, &md->work);
+}
+
+/*
+ * Swap in a new table, returning the old one for the caller to destroy.
+ */
+struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
+{
+	struct dm_table *map = ERR_PTR(-EINVAL);
+	struct queue_limits limits;
+	int r;
+
+	mutex_lock(&md->suspend_lock);
+
+	/* device must be suspended */
+	if (!dm_suspended_md(md))
+		goto out;
+
+	r = dm_calculate_queue_limits(table, &limits);
+	if (r) {
+		map = ERR_PTR(r);
+		goto out;
+	}
+
+	map = __bind(md, table, &limits);
+
+out:
+	mutex_unlock(&md->suspend_lock);
+	return map;
+}
+
+/*
+ * Functions to lock and unlock any filesystem running on the
+ * device.
+ */
+static int lock_fs(struct mapped_device *md)
+{
+	int r;
+
+	WARN_ON(md->frozen_sb);
+
+	md->frozen_sb = freeze_bdev(md->bdev);
+	if (IS_ERR(md->frozen_sb)) {
+		r = PTR_ERR(md->frozen_sb);
+		md->frozen_sb = NULL;
+		return r;
+	}
+
+	set_bit(DMF_FROZEN, &md->flags);
+
+	return 0;
+}
+
+static void unlock_fs(struct mapped_device *md)
+{
+	if (!test_bit(DMF_FROZEN, &md->flags))
+		return;
+
+	thaw_bdev(md->bdev, md->frozen_sb);
+	md->frozen_sb = NULL;
+	clear_bit(DMF_FROZEN, &md->flags);
+}
+
+/*
+ * We need to be able to change a mapping table under a mounted
+ * filesystem.  For example we might want to move some data in
+ * the background.  Before the table can be swapped with
+ * dm_bind_table, dm_suspend must be called to flush any in
+ * flight bios and ensure that any further io gets deferred.
+ */
+/*
+ * Suspend mechanism in request-based dm.
+ *
+ * 1. Flush all I/Os by lock_fs() if needed.
+ * 2. Stop dispatching any I/O by stopping the request_queue.
+ * 3. Wait for all in-flight I/Os to be completed or requeued.
+ *
+ * To abort suspend, start the request_queue.
+ */
+int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
+{
+	struct dm_table *map = NULL;
+	int r = 0;
+	int do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG ? 1 : 0;
+	int noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG ? 1 : 0;
+
+	mutex_lock(&md->suspend_lock);
+
+	if (dm_suspended_md(md)) {
+		r = -EINVAL;
+		goto out_unlock;
+	}
+
+	map = dm_get_live_table(md);
+
+	/*
+	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
+	 * This flag is cleared before dm_suspend returns.
+	 */
+	if (noflush)
+		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
+
+	/* This does not get reverted if there's an error later. */
+	dm_table_presuspend_targets(map);
+
+	/*
+	 * Flush I/O to the device.
+	 * Any I/O submitted after lock_fs() may not be flushed.
+	 * noflush takes precedence over do_lockfs.
+	 * (lock_fs() flushes I/Os and waits for them to complete.)
+	 */
+	if (!noflush && do_lockfs) {
+		r = lock_fs(md);
+		if (r)
+			goto out;
+	}
+
+	/*
+	 * Here we must make sure that no processes are submitting requests
+	 * to target drivers i.e. no one may be executing
+	 * __split_and_process_bio. This is called from dm_request and
+	 * dm_wq_work.
+	 *
+	 * To get all processes out of __split_and_process_bio in dm_request,
+	 * we take the write lock. To prevent any process from reentering
+	 * __split_and_process_bio from dm_request and quiesce the thread
+	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
+	 * flush_workqueue(md->wq).
+	 */
+	down_write(&md->io_lock);
+	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
+	up_write(&md->io_lock);
+
+	/*
+	 * Stop md->queue before flushing md->wq in case request-based
+	 * dm defers requests to md->wq from md->queue.
+	 */
+	if (dm_request_based(md))
+		stop_queue(md->queue);
+
+	flush_workqueue(md->wq);
+
+	/*
+	 * At this point no more requests are entering target request routines.
+	 * We call dm_wait_for_completion to wait for all existing requests
+	 * to finish.
+	 */
+	r = dm_wait_for_completion(md, TASK_INTERRUPTIBLE);
+
+	down_write(&md->io_lock);
+	if (noflush)
+		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
+	up_write(&md->io_lock);
+
+	/* were we interrupted ? */
+	if (r < 0) {
+		dm_queue_flush(md);
+
+		if (dm_request_based(md))
+			start_queue(md->queue);
+
+		unlock_fs(md);
+		goto out; /* pushback list is already flushed, so skip flush */
+	}
+
+	/*
+	 * If dm_wait_for_completion returned 0, the device is completely
+	 * quiescent now. There is no request-processing activity. All new
+	 * requests are being added to md->deferred list.
+	 */
+
+	set_bit(DMF_SUSPENDED, &md->flags);
+
+	dm_table_postsuspend_targets(map);
+
+out:
+	dm_table_put(map);
+
+out_unlock:
+	mutex_unlock(&md->suspend_lock);
+	return r;
+}
+
+int dm_resume(struct mapped_device *md)
+{
+	int r = -EINVAL;
+	struct dm_table *map = NULL;
+
+	mutex_lock(&md->suspend_lock);
+	if (!dm_suspended_md(md))
+		goto out;
+
+	map = dm_get_live_table(md);
+	if (!map || !dm_table_get_size(map))
+		goto out;
+
+	r = dm_table_resume_targets(map);
+	if (r)
+		goto out;
+
+	dm_queue_flush(md);
+
+	/*
+	 * Flushing deferred I/Os must be done after targets are resumed
+	 * so that mapping of targets can work correctly.
+	 * Request-based dm is queueing the deferred I/Os in its request_queue.
+	 */
+	if (dm_request_based(md))
+		start_queue(md->queue);
+
+	unlock_fs(md);
+
+	clear_bit(DMF_SUSPENDED, &md->flags);
+
+	r = 0;
+out:
+	dm_table_put(map);
+	mutex_unlock(&md->suspend_lock);
+
+	return r;
+}
+
+/*-----------------------------------------------------------------
+ * Event notification.
+ *---------------------------------------------------------------*/
+int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
+		       unsigned cookie)
+{
+	char udev_cookie[DM_COOKIE_LENGTH];
+	char *envp[] = { udev_cookie, NULL };
+
+	if (!cookie)
+		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
+	else {
+		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
+			 DM_COOKIE_ENV_VAR_NAME, cookie);
+		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
+					  action, envp);
+	}
+}
+
+uint32_t dm_next_uevent_seq(struct mapped_device *md)
+{
+	return atomic_add_return(1, &md->uevent_seq);
+}
+
+uint32_t dm_get_event_nr(struct mapped_device *md)
+{
+	return atomic_read(&md->event_nr);
+}
+
+int dm_wait_event(struct mapped_device *md, int event_nr)
+{
+	return wait_event_interruptible(md->eventq,
+			(event_nr != atomic_read(&md->event_nr)));
+}
+
+void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&md->uevent_lock, flags);
+	list_add(elist, &md->uevent_list);
+	spin_unlock_irqrestore(&md->uevent_lock, flags);
+}
+
+/*
+ * The gendisk is only valid as long as you have a reference
+ * count on 'md'.
+ */
+struct gendisk *dm_disk(struct mapped_device *md)
+{
+	return md->disk;
+}
+
+struct kobject *dm_kobject(struct mapped_device *md)
+{
+	return &md->kobj_holder.kobj;
+}
+
+struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
+{
+	struct mapped_device *md;
+
+	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
+
+	if (test_bit(DMF_FREEING, &md->flags) ||
+	    dm_deleting_md(md))
+		return NULL;
+
+	dm_get(md);
+	return md;
+}
+
+int dm_suspended_md(struct mapped_device *md)
+{
+	return test_bit(DMF_SUSPENDED, &md->flags);
+}
+
+int dm_suspended(struct dm_target *ti)
+{
+	return dm_suspended_md(dm_table_get_md(ti->table));
+}
+EXPORT_SYMBOL_GPL(dm_suspended);
+
+int dm_noflush_suspending(struct dm_target *ti)
+{
+	return __noflush_suspending(dm_table_get_md(ti->table));
+}
+EXPORT_SYMBOL_GPL(dm_noflush_suspending);
+
+struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity)
+{
+	struct dm_md_mempools *pools = kmalloc(sizeof(*pools), GFP_KERNEL);
+	unsigned int pool_size = (type == DM_TYPE_BIO_BASED) ? 16 : MIN_IOS;
+
+	if (!pools)
+		return NULL;
+
+	pools->io_pool = (type == DM_TYPE_BIO_BASED) ?
+			 mempool_create_slab_pool(MIN_IOS, _io_cache) :
+			 mempool_create_slab_pool(MIN_IOS, _rq_bio_info_cache);
+	if (!pools->io_pool)
+		goto free_pools_and_out;
+
+	pools->tio_pool = (type == DM_TYPE_BIO_BASED) ?
+			  mempool_create_slab_pool(MIN_IOS, _tio_cache) :
+			  mempool_create_slab_pool(MIN_IOS, _rq_tio_cache);
+	if (!pools->tio_pool)
+		goto free_io_pool_and_out;
+
+	pools->bs = bioset_create(pool_size, 0);
+	if (!pools->bs)
+		goto free_tio_pool_and_out;
+
+	if (integrity && bioset_integrity_create(pools->bs, pool_size))
+		goto free_bioset_and_out;
+
+	return pools;
+
+free_bioset_and_out:
+	bioset_free(pools->bs);
+
+free_tio_pool_and_out:
+	mempool_destroy(pools->tio_pool);
+
+free_io_pool_and_out:
+	mempool_destroy(pools->io_pool);
+
+free_pools_and_out:
+	kfree(pools);
+
+	return NULL;
+}
+
+void dm_free_md_mempools(struct dm_md_mempools *pools)
+{
+	if (!pools)
+		return;
+
+	if (pools->io_pool)
+		mempool_destroy(pools->io_pool);
+
+	if (pools->tio_pool)
+		mempool_destroy(pools->tio_pool);
+
+	if (pools->bs)
+		bioset_free(pools->bs);
+
+	kfree(pools);
+}
+
+static const struct block_device_operations dm_blk_dops = {
+	.open = dm_blk_open,
+	.release = dm_blk_close,
+	.ioctl = dm_blk_ioctl,
+	.getgeo = dm_blk_getgeo,
+	.owner = THIS_MODULE
+};
+
+EXPORT_SYMBOL(dm_get_mapinfo);
+
+/*
+ * module hooks
+ */
+module_init(dm_init);
+module_exit(dm_exit);
+
+module_param(major, uint, 0);
+MODULE_PARM_DESC(major, "The major number of the device mapper");
+MODULE_DESCRIPTION(DM_NAME " driver");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_LICENSE("GPL");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/dm.h b/ap/os/linux/linux-3.4.x/drivers/md/dm.h
new file mode 100644
index 0000000..9db80c9
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/dm.h
@@ -0,0 +1,176 @@
+/*
+ * Internal header file for device mapper
+ *
+ * Copyright (C) 2001, 2002 Sistina Software
+ * Copyright (C) 2004-2006 Red Hat, Inc. All rights reserved.
+ *
+ * This file is released under the LGPL.
+ */
+
+#ifndef DM_INTERNAL_H
+#define DM_INTERNAL_H
+
+#include <linux/fs.h>
+#include <linux/device-mapper.h>
+#include <linux/list.h>
+#include <linux/blkdev.h>
+#include <linux/hdreg.h>
+#include <linux/completion.h>
+#include <linux/kobject.h>
+
+/*
+ * Suspend feature flags
+ */
+#define DM_SUSPEND_LOCKFS_FLAG		(1 << 0)
+#define DM_SUSPEND_NOFLUSH_FLAG		(1 << 1)
+
+/*
+ * Type of table and mapped_device's mempool
+ */
+#define DM_TYPE_NONE		0
+#define DM_TYPE_BIO_BASED	1
+#define DM_TYPE_REQUEST_BASED	2
+
+/*
+ * List of devices that a metadevice uses and should open/close.
+ */
+struct dm_dev_internal {
+	struct list_head list;
+	atomic_t count;
+	struct dm_dev dm_dev;
+};
+
+struct dm_table;
+struct dm_md_mempools;
+
+/*-----------------------------------------------------------------
+ * Internal table functions.
+ *---------------------------------------------------------------*/
+void dm_table_destroy(struct dm_table *t);
+void dm_table_event_callback(struct dm_table *t,
+			     void (*fn)(void *), void *context);
+struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index);
+struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector);
+int dm_calculate_queue_limits(struct dm_table *table,
+			      struct queue_limits *limits);
+void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
+			       struct queue_limits *limits);
+struct list_head *dm_table_get_devices(struct dm_table *t);
+void dm_table_presuspend_targets(struct dm_table *t);
+void dm_table_postsuspend_targets(struct dm_table *t);
+int dm_table_resume_targets(struct dm_table *t);
+int dm_table_any_congested(struct dm_table *t, int bdi_bits);
+int dm_table_any_busy_target(struct dm_table *t);
+unsigned dm_table_get_type(struct dm_table *t);
+struct target_type *dm_table_get_immutable_target_type(struct dm_table *t);
+bool dm_table_request_based(struct dm_table *t);
+bool dm_table_supports_discards(struct dm_table *t);
+int dm_table_alloc_md_mempools(struct dm_table *t);
+void dm_table_free_md_mempools(struct dm_table *t);
+struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t);
+
+int dm_queue_merge_is_compulsory(struct request_queue *q);
+
+void dm_lock_md_type(struct mapped_device *md);
+void dm_unlock_md_type(struct mapped_device *md);
+void dm_set_md_type(struct mapped_device *md, unsigned type);
+unsigned dm_get_md_type(struct mapped_device *md);
+struct target_type *dm_get_immutable_target_type(struct mapped_device *md);
+
+int dm_setup_md_queue(struct mapped_device *md);
+
+/*
+ * To check the return value from dm_table_find_target().
+ */
+#define dm_target_is_valid(t) ((t)->table)
+
+/*
+ * To check whether the target type is request-based or not (bio-based).
+ */
+#define dm_target_request_based(t) ((t)->type->map_rq != NULL)
+
+/*-----------------------------------------------------------------
+ * A registry of target types.
+ *---------------------------------------------------------------*/
+int dm_target_init(void);
+void dm_target_exit(void);
+struct target_type *dm_get_target_type(const char *name);
+void dm_put_target_type(struct target_type *tt);
+int dm_target_iterate(void (*iter_func)(struct target_type *tt,
+					void *param), void *param);
+
+int dm_split_args(int *argc, char ***argvp, char *input);
+
+/*
+ * Is this mapped_device being deleted?
+ */
+int dm_deleting_md(struct mapped_device *md);
+
+/*
+ * Is this mapped_device suspended?
+ */
+int dm_suspended_md(struct mapped_device *md);
+
+/*
+ * The device-mapper can be driven through one of two interfaces;
+ * ioctl or filesystem, depending which patch you have applied.
+ */
+int dm_interface_init(void);
+void dm_interface_exit(void);
+
+/*
+ * sysfs interface
+ */
+struct dm_kobject_holder {
+	struct kobject kobj;
+	struct completion completion;
+};
+
+static inline struct completion *dm_get_completion_from_kobject(struct kobject *kobj)
+{
+	return &container_of(kobj, struct dm_kobject_holder, kobj)->completion;
+}
+
+int dm_sysfs_init(struct mapped_device *md);
+void dm_sysfs_exit(struct mapped_device *md);
+struct kobject *dm_kobject(struct mapped_device *md);
+struct mapped_device *dm_get_from_kobject(struct kobject *kobj);
+
+/*
+ * The kobject helper
+ */
+void dm_kobject_release(struct kobject *kobj);
+
+/*
+ * Targets for linear and striped mappings
+ */
+int dm_linear_init(void);
+void dm_linear_exit(void);
+
+int dm_stripe_init(void);
+void dm_stripe_exit(void);
+
+/*
+ * mapped_device operations
+ */
+void dm_destroy(struct mapped_device *md);
+void dm_destroy_immediate(struct mapped_device *md);
+int dm_open_count(struct mapped_device *md);
+int dm_lock_for_deletion(struct mapped_device *md);
+
+int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
+		      unsigned cookie);
+
+int dm_io_init(void);
+void dm_io_exit(void);
+
+int dm_kcopyd_init(void);
+void dm_kcopyd_exit(void);
+
+/*
+ * Mempool operations
+ */
+struct dm_md_mempools *dm_alloc_md_mempools(unsigned type, unsigned integrity);
+void dm_free_md_mempools(struct dm_md_mempools *pools);
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/faulty.c b/ap/os/linux/linux-3.4.x/drivers/md/faulty.c
new file mode 100644
index 0000000..45135f6
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/faulty.c
@@ -0,0 +1,367 @@
+/*
+ * faulty.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 2004 Neil Brown
+ *
+ * fautly-device-simulator personality for md
+ *
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * You should have received a copy of the GNU General Public License
+ * (for example /usr/src/linux/COPYING); if not, write to the Free
+ * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+
+/*
+ * The "faulty" personality causes some requests to fail.
+ *
+ * Possible failure modes are:
+ *   reads fail "randomly" but succeed on retry
+ *   writes fail "randomly" but succeed on retry
+ *   reads for some address fail and then persist until a write
+ *   reads for some address fail and then persist irrespective of write
+ *   writes for some address fail and persist
+ *   all writes fail
+ *
+ * Different modes can be active at a time, but only
+ * one can be set at array creation.  Others can be added later.
+ * A mode can be one-shot or recurrent with the recurrence being
+ * once in every N requests.
+ * The bottom 5 bits of the "layout" indicate the mode.  The
+ * remainder indicate a period, or 0 for one-shot.
+ *
+ * There is an implementation limit on the number of concurrently
+ * persisting-faulty blocks. When a new fault is requested that would
+ * exceed the limit, it is ignored.
+ * All current faults can be clear using a layout of "0".
+ *
+ * Requests are always sent to the device.  If they are to fail,
+ * we clone the bio and insert a new b_end_io into the chain.
+ */
+
+#define	WriteTransient	0
+#define	ReadTransient	1
+#define	WritePersistent	2
+#define	ReadPersistent	3
+#define	WriteAll	4 /* doesn't go to device */
+#define	ReadFixable	5
+#define	Modes	6
+
+#define	ClearErrors	31
+#define	ClearFaults	30
+
+#define AllPersist	100 /* internal use only */
+#define	NoPersist	101
+
+#define	ModeMask	0x1f
+#define	ModeShift	5
+
+#define MaxFault	50
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/raid/md_u.h>
+#include <linux/slab.h>
+#include "md.h"
+#include <linux/seq_file.h>
+
+
+static void faulty_fail(struct bio *bio, int error)
+{
+	struct bio *b = bio->bi_private;
+
+	b->bi_size = bio->bi_size;
+	b->bi_sector = bio->bi_sector;
+
+	bio_put(bio);
+
+	bio_io_error(b);
+}
+
+struct faulty_conf {
+	int period[Modes];
+	atomic_t counters[Modes];
+	sector_t faults[MaxFault];
+	int	modes[MaxFault];
+	int nfaults;
+	struct md_rdev *rdev;
+};
+
+static int check_mode(struct faulty_conf *conf, int mode)
+{
+	if (conf->period[mode] == 0 &&
+	    atomic_read(&conf->counters[mode]) <= 0)
+		return 0; /* no failure, no decrement */
+
+
+	if (atomic_dec_and_test(&conf->counters[mode])) {
+		if (conf->period[mode])
+			atomic_set(&conf->counters[mode], conf->period[mode]);
+		return 1;
+	}
+	return 0;
+}
+
+static int check_sector(struct faulty_conf *conf, sector_t start, sector_t end, int dir)
+{
+	/* If we find a ReadFixable sector, we fix it ... */
+	int i;
+	for (i=0; i<conf->nfaults; i++)
+		if (conf->faults[i] >= start &&
+		    conf->faults[i] < end) {
+			/* found it ... */
+			switch (conf->modes[i] * 2 + dir) {
+			case WritePersistent*2+WRITE: return 1;
+			case ReadPersistent*2+READ: return 1;
+			case ReadFixable*2+READ: return 1;
+			case ReadFixable*2+WRITE:
+				conf->modes[i] = NoPersist;
+				return 0;
+			case AllPersist*2+READ:
+			case AllPersist*2+WRITE: return 1;
+			default:
+				return 0;
+			}
+		}
+	return 0;
+}
+
+static void add_sector(struct faulty_conf *conf, sector_t start, int mode)
+{
+	int i;
+	int n = conf->nfaults;
+	for (i=0; i<conf->nfaults; i++)
+		if (conf->faults[i] == start) {
+			switch(mode) {
+			case NoPersist: conf->modes[i] = mode; return;
+			case WritePersistent:
+				if (conf->modes[i] == ReadPersistent ||
+				    conf->modes[i] == ReadFixable)
+					conf->modes[i] = AllPersist;
+				else
+					conf->modes[i] = WritePersistent;
+				return;
+			case ReadPersistent:
+				if (conf->modes[i] == WritePersistent)
+					conf->modes[i] = AllPersist;
+				else
+					conf->modes[i] = ReadPersistent;
+				return;
+			case ReadFixable:
+				if (conf->modes[i] == WritePersistent ||
+				    conf->modes[i] == ReadPersistent)
+					conf->modes[i] = AllPersist;
+				else
+					conf->modes[i] = ReadFixable;
+				return;
+			}
+		} else if (conf->modes[i] == NoPersist)
+			n = i;
+
+	if (n >= MaxFault)
+		return;
+	conf->faults[n] = start;
+	conf->modes[n] = mode;
+	if (conf->nfaults == n)
+		conf->nfaults = n+1;
+}
+
+static void make_request(struct mddev *mddev, struct bio *bio)
+{
+	struct faulty_conf *conf = mddev->private;
+	int failit = 0;
+
+	if (bio_data_dir(bio) == WRITE) {
+		/* write request */
+		if (atomic_read(&conf->counters[WriteAll])) {
+			/* special case - don't decrement, don't generic_make_request,
+			 * just fail immediately
+			 */
+			bio_endio(bio, -EIO);
+			return;
+		}
+
+		if (check_sector(conf, bio->bi_sector, bio->bi_sector+(bio->bi_size>>9),
+				 WRITE))
+			failit = 1;
+		if (check_mode(conf, WritePersistent)) {
+			add_sector(conf, bio->bi_sector, WritePersistent);
+			failit = 1;
+		}
+		if (check_mode(conf, WriteTransient))
+			failit = 1;
+	} else {
+		/* read request */
+		if (check_sector(conf, bio->bi_sector, bio->bi_sector + (bio->bi_size>>9),
+				 READ))
+			failit = 1;
+		if (check_mode(conf, ReadTransient))
+			failit = 1;
+		if (check_mode(conf, ReadPersistent)) {
+			add_sector(conf, bio->bi_sector, ReadPersistent);
+			failit = 1;
+		}
+		if (check_mode(conf, ReadFixable)) {
+			add_sector(conf, bio->bi_sector, ReadFixable);
+			failit = 1;
+		}
+	}
+	if (failit) {
+		struct bio *b = bio_clone_mddev(bio, GFP_NOIO, mddev);
+
+		b->bi_bdev = conf->rdev->bdev;
+		b->bi_private = bio;
+		b->bi_end_io = faulty_fail;
+		bio = b;
+	} else
+		bio->bi_bdev = conf->rdev->bdev;
+
+	generic_make_request(bio);
+}
+
+static void status(struct seq_file *seq, struct mddev *mddev)
+{
+	struct faulty_conf *conf = mddev->private;
+	int n;
+
+	if ((n=atomic_read(&conf->counters[WriteTransient])) != 0)
+		seq_printf(seq, " WriteTransient=%d(%d)",
+			   n, conf->period[WriteTransient]);
+
+	if ((n=atomic_read(&conf->counters[ReadTransient])) != 0)
+		seq_printf(seq, " ReadTransient=%d(%d)",
+			   n, conf->period[ReadTransient]);
+
+	if ((n=atomic_read(&conf->counters[WritePersistent])) != 0)
+		seq_printf(seq, " WritePersistent=%d(%d)",
+			   n, conf->period[WritePersistent]);
+
+	if ((n=atomic_read(&conf->counters[ReadPersistent])) != 0)
+		seq_printf(seq, " ReadPersistent=%d(%d)",
+			   n, conf->period[ReadPersistent]);
+
+
+	if ((n=atomic_read(&conf->counters[ReadFixable])) != 0)
+		seq_printf(seq, " ReadFixable=%d(%d)",
+			   n, conf->period[ReadFixable]);
+
+	if ((n=atomic_read(&conf->counters[WriteAll])) != 0)
+		seq_printf(seq, " WriteAll");
+
+	seq_printf(seq, " nfaults=%d", conf->nfaults);
+}
+
+
+static int reshape(struct mddev *mddev)
+{
+	int mode = mddev->new_layout & ModeMask;
+	int count = mddev->new_layout >> ModeShift;
+	struct faulty_conf *conf = mddev->private;
+
+	if (mddev->new_layout < 0)
+		return 0;
+
+	/* new layout */
+	if (mode == ClearFaults)
+		conf->nfaults = 0;
+	else if (mode == ClearErrors) {
+		int i;
+		for (i=0 ; i < Modes ; i++) {
+			conf->period[i] = 0;
+			atomic_set(&conf->counters[i], 0);
+		}
+	} else if (mode < Modes) {
+		conf->period[mode] = count;
+		if (!count) count++;
+		atomic_set(&conf->counters[mode], count);
+	} else
+		return -EINVAL;
+	mddev->new_layout = -1;
+	mddev->layout = -1; /* makes sure further changes come through */
+	return 0;
+}
+
+static sector_t faulty_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+	WARN_ONCE(raid_disks,
+		  "%s does not support generic reshape\n", __func__);
+
+	if (sectors == 0)
+		return mddev->dev_sectors;
+
+	return sectors;
+}
+
+static int run(struct mddev *mddev)
+{
+	struct md_rdev *rdev;
+	int i;
+	struct faulty_conf *conf;
+
+	if (md_check_no_bitmap(mddev))
+		return -EINVAL;
+
+	conf = kmalloc(sizeof(*conf), GFP_KERNEL);
+	if (!conf)
+		return -ENOMEM;
+
+	for (i=0; i<Modes; i++) {
+		atomic_set(&conf->counters[i], 0);
+		conf->period[i] = 0;
+	}
+	conf->nfaults = 0;
+
+	rdev_for_each(rdev, mddev)
+		conf->rdev = rdev;
+
+	md_set_array_sectors(mddev, faulty_size(mddev, 0, 0));
+	mddev->private = conf;
+
+	reshape(mddev);
+
+	return 0;
+}
+
+static int stop(struct mddev *mddev)
+{
+	struct faulty_conf *conf = mddev->private;
+
+	kfree(conf);
+	mddev->private = NULL;
+	return 0;
+}
+
+static struct md_personality faulty_personality =
+{
+	.name		= "faulty",
+	.level		= LEVEL_FAULTY,
+	.owner		= THIS_MODULE,
+	.make_request	= make_request,
+	.run		= run,
+	.stop		= stop,
+	.status		= status,
+	.check_reshape	= reshape,
+	.size		= faulty_size,
+};
+
+static int __init raid_init(void)
+{
+	return register_md_personality(&faulty_personality);
+}
+
+static void raid_exit(void)
+{
+	unregister_md_personality(&faulty_personality);
+}
+
+module_init(raid_init);
+module_exit(raid_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Fault injection personality for MD");
+MODULE_ALIAS("md-personality-10"); /* faulty */
+MODULE_ALIAS("md-faulty");
+MODULE_ALIAS("md-level--5");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/linear.c b/ap/os/linux/linux-3.4.x/drivers/md/linear.c
new file mode 100644
index 0000000..fa211d8
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/linear.c
@@ -0,0 +1,369 @@
+/*
+   linear.c : Multiple Devices driver for Linux
+	      Copyright (C) 1994-96 Marc ZYNGIER
+	      <zyngier@ufr-info-p7.ibp.fr> or
+	      <maz@gloups.fdn.fr>
+
+   Linear mode management functions.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2, or (at your option)
+   any later version.
+   
+   You should have received a copy of the GNU General Public License
+   (for example /usr/src/linux/COPYING); if not, write to the Free
+   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  
+*/
+
+#include <linux/blkdev.h>
+#include <linux/raid/md_u.h>
+#include <linux/seq_file.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include "md.h"
+#include "linear.h"
+
+/*
+ * find which device holds a particular offset 
+ */
+static inline struct dev_info *which_dev(struct mddev *mddev, sector_t sector)
+{
+	int lo, mid, hi;
+	struct linear_conf *conf;
+
+	lo = 0;
+	hi = mddev->raid_disks - 1;
+	conf = rcu_dereference(mddev->private);
+
+	/*
+	 * Binary Search
+	 */
+
+	while (hi > lo) {
+
+		mid = (hi + lo) / 2;
+		if (sector < conf->disks[mid].end_sector)
+			hi = mid;
+		else
+			lo = mid + 1;
+	}
+
+	return conf->disks + lo;
+}
+
+/**
+ *	linear_mergeable_bvec -- tell bio layer if two requests can be merged
+ *	@q: request queue
+ *	@bvm: properties of new bio
+ *	@biovec: the request that could be merged to it.
+ *
+ *	Return amount of bytes we can take at this offset
+ */
+static int linear_mergeable_bvec(struct request_queue *q,
+				 struct bvec_merge_data *bvm,
+				 struct bio_vec *biovec)
+{
+	struct mddev *mddev = q->queuedata;
+	struct dev_info *dev0;
+	unsigned long maxsectors, bio_sectors = bvm->bi_size >> 9;
+	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
+	int maxbytes = biovec->bv_len;
+	struct request_queue *subq;
+
+	rcu_read_lock();
+	dev0 = which_dev(mddev, sector);
+	maxsectors = dev0->end_sector - sector;
+	subq = bdev_get_queue(dev0->rdev->bdev);
+	if (subq->merge_bvec_fn) {
+		bvm->bi_bdev = dev0->rdev->bdev;
+		bvm->bi_sector -= dev0->end_sector - dev0->rdev->sectors;
+		maxbytes = min(maxbytes, subq->merge_bvec_fn(subq, bvm,
+							     biovec));
+	}
+	rcu_read_unlock();
+
+	if (maxsectors < bio_sectors)
+		maxsectors = 0;
+	else
+		maxsectors -= bio_sectors;
+
+	if (maxsectors <= (PAGE_SIZE >> 9 ) && bio_sectors == 0)
+		return maxbytes;
+
+	if (maxsectors > (maxbytes >> 9))
+		return maxbytes;
+	else
+		return maxsectors << 9;
+}
+
+static int linear_congested(void *data, int bits)
+{
+	struct mddev *mddev = data;
+	struct linear_conf *conf;
+	int i, ret = 0;
+
+	if (mddev_congested(mddev, bits))
+		return 1;
+
+	rcu_read_lock();
+	conf = rcu_dereference(mddev->private);
+
+	for (i = 0; i < mddev->raid_disks && !ret ; i++) {
+		struct request_queue *q = bdev_get_queue(conf->disks[i].rdev->bdev);
+		ret |= bdi_congested(&q->backing_dev_info, bits);
+	}
+
+	rcu_read_unlock();
+	return ret;
+}
+
+static sector_t linear_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+	struct linear_conf *conf;
+	sector_t array_sectors;
+
+	rcu_read_lock();
+	conf = rcu_dereference(mddev->private);
+	WARN_ONCE(sectors || raid_disks,
+		  "%s does not support generic reshape\n", __func__);
+	array_sectors = conf->array_sectors;
+	rcu_read_unlock();
+
+	return array_sectors;
+}
+
+static struct linear_conf *linear_conf(struct mddev *mddev, int raid_disks)
+{
+	struct linear_conf *conf;
+	struct md_rdev *rdev;
+	int i, cnt;
+
+	conf = kzalloc (sizeof (*conf) + raid_disks*sizeof(struct dev_info),
+			GFP_KERNEL);
+	if (!conf)
+		return NULL;
+
+	cnt = 0;
+	conf->array_sectors = 0;
+
+	rdev_for_each(rdev, mddev) {
+		int j = rdev->raid_disk;
+		struct dev_info *disk = conf->disks + j;
+		sector_t sectors;
+
+		if (j < 0 || j >= raid_disks || disk->rdev) {
+			printk(KERN_ERR "md/linear:%s: disk numbering problem. Aborting!\n",
+			       mdname(mddev));
+			goto out;
+		}
+
+		disk->rdev = rdev;
+		if (mddev->chunk_sectors) {
+			sectors = rdev->sectors;
+			sector_div(sectors, mddev->chunk_sectors);
+			rdev->sectors = sectors * mddev->chunk_sectors;
+		}
+
+		disk_stack_limits(mddev->gendisk, rdev->bdev,
+				  rdev->data_offset << 9);
+
+		conf->array_sectors += rdev->sectors;
+		cnt++;
+
+	}
+	if (cnt != raid_disks) {
+		printk(KERN_ERR "md/linear:%s: not enough drives present. Aborting!\n",
+		       mdname(mddev));
+		goto out;
+	}
+
+	/*
+	 * Here we calculate the device offsets.
+	 */
+	conf->disks[0].end_sector = conf->disks[0].rdev->sectors;
+
+	for (i = 1; i < raid_disks; i++)
+		conf->disks[i].end_sector =
+			conf->disks[i-1].end_sector +
+			conf->disks[i].rdev->sectors;
+
+	return conf;
+
+out:
+	kfree(conf);
+	return NULL;
+}
+
+static int linear_run (struct mddev *mddev)
+{
+	struct linear_conf *conf;
+	int ret;
+
+	if (md_check_no_bitmap(mddev))
+		return -EINVAL;
+	conf = linear_conf(mddev, mddev->raid_disks);
+
+	if (!conf)
+		return 1;
+	mddev->private = conf;
+	md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
+
+	blk_queue_merge_bvec(mddev->queue, linear_mergeable_bvec);
+	mddev->queue->backing_dev_info.congested_fn = linear_congested;
+	mddev->queue->backing_dev_info.congested_data = mddev;
+
+	ret =  md_integrity_register(mddev);
+	if (ret) {
+		kfree(conf);
+		mddev->private = NULL;
+	}
+	return ret;
+}
+
+static int linear_add(struct mddev *mddev, struct md_rdev *rdev)
+{
+	/* Adding a drive to a linear array allows the array to grow.
+	 * It is permitted if the new drive has a matching superblock
+	 * already on it, with raid_disk equal to raid_disks.
+	 * It is achieved by creating a new linear_private_data structure
+	 * and swapping it in in-place of the current one.
+	 * The current one is never freed until the array is stopped.
+	 * This avoids races.
+	 */
+	struct linear_conf *newconf, *oldconf;
+
+	if (rdev->saved_raid_disk != mddev->raid_disks)
+		return -EINVAL;
+
+	rdev->raid_disk = rdev->saved_raid_disk;
+	rdev->saved_raid_disk = -1;
+
+	newconf = linear_conf(mddev,mddev->raid_disks+1);
+
+	if (!newconf)
+		return -ENOMEM;
+
+	oldconf = rcu_dereference(mddev->private);
+	mddev->raid_disks++;
+	rcu_assign_pointer(mddev->private, newconf);
+	md_set_array_sectors(mddev, linear_size(mddev, 0, 0));
+	set_capacity(mddev->gendisk, mddev->array_sectors);
+	revalidate_disk(mddev->gendisk);
+	kfree_rcu(oldconf, rcu);
+	return 0;
+}
+
+static int linear_stop (struct mddev *mddev)
+{
+	struct linear_conf *conf = mddev->private;
+
+	/*
+	 * We do not require rcu protection here since
+	 * we hold reconfig_mutex for both linear_add and
+	 * linear_stop, so they cannot race.
+	 * We should make sure any old 'conf's are properly
+	 * freed though.
+	 */
+	rcu_barrier();
+	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
+	kfree(conf);
+	mddev->private = NULL;
+
+	return 0;
+}
+
+static void linear_make_request(struct mddev *mddev, struct bio *bio)
+{
+	struct dev_info *tmp_dev;
+	sector_t start_sector;
+
+	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
+		md_flush_request(mddev, bio);
+		return;
+	}
+
+	rcu_read_lock();
+	tmp_dev = which_dev(mddev, bio->bi_sector);
+	start_sector = tmp_dev->end_sector - tmp_dev->rdev->sectors;
+
+
+	if (unlikely(bio->bi_sector >= (tmp_dev->end_sector)
+		     || (bio->bi_sector < start_sector))) {
+		char b[BDEVNAME_SIZE];
+
+		printk(KERN_ERR
+		       "md/linear:%s: make_request: Sector %llu out of bounds on "
+		       "dev %s: %llu sectors, offset %llu\n",
+		       mdname(mddev),
+		       (unsigned long long)bio->bi_sector,
+		       bdevname(tmp_dev->rdev->bdev, b),
+		       (unsigned long long)tmp_dev->rdev->sectors,
+		       (unsigned long long)start_sector);
+		rcu_read_unlock();
+		bio_io_error(bio);
+		return;
+	}
+	if (unlikely(bio->bi_sector + (bio->bi_size >> 9) >
+		     tmp_dev->end_sector)) {
+		/* This bio crosses a device boundary, so we have to
+		 * split it.
+		 */
+		struct bio_pair *bp;
+		sector_t end_sector = tmp_dev->end_sector;
+
+		rcu_read_unlock();
+
+		bp = bio_split(bio, end_sector - bio->bi_sector);
+
+		linear_make_request(mddev, &bp->bio1);
+		linear_make_request(mddev, &bp->bio2);
+		bio_pair_release(bp);
+		return;
+	}
+		    
+	bio->bi_bdev = tmp_dev->rdev->bdev;
+	bio->bi_sector = bio->bi_sector - start_sector
+		+ tmp_dev->rdev->data_offset;
+	rcu_read_unlock();
+	generic_make_request(bio);
+}
+
+static void linear_status (struct seq_file *seq, struct mddev *mddev)
+{
+
+	seq_printf(seq, " %dk rounding", mddev->chunk_sectors / 2);
+}
+
+
+static struct md_personality linear_personality =
+{
+	.name		= "linear",
+	.level		= LEVEL_LINEAR,
+	.owner		= THIS_MODULE,
+	.make_request	= linear_make_request,
+	.run		= linear_run,
+	.stop		= linear_stop,
+	.status		= linear_status,
+	.hot_add_disk	= linear_add,
+	.size		= linear_size,
+};
+
+static int __init linear_init (void)
+{
+	return register_md_personality (&linear_personality);
+}
+
+static void linear_exit (void)
+{
+	unregister_md_personality (&linear_personality);
+}
+
+
+module_init(linear_init);
+module_exit(linear_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Linear device concatenation personality for MD");
+MODULE_ALIAS("md-personality-1"); /* LINEAR - deprecated*/
+MODULE_ALIAS("md-linear");
+MODULE_ALIAS("md-level--1");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/linear.h b/ap/os/linux/linux-3.4.x/drivers/md/linear.h
new file mode 100644
index 0000000..b685ddd
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/linear.h
@@ -0,0 +1,15 @@
+#ifndef _LINEAR_H
+#define _LINEAR_H
+
+struct dev_info {
+	struct md_rdev	*rdev;
+	sector_t	end_sector;
+};
+
+struct linear_conf
+{
+	struct rcu_head		rcu;
+	sector_t		array_sectors;
+	struct dev_info		disks[0];
+};
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/md.c b/ap/os/linux/linux-3.4.x/drivers/md/md.c
new file mode 100644
index 0000000..83dba06
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/md.c
@@ -0,0 +1,8381 @@
+/*
+   md.c : Multiple Devices driver for Linux
+	  Copyright (C) 1998, 1999, 2000 Ingo Molnar
+
+     completely rewritten, based on the MD driver code from Marc Zyngier
+
+   Changes:
+
+   - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
+   - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
+   - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
+   - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
+   - kmod support by: Cyrus Durgin
+   - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
+   - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
+
+   - lots of fixes and improvements to the RAID1/RAID5 and generic
+     RAID code (such as request based resynchronization):
+
+     Neil Brown <neilb@cse.unsw.edu.au>.
+
+   - persistent bitmap code
+     Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2, or (at your option)
+   any later version.
+
+   You should have received a copy of the GNU General Public License
+   (for example /usr/src/linux/COPYING); if not, write to the Free
+   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+*/
+
+#include <linux/kthread.h>
+#include <linux/blkdev.h>
+#include <linux/sysctl.h>
+#include <linux/seq_file.h>
+#include <linux/fs.h>
+#include <linux/poll.h>
+#include <linux/ctype.h>
+#include <linux/string.h>
+#include <linux/hdreg.h>
+#include <linux/proc_fs.h>
+#include <linux/random.h>
+#include <linux/module.h>
+#include <linux/reboot.h>
+#include <linux/file.h>
+#include <linux/compat.h>
+#include <linux/delay.h>
+#include <linux/raid/md_p.h>
+#include <linux/raid/md_u.h>
+#include <linux/slab.h>
+#include "md.h"
+#include "bitmap.h"
+
+#ifndef MODULE
+static void autostart_arrays(int part);
+#endif
+
+/* pers_list is a list of registered personalities protected
+ * by pers_lock.
+ * pers_lock does extra service to protect accesses to
+ * mddev->thread when the mutex cannot be held.
+ */
+static LIST_HEAD(pers_list);
+static DEFINE_SPINLOCK(pers_lock);
+
+static void md_print_devices(void);
+
+static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
+static struct workqueue_struct *md_wq;
+static struct workqueue_struct *md_misc_wq;
+
+#define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
+
+/*
+ * Default number of read corrections we'll attempt on an rdev
+ * before ejecting it from the array. We divide the read error
+ * count by 2 for every hour elapsed between read errors.
+ */
+#define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
+/*
+ * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
+ * is 1000 KB/sec, so the extra system load does not show up that much.
+ * Increase it if you want to have more _guaranteed_ speed. Note that
+ * the RAID driver will use the maximum available bandwidth if the IO
+ * subsystem is idle. There is also an 'absolute maximum' reconstruction
+ * speed limit - in case reconstruction slows down your system despite
+ * idle IO detection.
+ *
+ * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
+ * or /sys/block/mdX/md/sync_speed_{min,max}
+ */
+
+static int sysctl_speed_limit_min = 1000;
+static int sysctl_speed_limit_max = 200000;
+static inline int speed_min(struct mddev *mddev)
+{
+	return mddev->sync_speed_min ?
+		mddev->sync_speed_min : sysctl_speed_limit_min;
+}
+
+static inline int speed_max(struct mddev *mddev)
+{
+	return mddev->sync_speed_max ?
+		mddev->sync_speed_max : sysctl_speed_limit_max;
+}
+
+static struct ctl_table_header *raid_table_header;
+
+static ctl_table raid_table[] = {
+	{
+		.procname	= "speed_limit_min",
+		.data		= &sysctl_speed_limit_min,
+		.maxlen		= sizeof(int),
+		.mode		= S_IRUGO|S_IWUSR,
+		.proc_handler	= proc_dointvec,
+	},
+	{
+		.procname	= "speed_limit_max",
+		.data		= &sysctl_speed_limit_max,
+		.maxlen		= sizeof(int),
+		.mode		= S_IRUGO|S_IWUSR,
+		.proc_handler	= proc_dointvec,
+	},
+	{ }
+};
+
+static ctl_table raid_dir_table[] = {
+	{
+		.procname	= "raid",
+		.maxlen		= 0,
+		.mode		= S_IRUGO|S_IXUGO,
+		.child		= raid_table,
+	},
+	{ }
+};
+
+static ctl_table raid_root_table[] = {
+	{
+		.procname	= "dev",
+		.maxlen		= 0,
+		.mode		= 0555,
+		.child		= raid_dir_table,
+	},
+	{  }
+};
+
+static const struct block_device_operations md_fops;
+
+static int start_readonly;
+
+/* bio_clone_mddev
+ * like bio_clone, but with a local bio set
+ */
+
+static void mddev_bio_destructor(struct bio *bio)
+{
+	struct mddev *mddev, **mddevp;
+
+	mddevp = (void*)bio;
+	mddev = mddevp[-1];
+
+	bio_free(bio, mddev->bio_set);
+}
+
+struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
+			    struct mddev *mddev)
+{
+	struct bio *b;
+	struct mddev **mddevp;
+
+	if (!mddev || !mddev->bio_set)
+		return bio_alloc(gfp_mask, nr_iovecs);
+
+	b = bio_alloc_bioset(gfp_mask, nr_iovecs,
+			     mddev->bio_set);
+	if (!b)
+		return NULL;
+	mddevp = (void*)b;
+	mddevp[-1] = mddev;
+	b->bi_destructor = mddev_bio_destructor;
+	return b;
+}
+EXPORT_SYMBOL_GPL(bio_alloc_mddev);
+
+struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
+			    struct mddev *mddev)
+{
+	struct bio *b;
+	struct mddev **mddevp;
+
+	if (!mddev || !mddev->bio_set)
+		return bio_clone(bio, gfp_mask);
+
+	b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
+			     mddev->bio_set);
+	if (!b)
+		return NULL;
+	mddevp = (void*)b;
+	mddevp[-1] = mddev;
+	b->bi_destructor = mddev_bio_destructor;
+	__bio_clone(b, bio);
+	if (bio_integrity(bio)) {
+		int ret;
+
+		ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
+
+		if (ret < 0) {
+			bio_put(b);
+			return NULL;
+		}
+	}
+
+	return b;
+}
+EXPORT_SYMBOL_GPL(bio_clone_mddev);
+
+void md_trim_bio(struct bio *bio, int offset, int size)
+{
+	/* 'bio' is a cloned bio which we need to trim to match
+	 * the given offset and size.
+	 * This requires adjusting bi_sector, bi_size, and bi_io_vec
+	 */
+	int i;
+	struct bio_vec *bvec;
+	int sofar = 0;
+
+	size <<= 9;
+	if (offset == 0 && size == bio->bi_size)
+		return;
+
+	bio->bi_sector += offset;
+	bio->bi_size = size;
+	offset <<= 9;
+	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
+
+	while (bio->bi_idx < bio->bi_vcnt &&
+	       bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
+		/* remove this whole bio_vec */
+		offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
+		bio->bi_idx++;
+	}
+	if (bio->bi_idx < bio->bi_vcnt) {
+		bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
+		bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
+	}
+	/* avoid any complications with bi_idx being non-zero*/
+	if (bio->bi_idx) {
+		memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
+			(bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
+		bio->bi_vcnt -= bio->bi_idx;
+		bio->bi_idx = 0;
+	}
+	/* Make sure vcnt and last bv are not too big */
+	bio_for_each_segment(bvec, bio, i) {
+		if (sofar + bvec->bv_len > size)
+			bvec->bv_len = size - sofar;
+		if (bvec->bv_len == 0) {
+			bio->bi_vcnt = i;
+			break;
+		}
+		sofar += bvec->bv_len;
+	}
+}
+EXPORT_SYMBOL_GPL(md_trim_bio);
+
+/*
+ * We have a system wide 'event count' that is incremented
+ * on any 'interesting' event, and readers of /proc/mdstat
+ * can use 'poll' or 'select' to find out when the event
+ * count increases.
+ *
+ * Events are:
+ *  start array, stop array, error, add device, remove device,
+ *  start build, activate spare
+ */
+static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
+static atomic_t md_event_count;
+void md_new_event(struct mddev *mddev)
+{
+	atomic_inc(&md_event_count);
+	wake_up(&md_event_waiters);
+}
+EXPORT_SYMBOL_GPL(md_new_event);
+
+/* Alternate version that can be called from interrupts
+ * when calling sysfs_notify isn't needed.
+ */
+static void md_new_event_inintr(struct mddev *mddev)
+{
+	atomic_inc(&md_event_count);
+	wake_up(&md_event_waiters);
+}
+
+/*
+ * Enables to iterate over all existing md arrays
+ * all_mddevs_lock protects this list.
+ */
+static LIST_HEAD(all_mddevs);
+static DEFINE_SPINLOCK(all_mddevs_lock);
+
+
+/*
+ * iterates through all used mddevs in the system.
+ * We take care to grab the all_mddevs_lock whenever navigating
+ * the list, and to always hold a refcount when unlocked.
+ * Any code which breaks out of this loop while own
+ * a reference to the current mddev and must mddev_put it.
+ */
+#define for_each_mddev(_mddev,_tmp)					\
+									\
+	for (({ spin_lock(&all_mddevs_lock); 				\
+		_tmp = all_mddevs.next;					\
+		_mddev = NULL;});					\
+	     ({ if (_tmp != &all_mddevs)				\
+			mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
+		spin_unlock(&all_mddevs_lock);				\
+		if (_mddev) mddev_put(_mddev);				\
+		_mddev = list_entry(_tmp, struct mddev, all_mddevs);	\
+		_tmp != &all_mddevs;});					\
+	     ({ spin_lock(&all_mddevs_lock);				\
+		_tmp = _tmp->next;})					\
+		)
+
+
+/* Rather than calling directly into the personality make_request function,
+ * IO requests come here first so that we can check if the device is
+ * being suspended pending a reconfiguration.
+ * We hold a refcount over the call to ->make_request.  By the time that
+ * call has finished, the bio has been linked into some internal structure
+ * and so is visible to ->quiesce(), so we don't need the refcount any more.
+ */
+static void md_make_request(struct request_queue *q, struct bio *bio)
+{
+	const int rw = bio_data_dir(bio);
+	struct mddev *mddev = q->queuedata;
+	int cpu;
+	unsigned int sectors;
+
+	if (mddev == NULL || mddev->pers == NULL
+	    || !mddev->ready) {
+		bio_io_error(bio);
+		return;
+	}
+	if (mddev->ro == 1 && unlikely(rw == WRITE)) {
+		bio_endio(bio, bio_sectors(bio) == 0 ? 0 : -EROFS);
+		return;
+	}
+	smp_rmb(); /* Ensure implications of  'active' are visible */
+	rcu_read_lock();
+	if (mddev->suspended) {
+		DEFINE_WAIT(__wait);
+		for (;;) {
+			prepare_to_wait(&mddev->sb_wait, &__wait,
+					TASK_UNINTERRUPTIBLE);
+			if (!mddev->suspended)
+				break;
+			rcu_read_unlock();
+			schedule();
+			rcu_read_lock();
+		}
+		finish_wait(&mddev->sb_wait, &__wait);
+	}
+	atomic_inc(&mddev->active_io);
+	rcu_read_unlock();
+
+	/*
+	 * save the sectors now since our bio can
+	 * go away inside make_request
+	 */
+	sectors = bio_sectors(bio);
+	mddev->pers->make_request(mddev, bio);
+
+	cpu = part_stat_lock();
+	part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
+	part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
+	part_stat_unlock();
+
+	if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
+		wake_up(&mddev->sb_wait);
+}
+
+/* mddev_suspend makes sure no new requests are submitted
+ * to the device, and that any requests that have been submitted
+ * are completely handled.
+ * Once ->stop is called and completes, the module will be completely
+ * unused.
+ */
+void mddev_suspend(struct mddev *mddev)
+{
+	BUG_ON(mddev->suspended);
+	mddev->suspended = 1;
+	synchronize_rcu();
+	wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
+	mddev->pers->quiesce(mddev, 1);
+
+	del_timer_sync(&mddev->safemode_timer);
+}
+EXPORT_SYMBOL_GPL(mddev_suspend);
+
+void mddev_resume(struct mddev *mddev)
+{
+	mddev->suspended = 0;
+	wake_up(&mddev->sb_wait);
+	mddev->pers->quiesce(mddev, 0);
+
+	md_wakeup_thread(mddev->thread);
+	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
+}
+EXPORT_SYMBOL_GPL(mddev_resume);
+
+int mddev_congested(struct mddev *mddev, int bits)
+{
+	return mddev->suspended;
+}
+EXPORT_SYMBOL(mddev_congested);
+
+/*
+ * Generic flush handling for md
+ */
+
+static void md_end_flush(struct bio *bio, int err)
+{
+	struct md_rdev *rdev = bio->bi_private;
+	struct mddev *mddev = rdev->mddev;
+
+	rdev_dec_pending(rdev, mddev);
+
+	if (atomic_dec_and_test(&mddev->flush_pending)) {
+		/* The pre-request flush has finished */
+		queue_work(md_wq, &mddev->flush_work);
+	}
+	bio_put(bio);
+}
+
+static void md_submit_flush_data(struct work_struct *ws);
+
+static void submit_flushes(struct work_struct *ws)
+{
+	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
+	struct md_rdev *rdev;
+
+	INIT_WORK(&mddev->flush_work, md_submit_flush_data);
+	atomic_set(&mddev->flush_pending, 1);
+	rcu_read_lock();
+	rdev_for_each_rcu(rdev, mddev)
+		if (rdev->raid_disk >= 0 &&
+		    !test_bit(Faulty, &rdev->flags)) {
+			/* Take two references, one is dropped
+			 * when request finishes, one after
+			 * we reclaim rcu_read_lock
+			 */
+			struct bio *bi;
+			atomic_inc(&rdev->nr_pending);
+			atomic_inc(&rdev->nr_pending);
+			rcu_read_unlock();
+			bi = bio_alloc_mddev(GFP_NOIO, 0, mddev);
+			bi->bi_end_io = md_end_flush;
+			bi->bi_private = rdev;
+			bi->bi_bdev = rdev->bdev;
+			atomic_inc(&mddev->flush_pending);
+			submit_bio(WRITE_FLUSH, bi);
+			rcu_read_lock();
+			rdev_dec_pending(rdev, mddev);
+		}
+	rcu_read_unlock();
+	if (atomic_dec_and_test(&mddev->flush_pending))
+		queue_work(md_wq, &mddev->flush_work);
+}
+
+static void md_submit_flush_data(struct work_struct *ws)
+{
+	struct mddev *mddev = container_of(ws, struct mddev, flush_work);
+	struct bio *bio = mddev->flush_bio;
+
+	if (bio->bi_size == 0)
+		/* an empty barrier - all done */
+		bio_endio(bio, 0);
+	else {
+		bio->bi_rw &= ~REQ_FLUSH;
+		mddev->pers->make_request(mddev, bio);
+	}
+
+	mddev->flush_bio = NULL;
+	wake_up(&mddev->sb_wait);
+}
+
+void md_flush_request(struct mddev *mddev, struct bio *bio)
+{
+	spin_lock_irq(&mddev->write_lock);
+	wait_event_lock_irq(mddev->sb_wait,
+			    !mddev->flush_bio,
+			    mddev->write_lock, /*nothing*/);
+	mddev->flush_bio = bio;
+	spin_unlock_irq(&mddev->write_lock);
+
+	INIT_WORK(&mddev->flush_work, submit_flushes);
+	queue_work(md_wq, &mddev->flush_work);
+}
+EXPORT_SYMBOL(md_flush_request);
+
+/* Support for plugging.
+ * This mirrors the plugging support in request_queue, but does not
+ * require having a whole queue or request structures.
+ * We allocate an md_plug_cb for each md device and each thread it gets
+ * plugged on.  This links tot the private plug_handle structure in the
+ * personality data where we keep a count of the number of outstanding
+ * plugs so other code can see if a plug is active.
+ */
+struct md_plug_cb {
+	struct blk_plug_cb cb;
+	struct mddev *mddev;
+};
+
+static void plugger_unplug(struct blk_plug_cb *cb)
+{
+	struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
+	if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
+		md_wakeup_thread(mdcb->mddev->thread);
+	kfree(mdcb);
+}
+
+/* Check that an unplug wakeup will come shortly.
+ * If not, wakeup the md thread immediately
+ */
+int mddev_check_plugged(struct mddev *mddev)
+{
+	struct blk_plug *plug = current->plug;
+	struct md_plug_cb *mdcb;
+
+	if (!plug)
+		return 0;
+
+	list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
+		if (mdcb->cb.callback == plugger_unplug &&
+		    mdcb->mddev == mddev) {
+			/* Already on the list, move to top */
+			if (mdcb != list_first_entry(&plug->cb_list,
+						    struct md_plug_cb,
+						    cb.list))
+				list_move(&mdcb->cb.list, &plug->cb_list);
+			return 1;
+		}
+	}
+	/* Not currently on the callback list */
+	mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
+	if (!mdcb)
+		return 0;
+
+	mdcb->mddev = mddev;
+	mdcb->cb.callback = plugger_unplug;
+	atomic_inc(&mddev->plug_cnt);
+	list_add(&mdcb->cb.list, &plug->cb_list);
+	return 1;
+}
+EXPORT_SYMBOL_GPL(mddev_check_plugged);
+
+static inline struct mddev *mddev_get(struct mddev *mddev)
+{
+	atomic_inc(&mddev->active);
+	return mddev;
+}
+
+static void mddev_delayed_delete(struct work_struct *ws);
+
+static void mddev_put(struct mddev *mddev)
+{
+	struct bio_set *bs = NULL;
+
+	if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
+		return;
+	if (!mddev->raid_disks && list_empty(&mddev->disks) &&
+	    mddev->ctime == 0 && !mddev->hold_active) {
+		/* Array is not configured at all, and not held active,
+		 * so destroy it */
+		list_del_init(&mddev->all_mddevs);
+		bs = mddev->bio_set;
+		mddev->bio_set = NULL;
+		if (mddev->gendisk) {
+			/* We did a probe so need to clean up.  Call
+			 * queue_work inside the spinlock so that
+			 * flush_workqueue() after mddev_find will
+			 * succeed in waiting for the work to be done.
+			 */
+			INIT_WORK(&mddev->del_work, mddev_delayed_delete);
+			queue_work(md_misc_wq, &mddev->del_work);
+		} else
+			kfree(mddev);
+	}
+	spin_unlock(&all_mddevs_lock);
+	if (bs)
+		bioset_free(bs);
+}
+
+void mddev_init(struct mddev *mddev)
+{
+	mutex_init(&mddev->open_mutex);
+	mutex_init(&mddev->reconfig_mutex);
+	mutex_init(&mddev->bitmap_info.mutex);
+	INIT_LIST_HEAD(&mddev->disks);
+	INIT_LIST_HEAD(&mddev->all_mddevs);
+	init_timer(&mddev->safemode_timer);
+	atomic_set(&mddev->active, 1);
+	atomic_set(&mddev->openers, 0);
+	atomic_set(&mddev->active_io, 0);
+	atomic_set(&mddev->plug_cnt, 0);
+	spin_lock_init(&mddev->write_lock);
+	atomic_set(&mddev->flush_pending, 0);
+	init_waitqueue_head(&mddev->sb_wait);
+	init_waitqueue_head(&mddev->recovery_wait);
+	mddev->reshape_position = MaxSector;
+	mddev->resync_min = 0;
+	mddev->resync_max = MaxSector;
+	mddev->level = LEVEL_NONE;
+}
+EXPORT_SYMBOL_GPL(mddev_init);
+
+static struct mddev * mddev_find(dev_t unit)
+{
+	struct mddev *mddev, *new = NULL;
+
+	if (unit && MAJOR(unit) != MD_MAJOR)
+		unit &= ~((1<<MdpMinorShift)-1);
+
+ retry:
+	spin_lock(&all_mddevs_lock);
+
+	if (unit) {
+		list_for_each_entry(mddev, &all_mddevs, all_mddevs)
+			if (mddev->unit == unit) {
+				mddev_get(mddev);
+				spin_unlock(&all_mddevs_lock);
+				kfree(new);
+				return mddev;
+			}
+
+		if (new) {
+			list_add(&new->all_mddevs, &all_mddevs);
+			spin_unlock(&all_mddevs_lock);
+			new->hold_active = UNTIL_IOCTL;
+			return new;
+		}
+	} else if (new) {
+		/* find an unused unit number */
+		static int next_minor = 512;
+		int start = next_minor;
+		int is_free = 0;
+		int dev = 0;
+		while (!is_free) {
+			dev = MKDEV(MD_MAJOR, next_minor);
+			next_minor++;
+			if (next_minor > MINORMASK)
+				next_minor = 0;
+			if (next_minor == start) {
+				/* Oh dear, all in use. */
+				spin_unlock(&all_mddevs_lock);
+				kfree(new);
+				return NULL;
+			}
+				
+			is_free = 1;
+			list_for_each_entry(mddev, &all_mddevs, all_mddevs)
+				if (mddev->unit == dev) {
+					is_free = 0;
+					break;
+				}
+		}
+		new->unit = dev;
+		new->md_minor = MINOR(dev);
+		new->hold_active = UNTIL_STOP;
+		list_add(&new->all_mddevs, &all_mddevs);
+		spin_unlock(&all_mddevs_lock);
+		return new;
+	}
+	spin_unlock(&all_mddevs_lock);
+
+	new = kzalloc(sizeof(*new), GFP_KERNEL);
+	if (!new)
+		return NULL;
+
+	new->unit = unit;
+	if (MAJOR(unit) == MD_MAJOR)
+		new->md_minor = MINOR(unit);
+	else
+		new->md_minor = MINOR(unit) >> MdpMinorShift;
+
+	mddev_init(new);
+
+	goto retry;
+}
+
+static inline int mddev_lock(struct mddev * mddev)
+{
+	return mutex_lock_interruptible(&mddev->reconfig_mutex);
+}
+
+static inline int mddev_is_locked(struct mddev *mddev)
+{
+	return mutex_is_locked(&mddev->reconfig_mutex);
+}
+
+static inline int mddev_trylock(struct mddev * mddev)
+{
+	return mutex_trylock(&mddev->reconfig_mutex);
+}
+
+static struct attribute_group md_redundancy_group;
+
+static void mddev_unlock(struct mddev * mddev)
+{
+	if (mddev->to_remove) {
+		/* These cannot be removed under reconfig_mutex as
+		 * an access to the files will try to take reconfig_mutex
+		 * while holding the file unremovable, which leads to
+		 * a deadlock.
+		 * So hold set sysfs_active while the remove in happeing,
+		 * and anything else which might set ->to_remove or my
+		 * otherwise change the sysfs namespace will fail with
+		 * -EBUSY if sysfs_active is still set.
+		 * We set sysfs_active under reconfig_mutex and elsewhere
+		 * test it under the same mutex to ensure its correct value
+		 * is seen.
+		 */
+		struct attribute_group *to_remove = mddev->to_remove;
+		mddev->to_remove = NULL;
+		mddev->sysfs_active = 1;
+		mutex_unlock(&mddev->reconfig_mutex);
+
+		if (mddev->kobj.sd) {
+			if (to_remove != &md_redundancy_group)
+				sysfs_remove_group(&mddev->kobj, to_remove);
+			if (mddev->pers == NULL ||
+			    mddev->pers->sync_request == NULL) {
+				sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
+				if (mddev->sysfs_action)
+					sysfs_put(mddev->sysfs_action);
+				mddev->sysfs_action = NULL;
+			}
+		}
+		mddev->sysfs_active = 0;
+	} else
+		mutex_unlock(&mddev->reconfig_mutex);
+
+	/* As we've dropped the mutex we need a spinlock to
+	 * make sure the thread doesn't disappear
+	 */
+	spin_lock(&pers_lock);
+	md_wakeup_thread(mddev->thread);
+	spin_unlock(&pers_lock);
+}
+
+static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
+{
+	struct md_rdev *rdev;
+
+	rdev_for_each(rdev, mddev)
+		if (rdev->desc_nr == nr)
+			return rdev;
+
+	return NULL;
+}
+
+static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
+{
+	struct md_rdev *rdev;
+
+	rdev_for_each(rdev, mddev)
+		if (rdev->bdev->bd_dev == dev)
+			return rdev;
+
+	return NULL;
+}
+
+static struct md_personality *find_pers(int level, char *clevel)
+{
+	struct md_personality *pers;
+	list_for_each_entry(pers, &pers_list, list) {
+		if (level != LEVEL_NONE && pers->level == level)
+			return pers;
+		if (strcmp(pers->name, clevel)==0)
+			return pers;
+	}
+	return NULL;
+}
+
+/* return the offset of the super block in 512byte sectors */
+static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
+{
+	sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
+	return MD_NEW_SIZE_SECTORS(num_sectors);
+}
+
+static int alloc_disk_sb(struct md_rdev * rdev)
+{
+	if (rdev->sb_page)
+		MD_BUG();
+
+	rdev->sb_page = alloc_page(GFP_KERNEL);
+	if (!rdev->sb_page) {
+		printk(KERN_ALERT "md: out of memory.\n");
+		return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static void free_disk_sb(struct md_rdev * rdev)
+{
+	if (rdev->sb_page) {
+		put_page(rdev->sb_page);
+		rdev->sb_loaded = 0;
+		rdev->sb_page = NULL;
+		rdev->sb_start = 0;
+		rdev->sectors = 0;
+	}
+	if (rdev->bb_page) {
+		put_page(rdev->bb_page);
+		rdev->bb_page = NULL;
+	}
+}
+
+
+static void super_written(struct bio *bio, int error)
+{
+	struct md_rdev *rdev = bio->bi_private;
+	struct mddev *mddev = rdev->mddev;
+
+	if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
+		printk("md: super_written gets error=%d, uptodate=%d\n",
+		       error, test_bit(BIO_UPTODATE, &bio->bi_flags));
+		WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
+		md_error(mddev, rdev);
+	}
+
+	if (atomic_dec_and_test(&mddev->pending_writes))
+		wake_up(&mddev->sb_wait);
+	bio_put(bio);
+}
+
+void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
+		   sector_t sector, int size, struct page *page)
+{
+	/* write first size bytes of page to sector of rdev
+	 * Increment mddev->pending_writes before returning
+	 * and decrement it on completion, waking up sb_wait
+	 * if zero is reached.
+	 * If an error occurred, call md_error
+	 */
+	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
+
+	bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
+	bio->bi_sector = sector;
+	bio_add_page(bio, page, size, 0);
+	bio->bi_private = rdev;
+	bio->bi_end_io = super_written;
+
+	atomic_inc(&mddev->pending_writes);
+	submit_bio(WRITE_FLUSH_FUA, bio);
+}
+
+void md_super_wait(struct mddev *mddev)
+{
+	/* wait for all superblock writes that were scheduled to complete */
+	DEFINE_WAIT(wq);
+	for(;;) {
+		prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
+		if (atomic_read(&mddev->pending_writes)==0)
+			break;
+		schedule();
+	}
+	finish_wait(&mddev->sb_wait, &wq);
+}
+
+static void bi_complete(struct bio *bio, int error)
+{
+	complete((struct completion*)bio->bi_private);
+}
+
+int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
+		 struct page *page, int rw, bool metadata_op)
+{
+	struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
+	struct completion event;
+	int ret;
+
+	rw |= REQ_SYNC;
+
+	bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
+		rdev->meta_bdev : rdev->bdev;
+	if (metadata_op)
+		bio->bi_sector = sector + rdev->sb_start;
+	else
+		bio->bi_sector = sector + rdev->data_offset;
+	bio_add_page(bio, page, size, 0);
+	init_completion(&event);
+	bio->bi_private = &event;
+	bio->bi_end_io = bi_complete;
+	submit_bio(rw, bio);
+	wait_for_completion(&event);
+
+	ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
+	bio_put(bio);
+	return ret;
+}
+EXPORT_SYMBOL_GPL(sync_page_io);
+
+static int read_disk_sb(struct md_rdev * rdev, int size)
+{
+	char b[BDEVNAME_SIZE];
+	if (!rdev->sb_page) {
+		MD_BUG();
+		return -EINVAL;
+	}
+	if (rdev->sb_loaded)
+		return 0;
+
+
+	if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
+		goto fail;
+	rdev->sb_loaded = 1;
+	return 0;
+
+fail:
+	printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
+		bdevname(rdev->bdev,b));
+	return -EINVAL;
+}
+
+static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
+{
+	return 	sb1->set_uuid0 == sb2->set_uuid0 &&
+		sb1->set_uuid1 == sb2->set_uuid1 &&
+		sb1->set_uuid2 == sb2->set_uuid2 &&
+		sb1->set_uuid3 == sb2->set_uuid3;
+}
+
+static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
+{
+	int ret;
+	mdp_super_t *tmp1, *tmp2;
+
+	tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
+	tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
+
+	if (!tmp1 || !tmp2) {
+		ret = 0;
+		printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
+		goto abort;
+	}
+
+	*tmp1 = *sb1;
+	*tmp2 = *sb2;
+
+	/*
+	 * nr_disks is not constant
+	 */
+	tmp1->nr_disks = 0;
+	tmp2->nr_disks = 0;
+
+	ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
+abort:
+	kfree(tmp1);
+	kfree(tmp2);
+	return ret;
+}
+
+
+static u32 md_csum_fold(u32 csum)
+{
+	csum = (csum & 0xffff) + (csum >> 16);
+	return (csum & 0xffff) + (csum >> 16);
+}
+
+static unsigned int calc_sb_csum(mdp_super_t * sb)
+{
+	u64 newcsum = 0;
+	u32 *sb32 = (u32*)sb;
+	int i;
+	unsigned int disk_csum, csum;
+
+	disk_csum = sb->sb_csum;
+	sb->sb_csum = 0;
+
+	for (i = 0; i < MD_SB_BYTES/4 ; i++)
+		newcsum += sb32[i];
+	csum = (newcsum & 0xffffffff) + (newcsum>>32);
+
+
+#ifdef CONFIG_ALPHA
+	/* This used to use csum_partial, which was wrong for several
+	 * reasons including that different results are returned on
+	 * different architectures.  It isn't critical that we get exactly
+	 * the same return value as before (we always csum_fold before
+	 * testing, and that removes any differences).  However as we
+	 * know that csum_partial always returned a 16bit value on
+	 * alphas, do a fold to maximise conformity to previous behaviour.
+	 */
+	sb->sb_csum = md_csum_fold(disk_csum);
+#else
+	sb->sb_csum = disk_csum;
+#endif
+	return csum;
+}
+
+
+/*
+ * Handle superblock details.
+ * We want to be able to handle multiple superblock formats
+ * so we have a common interface to them all, and an array of
+ * different handlers.
+ * We rely on user-space to write the initial superblock, and support
+ * reading and updating of superblocks.
+ * Interface methods are:
+ *   int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
+ *      loads and validates a superblock on dev.
+ *      if refdev != NULL, compare superblocks on both devices
+ *    Return:
+ *      0 - dev has a superblock that is compatible with refdev
+ *      1 - dev has a superblock that is compatible and newer than refdev
+ *          so dev should be used as the refdev in future
+ *     -EINVAL superblock incompatible or invalid
+ *     -othererror e.g. -EIO
+ *
+ *   int validate_super(struct mddev *mddev, struct md_rdev *dev)
+ *      Verify that dev is acceptable into mddev.
+ *       The first time, mddev->raid_disks will be 0, and data from
+ *       dev should be merged in.  Subsequent calls check that dev
+ *       is new enough.  Return 0 or -EINVAL
+ *
+ *   void sync_super(struct mddev *mddev, struct md_rdev *dev)
+ *     Update the superblock for rdev with data in mddev
+ *     This does not write to disc.
+ *
+ */
+
+struct super_type  {
+	char		    *name;
+	struct module	    *owner;
+	int		    (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
+					  int minor_version);
+	int		    (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
+	void		    (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
+	unsigned long long  (*rdev_size_change)(struct md_rdev *rdev,
+						sector_t num_sectors);
+};
+
+/*
+ * Check that the given mddev has no bitmap.
+ *
+ * This function is called from the run method of all personalities that do not
+ * support bitmaps. It prints an error message and returns non-zero if mddev
+ * has a bitmap. Otherwise, it returns 0.
+ *
+ */
+int md_check_no_bitmap(struct mddev *mddev)
+{
+	if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
+		return 0;
+	printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
+		mdname(mddev), mddev->pers->name);
+	return 1;
+}
+EXPORT_SYMBOL(md_check_no_bitmap);
+
+/*
+ * load_super for 0.90.0 
+ */
+static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
+{
+	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
+	mdp_super_t *sb;
+	int ret;
+
+	/*
+	 * Calculate the position of the superblock (512byte sectors),
+	 * it's at the end of the disk.
+	 *
+	 * It also happens to be a multiple of 4Kb.
+	 */
+	rdev->sb_start = calc_dev_sboffset(rdev);
+
+	ret = read_disk_sb(rdev, MD_SB_BYTES);
+	if (ret) return ret;
+
+	ret = -EINVAL;
+
+	bdevname(rdev->bdev, b);
+	sb = page_address(rdev->sb_page);
+
+	if (sb->md_magic != MD_SB_MAGIC) {
+		printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
+		       b);
+		goto abort;
+	}
+
+	if (sb->major_version != 0 ||
+	    sb->minor_version < 90 ||
+	    sb->minor_version > 91) {
+		printk(KERN_WARNING "Bad version number %d.%d on %s\n",
+			sb->major_version, sb->minor_version,
+			b);
+		goto abort;
+	}
+
+	if (sb->raid_disks <= 0)
+		goto abort;
+
+	if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
+		printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
+			b);
+		goto abort;
+	}
+
+	rdev->preferred_minor = sb->md_minor;
+	rdev->data_offset = 0;
+	rdev->sb_size = MD_SB_BYTES;
+	rdev->badblocks.shift = -1;
+
+	if (sb->level == LEVEL_MULTIPATH)
+		rdev->desc_nr = -1;
+	else
+		rdev->desc_nr = sb->this_disk.number;
+
+	if (!refdev) {
+		ret = 1;
+	} else {
+		__u64 ev1, ev2;
+		mdp_super_t *refsb = page_address(refdev->sb_page);
+		if (!uuid_equal(refsb, sb)) {
+			printk(KERN_WARNING "md: %s has different UUID to %s\n",
+				b, bdevname(refdev->bdev,b2));
+			goto abort;
+		}
+		if (!sb_equal(refsb, sb)) {
+			printk(KERN_WARNING "md: %s has same UUID"
+			       " but different superblock to %s\n",
+			       b, bdevname(refdev->bdev, b2));
+			goto abort;
+		}
+		ev1 = md_event(sb);
+		ev2 = md_event(refsb);
+		if (ev1 > ev2)
+			ret = 1;
+		else 
+			ret = 0;
+	}
+	rdev->sectors = rdev->sb_start;
+	/* Limit to 4TB as metadata cannot record more than that.
+	 * (not needed for Linear and RAID0 as metadata doesn't
+	 * record this size)
+	 */
+	if (rdev->sectors >= (2ULL << 32) && sb->level >= 1)
+		rdev->sectors = (2ULL << 32) - 2;
+
+	if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
+		/* "this cannot possibly happen" ... */
+		ret = -EINVAL;
+
+ abort:
+	return ret;
+}
+
+/*
+ * validate_super for 0.90.0
+ */
+static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
+{
+	mdp_disk_t *desc;
+	mdp_super_t *sb = page_address(rdev->sb_page);
+	__u64 ev1 = md_event(sb);
+
+	rdev->raid_disk = -1;
+	clear_bit(Faulty, &rdev->flags);
+	clear_bit(In_sync, &rdev->flags);
+	clear_bit(WriteMostly, &rdev->flags);
+
+	if (mddev->raid_disks == 0) {
+		mddev->major_version = 0;
+		mddev->minor_version = sb->minor_version;
+		mddev->patch_version = sb->patch_version;
+		mddev->external = 0;
+		mddev->chunk_sectors = sb->chunk_size >> 9;
+		mddev->ctime = sb->ctime;
+		mddev->utime = sb->utime;
+		mddev->level = sb->level;
+		mddev->clevel[0] = 0;
+		mddev->layout = sb->layout;
+		mddev->raid_disks = sb->raid_disks;
+		mddev->dev_sectors = ((sector_t)sb->size) * 2;
+		mddev->events = ev1;
+		mddev->bitmap_info.offset = 0;
+		mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
+
+		if (mddev->minor_version >= 91) {
+			mddev->reshape_position = sb->reshape_position;
+			mddev->delta_disks = sb->delta_disks;
+			mddev->new_level = sb->new_level;
+			mddev->new_layout = sb->new_layout;
+			mddev->new_chunk_sectors = sb->new_chunk >> 9;
+		} else {
+			mddev->reshape_position = MaxSector;
+			mddev->delta_disks = 0;
+			mddev->new_level = mddev->level;
+			mddev->new_layout = mddev->layout;
+			mddev->new_chunk_sectors = mddev->chunk_sectors;
+		}
+
+		if (sb->state & (1<<MD_SB_CLEAN))
+			mddev->recovery_cp = MaxSector;
+		else {
+			if (sb->events_hi == sb->cp_events_hi && 
+				sb->events_lo == sb->cp_events_lo) {
+				mddev->recovery_cp = sb->recovery_cp;
+			} else
+				mddev->recovery_cp = 0;
+		}
+
+		memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
+		memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
+		memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
+		memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
+
+		mddev->max_disks = MD_SB_DISKS;
+
+		if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
+		    mddev->bitmap_info.file == NULL)
+			mddev->bitmap_info.offset =
+				mddev->bitmap_info.default_offset;
+
+	} else if (mddev->pers == NULL) {
+		/* Insist on good event counter while assembling, except
+		 * for spares (which don't need an event count) */
+		++ev1;
+		if (sb->disks[rdev->desc_nr].state & (
+			    (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
+			if (ev1 < mddev->events) 
+				return -EINVAL;
+	} else if (mddev->bitmap) {
+		/* if adding to array with a bitmap, then we can accept an
+		 * older device ... but not too old.
+		 */
+		if (ev1 < mddev->bitmap->events_cleared)
+			return 0;
+	} else {
+		if (ev1 < mddev->events)
+			/* just a hot-add of a new device, leave raid_disk at -1 */
+			return 0;
+	}
+
+	if (mddev->level != LEVEL_MULTIPATH) {
+		desc = sb->disks + rdev->desc_nr;
+
+		if (desc->state & (1<<MD_DISK_FAULTY))
+			set_bit(Faulty, &rdev->flags);
+		else if (desc->state & (1<<MD_DISK_SYNC) /* &&
+			    desc->raid_disk < mddev->raid_disks */) {
+			set_bit(In_sync, &rdev->flags);
+			rdev->raid_disk = desc->raid_disk;
+		} else if (desc->state & (1<<MD_DISK_ACTIVE)) {
+			/* active but not in sync implies recovery up to
+			 * reshape position.  We don't know exactly where
+			 * that is, so set to zero for now */
+			if (mddev->minor_version >= 91) {
+				rdev->recovery_offset = 0;
+				rdev->raid_disk = desc->raid_disk;
+			}
+		}
+		if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
+			set_bit(WriteMostly, &rdev->flags);
+	} else /* MULTIPATH are always insync */
+		set_bit(In_sync, &rdev->flags);
+	return 0;
+}
+
+/*
+ * sync_super for 0.90.0
+ */
+static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
+{
+	mdp_super_t *sb;
+	struct md_rdev *rdev2;
+	int next_spare = mddev->raid_disks;
+
+
+	/* make rdev->sb match mddev data..
+	 *
+	 * 1/ zero out disks
+	 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
+	 * 3/ any empty disks < next_spare become removed
+	 *
+	 * disks[0] gets initialised to REMOVED because
+	 * we cannot be sure from other fields if it has
+	 * been initialised or not.
+	 */
+	int i;
+	int active=0, working=0,failed=0,spare=0,nr_disks=0;
+
+	rdev->sb_size = MD_SB_BYTES;
+
+	sb = page_address(rdev->sb_page);
+
+	memset(sb, 0, sizeof(*sb));
+
+	sb->md_magic = MD_SB_MAGIC;
+	sb->major_version = mddev->major_version;
+	sb->patch_version = mddev->patch_version;
+	sb->gvalid_words  = 0; /* ignored */
+	memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
+	memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
+	memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
+	memcpy(&sb->set_uuid3, mddev->uuid+12,4);
+
+	sb->ctime = mddev->ctime;
+	sb->level = mddev->level;
+	sb->size = mddev->dev_sectors / 2;
+	sb->raid_disks = mddev->raid_disks;
+	sb->md_minor = mddev->md_minor;
+	sb->not_persistent = 0;
+	sb->utime = mddev->utime;
+	sb->state = 0;
+	sb->events_hi = (mddev->events>>32);
+	sb->events_lo = (u32)mddev->events;
+
+	if (mddev->reshape_position == MaxSector)
+		sb->minor_version = 90;
+	else {
+		sb->minor_version = 91;
+		sb->reshape_position = mddev->reshape_position;
+		sb->new_level = mddev->new_level;
+		sb->delta_disks = mddev->delta_disks;
+		sb->new_layout = mddev->new_layout;
+		sb->new_chunk = mddev->new_chunk_sectors << 9;
+	}
+	mddev->minor_version = sb->minor_version;
+	if (mddev->in_sync)
+	{
+		sb->recovery_cp = mddev->recovery_cp;
+		sb->cp_events_hi = (mddev->events>>32);
+		sb->cp_events_lo = (u32)mddev->events;
+		if (mddev->recovery_cp == MaxSector)
+			sb->state = (1<< MD_SB_CLEAN);
+	} else
+		sb->recovery_cp = 0;
+
+	sb->layout = mddev->layout;
+	sb->chunk_size = mddev->chunk_sectors << 9;
+
+	if (mddev->bitmap && mddev->bitmap_info.file == NULL)
+		sb->state |= (1<<MD_SB_BITMAP_PRESENT);
+
+	sb->disks[0].state = (1<<MD_DISK_REMOVED);
+	rdev_for_each(rdev2, mddev) {
+		mdp_disk_t *d;
+		int desc_nr;
+		int is_active = test_bit(In_sync, &rdev2->flags);
+
+		if (rdev2->raid_disk >= 0 &&
+		    sb->minor_version >= 91)
+			/* we have nowhere to store the recovery_offset,
+			 * but if it is not below the reshape_position,
+			 * we can piggy-back on that.
+			 */
+			is_active = 1;
+		if (rdev2->raid_disk < 0 ||
+		    test_bit(Faulty, &rdev2->flags))
+			is_active = 0;
+		if (is_active)
+			desc_nr = rdev2->raid_disk;
+		else
+			desc_nr = next_spare++;
+		rdev2->desc_nr = desc_nr;
+		d = &sb->disks[rdev2->desc_nr];
+		nr_disks++;
+		d->number = rdev2->desc_nr;
+		d->major = MAJOR(rdev2->bdev->bd_dev);
+		d->minor = MINOR(rdev2->bdev->bd_dev);
+		if (is_active)
+			d->raid_disk = rdev2->raid_disk;
+		else
+			d->raid_disk = rdev2->desc_nr; /* compatibility */
+		if (test_bit(Faulty, &rdev2->flags))
+			d->state = (1<<MD_DISK_FAULTY);
+		else if (is_active) {
+			d->state = (1<<MD_DISK_ACTIVE);
+			if (test_bit(In_sync, &rdev2->flags))
+				d->state |= (1<<MD_DISK_SYNC);
+			active++;
+			working++;
+		} else {
+			d->state = 0;
+			spare++;
+			working++;
+		}
+		if (test_bit(WriteMostly, &rdev2->flags))
+			d->state |= (1<<MD_DISK_WRITEMOSTLY);
+	}
+	/* now set the "removed" and "faulty" bits on any missing devices */
+	for (i=0 ; i < mddev->raid_disks ; i++) {
+		mdp_disk_t *d = &sb->disks[i];
+		if (d->state == 0 && d->number == 0) {
+			d->number = i;
+			d->raid_disk = i;
+			d->state = (1<<MD_DISK_REMOVED);
+			d->state |= (1<<MD_DISK_FAULTY);
+			failed++;
+		}
+	}
+	sb->nr_disks = nr_disks;
+	sb->active_disks = active;
+	sb->working_disks = working;
+	sb->failed_disks = failed;
+	sb->spare_disks = spare;
+
+	sb->this_disk = sb->disks[rdev->desc_nr];
+	sb->sb_csum = calc_sb_csum(sb);
+}
+
+/*
+ * rdev_size_change for 0.90.0
+ */
+static unsigned long long
+super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
+{
+	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
+		return 0; /* component must fit device */
+	if (rdev->mddev->bitmap_info.offset)
+		return 0; /* can't move bitmap */
+	rdev->sb_start = calc_dev_sboffset(rdev);
+	if (!num_sectors || num_sectors > rdev->sb_start)
+		num_sectors = rdev->sb_start;
+	/* Limit to 4TB as metadata cannot record more than that.
+	 * 4TB == 2^32 KB, or 2*2^32 sectors.
+	 */
+	if (num_sectors >= (2ULL << 32) && rdev->mddev->level >= 1)
+		num_sectors = (2ULL << 32) - 2;
+	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
+		       rdev->sb_page);
+	md_super_wait(rdev->mddev);
+	return num_sectors;
+}
+
+
+/*
+ * version 1 superblock
+ */
+
+static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
+{
+	__le32 disk_csum;
+	u32 csum;
+	unsigned long long newcsum;
+	int size = 256 + le32_to_cpu(sb->max_dev)*2;
+	__le32 *isuper = (__le32*)sb;
+	int i;
+
+	disk_csum = sb->sb_csum;
+	sb->sb_csum = 0;
+	newcsum = 0;
+	for (i=0; size>=4; size -= 4 )
+		newcsum += le32_to_cpu(*isuper++);
+
+	if (size == 2)
+		newcsum += le16_to_cpu(*(__le16*) isuper);
+
+	csum = (newcsum & 0xffffffff) + (newcsum >> 32);
+	sb->sb_csum = disk_csum;
+	return cpu_to_le32(csum);
+}
+
+static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
+			    int acknowledged);
+static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
+{
+	struct mdp_superblock_1 *sb;
+	int ret;
+	sector_t sb_start;
+	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
+	int bmask;
+
+	/*
+	 * Calculate the position of the superblock in 512byte sectors.
+	 * It is always aligned to a 4K boundary and
+	 * depeding on minor_version, it can be:
+	 * 0: At least 8K, but less than 12K, from end of device
+	 * 1: At start of device
+	 * 2: 4K from start of device.
+	 */
+	switch(minor_version) {
+	case 0:
+		sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
+		sb_start -= 8*2;
+		sb_start &= ~(sector_t)(4*2-1);
+		break;
+	case 1:
+		sb_start = 0;
+		break;
+	case 2:
+		sb_start = 8;
+		break;
+	default:
+		return -EINVAL;
+	}
+	rdev->sb_start = sb_start;
+
+	/* superblock is rarely larger than 1K, but it can be larger,
+	 * and it is safe to read 4k, so we do that
+	 */
+	ret = read_disk_sb(rdev, 4096);
+	if (ret) return ret;
+
+
+	sb = page_address(rdev->sb_page);
+
+	if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
+	    sb->major_version != cpu_to_le32(1) ||
+	    le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
+	    le64_to_cpu(sb->super_offset) != rdev->sb_start ||
+	    (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
+		return -EINVAL;
+
+	if (calc_sb_1_csum(sb) != sb->sb_csum) {
+		printk("md: invalid superblock checksum on %s\n",
+			bdevname(rdev->bdev,b));
+		return -EINVAL;
+	}
+	if (le64_to_cpu(sb->data_size) < 10) {
+		printk("md: data_size too small on %s\n",
+		       bdevname(rdev->bdev,b));
+		return -EINVAL;
+	}
+
+	rdev->preferred_minor = 0xffff;
+	rdev->data_offset = le64_to_cpu(sb->data_offset);
+	atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
+
+	rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
+	bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
+	if (rdev->sb_size & bmask)
+		rdev->sb_size = (rdev->sb_size | bmask) + 1;
+
+	if (minor_version
+	    && rdev->data_offset < sb_start + (rdev->sb_size/512))
+		return -EINVAL;
+
+	if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
+		rdev->desc_nr = -1;
+	else
+		rdev->desc_nr = le32_to_cpu(sb->dev_number);
+
+	if (!rdev->bb_page) {
+		rdev->bb_page = alloc_page(GFP_KERNEL);
+		if (!rdev->bb_page)
+			return -ENOMEM;
+	}
+	if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
+	    rdev->badblocks.count == 0) {
+		/* need to load the bad block list.
+		 * Currently we limit it to one page.
+		 */
+		s32 offset;
+		sector_t bb_sector;
+		u64 *bbp;
+		int i;
+		int sectors = le16_to_cpu(sb->bblog_size);
+		if (sectors > (PAGE_SIZE / 512))
+			return -EINVAL;
+		offset = le32_to_cpu(sb->bblog_offset);
+		if (offset == 0)
+			return -EINVAL;
+		bb_sector = (long long)offset;
+		if (!sync_page_io(rdev, bb_sector, sectors << 9,
+				  rdev->bb_page, READ, true))
+			return -EIO;
+		bbp = (u64 *)page_address(rdev->bb_page);
+		rdev->badblocks.shift = sb->bblog_shift;
+		for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
+			u64 bb = le64_to_cpu(*bbp);
+			int count = bb & (0x3ff);
+			u64 sector = bb >> 10;
+			sector <<= sb->bblog_shift;
+			count <<= sb->bblog_shift;
+			if (bb + 1 == 0)
+				break;
+			if (md_set_badblocks(&rdev->badblocks,
+					     sector, count, 1) == 0)
+				return -EINVAL;
+		}
+	} else if (sb->bblog_offset != 0)
+		rdev->badblocks.shift = 0;
+
+	if (!refdev) {
+		ret = 1;
+	} else {
+		__u64 ev1, ev2;
+		struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
+
+		if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
+		    sb->level != refsb->level ||
+		    sb->layout != refsb->layout ||
+		    sb->chunksize != refsb->chunksize) {
+			printk(KERN_WARNING "md: %s has strangely different"
+				" superblock to %s\n",
+				bdevname(rdev->bdev,b),
+				bdevname(refdev->bdev,b2));
+			return -EINVAL;
+		}
+		ev1 = le64_to_cpu(sb->events);
+		ev2 = le64_to_cpu(refsb->events);
+
+		if (ev1 > ev2)
+			ret = 1;
+		else
+			ret = 0;
+	}
+	if (minor_version)
+		rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
+			le64_to_cpu(sb->data_offset);
+	else
+		rdev->sectors = rdev->sb_start;
+	if (rdev->sectors < le64_to_cpu(sb->data_size))
+		return -EINVAL;
+	rdev->sectors = le64_to_cpu(sb->data_size);
+	if (le64_to_cpu(sb->size) > rdev->sectors)
+		return -EINVAL;
+	return ret;
+}
+
+static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
+	__u64 ev1 = le64_to_cpu(sb->events);
+
+	rdev->raid_disk = -1;
+	clear_bit(Faulty, &rdev->flags);
+	clear_bit(In_sync, &rdev->flags);
+	clear_bit(WriteMostly, &rdev->flags);
+
+	if (mddev->raid_disks == 0) {
+		mddev->major_version = 1;
+		mddev->patch_version = 0;
+		mddev->external = 0;
+		mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
+		mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
+		mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
+		mddev->level = le32_to_cpu(sb->level);
+		mddev->clevel[0] = 0;
+		mddev->layout = le32_to_cpu(sb->layout);
+		mddev->raid_disks = le32_to_cpu(sb->raid_disks);
+		mddev->dev_sectors = le64_to_cpu(sb->size);
+		mddev->events = ev1;
+		mddev->bitmap_info.offset = 0;
+		mddev->bitmap_info.default_offset = 1024 >> 9;
+		
+		mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
+		memcpy(mddev->uuid, sb->set_uuid, 16);
+
+		mddev->max_disks =  (4096-256)/2;
+
+		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
+		    mddev->bitmap_info.file == NULL )
+			mddev->bitmap_info.offset =
+				(__s32)le32_to_cpu(sb->bitmap_offset);
+
+		if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
+			mddev->reshape_position = le64_to_cpu(sb->reshape_position);
+			mddev->delta_disks = le32_to_cpu(sb->delta_disks);
+			mddev->new_level = le32_to_cpu(sb->new_level);
+			mddev->new_layout = le32_to_cpu(sb->new_layout);
+			mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
+		} else {
+			mddev->reshape_position = MaxSector;
+			mddev->delta_disks = 0;
+			mddev->new_level = mddev->level;
+			mddev->new_layout = mddev->layout;
+			mddev->new_chunk_sectors = mddev->chunk_sectors;
+		}
+
+	} else if (mddev->pers == NULL) {
+		/* Insist of good event counter while assembling, except for
+		 * spares (which don't need an event count) */
+		++ev1;
+		if (rdev->desc_nr >= 0 &&
+		    rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
+		    le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
+			if (ev1 < mddev->events)
+				return -EINVAL;
+	} else if (mddev->bitmap) {
+		/* If adding to array with a bitmap, then we can accept an
+		 * older device, but not too old.
+		 */
+		if (ev1 < mddev->bitmap->events_cleared)
+			return 0;
+	} else {
+		if (ev1 < mddev->events)
+			/* just a hot-add of a new device, leave raid_disk at -1 */
+			return 0;
+	}
+	if (mddev->level != LEVEL_MULTIPATH) {
+		int role;
+		if (rdev->desc_nr < 0 ||
+		    rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
+			role = 0xffff;
+			rdev->desc_nr = -1;
+		} else
+			role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
+		switch(role) {
+		case 0xffff: /* spare */
+			break;
+		case 0xfffe: /* faulty */
+			set_bit(Faulty, &rdev->flags);
+			break;
+		default:
+			if ((le32_to_cpu(sb->feature_map) &
+			     MD_FEATURE_RECOVERY_OFFSET))
+				rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
+			else
+				set_bit(In_sync, &rdev->flags);
+			rdev->raid_disk = role;
+			break;
+		}
+		if (sb->devflags & WriteMostly1)
+			set_bit(WriteMostly, &rdev->flags);
+		if (le32_to_cpu(sb->feature_map) & MD_FEATURE_REPLACEMENT)
+			set_bit(Replacement, &rdev->flags);
+	} else /* MULTIPATH are always insync */
+		set_bit(In_sync, &rdev->flags);
+
+	return 0;
+}
+
+static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct mdp_superblock_1 *sb;
+	struct md_rdev *rdev2;
+	int max_dev, i;
+	/* make rdev->sb match mddev and rdev data. */
+
+	sb = page_address(rdev->sb_page);
+
+	sb->feature_map = 0;
+	sb->pad0 = 0;
+	sb->recovery_offset = cpu_to_le64(0);
+	memset(sb->pad1, 0, sizeof(sb->pad1));
+	memset(sb->pad3, 0, sizeof(sb->pad3));
+
+	sb->utime = cpu_to_le64((__u64)mddev->utime);
+	sb->events = cpu_to_le64(mddev->events);
+	if (mddev->in_sync)
+		sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
+	else
+		sb->resync_offset = cpu_to_le64(0);
+
+	sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
+
+	sb->raid_disks = cpu_to_le32(mddev->raid_disks);
+	sb->size = cpu_to_le64(mddev->dev_sectors);
+	sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
+	sb->level = cpu_to_le32(mddev->level);
+	sb->layout = cpu_to_le32(mddev->layout);
+
+	if (test_bit(WriteMostly, &rdev->flags))
+		sb->devflags |= WriteMostly1;
+	else
+		sb->devflags &= ~WriteMostly1;
+
+	if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
+		sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
+		sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
+	}
+
+	if (rdev->raid_disk >= 0 &&
+	    !test_bit(In_sync, &rdev->flags)) {
+		sb->feature_map |=
+			cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
+		sb->recovery_offset =
+			cpu_to_le64(rdev->recovery_offset);
+	}
+	if (test_bit(Replacement, &rdev->flags))
+		sb->feature_map |=
+			cpu_to_le32(MD_FEATURE_REPLACEMENT);
+
+	if (mddev->reshape_position != MaxSector) {
+		sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
+		sb->reshape_position = cpu_to_le64(mddev->reshape_position);
+		sb->new_layout = cpu_to_le32(mddev->new_layout);
+		sb->delta_disks = cpu_to_le32(mddev->delta_disks);
+		sb->new_level = cpu_to_le32(mddev->new_level);
+		sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
+	}
+
+	if (rdev->badblocks.count == 0)
+		/* Nothing to do for bad blocks*/ ;
+	else if (sb->bblog_offset == 0)
+		/* Cannot record bad blocks on this device */
+		md_error(mddev, rdev);
+	else {
+		struct badblocks *bb = &rdev->badblocks;
+		u64 *bbp = (u64 *)page_address(rdev->bb_page);
+		u64 *p = bb->page;
+		sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
+		if (bb->changed) {
+			unsigned seq;
+
+retry:
+			seq = read_seqbegin(&bb->lock);
+
+			memset(bbp, 0xff, PAGE_SIZE);
+
+			for (i = 0 ; i < bb->count ; i++) {
+				u64 internal_bb = p[i];
+				u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
+						| BB_LEN(internal_bb));
+				bbp[i] = cpu_to_le64(store_bb);
+			}
+			bb->changed = 0;
+			if (read_seqretry(&bb->lock, seq))
+				goto retry;
+
+			bb->sector = (rdev->sb_start +
+				      (int)le32_to_cpu(sb->bblog_offset));
+			bb->size = le16_to_cpu(sb->bblog_size);
+		}
+	}
+
+	max_dev = 0;
+	rdev_for_each(rdev2, mddev)
+		if (rdev2->desc_nr+1 > max_dev)
+			max_dev = rdev2->desc_nr+1;
+
+	if (max_dev > le32_to_cpu(sb->max_dev)) {
+		int bmask;
+		sb->max_dev = cpu_to_le32(max_dev);
+		rdev->sb_size = max_dev * 2 + 256;
+		bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
+		if (rdev->sb_size & bmask)
+			rdev->sb_size = (rdev->sb_size | bmask) + 1;
+	} else
+		max_dev = le32_to_cpu(sb->max_dev);
+
+	for (i=0; i<max_dev;i++)
+		sb->dev_roles[i] = cpu_to_le16(0xfffe);
+	
+	rdev_for_each(rdev2, mddev) {
+		i = rdev2->desc_nr;
+		if (test_bit(Faulty, &rdev2->flags))
+			sb->dev_roles[i] = cpu_to_le16(0xfffe);
+		else if (test_bit(In_sync, &rdev2->flags))
+			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
+		else if (rdev2->raid_disk >= 0)
+			sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
+		else
+			sb->dev_roles[i] = cpu_to_le16(0xffff);
+	}
+
+	sb->sb_csum = calc_sb_1_csum(sb);
+}
+
+static unsigned long long
+super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
+{
+	struct mdp_superblock_1 *sb;
+	sector_t max_sectors;
+	if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
+		return 0; /* component must fit device */
+	if (rdev->sb_start < rdev->data_offset) {
+		/* minor versions 1 and 2; superblock before data */
+		max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
+		max_sectors -= rdev->data_offset;
+		if (!num_sectors || num_sectors > max_sectors)
+			num_sectors = max_sectors;
+	} else if (rdev->mddev->bitmap_info.offset) {
+		/* minor version 0 with bitmap we can't move */
+		return 0;
+	} else {
+		/* minor version 0; superblock after data */
+		sector_t sb_start;
+		sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
+		sb_start &= ~(sector_t)(4*2 - 1);
+		max_sectors = rdev->sectors + sb_start - rdev->sb_start;
+		if (!num_sectors || num_sectors > max_sectors)
+			num_sectors = max_sectors;
+		rdev->sb_start = sb_start;
+	}
+	sb = page_address(rdev->sb_page);
+	sb->data_size = cpu_to_le64(num_sectors);
+	sb->super_offset = rdev->sb_start;
+	sb->sb_csum = calc_sb_1_csum(sb);
+	md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
+		       rdev->sb_page);
+	md_super_wait(rdev->mddev);
+	return num_sectors;
+}
+
+static struct super_type super_types[] = {
+	[0] = {
+		.name	= "0.90.0",
+		.owner	= THIS_MODULE,
+		.load_super	    = super_90_load,
+		.validate_super	    = super_90_validate,
+		.sync_super	    = super_90_sync,
+		.rdev_size_change   = super_90_rdev_size_change,
+	},
+	[1] = {
+		.name	= "md-1",
+		.owner	= THIS_MODULE,
+		.load_super	    = super_1_load,
+		.validate_super	    = super_1_validate,
+		.sync_super	    = super_1_sync,
+		.rdev_size_change   = super_1_rdev_size_change,
+	},
+};
+
+static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
+{
+	if (mddev->sync_super) {
+		mddev->sync_super(mddev, rdev);
+		return;
+	}
+
+	BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
+
+	super_types[mddev->major_version].sync_super(mddev, rdev);
+}
+
+static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
+{
+	struct md_rdev *rdev, *rdev2;
+
+	rcu_read_lock();
+	rdev_for_each_rcu(rdev, mddev1)
+		rdev_for_each_rcu(rdev2, mddev2)
+			if (rdev->bdev->bd_contains ==
+			    rdev2->bdev->bd_contains) {
+				rcu_read_unlock();
+				return 1;
+			}
+	rcu_read_unlock();
+	return 0;
+}
+
+static LIST_HEAD(pending_raid_disks);
+
+/*
+ * Try to register data integrity profile for an mddev
+ *
+ * This is called when an array is started and after a disk has been kicked
+ * from the array. It only succeeds if all working and active component devices
+ * are integrity capable with matching profiles.
+ */
+int md_integrity_register(struct mddev *mddev)
+{
+	struct md_rdev *rdev, *reference = NULL;
+
+	if (list_empty(&mddev->disks))
+		return 0; /* nothing to do */
+	if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
+		return 0; /* shouldn't register, or already is */
+	rdev_for_each(rdev, mddev) {
+		/* skip spares and non-functional disks */
+		if (test_bit(Faulty, &rdev->flags))
+			continue;
+		if (rdev->raid_disk < 0)
+			continue;
+		if (!reference) {
+			/* Use the first rdev as the reference */
+			reference = rdev;
+			continue;
+		}
+		/* does this rdev's profile match the reference profile? */
+		if (blk_integrity_compare(reference->bdev->bd_disk,
+				rdev->bdev->bd_disk) < 0)
+			return -EINVAL;
+	}
+	if (!reference || !bdev_get_integrity(reference->bdev))
+		return 0;
+	/*
+	 * All component devices are integrity capable and have matching
+	 * profiles, register the common profile for the md device.
+	 */
+	if (blk_integrity_register(mddev->gendisk,
+			bdev_get_integrity(reference->bdev)) != 0) {
+		printk(KERN_ERR "md: failed to register integrity for %s\n",
+			mdname(mddev));
+		return -EINVAL;
+	}
+	printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
+	if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
+		printk(KERN_ERR "md: failed to create integrity pool for %s\n",
+		       mdname(mddev));
+		return -EINVAL;
+	}
+	return 0;
+}
+EXPORT_SYMBOL(md_integrity_register);
+
+/* Disable data integrity if non-capable/non-matching disk is being added */
+void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
+{
+	struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
+	struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
+
+	if (!bi_mddev) /* nothing to do */
+		return;
+	if (rdev->raid_disk < 0) /* skip spares */
+		return;
+	if (bi_rdev && blk_integrity_compare(mddev->gendisk,
+					     rdev->bdev->bd_disk) >= 0)
+		return;
+	printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
+	blk_integrity_unregister(mddev->gendisk);
+}
+EXPORT_SYMBOL(md_integrity_add_rdev);
+
+static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
+{
+	char b[BDEVNAME_SIZE];
+	struct kobject *ko;
+	char *s;
+	int err;
+
+	if (rdev->mddev) {
+		MD_BUG();
+		return -EINVAL;
+	}
+
+	/* prevent duplicates */
+	if (find_rdev(mddev, rdev->bdev->bd_dev))
+		return -EEXIST;
+
+	/* make sure rdev->sectors exceeds mddev->dev_sectors */
+	if (rdev->sectors && (mddev->dev_sectors == 0 ||
+			rdev->sectors < mddev->dev_sectors)) {
+		if (mddev->pers) {
+			/* Cannot change size, so fail
+			 * If mddev->level <= 0, then we don't care
+			 * about aligning sizes (e.g. linear)
+			 */
+			if (mddev->level > 0)
+				return -ENOSPC;
+		} else
+			mddev->dev_sectors = rdev->sectors;
+	}
+
+	/* Verify rdev->desc_nr is unique.
+	 * If it is -1, assign a free number, else
+	 * check number is not in use
+	 */
+	if (rdev->desc_nr < 0) {
+		int choice = 0;
+		if (mddev->pers) choice = mddev->raid_disks;
+		while (find_rdev_nr(mddev, choice))
+			choice++;
+		rdev->desc_nr = choice;
+	} else {
+		if (find_rdev_nr(mddev, rdev->desc_nr))
+			return -EBUSY;
+	}
+	if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
+		printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
+		       mdname(mddev), mddev->max_disks);
+		return -EBUSY;
+	}
+	bdevname(rdev->bdev,b);
+	while ( (s=strchr(b, '/')) != NULL)
+		*s = '!';
+
+	rdev->mddev = mddev;
+	printk(KERN_INFO "md: bind<%s>\n", b);
+
+	if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
+		goto fail;
+
+	ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
+	if (sysfs_create_link(&rdev->kobj, ko, "block"))
+		/* failure here is OK */;
+	rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
+
+	list_add_rcu(&rdev->same_set, &mddev->disks);
+	bd_link_disk_holder(rdev->bdev, mddev->gendisk);
+
+	/* May as well allow recovery to be retried once */
+	mddev->recovery_disabled++;
+
+	return 0;
+
+ fail:
+	printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
+	       b, mdname(mddev));
+	return err;
+}
+
+static void md_delayed_delete(struct work_struct *ws)
+{
+	struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
+	kobject_del(&rdev->kobj);
+	kobject_put(&rdev->kobj);
+}
+
+static void unbind_rdev_from_array(struct md_rdev * rdev)
+{
+	char b[BDEVNAME_SIZE];
+	if (!rdev->mddev) {
+		MD_BUG();
+		return;
+	}
+	bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
+	list_del_rcu(&rdev->same_set);
+	printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
+	rdev->mddev = NULL;
+	sysfs_remove_link(&rdev->kobj, "block");
+	sysfs_put(rdev->sysfs_state);
+	rdev->sysfs_state = NULL;
+	kfree(rdev->badblocks.page);
+	rdev->badblocks.count = 0;
+	rdev->badblocks.page = NULL;
+	/* We need to delay this, otherwise we can deadlock when
+	 * writing to 'remove' to "dev/state".  We also need
+	 * to delay it due to rcu usage.
+	 */
+	synchronize_rcu();
+	INIT_WORK(&rdev->del_work, md_delayed_delete);
+	kobject_get(&rdev->kobj);
+	queue_work(md_misc_wq, &rdev->del_work);
+}
+
+/*
+ * prevent the device from being mounted, repartitioned or
+ * otherwise reused by a RAID array (or any other kernel
+ * subsystem), by bd_claiming the device.
+ */
+static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
+{
+	int err = 0;
+	struct block_device *bdev;
+	char b[BDEVNAME_SIZE];
+
+	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
+				 shared ? (struct md_rdev *)lock_rdev : rdev);
+	if (IS_ERR(bdev)) {
+		printk(KERN_ERR "md: could not open %s.\n",
+			__bdevname(dev, b));
+		return PTR_ERR(bdev);
+	}
+	rdev->bdev = bdev;
+	return err;
+}
+
+static void unlock_rdev(struct md_rdev *rdev)
+{
+	struct block_device *bdev = rdev->bdev;
+	rdev->bdev = NULL;
+	if (!bdev)
+		MD_BUG();
+	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
+}
+
+void md_autodetect_dev(dev_t dev);
+
+static void export_rdev(struct md_rdev * rdev)
+{
+	char b[BDEVNAME_SIZE];
+	printk(KERN_INFO "md: export_rdev(%s)\n",
+		bdevname(rdev->bdev,b));
+	if (rdev->mddev)
+		MD_BUG();
+	free_disk_sb(rdev);
+#ifndef MODULE
+	if (test_bit(AutoDetected, &rdev->flags))
+		md_autodetect_dev(rdev->bdev->bd_dev);
+#endif
+	unlock_rdev(rdev);
+	kobject_put(&rdev->kobj);
+}
+
+static void kick_rdev_from_array(struct md_rdev * rdev)
+{
+	unbind_rdev_from_array(rdev);
+	export_rdev(rdev);
+}
+
+static void export_array(struct mddev *mddev)
+{
+	struct md_rdev *rdev, *tmp;
+
+	rdev_for_each_safe(rdev, tmp, mddev) {
+		if (!rdev->mddev) {
+			MD_BUG();
+			continue;
+		}
+		kick_rdev_from_array(rdev);
+	}
+	if (!list_empty(&mddev->disks))
+		MD_BUG();
+	mddev->raid_disks = 0;
+	mddev->major_version = 0;
+}
+
+static void print_desc(mdp_disk_t *desc)
+{
+	printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
+		desc->major,desc->minor,desc->raid_disk,desc->state);
+}
+
+static void print_sb_90(mdp_super_t *sb)
+{
+	int i;
+
+	printk(KERN_INFO 
+		"md:  SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
+		sb->major_version, sb->minor_version, sb->patch_version,
+		sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
+		sb->ctime);
+	printk(KERN_INFO "md:     L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
+		sb->level, sb->size, sb->nr_disks, sb->raid_disks,
+		sb->md_minor, sb->layout, sb->chunk_size);
+	printk(KERN_INFO "md:     UT:%08x ST:%d AD:%d WD:%d"
+		" FD:%d SD:%d CSUM:%08x E:%08lx\n",
+		sb->utime, sb->state, sb->active_disks, sb->working_disks,
+		sb->failed_disks, sb->spare_disks,
+		sb->sb_csum, (unsigned long)sb->events_lo);
+
+	printk(KERN_INFO);
+	for (i = 0; i < MD_SB_DISKS; i++) {
+		mdp_disk_t *desc;
+
+		desc = sb->disks + i;
+		if (desc->number || desc->major || desc->minor ||
+		    desc->raid_disk || (desc->state && (desc->state != 4))) {
+			printk("     D %2d: ", i);
+			print_desc(desc);
+		}
+	}
+	printk(KERN_INFO "md:     THIS: ");
+	print_desc(&sb->this_disk);
+}
+
+static void print_sb_1(struct mdp_superblock_1 *sb)
+{
+	__u8 *uuid;
+
+	uuid = sb->set_uuid;
+	printk(KERN_INFO
+	       "md:  SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
+	       "md:    Name: \"%s\" CT:%llu\n",
+		le32_to_cpu(sb->major_version),
+		le32_to_cpu(sb->feature_map),
+		uuid,
+		sb->set_name,
+		(unsigned long long)le64_to_cpu(sb->ctime)
+		       & MD_SUPERBLOCK_1_TIME_SEC_MASK);
+
+	uuid = sb->device_uuid;
+	printk(KERN_INFO
+	       "md:       L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
+			" RO:%llu\n"
+	       "md:     Dev:%08x UUID: %pU\n"
+	       "md:       (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
+	       "md:         (MaxDev:%u) \n",
+		le32_to_cpu(sb->level),
+		(unsigned long long)le64_to_cpu(sb->size),
+		le32_to_cpu(sb->raid_disks),
+		le32_to_cpu(sb->layout),
+		le32_to_cpu(sb->chunksize),
+		(unsigned long long)le64_to_cpu(sb->data_offset),
+		(unsigned long long)le64_to_cpu(sb->data_size),
+		(unsigned long long)le64_to_cpu(sb->super_offset),
+		(unsigned long long)le64_to_cpu(sb->recovery_offset),
+		le32_to_cpu(sb->dev_number),
+		uuid,
+		sb->devflags,
+		(unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
+		(unsigned long long)le64_to_cpu(sb->events),
+		(unsigned long long)le64_to_cpu(sb->resync_offset),
+		le32_to_cpu(sb->sb_csum),
+		le32_to_cpu(sb->max_dev)
+		);
+}
+
+static void print_rdev(struct md_rdev *rdev, int major_version)
+{
+	char b[BDEVNAME_SIZE];
+	printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
+		bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
+	        test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
+	        rdev->desc_nr);
+	if (rdev->sb_loaded) {
+		printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
+		switch (major_version) {
+		case 0:
+			print_sb_90(page_address(rdev->sb_page));
+			break;
+		case 1:
+			print_sb_1(page_address(rdev->sb_page));
+			break;
+		}
+	} else
+		printk(KERN_INFO "md: no rdev superblock!\n");
+}
+
+static void md_print_devices(void)
+{
+	struct list_head *tmp;
+	struct md_rdev *rdev;
+	struct mddev *mddev;
+	char b[BDEVNAME_SIZE];
+
+	printk("\n");
+	printk("md:	**********************************\n");
+	printk("md:	* <COMPLETE RAID STATE PRINTOUT> *\n");
+	printk("md:	**********************************\n");
+	for_each_mddev(mddev, tmp) {
+
+		if (mddev->bitmap)
+			bitmap_print_sb(mddev->bitmap);
+		else
+			printk("%s: ", mdname(mddev));
+		rdev_for_each(rdev, mddev)
+			printk("<%s>", bdevname(rdev->bdev,b));
+		printk("\n");
+
+		rdev_for_each(rdev, mddev)
+			print_rdev(rdev, mddev->major_version);
+	}
+	printk("md:	**********************************\n");
+	printk("\n");
+}
+
+
+static void sync_sbs(struct mddev * mddev, int nospares)
+{
+	/* Update each superblock (in-memory image), but
+	 * if we are allowed to, skip spares which already
+	 * have the right event counter, or have one earlier
+	 * (which would mean they aren't being marked as dirty
+	 * with the rest of the array)
+	 */
+	struct md_rdev *rdev;
+	rdev_for_each(rdev, mddev) {
+		if (rdev->sb_events == mddev->events ||
+		    (nospares &&
+		     rdev->raid_disk < 0 &&
+		     rdev->sb_events+1 == mddev->events)) {
+			/* Don't update this superblock */
+			rdev->sb_loaded = 2;
+		} else {
+			sync_super(mddev, rdev);
+			rdev->sb_loaded = 1;
+		}
+	}
+}
+
+static void md_update_sb(struct mddev * mddev, int force_change)
+{
+	struct md_rdev *rdev;
+	int sync_req;
+	int nospares = 0;
+	int any_badblocks_changed = 0;
+
+repeat:
+	/* First make sure individual recovery_offsets are correct */
+	rdev_for_each(rdev, mddev) {
+		if (rdev->raid_disk >= 0 &&
+		    mddev->delta_disks >= 0 &&
+		    !test_bit(In_sync, &rdev->flags) &&
+		    mddev->curr_resync_completed > rdev->recovery_offset)
+				rdev->recovery_offset = mddev->curr_resync_completed;
+
+	}	
+	if (!mddev->persistent) {
+		clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
+		clear_bit(MD_CHANGE_DEVS, &mddev->flags);
+		if (!mddev->external) {
+			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
+			rdev_for_each(rdev, mddev) {
+				if (rdev->badblocks.changed) {
+					rdev->badblocks.changed = 0;
+					md_ack_all_badblocks(&rdev->badblocks);
+					md_error(mddev, rdev);
+				}
+				clear_bit(Blocked, &rdev->flags);
+				clear_bit(BlockedBadBlocks, &rdev->flags);
+				wake_up(&rdev->blocked_wait);
+			}
+		}
+		wake_up(&mddev->sb_wait);
+		return;
+	}
+
+	spin_lock_irq(&mddev->write_lock);
+
+	mddev->utime = get_seconds();
+
+	if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
+		force_change = 1;
+	if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
+		/* just a clean<-> dirty transition, possibly leave spares alone,
+		 * though if events isn't the right even/odd, we will have to do
+		 * spares after all
+		 */
+		nospares = 1;
+	if (force_change)
+		nospares = 0;
+	if (mddev->degraded)
+		/* If the array is degraded, then skipping spares is both
+		 * dangerous and fairly pointless.
+		 * Dangerous because a device that was removed from the array
+		 * might have a event_count that still looks up-to-date,
+		 * so it can be re-added without a resync.
+		 * Pointless because if there are any spares to skip,
+		 * then a recovery will happen and soon that array won't
+		 * be degraded any more and the spare can go back to sleep then.
+		 */
+		nospares = 0;
+
+	sync_req = mddev->in_sync;
+
+	/* If this is just a dirty<->clean transition, and the array is clean
+	 * and 'events' is odd, we can roll back to the previous clean state */
+	if (nospares
+	    && (mddev->in_sync && mddev->recovery_cp == MaxSector)
+	    && mddev->can_decrease_events
+	    && mddev->events != 1) {
+		mddev->events--;
+		mddev->can_decrease_events = 0;
+	} else {
+		/* otherwise we have to go forward and ... */
+		mddev->events ++;
+		mddev->can_decrease_events = nospares;
+	}
+
+	if (!mddev->events) {
+		/*
+		 * oops, this 64-bit counter should never wrap.
+		 * Either we are in around ~1 trillion A.C., assuming
+		 * 1 reboot per second, or we have a bug:
+		 */
+		MD_BUG();
+		mddev->events --;
+	}
+
+	rdev_for_each(rdev, mddev) {
+		if (rdev->badblocks.changed)
+			any_badblocks_changed++;
+		if (test_bit(Faulty, &rdev->flags))
+			set_bit(FaultRecorded, &rdev->flags);
+	}
+
+	sync_sbs(mddev, nospares);
+	spin_unlock_irq(&mddev->write_lock);
+
+	pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
+		 mdname(mddev), mddev->in_sync);
+
+	bitmap_update_sb(mddev->bitmap);
+	rdev_for_each(rdev, mddev) {
+		char b[BDEVNAME_SIZE];
+
+		if (rdev->sb_loaded != 1)
+			continue; /* no noise on spare devices */
+
+		if (!test_bit(Faulty, &rdev->flags) &&
+		    rdev->saved_raid_disk == -1) {
+			md_super_write(mddev,rdev,
+				       rdev->sb_start, rdev->sb_size,
+				       rdev->sb_page);
+			pr_debug("md: (write) %s's sb offset: %llu\n",
+				 bdevname(rdev->bdev, b),
+				 (unsigned long long)rdev->sb_start);
+			rdev->sb_events = mddev->events;
+			if (rdev->badblocks.size) {
+				md_super_write(mddev, rdev,
+					       rdev->badblocks.sector,
+					       rdev->badblocks.size << 9,
+					       rdev->bb_page);
+				rdev->badblocks.size = 0;
+			}
+
+		} else if (test_bit(Faulty, &rdev->flags))
+			pr_debug("md: %s (skipping faulty)\n",
+				 bdevname(rdev->bdev, b));
+		else
+			pr_debug("(skipping incremental s/r ");
+
+		if (mddev->level == LEVEL_MULTIPATH)
+			/* only need to write one superblock... */
+			break;
+	}
+	md_super_wait(mddev);
+	/* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
+
+	spin_lock_irq(&mddev->write_lock);
+	if (mddev->in_sync != sync_req ||
+	    test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
+		/* have to write it out again */
+		spin_unlock_irq(&mddev->write_lock);
+		goto repeat;
+	}
+	clear_bit(MD_CHANGE_PENDING, &mddev->flags);
+	spin_unlock_irq(&mddev->write_lock);
+	wake_up(&mddev->sb_wait);
+	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
+
+	rdev_for_each(rdev, mddev) {
+		if (test_and_clear_bit(FaultRecorded, &rdev->flags))
+			clear_bit(Blocked, &rdev->flags);
+
+		if (any_badblocks_changed)
+			md_ack_all_badblocks(&rdev->badblocks);
+		clear_bit(BlockedBadBlocks, &rdev->flags);
+		wake_up(&rdev->blocked_wait);
+	}
+}
+
+/* words written to sysfs files may, or may not, be \n terminated.
+ * We want to accept with case. For this we use cmd_match.
+ */
+static int cmd_match(const char *cmd, const char *str)
+{
+	/* See if cmd, written into a sysfs file, matches
+	 * str.  They must either be the same, or cmd can
+	 * have a trailing newline
+	 */
+	while (*cmd && *str && *cmd == *str) {
+		cmd++;
+		str++;
+	}
+	if (*cmd == '\n')
+		cmd++;
+	if (*str || *cmd)
+		return 0;
+	return 1;
+}
+
+struct rdev_sysfs_entry {
+	struct attribute attr;
+	ssize_t (*show)(struct md_rdev *, char *);
+	ssize_t (*store)(struct md_rdev *, const char *, size_t);
+};
+
+static ssize_t
+state_show(struct md_rdev *rdev, char *page)
+{
+	char *sep = "";
+	size_t len = 0;
+
+	if (test_bit(Faulty, &rdev->flags) ||
+	    rdev->badblocks.unacked_exist) {
+		len+= sprintf(page+len, "%sfaulty",sep);
+		sep = ",";
+	}
+	if (test_bit(In_sync, &rdev->flags)) {
+		len += sprintf(page+len, "%sin_sync",sep);
+		sep = ",";
+	}
+	if (test_bit(WriteMostly, &rdev->flags)) {
+		len += sprintf(page+len, "%swrite_mostly",sep);
+		sep = ",";
+	}
+	if (test_bit(Blocked, &rdev->flags) ||
+	    (rdev->badblocks.unacked_exist
+	     && !test_bit(Faulty, &rdev->flags))) {
+		len += sprintf(page+len, "%sblocked", sep);
+		sep = ",";
+	}
+	if (!test_bit(Faulty, &rdev->flags) &&
+	    !test_bit(In_sync, &rdev->flags)) {
+		len += sprintf(page+len, "%sspare", sep);
+		sep = ",";
+	}
+	if (test_bit(WriteErrorSeen, &rdev->flags)) {
+		len += sprintf(page+len, "%swrite_error", sep);
+		sep = ",";
+	}
+	if (test_bit(WantReplacement, &rdev->flags)) {
+		len += sprintf(page+len, "%swant_replacement", sep);
+		sep = ",";
+	}
+	if (test_bit(Replacement, &rdev->flags)) {
+		len += sprintf(page+len, "%sreplacement", sep);
+		sep = ",";
+	}
+
+	return len+sprintf(page+len, "\n");
+}
+
+static ssize_t
+state_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+	/* can write
+	 *  faulty  - simulates an error
+	 *  remove  - disconnects the device
+	 *  writemostly - sets write_mostly
+	 *  -writemostly - clears write_mostly
+	 *  blocked - sets the Blocked flags
+	 *  -blocked - clears the Blocked and possibly simulates an error
+	 *  insync - sets Insync providing device isn't active
+	 *  write_error - sets WriteErrorSeen
+	 *  -write_error - clears WriteErrorSeen
+	 */
+	int err = -EINVAL;
+	if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
+		md_error(rdev->mddev, rdev);
+		if (test_bit(Faulty, &rdev->flags))
+			err = 0;
+		else
+			err = -EBUSY;
+	} else if (cmd_match(buf, "remove")) {
+		if (rdev->raid_disk >= 0)
+			err = -EBUSY;
+		else {
+			struct mddev *mddev = rdev->mddev;
+			kick_rdev_from_array(rdev);
+			if (mddev->pers)
+				md_update_sb(mddev, 1);
+			md_new_event(mddev);
+			err = 0;
+		}
+	} else if (cmd_match(buf, "writemostly")) {
+		set_bit(WriteMostly, &rdev->flags);
+		err = 0;
+	} else if (cmd_match(buf, "-writemostly")) {
+		clear_bit(WriteMostly, &rdev->flags);
+		err = 0;
+	} else if (cmd_match(buf, "blocked")) {
+		set_bit(Blocked, &rdev->flags);
+		err = 0;
+	} else if (cmd_match(buf, "-blocked")) {
+		if (!test_bit(Faulty, &rdev->flags) &&
+		    rdev->badblocks.unacked_exist) {
+			/* metadata handler doesn't understand badblocks,
+			 * so we need to fail the device
+			 */
+			md_error(rdev->mddev, rdev);
+		}
+		clear_bit(Blocked, &rdev->flags);
+		clear_bit(BlockedBadBlocks, &rdev->flags);
+		wake_up(&rdev->blocked_wait);
+		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
+		md_wakeup_thread(rdev->mddev->thread);
+
+		err = 0;
+	} else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
+		set_bit(In_sync, &rdev->flags);
+		err = 0;
+	} else if (cmd_match(buf, "write_error")) {
+		set_bit(WriteErrorSeen, &rdev->flags);
+		err = 0;
+	} else if (cmd_match(buf, "-write_error")) {
+		clear_bit(WriteErrorSeen, &rdev->flags);
+		err = 0;
+	} else if (cmd_match(buf, "want_replacement")) {
+		/* Any non-spare device that is not a replacement can
+		 * become want_replacement at any time, but we then need to
+		 * check if recovery is needed.
+		 */
+		if (rdev->raid_disk >= 0 &&
+		    !test_bit(Replacement, &rdev->flags))
+			set_bit(WantReplacement, &rdev->flags);
+		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
+		md_wakeup_thread(rdev->mddev->thread);
+		err = 0;
+	} else if (cmd_match(buf, "-want_replacement")) {
+		/* Clearing 'want_replacement' is always allowed.
+		 * Once replacements starts it is too late though.
+		 */
+		err = 0;
+		clear_bit(WantReplacement, &rdev->flags);
+	} else if (cmd_match(buf, "replacement")) {
+		/* Can only set a device as a replacement when array has not
+		 * yet been started.  Once running, replacement is automatic
+		 * from spares, or by assigning 'slot'.
+		 */
+		if (rdev->mddev->pers)
+			err = -EBUSY;
+		else {
+			set_bit(Replacement, &rdev->flags);
+			err = 0;
+		}
+	} else if (cmd_match(buf, "-replacement")) {
+		/* Similarly, can only clear Replacement before start */
+		if (rdev->mddev->pers)
+			err = -EBUSY;
+		else {
+			clear_bit(Replacement, &rdev->flags);
+			err = 0;
+		}
+	}
+	if (!err)
+		sysfs_notify_dirent_safe(rdev->sysfs_state);
+	return err ? err : len;
+}
+static struct rdev_sysfs_entry rdev_state =
+__ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
+
+static ssize_t
+errors_show(struct md_rdev *rdev, char *page)
+{
+	return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
+}
+
+static ssize_t
+errors_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+	char *e;
+	unsigned long n = simple_strtoul(buf, &e, 10);
+	if (*buf && (*e == 0 || *e == '\n')) {
+		atomic_set(&rdev->corrected_errors, n);
+		return len;
+	}
+	return -EINVAL;
+}
+static struct rdev_sysfs_entry rdev_errors =
+__ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
+
+static ssize_t
+slot_show(struct md_rdev *rdev, char *page)
+{
+	if (rdev->raid_disk < 0)
+		return sprintf(page, "none\n");
+	else
+		return sprintf(page, "%d\n", rdev->raid_disk);
+}
+
+static ssize_t
+slot_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+	char *e;
+	int err;
+	int slot = simple_strtoul(buf, &e, 10);
+	if (strncmp(buf, "none", 4)==0)
+		slot = -1;
+	else if (e==buf || (*e && *e!= '\n'))
+		return -EINVAL;
+	if (rdev->mddev->pers && slot == -1) {
+		/* Setting 'slot' on an active array requires also
+		 * updating the 'rd%d' link, and communicating
+		 * with the personality with ->hot_*_disk.
+		 * For now we only support removing
+		 * failed/spare devices.  This normally happens automatically,
+		 * but not when the metadata is externally managed.
+		 */
+		if (rdev->raid_disk == -1)
+			return -EEXIST;
+		/* personality does all needed checks */
+		if (rdev->mddev->pers->hot_remove_disk == NULL)
+			return -EINVAL;
+		err = rdev->mddev->pers->
+			hot_remove_disk(rdev->mddev, rdev);
+		if (err)
+			return err;
+		sysfs_unlink_rdev(rdev->mddev, rdev);
+		rdev->raid_disk = -1;
+		set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
+		md_wakeup_thread(rdev->mddev->thread);
+	} else if (rdev->mddev->pers) {
+		/* Activating a spare .. or possibly reactivating
+		 * if we ever get bitmaps working here.
+		 */
+
+		if (rdev->raid_disk != -1)
+			return -EBUSY;
+
+		if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
+			return -EBUSY;
+
+		if (rdev->mddev->pers->hot_add_disk == NULL)
+			return -EINVAL;
+
+		if (slot >= rdev->mddev->raid_disks &&
+		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
+			return -ENOSPC;
+
+		rdev->raid_disk = slot;
+		if (test_bit(In_sync, &rdev->flags))
+			rdev->saved_raid_disk = slot;
+		else
+			rdev->saved_raid_disk = -1;
+		clear_bit(In_sync, &rdev->flags);
+		err = rdev->mddev->pers->
+			hot_add_disk(rdev->mddev, rdev);
+		if (err) {
+			rdev->raid_disk = -1;
+			return err;
+		} else
+			sysfs_notify_dirent_safe(rdev->sysfs_state);
+		if (sysfs_link_rdev(rdev->mddev, rdev))
+			/* failure here is OK */;
+		/* don't wakeup anyone, leave that to userspace. */
+	} else {
+		if (slot >= rdev->mddev->raid_disks &&
+		    slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
+			return -ENOSPC;
+		rdev->raid_disk = slot;
+		/* assume it is working */
+		clear_bit(Faulty, &rdev->flags);
+		clear_bit(WriteMostly, &rdev->flags);
+		set_bit(In_sync, &rdev->flags);
+		sysfs_notify_dirent_safe(rdev->sysfs_state);
+	}
+	return len;
+}
+
+
+static struct rdev_sysfs_entry rdev_slot =
+__ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
+
+static ssize_t
+offset_show(struct md_rdev *rdev, char *page)
+{
+	return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
+}
+
+static ssize_t
+offset_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+	char *e;
+	unsigned long long offset = simple_strtoull(buf, &e, 10);
+	if (e==buf || (*e && *e != '\n'))
+		return -EINVAL;
+	if (rdev->mddev->pers && rdev->raid_disk >= 0)
+		return -EBUSY;
+	if (rdev->sectors && rdev->mddev->external)
+		/* Must set offset before size, so overlap checks
+		 * can be sane */
+		return -EBUSY;
+	rdev->data_offset = offset;
+	return len;
+}
+
+static struct rdev_sysfs_entry rdev_offset =
+__ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
+
+static ssize_t
+rdev_size_show(struct md_rdev *rdev, char *page)
+{
+	return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
+}
+
+static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
+{
+	/* check if two start/length pairs overlap */
+	if (s1+l1 <= s2)
+		return 0;
+	if (s2+l2 <= s1)
+		return 0;
+	return 1;
+}
+
+static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
+{
+	unsigned long long blocks;
+	sector_t new;
+
+	if (strict_strtoull(buf, 10, &blocks) < 0)
+		return -EINVAL;
+
+	if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
+		return -EINVAL; /* sector conversion overflow */
+
+	new = blocks * 2;
+	if (new != blocks * 2)
+		return -EINVAL; /* unsigned long long to sector_t overflow */
+
+	*sectors = new;
+	return 0;
+}
+
+static ssize_t
+rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+	struct mddev *my_mddev = rdev->mddev;
+	sector_t oldsectors = rdev->sectors;
+	sector_t sectors;
+
+	if (strict_blocks_to_sectors(buf, &sectors) < 0)
+		return -EINVAL;
+	if (my_mddev->pers && rdev->raid_disk >= 0) {
+		if (my_mddev->persistent) {
+			sectors = super_types[my_mddev->major_version].
+				rdev_size_change(rdev, sectors);
+			if (!sectors)
+				return -EBUSY;
+		} else if (!sectors)
+			sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
+				rdev->data_offset;
+		if (!my_mddev->pers->resize)
+			/* Cannot change size for RAID0 or Linear etc */
+			return -EINVAL;
+	}
+	if (sectors < my_mddev->dev_sectors)
+		return -EINVAL; /* component must fit device */
+
+	rdev->sectors = sectors;
+	if (sectors > oldsectors && my_mddev->external) {
+		/* need to check that all other rdevs with the same ->bdev
+		 * do not overlap.  We need to unlock the mddev to avoid
+		 * a deadlock.  We have already changed rdev->sectors, and if
+		 * we have to change it back, we will have the lock again.
+		 */
+		struct mddev *mddev;
+		int overlap = 0;
+		struct list_head *tmp;
+
+		mddev_unlock(my_mddev);
+		for_each_mddev(mddev, tmp) {
+			struct md_rdev *rdev2;
+
+			mddev_lock(mddev);
+			rdev_for_each(rdev2, mddev)
+				if (rdev->bdev == rdev2->bdev &&
+				    rdev != rdev2 &&
+				    overlaps(rdev->data_offset, rdev->sectors,
+					     rdev2->data_offset,
+					     rdev2->sectors)) {
+					overlap = 1;
+					break;
+				}
+			mddev_unlock(mddev);
+			if (overlap) {
+				mddev_put(mddev);
+				break;
+			}
+		}
+		mddev_lock(my_mddev);
+		if (overlap) {
+			/* Someone else could have slipped in a size
+			 * change here, but doing so is just silly.
+			 * We put oldsectors back because we *know* it is
+			 * safe, and trust userspace not to race with
+			 * itself
+			 */
+			rdev->sectors = oldsectors;
+			return -EBUSY;
+		}
+	}
+	return len;
+}
+
+static struct rdev_sysfs_entry rdev_size =
+__ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
+
+
+static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
+{
+	unsigned long long recovery_start = rdev->recovery_offset;
+
+	if (test_bit(In_sync, &rdev->flags) ||
+	    recovery_start == MaxSector)
+		return sprintf(page, "none\n");
+
+	return sprintf(page, "%llu\n", recovery_start);
+}
+
+static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
+{
+	unsigned long long recovery_start;
+
+	if (cmd_match(buf, "none"))
+		recovery_start = MaxSector;
+	else if (strict_strtoull(buf, 10, &recovery_start))
+		return -EINVAL;
+
+	if (rdev->mddev->pers &&
+	    rdev->raid_disk >= 0)
+		return -EBUSY;
+
+	rdev->recovery_offset = recovery_start;
+	if (recovery_start == MaxSector)
+		set_bit(In_sync, &rdev->flags);
+	else
+		clear_bit(In_sync, &rdev->flags);
+	return len;
+}
+
+static struct rdev_sysfs_entry rdev_recovery_start =
+__ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
+
+
+static ssize_t
+badblocks_show(struct badblocks *bb, char *page, int unack);
+static ssize_t
+badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
+
+static ssize_t bb_show(struct md_rdev *rdev, char *page)
+{
+	return badblocks_show(&rdev->badblocks, page, 0);
+}
+static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
+{
+	int rv = badblocks_store(&rdev->badblocks, page, len, 0);
+	/* Maybe that ack was all we needed */
+	if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
+		wake_up(&rdev->blocked_wait);
+	return rv;
+}
+static struct rdev_sysfs_entry rdev_bad_blocks =
+__ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
+
+
+static ssize_t ubb_show(struct md_rdev *rdev, char *page)
+{
+	return badblocks_show(&rdev->badblocks, page, 1);
+}
+static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
+{
+	return badblocks_store(&rdev->badblocks, page, len, 1);
+}
+static struct rdev_sysfs_entry rdev_unack_bad_blocks =
+__ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
+
+static struct attribute *rdev_default_attrs[] = {
+	&rdev_state.attr,
+	&rdev_errors.attr,
+	&rdev_slot.attr,
+	&rdev_offset.attr,
+	&rdev_size.attr,
+	&rdev_recovery_start.attr,
+	&rdev_bad_blocks.attr,
+	&rdev_unack_bad_blocks.attr,
+	NULL,
+};
+static ssize_t
+rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
+{
+	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
+	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
+	struct mddev *mddev = rdev->mddev;
+	ssize_t rv;
+
+	if (!entry->show)
+		return -EIO;
+
+	rv = mddev ? mddev_lock(mddev) : -EBUSY;
+	if (!rv) {
+		if (rdev->mddev == NULL)
+			rv = -EBUSY;
+		else
+			rv = entry->show(rdev, page);
+		mddev_unlock(mddev);
+	}
+	return rv;
+}
+
+static ssize_t
+rdev_attr_store(struct kobject *kobj, struct attribute *attr,
+	      const char *page, size_t length)
+{
+	struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
+	struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
+	ssize_t rv;
+	struct mddev *mddev = rdev->mddev;
+
+	if (!entry->store)
+		return -EIO;
+	if (!capable(CAP_SYS_ADMIN))
+		return -EACCES;
+	rv = mddev ? mddev_lock(mddev): -EBUSY;
+	if (!rv) {
+		if (rdev->mddev == NULL)
+			rv = -EBUSY;
+		else
+			rv = entry->store(rdev, page, length);
+		mddev_unlock(mddev);
+	}
+	return rv;
+}
+
+static void rdev_free(struct kobject *ko)
+{
+	struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
+	kfree(rdev);
+}
+static const struct sysfs_ops rdev_sysfs_ops = {
+	.show		= rdev_attr_show,
+	.store		= rdev_attr_store,
+};
+static struct kobj_type rdev_ktype = {
+	.release	= rdev_free,
+	.sysfs_ops	= &rdev_sysfs_ops,
+	.default_attrs	= rdev_default_attrs,
+};
+
+int md_rdev_init(struct md_rdev *rdev)
+{
+	rdev->desc_nr = -1;
+	rdev->saved_raid_disk = -1;
+	rdev->raid_disk = -1;
+	rdev->flags = 0;
+	rdev->data_offset = 0;
+	rdev->sb_events = 0;
+	rdev->last_read_error.tv_sec  = 0;
+	rdev->last_read_error.tv_nsec = 0;
+	rdev->sb_loaded = 0;
+	rdev->bb_page = NULL;
+	atomic_set(&rdev->nr_pending, 0);
+	atomic_set(&rdev->read_errors, 0);
+	atomic_set(&rdev->corrected_errors, 0);
+
+	INIT_LIST_HEAD(&rdev->same_set);
+	init_waitqueue_head(&rdev->blocked_wait);
+
+	/* Add space to store bad block list.
+	 * This reserves the space even on arrays where it cannot
+	 * be used - I wonder if that matters
+	 */
+	rdev->badblocks.count = 0;
+	rdev->badblocks.shift = -1; /* disabled until explicitly enabled */
+	rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
+	seqlock_init(&rdev->badblocks.lock);
+	if (rdev->badblocks.page == NULL)
+		return -ENOMEM;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(md_rdev_init);
+/*
+ * Import a device. If 'super_format' >= 0, then sanity check the superblock
+ *
+ * mark the device faulty if:
+ *
+ *   - the device is nonexistent (zero size)
+ *   - the device has no valid superblock
+ *
+ * a faulty rdev _never_ has rdev->sb set.
+ */
+static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
+{
+	char b[BDEVNAME_SIZE];
+	int err;
+	struct md_rdev *rdev;
+	sector_t size;
+
+	rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
+	if (!rdev) {
+		printk(KERN_ERR "md: could not alloc mem for new device!\n");
+		return ERR_PTR(-ENOMEM);
+	}
+
+	err = md_rdev_init(rdev);
+	if (err)
+		goto abort_free;
+	err = alloc_disk_sb(rdev);
+	if (err)
+		goto abort_free;
+
+	err = lock_rdev(rdev, newdev, super_format == -2);
+	if (err)
+		goto abort_free;
+
+	kobject_init(&rdev->kobj, &rdev_ktype);
+
+	size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
+	if (!size) {
+		printk(KERN_WARNING 
+			"md: %s has zero or unknown size, marking faulty!\n",
+			bdevname(rdev->bdev,b));
+		err = -EINVAL;
+		goto abort_free;
+	}
+
+	if (super_format >= 0) {
+		err = super_types[super_format].
+			load_super(rdev, NULL, super_minor);
+		if (err == -EINVAL) {
+			printk(KERN_WARNING
+				"md: %s does not have a valid v%d.%d "
+			       "superblock, not importing!\n",
+				bdevname(rdev->bdev,b),
+			       super_format, super_minor);
+			goto abort_free;
+		}
+		if (err < 0) {
+			printk(KERN_WARNING 
+				"md: could not read %s's sb, not importing!\n",
+				bdevname(rdev->bdev,b));
+			goto abort_free;
+		}
+	}
+
+	return rdev;
+
+abort_free:
+	if (rdev->bdev)
+		unlock_rdev(rdev);
+	free_disk_sb(rdev);
+	kfree(rdev->badblocks.page);
+	kfree(rdev);
+	return ERR_PTR(err);
+}
+
+/*
+ * Check a full RAID array for plausibility
+ */
+
+
+static void analyze_sbs(struct mddev * mddev)
+{
+	int i;
+	struct md_rdev *rdev, *freshest, *tmp;
+	char b[BDEVNAME_SIZE];
+
+	freshest = NULL;
+	rdev_for_each_safe(rdev, tmp, mddev)
+		switch (super_types[mddev->major_version].
+			load_super(rdev, freshest, mddev->minor_version)) {
+		case 1:
+			freshest = rdev;
+			break;
+		case 0:
+			break;
+		default:
+			printk( KERN_ERR \
+				"md: fatal superblock inconsistency in %s"
+				" -- removing from array\n", 
+				bdevname(rdev->bdev,b));
+			kick_rdev_from_array(rdev);
+		}
+
+
+	super_types[mddev->major_version].
+		validate_super(mddev, freshest);
+
+	i = 0;
+	rdev_for_each_safe(rdev, tmp, mddev) {
+		if (mddev->max_disks &&
+		    (rdev->desc_nr >= mddev->max_disks ||
+		     i > mddev->max_disks)) {
+			printk(KERN_WARNING
+			       "md: %s: %s: only %d devices permitted\n",
+			       mdname(mddev), bdevname(rdev->bdev, b),
+			       mddev->max_disks);
+			kick_rdev_from_array(rdev);
+			continue;
+		}
+		if (rdev != freshest)
+			if (super_types[mddev->major_version].
+			    validate_super(mddev, rdev)) {
+				printk(KERN_WARNING "md: kicking non-fresh %s"
+					" from array!\n",
+					bdevname(rdev->bdev,b));
+				kick_rdev_from_array(rdev);
+				continue;
+			}
+		if (mddev->level == LEVEL_MULTIPATH) {
+			rdev->desc_nr = i++;
+			rdev->raid_disk = rdev->desc_nr;
+			set_bit(In_sync, &rdev->flags);
+		} else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
+			rdev->raid_disk = -1;
+			clear_bit(In_sync, &rdev->flags);
+		}
+	}
+}
+
+/* Read a fixed-point number.
+ * Numbers in sysfs attributes should be in "standard" units where
+ * possible, so time should be in seconds.
+ * However we internally use a a much smaller unit such as 
+ * milliseconds or jiffies.
+ * This function takes a decimal number with a possible fractional
+ * component, and produces an integer which is the result of
+ * multiplying that number by 10^'scale'.
+ * all without any floating-point arithmetic.
+ */
+int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
+{
+	unsigned long result = 0;
+	long decimals = -1;
+	while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
+		if (*cp == '.')
+			decimals = 0;
+		else if (decimals < scale) {
+			unsigned int value;
+			value = *cp - '0';
+			result = result * 10 + value;
+			if (decimals >= 0)
+				decimals++;
+		}
+		cp++;
+	}
+	if (*cp == '\n')
+		cp++;
+	if (*cp)
+		return -EINVAL;
+	if (decimals < 0)
+		decimals = 0;
+	while (decimals < scale) {
+		result *= 10;
+		decimals ++;
+	}
+	*res = result;
+	return 0;
+}
+
+
+static void md_safemode_timeout(unsigned long data);
+
+static ssize_t
+safe_delay_show(struct mddev *mddev, char *page)
+{
+	int msec = (mddev->safemode_delay*1000)/HZ;
+	return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
+}
+static ssize_t
+safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
+{
+	unsigned long msec;
+
+	if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
+		return -EINVAL;
+	if (msec == 0)
+		mddev->safemode_delay = 0;
+	else {
+		unsigned long old_delay = mddev->safemode_delay;
+		mddev->safemode_delay = (msec*HZ)/1000;
+		if (mddev->safemode_delay == 0)
+			mddev->safemode_delay = 1;
+		if (mddev->safemode_delay < old_delay)
+			md_safemode_timeout((unsigned long)mddev);
+	}
+	return len;
+}
+static struct md_sysfs_entry md_safe_delay =
+__ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
+
+static ssize_t
+level_show(struct mddev *mddev, char *page)
+{
+	struct md_personality *p = mddev->pers;
+	if (p)
+		return sprintf(page, "%s\n", p->name);
+	else if (mddev->clevel[0])
+		return sprintf(page, "%s\n", mddev->clevel);
+	else if (mddev->level != LEVEL_NONE)
+		return sprintf(page, "%d\n", mddev->level);
+	else
+		return 0;
+}
+
+static ssize_t
+level_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char clevel[16];
+	ssize_t rv = len;
+	struct md_personality *pers;
+	long level;
+	void *priv;
+	struct md_rdev *rdev;
+
+	if (mddev->pers == NULL) {
+		if (len == 0)
+			return 0;
+		if (len >= sizeof(mddev->clevel))
+			return -ENOSPC;
+		strncpy(mddev->clevel, buf, len);
+		if (mddev->clevel[len-1] == '\n')
+			len--;
+		mddev->clevel[len] = 0;
+		mddev->level = LEVEL_NONE;
+		return rv;
+	}
+
+	/* request to change the personality.  Need to ensure:
+	 *  - array is not engaged in resync/recovery/reshape
+	 *  - old personality can be suspended
+	 *  - new personality will access other array.
+	 */
+
+	if (mddev->sync_thread ||
+	    mddev->reshape_position != MaxSector ||
+	    mddev->sysfs_active)
+		return -EBUSY;
+
+	if (!mddev->pers->quiesce) {
+		printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
+		       mdname(mddev), mddev->pers->name);
+		return -EINVAL;
+	}
+
+	/* Now find the new personality */
+	if (len == 0 || len >= sizeof(clevel))
+		return -EINVAL;
+	strncpy(clevel, buf, len);
+	if (clevel[len-1] == '\n')
+		len--;
+	clevel[len] = 0;
+	if (strict_strtol(clevel, 10, &level))
+		level = LEVEL_NONE;
+
+	if (request_module("md-%s", clevel) != 0)
+		request_module("md-level-%s", clevel);
+	spin_lock(&pers_lock);
+	pers = find_pers(level, clevel);
+	if (!pers || !try_module_get(pers->owner)) {
+		spin_unlock(&pers_lock);
+		printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
+		return -EINVAL;
+	}
+	spin_unlock(&pers_lock);
+
+	if (pers == mddev->pers) {
+		/* Nothing to do! */
+		module_put(pers->owner);
+		return rv;
+	}
+	if (!pers->takeover) {
+		module_put(pers->owner);
+		printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
+		       mdname(mddev), clevel);
+		return -EINVAL;
+	}
+
+	rdev_for_each(rdev, mddev)
+		rdev->new_raid_disk = rdev->raid_disk;
+
+	/* ->takeover must set new_* and/or delta_disks
+	 * if it succeeds, and may set them when it fails.
+	 */
+	priv = pers->takeover(mddev);
+	if (IS_ERR(priv)) {
+		mddev->new_level = mddev->level;
+		mddev->new_layout = mddev->layout;
+		mddev->new_chunk_sectors = mddev->chunk_sectors;
+		mddev->raid_disks -= mddev->delta_disks;
+		mddev->delta_disks = 0;
+		module_put(pers->owner);
+		printk(KERN_WARNING "md: %s: %s would not accept array\n",
+		       mdname(mddev), clevel);
+		return PTR_ERR(priv);
+	}
+
+	/* Looks like we have a winner */
+	mddev_suspend(mddev);
+	mddev->pers->stop(mddev);
+	
+	if (mddev->pers->sync_request == NULL &&
+	    pers->sync_request != NULL) {
+		/* need to add the md_redundancy_group */
+		if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
+			printk(KERN_WARNING
+			       "md: cannot register extra attributes for %s\n",
+			       mdname(mddev));
+		mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
+	}		
+	if (mddev->pers->sync_request != NULL &&
+	    pers->sync_request == NULL) {
+		/* need to remove the md_redundancy_group */
+		if (mddev->to_remove == NULL)
+			mddev->to_remove = &md_redundancy_group;
+	}
+
+	if (mddev->pers->sync_request == NULL &&
+	    mddev->external) {
+		/* We are converting from a no-redundancy array
+		 * to a redundancy array and metadata is managed
+		 * externally so we need to be sure that writes
+		 * won't block due to a need to transition
+		 *      clean->dirty
+		 * until external management is started.
+		 */
+		mddev->in_sync = 0;
+		mddev->safemode_delay = 0;
+		mddev->safemode = 0;
+	}
+
+	rdev_for_each(rdev, mddev) {
+		if (rdev->raid_disk < 0)
+			continue;
+		if (rdev->new_raid_disk >= mddev->raid_disks)
+			rdev->new_raid_disk = -1;
+		if (rdev->new_raid_disk == rdev->raid_disk)
+			continue;
+		sysfs_unlink_rdev(mddev, rdev);
+	}
+	rdev_for_each(rdev, mddev) {
+		if (rdev->raid_disk < 0)
+			continue;
+		if (rdev->new_raid_disk == rdev->raid_disk)
+			continue;
+		rdev->raid_disk = rdev->new_raid_disk;
+		if (rdev->raid_disk < 0)
+			clear_bit(In_sync, &rdev->flags);
+		else {
+			if (sysfs_link_rdev(mddev, rdev))
+				printk(KERN_WARNING "md: cannot register rd%d"
+				       " for %s after level change\n",
+				       rdev->raid_disk, mdname(mddev));
+		}
+	}
+
+	module_put(mddev->pers->owner);
+	mddev->pers = pers;
+	mddev->private = priv;
+	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
+	mddev->level = mddev->new_level;
+	mddev->layout = mddev->new_layout;
+	mddev->chunk_sectors = mddev->new_chunk_sectors;
+	mddev->delta_disks = 0;
+	mddev->degraded = 0;
+	if (mddev->pers->sync_request == NULL) {
+		/* this is now an array without redundancy, so
+		 * it must always be in_sync
+		 */
+		mddev->in_sync = 1;
+		del_timer_sync(&mddev->safemode_timer);
+	}
+	blk_set_stacking_limits(&mddev->queue->limits);
+	pers->run(mddev);
+	mddev_resume(mddev);
+	set_bit(MD_CHANGE_DEVS, &mddev->flags);
+	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	md_wakeup_thread(mddev->thread);
+	sysfs_notify(&mddev->kobj, NULL, "level");
+	md_new_event(mddev);
+	return rv;
+}
+
+static struct md_sysfs_entry md_level =
+__ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
+
+
+static ssize_t
+layout_show(struct mddev *mddev, char *page)
+{
+	/* just a number, not meaningful for all levels */
+	if (mddev->reshape_position != MaxSector &&
+	    mddev->layout != mddev->new_layout)
+		return sprintf(page, "%d (%d)\n",
+			       mddev->new_layout, mddev->layout);
+	return sprintf(page, "%d\n", mddev->layout);
+}
+
+static ssize_t
+layout_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char *e;
+	unsigned long n = simple_strtoul(buf, &e, 10);
+
+	if (!*buf || (*e && *e != '\n'))
+		return -EINVAL;
+
+	if (mddev->pers) {
+		int err;
+		if (mddev->pers->check_reshape == NULL)
+			return -EBUSY;
+		mddev->new_layout = n;
+		err = mddev->pers->check_reshape(mddev);
+		if (err) {
+			mddev->new_layout = mddev->layout;
+			return err;
+		}
+	} else {
+		mddev->new_layout = n;
+		if (mddev->reshape_position == MaxSector)
+			mddev->layout = n;
+	}
+	return len;
+}
+static struct md_sysfs_entry md_layout =
+__ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
+
+
+static ssize_t
+raid_disks_show(struct mddev *mddev, char *page)
+{
+	if (mddev->raid_disks == 0)
+		return 0;
+	if (mddev->reshape_position != MaxSector &&
+	    mddev->delta_disks != 0)
+		return sprintf(page, "%d (%d)\n", mddev->raid_disks,
+			       mddev->raid_disks - mddev->delta_disks);
+	return sprintf(page, "%d\n", mddev->raid_disks);
+}
+
+static int update_raid_disks(struct mddev *mddev, int raid_disks);
+
+static ssize_t
+raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char *e;
+	int rv = 0;
+	unsigned long n = simple_strtoul(buf, &e, 10);
+
+	if (!*buf || (*e && *e != '\n'))
+		return -EINVAL;
+
+	if (mddev->pers)
+		rv = update_raid_disks(mddev, n);
+	else if (mddev->reshape_position != MaxSector) {
+		int olddisks = mddev->raid_disks - mddev->delta_disks;
+		mddev->delta_disks = n - olddisks;
+		mddev->raid_disks = n;
+	} else
+		mddev->raid_disks = n;
+	return rv ? rv : len;
+}
+static struct md_sysfs_entry md_raid_disks =
+__ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
+
+static ssize_t
+chunk_size_show(struct mddev *mddev, char *page)
+{
+	if (mddev->reshape_position != MaxSector &&
+	    mddev->chunk_sectors != mddev->new_chunk_sectors)
+		return sprintf(page, "%d (%d)\n",
+			       mddev->new_chunk_sectors << 9,
+			       mddev->chunk_sectors << 9);
+	return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
+}
+
+static ssize_t
+chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char *e;
+	unsigned long n = simple_strtoul(buf, &e, 10);
+
+	if (!*buf || (*e && *e != '\n'))
+		return -EINVAL;
+
+	if (mddev->pers) {
+		int err;
+		if (mddev->pers->check_reshape == NULL)
+			return -EBUSY;
+		mddev->new_chunk_sectors = n >> 9;
+		err = mddev->pers->check_reshape(mddev);
+		if (err) {
+			mddev->new_chunk_sectors = mddev->chunk_sectors;
+			return err;
+		}
+	} else {
+		mddev->new_chunk_sectors = n >> 9;
+		if (mddev->reshape_position == MaxSector)
+			mddev->chunk_sectors = n >> 9;
+	}
+	return len;
+}
+static struct md_sysfs_entry md_chunk_size =
+__ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
+
+static ssize_t
+resync_start_show(struct mddev *mddev, char *page)
+{
+	if (mddev->recovery_cp == MaxSector)
+		return sprintf(page, "none\n");
+	return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
+}
+
+static ssize_t
+resync_start_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char *e;
+	unsigned long long n = simple_strtoull(buf, &e, 10);
+
+	if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
+		return -EBUSY;
+	if (cmd_match(buf, "none"))
+		n = MaxSector;
+	else if (!*buf || (*e && *e != '\n'))
+		return -EINVAL;
+
+	mddev->recovery_cp = n;
+	return len;
+}
+static struct md_sysfs_entry md_resync_start =
+__ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
+
+/*
+ * The array state can be:
+ *
+ * clear
+ *     No devices, no size, no level
+ *     Equivalent to STOP_ARRAY ioctl
+ * inactive
+ *     May have some settings, but array is not active
+ *        all IO results in error
+ *     When written, doesn't tear down array, but just stops it
+ * suspended (not supported yet)
+ *     All IO requests will block. The array can be reconfigured.
+ *     Writing this, if accepted, will block until array is quiescent
+ * readonly
+ *     no resync can happen.  no superblocks get written.
+ *     write requests fail
+ * read-auto
+ *     like readonly, but behaves like 'clean' on a write request.
+ *
+ * clean - no pending writes, but otherwise active.
+ *     When written to inactive array, starts without resync
+ *     If a write request arrives then
+ *       if metadata is known, mark 'dirty' and switch to 'active'.
+ *       if not known, block and switch to write-pending
+ *     If written to an active array that has pending writes, then fails.
+ * active
+ *     fully active: IO and resync can be happening.
+ *     When written to inactive array, starts with resync
+ *
+ * write-pending
+ *     clean, but writes are blocked waiting for 'active' to be written.
+ *
+ * active-idle
+ *     like active, but no writes have been seen for a while (100msec).
+ *
+ */
+enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
+		   write_pending, active_idle, bad_word};
+static char *array_states[] = {
+	"clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
+	"write-pending", "active-idle", NULL };
+
+static int match_word(const char *word, char **list)
+{
+	int n;
+	for (n=0; list[n]; n++)
+		if (cmd_match(word, list[n]))
+			break;
+	return n;
+}
+
+static ssize_t
+array_state_show(struct mddev *mddev, char *page)
+{
+	enum array_state st = inactive;
+
+	if (mddev->pers)
+		switch(mddev->ro) {
+		case 1:
+			st = readonly;
+			break;
+		case 2:
+			st = read_auto;
+			break;
+		case 0:
+			if (mddev->in_sync)
+				st = clean;
+			else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
+				st = write_pending;
+			else if (mddev->safemode)
+				st = active_idle;
+			else
+				st = active;
+		}
+	else {
+		if (list_empty(&mddev->disks) &&
+		    mddev->raid_disks == 0 &&
+		    mddev->dev_sectors == 0)
+			st = clear;
+		else
+			st = inactive;
+	}
+	return sprintf(page, "%s\n", array_states[st]);
+}
+
+static int do_md_stop(struct mddev * mddev, int ro, struct block_device *bdev);
+static int md_set_readonly(struct mddev * mddev, struct block_device *bdev);
+static int do_md_run(struct mddev * mddev);
+static int restart_array(struct mddev *mddev);
+
+static ssize_t
+array_state_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	int err = -EINVAL;
+	enum array_state st = match_word(buf, array_states);
+	switch(st) {
+	case bad_word:
+		break;
+	case clear:
+		/* stopping an active array */
+		if (atomic_read(&mddev->openers) > 0)
+			return -EBUSY;
+		err = do_md_stop(mddev, 0, NULL);
+		break;
+	case inactive:
+		/* stopping an active array */
+		if (mddev->pers) {
+			if (atomic_read(&mddev->openers) > 0)
+				return -EBUSY;
+			err = do_md_stop(mddev, 2, NULL);
+		} else
+			err = 0; /* already inactive */
+		break;
+	case suspended:
+		break; /* not supported yet */
+	case readonly:
+		if (mddev->pers)
+			err = md_set_readonly(mddev, NULL);
+		else {
+			mddev->ro = 1;
+			set_disk_ro(mddev->gendisk, 1);
+			err = do_md_run(mddev);
+		}
+		break;
+	case read_auto:
+		if (mddev->pers) {
+			if (mddev->ro == 0)
+				err = md_set_readonly(mddev, NULL);
+			else if (mddev->ro == 1)
+				err = restart_array(mddev);
+			if (err == 0) {
+				mddev->ro = 2;
+				set_disk_ro(mddev->gendisk, 0);
+			}
+		} else {
+			mddev->ro = 2;
+			err = do_md_run(mddev);
+		}
+		break;
+	case clean:
+		if (mddev->pers) {
+			restart_array(mddev);
+			spin_lock_irq(&mddev->write_lock);
+			if (atomic_read(&mddev->writes_pending) == 0) {
+				if (mddev->in_sync == 0) {
+					mddev->in_sync = 1;
+					if (mddev->safemode == 1)
+						mddev->safemode = 0;
+					set_bit(MD_CHANGE_CLEAN, &mddev->flags);
+				}
+				err = 0;
+			} else
+				err = -EBUSY;
+			spin_unlock_irq(&mddev->write_lock);
+		} else
+			err = -EINVAL;
+		break;
+	case active:
+		if (mddev->pers) {
+			restart_array(mddev);
+			clear_bit(MD_CHANGE_PENDING, &mddev->flags);
+			wake_up(&mddev->sb_wait);
+			err = 0;
+		} else {
+			mddev->ro = 0;
+			set_disk_ro(mddev->gendisk, 0);
+			err = do_md_run(mddev);
+		}
+		break;
+	case write_pending:
+	case active_idle:
+		/* these cannot be set */
+		break;
+	}
+	if (err)
+		return err;
+	else {
+		if (mddev->hold_active == UNTIL_IOCTL)
+			mddev->hold_active = 0;
+		sysfs_notify_dirent_safe(mddev->sysfs_state);
+		return len;
+	}
+}
+static struct md_sysfs_entry md_array_state =
+__ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
+
+static ssize_t
+max_corrected_read_errors_show(struct mddev *mddev, char *page) {
+	return sprintf(page, "%d\n",
+		       atomic_read(&mddev->max_corr_read_errors));
+}
+
+static ssize_t
+max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char *e;
+	unsigned long n = simple_strtoul(buf, &e, 10);
+
+	if (*buf && (*e == 0 || *e == '\n')) {
+		atomic_set(&mddev->max_corr_read_errors, n);
+		return len;
+	}
+	return -EINVAL;
+}
+
+static struct md_sysfs_entry max_corr_read_errors =
+__ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
+	max_corrected_read_errors_store);
+
+static ssize_t
+null_show(struct mddev *mddev, char *page)
+{
+	return -EINVAL;
+}
+
+static ssize_t
+new_dev_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	/* buf must be %d:%d\n? giving major and minor numbers */
+	/* The new device is added to the array.
+	 * If the array has a persistent superblock, we read the
+	 * superblock to initialise info and check validity.
+	 * Otherwise, only checking done is that in bind_rdev_to_array,
+	 * which mainly checks size.
+	 */
+	char *e;
+	int major = simple_strtoul(buf, &e, 10);
+	int minor;
+	dev_t dev;
+	struct md_rdev *rdev;
+	int err;
+
+	if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
+		return -EINVAL;
+	minor = simple_strtoul(e+1, &e, 10);
+	if (*e && *e != '\n')
+		return -EINVAL;
+	dev = MKDEV(major, minor);
+	if (major != MAJOR(dev) ||
+	    minor != MINOR(dev))
+		return -EOVERFLOW;
+
+
+	if (mddev->persistent) {
+		rdev = md_import_device(dev, mddev->major_version,
+					mddev->minor_version);
+		if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
+			struct md_rdev *rdev0
+				= list_entry(mddev->disks.next,
+					     struct md_rdev, same_set);
+			err = super_types[mddev->major_version]
+				.load_super(rdev, rdev0, mddev->minor_version);
+			if (err < 0)
+				goto out;
+		}
+	} else if (mddev->external)
+		rdev = md_import_device(dev, -2, -1);
+	else
+		rdev = md_import_device(dev, -1, -1);
+
+	if (IS_ERR(rdev))
+		return PTR_ERR(rdev);
+	err = bind_rdev_to_array(rdev, mddev);
+ out:
+	if (err)
+		export_rdev(rdev);
+	return err ? err : len;
+}
+
+static struct md_sysfs_entry md_new_device =
+__ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
+
+static ssize_t
+bitmap_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char *end;
+	unsigned long chunk, end_chunk;
+
+	if (!mddev->bitmap)
+		goto out;
+	/* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
+	while (*buf) {
+		chunk = end_chunk = simple_strtoul(buf, &end, 0);
+		if (buf == end) break;
+		if (*end == '-') { /* range */
+			buf = end + 1;
+			end_chunk = simple_strtoul(buf, &end, 0);
+			if (buf == end) break;
+		}
+		if (*end && !isspace(*end)) break;
+		bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
+		buf = skip_spaces(end);
+	}
+	bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
+out:
+	return len;
+}
+
+static struct md_sysfs_entry md_bitmap =
+__ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
+
+static ssize_t
+size_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%llu\n",
+		(unsigned long long)mddev->dev_sectors / 2);
+}
+
+static int update_size(struct mddev *mddev, sector_t num_sectors);
+
+static ssize_t
+size_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	/* If array is inactive, we can reduce the component size, but
+	 * not increase it (except from 0).
+	 * If array is active, we can try an on-line resize
+	 */
+	sector_t sectors;
+	int err = strict_blocks_to_sectors(buf, &sectors);
+
+	if (err < 0)
+		return err;
+	if (mddev->pers) {
+		err = update_size(mddev, sectors);
+		md_update_sb(mddev, 1);
+	} else {
+		if (mddev->dev_sectors == 0 ||
+		    mddev->dev_sectors > sectors)
+			mddev->dev_sectors = sectors;
+		else
+			err = -ENOSPC;
+	}
+	return err ? err : len;
+}
+
+static struct md_sysfs_entry md_size =
+__ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
+
+
+/* Metdata version.
+ * This is one of
+ *   'none' for arrays with no metadata (good luck...)
+ *   'external' for arrays with externally managed metadata,
+ * or N.M for internally known formats
+ */
+static ssize_t
+metadata_show(struct mddev *mddev, char *page)
+{
+	if (mddev->persistent)
+		return sprintf(page, "%d.%d\n",
+			       mddev->major_version, mddev->minor_version);
+	else if (mddev->external)
+		return sprintf(page, "external:%s\n", mddev->metadata_type);
+	else
+		return sprintf(page, "none\n");
+}
+
+static ssize_t
+metadata_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	int major, minor;
+	char *e;
+	/* Changing the details of 'external' metadata is
+	 * always permitted.  Otherwise there must be
+	 * no devices attached to the array.
+	 */
+	if (mddev->external && strncmp(buf, "external:", 9) == 0)
+		;
+	else if (!list_empty(&mddev->disks))
+		return -EBUSY;
+
+	if (cmd_match(buf, "none")) {
+		mddev->persistent = 0;
+		mddev->external = 0;
+		mddev->major_version = 0;
+		mddev->minor_version = 90;
+		return len;
+	}
+	if (strncmp(buf, "external:", 9) == 0) {
+		size_t namelen = len-9;
+		if (namelen >= sizeof(mddev->metadata_type))
+			namelen = sizeof(mddev->metadata_type)-1;
+		strncpy(mddev->metadata_type, buf+9, namelen);
+		mddev->metadata_type[namelen] = 0;
+		if (namelen && mddev->metadata_type[namelen-1] == '\n')
+			mddev->metadata_type[--namelen] = 0;
+		mddev->persistent = 0;
+		mddev->external = 1;
+		mddev->major_version = 0;
+		mddev->minor_version = 90;
+		return len;
+	}
+	major = simple_strtoul(buf, &e, 10);
+	if (e==buf || *e != '.')
+		return -EINVAL;
+	buf = e+1;
+	minor = simple_strtoul(buf, &e, 10);
+	if (e==buf || (*e && *e != '\n') )
+		return -EINVAL;
+	if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
+		return -ENOENT;
+	mddev->major_version = major;
+	mddev->minor_version = minor;
+	mddev->persistent = 1;
+	mddev->external = 0;
+	return len;
+}
+
+static struct md_sysfs_entry md_metadata =
+__ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
+
+static ssize_t
+action_show(struct mddev *mddev, char *page)
+{
+	char *type = "idle";
+	if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
+		type = "frozen";
+	else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
+	    (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
+		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+			type = "reshape";
+		else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+			if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+				type = "resync";
+			else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
+				type = "check";
+			else
+				type = "repair";
+		} else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
+			type = "recover";
+	}
+	return sprintf(page, "%s\n", type);
+}
+
+static void reap_sync_thread(struct mddev *mddev);
+
+static ssize_t
+action_store(struct mddev *mddev, const char *page, size_t len)
+{
+	if (!mddev->pers || !mddev->pers->sync_request)
+		return -EINVAL;
+
+	if (cmd_match(page, "frozen"))
+		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+	else
+		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+
+	if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
+		if (mddev->sync_thread) {
+			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+			reap_sync_thread(mddev);
+		}
+	} else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
+		   test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
+		return -EBUSY;
+	else if (cmd_match(page, "resync"))
+		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	else if (cmd_match(page, "recover")) {
+		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	} else if (cmd_match(page, "reshape")) {
+		int err;
+		if (mddev->pers->start_reshape == NULL)
+			return -EINVAL;
+		err = mddev->pers->start_reshape(mddev);
+		if (err)
+			return err;
+		sysfs_notify(&mddev->kobj, NULL, "degraded");
+	} else {
+		if (cmd_match(page, "check"))
+			set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+		else if (!cmd_match(page, "repair"))
+			return -EINVAL;
+		set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+		set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+	}
+	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	md_wakeup_thread(mddev->thread);
+	sysfs_notify_dirent_safe(mddev->sysfs_action);
+	return len;
+}
+
+static ssize_t
+mismatch_cnt_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%llu\n",
+		       (unsigned long long) mddev->resync_mismatches);
+}
+
+static struct md_sysfs_entry md_scan_mode =
+__ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
+
+
+static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
+
+static ssize_t
+sync_min_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%d (%s)\n", speed_min(mddev),
+		       mddev->sync_speed_min ? "local": "system");
+}
+
+static ssize_t
+sync_min_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	int min;
+	char *e;
+	if (strncmp(buf, "system", 6)==0) {
+		mddev->sync_speed_min = 0;
+		return len;
+	}
+	min = simple_strtoul(buf, &e, 10);
+	if (buf == e || (*e && *e != '\n') || min <= 0)
+		return -EINVAL;
+	mddev->sync_speed_min = min;
+	return len;
+}
+
+static struct md_sysfs_entry md_sync_min =
+__ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
+
+static ssize_t
+sync_max_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%d (%s)\n", speed_max(mddev),
+		       mddev->sync_speed_max ? "local": "system");
+}
+
+static ssize_t
+sync_max_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	int max;
+	char *e;
+	if (strncmp(buf, "system", 6)==0) {
+		mddev->sync_speed_max = 0;
+		return len;
+	}
+	max = simple_strtoul(buf, &e, 10);
+	if (buf == e || (*e && *e != '\n') || max <= 0)
+		return -EINVAL;
+	mddev->sync_speed_max = max;
+	return len;
+}
+
+static struct md_sysfs_entry md_sync_max =
+__ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
+
+static ssize_t
+degraded_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%d\n", mddev->degraded);
+}
+static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
+
+static ssize_t
+sync_force_parallel_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%d\n", mddev->parallel_resync);
+}
+
+static ssize_t
+sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	long n;
+
+	if (strict_strtol(buf, 10, &n))
+		return -EINVAL;
+
+	if (n != 0 && n != 1)
+		return -EINVAL;
+
+	mddev->parallel_resync = n;
+
+	if (mddev->sync_thread)
+		wake_up(&resync_wait);
+
+	return len;
+}
+
+/* force parallel resync, even with shared block devices */
+static struct md_sysfs_entry md_sync_force_parallel =
+__ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
+       sync_force_parallel_show, sync_force_parallel_store);
+
+static ssize_t
+sync_speed_show(struct mddev *mddev, char *page)
+{
+	unsigned long resync, dt, db;
+	if (mddev->curr_resync == 0)
+		return sprintf(page, "none\n");
+	resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
+	dt = (jiffies - mddev->resync_mark) / HZ;
+	if (!dt) dt++;
+	db = resync - mddev->resync_mark_cnt;
+	return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
+}
+
+static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
+
+static ssize_t
+sync_completed_show(struct mddev *mddev, char *page)
+{
+	unsigned long long max_sectors, resync;
+
+	if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+		return sprintf(page, "none\n");
+
+	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
+		max_sectors = mddev->resync_max_sectors;
+	else
+		max_sectors = mddev->dev_sectors;
+
+	resync = mddev->curr_resync_completed;
+	return sprintf(page, "%llu / %llu\n", resync, max_sectors);
+}
+
+static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
+
+static ssize_t
+min_sync_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%llu\n",
+		       (unsigned long long)mddev->resync_min);
+}
+static ssize_t
+min_sync_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	unsigned long long min;
+	if (strict_strtoull(buf, 10, &min))
+		return -EINVAL;
+	if (min > mddev->resync_max)
+		return -EINVAL;
+	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+		return -EBUSY;
+
+	/* Must be a multiple of chunk_size */
+	if (mddev->chunk_sectors) {
+		sector_t temp = min;
+		if (sector_div(temp, mddev->chunk_sectors))
+			return -EINVAL;
+	}
+	mddev->resync_min = min;
+
+	return len;
+}
+
+static struct md_sysfs_entry md_min_sync =
+__ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
+
+static ssize_t
+max_sync_show(struct mddev *mddev, char *page)
+{
+	if (mddev->resync_max == MaxSector)
+		return sprintf(page, "max\n");
+	else
+		return sprintf(page, "%llu\n",
+			       (unsigned long long)mddev->resync_max);
+}
+static ssize_t
+max_sync_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	if (strncmp(buf, "max", 3) == 0)
+		mddev->resync_max = MaxSector;
+	else {
+		unsigned long long max;
+		if (strict_strtoull(buf, 10, &max))
+			return -EINVAL;
+		if (max < mddev->resync_min)
+			return -EINVAL;
+		if (max < mddev->resync_max &&
+		    mddev->ro == 0 &&
+		    test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+			return -EBUSY;
+
+		/* Must be a multiple of chunk_size */
+		if (mddev->chunk_sectors) {
+			sector_t temp = max;
+			if (sector_div(temp, mddev->chunk_sectors))
+				return -EINVAL;
+		}
+		mddev->resync_max = max;
+	}
+	wake_up(&mddev->recovery_wait);
+	return len;
+}
+
+static struct md_sysfs_entry md_max_sync =
+__ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
+
+static ssize_t
+suspend_lo_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
+}
+
+static ssize_t
+suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char *e;
+	unsigned long long new = simple_strtoull(buf, &e, 10);
+	unsigned long long old = mddev->suspend_lo;
+
+	if (mddev->pers == NULL || 
+	    mddev->pers->quiesce == NULL)
+		return -EINVAL;
+	if (buf == e || (*e && *e != '\n'))
+		return -EINVAL;
+
+	mddev->suspend_lo = new;
+	if (new >= old)
+		/* Shrinking suspended region */
+		mddev->pers->quiesce(mddev, 2);
+	else {
+		/* Expanding suspended region - need to wait */
+		mddev->pers->quiesce(mddev, 1);
+		mddev->pers->quiesce(mddev, 0);
+	}
+	return len;
+}
+static struct md_sysfs_entry md_suspend_lo =
+__ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
+
+
+static ssize_t
+suspend_hi_show(struct mddev *mddev, char *page)
+{
+	return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
+}
+
+static ssize_t
+suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char *e;
+	unsigned long long new = simple_strtoull(buf, &e, 10);
+	unsigned long long old = mddev->suspend_hi;
+
+	if (mddev->pers == NULL ||
+	    mddev->pers->quiesce == NULL)
+		return -EINVAL;
+	if (buf == e || (*e && *e != '\n'))
+		return -EINVAL;
+
+	mddev->suspend_hi = new;
+	if (new <= old)
+		/* Shrinking suspended region */
+		mddev->pers->quiesce(mddev, 2);
+	else {
+		/* Expanding suspended region - need to wait */
+		mddev->pers->quiesce(mddev, 1);
+		mddev->pers->quiesce(mddev, 0);
+	}
+	return len;
+}
+static struct md_sysfs_entry md_suspend_hi =
+__ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
+
+static ssize_t
+reshape_position_show(struct mddev *mddev, char *page)
+{
+	if (mddev->reshape_position != MaxSector)
+		return sprintf(page, "%llu\n",
+			       (unsigned long long)mddev->reshape_position);
+	strcpy(page, "none\n");
+	return 5;
+}
+
+static ssize_t
+reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	char *e;
+	unsigned long long new = simple_strtoull(buf, &e, 10);
+	if (mddev->pers)
+		return -EBUSY;
+	if (buf == e || (*e && *e != '\n'))
+		return -EINVAL;
+	mddev->reshape_position = new;
+	mddev->delta_disks = 0;
+	mddev->new_level = mddev->level;
+	mddev->new_layout = mddev->layout;
+	mddev->new_chunk_sectors = mddev->chunk_sectors;
+	return len;
+}
+
+static struct md_sysfs_entry md_reshape_position =
+__ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
+       reshape_position_store);
+
+static ssize_t
+array_size_show(struct mddev *mddev, char *page)
+{
+	if (mddev->external_size)
+		return sprintf(page, "%llu\n",
+			       (unsigned long long)mddev->array_sectors/2);
+	else
+		return sprintf(page, "default\n");
+}
+
+static ssize_t
+array_size_store(struct mddev *mddev, const char *buf, size_t len)
+{
+	sector_t sectors;
+
+	if (strncmp(buf, "default", 7) == 0) {
+		if (mddev->pers)
+			sectors = mddev->pers->size(mddev, 0, 0);
+		else
+			sectors = mddev->array_sectors;
+
+		mddev->external_size = 0;
+	} else {
+		if (strict_blocks_to_sectors(buf, &sectors) < 0)
+			return -EINVAL;
+		if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
+			return -E2BIG;
+
+		mddev->external_size = 1;
+	}
+
+	mddev->array_sectors = sectors;
+	if (mddev->pers) {
+		set_capacity(mddev->gendisk, mddev->array_sectors);
+		revalidate_disk(mddev->gendisk);
+	}
+	return len;
+}
+
+static struct md_sysfs_entry md_array_size =
+__ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
+       array_size_store);
+
+static struct attribute *md_default_attrs[] = {
+	&md_level.attr,
+	&md_layout.attr,
+	&md_raid_disks.attr,
+	&md_chunk_size.attr,
+	&md_size.attr,
+	&md_resync_start.attr,
+	&md_metadata.attr,
+	&md_new_device.attr,
+	&md_safe_delay.attr,
+	&md_array_state.attr,
+	&md_reshape_position.attr,
+	&md_array_size.attr,
+	&max_corr_read_errors.attr,
+	NULL,
+};
+
+static struct attribute *md_redundancy_attrs[] = {
+	&md_scan_mode.attr,
+	&md_mismatches.attr,
+	&md_sync_min.attr,
+	&md_sync_max.attr,
+	&md_sync_speed.attr,
+	&md_sync_force_parallel.attr,
+	&md_sync_completed.attr,
+	&md_min_sync.attr,
+	&md_max_sync.attr,
+	&md_suspend_lo.attr,
+	&md_suspend_hi.attr,
+	&md_bitmap.attr,
+	&md_degraded.attr,
+	NULL,
+};
+static struct attribute_group md_redundancy_group = {
+	.name = NULL,
+	.attrs = md_redundancy_attrs,
+};
+
+
+static ssize_t
+md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
+{
+	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
+	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
+	ssize_t rv;
+
+	if (!entry->show)
+		return -EIO;
+	spin_lock(&all_mddevs_lock);
+	if (list_empty(&mddev->all_mddevs)) {
+		spin_unlock(&all_mddevs_lock);
+		return -EBUSY;
+	}
+	mddev_get(mddev);
+	spin_unlock(&all_mddevs_lock);
+
+	rv = mddev_lock(mddev);
+	if (!rv) {
+		rv = entry->show(mddev, page);
+		mddev_unlock(mddev);
+	}
+	mddev_put(mddev);
+	return rv;
+}
+
+static ssize_t
+md_attr_store(struct kobject *kobj, struct attribute *attr,
+	      const char *page, size_t length)
+{
+	struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
+	struct mddev *mddev = container_of(kobj, struct mddev, kobj);
+	ssize_t rv;
+
+	if (!entry->store)
+		return -EIO;
+	if (!capable(CAP_SYS_ADMIN))
+		return -EACCES;
+	spin_lock(&all_mddevs_lock);
+	if (list_empty(&mddev->all_mddevs)) {
+		spin_unlock(&all_mddevs_lock);
+		return -EBUSY;
+	}
+	mddev_get(mddev);
+	spin_unlock(&all_mddevs_lock);
+	rv = mddev_lock(mddev);
+	if (!rv) {
+		rv = entry->store(mddev, page, length);
+		mddev_unlock(mddev);
+	}
+	mddev_put(mddev);
+	return rv;
+}
+
+static void md_free(struct kobject *ko)
+{
+	struct mddev *mddev = container_of(ko, struct mddev, kobj);
+
+	if (mddev->sysfs_state)
+		sysfs_put(mddev->sysfs_state);
+
+	if (mddev->gendisk) {
+		del_gendisk(mddev->gendisk);
+		put_disk(mddev->gendisk);
+	}
+	if (mddev->queue)
+		blk_cleanup_queue(mddev->queue);
+
+	kfree(mddev);
+}
+
+static const struct sysfs_ops md_sysfs_ops = {
+	.show	= md_attr_show,
+	.store	= md_attr_store,
+};
+static struct kobj_type md_ktype = {
+	.release	= md_free,
+	.sysfs_ops	= &md_sysfs_ops,
+	.default_attrs	= md_default_attrs,
+};
+
+int mdp_major = 0;
+
+static void mddev_delayed_delete(struct work_struct *ws)
+{
+	struct mddev *mddev = container_of(ws, struct mddev, del_work);
+
+	sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
+	kobject_del(&mddev->kobj);
+	kobject_put(&mddev->kobj);
+}
+
+static int md_alloc(dev_t dev, char *name)
+{
+	static DEFINE_MUTEX(disks_mutex);
+	struct mddev *mddev = mddev_find(dev);
+	struct gendisk *disk;
+	int partitioned;
+	int shift;
+	int unit;
+	int error;
+
+	if (!mddev)
+		return -ENODEV;
+
+	partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
+	shift = partitioned ? MdpMinorShift : 0;
+	unit = MINOR(mddev->unit) >> shift;
+
+	/* wait for any previous instance of this device to be
+	 * completely removed (mddev_delayed_delete).
+	 */
+	flush_workqueue(md_misc_wq);
+
+	mutex_lock(&disks_mutex);
+	error = -EEXIST;
+	if (mddev->gendisk)
+		goto abort;
+
+	if (name) {
+		/* Need to ensure that 'name' is not a duplicate.
+		 */
+		struct mddev *mddev2;
+		spin_lock(&all_mddevs_lock);
+
+		list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
+			if (mddev2->gendisk &&
+			    strcmp(mddev2->gendisk->disk_name, name) == 0) {
+				spin_unlock(&all_mddevs_lock);
+				goto abort;
+			}
+		spin_unlock(&all_mddevs_lock);
+	}
+
+	error = -ENOMEM;
+	mddev->queue = blk_alloc_queue(GFP_KERNEL);
+	if (!mddev->queue)
+		goto abort;
+	mddev->queue->queuedata = mddev;
+
+	blk_queue_make_request(mddev->queue, md_make_request);
+	blk_set_stacking_limits(&mddev->queue->limits);
+
+	disk = alloc_disk(1 << shift);
+	if (!disk) {
+		blk_cleanup_queue(mddev->queue);
+		mddev->queue = NULL;
+		goto abort;
+	}
+	disk->major = MAJOR(mddev->unit);
+	disk->first_minor = unit << shift;
+	if (name)
+		strcpy(disk->disk_name, name);
+	else if (partitioned)
+		sprintf(disk->disk_name, "md_d%d", unit);
+	else
+		sprintf(disk->disk_name, "md%d", unit);
+	disk->fops = &md_fops;
+	disk->private_data = mddev;
+	disk->queue = mddev->queue;
+	blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
+	/* Allow extended partitions.  This makes the
+	 * 'mdp' device redundant, but we can't really
+	 * remove it now.
+	 */
+	disk->flags |= GENHD_FL_EXT_DEVT;
+	mddev->gendisk = disk;
+	/* As soon as we call add_disk(), another thread could get
+	 * through to md_open, so make sure it doesn't get too far
+	 */
+	mutex_lock(&mddev->open_mutex);
+	add_disk(disk);
+
+	error = kobject_init_and_add(&mddev->kobj, &md_ktype,
+				     &disk_to_dev(disk)->kobj, "%s", "md");
+	if (error) {
+		/* This isn't possible, but as kobject_init_and_add is marked
+		 * __must_check, we must do something with the result
+		 */
+		printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
+		       disk->disk_name);
+		error = 0;
+	}
+	if (mddev->kobj.sd &&
+	    sysfs_create_group(&mddev->kobj, &md_bitmap_group))
+		printk(KERN_DEBUG "pointless warning\n");
+	mutex_unlock(&mddev->open_mutex);
+ abort:
+	mutex_unlock(&disks_mutex);
+	if (!error && mddev->kobj.sd) {
+		kobject_uevent(&mddev->kobj, KOBJ_ADD);
+		mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
+	}
+	mddev_put(mddev);
+	return error;
+}
+
+static struct kobject *md_probe(dev_t dev, int *part, void *data)
+{
+	md_alloc(dev, NULL);
+	return NULL;
+}
+
+static int add_named_array(const char *val, struct kernel_param *kp)
+{
+	/* val must be "md_*" where * is not all digits.
+	 * We allocate an array with a large free minor number, and
+	 * set the name to val.  val must not already be an active name.
+	 */
+	int len = strlen(val);
+	char buf[DISK_NAME_LEN];
+
+	while (len && val[len-1] == '\n')
+		len--;
+	if (len >= DISK_NAME_LEN)
+		return -E2BIG;
+	strlcpy(buf, val, len+1);
+	if (strncmp(buf, "md_", 3) != 0)
+		return -EINVAL;
+	return md_alloc(0, buf);
+}
+
+static void md_safemode_timeout(unsigned long data)
+{
+	struct mddev *mddev = (struct mddev *) data;
+
+	if (!atomic_read(&mddev->writes_pending)) {
+		mddev->safemode = 1;
+		if (mddev->external)
+			sysfs_notify_dirent_safe(mddev->sysfs_state);
+	}
+	md_wakeup_thread(mddev->thread);
+}
+
+static int start_dirty_degraded;
+
+int md_run(struct mddev *mddev)
+{
+	int err;
+	struct md_rdev *rdev;
+	struct md_personality *pers;
+
+	if (list_empty(&mddev->disks))
+		/* cannot run an array with no devices.. */
+		return -EINVAL;
+
+	if (mddev->pers)
+		return -EBUSY;
+	/* Cannot run until previous stop completes properly */
+	if (mddev->sysfs_active)
+		return -EBUSY;
+
+	/*
+	 * Analyze all RAID superblock(s)
+	 */
+	if (!mddev->raid_disks) {
+		if (!mddev->persistent)
+			return -EINVAL;
+		analyze_sbs(mddev);
+	}
+
+	if (mddev->level != LEVEL_NONE)
+		request_module("md-level-%d", mddev->level);
+	else if (mddev->clevel[0])
+		request_module("md-%s", mddev->clevel);
+
+	/*
+	 * Drop all container device buffers, from now on
+	 * the only valid external interface is through the md
+	 * device.
+	 */
+	rdev_for_each(rdev, mddev) {
+		if (test_bit(Faulty, &rdev->flags))
+			continue;
+		sync_blockdev(rdev->bdev);
+		invalidate_bdev(rdev->bdev);
+
+		/* perform some consistency tests on the device.
+		 * We don't want the data to overlap the metadata,
+		 * Internal Bitmap issues have been handled elsewhere.
+		 */
+		if (rdev->meta_bdev) {
+			/* Nothing to check */;
+		} else if (rdev->data_offset < rdev->sb_start) {
+			if (mddev->dev_sectors &&
+			    rdev->data_offset + mddev->dev_sectors
+			    > rdev->sb_start) {
+				printk("md: %s: data overlaps metadata\n",
+				       mdname(mddev));
+				return -EINVAL;
+			}
+		} else {
+			if (rdev->sb_start + rdev->sb_size/512
+			    > rdev->data_offset) {
+				printk("md: %s: metadata overlaps data\n",
+				       mdname(mddev));
+				return -EINVAL;
+			}
+		}
+		sysfs_notify_dirent_safe(rdev->sysfs_state);
+	}
+
+	if (mddev->bio_set == NULL)
+		mddev->bio_set = bioset_create(BIO_POOL_SIZE,
+					       sizeof(struct mddev *));
+
+	spin_lock(&pers_lock);
+	pers = find_pers(mddev->level, mddev->clevel);
+	if (!pers || !try_module_get(pers->owner)) {
+		spin_unlock(&pers_lock);
+		if (mddev->level != LEVEL_NONE)
+			printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
+			       mddev->level);
+		else
+			printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
+			       mddev->clevel);
+		return -EINVAL;
+	}
+	mddev->pers = pers;
+	spin_unlock(&pers_lock);
+	if (mddev->level != pers->level) {
+		mddev->level = pers->level;
+		mddev->new_level = pers->level;
+	}
+	strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
+
+	if (mddev->reshape_position != MaxSector &&
+	    pers->start_reshape == NULL) {
+		/* This personality cannot handle reshaping... */
+		mddev->pers = NULL;
+		module_put(pers->owner);
+		return -EINVAL;
+	}
+
+	if (pers->sync_request) {
+		/* Warn if this is a potentially silly
+		 * configuration.
+		 */
+		char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
+		struct md_rdev *rdev2;
+		int warned = 0;
+
+		rdev_for_each(rdev, mddev)
+			rdev_for_each(rdev2, mddev) {
+				if (rdev < rdev2 &&
+				    rdev->bdev->bd_contains ==
+				    rdev2->bdev->bd_contains) {
+					printk(KERN_WARNING
+					       "%s: WARNING: %s appears to be"
+					       " on the same physical disk as"
+					       " %s.\n",
+					       mdname(mddev),
+					       bdevname(rdev->bdev,b),
+					       bdevname(rdev2->bdev,b2));
+					warned = 1;
+				}
+			}
+
+		if (warned)
+			printk(KERN_WARNING
+			       "True protection against single-disk"
+			       " failure might be compromised.\n");
+	}
+
+	mddev->recovery = 0;
+	/* may be over-ridden by personality */
+	mddev->resync_max_sectors = mddev->dev_sectors;
+
+	mddev->ok_start_degraded = start_dirty_degraded;
+
+	if (start_readonly && mddev->ro == 0)
+		mddev->ro = 2; /* read-only, but switch on first write */
+
+	err = mddev->pers->run(mddev);
+	if (err)
+		printk(KERN_ERR "md: pers->run() failed ...\n");
+	else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
+		WARN_ONCE(!mddev->external_size, "%s: default size too small,"
+			  " but 'external_size' not in effect?\n", __func__);
+		printk(KERN_ERR
+		       "md: invalid array_size %llu > default size %llu\n",
+		       (unsigned long long)mddev->array_sectors / 2,
+		       (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
+		err = -EINVAL;
+		mddev->pers->stop(mddev);
+	}
+	if (err == 0 && mddev->pers->sync_request) {
+		err = bitmap_create(mddev);
+		if (err) {
+			printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
+			       mdname(mddev), err);
+			mddev->pers->stop(mddev);
+		}
+	}
+	if (err) {
+		module_put(mddev->pers->owner);
+		mddev->pers = NULL;
+		bitmap_destroy(mddev);
+		return err;
+	}
+	if (mddev->pers->sync_request) {
+		if (mddev->kobj.sd &&
+		    sysfs_create_group(&mddev->kobj, &md_redundancy_group))
+			printk(KERN_WARNING
+			       "md: cannot register extra attributes for %s\n",
+			       mdname(mddev));
+		mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
+	} else if (mddev->ro == 2) /* auto-readonly not meaningful */
+		mddev->ro = 0;
+
+ 	atomic_set(&mddev->writes_pending,0);
+	atomic_set(&mddev->max_corr_read_errors,
+		   MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
+	mddev->safemode = 0;
+	mddev->safemode_timer.function = md_safemode_timeout;
+	mddev->safemode_timer.data = (unsigned long) mddev;
+	mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
+	mddev->in_sync = 1;
+	smp_wmb();
+	mddev->ready = 1;
+	rdev_for_each(rdev, mddev)
+		if (rdev->raid_disk >= 0)
+			if (sysfs_link_rdev(mddev, rdev))
+				/* failure here is OK */;
+	
+	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	
+	if (mddev->flags)
+		md_update_sb(mddev, 0);
+
+	md_new_event(mddev);
+	sysfs_notify_dirent_safe(mddev->sysfs_state);
+	sysfs_notify_dirent_safe(mddev->sysfs_action);
+	sysfs_notify(&mddev->kobj, NULL, "degraded");
+	return 0;
+}
+EXPORT_SYMBOL_GPL(md_run);
+
+static int do_md_run(struct mddev *mddev)
+{
+	int err;
+
+	err = md_run(mddev);
+	if (err)
+		goto out;
+	err = bitmap_load(mddev);
+	if (err) {
+		bitmap_destroy(mddev);
+		goto out;
+	}
+
+	md_wakeup_thread(mddev->thread);
+	md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
+
+	set_capacity(mddev->gendisk, mddev->array_sectors);
+	revalidate_disk(mddev->gendisk);
+	mddev->changed = 1;
+	kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
+out:
+	return err;
+}
+
+static int restart_array(struct mddev *mddev)
+{
+	struct gendisk *disk = mddev->gendisk;
+
+	/* Complain if it has no devices */
+	if (list_empty(&mddev->disks))
+		return -ENXIO;
+	if (!mddev->pers)
+		return -EINVAL;
+	if (!mddev->ro)
+		return -EBUSY;
+	mddev->safemode = 0;
+	mddev->ro = 0;
+	set_disk_ro(disk, 0);
+	printk(KERN_INFO "md: %s switched to read-write mode.\n",
+		mdname(mddev));
+	/* Kick recovery or resync if necessary */
+	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	md_wakeup_thread(mddev->thread);
+	md_wakeup_thread(mddev->sync_thread);
+	sysfs_notify_dirent_safe(mddev->sysfs_state);
+	return 0;
+}
+
+/* similar to deny_write_access, but accounts for our holding a reference
+ * to the file ourselves */
+static int deny_bitmap_write_access(struct file * file)
+{
+	struct inode *inode = file->f_mapping->host;
+
+	spin_lock(&inode->i_lock);
+	if (atomic_read(&inode->i_writecount) > 1) {
+		spin_unlock(&inode->i_lock);
+		return -ETXTBSY;
+	}
+	atomic_set(&inode->i_writecount, -1);
+	spin_unlock(&inode->i_lock);
+
+	return 0;
+}
+
+void restore_bitmap_write_access(struct file *file)
+{
+	struct inode *inode = file->f_mapping->host;
+
+	spin_lock(&inode->i_lock);
+	atomic_set(&inode->i_writecount, 1);
+	spin_unlock(&inode->i_lock);
+}
+
+static void md_clean(struct mddev *mddev)
+{
+	mddev->array_sectors = 0;
+	mddev->external_size = 0;
+	mddev->dev_sectors = 0;
+	mddev->raid_disks = 0;
+	mddev->recovery_cp = 0;
+	mddev->resync_min = 0;
+	mddev->resync_max = MaxSector;
+	mddev->reshape_position = MaxSector;
+	mddev->external = 0;
+	mddev->persistent = 0;
+	mddev->level = LEVEL_NONE;
+	mddev->clevel[0] = 0;
+	mddev->flags = 0;
+	mddev->ro = 0;
+	mddev->metadata_type[0] = 0;
+	mddev->chunk_sectors = 0;
+	mddev->ctime = mddev->utime = 0;
+	mddev->layout = 0;
+	mddev->max_disks = 0;
+	mddev->events = 0;
+	mddev->can_decrease_events = 0;
+	mddev->delta_disks = 0;
+	mddev->new_level = LEVEL_NONE;
+	mddev->new_layout = 0;
+	mddev->new_chunk_sectors = 0;
+	mddev->curr_resync = 0;
+	mddev->resync_mismatches = 0;
+	mddev->suspend_lo = mddev->suspend_hi = 0;
+	mddev->sync_speed_min = mddev->sync_speed_max = 0;
+	mddev->recovery = 0;
+	mddev->in_sync = 0;
+	mddev->changed = 0;
+	mddev->degraded = 0;
+	mddev->safemode = 0;
+	mddev->merge_check_needed = 0;
+	mddev->bitmap_info.offset = 0;
+	mddev->bitmap_info.default_offset = 0;
+	mddev->bitmap_info.chunksize = 0;
+	mddev->bitmap_info.daemon_sleep = 0;
+	mddev->bitmap_info.max_write_behind = 0;
+}
+
+static void __md_stop_writes(struct mddev *mddev)
+{
+	if (mddev->sync_thread) {
+		set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+		reap_sync_thread(mddev);
+	}
+
+	del_timer_sync(&mddev->safemode_timer);
+
+	bitmap_flush(mddev);
+	md_super_wait(mddev);
+
+	if (!mddev->in_sync || mddev->flags) {
+		/* mark array as shutdown cleanly */
+		mddev->in_sync = 1;
+		md_update_sb(mddev, 1);
+	}
+}
+
+void md_stop_writes(struct mddev *mddev)
+{
+	mddev_lock(mddev);
+	__md_stop_writes(mddev);
+	mddev_unlock(mddev);
+}
+EXPORT_SYMBOL_GPL(md_stop_writes);
+
+void md_stop(struct mddev *mddev)
+{
+	mddev->ready = 0;
+	mddev->pers->stop(mddev);
+	if (mddev->pers->sync_request && mddev->to_remove == NULL)
+		mddev->to_remove = &md_redundancy_group;
+	module_put(mddev->pers->owner);
+	mddev->pers = NULL;
+	clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+}
+EXPORT_SYMBOL_GPL(md_stop);
+
+static int md_set_readonly(struct mddev *mddev, struct block_device *bdev)
+{
+	int err = 0;
+	mutex_lock(&mddev->open_mutex);
+	if (atomic_read(&mddev->openers) > !!bdev) {
+		printk("md: %s still in use.\n",mdname(mddev));
+		err = -EBUSY;
+		goto out;
+	}
+	if (bdev)
+		sync_blockdev(bdev);
+	if (mddev->pers) {
+		__md_stop_writes(mddev);
+
+		err  = -ENXIO;
+		if (mddev->ro==1)
+			goto out;
+		mddev->ro = 1;
+		set_disk_ro(mddev->gendisk, 1);
+		clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
+		sysfs_notify_dirent_safe(mddev->sysfs_state);
+		err = 0;	
+	}
+out:
+	mutex_unlock(&mddev->open_mutex);
+	return err;
+}
+
+/* mode:
+ *   0 - completely stop and dis-assemble array
+ *   2 - stop but do not disassemble array
+ */
+static int do_md_stop(struct mddev * mddev, int mode,
+		      struct block_device *bdev)
+{
+	struct gendisk *disk = mddev->gendisk;
+	struct md_rdev *rdev;
+
+	mutex_lock(&mddev->open_mutex);
+	if (atomic_read(&mddev->openers) > !!bdev ||
+	    mddev->sysfs_active) {
+		printk("md: %s still in use.\n",mdname(mddev));
+		mutex_unlock(&mddev->open_mutex);
+		return -EBUSY;
+	}
+	if (bdev)
+		/* It is possible IO was issued on some other
+		 * open file which was closed before we took ->open_mutex.
+		 * As that was not the last close __blkdev_put will not
+		 * have called sync_blockdev, so we must.
+		 */
+		sync_blockdev(bdev);
+
+	if (mddev->pers) {
+		if (mddev->ro)
+			set_disk_ro(disk, 0);
+
+		__md_stop_writes(mddev);
+		md_stop(mddev);
+		mddev->queue->merge_bvec_fn = NULL;
+		mddev->queue->backing_dev_info.congested_fn = NULL;
+
+		/* tell userspace to handle 'inactive' */
+		sysfs_notify_dirent_safe(mddev->sysfs_state);
+
+		rdev_for_each(rdev, mddev)
+			if (rdev->raid_disk >= 0)
+				sysfs_unlink_rdev(mddev, rdev);
+
+		set_capacity(disk, 0);
+		mutex_unlock(&mddev->open_mutex);
+		mddev->changed = 1;
+		revalidate_disk(disk);
+
+		if (mddev->ro)
+			mddev->ro = 0;
+	} else
+		mutex_unlock(&mddev->open_mutex);
+	/*
+	 * Free resources if final stop
+	 */
+	if (mode == 0) {
+		printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
+
+		bitmap_destroy(mddev);
+		if (mddev->bitmap_info.file) {
+			restore_bitmap_write_access(mddev->bitmap_info.file);
+			fput(mddev->bitmap_info.file);
+			mddev->bitmap_info.file = NULL;
+		}
+		mddev->bitmap_info.offset = 0;
+
+		export_array(mddev);
+
+		md_clean(mddev);
+		kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
+		if (mddev->hold_active == UNTIL_STOP)
+			mddev->hold_active = 0;
+	}
+	blk_integrity_unregister(disk);
+	md_new_event(mddev);
+	sysfs_notify_dirent_safe(mddev->sysfs_state);
+	return 0;
+}
+
+#ifndef MODULE
+static void autorun_array(struct mddev *mddev)
+{
+	struct md_rdev *rdev;
+	int err;
+
+	if (list_empty(&mddev->disks))
+		return;
+
+	printk(KERN_INFO "md: running: ");
+
+	rdev_for_each(rdev, mddev) {
+		char b[BDEVNAME_SIZE];
+		printk("<%s>", bdevname(rdev->bdev,b));
+	}
+	printk("\n");
+
+	err = do_md_run(mddev);
+	if (err) {
+		printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
+		do_md_stop(mddev, 0, NULL);
+	}
+}
+
+/*
+ * lets try to run arrays based on all disks that have arrived
+ * until now. (those are in pending_raid_disks)
+ *
+ * the method: pick the first pending disk, collect all disks with
+ * the same UUID, remove all from the pending list and put them into
+ * the 'same_array' list. Then order this list based on superblock
+ * update time (freshest comes first), kick out 'old' disks and
+ * compare superblocks. If everything's fine then run it.
+ *
+ * If "unit" is allocated, then bump its reference count
+ */
+static void autorun_devices(int part)
+{
+	struct md_rdev *rdev0, *rdev, *tmp;
+	struct mddev *mddev;
+	char b[BDEVNAME_SIZE];
+
+	printk(KERN_INFO "md: autorun ...\n");
+	while (!list_empty(&pending_raid_disks)) {
+		int unit;
+		dev_t dev;
+		LIST_HEAD(candidates);
+		rdev0 = list_entry(pending_raid_disks.next,
+					 struct md_rdev, same_set);
+
+		printk(KERN_INFO "md: considering %s ...\n",
+			bdevname(rdev0->bdev,b));
+		INIT_LIST_HEAD(&candidates);
+		rdev_for_each_list(rdev, tmp, &pending_raid_disks)
+			if (super_90_load(rdev, rdev0, 0) >= 0) {
+				printk(KERN_INFO "md:  adding %s ...\n",
+					bdevname(rdev->bdev,b));
+				list_move(&rdev->same_set, &candidates);
+			}
+		/*
+		 * now we have a set of devices, with all of them having
+		 * mostly sane superblocks. It's time to allocate the
+		 * mddev.
+		 */
+		if (part) {
+			dev = MKDEV(mdp_major,
+				    rdev0->preferred_minor << MdpMinorShift);
+			unit = MINOR(dev) >> MdpMinorShift;
+		} else {
+			dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
+			unit = MINOR(dev);
+		}
+		if (rdev0->preferred_minor != unit) {
+			printk(KERN_INFO "md: unit number in %s is bad: %d\n",
+			       bdevname(rdev0->bdev, b), rdev0->preferred_minor);
+			break;
+		}
+
+		md_probe(dev, NULL, NULL);
+		mddev = mddev_find(dev);
+		if (!mddev || !mddev->gendisk) {
+			if (mddev)
+				mddev_put(mddev);
+			printk(KERN_ERR
+				"md: cannot allocate memory for md drive.\n");
+			break;
+		}
+		if (mddev_lock(mddev)) 
+			printk(KERN_WARNING "md: %s locked, cannot run\n",
+			       mdname(mddev));
+		else if (mddev->raid_disks || mddev->major_version
+			 || !list_empty(&mddev->disks)) {
+			printk(KERN_WARNING 
+				"md: %s already running, cannot run %s\n",
+				mdname(mddev), bdevname(rdev0->bdev,b));
+			mddev_unlock(mddev);
+		} else {
+			printk(KERN_INFO "md: created %s\n", mdname(mddev));
+			mddev->persistent = 1;
+			rdev_for_each_list(rdev, tmp, &candidates) {
+				list_del_init(&rdev->same_set);
+				if (bind_rdev_to_array(rdev, mddev))
+					export_rdev(rdev);
+			}
+			autorun_array(mddev);
+			mddev_unlock(mddev);
+		}
+		/* on success, candidates will be empty, on error
+		 * it won't...
+		 */
+		rdev_for_each_list(rdev, tmp, &candidates) {
+			list_del_init(&rdev->same_set);
+			export_rdev(rdev);
+		}
+		mddev_put(mddev);
+	}
+	printk(KERN_INFO "md: ... autorun DONE.\n");
+}
+#endif /* !MODULE */
+
+static int get_version(void __user * arg)
+{
+	mdu_version_t ver;
+
+	ver.major = MD_MAJOR_VERSION;
+	ver.minor = MD_MINOR_VERSION;
+	ver.patchlevel = MD_PATCHLEVEL_VERSION;
+
+	if (copy_to_user(arg, &ver, sizeof(ver)))
+		return -EFAULT;
+
+	return 0;
+}
+
+static int get_array_info(struct mddev * mddev, void __user * arg)
+{
+	mdu_array_info_t info;
+	int nr,working,insync,failed,spare;
+	struct md_rdev *rdev;
+
+	nr=working=insync=failed=spare=0;
+	rdev_for_each(rdev, mddev) {
+		nr++;
+		if (test_bit(Faulty, &rdev->flags))
+			failed++;
+		else {
+			working++;
+			if (test_bit(In_sync, &rdev->flags))
+				insync++;	
+			else
+				spare++;
+		}
+	}
+
+	info.major_version = mddev->major_version;
+	info.minor_version = mddev->minor_version;
+	info.patch_version = MD_PATCHLEVEL_VERSION;
+	info.ctime         = mddev->ctime;
+	info.level         = mddev->level;
+	info.size          = mddev->dev_sectors / 2;
+	if (info.size != mddev->dev_sectors / 2) /* overflow */
+		info.size = -1;
+	info.nr_disks      = nr;
+	info.raid_disks    = mddev->raid_disks;
+	info.md_minor      = mddev->md_minor;
+	info.not_persistent= !mddev->persistent;
+
+	info.utime         = mddev->utime;
+	info.state         = 0;
+	if (mddev->in_sync)
+		info.state = (1<<MD_SB_CLEAN);
+	if (mddev->bitmap && mddev->bitmap_info.offset)
+		info.state = (1<<MD_SB_BITMAP_PRESENT);
+	info.active_disks  = insync;
+	info.working_disks = working;
+	info.failed_disks  = failed;
+	info.spare_disks   = spare;
+
+	info.layout        = mddev->layout;
+	info.chunk_size    = mddev->chunk_sectors << 9;
+
+	if (copy_to_user(arg, &info, sizeof(info)))
+		return -EFAULT;
+
+	return 0;
+}
+
+static int get_bitmap_file(struct mddev * mddev, void __user * arg)
+{
+	mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
+	char *ptr, *buf = NULL;
+	int err = -ENOMEM;
+
+	if (md_allow_write(mddev))
+		file = kzalloc(sizeof(*file), GFP_NOIO);
+	else
+		file = kzalloc(sizeof(*file), GFP_KERNEL);
+
+	if (!file)
+		goto out;
+
+	/* bitmap disabled, zero the first byte and copy out */
+	if (!mddev->bitmap || !mddev->bitmap->file) {
+		file->pathname[0] = '\0';
+		goto copy_out;
+	}
+
+	buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
+	if (!buf)
+		goto out;
+
+	ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
+	if (IS_ERR(ptr))
+		goto out;
+
+	strcpy(file->pathname, ptr);
+
+copy_out:
+	err = 0;
+	if (copy_to_user(arg, file, sizeof(*file)))
+		err = -EFAULT;
+out:
+	kfree(buf);
+	kfree(file);
+	return err;
+}
+
+static int get_disk_info(struct mddev * mddev, void __user * arg)
+{
+	mdu_disk_info_t info;
+	struct md_rdev *rdev;
+
+	if (copy_from_user(&info, arg, sizeof(info)))
+		return -EFAULT;
+
+	rdev = find_rdev_nr(mddev, info.number);
+	if (rdev) {
+		info.major = MAJOR(rdev->bdev->bd_dev);
+		info.minor = MINOR(rdev->bdev->bd_dev);
+		info.raid_disk = rdev->raid_disk;
+		info.state = 0;
+		if (test_bit(Faulty, &rdev->flags))
+			info.state |= (1<<MD_DISK_FAULTY);
+		else if (test_bit(In_sync, &rdev->flags)) {
+			info.state |= (1<<MD_DISK_ACTIVE);
+			info.state |= (1<<MD_DISK_SYNC);
+		}
+		if (test_bit(WriteMostly, &rdev->flags))
+			info.state |= (1<<MD_DISK_WRITEMOSTLY);
+	} else {
+		info.major = info.minor = 0;
+		info.raid_disk = -1;
+		info.state = (1<<MD_DISK_REMOVED);
+	}
+
+	if (copy_to_user(arg, &info, sizeof(info)))
+		return -EFAULT;
+
+	return 0;
+}
+
+static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
+{
+	char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
+	struct md_rdev *rdev;
+	dev_t dev = MKDEV(info->major,info->minor);
+
+	if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
+		return -EOVERFLOW;
+
+	if (!mddev->raid_disks) {
+		int err;
+		/* expecting a device which has a superblock */
+		rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
+		if (IS_ERR(rdev)) {
+			printk(KERN_WARNING 
+				"md: md_import_device returned %ld\n",
+				PTR_ERR(rdev));
+			return PTR_ERR(rdev);
+		}
+		if (!list_empty(&mddev->disks)) {
+			struct md_rdev *rdev0
+				= list_entry(mddev->disks.next,
+					     struct md_rdev, same_set);
+			err = super_types[mddev->major_version]
+				.load_super(rdev, rdev0, mddev->minor_version);
+			if (err < 0) {
+				printk(KERN_WARNING 
+					"md: %s has different UUID to %s\n",
+					bdevname(rdev->bdev,b), 
+					bdevname(rdev0->bdev,b2));
+				export_rdev(rdev);
+				return -EINVAL;
+			}
+		}
+		err = bind_rdev_to_array(rdev, mddev);
+		if (err)
+			export_rdev(rdev);
+		return err;
+	}
+
+	/*
+	 * add_new_disk can be used once the array is assembled
+	 * to add "hot spares".  They must already have a superblock
+	 * written
+	 */
+	if (mddev->pers) {
+		int err;
+		if (!mddev->pers->hot_add_disk) {
+			printk(KERN_WARNING 
+				"%s: personality does not support diskops!\n",
+			       mdname(mddev));
+			return -EINVAL;
+		}
+		if (mddev->persistent)
+			rdev = md_import_device(dev, mddev->major_version,
+						mddev->minor_version);
+		else
+			rdev = md_import_device(dev, -1, -1);
+		if (IS_ERR(rdev)) {
+			printk(KERN_WARNING 
+				"md: md_import_device returned %ld\n",
+				PTR_ERR(rdev));
+			return PTR_ERR(rdev);
+		}
+		/* set saved_raid_disk if appropriate */
+		if (!mddev->persistent) {
+			if (info->state & (1<<MD_DISK_SYNC)  &&
+			    info->raid_disk < mddev->raid_disks) {
+				rdev->raid_disk = info->raid_disk;
+				set_bit(In_sync, &rdev->flags);
+			} else
+				rdev->raid_disk = -1;
+		} else
+			super_types[mddev->major_version].
+				validate_super(mddev, rdev);
+		if ((info->state & (1<<MD_DISK_SYNC)) &&
+		    (!test_bit(In_sync, &rdev->flags) ||
+		     rdev->raid_disk != info->raid_disk)) {
+			/* This was a hot-add request, but events doesn't
+			 * match, so reject it.
+			 */
+			export_rdev(rdev);
+			return -EINVAL;
+		}
+
+		if (test_bit(In_sync, &rdev->flags))
+			rdev->saved_raid_disk = rdev->raid_disk;
+		else
+			rdev->saved_raid_disk = -1;
+
+		clear_bit(In_sync, &rdev->flags); /* just to be sure */
+		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
+			set_bit(WriteMostly, &rdev->flags);
+		else
+			clear_bit(WriteMostly, &rdev->flags);
+
+		rdev->raid_disk = -1;
+		err = bind_rdev_to_array(rdev, mddev);
+		if (!err && !mddev->pers->hot_remove_disk) {
+			/* If there is hot_add_disk but no hot_remove_disk
+			 * then added disks for geometry changes,
+			 * and should be added immediately.
+			 */
+			super_types[mddev->major_version].
+				validate_super(mddev, rdev);
+			err = mddev->pers->hot_add_disk(mddev, rdev);
+			if (err)
+				unbind_rdev_from_array(rdev);
+		}
+		if (err)
+			export_rdev(rdev);
+		else
+			sysfs_notify_dirent_safe(rdev->sysfs_state);
+
+		md_update_sb(mddev, 1);
+		if (mddev->degraded)
+			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+		if (!err)
+			md_new_event(mddev);
+		md_wakeup_thread(mddev->thread);
+		return err;
+	}
+
+	/* otherwise, add_new_disk is only allowed
+	 * for major_version==0 superblocks
+	 */
+	if (mddev->major_version != 0) {
+		printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
+		       mdname(mddev));
+		return -EINVAL;
+	}
+
+	if (!(info->state & (1<<MD_DISK_FAULTY))) {
+		int err;
+		rdev = md_import_device(dev, -1, 0);
+		if (IS_ERR(rdev)) {
+			printk(KERN_WARNING 
+				"md: error, md_import_device() returned %ld\n",
+				PTR_ERR(rdev));
+			return PTR_ERR(rdev);
+		}
+		rdev->desc_nr = info->number;
+		if (info->raid_disk < mddev->raid_disks)
+			rdev->raid_disk = info->raid_disk;
+		else
+			rdev->raid_disk = -1;
+
+		if (rdev->raid_disk < mddev->raid_disks)
+			if (info->state & (1<<MD_DISK_SYNC))
+				set_bit(In_sync, &rdev->flags);
+
+		if (info->state & (1<<MD_DISK_WRITEMOSTLY))
+			set_bit(WriteMostly, &rdev->flags);
+
+		if (!mddev->persistent) {
+			printk(KERN_INFO "md: nonpersistent superblock ...\n");
+			rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
+		} else
+			rdev->sb_start = calc_dev_sboffset(rdev);
+		rdev->sectors = rdev->sb_start;
+
+		err = bind_rdev_to_array(rdev, mddev);
+		if (err) {
+			export_rdev(rdev);
+			return err;
+		}
+	}
+
+	return 0;
+}
+
+static int hot_remove_disk(struct mddev * mddev, dev_t dev)
+{
+	char b[BDEVNAME_SIZE];
+	struct md_rdev *rdev;
+
+	rdev = find_rdev(mddev, dev);
+	if (!rdev)
+		return -ENXIO;
+
+	if (rdev->raid_disk >= 0)
+		goto busy;
+
+	kick_rdev_from_array(rdev);
+	md_update_sb(mddev, 1);
+	md_new_event(mddev);
+
+	return 0;
+busy:
+	printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
+		bdevname(rdev->bdev,b), mdname(mddev));
+	return -EBUSY;
+}
+
+static int hot_add_disk(struct mddev * mddev, dev_t dev)
+{
+	char b[BDEVNAME_SIZE];
+	int err;
+	struct md_rdev *rdev;
+
+	if (!mddev->pers)
+		return -ENODEV;
+
+	if (mddev->major_version != 0) {
+		printk(KERN_WARNING "%s: HOT_ADD may only be used with"
+			" version-0 superblocks.\n",
+			mdname(mddev));
+		return -EINVAL;
+	}
+	if (!mddev->pers->hot_add_disk) {
+		printk(KERN_WARNING 
+			"%s: personality does not support diskops!\n",
+			mdname(mddev));
+		return -EINVAL;
+	}
+
+	rdev = md_import_device(dev, -1, 0);
+	if (IS_ERR(rdev)) {
+		printk(KERN_WARNING 
+			"md: error, md_import_device() returned %ld\n",
+			PTR_ERR(rdev));
+		return -EINVAL;
+	}
+
+	if (mddev->persistent)
+		rdev->sb_start = calc_dev_sboffset(rdev);
+	else
+		rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
+
+	rdev->sectors = rdev->sb_start;
+
+	if (test_bit(Faulty, &rdev->flags)) {
+		printk(KERN_WARNING 
+			"md: can not hot-add faulty %s disk to %s!\n",
+			bdevname(rdev->bdev,b), mdname(mddev));
+		err = -EINVAL;
+		goto abort_export;
+	}
+	clear_bit(In_sync, &rdev->flags);
+	rdev->desc_nr = -1;
+	rdev->saved_raid_disk = -1;
+	err = bind_rdev_to_array(rdev, mddev);
+	if (err)
+		goto abort_export;
+
+	/*
+	 * The rest should better be atomic, we can have disk failures
+	 * noticed in interrupt contexts ...
+	 */
+
+	rdev->raid_disk = -1;
+
+	md_update_sb(mddev, 1);
+
+	/*
+	 * Kick recovery, maybe this spare has to be added to the
+	 * array immediately.
+	 */
+	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	md_wakeup_thread(mddev->thread);
+	md_new_event(mddev);
+	return 0;
+
+abort_export:
+	export_rdev(rdev);
+	return err;
+}
+
+static int set_bitmap_file(struct mddev *mddev, int fd)
+{
+	int err;
+
+	if (mddev->pers) {
+		if (!mddev->pers->quiesce)
+			return -EBUSY;
+		if (mddev->recovery || mddev->sync_thread)
+			return -EBUSY;
+		/* we should be able to change the bitmap.. */
+	}
+
+
+	if (fd >= 0) {
+		if (mddev->bitmap)
+			return -EEXIST; /* cannot add when bitmap is present */
+		mddev->bitmap_info.file = fget(fd);
+
+		if (mddev->bitmap_info.file == NULL) {
+			printk(KERN_ERR "%s: error: failed to get bitmap file\n",
+			       mdname(mddev));
+			return -EBADF;
+		}
+
+		err = deny_bitmap_write_access(mddev->bitmap_info.file);
+		if (err) {
+			printk(KERN_ERR "%s: error: bitmap file is already in use\n",
+			       mdname(mddev));
+			fput(mddev->bitmap_info.file);
+			mddev->bitmap_info.file = NULL;
+			return err;
+		}
+		mddev->bitmap_info.offset = 0; /* file overrides offset */
+	} else if (mddev->bitmap == NULL)
+		return -ENOENT; /* cannot remove what isn't there */
+	err = 0;
+	if (mddev->pers) {
+		mddev->pers->quiesce(mddev, 1);
+		if (fd >= 0) {
+			err = bitmap_create(mddev);
+			if (!err)
+				err = bitmap_load(mddev);
+		}
+		if (fd < 0 || err) {
+			bitmap_destroy(mddev);
+			fd = -1; /* make sure to put the file */
+		}
+		mddev->pers->quiesce(mddev, 0);
+	}
+	if (fd < 0) {
+		if (mddev->bitmap_info.file) {
+			restore_bitmap_write_access(mddev->bitmap_info.file);
+			fput(mddev->bitmap_info.file);
+		}
+		mddev->bitmap_info.file = NULL;
+	}
+
+	return err;
+}
+
+/*
+ * set_array_info is used two different ways
+ * The original usage is when creating a new array.
+ * In this usage, raid_disks is > 0 and it together with
+ *  level, size, not_persistent,layout,chunksize determine the
+ *  shape of the array.
+ *  This will always create an array with a type-0.90.0 superblock.
+ * The newer usage is when assembling an array.
+ *  In this case raid_disks will be 0, and the major_version field is
+ *  use to determine which style super-blocks are to be found on the devices.
+ *  The minor and patch _version numbers are also kept incase the
+ *  super_block handler wishes to interpret them.
+ */
+static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
+{
+
+	if (info->raid_disks == 0) {
+		/* just setting version number for superblock loading */
+		if (info->major_version < 0 ||
+		    info->major_version >= ARRAY_SIZE(super_types) ||
+		    super_types[info->major_version].name == NULL) {
+			/* maybe try to auto-load a module? */
+			printk(KERN_INFO 
+				"md: superblock version %d not known\n",
+				info->major_version);
+			return -EINVAL;
+		}
+		mddev->major_version = info->major_version;
+		mddev->minor_version = info->minor_version;
+		mddev->patch_version = info->patch_version;
+		mddev->persistent = !info->not_persistent;
+		/* ensure mddev_put doesn't delete this now that there
+		 * is some minimal configuration.
+		 */
+		mddev->ctime         = get_seconds();
+		return 0;
+	}
+	mddev->major_version = MD_MAJOR_VERSION;
+	mddev->minor_version = MD_MINOR_VERSION;
+	mddev->patch_version = MD_PATCHLEVEL_VERSION;
+	mddev->ctime         = get_seconds();
+
+	mddev->level         = info->level;
+	mddev->clevel[0]     = 0;
+	mddev->dev_sectors   = 2 * (sector_t)info->size;
+	mddev->raid_disks    = info->raid_disks;
+	/* don't set md_minor, it is determined by which /dev/md* was
+	 * openned
+	 */
+	if (info->state & (1<<MD_SB_CLEAN))
+		mddev->recovery_cp = MaxSector;
+	else
+		mddev->recovery_cp = 0;
+	mddev->persistent    = ! info->not_persistent;
+	mddev->external	     = 0;
+
+	mddev->layout        = info->layout;
+	mddev->chunk_sectors = info->chunk_size >> 9;
+
+	mddev->max_disks     = MD_SB_DISKS;
+
+	if (mddev->persistent)
+		mddev->flags         = 0;
+	set_bit(MD_CHANGE_DEVS, &mddev->flags);
+
+	mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
+	mddev->bitmap_info.offset = 0;
+
+	mddev->reshape_position = MaxSector;
+
+	/*
+	 * Generate a 128 bit UUID
+	 */
+	get_random_bytes(mddev->uuid, 16);
+
+	mddev->new_level = mddev->level;
+	mddev->new_chunk_sectors = mddev->chunk_sectors;
+	mddev->new_layout = mddev->layout;
+	mddev->delta_disks = 0;
+
+	return 0;
+}
+
+void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
+{
+	WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
+
+	if (mddev->external_size)
+		return;
+
+	mddev->array_sectors = array_sectors;
+}
+EXPORT_SYMBOL(md_set_array_sectors);
+
+static int update_size(struct mddev *mddev, sector_t num_sectors)
+{
+	struct md_rdev *rdev;
+	int rv;
+	int fit = (num_sectors == 0);
+
+	if (mddev->pers->resize == NULL)
+		return -EINVAL;
+	/* The "num_sectors" is the number of sectors of each device that
+	 * is used.  This can only make sense for arrays with redundancy.
+	 * linear and raid0 always use whatever space is available. We can only
+	 * consider changing this number if no resync or reconstruction is
+	 * happening, and if the new size is acceptable. It must fit before the
+	 * sb_start or, if that is <data_offset, it must fit before the size
+	 * of each device.  If num_sectors is zero, we find the largest size
+	 * that fits.
+	 */
+	if (mddev->sync_thread)
+		return -EBUSY;
+	if (mddev->bitmap)
+		/* Sorry, cannot grow a bitmap yet, just remove it,
+		 * grow, and re-add.
+		 */
+		return -EBUSY;
+	rdev_for_each(rdev, mddev) {
+		sector_t avail = rdev->sectors;
+
+		if (fit && (num_sectors == 0 || num_sectors > avail))
+			num_sectors = avail;
+		if (avail < num_sectors)
+			return -ENOSPC;
+	}
+	rv = mddev->pers->resize(mddev, num_sectors);
+	if (!rv)
+		revalidate_disk(mddev->gendisk);
+	return rv;
+}
+
+static int update_raid_disks(struct mddev *mddev, int raid_disks)
+{
+	int rv;
+	/* change the number of raid disks */
+	if (mddev->pers->check_reshape == NULL)
+		return -EINVAL;
+	if (raid_disks <= 0 ||
+	    (mddev->max_disks && raid_disks >= mddev->max_disks))
+		return -EINVAL;
+	if (mddev->sync_thread || mddev->reshape_position != MaxSector)
+		return -EBUSY;
+	mddev->delta_disks = raid_disks - mddev->raid_disks;
+
+	rv = mddev->pers->check_reshape(mddev);
+	if (rv < 0)
+		mddev->delta_disks = 0;
+	return rv;
+}
+
+
+/*
+ * update_array_info is used to change the configuration of an
+ * on-line array.
+ * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
+ * fields in the info are checked against the array.
+ * Any differences that cannot be handled will cause an error.
+ * Normally, only one change can be managed at a time.
+ */
+static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
+{
+	int rv = 0;
+	int cnt = 0;
+	int state = 0;
+
+	/* calculate expected state,ignoring low bits */
+	if (mddev->bitmap && mddev->bitmap_info.offset)
+		state |= (1 << MD_SB_BITMAP_PRESENT);
+
+	if (mddev->major_version != info->major_version ||
+	    mddev->minor_version != info->minor_version ||
+/*	    mddev->patch_version != info->patch_version || */
+	    mddev->ctime         != info->ctime         ||
+	    mddev->level         != info->level         ||
+/*	    mddev->layout        != info->layout        || */
+	    !mddev->persistent	 != info->not_persistent||
+	    mddev->chunk_sectors != info->chunk_size >> 9 ||
+	    /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
+	    ((state^info->state) & 0xfffffe00)
+		)
+		return -EINVAL;
+	/* Check there is only one change */
+	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
+		cnt++;
+	if (mddev->raid_disks != info->raid_disks)
+		cnt++;
+	if (mddev->layout != info->layout)
+		cnt++;
+	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
+		cnt++;
+	if (cnt == 0)
+		return 0;
+	if (cnt > 1)
+		return -EINVAL;
+
+	if (mddev->layout != info->layout) {
+		/* Change layout
+		 * we don't need to do anything at the md level, the
+		 * personality will take care of it all.
+		 */
+		if (mddev->pers->check_reshape == NULL)
+			return -EINVAL;
+		else {
+			mddev->new_layout = info->layout;
+			rv = mddev->pers->check_reshape(mddev);
+			if (rv)
+				mddev->new_layout = mddev->layout;
+			return rv;
+		}
+	}
+	if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
+		rv = update_size(mddev, (sector_t)info->size * 2);
+
+	if (mddev->raid_disks    != info->raid_disks)
+		rv = update_raid_disks(mddev, info->raid_disks);
+
+	if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
+		if (mddev->pers->quiesce == NULL)
+			return -EINVAL;
+		if (mddev->recovery || mddev->sync_thread)
+			return -EBUSY;
+		if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
+			/* add the bitmap */
+			if (mddev->bitmap)
+				return -EEXIST;
+			if (mddev->bitmap_info.default_offset == 0)
+				return -EINVAL;
+			mddev->bitmap_info.offset =
+				mddev->bitmap_info.default_offset;
+			mddev->pers->quiesce(mddev, 1);
+			rv = bitmap_create(mddev);
+			if (!rv)
+				rv = bitmap_load(mddev);
+			if (rv)
+				bitmap_destroy(mddev);
+			mddev->pers->quiesce(mddev, 0);
+		} else {
+			/* remove the bitmap */
+			if (!mddev->bitmap)
+				return -ENOENT;
+			if (mddev->bitmap->file)
+				return -EINVAL;
+			mddev->pers->quiesce(mddev, 1);
+			bitmap_destroy(mddev);
+			mddev->pers->quiesce(mddev, 0);
+			mddev->bitmap_info.offset = 0;
+		}
+	}
+	md_update_sb(mddev, 1);
+	return rv;
+}
+
+static int set_disk_faulty(struct mddev *mddev, dev_t dev)
+{
+	struct md_rdev *rdev;
+
+	if (mddev->pers == NULL)
+		return -ENODEV;
+
+	rdev = find_rdev(mddev, dev);
+	if (!rdev)
+		return -ENODEV;
+
+	md_error(mddev, rdev);
+	if (!test_bit(Faulty, &rdev->flags))
+		return -EBUSY;
+	return 0;
+}
+
+/*
+ * We have a problem here : there is no easy way to give a CHS
+ * virtual geometry. We currently pretend that we have a 2 heads
+ * 4 sectors (with a BIG number of cylinders...). This drives
+ * dosfs just mad... ;-)
+ */
+static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
+{
+	struct mddev *mddev = bdev->bd_disk->private_data;
+
+	geo->heads = 2;
+	geo->sectors = 4;
+	geo->cylinders = mddev->array_sectors / 8;
+	return 0;
+}
+
+static int md_ioctl(struct block_device *bdev, fmode_t mode,
+			unsigned int cmd, unsigned long arg)
+{
+	int err = 0;
+	void __user *argp = (void __user *)arg;
+	struct mddev *mddev = NULL;
+	int ro;
+
+	switch (cmd) {
+	case RAID_VERSION:
+	case GET_ARRAY_INFO:
+	case GET_DISK_INFO:
+		break;
+	default:
+		if (!capable(CAP_SYS_ADMIN))
+			return -EACCES;
+	}
+
+	/*
+	 * Commands dealing with the RAID driver but not any
+	 * particular array:
+	 */
+	switch (cmd)
+	{
+		case RAID_VERSION:
+			err = get_version(argp);
+			goto done;
+
+		case PRINT_RAID_DEBUG:
+			err = 0;
+			md_print_devices();
+			goto done;
+
+#ifndef MODULE
+		case RAID_AUTORUN:
+			err = 0;
+			autostart_arrays(arg);
+			goto done;
+#endif
+		default:;
+	}
+
+	/*
+	 * Commands creating/starting a new array:
+	 */
+
+	mddev = bdev->bd_disk->private_data;
+
+	if (!mddev) {
+		BUG();
+		goto abort;
+	}
+
+	err = mddev_lock(mddev);
+	if (err) {
+		printk(KERN_INFO 
+			"md: ioctl lock interrupted, reason %d, cmd %d\n",
+			err, cmd);
+		goto abort;
+	}
+
+	switch (cmd)
+	{
+		case SET_ARRAY_INFO:
+			{
+				mdu_array_info_t info;
+				if (!arg)
+					memset(&info, 0, sizeof(info));
+				else if (copy_from_user(&info, argp, sizeof(info))) {
+					err = -EFAULT;
+					goto abort_unlock;
+				}
+				if (mddev->pers) {
+					err = update_array_info(mddev, &info);
+					if (err) {
+						printk(KERN_WARNING "md: couldn't update"
+						       " array info. %d\n", err);
+						goto abort_unlock;
+					}
+					goto done_unlock;
+				}
+				if (!list_empty(&mddev->disks)) {
+					printk(KERN_WARNING
+					       "md: array %s already has disks!\n",
+					       mdname(mddev));
+					err = -EBUSY;
+					goto abort_unlock;
+				}
+				if (mddev->raid_disks) {
+					printk(KERN_WARNING
+					       "md: array %s already initialised!\n",
+					       mdname(mddev));
+					err = -EBUSY;
+					goto abort_unlock;
+				}
+				err = set_array_info(mddev, &info);
+				if (err) {
+					printk(KERN_WARNING "md: couldn't set"
+					       " array info. %d\n", err);
+					goto abort_unlock;
+				}
+			}
+			goto done_unlock;
+
+		default:;
+	}
+
+	/*
+	 * Commands querying/configuring an existing array:
+	 */
+	/* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
+	 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
+	if ((!mddev->raid_disks && !mddev->external)
+	    && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
+	    && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
+	    && cmd != GET_BITMAP_FILE) {
+		err = -ENODEV;
+		goto abort_unlock;
+	}
+
+	/*
+	 * Commands even a read-only array can execute:
+	 */
+	switch (cmd)
+	{
+		case GET_ARRAY_INFO:
+			err = get_array_info(mddev, argp);
+			goto done_unlock;
+
+		case GET_BITMAP_FILE:
+			err = get_bitmap_file(mddev, argp);
+			goto done_unlock;
+
+		case GET_DISK_INFO:
+			err = get_disk_info(mddev, argp);
+			goto done_unlock;
+
+		case RESTART_ARRAY_RW:
+			err = restart_array(mddev);
+			goto done_unlock;
+
+		case STOP_ARRAY:
+			err = do_md_stop(mddev, 0, bdev);
+			goto done_unlock;
+
+		case STOP_ARRAY_RO:
+			err = md_set_readonly(mddev, bdev);
+			goto done_unlock;
+
+		case BLKROSET:
+			if (get_user(ro, (int __user *)(arg))) {
+				err = -EFAULT;
+				goto done_unlock;
+			}
+			err = -EINVAL;
+
+			/* if the bdev is going readonly the value of mddev->ro
+			 * does not matter, no writes are coming
+			 */
+			if (ro)
+				goto done_unlock;
+
+			/* are we are already prepared for writes? */
+			if (mddev->ro != 1)
+				goto done_unlock;
+
+			/* transitioning to readauto need only happen for
+			 * arrays that call md_write_start
+			 */
+			if (mddev->pers) {
+				err = restart_array(mddev);
+				if (err == 0) {
+					mddev->ro = 2;
+					set_disk_ro(mddev->gendisk, 0);
+				}
+			}
+			goto done_unlock;
+	}
+
+	/*
+	 * The remaining ioctls are changing the state of the
+	 * superblock, so we do not allow them on read-only arrays.
+	 * However non-MD ioctls (e.g. get-size) will still come through
+	 * here and hit the 'default' below, so only disallow
+	 * 'md' ioctls, and switch to rw mode if started auto-readonly.
+	 */
+	if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
+		if (mddev->ro == 2) {
+			mddev->ro = 0;
+			sysfs_notify_dirent_safe(mddev->sysfs_state);
+			set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+			md_wakeup_thread(mddev->thread);
+		} else {
+			err = -EROFS;
+			goto abort_unlock;
+		}
+	}
+
+	switch (cmd)
+	{
+		case ADD_NEW_DISK:
+		{
+			mdu_disk_info_t info;
+			if (copy_from_user(&info, argp, sizeof(info)))
+				err = -EFAULT;
+			else
+				err = add_new_disk(mddev, &info);
+			goto done_unlock;
+		}
+
+		case HOT_REMOVE_DISK:
+			err = hot_remove_disk(mddev, new_decode_dev(arg));
+			goto done_unlock;
+
+		case HOT_ADD_DISK:
+			err = hot_add_disk(mddev, new_decode_dev(arg));
+			goto done_unlock;
+
+		case SET_DISK_FAULTY:
+			err = set_disk_faulty(mddev, new_decode_dev(arg));
+			goto done_unlock;
+
+		case RUN_ARRAY:
+			err = do_md_run(mddev);
+			goto done_unlock;
+
+		case SET_BITMAP_FILE:
+			err = set_bitmap_file(mddev, (int)arg);
+			goto done_unlock;
+
+		default:
+			err = -EINVAL;
+			goto abort_unlock;
+	}
+
+done_unlock:
+abort_unlock:
+	if (mddev->hold_active == UNTIL_IOCTL &&
+	    err != -EINVAL)
+		mddev->hold_active = 0;
+	mddev_unlock(mddev);
+
+	return err;
+done:
+	if (err)
+		MD_BUG();
+abort:
+	return err;
+}
+#ifdef CONFIG_COMPAT
+static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
+		    unsigned int cmd, unsigned long arg)
+{
+	switch (cmd) {
+	case HOT_REMOVE_DISK:
+	case HOT_ADD_DISK:
+	case SET_DISK_FAULTY:
+	case SET_BITMAP_FILE:
+		/* These take in integer arg, do not convert */
+		break;
+	default:
+		arg = (unsigned long)compat_ptr(arg);
+		break;
+	}
+
+	return md_ioctl(bdev, mode, cmd, arg);
+}
+#endif /* CONFIG_COMPAT */
+
+static int md_open(struct block_device *bdev, fmode_t mode)
+{
+	/*
+	 * Succeed if we can lock the mddev, which confirms that
+	 * it isn't being stopped right now.
+	 */
+	struct mddev *mddev = mddev_find(bdev->bd_dev);
+	int err;
+
+	if (mddev->gendisk != bdev->bd_disk) {
+		/* we are racing with mddev_put which is discarding this
+		 * bd_disk.
+		 */
+		mddev_put(mddev);
+		/* Wait until bdev->bd_disk is definitely gone */
+		flush_workqueue(md_misc_wq);
+		/* Then retry the open from the top */
+		return -ERESTARTSYS;
+	}
+	BUG_ON(mddev != bdev->bd_disk->private_data);
+
+	if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
+		goto out;
+
+	err = 0;
+	atomic_inc(&mddev->openers);
+	mutex_unlock(&mddev->open_mutex);
+
+	check_disk_change(bdev);
+ out:
+	return err;
+}
+
+static int md_release(struct gendisk *disk, fmode_t mode)
+{
+ 	struct mddev *mddev = disk->private_data;
+
+	BUG_ON(!mddev);
+	atomic_dec(&mddev->openers);
+	mddev_put(mddev);
+
+	return 0;
+}
+
+static int md_media_changed(struct gendisk *disk)
+{
+	struct mddev *mddev = disk->private_data;
+
+	return mddev->changed;
+}
+
+static int md_revalidate(struct gendisk *disk)
+{
+	struct mddev *mddev = disk->private_data;
+
+	mddev->changed = 0;
+	return 0;
+}
+static const struct block_device_operations md_fops =
+{
+	.owner		= THIS_MODULE,
+	.open		= md_open,
+	.release	= md_release,
+	.ioctl		= md_ioctl,
+#ifdef CONFIG_COMPAT
+	.compat_ioctl	= md_compat_ioctl,
+#endif
+	.getgeo		= md_getgeo,
+	.media_changed  = md_media_changed,
+	.revalidate_disk= md_revalidate,
+};
+
+static int md_thread(void * arg)
+{
+	struct md_thread *thread = arg;
+
+	/*
+	 * md_thread is a 'system-thread', it's priority should be very
+	 * high. We avoid resource deadlocks individually in each
+	 * raid personality. (RAID5 does preallocation) We also use RR and
+	 * the very same RT priority as kswapd, thus we will never get
+	 * into a priority inversion deadlock.
+	 *
+	 * we definitely have to have equal or higher priority than
+	 * bdflush, otherwise bdflush will deadlock if there are too
+	 * many dirty RAID5 blocks.
+	 */
+
+	allow_signal(SIGKILL);
+	while (!kthread_should_stop()) {
+
+		/* We need to wait INTERRUPTIBLE so that
+		 * we don't add to the load-average.
+		 * That means we need to be sure no signals are
+		 * pending
+		 */
+		if (signal_pending(current))
+			flush_signals(current);
+
+		wait_event_interruptible_timeout
+			(thread->wqueue,
+			 test_bit(THREAD_WAKEUP, &thread->flags)
+			 || kthread_should_stop(),
+			 thread->timeout);
+
+		clear_bit(THREAD_WAKEUP, &thread->flags);
+		if (!kthread_should_stop())
+			thread->run(thread->mddev);
+	}
+
+	return 0;
+}
+
+void md_wakeup_thread(struct md_thread *thread)
+{
+	if (thread) {
+		pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
+		set_bit(THREAD_WAKEUP, &thread->flags);
+		wake_up(&thread->wqueue);
+	}
+}
+
+struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
+				 const char *name)
+{
+	struct md_thread *thread;
+
+	thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
+	if (!thread)
+		return NULL;
+
+	init_waitqueue_head(&thread->wqueue);
+
+	thread->run = run;
+	thread->mddev = mddev;
+	thread->timeout = MAX_SCHEDULE_TIMEOUT;
+	thread->tsk = kthread_run(md_thread, thread,
+				  "%s_%s",
+				  mdname(thread->mddev),
+				  name ?: mddev->pers->name);
+	if (IS_ERR(thread->tsk)) {
+		kfree(thread);
+		return NULL;
+	}
+	return thread;
+}
+
+void md_unregister_thread(struct md_thread **threadp)
+{
+	struct md_thread *thread = *threadp;
+	if (!thread)
+		return;
+	pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
+	/* Locking ensures that mddev_unlock does not wake_up a
+	 * non-existent thread
+	 */
+	spin_lock(&pers_lock);
+	*threadp = NULL;
+	spin_unlock(&pers_lock);
+
+	kthread_stop(thread->tsk);
+	kfree(thread);
+}
+
+void md_error(struct mddev *mddev, struct md_rdev *rdev)
+{
+	if (!mddev) {
+		MD_BUG();
+		return;
+	}
+
+	if (!rdev || test_bit(Faulty, &rdev->flags))
+		return;
+
+	if (!mddev->pers || !mddev->pers->error_handler)
+		return;
+	mddev->pers->error_handler(mddev,rdev);
+	if (mddev->degraded)
+		set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+	sysfs_notify_dirent_safe(rdev->sysfs_state);
+	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	md_wakeup_thread(mddev->thread);
+	if (mddev->event_work.func)
+		queue_work(md_misc_wq, &mddev->event_work);
+	md_new_event_inintr(mddev);
+}
+
+/* seq_file implementation /proc/mdstat */
+
+static void status_unused(struct seq_file *seq)
+{
+	int i = 0;
+	struct md_rdev *rdev;
+
+	seq_printf(seq, "unused devices: ");
+
+	list_for_each_entry(rdev, &pending_raid_disks, same_set) {
+		char b[BDEVNAME_SIZE];
+		i++;
+		seq_printf(seq, "%s ",
+			      bdevname(rdev->bdev,b));
+	}
+	if (!i)
+		seq_printf(seq, "<none>");
+
+	seq_printf(seq, "\n");
+}
+
+
+static void status_resync(struct seq_file *seq, struct mddev * mddev)
+{
+	sector_t max_sectors, resync, res;
+	unsigned long dt, db;
+	sector_t rt;
+	int scale;
+	unsigned int per_milli;
+
+	resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
+
+	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
+		max_sectors = mddev->resync_max_sectors;
+	else
+		max_sectors = mddev->dev_sectors;
+
+	/*
+	 * Should not happen.
+	 */
+	if (!max_sectors) {
+		MD_BUG();
+		return;
+	}
+	/* Pick 'scale' such that (resync>>scale)*1000 will fit
+	 * in a sector_t, and (max_sectors>>scale) will fit in a
+	 * u32, as those are the requirements for sector_div.
+	 * Thus 'scale' must be at least 10
+	 */
+	scale = 10;
+	if (sizeof(sector_t) > sizeof(unsigned long)) {
+		while ( max_sectors/2 > (1ULL<<(scale+32)))
+			scale++;
+	}
+	res = (resync>>scale)*1000;
+	sector_div(res, (u32)((max_sectors>>scale)+1));
+
+	per_milli = res;
+	{
+		int i, x = per_milli/50, y = 20-x;
+		seq_printf(seq, "[");
+		for (i = 0; i < x; i++)
+			seq_printf(seq, "=");
+		seq_printf(seq, ">");
+		for (i = 0; i < y; i++)
+			seq_printf(seq, ".");
+		seq_printf(seq, "] ");
+	}
+	seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
+		   (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
+		    "reshape" :
+		    (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
+		     "check" :
+		     (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
+		      "resync" : "recovery"))),
+		   per_milli/10, per_milli % 10,
+		   (unsigned long long) resync/2,
+		   (unsigned long long) max_sectors/2);
+
+	/*
+	 * dt: time from mark until now
+	 * db: blocks written from mark until now
+	 * rt: remaining time
+	 *
+	 * rt is a sector_t, so could be 32bit or 64bit.
+	 * So we divide before multiply in case it is 32bit and close
+	 * to the limit.
+	 * We scale the divisor (db) by 32 to avoid losing precision
+	 * near the end of resync when the number of remaining sectors
+	 * is close to 'db'.
+	 * We then divide rt by 32 after multiplying by db to compensate.
+	 * The '+1' avoids division by zero if db is very small.
+	 */
+	dt = ((jiffies - mddev->resync_mark) / HZ);
+	if (!dt) dt++;
+	db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
+		- mddev->resync_mark_cnt;
+
+	rt = max_sectors - resync;    /* number of remaining sectors */
+	sector_div(rt, db/32+1);
+	rt *= dt;
+	rt >>= 5;
+
+	seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
+		   ((unsigned long)rt % 60)/6);
+
+	seq_printf(seq, " speed=%ldK/sec", db/2/dt);
+}
+
+static void *md_seq_start(struct seq_file *seq, loff_t *pos)
+{
+	struct list_head *tmp;
+	loff_t l = *pos;
+	struct mddev *mddev;
+
+	if (l >= 0x10000)
+		return NULL;
+	if (!l--)
+		/* header */
+		return (void*)1;
+
+	spin_lock(&all_mddevs_lock);
+	list_for_each(tmp,&all_mddevs)
+		if (!l--) {
+			mddev = list_entry(tmp, struct mddev, all_mddevs);
+			mddev_get(mddev);
+			spin_unlock(&all_mddevs_lock);
+			return mddev;
+		}
+	spin_unlock(&all_mddevs_lock);
+	if (!l--)
+		return (void*)2;/* tail */
+	return NULL;
+}
+
+static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
+{
+	struct list_head *tmp;
+	struct mddev *next_mddev, *mddev = v;
+	
+	++*pos;
+	if (v == (void*)2)
+		return NULL;
+
+	spin_lock(&all_mddevs_lock);
+	if (v == (void*)1)
+		tmp = all_mddevs.next;
+	else
+		tmp = mddev->all_mddevs.next;
+	if (tmp != &all_mddevs)
+		next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
+	else {
+		next_mddev = (void*)2;
+		*pos = 0x10000;
+	}		
+	spin_unlock(&all_mddevs_lock);
+
+	if (v != (void*)1)
+		mddev_put(mddev);
+	return next_mddev;
+
+}
+
+static void md_seq_stop(struct seq_file *seq, void *v)
+{
+	struct mddev *mddev = v;
+
+	if (mddev && v != (void*)1 && v != (void*)2)
+		mddev_put(mddev);
+}
+
+static int md_seq_show(struct seq_file *seq, void *v)
+{
+	struct mddev *mddev = v;
+	sector_t sectors;
+	struct md_rdev *rdev;
+
+	if (v == (void*)1) {
+		struct md_personality *pers;
+		seq_printf(seq, "Personalities : ");
+		spin_lock(&pers_lock);
+		list_for_each_entry(pers, &pers_list, list)
+			seq_printf(seq, "[%s] ", pers->name);
+
+		spin_unlock(&pers_lock);
+		seq_printf(seq, "\n");
+		seq->poll_event = atomic_read(&md_event_count);
+		return 0;
+	}
+	if (v == (void*)2) {
+		status_unused(seq);
+		return 0;
+	}
+
+	if (mddev_lock(mddev) < 0)
+		return -EINTR;
+
+	if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
+		seq_printf(seq, "%s : %sactive", mdname(mddev),
+						mddev->pers ? "" : "in");
+		if (mddev->pers) {
+			if (mddev->ro==1)
+				seq_printf(seq, " (read-only)");
+			if (mddev->ro==2)
+				seq_printf(seq, " (auto-read-only)");
+			seq_printf(seq, " %s", mddev->pers->name);
+		}
+
+		sectors = 0;
+		rdev_for_each(rdev, mddev) {
+			char b[BDEVNAME_SIZE];
+			seq_printf(seq, " %s[%d]",
+				bdevname(rdev->bdev,b), rdev->desc_nr);
+			if (test_bit(WriteMostly, &rdev->flags))
+				seq_printf(seq, "(W)");
+			if (test_bit(Faulty, &rdev->flags)) {
+				seq_printf(seq, "(F)");
+				continue;
+			}
+			if (rdev->raid_disk < 0)
+				seq_printf(seq, "(S)"); /* spare */
+			if (test_bit(Replacement, &rdev->flags))
+				seq_printf(seq, "(R)");
+			sectors += rdev->sectors;
+		}
+
+		if (!list_empty(&mddev->disks)) {
+			if (mddev->pers)
+				seq_printf(seq, "\n      %llu blocks",
+					   (unsigned long long)
+					   mddev->array_sectors / 2);
+			else
+				seq_printf(seq, "\n      %llu blocks",
+					   (unsigned long long)sectors / 2);
+		}
+		if (mddev->persistent) {
+			if (mddev->major_version != 0 ||
+			    mddev->minor_version != 90) {
+				seq_printf(seq," super %d.%d",
+					   mddev->major_version,
+					   mddev->minor_version);
+			}
+		} else if (mddev->external)
+			seq_printf(seq, " super external:%s",
+				   mddev->metadata_type);
+		else
+			seq_printf(seq, " super non-persistent");
+
+		if (mddev->pers) {
+			mddev->pers->status(seq, mddev);
+	 		seq_printf(seq, "\n      ");
+			if (mddev->pers->sync_request) {
+				if (mddev->curr_resync > 2) {
+					status_resync(seq, mddev);
+					seq_printf(seq, "\n      ");
+				} else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
+					seq_printf(seq, "\tresync=DELAYED\n      ");
+				else if (mddev->recovery_cp < MaxSector)
+					seq_printf(seq, "\tresync=PENDING\n      ");
+			}
+		} else
+			seq_printf(seq, "\n       ");
+
+		bitmap_status(seq, mddev->bitmap);
+
+		seq_printf(seq, "\n");
+	}
+	mddev_unlock(mddev);
+	
+	return 0;
+}
+
+static const struct seq_operations md_seq_ops = {
+	.start  = md_seq_start,
+	.next   = md_seq_next,
+	.stop   = md_seq_stop,
+	.show   = md_seq_show,
+};
+
+static int md_seq_open(struct inode *inode, struct file *file)
+{
+	struct seq_file *seq;
+	int error;
+
+	error = seq_open(file, &md_seq_ops);
+	if (error)
+		return error;
+
+	seq = file->private_data;
+	seq->poll_event = atomic_read(&md_event_count);
+	return error;
+}
+
+static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
+{
+	struct seq_file *seq = filp->private_data;
+	int mask;
+
+	poll_wait(filp, &md_event_waiters, wait);
+
+	/* always allow read */
+	mask = POLLIN | POLLRDNORM;
+
+	if (seq->poll_event != atomic_read(&md_event_count))
+		mask |= POLLERR | POLLPRI;
+	return mask;
+}
+
+static const struct file_operations md_seq_fops = {
+	.owner		= THIS_MODULE,
+	.open           = md_seq_open,
+	.read           = seq_read,
+	.llseek         = seq_lseek,
+	.release	= seq_release_private,
+	.poll		= mdstat_poll,
+};
+
+int register_md_personality(struct md_personality *p)
+{
+	spin_lock(&pers_lock);
+	list_add_tail(&p->list, &pers_list);
+	printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
+	spin_unlock(&pers_lock);
+	return 0;
+}
+
+int unregister_md_personality(struct md_personality *p)
+{
+	printk(KERN_INFO "md: %s personality unregistered\n", p->name);
+	spin_lock(&pers_lock);
+	list_del_init(&p->list);
+	spin_unlock(&pers_lock);
+	return 0;
+}
+
+static int is_mddev_idle(struct mddev *mddev, int init)
+{
+	struct md_rdev * rdev;
+	int idle;
+	int curr_events;
+
+	idle = 1;
+	rcu_read_lock();
+	rdev_for_each_rcu(rdev, mddev) {
+		struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
+		curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
+			      (int)part_stat_read(&disk->part0, sectors[1]) -
+			      atomic_read(&disk->sync_io);
+		/* sync IO will cause sync_io to increase before the disk_stats
+		 * as sync_io is counted when a request starts, and
+		 * disk_stats is counted when it completes.
+		 * So resync activity will cause curr_events to be smaller than
+		 * when there was no such activity.
+		 * non-sync IO will cause disk_stat to increase without
+		 * increasing sync_io so curr_events will (eventually)
+		 * be larger than it was before.  Once it becomes
+		 * substantially larger, the test below will cause
+		 * the array to appear non-idle, and resync will slow
+		 * down.
+		 * If there is a lot of outstanding resync activity when
+		 * we set last_event to curr_events, then all that activity
+		 * completing might cause the array to appear non-idle
+		 * and resync will be slowed down even though there might
+		 * not have been non-resync activity.  This will only
+		 * happen once though.  'last_events' will soon reflect
+		 * the state where there is little or no outstanding
+		 * resync requests, and further resync activity will
+		 * always make curr_events less than last_events.
+		 *
+		 */
+		if (init || curr_events - rdev->last_events > 64) {
+			rdev->last_events = curr_events;
+			idle = 0;
+		}
+	}
+	rcu_read_unlock();
+	return idle;
+}
+
+void md_done_sync(struct mddev *mddev, int blocks, int ok)
+{
+	/* another "blocks" (512byte) blocks have been synced */
+	atomic_sub(blocks, &mddev->recovery_active);
+	wake_up(&mddev->recovery_wait);
+	if (!ok) {
+		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+		md_wakeup_thread(mddev->thread);
+		// stop recovery, signal do_sync ....
+	}
+}
+
+
+/* md_write_start(mddev, bi)
+ * If we need to update some array metadata (e.g. 'active' flag
+ * in superblock) before writing, schedule a superblock update
+ * and wait for it to complete.
+ */
+void md_write_start(struct mddev *mddev, struct bio *bi)
+{
+	int did_change = 0;
+	if (bio_data_dir(bi) != WRITE)
+		return;
+
+	BUG_ON(mddev->ro == 1);
+	if (mddev->ro == 2) {
+		/* need to switch to read/write */
+		mddev->ro = 0;
+		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+		md_wakeup_thread(mddev->thread);
+		md_wakeup_thread(mddev->sync_thread);
+		did_change = 1;
+	}
+	atomic_inc(&mddev->writes_pending);
+	if (mddev->safemode == 1)
+		mddev->safemode = 0;
+	if (mddev->in_sync) {
+		spin_lock_irq(&mddev->write_lock);
+		if (mddev->in_sync) {
+			mddev->in_sync = 0;
+			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
+			set_bit(MD_CHANGE_PENDING, &mddev->flags);
+			md_wakeup_thread(mddev->thread);
+			did_change = 1;
+		}
+		spin_unlock_irq(&mddev->write_lock);
+	}
+	if (did_change)
+		sysfs_notify_dirent_safe(mddev->sysfs_state);
+	wait_event(mddev->sb_wait,
+		   !test_bit(MD_CHANGE_PENDING, &mddev->flags));
+}
+
+void md_write_end(struct mddev *mddev)
+{
+	if (atomic_dec_and_test(&mddev->writes_pending)) {
+		if (mddev->safemode == 2)
+			md_wakeup_thread(mddev->thread);
+		else if (mddev->safemode_delay)
+			mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
+	}
+}
+
+/* md_allow_write(mddev)
+ * Calling this ensures that the array is marked 'active' so that writes
+ * may proceed without blocking.  It is important to call this before
+ * attempting a GFP_KERNEL allocation while holding the mddev lock.
+ * Must be called with mddev_lock held.
+ *
+ * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
+ * is dropped, so return -EAGAIN after notifying userspace.
+ */
+int md_allow_write(struct mddev *mddev)
+{
+	if (!mddev->pers)
+		return 0;
+	if (mddev->ro)
+		return 0;
+	if (!mddev->pers->sync_request)
+		return 0;
+
+	spin_lock_irq(&mddev->write_lock);
+	if (mddev->in_sync) {
+		mddev->in_sync = 0;
+		set_bit(MD_CHANGE_CLEAN, &mddev->flags);
+		set_bit(MD_CHANGE_PENDING, &mddev->flags);
+		if (mddev->safemode_delay &&
+		    mddev->safemode == 0)
+			mddev->safemode = 1;
+		spin_unlock_irq(&mddev->write_lock);
+		md_update_sb(mddev, 0);
+		sysfs_notify_dirent_safe(mddev->sysfs_state);
+	} else
+		spin_unlock_irq(&mddev->write_lock);
+
+	if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
+		return -EAGAIN;
+	else
+		return 0;
+}
+EXPORT_SYMBOL_GPL(md_allow_write);
+
+#define SYNC_MARKS	10
+#define	SYNC_MARK_STEP	(3*HZ)
+void md_do_sync(struct mddev *mddev)
+{
+	struct mddev *mddev2;
+	unsigned int currspeed = 0,
+		 window;
+	sector_t max_sectors,j, io_sectors;
+	unsigned long mark[SYNC_MARKS];
+	sector_t mark_cnt[SYNC_MARKS];
+	int last_mark,m;
+	struct list_head *tmp;
+	sector_t last_check;
+	int skipped = 0;
+	struct md_rdev *rdev;
+	char *desc;
+
+	/* just incase thread restarts... */
+	if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
+		return;
+	if (mddev->ro) {/* never try to sync a read-only array */
+		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+		return;
+	}
+
+	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+		if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
+			desc = "data-check";
+		else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+			desc = "requested-resync";
+		else
+			desc = "resync";
+	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+		desc = "reshape";
+	else
+		desc = "recovery";
+
+	/* we overload curr_resync somewhat here.
+	 * 0 == not engaged in resync at all
+	 * 2 == checking that there is no conflict with another sync
+	 * 1 == like 2, but have yielded to allow conflicting resync to
+	 *		commense
+	 * other == active in resync - this many blocks
+	 *
+	 * Before starting a resync we must have set curr_resync to
+	 * 2, and then checked that every "conflicting" array has curr_resync
+	 * less than ours.  When we find one that is the same or higher
+	 * we wait on resync_wait.  To avoid deadlock, we reduce curr_resync
+	 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
+	 * This will mean we have to start checking from the beginning again.
+	 *
+	 */
+
+	do {
+		mddev->curr_resync = 2;
+
+	try_again:
+		if (kthread_should_stop())
+			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+
+		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+			goto skip;
+		for_each_mddev(mddev2, tmp) {
+			if (mddev2 == mddev)
+				continue;
+			if (!mddev->parallel_resync
+			&&  mddev2->curr_resync
+			&&  match_mddev_units(mddev, mddev2)) {
+				DEFINE_WAIT(wq);
+				if (mddev < mddev2 && mddev->curr_resync == 2) {
+					/* arbitrarily yield */
+					mddev->curr_resync = 1;
+					wake_up(&resync_wait);
+				}
+				if (mddev > mddev2 && mddev->curr_resync == 1)
+					/* no need to wait here, we can wait the next
+					 * time 'round when curr_resync == 2
+					 */
+					continue;
+				/* We need to wait 'interruptible' so as not to
+				 * contribute to the load average, and not to
+				 * be caught by 'softlockup'
+				 */
+				prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
+				if (!kthread_should_stop() &&
+				    mddev2->curr_resync >= mddev->curr_resync) {
+					printk(KERN_INFO "md: delaying %s of %s"
+					       " until %s has finished (they"
+					       " share one or more physical units)\n",
+					       desc, mdname(mddev), mdname(mddev2));
+					mddev_put(mddev2);
+					if (signal_pending(current))
+						flush_signals(current);
+					schedule();
+					finish_wait(&resync_wait, &wq);
+					goto try_again;
+				}
+				finish_wait(&resync_wait, &wq);
+			}
+		}
+	} while (mddev->curr_resync < 2);
+
+	j = 0;
+	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+		/* resync follows the size requested by the personality,
+		 * which defaults to physical size, but can be virtual size
+		 */
+		max_sectors = mddev->resync_max_sectors;
+		mddev->resync_mismatches = 0;
+		/* we don't use the checkpoint if there's a bitmap */
+		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+			j = mddev->resync_min;
+		else if (!mddev->bitmap)
+			j = mddev->recovery_cp;
+
+	} else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+		max_sectors = mddev->dev_sectors;
+	else {
+		/* recovery follows the physical size of devices */
+		max_sectors = mddev->dev_sectors;
+		j = MaxSector;
+		rcu_read_lock();
+		rdev_for_each_rcu(rdev, mddev)
+			if (rdev->raid_disk >= 0 &&
+			    !test_bit(Faulty, &rdev->flags) &&
+			    !test_bit(In_sync, &rdev->flags) &&
+			    rdev->recovery_offset < j)
+				j = rdev->recovery_offset;
+		rcu_read_unlock();
+
+		/* If there is a bitmap, we need to make sure all
+		 * writes that started before we added a spare
+		 * complete before we start doing a recovery.
+		 * Otherwise the write might complete and (via
+		 * bitmap_endwrite) set a bit in the bitmap after the
+		 * recovery has checked that bit and skipped that
+		 * region.
+		 */
+		if (mddev->bitmap) {
+			mddev->pers->quiesce(mddev, 1);
+			mddev->pers->quiesce(mddev, 0);
+		}
+	}
+
+	printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
+	printk(KERN_INFO "md: minimum _guaranteed_  speed:"
+		" %d KB/sec/disk.\n", speed_min(mddev));
+	printk(KERN_INFO "md: using maximum available idle IO bandwidth "
+	       "(but not more than %d KB/sec) for %s.\n",
+	       speed_max(mddev), desc);
+
+	is_mddev_idle(mddev, 1); /* this initializes IO event counters */
+
+	io_sectors = 0;
+	for (m = 0; m < SYNC_MARKS; m++) {
+		mark[m] = jiffies;
+		mark_cnt[m] = io_sectors;
+	}
+	last_mark = 0;
+	mddev->resync_mark = mark[last_mark];
+	mddev->resync_mark_cnt = mark_cnt[last_mark];
+
+	/*
+	 * Tune reconstruction:
+	 */
+	window = 32*(PAGE_SIZE/512);
+	printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
+		window/2, (unsigned long long)max_sectors/2);
+
+	atomic_set(&mddev->recovery_active, 0);
+	last_check = 0;
+
+	if (j>2) {
+		printk(KERN_INFO 
+		       "md: resuming %s of %s from checkpoint.\n",
+		       desc, mdname(mddev));
+		mddev->curr_resync = j;
+	}
+	mddev->curr_resync_completed = j;
+
+	while (j < max_sectors) {
+		sector_t sectors;
+
+		skipped = 0;
+
+		if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+		    ((mddev->curr_resync > mddev->curr_resync_completed &&
+		      (mddev->curr_resync - mddev->curr_resync_completed)
+		      > (max_sectors >> 4)) ||
+		     (j - mddev->curr_resync_completed)*2
+		     >= mddev->resync_max - mddev->curr_resync_completed
+			    )) {
+			/* time to update curr_resync_completed */
+			wait_event(mddev->recovery_wait,
+				   atomic_read(&mddev->recovery_active) == 0);
+			mddev->curr_resync_completed = j;
+			set_bit(MD_CHANGE_CLEAN, &mddev->flags);
+			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
+		}
+
+		while (j >= mddev->resync_max && !kthread_should_stop()) {
+			/* As this condition is controlled by user-space,
+			 * we can block indefinitely, so use '_interruptible'
+			 * to avoid triggering warnings.
+			 */
+			flush_signals(current); /* just in case */
+			wait_event_interruptible(mddev->recovery_wait,
+						 mddev->resync_max > j
+						 || kthread_should_stop());
+		}
+
+		if (kthread_should_stop())
+			goto interrupted;
+
+		sectors = mddev->pers->sync_request(mddev, j, &skipped,
+						  currspeed < speed_min(mddev));
+		if (sectors == 0) {
+			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+			goto out;
+		}
+
+		if (!skipped) { /* actual IO requested */
+			io_sectors += sectors;
+			atomic_add(sectors, &mddev->recovery_active);
+		}
+
+		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+			break;
+
+		j += sectors;
+		if (j>1) mddev->curr_resync = j;
+		mddev->curr_mark_cnt = io_sectors;
+		if (last_check == 0)
+			/* this is the earliest that rebuild will be
+			 * visible in /proc/mdstat
+			 */
+			md_new_event(mddev);
+
+		if (last_check + window > io_sectors || j == max_sectors)
+			continue;
+
+		last_check = io_sectors;
+	repeat:
+		if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
+			/* step marks */
+			int next = (last_mark+1) % SYNC_MARKS;
+
+			mddev->resync_mark = mark[next];
+			mddev->resync_mark_cnt = mark_cnt[next];
+			mark[next] = jiffies;
+			mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
+			last_mark = next;
+		}
+
+
+		if (kthread_should_stop())
+			goto interrupted;
+
+
+		/*
+		 * this loop exits only if either when we are slower than
+		 * the 'hard' speed limit, or the system was IO-idle for
+		 * a jiffy.
+		 * the system might be non-idle CPU-wise, but we only care
+		 * about not overloading the IO subsystem. (things like an
+		 * e2fsck being done on the RAID array should execute fast)
+		 */
+		cond_resched();
+
+		currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
+			/((jiffies-mddev->resync_mark)/HZ +1) +1;
+
+		if (currspeed > speed_min(mddev)) {
+			if ((currspeed > speed_max(mddev)) ||
+					!is_mddev_idle(mddev, 0)) {
+				msleep(500);
+				goto repeat;
+			}
+		}
+	}
+	printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
+	/*
+	 * this also signals 'finished resyncing' to md_stop
+	 */
+ out:
+	wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
+
+	/* tell personality that we are finished */
+	mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
+
+	if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
+	    mddev->curr_resync > 2) {
+		if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+			if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
+				if (mddev->curr_resync >= mddev->recovery_cp) {
+					printk(KERN_INFO
+					       "md: checkpointing %s of %s.\n",
+					       desc, mdname(mddev));
+					mddev->recovery_cp =
+						mddev->curr_resync_completed;
+				}
+			} else
+				mddev->recovery_cp = MaxSector;
+		} else {
+			if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
+				mddev->curr_resync = MaxSector;
+			rcu_read_lock();
+			rdev_for_each_rcu(rdev, mddev)
+				if (rdev->raid_disk >= 0 &&
+				    mddev->delta_disks >= 0 &&
+				    !test_bit(Faulty, &rdev->flags) &&
+				    !test_bit(In_sync, &rdev->flags) &&
+				    rdev->recovery_offset < mddev->curr_resync)
+					rdev->recovery_offset = mddev->curr_resync;
+			rcu_read_unlock();
+		}
+	}
+ skip:
+	set_bit(MD_CHANGE_DEVS, &mddev->flags);
+
+	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
+		/* We completed so min/max setting can be forgotten if used. */
+		if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+			mddev->resync_min = 0;
+		mddev->resync_max = MaxSector;
+	} else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+		mddev->resync_min = mddev->curr_resync_completed;
+	mddev->curr_resync = 0;
+	wake_up(&resync_wait);
+	set_bit(MD_RECOVERY_DONE, &mddev->recovery);
+	md_wakeup_thread(mddev->thread);
+	return;
+
+ interrupted:
+	/*
+	 * got a signal, exit.
+	 */
+	printk(KERN_INFO
+	       "md: md_do_sync() got signal ... exiting\n");
+	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+	goto out;
+
+}
+EXPORT_SYMBOL_GPL(md_do_sync);
+
+static int remove_and_add_spares(struct mddev *mddev)
+{
+	struct md_rdev *rdev;
+	int spares = 0;
+	int removed = 0;
+
+	mddev->curr_resync_completed = 0;
+
+	rdev_for_each(rdev, mddev)
+		if (rdev->raid_disk >= 0 &&
+		    !test_bit(Blocked, &rdev->flags) &&
+		    (test_bit(Faulty, &rdev->flags) ||
+		     ! test_bit(In_sync, &rdev->flags)) &&
+		    atomic_read(&rdev->nr_pending)==0) {
+			if (mddev->pers->hot_remove_disk(
+				    mddev, rdev) == 0) {
+				sysfs_unlink_rdev(mddev, rdev);
+				rdev->raid_disk = -1;
+				removed++;
+			}
+		}
+	if (removed)
+		sysfs_notify(&mddev->kobj, NULL,
+			     "degraded");
+
+
+	rdev_for_each(rdev, mddev) {
+		if (rdev->raid_disk >= 0 &&
+		    !test_bit(In_sync, &rdev->flags) &&
+		    !test_bit(Faulty, &rdev->flags))
+			spares++;
+		if (rdev->raid_disk < 0
+		    && !test_bit(Faulty, &rdev->flags)) {
+			rdev->recovery_offset = 0;
+			if (mddev->pers->
+			    hot_add_disk(mddev, rdev) == 0) {
+				if (sysfs_link_rdev(mddev, rdev))
+					/* failure here is OK */;
+				spares++;
+				md_new_event(mddev);
+				set_bit(MD_CHANGE_DEVS, &mddev->flags);
+			}
+		}
+	}
+	if (removed)
+		set_bit(MD_CHANGE_DEVS, &mddev->flags);
+	return spares;
+}
+
+static void reap_sync_thread(struct mddev *mddev)
+{
+	struct md_rdev *rdev;
+
+	/* resync has finished, collect result */
+	md_unregister_thread(&mddev->sync_thread);
+	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
+	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
+		/* success...*/
+		/* activate any spares */
+		if (mddev->pers->spare_active(mddev)) {
+			sysfs_notify(&mddev->kobj, NULL,
+				     "degraded");
+			set_bit(MD_CHANGE_DEVS, &mddev->flags);
+		}
+	}
+	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
+	    mddev->pers->finish_reshape)
+		mddev->pers->finish_reshape(mddev);
+
+	/* If array is no-longer degraded, then any saved_raid_disk
+	 * information must be scrapped.  Also if any device is now
+	 * In_sync we must scrape the saved_raid_disk for that device
+	 * do the superblock for an incrementally recovered device
+	 * written out.
+	 */
+	rdev_for_each(rdev, mddev)
+		if (!mddev->degraded ||
+		    test_bit(In_sync, &rdev->flags))
+			rdev->saved_raid_disk = -1;
+
+	md_update_sb(mddev, 1);
+	clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+	clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+	clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+	/* flag recovery needed just to double check */
+	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	sysfs_notify_dirent_safe(mddev->sysfs_action);
+	md_new_event(mddev);
+	if (mddev->event_work.func)
+		queue_work(md_misc_wq, &mddev->event_work);
+}
+
+/*
+ * This routine is regularly called by all per-raid-array threads to
+ * deal with generic issues like resync and super-block update.
+ * Raid personalities that don't have a thread (linear/raid0) do not
+ * need this as they never do any recovery or update the superblock.
+ *
+ * It does not do any resync itself, but rather "forks" off other threads
+ * to do that as needed.
+ * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
+ * "->recovery" and create a thread at ->sync_thread.
+ * When the thread finishes it sets MD_RECOVERY_DONE
+ * and wakeups up this thread which will reap the thread and finish up.
+ * This thread also removes any faulty devices (with nr_pending == 0).
+ *
+ * The overall approach is:
+ *  1/ if the superblock needs updating, update it.
+ *  2/ If a recovery thread is running, don't do anything else.
+ *  3/ If recovery has finished, clean up, possibly marking spares active.
+ *  4/ If there are any faulty devices, remove them.
+ *  5/ If array is degraded, try to add spares devices
+ *  6/ If array has spares or is not in-sync, start a resync thread.
+ */
+void md_check_recovery(struct mddev *mddev)
+{
+	if (mddev->suspended)
+		return;
+
+	if (mddev->bitmap)
+		bitmap_daemon_work(mddev);
+
+	if (signal_pending(current)) {
+		if (mddev->pers->sync_request && !mddev->external) {
+			printk(KERN_INFO "md: %s in immediate safe mode\n",
+			       mdname(mddev));
+			mddev->safemode = 2;
+		}
+		flush_signals(current);
+	}
+
+	if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
+		return;
+	if ( ! (
+		(mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
+		test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
+		test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
+		(mddev->external == 0 && mddev->safemode == 1) ||
+		(mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
+		 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
+		))
+		return;
+
+	if (mddev_trylock(mddev)) {
+		int spares = 0;
+
+		if (mddev->ro) {
+			/* Only thing we do on a ro array is remove
+			 * failed devices.
+			 */
+			struct md_rdev *rdev;
+			rdev_for_each(rdev, mddev)
+				if (rdev->raid_disk >= 0 &&
+				    !test_bit(Blocked, &rdev->flags) &&
+				    test_bit(Faulty, &rdev->flags) &&
+				    atomic_read(&rdev->nr_pending)==0) {
+					if (mddev->pers->hot_remove_disk(
+						    mddev, rdev) == 0) {
+						sysfs_unlink_rdev(mddev, rdev);
+						rdev->raid_disk = -1;
+					}
+				}
+			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+			goto unlock;
+		}
+
+		if (!mddev->external) {
+			int did_change = 0;
+			spin_lock_irq(&mddev->write_lock);
+			if (mddev->safemode &&
+			    !atomic_read(&mddev->writes_pending) &&
+			    !mddev->in_sync &&
+			    mddev->recovery_cp == MaxSector) {
+				mddev->in_sync = 1;
+				did_change = 1;
+				set_bit(MD_CHANGE_CLEAN, &mddev->flags);
+			}
+			if (mddev->safemode == 1)
+				mddev->safemode = 0;
+			spin_unlock_irq(&mddev->write_lock);
+			if (did_change)
+				sysfs_notify_dirent_safe(mddev->sysfs_state);
+		}
+
+		if (mddev->flags)
+			md_update_sb(mddev, 0);
+
+		if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
+		    !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
+			/* resync/recovery still happening */
+			clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+			goto unlock;
+		}
+		if (mddev->sync_thread) {
+			reap_sync_thread(mddev);
+			goto unlock;
+		}
+		/* Set RUNNING before clearing NEEDED to avoid
+		 * any transients in the value of "sync_action".
+		 */
+		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+		/* Clear some bits that don't mean anything, but
+		 * might be left set
+		 */
+		clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
+		clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
+
+		if (!test_and_clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
+		    test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
+			goto unlock;
+		/* no recovery is running.
+		 * remove any failed drives, then
+		 * add spares if possible.
+		 * Spare are also removed and re-added, to allow
+		 * the personality to fail the re-add.
+		 */
+
+		if (mddev->reshape_position != MaxSector) {
+			if (mddev->pers->check_reshape == NULL ||
+			    mddev->pers->check_reshape(mddev) != 0)
+				/* Cannot proceed */
+				goto unlock;
+			set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+		} else if ((spares = remove_and_add_spares(mddev))) {
+			clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+			clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+			clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+			set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+		} else if (mddev->recovery_cp < MaxSector) {
+			set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+			clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
+		} else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
+			/* nothing to be done ... */
+			goto unlock;
+
+		if (mddev->pers->sync_request) {
+			if (spares && mddev->bitmap && ! mddev->bitmap->file) {
+				/* We are adding a device or devices to an array
+				 * which has the bitmap stored on all devices.
+				 * So make sure all bitmap pages get written
+				 */
+				bitmap_write_all(mddev->bitmap);
+			}
+			mddev->sync_thread = md_register_thread(md_do_sync,
+								mddev,
+								"resync");
+			if (!mddev->sync_thread) {
+				printk(KERN_ERR "%s: could not start resync"
+					" thread...\n", 
+					mdname(mddev));
+				/* leave the spares where they are, it shouldn't hurt */
+				clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+				clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+				clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+				clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
+				clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+			} else
+				md_wakeup_thread(mddev->sync_thread);
+			sysfs_notify_dirent_safe(mddev->sysfs_action);
+			md_new_event(mddev);
+		}
+	unlock:
+		if (!mddev->sync_thread) {
+			clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+			if (test_and_clear_bit(MD_RECOVERY_RECOVER,
+					       &mddev->recovery))
+				if (mddev->sysfs_action)
+					sysfs_notify_dirent_safe(mddev->sysfs_action);
+		}
+		mddev_unlock(mddev);
+	}
+}
+
+void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
+{
+	sysfs_notify_dirent_safe(rdev->sysfs_state);
+	wait_event_timeout(rdev->blocked_wait,
+			   !test_bit(Blocked, &rdev->flags) &&
+			   !test_bit(BlockedBadBlocks, &rdev->flags),
+			   msecs_to_jiffies(5000));
+	rdev_dec_pending(rdev, mddev);
+}
+EXPORT_SYMBOL(md_wait_for_blocked_rdev);
+
+
+/* Bad block management.
+ * We can record which blocks on each device are 'bad' and so just
+ * fail those blocks, or that stripe, rather than the whole device.
+ * Entries in the bad-block table are 64bits wide.  This comprises:
+ * Length of bad-range, in sectors: 0-511 for lengths 1-512
+ * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
+ *  A 'shift' can be set so that larger blocks are tracked and
+ *  consequently larger devices can be covered.
+ * 'Acknowledged' flag - 1 bit. - the most significant bit.
+ *
+ * Locking of the bad-block table uses a seqlock so md_is_badblock
+ * might need to retry if it is very unlucky.
+ * We will sometimes want to check for bad blocks in a bi_end_io function,
+ * so we use the write_seqlock_irq variant.
+ *
+ * When looking for a bad block we specify a range and want to
+ * know if any block in the range is bad.  So we binary-search
+ * to the last range that starts at-or-before the given endpoint,
+ * (or "before the sector after the target range")
+ * then see if it ends after the given start.
+ * We return
+ *  0 if there are no known bad blocks in the range
+ *  1 if there are known bad block which are all acknowledged
+ * -1 if there are bad blocks which have not yet been acknowledged in metadata.
+ * plus the start/length of the first bad section we overlap.
+ */
+int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
+		   sector_t *first_bad, int *bad_sectors)
+{
+	int hi;
+	int lo;
+	u64 *p = bb->page;
+	int rv;
+	sector_t target = s + sectors;
+	unsigned seq;
+
+	if (bb->shift > 0) {
+		/* round the start down, and the end up */
+		s >>= bb->shift;
+		target += (1<<bb->shift) - 1;
+		target >>= bb->shift;
+		sectors = target - s;
+	}
+	/* 'target' is now the first block after the bad range */
+
+retry:
+	seq = read_seqbegin(&bb->lock);
+	lo = 0;
+	rv = 0;
+	hi = bb->count;
+
+	/* Binary search between lo and hi for 'target'
+	 * i.e. for the last range that starts before 'target'
+	 */
+	/* INVARIANT: ranges before 'lo' and at-or-after 'hi'
+	 * are known not to be the last range before target.
+	 * VARIANT: hi-lo is the number of possible
+	 * ranges, and decreases until it reaches 1
+	 */
+	while (hi - lo > 1) {
+		int mid = (lo + hi) / 2;
+		sector_t a = BB_OFFSET(p[mid]);
+		if (a < target)
+			/* This could still be the one, earlier ranges
+			 * could not. */
+			lo = mid;
+		else
+			/* This and later ranges are definitely out. */
+			hi = mid;
+	}
+	/* 'lo' might be the last that started before target, but 'hi' isn't */
+	if (hi > lo) {
+		/* need to check all range that end after 's' to see if
+		 * any are unacknowledged.
+		 */
+		while (lo >= 0 &&
+		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
+			if (BB_OFFSET(p[lo]) < target) {
+				/* starts before the end, and finishes after
+				 * the start, so they must overlap
+				 */
+				if (rv != -1 && BB_ACK(p[lo]))
+					rv = 1;
+				else
+					rv = -1;
+				*first_bad = BB_OFFSET(p[lo]);
+				*bad_sectors = BB_LEN(p[lo]);
+			}
+			lo--;
+		}
+	}
+
+	if (read_seqretry(&bb->lock, seq))
+		goto retry;
+
+	return rv;
+}
+EXPORT_SYMBOL_GPL(md_is_badblock);
+
+/*
+ * Add a range of bad blocks to the table.
+ * This might extend the table, or might contract it
+ * if two adjacent ranges can be merged.
+ * We binary-search to find the 'insertion' point, then
+ * decide how best to handle it.
+ */
+static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
+			    int acknowledged)
+{
+	u64 *p;
+	int lo, hi;
+	int rv = 1;
+
+	if (bb->shift < 0)
+		/* badblocks are disabled */
+		return 0;
+
+	if (bb->shift) {
+		/* round the start down, and the end up */
+		sector_t next = s + sectors;
+		s >>= bb->shift;
+		next += (1<<bb->shift) - 1;
+		next >>= bb->shift;
+		sectors = next - s;
+	}
+
+	write_seqlock_irq(&bb->lock);
+
+	p = bb->page;
+	lo = 0;
+	hi = bb->count;
+	/* Find the last range that starts at-or-before 's' */
+	while (hi - lo > 1) {
+		int mid = (lo + hi) / 2;
+		sector_t a = BB_OFFSET(p[mid]);
+		if (a <= s)
+			lo = mid;
+		else
+			hi = mid;
+	}
+	if (hi > lo && BB_OFFSET(p[lo]) > s)
+		hi = lo;
+
+	if (hi > lo) {
+		/* we found a range that might merge with the start
+		 * of our new range
+		 */
+		sector_t a = BB_OFFSET(p[lo]);
+		sector_t e = a + BB_LEN(p[lo]);
+		int ack = BB_ACK(p[lo]);
+		if (e >= s) {
+			/* Yes, we can merge with a previous range */
+			if (s == a && s + sectors >= e)
+				/* new range covers old */
+				ack = acknowledged;
+			else
+				ack = ack && acknowledged;
+
+			if (e < s + sectors)
+				e = s + sectors;
+			if (e - a <= BB_MAX_LEN) {
+				p[lo] = BB_MAKE(a, e-a, ack);
+				s = e;
+			} else {
+				/* does not all fit in one range,
+				 * make p[lo] maximal
+				 */
+				if (BB_LEN(p[lo]) != BB_MAX_LEN)
+					p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
+				s = a + BB_MAX_LEN;
+			}
+			sectors = e - s;
+		}
+	}
+	if (sectors && hi < bb->count) {
+		/* 'hi' points to the first range that starts after 's'.
+		 * Maybe we can merge with the start of that range */
+		sector_t a = BB_OFFSET(p[hi]);
+		sector_t e = a + BB_LEN(p[hi]);
+		int ack = BB_ACK(p[hi]);
+		if (a <= s + sectors) {
+			/* merging is possible */
+			if (e <= s + sectors) {
+				/* full overlap */
+				e = s + sectors;
+				ack = acknowledged;
+			} else
+				ack = ack && acknowledged;
+
+			a = s;
+			if (e - a <= BB_MAX_LEN) {
+				p[hi] = BB_MAKE(a, e-a, ack);
+				s = e;
+			} else {
+				p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
+				s = a + BB_MAX_LEN;
+			}
+			sectors = e - s;
+			lo = hi;
+			hi++;
+		}
+	}
+	if (sectors == 0 && hi < bb->count) {
+		/* we might be able to combine lo and hi */
+		/* Note: 's' is at the end of 'lo' */
+		sector_t a = BB_OFFSET(p[hi]);
+		int lolen = BB_LEN(p[lo]);
+		int hilen = BB_LEN(p[hi]);
+		int newlen = lolen + hilen - (s - a);
+		if (s >= a && newlen < BB_MAX_LEN) {
+			/* yes, we can combine them */
+			int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
+			p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
+			memmove(p + hi, p + hi + 1,
+				(bb->count - hi - 1) * 8);
+			bb->count--;
+		}
+	}
+	while (sectors) {
+		/* didn't merge (it all).
+		 * Need to add a range just before 'hi' */
+		if (bb->count >= MD_MAX_BADBLOCKS) {
+			/* No room for more */
+			rv = 0;
+			break;
+		} else {
+			int this_sectors = sectors;
+			memmove(p + hi + 1, p + hi,
+				(bb->count - hi) * 8);
+			bb->count++;
+
+			if (this_sectors > BB_MAX_LEN)
+				this_sectors = BB_MAX_LEN;
+			p[hi] = BB_MAKE(s, this_sectors, acknowledged);
+			sectors -= this_sectors;
+			s += this_sectors;
+		}
+	}
+
+	bb->changed = 1;
+	if (!acknowledged)
+		bb->unacked_exist = 1;
+	write_sequnlock_irq(&bb->lock);
+
+	return rv;
+}
+
+int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
+		       int acknowledged)
+{
+	int rv = md_set_badblocks(&rdev->badblocks,
+				  s + rdev->data_offset, sectors, acknowledged);
+	if (rv) {
+		/* Make sure they get written out promptly */
+		sysfs_notify_dirent_safe(rdev->sysfs_state);
+		set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
+		md_wakeup_thread(rdev->mddev->thread);
+	}
+	return rv;
+}
+EXPORT_SYMBOL_GPL(rdev_set_badblocks);
+
+/*
+ * Remove a range of bad blocks from the table.
+ * This may involve extending the table if we spilt a region,
+ * but it must not fail.  So if the table becomes full, we just
+ * drop the remove request.
+ */
+static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
+{
+	u64 *p;
+	int lo, hi;
+	sector_t target = s + sectors;
+	int rv = 0;
+
+	if (bb->shift > 0) {
+		/* When clearing we round the start up and the end down.
+		 * This should not matter as the shift should align with
+		 * the block size and no rounding should ever be needed.
+		 * However it is better the think a block is bad when it
+		 * isn't than to think a block is not bad when it is.
+		 */
+		s += (1<<bb->shift) - 1;
+		s >>= bb->shift;
+		target >>= bb->shift;
+		sectors = target - s;
+	}
+
+	write_seqlock_irq(&bb->lock);
+
+	p = bb->page;
+	lo = 0;
+	hi = bb->count;
+	/* Find the last range that starts before 'target' */
+	while (hi - lo > 1) {
+		int mid = (lo + hi) / 2;
+		sector_t a = BB_OFFSET(p[mid]);
+		if (a < target)
+			lo = mid;
+		else
+			hi = mid;
+	}
+	if (hi > lo) {
+		/* p[lo] is the last range that could overlap the
+		 * current range.  Earlier ranges could also overlap,
+		 * but only this one can overlap the end of the range.
+		 */
+		if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
+			/* Partial overlap, leave the tail of this range */
+			int ack = BB_ACK(p[lo]);
+			sector_t a = BB_OFFSET(p[lo]);
+			sector_t end = a + BB_LEN(p[lo]);
+
+			if (a < s) {
+				/* we need to split this range */
+				if (bb->count >= MD_MAX_BADBLOCKS) {
+					rv = 0;
+					goto out;
+				}
+				memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
+				bb->count++;
+				p[lo] = BB_MAKE(a, s-a, ack);
+				lo++;
+			}
+			p[lo] = BB_MAKE(target, end - target, ack);
+			/* there is no longer an overlap */
+			hi = lo;
+			lo--;
+		}
+		while (lo >= 0 &&
+		       BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
+			/* This range does overlap */
+			if (BB_OFFSET(p[lo]) < s) {
+				/* Keep the early parts of this range. */
+				int ack = BB_ACK(p[lo]);
+				sector_t start = BB_OFFSET(p[lo]);
+				p[lo] = BB_MAKE(start, s - start, ack);
+				/* now low doesn't overlap, so.. */
+				break;
+			}
+			lo--;
+		}
+		/* 'lo' is strictly before, 'hi' is strictly after,
+		 * anything between needs to be discarded
+		 */
+		if (hi - lo > 1) {
+			memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
+			bb->count -= (hi - lo - 1);
+		}
+	}
+
+	bb->changed = 1;
+out:
+	write_sequnlock_irq(&bb->lock);
+	return rv;
+}
+
+int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
+{
+	return md_clear_badblocks(&rdev->badblocks,
+				  s + rdev->data_offset,
+				  sectors);
+}
+EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
+
+/*
+ * Acknowledge all bad blocks in a list.
+ * This only succeeds if ->changed is clear.  It is used by
+ * in-kernel metadata updates
+ */
+void md_ack_all_badblocks(struct badblocks *bb)
+{
+	if (bb->page == NULL || bb->changed)
+		/* no point even trying */
+		return;
+	write_seqlock_irq(&bb->lock);
+
+	if (bb->changed == 0 && bb->unacked_exist) {
+		u64 *p = bb->page;
+		int i;
+		for (i = 0; i < bb->count ; i++) {
+			if (!BB_ACK(p[i])) {
+				sector_t start = BB_OFFSET(p[i]);
+				int len = BB_LEN(p[i]);
+				p[i] = BB_MAKE(start, len, 1);
+			}
+		}
+		bb->unacked_exist = 0;
+	}
+	write_sequnlock_irq(&bb->lock);
+}
+EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
+
+/* sysfs access to bad-blocks list.
+ * We present two files.
+ * 'bad-blocks' lists sector numbers and lengths of ranges that
+ *    are recorded as bad.  The list is truncated to fit within
+ *    the one-page limit of sysfs.
+ *    Writing "sector length" to this file adds an acknowledged
+ *    bad block list.
+ * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
+ *    been acknowledged.  Writing to this file adds bad blocks
+ *    without acknowledging them.  This is largely for testing.
+ */
+
+static ssize_t
+badblocks_show(struct badblocks *bb, char *page, int unack)
+{
+	size_t len;
+	int i;
+	u64 *p = bb->page;
+	unsigned seq;
+
+	if (bb->shift < 0)
+		return 0;
+
+retry:
+	seq = read_seqbegin(&bb->lock);
+
+	len = 0;
+	i = 0;
+
+	while (len < PAGE_SIZE && i < bb->count) {
+		sector_t s = BB_OFFSET(p[i]);
+		unsigned int length = BB_LEN(p[i]);
+		int ack = BB_ACK(p[i]);
+		i++;
+
+		if (unack && ack)
+			continue;
+
+		len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
+				(unsigned long long)s << bb->shift,
+				length << bb->shift);
+	}
+	if (unack && len == 0)
+		bb->unacked_exist = 0;
+
+	if (read_seqretry(&bb->lock, seq))
+		goto retry;
+
+	return len;
+}
+
+#define DO_DEBUG 1
+
+static ssize_t
+badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
+{
+	unsigned long long sector;
+	int length;
+	char newline;
+#ifdef DO_DEBUG
+	/* Allow clearing via sysfs *only* for testing/debugging.
+	 * Normally only a successful write may clear a badblock
+	 */
+	int clear = 0;
+	if (page[0] == '-') {
+		clear = 1;
+		page++;
+	}
+#endif /* DO_DEBUG */
+
+	switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
+	case 3:
+		if (newline != '\n')
+			return -EINVAL;
+	case 2:
+		if (length <= 0)
+			return -EINVAL;
+		break;
+	default:
+		return -EINVAL;
+	}
+
+#ifdef DO_DEBUG
+	if (clear) {
+		md_clear_badblocks(bb, sector, length);
+		return len;
+	}
+#endif /* DO_DEBUG */
+	if (md_set_badblocks(bb, sector, length, !unack))
+		return len;
+	else
+		return -ENOSPC;
+}
+
+static int md_notify_reboot(struct notifier_block *this,
+			    unsigned long code, void *x)
+{
+	struct list_head *tmp;
+	struct mddev *mddev;
+	int need_delay = 0;
+
+	for_each_mddev(mddev, tmp) {
+		if (mddev_trylock(mddev)) {
+			if (mddev->pers)
+				__md_stop_writes(mddev);
+			if (mddev->persistent)
+				mddev->safemode = 2;
+			mddev_unlock(mddev);
+		}
+		need_delay = 1;
+	}
+	/*
+	 * certain more exotic SCSI devices are known to be
+	 * volatile wrt too early system reboots. While the
+	 * right place to handle this issue is the given
+	 * driver, we do want to have a safe RAID driver ...
+	 */
+	if (need_delay)
+		mdelay(1000*1);
+
+	return NOTIFY_DONE;
+}
+
+static struct notifier_block md_notifier = {
+	.notifier_call	= md_notify_reboot,
+	.next		= NULL,
+	.priority	= INT_MAX, /* before any real devices */
+};
+
+static void md_geninit(void)
+{
+	pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
+
+	proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
+}
+
+static int __init md_init(void)
+{
+	int ret = -ENOMEM;
+
+	md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
+	if (!md_wq)
+		goto err_wq;
+
+	md_misc_wq = alloc_workqueue("md_misc", 0, 0);
+	if (!md_misc_wq)
+		goto err_misc_wq;
+
+	if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
+		goto err_md;
+
+	if ((ret = register_blkdev(0, "mdp")) < 0)
+		goto err_mdp;
+	mdp_major = ret;
+
+	blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
+			    md_probe, NULL, NULL);
+	blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
+			    md_probe, NULL, NULL);
+
+	register_reboot_notifier(&md_notifier);
+	raid_table_header = register_sysctl_table(raid_root_table);
+
+	md_geninit();
+	return 0;
+
+err_mdp:
+	unregister_blkdev(MD_MAJOR, "md");
+err_md:
+	destroy_workqueue(md_misc_wq);
+err_misc_wq:
+	destroy_workqueue(md_wq);
+err_wq:
+	return ret;
+}
+
+#ifndef MODULE
+
+/*
+ * Searches all registered partitions for autorun RAID arrays
+ * at boot time.
+ */
+
+static LIST_HEAD(all_detected_devices);
+struct detected_devices_node {
+	struct list_head list;
+	dev_t dev;
+};
+
+void md_autodetect_dev(dev_t dev)
+{
+	struct detected_devices_node *node_detected_dev;
+
+	node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
+	if (node_detected_dev) {
+		node_detected_dev->dev = dev;
+		list_add_tail(&node_detected_dev->list, &all_detected_devices);
+	} else {
+		printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
+			", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
+	}
+}
+
+
+static void autostart_arrays(int part)
+{
+	struct md_rdev *rdev;
+	struct detected_devices_node *node_detected_dev;
+	dev_t dev;
+	int i_scanned, i_passed;
+
+	i_scanned = 0;
+	i_passed = 0;
+
+	printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
+
+	while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
+		i_scanned++;
+		node_detected_dev = list_entry(all_detected_devices.next,
+					struct detected_devices_node, list);
+		list_del(&node_detected_dev->list);
+		dev = node_detected_dev->dev;
+		kfree(node_detected_dev);
+		rdev = md_import_device(dev,0, 90);
+		if (IS_ERR(rdev))
+			continue;
+
+		if (test_bit(Faulty, &rdev->flags)) {
+			MD_BUG();
+			continue;
+		}
+		set_bit(AutoDetected, &rdev->flags);
+		list_add(&rdev->same_set, &pending_raid_disks);
+		i_passed++;
+	}
+
+	printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
+						i_scanned, i_passed);
+
+	autorun_devices(part);
+}
+
+#endif /* !MODULE */
+
+static __exit void md_exit(void)
+{
+	struct mddev *mddev;
+	struct list_head *tmp;
+
+	blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
+	blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
+
+	unregister_blkdev(MD_MAJOR,"md");
+	unregister_blkdev(mdp_major, "mdp");
+	unregister_reboot_notifier(&md_notifier);
+	unregister_sysctl_table(raid_table_header);
+	remove_proc_entry("mdstat", NULL);
+	for_each_mddev(mddev, tmp) {
+		export_array(mddev);
+		mddev->hold_active = 0;
+	}
+	destroy_workqueue(md_misc_wq);
+	destroy_workqueue(md_wq);
+}
+
+subsys_initcall(md_init);
+module_exit(md_exit)
+
+static int get_ro(char *buffer, struct kernel_param *kp)
+{
+	return sprintf(buffer, "%d", start_readonly);
+}
+static int set_ro(const char *val, struct kernel_param *kp)
+{
+	char *e;
+	int num = simple_strtoul(val, &e, 10);
+	if (*val && (*e == '\0' || *e == '\n')) {
+		start_readonly = num;
+		return 0;
+	}
+	return -EINVAL;
+}
+
+module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
+module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
+
+module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
+
+EXPORT_SYMBOL(register_md_personality);
+EXPORT_SYMBOL(unregister_md_personality);
+EXPORT_SYMBOL(md_error);
+EXPORT_SYMBOL(md_done_sync);
+EXPORT_SYMBOL(md_write_start);
+EXPORT_SYMBOL(md_write_end);
+EXPORT_SYMBOL(md_register_thread);
+EXPORT_SYMBOL(md_unregister_thread);
+EXPORT_SYMBOL(md_wakeup_thread);
+EXPORT_SYMBOL(md_check_recovery);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("MD RAID framework");
+MODULE_ALIAS("md");
+MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/md.h b/ap/os/linux/linux-3.4.x/drivers/md/md.h
new file mode 100644
index 0000000..1c2063c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/md.h
@@ -0,0 +1,627 @@
+/*
+   md.h : kernel internal structure of the Linux MD driver
+          Copyright (C) 1996-98 Ingo Molnar, Gadi Oxman
+	  
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2, or (at your option)
+   any later version.
+   
+   You should have received a copy of the GNU General Public License
+   (for example /usr/src/linux/COPYING); if not, write to the Free
+   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  
+*/
+
+#ifndef _MD_MD_H
+#define _MD_MD_H
+
+#include <linux/blkdev.h>
+#include <linux/kobject.h>
+#include <linux/list.h>
+#include <linux/mm.h>
+#include <linux/mutex.h>
+#include <linux/timer.h>
+#include <linux/wait.h>
+#include <linux/workqueue.h>
+
+#define MaxSector (~(sector_t)0)
+
+/* Bad block numbers are stored sorted in a single page.
+ * 64bits is used for each block or extent.
+ * 54 bits are sector number, 9 bits are extent size,
+ * 1 bit is an 'acknowledged' flag.
+ */
+#define MD_MAX_BADBLOCKS	(PAGE_SIZE/8)
+
+/*
+ * MD's 'extended' device
+ */
+struct md_rdev {
+	struct list_head same_set;	/* RAID devices within the same set */
+
+	sector_t sectors;		/* Device size (in 512bytes sectors) */
+	struct mddev *mddev;		/* RAID array if running */
+	int last_events;		/* IO event timestamp */
+
+	/*
+	 * If meta_bdev is non-NULL, it means that a separate device is
+	 * being used to store the metadata (superblock/bitmap) which
+	 * would otherwise be contained on the same device as the data (bdev).
+	 */
+	struct block_device *meta_bdev;
+	struct block_device *bdev;	/* block device handle */
+
+	struct page	*sb_page, *bb_page;
+	int		sb_loaded;
+	__u64		sb_events;
+	sector_t	data_offset;	/* start of data in array */
+	sector_t 	sb_start;	/* offset of the super block (in 512byte sectors) */
+	int		sb_size;	/* bytes in the superblock */
+	int		preferred_minor;	/* autorun support */
+
+	struct kobject	kobj;
+
+	/* A device can be in one of three states based on two flags:
+	 * Not working:   faulty==1 in_sync==0
+	 * Fully working: faulty==0 in_sync==1
+	 * Working, but not
+	 * in sync with array
+	 *                faulty==0 in_sync==0
+	 *
+	 * It can never have faulty==1, in_sync==1
+	 * This reduces the burden of testing multiple flags in many cases
+	 */
+
+	unsigned long	flags;	/* bit set of 'enum flag_bits' bits. */
+	wait_queue_head_t blocked_wait;
+
+	int desc_nr;			/* descriptor index in the superblock */
+	int raid_disk;			/* role of device in array */
+	int new_raid_disk;		/* role that the device will have in
+					 * the array after a level-change completes.
+					 */
+	int saved_raid_disk;		/* role that device used to have in the
+					 * array and could again if we did a partial
+					 * resync from the bitmap
+					 */
+	sector_t	recovery_offset;/* If this device has been partially
+					 * recovered, this is where we were
+					 * up to.
+					 */
+
+	atomic_t	nr_pending;	/* number of pending requests.
+					 * only maintained for arrays that
+					 * support hot removal
+					 */
+	atomic_t	read_errors;	/* number of consecutive read errors that
+					 * we have tried to ignore.
+					 */
+	struct timespec last_read_error;	/* monotonic time since our
+						 * last read error
+						 */
+	atomic_t	corrected_errors; /* number of corrected read errors,
+					   * for reporting to userspace and storing
+					   * in superblock.
+					   */
+	struct work_struct del_work;	/* used for delayed sysfs removal */
+
+	struct sysfs_dirent *sysfs_state; /* handle for 'state'
+					   * sysfs entry */
+
+	struct badblocks {
+		int	count;		/* count of bad blocks */
+		int	unacked_exist;	/* there probably are unacknowledged
+					 * bad blocks.  This is only cleared
+					 * when a read discovers none
+					 */
+		int	shift;		/* shift from sectors to block size
+					 * a -ve shift means badblocks are
+					 * disabled.*/
+		u64	*page;		/* badblock list */
+		int	changed;
+		seqlock_t lock;
+
+		sector_t sector;
+		sector_t size;		/* in sectors */
+	} badblocks;
+};
+enum flag_bits {
+	Faulty,			/* device is known to have a fault */
+	In_sync,		/* device is in_sync with rest of array */
+	Unmerged,		/* device is being added to array and should
+				 * be considerred for bvec_merge_fn but not
+				 * yet for actual IO
+				 */
+	WriteMostly,		/* Avoid reading if at all possible */
+	AutoDetected,		/* added by auto-detect */
+	Blocked,		/* An error occurred but has not yet
+				 * been acknowledged by the metadata
+				 * handler, so don't allow writes
+				 * until it is cleared */
+	WriteErrorSeen,		/* A write error has been seen on this
+				 * device
+				 */
+	FaultRecorded,		/* Intermediate state for clearing
+				 * Blocked.  The Fault is/will-be
+				 * recorded in the metadata, but that
+				 * metadata hasn't been stored safely
+				 * on disk yet.
+				 */
+	BlockedBadBlocks,	/* A writer is blocked because they
+				 * found an unacknowledged bad-block.
+				 * This can safely be cleared at any
+				 * time, and the writer will re-check.
+				 * It may be set at any time, and at
+				 * worst the writer will timeout and
+				 * re-check.  So setting it as
+				 * accurately as possible is good, but
+				 * not absolutely critical.
+				 */
+	WantReplacement,	/* This device is a candidate to be
+				 * hot-replaced, either because it has
+				 * reported some faults, or because
+				 * of explicit request.
+				 */
+	Replacement,		/* This device is a replacement for
+				 * a want_replacement device with same
+				 * raid_disk number.
+				 */
+};
+
+#define BB_LEN_MASK	(0x00000000000001FFULL)
+#define BB_OFFSET_MASK	(0x7FFFFFFFFFFFFE00ULL)
+#define BB_ACK_MASK	(0x8000000000000000ULL)
+#define BB_MAX_LEN	512
+#define BB_OFFSET(x)	(((x) & BB_OFFSET_MASK) >> 9)
+#define BB_LEN(x)	(((x) & BB_LEN_MASK) + 1)
+#define BB_ACK(x)	(!!((x) & BB_ACK_MASK))
+#define BB_MAKE(a, l, ack) (((a)<<9) | ((l)-1) | ((u64)(!!(ack)) << 63))
+
+extern int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
+			  sector_t *first_bad, int *bad_sectors);
+static inline int is_badblock(struct md_rdev *rdev, sector_t s, int sectors,
+			      sector_t *first_bad, int *bad_sectors)
+{
+	if (unlikely(rdev->badblocks.count)) {
+		int rv = md_is_badblock(&rdev->badblocks, rdev->data_offset + s,
+					sectors,
+					first_bad, bad_sectors);
+		if (rv)
+			*first_bad -= rdev->data_offset;
+		return rv;
+	}
+	return 0;
+}
+extern int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
+			      int acknowledged);
+extern int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors);
+extern void md_ack_all_badblocks(struct badblocks *bb);
+
+struct mddev {
+	void				*private;
+	struct md_personality		*pers;
+	dev_t				unit;
+	int				md_minor;
+	struct list_head 		disks;
+	unsigned long			flags;
+#define MD_CHANGE_DEVS	0	/* Some device status has changed */
+#define MD_CHANGE_CLEAN 1	/* transition to or from 'clean' */
+#define MD_CHANGE_PENDING 2	/* switch from 'clean' to 'active' in progress */
+#define MD_ARRAY_FIRST_USE 3    /* First use of array, needs initialization */
+
+	int				suspended;
+	atomic_t			active_io;
+	int				ro;
+	int				sysfs_active; /* set when sysfs deletes
+						       * are happening, so run/
+						       * takeover/stop are not safe
+						       */
+	int				ready; /* See when safe to pass 
+						* IO requests down */
+	struct gendisk			*gendisk;
+
+	struct kobject			kobj;
+	int				hold_active;
+#define	UNTIL_IOCTL	1
+#define	UNTIL_STOP	2
+
+	/* Superblock information */
+	int				major_version,
+					minor_version,
+					patch_version;
+	int				persistent;
+	int 				external;	/* metadata is
+							 * managed externally */
+	char				metadata_type[17]; /* externally set*/
+	int				chunk_sectors;
+	time_t				ctime, utime;
+	int				level, layout;
+	char				clevel[16];
+	int				raid_disks;
+	int				max_disks;
+	sector_t			dev_sectors; 	/* used size of
+							 * component devices */
+	sector_t			array_sectors; /* exported array size */
+	int				external_size; /* size managed
+							* externally */
+	__u64				events;
+	/* If the last 'event' was simply a clean->dirty transition, and
+	 * we didn't write it to the spares, then it is safe and simple
+	 * to just decrement the event count on a dirty->clean transition.
+	 * So we record that possibility here.
+	 */
+	int				can_decrease_events;
+
+	char				uuid[16];
+
+	/* If the array is being reshaped, we need to record the
+	 * new shape and an indication of where we are up to.
+	 * This is written to the superblock.
+	 * If reshape_position is MaxSector, then no reshape is happening (yet).
+	 */
+	sector_t			reshape_position;
+	int				delta_disks, new_level, new_layout;
+	int				new_chunk_sectors;
+
+	atomic_t			plug_cnt;	/* If device is expecting
+							 * more bios soon.
+							 */
+	struct md_thread		*thread;	/* management thread */
+	struct md_thread		*sync_thread;	/* doing resync or reconstruct */
+	sector_t			curr_resync;	/* last block scheduled */
+	/* As resync requests can complete out of order, we cannot easily track
+	 * how much resync has been completed.  So we occasionally pause until
+	 * everything completes, then set curr_resync_completed to curr_resync.
+	 * As such it may be well behind the real resync mark, but it is a value
+	 * we are certain of.
+	 */
+	sector_t			curr_resync_completed;
+	unsigned long			resync_mark;	/* a recent timestamp */
+	sector_t			resync_mark_cnt;/* blocks written at resync_mark */
+	sector_t			curr_mark_cnt; /* blocks scheduled now */
+
+	sector_t			resync_max_sectors; /* may be set by personality */
+
+	sector_t			resync_mismatches; /* count of sectors where
+							    * parity/replica mismatch found
+							    */
+
+	/* allow user-space to request suspension of IO to regions of the array */
+	sector_t			suspend_lo;
+	sector_t			suspend_hi;
+	/* if zero, use the system-wide default */
+	int				sync_speed_min;
+	int				sync_speed_max;
+
+	/* resync even though the same disks are shared among md-devices */
+	int				parallel_resync;
+
+	int				ok_start_degraded;
+	/* recovery/resync flags 
+	 * NEEDED:   we might need to start a resync/recover
+	 * RUNNING:  a thread is running, or about to be started
+	 * SYNC:     actually doing a resync, not a recovery
+	 * RECOVER:  doing recovery, or need to try it.
+	 * INTR:     resync needs to be aborted for some reason
+	 * DONE:     thread is done and is waiting to be reaped
+	 * REQUEST:  user-space has requested a sync (used with SYNC)
+	 * CHECK:    user-space request for check-only, no repair
+	 * RESHAPE:  A reshape is happening
+	 *
+	 * If neither SYNC or RESHAPE are set, then it is a recovery.
+	 */
+#define	MD_RECOVERY_RUNNING	0
+#define	MD_RECOVERY_SYNC	1
+#define	MD_RECOVERY_RECOVER	2
+#define	MD_RECOVERY_INTR	3
+#define	MD_RECOVERY_DONE	4
+#define	MD_RECOVERY_NEEDED	5
+#define	MD_RECOVERY_REQUESTED	6
+#define	MD_RECOVERY_CHECK	7
+#define MD_RECOVERY_RESHAPE	8
+#define	MD_RECOVERY_FROZEN	9
+
+	unsigned long			recovery;
+	/* If a RAID personality determines that recovery (of a particular
+	 * device) will fail due to a read error on the source device, it
+	 * takes a copy of this number and does not attempt recovery again
+	 * until this number changes.
+	 */
+	int				recovery_disabled;
+
+	int				in_sync;	/* know to not need resync */
+	/* 'open_mutex' avoids races between 'md_open' and 'do_md_stop', so
+	 * that we are never stopping an array while it is open.
+	 * 'reconfig_mutex' protects all other reconfiguration.
+	 * These locks are separate due to conflicting interactions
+	 * with bdev->bd_mutex.
+	 * Lock ordering is:
+	 *  reconfig_mutex -> bd_mutex : e.g. do_md_run -> revalidate_disk
+	 *  bd_mutex -> open_mutex:  e.g. __blkdev_get -> md_open
+	 */
+	struct mutex			open_mutex;
+	struct mutex			reconfig_mutex;
+	atomic_t			active;		/* general refcount */
+	atomic_t			openers;	/* number of active opens */
+
+	int				changed;	/* True if we might need to
+							 * reread partition info */
+	int				degraded;	/* whether md should consider
+							 * adding a spare
+							 */
+	int				merge_check_needed; /* at least one
+							     * member device
+							     * has a
+							     * merge_bvec_fn */
+
+	atomic_t			recovery_active; /* blocks scheduled, but not written */
+	wait_queue_head_t		recovery_wait;
+	sector_t			recovery_cp;
+	sector_t			resync_min;	/* user requested sync
+							 * starts here */
+	sector_t			resync_max;	/* resync should pause
+							 * when it gets here */
+
+	struct sysfs_dirent		*sysfs_state;	/* handle for 'array_state'
+							 * file in sysfs.
+							 */
+	struct sysfs_dirent		*sysfs_action;  /* handle for 'sync_action' */
+
+	struct work_struct del_work;	/* used for delayed sysfs removal */
+
+	spinlock_t			write_lock;
+	wait_queue_head_t		sb_wait;	/* for waiting on superblock updates */
+	atomic_t			pending_writes;	/* number of active superblock writes */
+
+	unsigned int			safemode;	/* if set, update "clean" superblock
+							 * when no writes pending.
+							 */ 
+	unsigned int			safemode_delay;
+	struct timer_list		safemode_timer;
+	atomic_t			writes_pending; 
+	struct request_queue		*queue;	/* for plugging ... */
+
+	struct bitmap                   *bitmap; /* the bitmap for the device */
+	struct {
+		struct file		*file; /* the bitmap file */
+		loff_t			offset; /* offset from superblock of
+						 * start of bitmap. May be
+						 * negative, but not '0'
+						 * For external metadata, offset
+						 * from start of device. 
+						 */
+		loff_t			default_offset; /* this is the offset to use when
+							 * hot-adding a bitmap.  It should
+							 * eventually be settable by sysfs.
+							 */
+		struct mutex		mutex;
+		unsigned long		chunksize;
+		unsigned long		daemon_sleep; /* how many jiffies between updates? */
+		unsigned long		max_write_behind; /* write-behind mode */
+		int			external;
+	} bitmap_info;
+
+	atomic_t 			max_corr_read_errors; /* max read retries */
+	struct list_head		all_mddevs;
+
+	struct attribute_group		*to_remove;
+
+	struct bio_set			*bio_set;
+
+	/* Generic flush handling.
+	 * The last to finish preflush schedules a worker to submit
+	 * the rest of the request (without the REQ_FLUSH flag).
+	 */
+	struct bio *flush_bio;
+	atomic_t flush_pending;
+	struct work_struct flush_work;
+	struct work_struct event_work;	/* used by dm to report failure event */
+	void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
+};
+
+
+static inline void rdev_dec_pending(struct md_rdev *rdev, struct mddev *mddev)
+{
+	int faulty = test_bit(Faulty, &rdev->flags);
+	if (atomic_dec_and_test(&rdev->nr_pending) && faulty)
+		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+}
+
+static inline void md_sync_acct(struct block_device *bdev, unsigned long nr_sectors)
+{
+        atomic_add(nr_sectors, &bdev->bd_contains->bd_disk->sync_io);
+}
+
+struct md_personality
+{
+	char *name;
+	int level;
+	struct list_head list;
+	struct module *owner;
+	void (*make_request)(struct mddev *mddev, struct bio *bio);
+	int (*run)(struct mddev *mddev);
+	int (*stop)(struct mddev *mddev);
+	void (*status)(struct seq_file *seq, struct mddev *mddev);
+	/* error_handler must set ->faulty and clear ->in_sync
+	 * if appropriate, and should abort recovery if needed 
+	 */
+	void (*error_handler)(struct mddev *mddev, struct md_rdev *rdev);
+	int (*hot_add_disk) (struct mddev *mddev, struct md_rdev *rdev);
+	int (*hot_remove_disk) (struct mddev *mddev, struct md_rdev *rdev);
+	int (*spare_active) (struct mddev *mddev);
+	sector_t (*sync_request)(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster);
+	int (*resize) (struct mddev *mddev, sector_t sectors);
+	sector_t (*size) (struct mddev *mddev, sector_t sectors, int raid_disks);
+	int (*check_reshape) (struct mddev *mddev);
+	int (*start_reshape) (struct mddev *mddev);
+	void (*finish_reshape) (struct mddev *mddev);
+	/* quiesce moves between quiescence states
+	 * 0 - fully active
+	 * 1 - no new requests allowed
+	 * others - reserved
+	 */
+	void (*quiesce) (struct mddev *mddev, int state);
+	/* takeover is used to transition an array from one
+	 * personality to another.  The new personality must be able
+	 * to handle the data in the current layout.
+	 * e.g. 2drive raid1 -> 2drive raid5
+	 *      ndrive raid5 -> degraded n+1drive raid6 with special layout
+	 * If the takeover succeeds, a new 'private' structure is returned.
+	 * This needs to be installed and then ->run used to activate the
+	 * array.
+	 */
+	void *(*takeover) (struct mddev *mddev);
+};
+
+
+struct md_sysfs_entry {
+	struct attribute attr;
+	ssize_t (*show)(struct mddev *, char *);
+	ssize_t (*store)(struct mddev *, const char *, size_t);
+};
+extern struct attribute_group md_bitmap_group;
+
+static inline struct sysfs_dirent *sysfs_get_dirent_safe(struct sysfs_dirent *sd, char *name)
+{
+	if (sd)
+		return sysfs_get_dirent(sd, NULL, name);
+	return sd;
+}
+static inline void sysfs_notify_dirent_safe(struct sysfs_dirent *sd)
+{
+	if (sd)
+		sysfs_notify_dirent(sd);
+}
+
+static inline char * mdname (struct mddev * mddev)
+{
+	return mddev->gendisk ? mddev->gendisk->disk_name : "mdX";
+}
+
+static inline int sysfs_link_rdev(struct mddev *mddev, struct md_rdev *rdev)
+{
+	char nm[20];
+	if (!test_bit(Replacement, &rdev->flags)) {
+		sprintf(nm, "rd%d", rdev->raid_disk);
+		return sysfs_create_link(&mddev->kobj, &rdev->kobj, nm);
+	} else
+		return 0;
+}
+
+static inline void sysfs_unlink_rdev(struct mddev *mddev, struct md_rdev *rdev)
+{
+	char nm[20];
+	if (!test_bit(Replacement, &rdev->flags)) {
+		sprintf(nm, "rd%d", rdev->raid_disk);
+		sysfs_remove_link(&mddev->kobj, nm);
+	}
+}
+
+/*
+ * iterates through some rdev ringlist. It's safe to remove the
+ * current 'rdev'. Dont touch 'tmp' though.
+ */
+#define rdev_for_each_list(rdev, tmp, head)				\
+	list_for_each_entry_safe(rdev, tmp, head, same_set)
+
+/*
+ * iterates through the 'same array disks' ringlist
+ */
+#define rdev_for_each(rdev, mddev)				\
+	list_for_each_entry(rdev, &((mddev)->disks), same_set)
+
+#define rdev_for_each_safe(rdev, tmp, mddev)				\
+	list_for_each_entry_safe(rdev, tmp, &((mddev)->disks), same_set)
+
+#define rdev_for_each_rcu(rdev, mddev)				\
+	list_for_each_entry_rcu(rdev, &((mddev)->disks), same_set)
+
+struct md_thread {
+	void			(*run) (struct mddev *mddev);
+	struct mddev		*mddev;
+	wait_queue_head_t	wqueue;
+	unsigned long           flags;
+	struct task_struct	*tsk;
+	unsigned long		timeout;
+};
+
+#define THREAD_WAKEUP  0
+
+#define __wait_event_lock_irq(wq, condition, lock, cmd) 		\
+do {									\
+	wait_queue_t __wait;						\
+	init_waitqueue_entry(&__wait, current);				\
+									\
+	add_wait_queue(&wq, &__wait);					\
+	for (;;) {							\
+		set_current_state(TASK_UNINTERRUPTIBLE);		\
+		if (condition)						\
+			break;						\
+		spin_unlock_irq(&lock);					\
+		cmd;							\
+		schedule();						\
+		spin_lock_irq(&lock);					\
+	}								\
+	current->state = TASK_RUNNING;					\
+	remove_wait_queue(&wq, &__wait);				\
+} while (0)
+
+#define wait_event_lock_irq(wq, condition, lock, cmd) 			\
+do {									\
+	if (condition)	 						\
+		break;							\
+	__wait_event_lock_irq(wq, condition, lock, cmd);		\
+} while (0)
+
+static inline void safe_put_page(struct page *p)
+{
+	if (p) put_page(p);
+}
+
+extern int register_md_personality(struct md_personality *p);
+extern int unregister_md_personality(struct md_personality *p);
+extern struct md_thread *md_register_thread(
+	void (*run)(struct mddev *mddev),
+	struct mddev *mddev,
+	const char *name);
+extern void md_unregister_thread(struct md_thread **threadp);
+extern void md_wakeup_thread(struct md_thread *thread);
+extern void md_check_recovery(struct mddev *mddev);
+extern void md_write_start(struct mddev *mddev, struct bio *bi);
+extern void md_write_end(struct mddev *mddev);
+extern void md_done_sync(struct mddev *mddev, int blocks, int ok);
+extern void md_error(struct mddev *mddev, struct md_rdev *rdev);
+
+extern int mddev_congested(struct mddev *mddev, int bits);
+extern void md_flush_request(struct mddev *mddev, struct bio *bio);
+extern void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
+			   sector_t sector, int size, struct page *page);
+extern void md_super_wait(struct mddev *mddev);
+extern int sync_page_io(struct md_rdev *rdev, sector_t sector, int size, 
+			struct page *page, int rw, bool metadata_op);
+extern void md_do_sync(struct mddev *mddev);
+extern void md_new_event(struct mddev *mddev);
+extern int md_allow_write(struct mddev *mddev);
+extern void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev);
+extern void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors);
+extern int md_check_no_bitmap(struct mddev *mddev);
+extern int md_integrity_register(struct mddev *mddev);
+extern void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev);
+extern int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale);
+extern void restore_bitmap_write_access(struct file *file);
+
+extern void mddev_init(struct mddev *mddev);
+extern int md_run(struct mddev *mddev);
+extern void md_stop(struct mddev *mddev);
+extern void md_stop_writes(struct mddev *mddev);
+extern int md_rdev_init(struct md_rdev *rdev);
+
+extern void mddev_suspend(struct mddev *mddev);
+extern void mddev_resume(struct mddev *mddev);
+extern struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
+				   struct mddev *mddev);
+extern struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
+				   struct mddev *mddev);
+extern int mddev_check_plugged(struct mddev *mddev);
+extern void md_trim_bio(struct bio *bio, int offset, int size);
+#endif /* _MD_MD_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/multipath.c b/ap/os/linux/linux-3.4.x/drivers/md/multipath.c
new file mode 100644
index 0000000..9339e67
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/multipath.c
@@ -0,0 +1,557 @@
+/*
+ * multipath.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
+ *
+ * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
+ *
+ * MULTIPATH management functions.
+ *
+ * derived from raid1.c.
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * You should have received a copy of the GNU General Public License
+ * (for example /usr/src/linux/COPYING); if not, write to the Free
+ * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/raid/md_u.h>
+#include <linux/seq_file.h>
+#include <linux/slab.h>
+#include "md.h"
+#include "multipath.h"
+
+#define MAX_WORK_PER_DISK 128
+
+#define	NR_RESERVED_BUFS	32
+
+
+static int multipath_map (struct mpconf *conf)
+{
+	int i, disks = conf->raid_disks;
+
+	/*
+	 * Later we do read balancing on the read side 
+	 * now we use the first available disk.
+	 */
+
+	rcu_read_lock();
+	for (i = 0; i < disks; i++) {
+		struct md_rdev *rdev = rcu_dereference(conf->multipaths[i].rdev);
+		if (rdev && test_bit(In_sync, &rdev->flags)) {
+			atomic_inc(&rdev->nr_pending);
+			rcu_read_unlock();
+			return i;
+		}
+	}
+	rcu_read_unlock();
+
+	printk(KERN_ERR "multipath_map(): no more operational IO paths?\n");
+	return (-1);
+}
+
+static void multipath_reschedule_retry (struct multipath_bh *mp_bh)
+{
+	unsigned long flags;
+	struct mddev *mddev = mp_bh->mddev;
+	struct mpconf *conf = mddev->private;
+
+	spin_lock_irqsave(&conf->device_lock, flags);
+	list_add(&mp_bh->retry_list, &conf->retry_list);
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+	md_wakeup_thread(mddev->thread);
+}
+
+
+/*
+ * multipath_end_bh_io() is called when we have finished servicing a multipathed
+ * operation and are ready to return a success/failure code to the buffer
+ * cache layer.
+ */
+static void multipath_end_bh_io (struct multipath_bh *mp_bh, int err)
+{
+	struct bio *bio = mp_bh->master_bio;
+	struct mpconf *conf = mp_bh->mddev->private;
+
+	bio_endio(bio, err);
+	mempool_free(mp_bh, conf->pool);
+}
+
+static void multipath_end_request(struct bio *bio, int error)
+{
+	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+	struct multipath_bh *mp_bh = bio->bi_private;
+	struct mpconf *conf = mp_bh->mddev->private;
+	struct md_rdev *rdev = conf->multipaths[mp_bh->path].rdev;
+
+	if (uptodate)
+		multipath_end_bh_io(mp_bh, 0);
+	else if (!(bio->bi_rw & REQ_RAHEAD)) {
+		/*
+		 * oops, IO error:
+		 */
+		char b[BDEVNAME_SIZE];
+		md_error (mp_bh->mddev, rdev);
+		printk(KERN_ERR "multipath: %s: rescheduling sector %llu\n", 
+		       bdevname(rdev->bdev,b), 
+		       (unsigned long long)bio->bi_sector);
+		multipath_reschedule_retry(mp_bh);
+	} else
+		multipath_end_bh_io(mp_bh, error);
+	rdev_dec_pending(rdev, conf->mddev);
+}
+
+static void multipath_make_request(struct mddev *mddev, struct bio * bio)
+{
+	struct mpconf *conf = mddev->private;
+	struct multipath_bh * mp_bh;
+	struct multipath_info *multipath;
+
+	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
+		md_flush_request(mddev, bio);
+		return;
+	}
+
+	mp_bh = mempool_alloc(conf->pool, GFP_NOIO);
+
+	mp_bh->master_bio = bio;
+	mp_bh->mddev = mddev;
+
+	mp_bh->path = multipath_map(conf);
+	if (mp_bh->path < 0) {
+		bio_endio(bio, -EIO);
+		mempool_free(mp_bh, conf->pool);
+		return;
+	}
+	multipath = conf->multipaths + mp_bh->path;
+
+	mp_bh->bio = *bio;
+	mp_bh->bio.bi_sector += multipath->rdev->data_offset;
+	mp_bh->bio.bi_bdev = multipath->rdev->bdev;
+	mp_bh->bio.bi_rw |= REQ_FAILFAST_TRANSPORT;
+	mp_bh->bio.bi_end_io = multipath_end_request;
+	mp_bh->bio.bi_private = mp_bh;
+	generic_make_request(&mp_bh->bio);
+	return;
+}
+
+static void multipath_status (struct seq_file *seq, struct mddev *mddev)
+{
+	struct mpconf *conf = mddev->private;
+	int i;
+	
+	seq_printf (seq, " [%d/%d] [", conf->raid_disks,
+		    conf->raid_disks - mddev->degraded);
+	for (i = 0; i < conf->raid_disks; i++)
+		seq_printf (seq, "%s",
+			       conf->multipaths[i].rdev && 
+			       test_bit(In_sync, &conf->multipaths[i].rdev->flags) ? "U" : "_");
+	seq_printf (seq, "]");
+}
+
+static int multipath_congested(void *data, int bits)
+{
+	struct mddev *mddev = data;
+	struct mpconf *conf = mddev->private;
+	int i, ret = 0;
+
+	if (mddev_congested(mddev, bits))
+		return 1;
+
+	rcu_read_lock();
+	for (i = 0; i < mddev->raid_disks ; i++) {
+		struct md_rdev *rdev = rcu_dereference(conf->multipaths[i].rdev);
+		if (rdev && !test_bit(Faulty, &rdev->flags)) {
+			struct request_queue *q = bdev_get_queue(rdev->bdev);
+
+			ret |= bdi_congested(&q->backing_dev_info, bits);
+			/* Just like multipath_map, we just check the
+			 * first available device
+			 */
+			break;
+		}
+	}
+	rcu_read_unlock();
+	return ret;
+}
+
+/*
+ * Careful, this can execute in IRQ contexts as well!
+ */
+static void multipath_error (struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct mpconf *conf = mddev->private;
+	char b[BDEVNAME_SIZE];
+
+	if (conf->raid_disks - mddev->degraded <= 1) {
+		/*
+		 * Uh oh, we can do nothing if this is our last path, but
+		 * first check if this is a queued request for a device
+		 * which has just failed.
+		 */
+		printk(KERN_ALERT 
+		       "multipath: only one IO path left and IO error.\n");
+		/* leave it active... it's all we have */
+		return;
+	}
+	/*
+	 * Mark disk as unusable
+	 */
+	if (test_and_clear_bit(In_sync, &rdev->flags)) {
+		unsigned long flags;
+		spin_lock_irqsave(&conf->device_lock, flags);
+		mddev->degraded++;
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+	}
+	set_bit(Faulty, &rdev->flags);
+	set_bit(MD_CHANGE_DEVS, &mddev->flags);
+	printk(KERN_ALERT "multipath: IO failure on %s,"
+	       " disabling IO path.\n"
+	       "multipath: Operation continuing"
+	       " on %d IO paths.\n",
+	       bdevname(rdev->bdev, b),
+	       conf->raid_disks - mddev->degraded);
+}
+
+static void print_multipath_conf (struct mpconf *conf)
+{
+	int i;
+	struct multipath_info *tmp;
+
+	printk("MULTIPATH conf printout:\n");
+	if (!conf) {
+		printk("(conf==NULL)\n");
+		return;
+	}
+	printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
+			 conf->raid_disks);
+
+	for (i = 0; i < conf->raid_disks; i++) {
+		char b[BDEVNAME_SIZE];
+		tmp = conf->multipaths + i;
+		if (tmp->rdev)
+			printk(" disk%d, o:%d, dev:%s\n",
+				i,!test_bit(Faulty, &tmp->rdev->flags),
+			       bdevname(tmp->rdev->bdev,b));
+	}
+}
+
+
+static int multipath_add_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct mpconf *conf = mddev->private;
+	struct request_queue *q;
+	int err = -EEXIST;
+	int path;
+	struct multipath_info *p;
+	int first = 0;
+	int last = mddev->raid_disks - 1;
+
+	if (rdev->raid_disk >= 0)
+		first = last = rdev->raid_disk;
+
+	print_multipath_conf(conf);
+
+	for (path = first; path <= last; path++)
+		if ((p=conf->multipaths+path)->rdev == NULL) {
+			q = rdev->bdev->bd_disk->queue;
+			disk_stack_limits(mddev->gendisk, rdev->bdev,
+					  rdev->data_offset << 9);
+
+		/* as we don't honour merge_bvec_fn, we must never risk
+		 * violating it, so limit ->max_segments to one, lying
+		 * within a single page.
+		 * (Note: it is very unlikely that a device with
+		 * merge_bvec_fn will be involved in multipath.)
+		 */
+			if (q->merge_bvec_fn) {
+				blk_queue_max_segments(mddev->queue, 1);
+				blk_queue_segment_boundary(mddev->queue,
+							   PAGE_CACHE_SIZE - 1);
+			}
+
+			spin_lock_irq(&conf->device_lock);
+			mddev->degraded--;
+			rdev->raid_disk = path;
+			set_bit(In_sync, &rdev->flags);
+			spin_unlock_irq(&conf->device_lock);
+			rcu_assign_pointer(p->rdev, rdev);
+			err = 0;
+			md_integrity_add_rdev(rdev, mddev);
+			break;
+		}
+
+	print_multipath_conf(conf);
+
+	return err;
+}
+
+static int multipath_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct mpconf *conf = mddev->private;
+	int err = 0;
+	int number = rdev->raid_disk;
+	struct multipath_info *p = conf->multipaths + number;
+
+	print_multipath_conf(conf);
+
+	if (rdev == p->rdev) {
+		if (test_bit(In_sync, &rdev->flags) ||
+		    atomic_read(&rdev->nr_pending)) {
+			printk(KERN_ERR "hot-remove-disk, slot %d is identified"
+			       " but is still operational!\n", number);
+			err = -EBUSY;
+			goto abort;
+		}
+		p->rdev = NULL;
+		synchronize_rcu();
+		if (atomic_read(&rdev->nr_pending)) {
+			/* lost the race, try later */
+			err = -EBUSY;
+			p->rdev = rdev;
+			goto abort;
+		}
+		err = md_integrity_register(mddev);
+	}
+abort:
+
+	print_multipath_conf(conf);
+	return err;
+}
+
+
+
+/*
+ * This is a kernel thread which:
+ *
+ *	1.	Retries failed read operations on working multipaths.
+ *	2.	Updates the raid superblock when problems encounter.
+ *	3.	Performs writes following reads for array syncronising.
+ */
+
+static void multipathd (struct mddev *mddev)
+{
+	struct multipath_bh *mp_bh;
+	struct bio *bio;
+	unsigned long flags;
+	struct mpconf *conf = mddev->private;
+	struct list_head *head = &conf->retry_list;
+
+	md_check_recovery(mddev);
+	for (;;) {
+		char b[BDEVNAME_SIZE];
+		spin_lock_irqsave(&conf->device_lock, flags);
+		if (list_empty(head))
+			break;
+		mp_bh = list_entry(head->prev, struct multipath_bh, retry_list);
+		list_del(head->prev);
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+
+		bio = &mp_bh->bio;
+		bio->bi_sector = mp_bh->master_bio->bi_sector;
+		
+		if ((mp_bh->path = multipath_map (conf))<0) {
+			printk(KERN_ALERT "multipath: %s: unrecoverable IO read"
+				" error for block %llu\n",
+				bdevname(bio->bi_bdev,b),
+				(unsigned long long)bio->bi_sector);
+			multipath_end_bh_io(mp_bh, -EIO);
+		} else {
+			printk(KERN_ERR "multipath: %s: redirecting sector %llu"
+				" to another IO path\n",
+				bdevname(bio->bi_bdev,b),
+				(unsigned long long)bio->bi_sector);
+			*bio = *(mp_bh->master_bio);
+			bio->bi_sector += conf->multipaths[mp_bh->path].rdev->data_offset;
+			bio->bi_bdev = conf->multipaths[mp_bh->path].rdev->bdev;
+			bio->bi_rw |= REQ_FAILFAST_TRANSPORT;
+			bio->bi_end_io = multipath_end_request;
+			bio->bi_private = mp_bh;
+			generic_make_request(bio);
+		}
+	}
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+}
+
+static sector_t multipath_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+	WARN_ONCE(sectors || raid_disks,
+		  "%s does not support generic reshape\n", __func__);
+
+	return mddev->dev_sectors;
+}
+
+static int multipath_run (struct mddev *mddev)
+{
+	struct mpconf *conf;
+	int disk_idx;
+	struct multipath_info *disk;
+	struct md_rdev *rdev;
+	int working_disks;
+
+	if (md_check_no_bitmap(mddev))
+		return -EINVAL;
+
+	if (mddev->level != LEVEL_MULTIPATH) {
+		printk("multipath: %s: raid level not set to multipath IO (%d)\n",
+		       mdname(mddev), mddev->level);
+		goto out;
+	}
+	/*
+	 * copy the already verified devices into our private MULTIPATH
+	 * bookkeeping area. [whatever we allocate in multipath_run(),
+	 * should be freed in multipath_stop()]
+	 */
+
+	conf = kzalloc(sizeof(struct mpconf), GFP_KERNEL);
+	mddev->private = conf;
+	if (!conf) {
+		printk(KERN_ERR 
+			"multipath: couldn't allocate memory for %s\n",
+			mdname(mddev));
+		goto out;
+	}
+
+	conf->multipaths = kzalloc(sizeof(struct multipath_info)*mddev->raid_disks,
+				   GFP_KERNEL);
+	if (!conf->multipaths) {
+		printk(KERN_ERR 
+			"multipath: couldn't allocate memory for %s\n",
+			mdname(mddev));
+		goto out_free_conf;
+	}
+
+	working_disks = 0;
+	rdev_for_each(rdev, mddev) {
+		disk_idx = rdev->raid_disk;
+		if (disk_idx < 0 ||
+		    disk_idx >= mddev->raid_disks)
+			continue;
+
+		disk = conf->multipaths + disk_idx;
+		disk->rdev = rdev;
+		disk_stack_limits(mddev->gendisk, rdev->bdev,
+				  rdev->data_offset << 9);
+
+		/* as we don't honour merge_bvec_fn, we must never risk
+		 * violating it, not that we ever expect a device with
+		 * a merge_bvec_fn to be involved in multipath */
+		if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
+			blk_queue_max_segments(mddev->queue, 1);
+			blk_queue_segment_boundary(mddev->queue,
+						   PAGE_CACHE_SIZE - 1);
+		}
+
+		if (!test_bit(Faulty, &rdev->flags))
+			working_disks++;
+	}
+
+	conf->raid_disks = mddev->raid_disks;
+	conf->mddev = mddev;
+	spin_lock_init(&conf->device_lock);
+	INIT_LIST_HEAD(&conf->retry_list);
+
+	if (!working_disks) {
+		printk(KERN_ERR "multipath: no operational IO paths for %s\n",
+			mdname(mddev));
+		goto out_free_conf;
+	}
+	mddev->degraded = conf->raid_disks - working_disks;
+
+	conf->pool = mempool_create_kmalloc_pool(NR_RESERVED_BUFS,
+						 sizeof(struct multipath_bh));
+	if (conf->pool == NULL) {
+		printk(KERN_ERR 
+			"multipath: couldn't allocate memory for %s\n",
+			mdname(mddev));
+		goto out_free_conf;
+	}
+
+	{
+		mddev->thread = md_register_thread(multipathd, mddev, NULL);
+		if (!mddev->thread) {
+			printk(KERN_ERR "multipath: couldn't allocate thread"
+				" for %s\n", mdname(mddev));
+			goto out_free_conf;
+		}
+	}
+
+	printk(KERN_INFO 
+		"multipath: array %s active with %d out of %d IO paths\n",
+		mdname(mddev), conf->raid_disks - mddev->degraded,
+	       mddev->raid_disks);
+	/*
+	 * Ok, everything is just fine now
+	 */
+	md_set_array_sectors(mddev, multipath_size(mddev, 0, 0));
+
+	mddev->queue->backing_dev_info.congested_fn = multipath_congested;
+	mddev->queue->backing_dev_info.congested_data = mddev;
+
+	if (md_integrity_register(mddev))
+		goto out_free_conf;
+
+	return 0;
+
+out_free_conf:
+	if (conf->pool)
+		mempool_destroy(conf->pool);
+	kfree(conf->multipaths);
+	kfree(conf);
+	mddev->private = NULL;
+out:
+	return -EIO;
+}
+
+
+static int multipath_stop (struct mddev *mddev)
+{
+	struct mpconf *conf = mddev->private;
+
+	md_unregister_thread(&mddev->thread);
+	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
+	mempool_destroy(conf->pool);
+	kfree(conf->multipaths);
+	kfree(conf);
+	mddev->private = NULL;
+	return 0;
+}
+
+static struct md_personality multipath_personality =
+{
+	.name		= "multipath",
+	.level		= LEVEL_MULTIPATH,
+	.owner		= THIS_MODULE,
+	.make_request	= multipath_make_request,
+	.run		= multipath_run,
+	.stop		= multipath_stop,
+	.status		= multipath_status,
+	.error_handler	= multipath_error,
+	.hot_add_disk	= multipath_add_disk,
+	.hot_remove_disk= multipath_remove_disk,
+	.size		= multipath_size,
+};
+
+static int __init multipath_init (void)
+{
+	return register_md_personality (&multipath_personality);
+}
+
+static void __exit multipath_exit (void)
+{
+	unregister_md_personality (&multipath_personality);
+}
+
+module_init(multipath_init);
+module_exit(multipath_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("simple multi-path personality for MD");
+MODULE_ALIAS("md-personality-7"); /* MULTIPATH */
+MODULE_ALIAS("md-multipath");
+MODULE_ALIAS("md-level--4");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/multipath.h b/ap/os/linux/linux-3.4.x/drivers/md/multipath.h
new file mode 100644
index 0000000..717c60f
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/multipath.h
@@ -0,0 +1,31 @@
+#ifndef _MULTIPATH_H
+#define _MULTIPATH_H
+
+struct multipath_info {
+	struct md_rdev	*rdev;
+};
+
+struct mpconf {
+	struct mddev			*mddev;
+	struct multipath_info	*multipaths;
+	int			raid_disks;
+	spinlock_t		device_lock;
+	struct list_head	retry_list;
+
+	mempool_t		*pool;
+};
+
+/*
+ * this is our 'private' 'collective' MULTIPATH buffer head.
+ * it contains information about what kind of IO operations were started
+ * for this MULTIPATH operation, and about their status:
+ */
+
+struct multipath_bh {
+	struct mddev			*mddev;
+	struct bio		*master_bio;
+	struct bio		bio;
+	int			path;
+	struct list_head	retry_list;
+};
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/Kconfig b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/Kconfig
new file mode 100644
index 0000000..ceb3590
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/Kconfig
@@ -0,0 +1,8 @@
+config DM_PERSISTENT_DATA
+       tristate
+       depends on BLK_DEV_DM && EXPERIMENTAL
+       select LIBCRC32C
+       select DM_BUFIO
+       ---help---
+	 Library providing immutable on-disk data structure support for
+	 device-mapper targets such as the thin provisioning target.
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/Makefile b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/Makefile
new file mode 100644
index 0000000..cfa95f6
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/Makefile
@@ -0,0 +1,11 @@
+obj-$(CONFIG_DM_PERSISTENT_DATA) += dm-persistent-data.o
+dm-persistent-data-objs := \
+	dm-block-manager.o \
+	dm-space-map-checker.o \
+	dm-space-map-common.o \
+	dm-space-map-disk.o \
+	dm-space-map-metadata.o \
+	dm-transaction-manager.o \
+	dm-btree.o \
+	dm-btree-remove.o \
+	dm-btree-spine.o
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-block-manager.c b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-block-manager.c
new file mode 100644
index 0000000..0317ecd
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-block-manager.c
@@ -0,0 +1,620 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+#include "dm-block-manager.h"
+#include "dm-persistent-data-internal.h"
+#include "../dm-bufio.h"
+
+#include <linux/crc32c.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/rwsem.h>
+#include <linux/device-mapper.h>
+#include <linux/stacktrace.h>
+
+#define DM_MSG_PREFIX "block manager"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * This is a read/write semaphore with a couple of differences.
+ *
+ * i) There is a restriction on the number of concurrent read locks that
+ * may be held at once.  This is just an implementation detail.
+ *
+ * ii) Recursive locking attempts are detected and return EINVAL.  A stack
+ * trace is also emitted for the previous lock aquisition.
+ *
+ * iii) Priority is given to write locks.
+ */
+#define MAX_HOLDERS 4
+#define MAX_STACK 10
+
+typedef unsigned long stack_entries[MAX_STACK];
+
+struct block_lock {
+	spinlock_t lock;
+	__s32 count;
+	struct list_head waiters;
+	struct task_struct *holders[MAX_HOLDERS];
+
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+	struct stack_trace traces[MAX_HOLDERS];
+	stack_entries entries[MAX_HOLDERS];
+#endif
+};
+
+struct waiter {
+	struct list_head list;
+	struct task_struct *task;
+	int wants_write;
+};
+
+static unsigned __find_holder(struct block_lock *lock,
+			      struct task_struct *task)
+{
+	unsigned i;
+
+	for (i = 0; i < MAX_HOLDERS; i++)
+		if (lock->holders[i] == task)
+			break;
+
+	BUG_ON(i == MAX_HOLDERS);
+	return i;
+}
+
+/* call this *after* you increment lock->count */
+static void __add_holder(struct block_lock *lock, struct task_struct *task)
+{
+	unsigned h = __find_holder(lock, NULL);
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+	struct stack_trace *t;
+#endif
+
+	get_task_struct(task);
+	lock->holders[h] = task;
+
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+	t = lock->traces + h;
+	t->nr_entries = 0;
+	t->max_entries = MAX_STACK;
+	t->entries = lock->entries[h];
+	t->skip = 2;
+	save_stack_trace(t);
+#endif
+}
+
+/* call this *before* you decrement lock->count */
+static void __del_holder(struct block_lock *lock, struct task_struct *task)
+{
+	unsigned h = __find_holder(lock, task);
+	lock->holders[h] = NULL;
+	put_task_struct(task);
+}
+
+static int __check_holder(struct block_lock *lock)
+{
+	unsigned i;
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+	static struct stack_trace t;
+	static stack_entries entries;
+#endif
+
+	for (i = 0; i < MAX_HOLDERS; i++) {
+		if (lock->holders[i] == current) {
+			DMERR("recursive lock detected in pool metadata");
+#ifdef CONFIG_DM_DEBUG_BLOCK_STACK_TRACING
+			DMERR("previously held here:");
+			print_stack_trace(lock->traces + i, 4);
+
+			DMERR("subsequent aquisition attempted here:");
+			t.nr_entries = 0;
+			t.max_entries = MAX_STACK;
+			t.entries = entries;
+			t.skip = 3;
+			save_stack_trace(&t);
+			print_stack_trace(&t, 4);
+#endif
+			return -EINVAL;
+		}
+	}
+
+	return 0;
+}
+
+static void __wait(struct waiter *w)
+{
+	for (;;) {
+		set_task_state(current, TASK_UNINTERRUPTIBLE);
+
+		if (!w->task)
+			break;
+
+		schedule();
+	}
+
+	set_task_state(current, TASK_RUNNING);
+}
+
+static void __wake_waiter(struct waiter *w)
+{
+	struct task_struct *task;
+
+	list_del(&w->list);
+	task = w->task;
+	smp_mb();
+	w->task = NULL;
+	wake_up_process(task);
+}
+
+/*
+ * We either wake a few readers or a single writer.
+ */
+static void __wake_many(struct block_lock *lock)
+{
+	struct waiter *w, *tmp;
+
+	BUG_ON(lock->count < 0);
+	list_for_each_entry_safe(w, tmp, &lock->waiters, list) {
+		if (lock->count >= MAX_HOLDERS)
+			return;
+
+		if (w->wants_write) {
+			if (lock->count > 0)
+				return; /* still read locked */
+
+			lock->count = -1;
+			__add_holder(lock, w->task);
+			__wake_waiter(w);
+			return;
+		}
+
+		lock->count++;
+		__add_holder(lock, w->task);
+		__wake_waiter(w);
+	}
+}
+
+static void bl_init(struct block_lock *lock)
+{
+	int i;
+
+	spin_lock_init(&lock->lock);
+	lock->count = 0;
+	INIT_LIST_HEAD(&lock->waiters);
+	for (i = 0; i < MAX_HOLDERS; i++)
+		lock->holders[i] = NULL;
+}
+
+static int __available_for_read(struct block_lock *lock)
+{
+	return lock->count >= 0 &&
+		lock->count < MAX_HOLDERS &&
+		list_empty(&lock->waiters);
+}
+
+static int bl_down_read(struct block_lock *lock)
+{
+	int r;
+	struct waiter w;
+
+	spin_lock(&lock->lock);
+	r = __check_holder(lock);
+	if (r) {
+		spin_unlock(&lock->lock);
+		return r;
+	}
+
+	if (__available_for_read(lock)) {
+		lock->count++;
+		__add_holder(lock, current);
+		spin_unlock(&lock->lock);
+		return 0;
+	}
+
+	get_task_struct(current);
+
+	w.task = current;
+	w.wants_write = 0;
+	list_add_tail(&w.list, &lock->waiters);
+	spin_unlock(&lock->lock);
+
+	__wait(&w);
+	put_task_struct(current);
+	return 0;
+}
+
+static int bl_down_read_nonblock(struct block_lock *lock)
+{
+	int r;
+
+	spin_lock(&lock->lock);
+	r = __check_holder(lock);
+	if (r)
+		goto out;
+
+	if (__available_for_read(lock)) {
+		lock->count++;
+		__add_holder(lock, current);
+		r = 0;
+	} else
+		r = -EWOULDBLOCK;
+
+out:
+	spin_unlock(&lock->lock);
+	return r;
+}
+
+static void bl_up_read(struct block_lock *lock)
+{
+	spin_lock(&lock->lock);
+	BUG_ON(lock->count <= 0);
+	__del_holder(lock, current);
+	--lock->count;
+	if (!list_empty(&lock->waiters))
+		__wake_many(lock);
+	spin_unlock(&lock->lock);
+}
+
+static int bl_down_write(struct block_lock *lock)
+{
+	int r;
+	struct waiter w;
+
+	spin_lock(&lock->lock);
+	r = __check_holder(lock);
+	if (r) {
+		spin_unlock(&lock->lock);
+		return r;
+	}
+
+	if (lock->count == 0 && list_empty(&lock->waiters)) {
+		lock->count = -1;
+		__add_holder(lock, current);
+		spin_unlock(&lock->lock);
+		return 0;
+	}
+
+	get_task_struct(current);
+	w.task = current;
+	w.wants_write = 1;
+
+	/*
+	 * Writers given priority. We know there's only one mutator in the
+	 * system, so ignoring the ordering reversal.
+	 */
+	list_add(&w.list, &lock->waiters);
+	spin_unlock(&lock->lock);
+
+	__wait(&w);
+	put_task_struct(current);
+
+	return 0;
+}
+
+static void bl_up_write(struct block_lock *lock)
+{
+	spin_lock(&lock->lock);
+	__del_holder(lock, current);
+	lock->count = 0;
+	if (!list_empty(&lock->waiters))
+		__wake_many(lock);
+	spin_unlock(&lock->lock);
+}
+
+static void report_recursive_bug(dm_block_t b, int r)
+{
+	if (r == -EINVAL)
+		DMERR("recursive acquisition of block %llu requested.",
+		      (unsigned long long) b);
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Block manager is currently implemented using dm-bufio.  struct
+ * dm_block_manager and struct dm_block map directly onto a couple of
+ * structs in the bufio interface.  I want to retain the freedom to move
+ * away from bufio in the future.  So these structs are just cast within
+ * this .c file, rather than making it through to the public interface.
+ */
+static struct dm_buffer *to_buffer(struct dm_block *b)
+{
+	return (struct dm_buffer *) b;
+}
+
+static struct dm_bufio_client *to_bufio(struct dm_block_manager *bm)
+{
+	return (struct dm_bufio_client *) bm;
+}
+
+dm_block_t dm_block_location(struct dm_block *b)
+{
+	return dm_bufio_get_block_number(to_buffer(b));
+}
+EXPORT_SYMBOL_GPL(dm_block_location);
+
+void *dm_block_data(struct dm_block *b)
+{
+	return dm_bufio_get_block_data(to_buffer(b));
+}
+EXPORT_SYMBOL_GPL(dm_block_data);
+
+struct buffer_aux {
+	struct dm_block_validator *validator;
+	struct block_lock lock;
+	int write_locked;
+};
+
+static void dm_block_manager_alloc_callback(struct dm_buffer *buf)
+{
+	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
+	aux->validator = NULL;
+	bl_init(&aux->lock);
+}
+
+static void dm_block_manager_write_callback(struct dm_buffer *buf)
+{
+	struct buffer_aux *aux = dm_bufio_get_aux_data(buf);
+	if (aux->validator) {
+		aux->validator->prepare_for_write(aux->validator, (struct dm_block *) buf,
+			 dm_bufio_get_block_size(dm_bufio_get_client(buf)));
+	}
+}
+
+/*----------------------------------------------------------------
+ * Public interface
+ *--------------------------------------------------------------*/
+struct dm_block_manager *dm_block_manager_create(struct block_device *bdev,
+						 unsigned block_size,
+						 unsigned cache_size,
+						 unsigned max_held_per_thread)
+{
+	return (struct dm_block_manager *)
+		dm_bufio_client_create(bdev, block_size, max_held_per_thread,
+				       sizeof(struct buffer_aux),
+				       dm_block_manager_alloc_callback,
+				       dm_block_manager_write_callback);
+}
+EXPORT_SYMBOL_GPL(dm_block_manager_create);
+
+void dm_block_manager_destroy(struct dm_block_manager *bm)
+{
+	return dm_bufio_client_destroy(to_bufio(bm));
+}
+EXPORT_SYMBOL_GPL(dm_block_manager_destroy);
+
+unsigned dm_bm_block_size(struct dm_block_manager *bm)
+{
+	return dm_bufio_get_block_size(to_bufio(bm));
+}
+EXPORT_SYMBOL_GPL(dm_bm_block_size);
+
+dm_block_t dm_bm_nr_blocks(struct dm_block_manager *bm)
+{
+	return dm_bufio_get_device_size(to_bufio(bm));
+}
+
+static int dm_bm_validate_buffer(struct dm_block_manager *bm,
+				 struct dm_buffer *buf,
+				 struct buffer_aux *aux,
+				 struct dm_block_validator *v)
+{
+	if (unlikely(!aux->validator)) {
+		int r;
+		if (!v)
+			return 0;
+		r = v->check(v, (struct dm_block *) buf, dm_bufio_get_block_size(to_bufio(bm)));
+		if (unlikely(r))
+			return r;
+		aux->validator = v;
+	} else {
+		if (unlikely(aux->validator != v)) {
+			DMERR("validator mismatch (old=%s vs new=%s) for block %llu",
+				aux->validator->name, v ? v->name : "NULL",
+				(unsigned long long)
+					dm_bufio_get_block_number(buf));
+			return -EINVAL;
+		}
+	}
+
+	return 0;
+}
+int dm_bm_read_lock(struct dm_block_manager *bm, dm_block_t b,
+		    struct dm_block_validator *v,
+		    struct dm_block **result)
+{
+	struct buffer_aux *aux;
+	void *p;
+	int r;
+
+	p = dm_bufio_read(to_bufio(bm), b, (struct dm_buffer **) result);
+	if (unlikely(IS_ERR(p)))
+		return PTR_ERR(p);
+
+	aux = dm_bufio_get_aux_data(to_buffer(*result));
+	r = bl_down_read(&aux->lock);
+	if (unlikely(r)) {
+		dm_bufio_release(to_buffer(*result));
+		report_recursive_bug(b, r);
+		return r;
+	}
+
+	aux->write_locked = 0;
+
+	r = dm_bm_validate_buffer(bm, to_buffer(*result), aux, v);
+	if (unlikely(r)) {
+		bl_up_read(&aux->lock);
+		dm_bufio_release(to_buffer(*result));
+		return r;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bm_read_lock);
+
+int dm_bm_write_lock(struct dm_block_manager *bm,
+		     dm_block_t b, struct dm_block_validator *v,
+		     struct dm_block **result)
+{
+	struct buffer_aux *aux;
+	void *p;
+	int r;
+
+	p = dm_bufio_read(to_bufio(bm), b, (struct dm_buffer **) result);
+	if (unlikely(IS_ERR(p)))
+		return PTR_ERR(p);
+
+	aux = dm_bufio_get_aux_data(to_buffer(*result));
+	r = bl_down_write(&aux->lock);
+	if (r) {
+		dm_bufio_release(to_buffer(*result));
+		report_recursive_bug(b, r);
+		return r;
+	}
+
+	aux->write_locked = 1;
+
+	r = dm_bm_validate_buffer(bm, to_buffer(*result), aux, v);
+	if (unlikely(r)) {
+		bl_up_write(&aux->lock);
+		dm_bufio_release(to_buffer(*result));
+		return r;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bm_write_lock);
+
+int dm_bm_read_try_lock(struct dm_block_manager *bm,
+			dm_block_t b, struct dm_block_validator *v,
+			struct dm_block **result)
+{
+	struct buffer_aux *aux;
+	void *p;
+	int r;
+
+	p = dm_bufio_get(to_bufio(bm), b, (struct dm_buffer **) result);
+	if (unlikely(IS_ERR(p)))
+		return PTR_ERR(p);
+	if (unlikely(!p))
+		return -EWOULDBLOCK;
+
+	aux = dm_bufio_get_aux_data(to_buffer(*result));
+	r = bl_down_read_nonblock(&aux->lock);
+	if (r < 0) {
+		dm_bufio_release(to_buffer(*result));
+		report_recursive_bug(b, r);
+		return r;
+	}
+	aux->write_locked = 0;
+
+	r = dm_bm_validate_buffer(bm, to_buffer(*result), aux, v);
+	if (unlikely(r)) {
+		bl_up_read(&aux->lock);
+		dm_bufio_release(to_buffer(*result));
+		return r;
+	}
+
+	return 0;
+}
+
+int dm_bm_write_lock_zero(struct dm_block_manager *bm,
+			  dm_block_t b, struct dm_block_validator *v,
+			  struct dm_block **result)
+{
+	int r;
+	struct buffer_aux *aux;
+	void *p;
+
+	p = dm_bufio_new(to_bufio(bm), b, (struct dm_buffer **) result);
+	if (unlikely(IS_ERR(p)))
+		return PTR_ERR(p);
+
+	memset(p, 0, dm_bm_block_size(bm));
+
+	aux = dm_bufio_get_aux_data(to_buffer(*result));
+	r = bl_down_write(&aux->lock);
+	if (r) {
+		dm_bufio_release(to_buffer(*result));
+		return r;
+	}
+
+	aux->write_locked = 1;
+	aux->validator = v;
+
+	return 0;
+}
+
+int dm_bm_unlock(struct dm_block *b)
+{
+	struct buffer_aux *aux;
+	aux = dm_bufio_get_aux_data(to_buffer(b));
+
+	if (aux->write_locked) {
+		dm_bufio_mark_buffer_dirty(to_buffer(b));
+		bl_up_write(&aux->lock);
+	} else
+		bl_up_read(&aux->lock);
+
+	dm_bufio_release(to_buffer(b));
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(dm_bm_unlock);
+
+int dm_bm_unlock_move(struct dm_block *b, dm_block_t n)
+{
+	struct buffer_aux *aux;
+
+	aux = dm_bufio_get_aux_data(to_buffer(b));
+
+	if (aux->write_locked) {
+		dm_bufio_mark_buffer_dirty(to_buffer(b));
+		bl_up_write(&aux->lock);
+	} else
+		bl_up_read(&aux->lock);
+
+	dm_bufio_release_move(to_buffer(b), n);
+	return 0;
+}
+
+int dm_bm_flush_and_unlock(struct dm_block_manager *bm,
+			   struct dm_block *superblock)
+{
+	int r;
+
+	r = dm_bufio_write_dirty_buffers(to_bufio(bm));
+	if (unlikely(r))
+		return r;
+	r = dm_bufio_issue_flush(to_bufio(bm));
+	if (unlikely(r))
+		return r;
+
+	dm_bm_unlock(superblock);
+
+	r = dm_bufio_write_dirty_buffers(to_bufio(bm));
+	if (unlikely(r))
+		return r;
+	r = dm_bufio_issue_flush(to_bufio(bm));
+	if (unlikely(r))
+		return r;
+
+	return 0;
+}
+
+u32 dm_bm_checksum(const void *data, size_t len, u32 init_xor)
+{
+	return crc32c(~(u32) 0, data, len) ^ init_xor;
+}
+EXPORT_SYMBOL_GPL(dm_bm_checksum);
+
+/*----------------------------------------------------------------*/
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
+MODULE_DESCRIPTION("Immutable metadata library for dm");
+
+/*----------------------------------------------------------------*/
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-block-manager.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-block-manager.h
new file mode 100644
index 0000000..924833d
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-block-manager.h
@@ -0,0 +1,123 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_BLOCK_MANAGER_H
+#define _LINUX_DM_BLOCK_MANAGER_H
+
+#include <linux/types.h>
+#include <linux/blkdev.h>
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Block number.
+ */
+typedef uint64_t dm_block_t;
+struct dm_block;
+
+dm_block_t dm_block_location(struct dm_block *b);
+void *dm_block_data(struct dm_block *b);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * @name should be a unique identifier for the block manager, no longer
+ * than 32 chars.
+ *
+ * @max_held_per_thread should be the maximum number of locks, read or
+ * write, that an individual thread holds at any one time.
+ */
+struct dm_block_manager;
+struct dm_block_manager *dm_block_manager_create(
+	struct block_device *bdev, unsigned block_size,
+	unsigned cache_size, unsigned max_held_per_thread);
+void dm_block_manager_destroy(struct dm_block_manager *bm);
+
+unsigned dm_bm_block_size(struct dm_block_manager *bm);
+dm_block_t dm_bm_nr_blocks(struct dm_block_manager *bm);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * The validator allows the caller to verify newly-read data and modify
+ * the data just before writing, e.g. to calculate checksums.  It's
+ * important to be consistent with your use of validators.  The only time
+ * you can change validators is if you call dm_bm_write_lock_zero.
+ */
+struct dm_block_validator {
+	const char *name;
+	void (*prepare_for_write)(struct dm_block_validator *v, struct dm_block *b, size_t block_size);
+
+	/*
+	 * Return 0 if the checksum is valid or < 0 on error.
+	 */
+	int (*check)(struct dm_block_validator *v, struct dm_block *b, size_t block_size);
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * You can have multiple concurrent readers or a single writer holding a
+ * block lock.
+ */
+
+/*
+ * dm_bm_lock() locks a block and returns through @result a pointer to
+ * memory that holds a copy of that block.  If you have write-locked the
+ * block then any changes you make to memory pointed to by @result will be
+ * written back to the disk sometime after dm_bm_unlock is called.
+ */
+int dm_bm_read_lock(struct dm_block_manager *bm, dm_block_t b,
+		    struct dm_block_validator *v,
+		    struct dm_block **result);
+
+int dm_bm_write_lock(struct dm_block_manager *bm, dm_block_t b,
+		     struct dm_block_validator *v,
+		     struct dm_block **result);
+
+/*
+ * The *_try_lock variants return -EWOULDBLOCK if the block isn't
+ * available immediately.
+ */
+int dm_bm_read_try_lock(struct dm_block_manager *bm, dm_block_t b,
+			struct dm_block_validator *v,
+			struct dm_block **result);
+
+/*
+ * Use dm_bm_write_lock_zero() when you know you're going to
+ * overwrite the block completely.  It saves a disk read.
+ */
+int dm_bm_write_lock_zero(struct dm_block_manager *bm, dm_block_t b,
+			  struct dm_block_validator *v,
+			  struct dm_block **result);
+
+int dm_bm_unlock(struct dm_block *b);
+
+/*
+ * An optimisation; we often want to copy a block's contents to a new
+ * block.  eg, as part of the shadowing operation.  It's far better for
+ * bufio to do this move behind the scenes than hold 2 locks and memcpy the
+ * data.
+ */
+int dm_bm_unlock_move(struct dm_block *b, dm_block_t n);
+
+/*
+ * It's a common idiom to have a superblock that should be committed last.
+ *
+ * @superblock should be write-locked on entry. It will be unlocked during
+ * this function.  All dirty blocks are guaranteed to be written and flushed
+ * before the superblock.
+ *
+ * This method always blocks.
+ */
+int dm_bm_flush_and_unlock(struct dm_block_manager *bm,
+			   struct dm_block *superblock);
+
+u32 dm_bm_checksum(const void *data, size_t len, u32 init_xor);
+
+/*----------------------------------------------------------------*/
+
+#endif	/* _LINUX_DM_BLOCK_MANAGER_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree-internal.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree-internal.h
new file mode 100644
index 0000000..accbb05
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree-internal.h
@@ -0,0 +1,134 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_BTREE_INTERNAL_H
+#define DM_BTREE_INTERNAL_H
+
+#include "dm-btree.h"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We'll need 2 accessor functions for n->csum and n->blocknr
+ * to support dm-btree-spine.c in that case.
+ */
+
+enum node_flags {
+	INTERNAL_NODE = 1,
+	LEAF_NODE = 1 << 1
+};
+
+/*
+ * Every btree node begins with this structure.  Make sure it's a multiple
+ * of 8-bytes in size, otherwise the 64bit keys will be mis-aligned.
+ */
+struct node_header {
+	__le32 csum;
+	__le32 flags;
+	__le64 blocknr; /* Block this node is supposed to live in. */
+
+	__le32 nr_entries;
+	__le32 max_entries;
+	__le32 value_size;
+	__le32 padding;
+} __packed;
+
+struct btree_node {
+	struct node_header header;
+	__le64 keys[0];
+} __packed;
+
+
+void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
+		  struct dm_btree_value_type *vt);
+
+int new_block(struct dm_btree_info *info, struct dm_block **result);
+int unlock_block(struct dm_btree_info *info, struct dm_block *b);
+
+/*
+ * Spines keep track of the rolling locks.  There are 2 variants, read-only
+ * and one that uses shadowing.  These are separate structs to allow the
+ * type checker to spot misuse, for example accidentally calling read_lock
+ * on a shadow spine.
+ */
+struct ro_spine {
+	struct dm_btree_info *info;
+
+	int count;
+	struct dm_block *nodes[2];
+};
+
+void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info);
+int exit_ro_spine(struct ro_spine *s);
+int ro_step(struct ro_spine *s, dm_block_t new_child);
+struct btree_node *ro_node(struct ro_spine *s);
+
+struct shadow_spine {
+	struct dm_btree_info *info;
+
+	int count;
+	struct dm_block *nodes[2];
+
+	dm_block_t root;
+};
+
+void init_shadow_spine(struct shadow_spine *s, struct dm_btree_info *info);
+int exit_shadow_spine(struct shadow_spine *s);
+
+int shadow_step(struct shadow_spine *s, dm_block_t b,
+		struct dm_btree_value_type *vt);
+
+/*
+ * The spine must have at least one entry before calling this.
+ */
+struct dm_block *shadow_current(struct shadow_spine *s);
+
+/*
+ * The spine must have at least two entries before calling this.
+ */
+struct dm_block *shadow_parent(struct shadow_spine *s);
+
+int shadow_has_parent(struct shadow_spine *s);
+
+int shadow_root(struct shadow_spine *s);
+
+/*
+ * Some inlines.
+ */
+static inline __le64 *key_ptr(struct btree_node *n, uint32_t index)
+{
+	return n->keys + index;
+}
+
+static inline void *value_base(struct btree_node *n)
+{
+	return &n->keys[le32_to_cpu(n->header.max_entries)];
+}
+
+static inline void *value_ptr(struct btree_node *n, uint32_t index)
+{
+	uint32_t value_size = le32_to_cpu(n->header.value_size);
+	return value_base(n) + (value_size * index);
+}
+
+/*
+ * Assumes the values are suitably-aligned and converts to core format.
+ */
+static inline uint64_t value64(struct btree_node *n, uint32_t index)
+{
+	__le64 *values_le = value_base(n);
+
+	return le64_to_cpu(values_le[index]);
+}
+
+/*
+ * Searching for a key within a single node.
+ */
+int lower_bound(struct btree_node *n, uint64_t key);
+
+extern struct dm_block_validator btree_node_validator;
+
+#endif	/* DM_BTREE_INTERNAL_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree-remove.c b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree-remove.c
new file mode 100644
index 0000000..b88757c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree-remove.c
@@ -0,0 +1,592 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-btree.h"
+#include "dm-btree-internal.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/export.h>
+
+/*
+ * Removing an entry from a btree
+ * ==============================
+ *
+ * A very important constraint for our btree is that no node, except the
+ * root, may have fewer than a certain number of entries.
+ * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
+ *
+ * Ensuring this is complicated by the way we want to only ever hold the
+ * locks on 2 nodes concurrently, and only change nodes in a top to bottom
+ * fashion.
+ *
+ * Each node may have a left or right sibling.  When decending the spine,
+ * if a node contains only MIN_ENTRIES then we try and increase this to at
+ * least MIN_ENTRIES + 1.  We do this in the following ways:
+ *
+ * [A] No siblings => this can only happen if the node is the root, in which
+ *     case we copy the childs contents over the root.
+ *
+ * [B] No left sibling
+ *     ==> rebalance(node, right sibling)
+ *
+ * [C] No right sibling
+ *     ==> rebalance(left sibling, node)
+ *
+ * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
+ *     ==> delete node adding it's contents to left and right
+ *
+ * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
+ *     ==> rebalance(left, node, right)
+ *
+ * After these operations it's possible that the our original node no
+ * longer contains the desired sub tree.  For this reason this rebalancing
+ * is performed on the children of the current node.  This also avoids
+ * having a special case for the root.
+ *
+ * Once this rebalancing has occurred we can then step into the child node
+ * for internal nodes.  Or delete the entry for leaf nodes.
+ */
+
+/*
+ * Some little utilities for moving node data around.
+ */
+static void node_shift(struct btree_node *n, int shift)
+{
+	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
+	uint32_t value_size = le32_to_cpu(n->header.value_size);
+
+	if (shift < 0) {
+		shift = -shift;
+		BUG_ON(shift > nr_entries);
+		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift));
+		memmove(key_ptr(n, 0),
+			key_ptr(n, shift),
+			(nr_entries - shift) * sizeof(__le64));
+		memmove(value_ptr(n, 0),
+			value_ptr(n, shift),
+			(nr_entries - shift) * value_size);
+	} else {
+		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
+		memmove(key_ptr(n, shift),
+			key_ptr(n, 0),
+			nr_entries * sizeof(__le64));
+		memmove(value_ptr(n, shift),
+			value_ptr(n, 0),
+			nr_entries * value_size);
+	}
+}
+
+static void node_copy(struct btree_node *left, struct btree_node *right, int shift)
+{
+	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+	uint32_t value_size = le32_to_cpu(left->header.value_size);
+	BUG_ON(value_size != le32_to_cpu(right->header.value_size));
+
+	if (shift < 0) {
+		shift = -shift;
+		BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
+		memcpy(key_ptr(left, nr_left),
+		       key_ptr(right, 0),
+		       shift * sizeof(__le64));
+		memcpy(value_ptr(left, nr_left),
+		       value_ptr(right, 0),
+		       shift * value_size);
+	} else {
+		BUG_ON(shift > le32_to_cpu(right->header.max_entries));
+		memcpy(key_ptr(right, 0),
+		       key_ptr(left, nr_left - shift),
+		       shift * sizeof(__le64));
+		memcpy(value_ptr(right, 0),
+		       value_ptr(left, nr_left - shift),
+		       shift * value_size);
+	}
+}
+
+/*
+ * Delete a specific entry from a leaf node.
+ */
+static void delete_at(struct btree_node *n, unsigned index)
+{
+	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
+	unsigned nr_to_copy = nr_entries - (index + 1);
+	uint32_t value_size = le32_to_cpu(n->header.value_size);
+	BUG_ON(index >= nr_entries);
+
+	if (nr_to_copy) {
+		memmove(key_ptr(n, index),
+			key_ptr(n, index + 1),
+			nr_to_copy * sizeof(__le64));
+
+		memmove(value_ptr(n, index),
+			value_ptr(n, index + 1),
+			nr_to_copy * value_size);
+	}
+
+	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
+}
+
+static unsigned merge_threshold(struct btree_node *n)
+{
+	return le32_to_cpu(n->header.max_entries) / 3;
+}
+
+struct child {
+	unsigned index;
+	struct dm_block *block;
+	struct btree_node *n;
+};
+
+static int init_child(struct dm_btree_info *info, struct dm_btree_value_type *vt,
+		      struct btree_node *parent,
+		      unsigned index, struct child *result)
+{
+	int r, inc;
+	dm_block_t root;
+
+	result->index = index;
+	root = value64(parent, index);
+
+	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
+			       &result->block, &inc);
+	if (r)
+		return r;
+
+	result->n = dm_block_data(result->block);
+
+	if (inc)
+		inc_children(info->tm, result->n, vt);
+
+	*((__le64 *) value_ptr(parent, index)) =
+		cpu_to_le64(dm_block_location(result->block));
+
+	return 0;
+}
+
+static int exit_child(struct dm_btree_info *info, struct child *c)
+{
+	return dm_tm_unlock(info->tm, c->block);
+}
+
+static void shift(struct btree_node *left, struct btree_node *right, int count)
+{
+	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
+	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
+	uint32_t r_max_entries = le32_to_cpu(right->header.max_entries);
+
+	BUG_ON(max_entries != r_max_entries);
+	BUG_ON(nr_left - count > max_entries);
+	BUG_ON(nr_right + count > max_entries);
+
+	if (!count)
+		return;
+
+	if (count > 0) {
+		node_shift(right, count);
+		node_copy(left, right, count);
+	} else {
+		node_copy(left, right, count);
+		node_shift(right, count);
+	}
+
+	left->header.nr_entries = cpu_to_le32(nr_left - count);
+	right->header.nr_entries = cpu_to_le32(nr_right + count);
+}
+
+static void __rebalance2(struct dm_btree_info *info, struct btree_node *parent,
+			 struct child *l, struct child *r)
+{
+	struct btree_node *left = l->n;
+	struct btree_node *right = r->n;
+	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
+	unsigned threshold = 2 * merge_threshold(left) + 1;
+
+	if (nr_left + nr_right < threshold) {
+		/*
+		 * Merge
+		 */
+		node_copy(left, right, -nr_right);
+		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
+		delete_at(parent, r->index);
+
+		/*
+		 * We need to decrement the right block, but not it's
+		 * children, since they're still referenced by left.
+		 */
+		dm_tm_dec(info->tm, dm_block_location(r->block));
+	} else {
+		/*
+		 * Rebalance.
+		 */
+		unsigned target_left = (nr_left + nr_right) / 2;
+		shift(left, right, nr_left - target_left);
+		*key_ptr(parent, r->index) = right->keys[0];
+	}
+}
+
+static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
+		      struct dm_btree_value_type *vt, unsigned left_index)
+{
+	int r;
+	struct btree_node *parent;
+	struct child left, right;
+
+	parent = dm_block_data(shadow_current(s));
+
+	r = init_child(info, vt, parent, left_index, &left);
+	if (r)
+		return r;
+
+	r = init_child(info, vt, parent, left_index + 1, &right);
+	if (r) {
+		exit_child(info, &left);
+		return r;
+	}
+
+	__rebalance2(info, parent, &left, &right);
+
+	r = exit_child(info, &left);
+	if (r) {
+		exit_child(info, &right);
+		return r;
+	}
+
+	return exit_child(info, &right);
+}
+
+/*
+ * We dump as many entries from center as possible into left, then the rest
+ * in right, then rebalance2.  This wastes some cpu, but I want something
+ * simple atm.
+ */
+static void delete_center_node(struct dm_btree_info *info, struct btree_node *parent,
+			       struct child *l, struct child *c, struct child *r,
+			       struct btree_node *left, struct btree_node *center, struct btree_node *right,
+			       uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
+{
+	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
+	unsigned shift = min(max_entries - nr_left, nr_center);
+
+	BUG_ON(nr_left + shift > max_entries);
+	node_copy(left, center, -shift);
+	left->header.nr_entries = cpu_to_le32(nr_left + shift);
+
+	if (shift != nr_center) {
+		shift = nr_center - shift;
+		BUG_ON((nr_right + shift) > max_entries);
+		node_shift(right, shift);
+		node_copy(center, right, shift);
+		right->header.nr_entries = cpu_to_le32(nr_right + shift);
+	}
+	*key_ptr(parent, r->index) = right->keys[0];
+
+	delete_at(parent, c->index);
+	r->index--;
+
+	dm_tm_dec(info->tm, dm_block_location(c->block));
+	__rebalance2(info, parent, l, r);
+}
+
+/*
+ * Redistributes entries among 3 sibling nodes.
+ */
+static void redistribute3(struct dm_btree_info *info, struct btree_node *parent,
+			  struct child *l, struct child *c, struct child *r,
+			  struct btree_node *left, struct btree_node *center, struct btree_node *right,
+			  uint32_t nr_left, uint32_t nr_center, uint32_t nr_right)
+{
+	int s;
+	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
+	unsigned target = (nr_left + nr_center + nr_right) / 3;
+	BUG_ON(target > max_entries);
+
+	if (nr_left < nr_right) {
+		s = nr_left - target;
+
+		if (s < 0 && nr_center < -s) {
+			/* not enough in central node */
+			shift(left, center, nr_center);
+			s = nr_center - target;
+			shift(left, right, s);
+			nr_right += s;
+		} else
+			shift(left, center, s);
+
+		shift(center, right, target - nr_right);
+
+	} else {
+		s = target - nr_right;
+		if (s > 0 && nr_center < s) {
+			/* not enough in central node */
+			shift(center, right, nr_center);
+			s = target - nr_center;
+			shift(left, right, s);
+			nr_left -= s;
+		} else
+			shift(center, right, s);
+
+		shift(left, center, nr_left - target);
+	}
+
+	*key_ptr(parent, c->index) = center->keys[0];
+	*key_ptr(parent, r->index) = right->keys[0];
+}
+
+static void __rebalance3(struct dm_btree_info *info, struct btree_node *parent,
+			 struct child *l, struct child *c, struct child *r)
+{
+	struct btree_node *left = l->n;
+	struct btree_node *center = c->n;
+	struct btree_node *right = r->n;
+
+	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
+	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
+
+	unsigned threshold = merge_threshold(left) * 4 + 1;
+
+	BUG_ON(left->header.max_entries != center->header.max_entries);
+	BUG_ON(center->header.max_entries != right->header.max_entries);
+
+	if ((nr_left + nr_center + nr_right) < threshold)
+		delete_center_node(info, parent, l, c, r, left, center, right,
+				   nr_left, nr_center, nr_right);
+	else
+		redistribute3(info, parent, l, c, r, left, center, right,
+			      nr_left, nr_center, nr_right);
+}
+
+static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
+		      struct dm_btree_value_type *vt, unsigned left_index)
+{
+	int r;
+	struct btree_node *parent = dm_block_data(shadow_current(s));
+	struct child left, center, right;
+
+	/*
+	 * FIXME: fill out an array?
+	 */
+	r = init_child(info, vt, parent, left_index, &left);
+	if (r)
+		return r;
+
+	r = init_child(info, vt, parent, left_index + 1, &center);
+	if (r) {
+		exit_child(info, &left);
+		return r;
+	}
+
+	r = init_child(info, vt, parent, left_index + 2, &right);
+	if (r) {
+		exit_child(info, &left);
+		exit_child(info, &center);
+		return r;
+	}
+
+	__rebalance3(info, parent, &left, &center, &right);
+
+	r = exit_child(info, &left);
+	if (r) {
+		exit_child(info, &center);
+		exit_child(info, &right);
+		return r;
+	}
+
+	r = exit_child(info, &center);
+	if (r) {
+		exit_child(info, &right);
+		return r;
+	}
+
+	r = exit_child(info, &right);
+	if (r)
+		return r;
+
+	return 0;
+}
+
+static int get_nr_entries(struct dm_transaction_manager *tm,
+			  dm_block_t b, uint32_t *result)
+{
+	int r;
+	struct dm_block *block;
+	struct btree_node *n;
+
+	r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
+	if (r)
+		return r;
+
+	n = dm_block_data(block);
+	*result = le32_to_cpu(n->header.nr_entries);
+
+	return dm_tm_unlock(tm, block);
+}
+
+static int rebalance_children(struct shadow_spine *s,
+			      struct dm_btree_info *info,
+			      struct dm_btree_value_type *vt, uint64_t key)
+{
+	int i, r, has_left_sibling, has_right_sibling;
+	uint32_t child_entries;
+	struct btree_node *n;
+
+	n = dm_block_data(shadow_current(s));
+
+	if (le32_to_cpu(n->header.nr_entries) == 1) {
+		struct dm_block *child;
+		dm_block_t b = value64(n, 0);
+
+		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
+		if (r)
+			return r;
+
+		memcpy(n, dm_block_data(child),
+		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
+		r = dm_tm_unlock(info->tm, child);
+		if (r)
+			return r;
+
+		dm_tm_dec(info->tm, dm_block_location(child));
+		return 0;
+	}
+
+	i = lower_bound(n, key);
+	if (i < 0)
+		return -ENODATA;
+
+	r = get_nr_entries(info->tm, value64(n, i), &child_entries);
+	if (r)
+		return r;
+
+	has_left_sibling = i > 0;
+	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
+
+	if (!has_left_sibling)
+		r = rebalance2(s, info, vt, i);
+
+	else if (!has_right_sibling)
+		r = rebalance2(s, info, vt, i - 1);
+
+	else
+		r = rebalance3(s, info, vt, i - 1);
+
+	return r;
+}
+
+static int do_leaf(struct btree_node *n, uint64_t key, unsigned *index)
+{
+	int i = lower_bound(n, key);
+
+	if ((i < 0) ||
+	    (i >= le32_to_cpu(n->header.nr_entries)) ||
+	    (le64_to_cpu(n->keys[i]) != key))
+		return -ENODATA;
+
+	*index = i;
+
+	return 0;
+}
+
+/*
+ * Prepares for removal from one level of the hierarchy.  The caller must
+ * call delete_at() to remove the entry at index.
+ */
+static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
+		      struct dm_btree_value_type *vt, dm_block_t root,
+		      uint64_t key, unsigned *index)
+{
+	int i = *index, r;
+	struct btree_node *n;
+
+	for (;;) {
+		r = shadow_step(s, root, vt);
+		if (r < 0)
+			break;
+
+		/*
+		 * We have to patch up the parent node, ugly, but I don't
+		 * see a way to do this automatically as part of the spine
+		 * op.
+		 */
+		if (shadow_has_parent(s)) {
+			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
+			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i),
+			       &location, sizeof(__le64));
+		}
+
+		n = dm_block_data(shadow_current(s));
+
+		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
+			return do_leaf(n, key, index);
+
+		r = rebalance_children(s, info, vt, key);
+		if (r)
+			break;
+
+		n = dm_block_data(shadow_current(s));
+		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
+			return do_leaf(n, key, index);
+
+		i = lower_bound(n, key);
+
+		/*
+		 * We know the key is present, or else
+		 * rebalance_children would have returned
+		 * -ENODATA
+		 */
+		root = value64(n, i);
+	}
+
+	return r;
+}
+
+static struct dm_btree_value_type le64_type = {
+	.context = NULL,
+	.size = sizeof(__le64),
+	.inc = NULL,
+	.dec = NULL,
+	.equal = NULL
+};
+
+int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
+		    uint64_t *keys, dm_block_t *new_root)
+{
+	unsigned level, last_level = info->levels - 1;
+	int index = 0, r = 0;
+	struct shadow_spine spine;
+	struct btree_node *n;
+
+	init_shadow_spine(&spine, info);
+	for (level = 0; level < info->levels; level++) {
+		r = remove_raw(&spine, info,
+			       (level == last_level ?
+				&info->value_type : &le64_type),
+			       root, keys[level], (unsigned *)&index);
+		if (r < 0)
+			break;
+
+		n = dm_block_data(shadow_current(&spine));
+		if (level != last_level) {
+			root = value64(n, index);
+			continue;
+		}
+
+		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
+
+		if (info->value_type.dec)
+			info->value_type.dec(info->value_type.context,
+					     value_ptr(n, index));
+
+		delete_at(n, index);
+	}
+
+	*new_root = shadow_root(&spine);
+	exit_shadow_spine(&spine);
+
+	return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_remove);
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree-spine.c b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree-spine.c
new file mode 100644
index 0000000..2f0805c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree-spine.c
@@ -0,0 +1,244 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-btree-internal.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "btree spine"
+
+/*----------------------------------------------------------------*/
+
+#define BTREE_CSUM_XOR 121107
+
+static int node_check(struct dm_block_validator *v,
+		      struct dm_block *b,
+		      size_t block_size);
+
+static void node_prepare_for_write(struct dm_block_validator *v,
+				   struct dm_block *b,
+				   size_t block_size)
+{
+	struct btree_node *n = dm_block_data(b);
+	struct node_header *h = &n->header;
+
+	h->blocknr = cpu_to_le64(dm_block_location(b));
+	h->csum = cpu_to_le32(dm_bm_checksum(&h->flags,
+					     block_size - sizeof(__le32),
+					     BTREE_CSUM_XOR));
+
+	BUG_ON(node_check(v, b, 4096));
+}
+
+static int node_check(struct dm_block_validator *v,
+		      struct dm_block *b,
+		      size_t block_size)
+{
+	struct btree_node *n = dm_block_data(b);
+	struct node_header *h = &n->header;
+	size_t value_size;
+	__le32 csum_disk;
+	uint32_t flags;
+
+	if (dm_block_location(b) != le64_to_cpu(h->blocknr)) {
+		DMERR("node_check failed blocknr %llu wanted %llu",
+		      le64_to_cpu(h->blocknr), dm_block_location(b));
+		return -ENOTBLK;
+	}
+
+	csum_disk = cpu_to_le32(dm_bm_checksum(&h->flags,
+					       block_size - sizeof(__le32),
+					       BTREE_CSUM_XOR));
+	if (csum_disk != h->csum) {
+		DMERR("node_check failed csum %u wanted %u",
+		      le32_to_cpu(csum_disk), le32_to_cpu(h->csum));
+		return -EILSEQ;
+	}
+
+	value_size = le32_to_cpu(h->value_size);
+
+	if (sizeof(struct node_header) +
+	    (sizeof(__le64) + value_size) * le32_to_cpu(h->max_entries) > block_size) {
+		DMERR("node_check failed: max_entries too large");
+		return -EILSEQ;
+	}
+
+	if (le32_to_cpu(h->nr_entries) > le32_to_cpu(h->max_entries)) {
+		DMERR("node_check failed, too many entries");
+		return -EILSEQ;
+	}
+
+	/*
+	 * The node must be either INTERNAL or LEAF.
+	 */
+	flags = le32_to_cpu(h->flags);
+	if (!(flags & INTERNAL_NODE) && !(flags & LEAF_NODE)) {
+		DMERR("node_check failed, node is neither INTERNAL or LEAF");
+		return -EILSEQ;
+	}
+
+	return 0;
+}
+
+struct dm_block_validator btree_node_validator = {
+	.name = "btree_node",
+	.prepare_for_write = node_prepare_for_write,
+	.check = node_check
+};
+
+/*----------------------------------------------------------------*/
+
+static int bn_read_lock(struct dm_btree_info *info, dm_block_t b,
+		 struct dm_block **result)
+{
+	return dm_tm_read_lock(info->tm, b, &btree_node_validator, result);
+}
+
+static int bn_shadow(struct dm_btree_info *info, dm_block_t orig,
+	      struct dm_btree_value_type *vt,
+	      struct dm_block **result)
+{
+	int r, inc;
+
+	r = dm_tm_shadow_block(info->tm, orig, &btree_node_validator,
+			       result, &inc);
+	if (!r && inc)
+		inc_children(info->tm, dm_block_data(*result), vt);
+
+	return r;
+}
+
+int new_block(struct dm_btree_info *info, struct dm_block **result)
+{
+	return dm_tm_new_block(info->tm, &btree_node_validator, result);
+}
+
+int unlock_block(struct dm_btree_info *info, struct dm_block *b)
+{
+	return dm_tm_unlock(info->tm, b);
+}
+
+/*----------------------------------------------------------------*/
+
+void init_ro_spine(struct ro_spine *s, struct dm_btree_info *info)
+{
+	s->info = info;
+	s->count = 0;
+	s->nodes[0] = NULL;
+	s->nodes[1] = NULL;
+}
+
+int exit_ro_spine(struct ro_spine *s)
+{
+	int r = 0, i;
+
+	for (i = 0; i < s->count; i++) {
+		int r2 = unlock_block(s->info, s->nodes[i]);
+		if (r2 < 0)
+			r = r2;
+	}
+
+	return r;
+}
+
+int ro_step(struct ro_spine *s, dm_block_t new_child)
+{
+	int r;
+
+	if (s->count == 2) {
+		r = unlock_block(s->info, s->nodes[0]);
+		if (r < 0)
+			return r;
+		s->nodes[0] = s->nodes[1];
+		s->count--;
+	}
+
+	r = bn_read_lock(s->info, new_child, s->nodes + s->count);
+	if (!r)
+		s->count++;
+
+	return r;
+}
+
+struct btree_node *ro_node(struct ro_spine *s)
+{
+	struct dm_block *block;
+
+	BUG_ON(!s->count);
+	block = s->nodes[s->count - 1];
+
+	return dm_block_data(block);
+}
+
+/*----------------------------------------------------------------*/
+
+void init_shadow_spine(struct shadow_spine *s, struct dm_btree_info *info)
+{
+	s->info = info;
+	s->count = 0;
+}
+
+int exit_shadow_spine(struct shadow_spine *s)
+{
+	int r = 0, i;
+
+	for (i = 0; i < s->count; i++) {
+		int r2 = unlock_block(s->info, s->nodes[i]);
+		if (r2 < 0)
+			r = r2;
+	}
+
+	return r;
+}
+
+int shadow_step(struct shadow_spine *s, dm_block_t b,
+		struct dm_btree_value_type *vt)
+{
+	int r;
+
+	if (s->count == 2) {
+		r = unlock_block(s->info, s->nodes[0]);
+		if (r < 0)
+			return r;
+		s->nodes[0] = s->nodes[1];
+		s->count--;
+	}
+
+	r = bn_shadow(s->info, b, vt, s->nodes + s->count);
+	if (!r) {
+		if (!s->count)
+			s->root = dm_block_location(s->nodes[0]);
+
+		s->count++;
+	}
+
+	return r;
+}
+
+struct dm_block *shadow_current(struct shadow_spine *s)
+{
+	BUG_ON(!s->count);
+
+	return s->nodes[s->count - 1];
+}
+
+struct dm_block *shadow_parent(struct shadow_spine *s)
+{
+	BUG_ON(s->count != 2);
+
+	return s->count == 2 ? s->nodes[0] : NULL;
+}
+
+int shadow_has_parent(struct shadow_spine *s)
+{
+	return s->count >= 2;
+}
+
+int shadow_root(struct shadow_spine *s)
+{
+	return s->root;
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree.c b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree.c
new file mode 100644
index 0000000..371f3d4
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree.c
@@ -0,0 +1,804 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-btree-internal.h"
+#include "dm-space-map.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/export.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "btree"
+
+/*----------------------------------------------------------------
+ * Array manipulation
+ *--------------------------------------------------------------*/
+static void memcpy_disk(void *dest, const void *src, size_t len)
+	__dm_written_to_disk(src)
+{
+	memcpy(dest, src, len);
+	__dm_unbless_for_disk(src);
+}
+
+static void array_insert(void *base, size_t elt_size, unsigned nr_elts,
+			 unsigned index, void *elt)
+	__dm_written_to_disk(elt)
+{
+	if (index < nr_elts)
+		memmove(base + (elt_size * (index + 1)),
+			base + (elt_size * index),
+			(nr_elts - index) * elt_size);
+
+	memcpy_disk(base + (elt_size * index), elt, elt_size);
+}
+
+/*----------------------------------------------------------------*/
+
+/* makes the assumption that no two keys are the same. */
+static int bsearch(struct btree_node *n, uint64_t key, int want_hi)
+{
+	int lo = -1, hi = le32_to_cpu(n->header.nr_entries);
+
+	while (hi - lo > 1) {
+		int mid = lo + ((hi - lo) / 2);
+		uint64_t mid_key = le64_to_cpu(n->keys[mid]);
+
+		if (mid_key == key)
+			return mid;
+
+		if (mid_key < key)
+			lo = mid;
+		else
+			hi = mid;
+	}
+
+	return want_hi ? hi : lo;
+}
+
+int lower_bound(struct btree_node *n, uint64_t key)
+{
+	return bsearch(n, key, 0);
+}
+
+void inc_children(struct dm_transaction_manager *tm, struct btree_node *n,
+		  struct dm_btree_value_type *vt)
+{
+	unsigned i;
+	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
+
+	if (le32_to_cpu(n->header.flags) & INTERNAL_NODE)
+		for (i = 0; i < nr_entries; i++)
+			dm_tm_inc(tm, value64(n, i));
+	else if (vt->inc)
+		for (i = 0; i < nr_entries; i++)
+			vt->inc(vt->context, value_ptr(n, i));
+}
+
+static int insert_at(size_t value_size, struct btree_node *node, unsigned index,
+		      uint64_t key, void *value)
+		      __dm_written_to_disk(value)
+{
+	uint32_t nr_entries = le32_to_cpu(node->header.nr_entries);
+	__le64 key_le = cpu_to_le64(key);
+
+	if (index > nr_entries ||
+	    index >= le32_to_cpu(node->header.max_entries)) {
+		DMERR("too many entries in btree node for insert");
+		__dm_unbless_for_disk(value);
+		return -ENOMEM;
+	}
+
+	__dm_bless_for_disk(&key_le);
+
+	array_insert(node->keys, sizeof(*node->keys), nr_entries, index, &key_le);
+	array_insert(value_base(node), value_size, nr_entries, index, value);
+	node->header.nr_entries = cpu_to_le32(nr_entries + 1);
+
+	return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+/*
+ * We want 3n entries (for some n).  This works more nicely for repeated
+ * insert remove loops than (2n + 1).
+ */
+static uint32_t calc_max_entries(size_t value_size, size_t block_size)
+{
+	uint32_t total, n;
+	size_t elt_size = sizeof(uint64_t) + value_size; /* key + value */
+
+	block_size -= sizeof(struct node_header);
+	total = block_size / elt_size;
+	n = total / 3;		/* rounds down */
+
+	return 3 * n;
+}
+
+int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root)
+{
+	int r;
+	struct dm_block *b;
+	struct btree_node *n;
+	size_t block_size;
+	uint32_t max_entries;
+
+	r = new_block(info, &b);
+	if (r < 0)
+		return r;
+
+	block_size = dm_bm_block_size(dm_tm_get_bm(info->tm));
+	max_entries = calc_max_entries(info->value_type.size, block_size);
+
+	n = dm_block_data(b);
+	memset(n, 0, block_size);
+	n->header.flags = cpu_to_le32(LEAF_NODE);
+	n->header.nr_entries = cpu_to_le32(0);
+	n->header.max_entries = cpu_to_le32(max_entries);
+	n->header.value_size = cpu_to_le32(info->value_type.size);
+
+	*root = dm_block_location(b);
+	return unlock_block(info, b);
+}
+EXPORT_SYMBOL_GPL(dm_btree_empty);
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Deletion uses a recursive algorithm, since we have limited stack space
+ * we explicitly manage our own stack on the heap.
+ */
+#define MAX_SPINE_DEPTH 64
+struct frame {
+	struct dm_block *b;
+	struct btree_node *n;
+	unsigned level;
+	unsigned nr_children;
+	unsigned current_child;
+};
+
+struct del_stack {
+	struct dm_transaction_manager *tm;
+	int top;
+	struct frame spine[MAX_SPINE_DEPTH];
+};
+
+static int top_frame(struct del_stack *s, struct frame **f)
+{
+	if (s->top < 0) {
+		DMERR("btree deletion stack empty");
+		return -EINVAL;
+	}
+
+	*f = s->spine + s->top;
+
+	return 0;
+}
+
+static int unprocessed_frames(struct del_stack *s)
+{
+	return s->top >= 0;
+}
+
+static int push_frame(struct del_stack *s, dm_block_t b, unsigned level)
+{
+	int r;
+	uint32_t ref_count;
+
+	if (s->top >= MAX_SPINE_DEPTH - 1) {
+		DMERR("btree deletion stack out of memory");
+		return -ENOMEM;
+	}
+
+	r = dm_tm_ref(s->tm, b, &ref_count);
+	if (r)
+		return r;
+
+	if (ref_count > 1)
+		/*
+		 * This is a shared node, so we can just decrement it's
+		 * reference counter and leave the children.
+		 */
+		dm_tm_dec(s->tm, b);
+
+	else {
+		struct frame *f = s->spine + ++s->top;
+
+		r = dm_tm_read_lock(s->tm, b, &btree_node_validator, &f->b);
+		if (r) {
+			s->top--;
+			return r;
+		}
+
+		f->n = dm_block_data(f->b);
+		f->level = level;
+		f->nr_children = le32_to_cpu(f->n->header.nr_entries);
+		f->current_child = 0;
+	}
+
+	return 0;
+}
+
+static void pop_frame(struct del_stack *s)
+{
+	struct frame *f = s->spine + s->top--;
+
+	dm_tm_dec(s->tm, dm_block_location(f->b));
+	dm_tm_unlock(s->tm, f->b);
+}
+
+int dm_btree_del(struct dm_btree_info *info, dm_block_t root)
+{
+	int r;
+	struct del_stack *s;
+
+	s = kmalloc(sizeof(*s), GFP_KERNEL);
+	if (!s)
+		return -ENOMEM;
+	s->tm = info->tm;
+	s->top = -1;
+
+	r = push_frame(s, root, 1);
+	if (r)
+		goto out;
+
+	while (unprocessed_frames(s)) {
+		uint32_t flags;
+		struct frame *f;
+		dm_block_t b;
+
+		r = top_frame(s, &f);
+		if (r)
+			goto out;
+
+		if (f->current_child >= f->nr_children) {
+			pop_frame(s);
+			continue;
+		}
+
+		flags = le32_to_cpu(f->n->header.flags);
+		if (flags & INTERNAL_NODE) {
+			b = value64(f->n, f->current_child);
+			f->current_child++;
+			r = push_frame(s, b, f->level);
+			if (r)
+				goto out;
+
+		} else if (f->level != (info->levels - 1)) {
+			b = value64(f->n, f->current_child);
+			f->current_child++;
+			r = push_frame(s, b, f->level + 1);
+			if (r)
+				goto out;
+
+		} else {
+			if (info->value_type.dec) {
+				unsigned i;
+
+				for (i = 0; i < f->nr_children; i++)
+					info->value_type.dec(info->value_type.context,
+							     value_ptr(f->n, i));
+			}
+			f->current_child = f->nr_children;
+		}
+	}
+
+out:
+	kfree(s);
+	return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_del);
+
+/*----------------------------------------------------------------*/
+
+static int btree_lookup_raw(struct ro_spine *s, dm_block_t block, uint64_t key,
+			    int (*search_fn)(struct btree_node *, uint64_t),
+			    uint64_t *result_key, void *v, size_t value_size)
+{
+	int i, r;
+	uint32_t flags, nr_entries;
+
+	do {
+		r = ro_step(s, block);
+		if (r < 0)
+			return r;
+
+		i = search_fn(ro_node(s), key);
+
+		flags = le32_to_cpu(ro_node(s)->header.flags);
+		nr_entries = le32_to_cpu(ro_node(s)->header.nr_entries);
+		if (i < 0 || i >= nr_entries)
+			return -ENODATA;
+
+		if (flags & INTERNAL_NODE)
+			block = value64(ro_node(s), i);
+
+	} while (!(flags & LEAF_NODE));
+
+	*result_key = le64_to_cpu(ro_node(s)->keys[i]);
+	memcpy(v, value_ptr(ro_node(s), i), value_size);
+
+	return 0;
+}
+
+int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
+		    uint64_t *keys, void *value_le)
+{
+	unsigned level, last_level = info->levels - 1;
+	int r = -ENODATA;
+	uint64_t rkey;
+	__le64 internal_value_le;
+	struct ro_spine spine;
+
+	init_ro_spine(&spine, info);
+	for (level = 0; level < info->levels; level++) {
+		size_t size;
+		void *value_p;
+
+		if (level == last_level) {
+			value_p = value_le;
+			size = info->value_type.size;
+
+		} else {
+			value_p = &internal_value_le;
+			size = sizeof(uint64_t);
+		}
+
+		r = btree_lookup_raw(&spine, root, keys[level],
+				     lower_bound, &rkey,
+				     value_p, size);
+
+		if (!r) {
+			if (rkey != keys[level]) {
+				exit_ro_spine(&spine);
+				return -ENODATA;
+			}
+		} else {
+			exit_ro_spine(&spine);
+			return r;
+		}
+
+		root = le64_to_cpu(internal_value_le);
+	}
+	exit_ro_spine(&spine);
+
+	return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_lookup);
+
+/*
+ * Splits a node by creating a sibling node and shifting half the nodes
+ * contents across.  Assumes there is a parent node, and it has room for
+ * another child.
+ *
+ * Before:
+ *	  +--------+
+ *	  | Parent |
+ *	  +--------+
+ *	     |
+ *	     v
+ *	+----------+
+ *	| A ++++++ |
+ *	+----------+
+ *
+ *
+ * After:
+ *		+--------+
+ *		| Parent |
+ *		+--------+
+ *		  |	|
+ *		  v	+------+
+ *	    +---------+	       |
+ *	    | A* +++  |	       v
+ *	    +---------+	  +-------+
+ *			  | B +++ |
+ *			  +-------+
+ *
+ * Where A* is a shadow of A.
+ */
+static int btree_split_sibling(struct shadow_spine *s, dm_block_t root,
+			       unsigned parent_index, uint64_t key)
+{
+	int r;
+	size_t size;
+	unsigned nr_left, nr_right;
+	struct dm_block *left, *right, *parent;
+	struct btree_node *ln, *rn, *pn;
+	__le64 location;
+
+	left = shadow_current(s);
+
+	r = new_block(s->info, &right);
+	if (r < 0)
+		return r;
+
+	ln = dm_block_data(left);
+	rn = dm_block_data(right);
+
+	nr_left = le32_to_cpu(ln->header.nr_entries) / 2;
+	nr_right = le32_to_cpu(ln->header.nr_entries) - nr_left;
+
+	ln->header.nr_entries = cpu_to_le32(nr_left);
+
+	rn->header.flags = ln->header.flags;
+	rn->header.nr_entries = cpu_to_le32(nr_right);
+	rn->header.max_entries = ln->header.max_entries;
+	rn->header.value_size = ln->header.value_size;
+	memcpy(rn->keys, ln->keys + nr_left, nr_right * sizeof(rn->keys[0]));
+
+	size = le32_to_cpu(ln->header.flags) & INTERNAL_NODE ?
+		sizeof(uint64_t) : s->info->value_type.size;
+	memcpy(value_ptr(rn, 0), value_ptr(ln, nr_left),
+	       size * nr_right);
+
+	/*
+	 * Patch up the parent
+	 */
+	parent = shadow_parent(s);
+
+	pn = dm_block_data(parent);
+	location = cpu_to_le64(dm_block_location(left));
+	__dm_bless_for_disk(&location);
+	memcpy_disk(value_ptr(pn, parent_index),
+		    &location, sizeof(__le64));
+
+	location = cpu_to_le64(dm_block_location(right));
+	__dm_bless_for_disk(&location);
+
+	r = insert_at(sizeof(__le64), pn, parent_index + 1,
+		      le64_to_cpu(rn->keys[0]), &location);
+	if (r)
+		return r;
+
+	if (key < le64_to_cpu(rn->keys[0])) {
+		unlock_block(s->info, right);
+		s->nodes[1] = left;
+	} else {
+		unlock_block(s->info, left);
+		s->nodes[1] = right;
+	}
+
+	return 0;
+}
+
+/*
+ * Splits a node by creating two new children beneath the given node.
+ *
+ * Before:
+ *	  +----------+
+ *	  | A ++++++ |
+ *	  +----------+
+ *
+ *
+ * After:
+ *	+------------+
+ *	| A (shadow) |
+ *	+------------+
+ *	    |	|
+ *   +------+	+----+
+ *   |		     |
+ *   v		     v
+ * +-------+	 +-------+
+ * | B +++ |	 | C +++ |
+ * +-------+	 +-------+
+ */
+static int btree_split_beneath(struct shadow_spine *s, uint64_t key)
+{
+	int r;
+	size_t size;
+	unsigned nr_left, nr_right;
+	struct dm_block *left, *right, *new_parent;
+	struct btree_node *pn, *ln, *rn;
+	__le64 val;
+
+	new_parent = shadow_current(s);
+
+	r = new_block(s->info, &left);
+	if (r < 0)
+		return r;
+
+	r = new_block(s->info, &right);
+	if (r < 0) {
+		/* FIXME: put left */
+		return r;
+	}
+
+	pn = dm_block_data(new_parent);
+	ln = dm_block_data(left);
+	rn = dm_block_data(right);
+
+	nr_left = le32_to_cpu(pn->header.nr_entries) / 2;
+	nr_right = le32_to_cpu(pn->header.nr_entries) - nr_left;
+
+	ln->header.flags = pn->header.flags;
+	ln->header.nr_entries = cpu_to_le32(nr_left);
+	ln->header.max_entries = pn->header.max_entries;
+	ln->header.value_size = pn->header.value_size;
+
+	rn->header.flags = pn->header.flags;
+	rn->header.nr_entries = cpu_to_le32(nr_right);
+	rn->header.max_entries = pn->header.max_entries;
+	rn->header.value_size = pn->header.value_size;
+
+	memcpy(ln->keys, pn->keys, nr_left * sizeof(pn->keys[0]));
+	memcpy(rn->keys, pn->keys + nr_left, nr_right * sizeof(pn->keys[0]));
+
+	size = le32_to_cpu(pn->header.flags) & INTERNAL_NODE ?
+		sizeof(__le64) : s->info->value_type.size;
+	memcpy(value_ptr(ln, 0), value_ptr(pn, 0), nr_left * size);
+	memcpy(value_ptr(rn, 0), value_ptr(pn, nr_left),
+	       nr_right * size);
+
+	/* new_parent should just point to l and r now */
+	pn->header.flags = cpu_to_le32(INTERNAL_NODE);
+	pn->header.nr_entries = cpu_to_le32(2);
+	pn->header.max_entries = cpu_to_le32(
+		calc_max_entries(sizeof(__le64),
+				 dm_bm_block_size(
+					 dm_tm_get_bm(s->info->tm))));
+	pn->header.value_size = cpu_to_le32(sizeof(__le64));
+
+	val = cpu_to_le64(dm_block_location(left));
+	__dm_bless_for_disk(&val);
+	pn->keys[0] = ln->keys[0];
+	memcpy_disk(value_ptr(pn, 0), &val, sizeof(__le64));
+
+	val = cpu_to_le64(dm_block_location(right));
+	__dm_bless_for_disk(&val);
+	pn->keys[1] = rn->keys[0];
+	memcpy_disk(value_ptr(pn, 1), &val, sizeof(__le64));
+
+	/*
+	 * rejig the spine.  This is ugly, since it knows too
+	 * much about the spine
+	 */
+	if (s->nodes[0] != new_parent) {
+		unlock_block(s->info, s->nodes[0]);
+		s->nodes[0] = new_parent;
+	}
+	if (key < le64_to_cpu(rn->keys[0])) {
+		unlock_block(s->info, right);
+		s->nodes[1] = left;
+	} else {
+		unlock_block(s->info, left);
+		s->nodes[1] = right;
+	}
+	s->count = 2;
+
+	return 0;
+}
+
+static int btree_insert_raw(struct shadow_spine *s, dm_block_t root,
+			    struct dm_btree_value_type *vt,
+			    uint64_t key, unsigned *index)
+{
+	int r, i = *index, top = 1;
+	struct btree_node *node;
+
+	for (;;) {
+		r = shadow_step(s, root, vt);
+		if (r < 0)
+			return r;
+
+		node = dm_block_data(shadow_current(s));
+
+		/*
+		 * We have to patch up the parent node, ugly, but I don't
+		 * see a way to do this automatically as part of the spine
+		 * op.
+		 */
+		if (shadow_has_parent(s) && i >= 0) { /* FIXME: second clause unness. */
+			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
+
+			__dm_bless_for_disk(&location);
+			memcpy_disk(value_ptr(dm_block_data(shadow_parent(s)), i),
+				    &location, sizeof(__le64));
+		}
+
+		node = dm_block_data(shadow_current(s));
+
+		if (node->header.nr_entries == node->header.max_entries) {
+			if (top)
+				r = btree_split_beneath(s, key);
+			else
+				r = btree_split_sibling(s, root, i, key);
+
+			if (r < 0)
+				return r;
+		}
+
+		node = dm_block_data(shadow_current(s));
+
+		i = lower_bound(node, key);
+
+		if (le32_to_cpu(node->header.flags) & LEAF_NODE)
+			break;
+
+		if (i < 0) {
+			/* change the bounds on the lowest key */
+			node->keys[0] = cpu_to_le64(key);
+			i = 0;
+		}
+
+		root = value64(node, i);
+		top = 0;
+	}
+
+	if (i < 0 || le64_to_cpu(node->keys[i]) != key)
+		i++;
+
+	*index = i;
+	return 0;
+}
+
+static int insert(struct dm_btree_info *info, dm_block_t root,
+		  uint64_t *keys, void *value, dm_block_t *new_root,
+		  int *inserted)
+		  __dm_written_to_disk(value)
+{
+	int r, need_insert;
+	unsigned level, index = -1, last_level = info->levels - 1;
+	dm_block_t block = root;
+	struct shadow_spine spine;
+	struct btree_node *n;
+	struct dm_btree_value_type le64_type;
+
+	le64_type.context = NULL;
+	le64_type.size = sizeof(__le64);
+	le64_type.inc = NULL;
+	le64_type.dec = NULL;
+	le64_type.equal = NULL;
+
+	init_shadow_spine(&spine, info);
+
+	for (level = 0; level < (info->levels - 1); level++) {
+		r = btree_insert_raw(&spine, block, &le64_type, keys[level], &index);
+		if (r < 0)
+			goto bad;
+
+		n = dm_block_data(shadow_current(&spine));
+		need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
+			       (le64_to_cpu(n->keys[index]) != keys[level]));
+
+		if (need_insert) {
+			dm_block_t new_tree;
+			__le64 new_le;
+
+			r = dm_btree_empty(info, &new_tree);
+			if (r < 0)
+				goto bad;
+
+			new_le = cpu_to_le64(new_tree);
+			__dm_bless_for_disk(&new_le);
+
+			r = insert_at(sizeof(uint64_t), n, index,
+				      keys[level], &new_le);
+			if (r)
+				goto bad;
+		}
+
+		if (level < last_level)
+			block = value64(n, index);
+	}
+
+	r = btree_insert_raw(&spine, block, &info->value_type,
+			     keys[level], &index);
+	if (r < 0)
+		goto bad;
+
+	n = dm_block_data(shadow_current(&spine));
+	need_insert = ((index >= le32_to_cpu(n->header.nr_entries)) ||
+		       (le64_to_cpu(n->keys[index]) != keys[level]));
+
+	if (need_insert) {
+		if (inserted)
+			*inserted = 1;
+
+		r = insert_at(info->value_type.size, n, index,
+			      keys[level], value);
+		if (r)
+			goto bad_unblessed;
+	} else {
+		if (inserted)
+			*inserted = 0;
+
+		if (info->value_type.dec &&
+		    (!info->value_type.equal ||
+		     !info->value_type.equal(
+			     info->value_type.context,
+			     value_ptr(n, index),
+			     value))) {
+			info->value_type.dec(info->value_type.context,
+					     value_ptr(n, index));
+		}
+		memcpy_disk(value_ptr(n, index),
+			    value, info->value_type.size);
+	}
+
+	*new_root = shadow_root(&spine);
+	exit_shadow_spine(&spine);
+
+	return 0;
+
+bad:
+	__dm_unbless_for_disk(value);
+bad_unblessed:
+	exit_shadow_spine(&spine);
+	return r;
+}
+
+int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
+		    uint64_t *keys, void *value, dm_block_t *new_root)
+		    __dm_written_to_disk(value)
+{
+	return insert(info, root, keys, value, new_root, NULL);
+}
+EXPORT_SYMBOL_GPL(dm_btree_insert);
+
+int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
+			   uint64_t *keys, void *value, dm_block_t *new_root,
+			   int *inserted)
+			   __dm_written_to_disk(value)
+{
+	return insert(info, root, keys, value, new_root, inserted);
+}
+EXPORT_SYMBOL_GPL(dm_btree_insert_notify);
+
+/*----------------------------------------------------------------*/
+
+static int find_highest_key(struct ro_spine *s, dm_block_t block,
+			    uint64_t *result_key, dm_block_t *next_block)
+{
+	int i, r;
+	uint32_t flags;
+
+	do {
+		r = ro_step(s, block);
+		if (r < 0)
+			return r;
+
+		flags = le32_to_cpu(ro_node(s)->header.flags);
+		i = le32_to_cpu(ro_node(s)->header.nr_entries);
+		if (!i)
+			return -ENODATA;
+		else
+			i--;
+
+		*result_key = le64_to_cpu(ro_node(s)->keys[i]);
+		if (next_block || flags & INTERNAL_NODE)
+			block = value64(ro_node(s), i);
+
+	} while (flags & INTERNAL_NODE);
+
+	if (next_block)
+		*next_block = block;
+	return 0;
+}
+
+int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
+			      uint64_t *result_keys)
+{
+	int r = 0, count = 0, level;
+	struct ro_spine spine;
+
+	init_ro_spine(&spine, info);
+	for (level = 0; level < info->levels; level++) {
+		r = find_highest_key(&spine, root, result_keys + level,
+				     level == info->levels - 1 ? NULL : &root);
+		if (r == -ENODATA) {
+			r = 0;
+			break;
+
+		} else if (r)
+			break;
+
+		count++;
+	}
+	exit_ro_spine(&spine);
+
+	return r ? r : count;
+}
+EXPORT_SYMBOL_GPL(dm_btree_find_highest_key);
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree.h
new file mode 100644
index 0000000..ae02c84
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-btree.h
@@ -0,0 +1,145 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+#ifndef _LINUX_DM_BTREE_H
+#define _LINUX_DM_BTREE_H
+
+#include "dm-block-manager.h"
+
+struct dm_transaction_manager;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Annotations used to check on-disk metadata is handled as little-endian.
+ */
+#ifdef __CHECKER__
+#  define __dm_written_to_disk(x) __releases(x)
+#  define __dm_reads_from_disk(x) __acquires(x)
+#  define __dm_bless_for_disk(x) __acquire(x)
+#  define __dm_unbless_for_disk(x) __release(x)
+#else
+#  define __dm_written_to_disk(x)
+#  define __dm_reads_from_disk(x)
+#  define __dm_bless_for_disk(x)
+#  define __dm_unbless_for_disk(x)
+#endif
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Manipulates hierarchical B+ trees with 64-bit keys and arbitrary-sized
+ * values.
+ */
+
+/*
+ * Infomation about the values stored within the btree.
+ */
+struct dm_btree_value_type {
+	void *context;
+
+	/*
+	 * The size in bytes of each value.
+	 */
+	uint32_t size;
+
+	/*
+	 * Any of these methods can be safely set to NULL if you do not
+	 * need the corresponding feature.
+	 */
+
+	/*
+	 * The btree is making a duplicate of the value, for instance
+	 * because previously-shared btree nodes have now diverged.
+	 * @value argument is the new copy that the copy function may modify.
+	 * (Probably it just wants to increment a reference count
+	 * somewhere.) This method is _not_ called for insertion of a new
+	 * value: It is assumed the ref count is already 1.
+	 */
+	void (*inc)(void *context, void *value);
+
+	/*
+	 * This value is being deleted.  The btree takes care of freeing
+	 * the memory pointed to by @value.  Often the del function just
+	 * needs to decrement a reference count somewhere.
+	 */
+	void (*dec)(void *context, void *value);
+
+	/*
+	 * A test for equality between two values.  When a value is
+	 * overwritten with a new one, the old one has the dec method
+	 * called _unless_ the new and old value are deemed equal.
+	 */
+	int (*equal)(void *context, void *value1, void *value2);
+};
+
+/*
+ * The shape and contents of a btree.
+ */
+struct dm_btree_info {
+	struct dm_transaction_manager *tm;
+
+	/*
+	 * Number of nested btrees. (Not the depth of a single tree.)
+	 */
+	unsigned levels;
+	struct dm_btree_value_type value_type;
+};
+
+/*
+ * Set up an empty tree.  O(1).
+ */
+int dm_btree_empty(struct dm_btree_info *info, dm_block_t *root);
+
+/*
+ * Delete a tree.  O(n) - this is the slow one!  It can also block, so
+ * please don't call it on an IO path.
+ */
+int dm_btree_del(struct dm_btree_info *info, dm_block_t root);
+
+/*
+ * All the lookup functions return -ENODATA if the key cannot be found.
+ */
+
+/*
+ * Tries to find a key that matches exactly.  O(ln(n))
+ */
+int dm_btree_lookup(struct dm_btree_info *info, dm_block_t root,
+		    uint64_t *keys, void *value_le);
+
+/*
+ * Insertion (or overwrite an existing value).  O(ln(n))
+ */
+int dm_btree_insert(struct dm_btree_info *info, dm_block_t root,
+		    uint64_t *keys, void *value, dm_block_t *new_root)
+		    __dm_written_to_disk(value);
+
+/*
+ * A variant of insert that indicates whether it actually inserted or just
+ * overwrote.  Useful if you're keeping track of the number of entries in a
+ * tree.
+ */
+int dm_btree_insert_notify(struct dm_btree_info *info, dm_block_t root,
+			   uint64_t *keys, void *value, dm_block_t *new_root,
+			   int *inserted)
+			   __dm_written_to_disk(value);
+
+/*
+ * Remove a key if present.  This doesn't remove empty sub trees.  Normally
+ * subtrees represent a separate entity, like a snapshot map, so this is
+ * correct behaviour.  O(ln(n)).
+ */
+int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
+		    uint64_t *keys, dm_block_t *new_root);
+
+/*
+ * Returns < 0 on failure.  Otherwise the number of key entries that have
+ * been filled out.  Remember trees can have zero entries, and as such have
+ * no highest key.
+ */
+int dm_btree_find_highest_key(struct dm_btree_info *info, dm_block_t root,
+			      uint64_t *result_keys);
+
+#endif	/* _LINUX_DM_BTREE_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-persistent-data-internal.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-persistent-data-internal.h
new file mode 100644
index 0000000..c49e26f
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-persistent-data-internal.h
@@ -0,0 +1,19 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _DM_PERSISTENT_DATA_INTERNAL_H
+#define _DM_PERSISTENT_DATA_INTERNAL_H
+
+#include "dm-block-manager.h"
+
+static inline unsigned dm_hash_block(dm_block_t b, unsigned hash_mask)
+{
+	const unsigned BIG_PRIME = 4294967291UL;
+
+	return (((unsigned) b) * BIG_PRIME) & hash_mask;
+}
+
+#endif	/* _PERSISTENT_DATA_INTERNAL_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-checker.c b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-checker.c
new file mode 100644
index 0000000..fc90c11
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-checker.c
@@ -0,0 +1,446 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-space-map-checker.h"
+
+#include <linux/device-mapper.h>
+#include <linux/export.h>
+#include <linux/vmalloc.h>
+
+#ifdef CONFIG_DM_DEBUG_SPACE_MAPS
+
+#define DM_MSG_PREFIX "space map checker"
+
+/*----------------------------------------------------------------*/
+
+struct count_array {
+	dm_block_t nr;
+	dm_block_t nr_free;
+
+	uint32_t *counts;
+};
+
+static int ca_get_count(struct count_array *ca, dm_block_t b, uint32_t *count)
+{
+	if (b >= ca->nr)
+		return -EINVAL;
+
+	*count = ca->counts[b];
+	return 0;
+}
+
+static int ca_count_more_than_one(struct count_array *ca, dm_block_t b, int *r)
+{
+	if (b >= ca->nr)
+		return -EINVAL;
+
+	*r = ca->counts[b] > 1;
+	return 0;
+}
+
+static int ca_set_count(struct count_array *ca, dm_block_t b, uint32_t count)
+{
+	uint32_t old_count;
+
+	if (b >= ca->nr)
+		return -EINVAL;
+
+	old_count = ca->counts[b];
+
+	if (!count && old_count)
+		ca->nr_free++;
+
+	else if (count && !old_count)
+		ca->nr_free--;
+
+	ca->counts[b] = count;
+	return 0;
+}
+
+static int ca_inc_block(struct count_array *ca, dm_block_t b)
+{
+	if (b >= ca->nr)
+		return -EINVAL;
+
+	ca_set_count(ca, b, ca->counts[b] + 1);
+	return 0;
+}
+
+static int ca_dec_block(struct count_array *ca, dm_block_t b)
+{
+	if (b >= ca->nr)
+		return -EINVAL;
+
+	BUG_ON(ca->counts[b] == 0);
+	ca_set_count(ca, b, ca->counts[b] - 1);
+	return 0;
+}
+
+static int ca_create(struct count_array *ca, struct dm_space_map *sm)
+{
+	int r;
+	dm_block_t nr_blocks;
+
+	r = dm_sm_get_nr_blocks(sm, &nr_blocks);
+	if (r)
+		return r;
+
+	ca->nr = nr_blocks;
+	ca->nr_free = nr_blocks;
+
+	if (!nr_blocks)
+		ca->counts = NULL;
+	else {
+		ca->counts = vzalloc(sizeof(*ca->counts) * nr_blocks);
+		if (!ca->counts)
+			return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static void ca_destroy(struct count_array *ca)
+{
+	vfree(ca->counts);
+}
+
+static int ca_load(struct count_array *ca, struct dm_space_map *sm)
+{
+	int r;
+	uint32_t count;
+	dm_block_t nr_blocks, i;
+
+	r = dm_sm_get_nr_blocks(sm, &nr_blocks);
+	if (r)
+		return r;
+
+	BUG_ON(ca->nr != nr_blocks);
+
+	DMWARN("Loading debug space map from disk.  This may take some time");
+	for (i = 0; i < nr_blocks; i++) {
+		r = dm_sm_get_count(sm, i, &count);
+		if (r) {
+			DMERR("load failed");
+			return r;
+		}
+
+		ca_set_count(ca, i, count);
+	}
+	DMWARN("Load complete");
+
+	return 0;
+}
+
+static int ca_extend(struct count_array *ca, dm_block_t extra_blocks)
+{
+	dm_block_t nr_blocks = ca->nr + extra_blocks;
+	uint32_t *counts = vzalloc(sizeof(*counts) * nr_blocks);
+	if (!counts)
+		return -ENOMEM;
+
+	if (ca->counts) {
+		memcpy(counts, ca->counts, sizeof(*counts) * ca->nr);
+		ca_destroy(ca);
+	}
+	ca->nr = nr_blocks;
+	ca->nr_free += extra_blocks;
+	ca->counts = counts;
+	return 0;
+}
+
+static int ca_commit(struct count_array *old, struct count_array *new)
+{
+	if (old->nr != new->nr) {
+		BUG_ON(old->nr > new->nr);
+		ca_extend(old, new->nr - old->nr);
+	}
+
+	BUG_ON(old->nr != new->nr);
+	old->nr_free = new->nr_free;
+	memcpy(old->counts, new->counts, sizeof(*old->counts) * old->nr);
+	return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+struct sm_checker {
+	struct dm_space_map sm;
+
+	struct count_array old_counts;
+	struct count_array counts;
+
+	struct dm_space_map *real_sm;
+};
+
+static void sm_checker_destroy(struct dm_space_map *sm)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+
+	dm_sm_destroy(smc->real_sm);
+	ca_destroy(&smc->old_counts);
+	ca_destroy(&smc->counts);
+	kfree(smc);
+}
+
+static int sm_checker_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	int r = dm_sm_get_nr_blocks(smc->real_sm, count);
+	if (!r)
+		BUG_ON(smc->old_counts.nr != *count);
+	return r;
+}
+
+static int sm_checker_get_nr_free(struct dm_space_map *sm, dm_block_t *count)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	int r = dm_sm_get_nr_free(smc->real_sm, count);
+	if (!r) {
+		/*
+		 * Slow, but we know it's correct.
+		 */
+		dm_block_t b, n = 0;
+		for (b = 0; b < smc->old_counts.nr; b++)
+			if (smc->old_counts.counts[b] == 0 &&
+			    smc->counts.counts[b] == 0)
+				n++;
+
+		if (n != *count)
+			DMERR("free block counts differ, checker %u, sm-disk:%u",
+			      (unsigned) n, (unsigned) *count);
+	}
+	return r;
+}
+
+static int sm_checker_new_block(struct dm_space_map *sm, dm_block_t *b)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	int r = dm_sm_new_block(smc->real_sm, b);
+
+	if (!r) {
+		BUG_ON(*b >= smc->old_counts.nr);
+		BUG_ON(smc->old_counts.counts[*b] != 0);
+		BUG_ON(*b >= smc->counts.nr);
+		BUG_ON(smc->counts.counts[*b] != 0);
+		ca_set_count(&smc->counts, *b, 1);
+	}
+
+	return r;
+}
+
+static int sm_checker_inc_block(struct dm_space_map *sm, dm_block_t b)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	int r = dm_sm_inc_block(smc->real_sm, b);
+	int r2 = ca_inc_block(&smc->counts, b);
+	BUG_ON(r != r2);
+	return r;
+}
+
+static int sm_checker_dec_block(struct dm_space_map *sm, dm_block_t b)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	int r = dm_sm_dec_block(smc->real_sm, b);
+	int r2 = ca_dec_block(&smc->counts, b);
+	BUG_ON(r != r2);
+	return r;
+}
+
+static int sm_checker_get_count(struct dm_space_map *sm, dm_block_t b, uint32_t *result)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	uint32_t result2 = 0;
+	int r = dm_sm_get_count(smc->real_sm, b, result);
+	int r2 = ca_get_count(&smc->counts, b, &result2);
+
+	BUG_ON(r != r2);
+	if (!r)
+		BUG_ON(*result != result2);
+	return r;
+}
+
+static int sm_checker_count_more_than_one(struct dm_space_map *sm, dm_block_t b, int *result)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	int result2 = 0;
+	int r = dm_sm_count_is_more_than_one(smc->real_sm, b, result);
+	int r2 = ca_count_more_than_one(&smc->counts, b, &result2);
+
+	BUG_ON(r != r2);
+	if (!r)
+		BUG_ON(!(*result) && result2);
+	return r;
+}
+
+static int sm_checker_set_count(struct dm_space_map *sm, dm_block_t b, uint32_t count)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	uint32_t old_rc;
+	int r = dm_sm_set_count(smc->real_sm, b, count);
+	int r2;
+
+	BUG_ON(b >= smc->counts.nr);
+	old_rc = smc->counts.counts[b];
+	r2 = ca_set_count(&smc->counts, b, count);
+	BUG_ON(r != r2);
+
+	return r;
+}
+
+static int sm_checker_commit(struct dm_space_map *sm)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	int r;
+
+	r = dm_sm_commit(smc->real_sm);
+	if (r)
+		return r;
+
+	r = ca_commit(&smc->old_counts, &smc->counts);
+	if (r)
+		return r;
+
+	return 0;
+}
+
+static int sm_checker_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	int r = dm_sm_extend(smc->real_sm, extra_blocks);
+	if (r)
+		return r;
+
+	return ca_extend(&smc->counts, extra_blocks);
+}
+
+static int sm_checker_root_size(struct dm_space_map *sm, size_t *result)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	return dm_sm_root_size(smc->real_sm, result);
+}
+
+static int sm_checker_copy_root(struct dm_space_map *sm, void *copy_to_here_le, size_t len)
+{
+	struct sm_checker *smc = container_of(sm, struct sm_checker, sm);
+	return dm_sm_copy_root(smc->real_sm, copy_to_here_le, len);
+}
+
+/*----------------------------------------------------------------*/
+
+static struct dm_space_map ops_ = {
+	.destroy = sm_checker_destroy,
+	.get_nr_blocks = sm_checker_get_nr_blocks,
+	.get_nr_free = sm_checker_get_nr_free,
+	.inc_block = sm_checker_inc_block,
+	.dec_block = sm_checker_dec_block,
+	.new_block = sm_checker_new_block,
+	.get_count = sm_checker_get_count,
+	.count_is_more_than_one = sm_checker_count_more_than_one,
+	.set_count = sm_checker_set_count,
+	.commit = sm_checker_commit,
+	.extend = sm_checker_extend,
+	.root_size = sm_checker_root_size,
+	.copy_root = sm_checker_copy_root
+};
+
+struct dm_space_map *dm_sm_checker_create(struct dm_space_map *sm)
+{
+	int r;
+	struct sm_checker *smc;
+
+	if (IS_ERR_OR_NULL(sm))
+		return ERR_PTR(-EINVAL);
+
+	smc = kmalloc(sizeof(*smc), GFP_KERNEL);
+	if (!smc)
+		return ERR_PTR(-ENOMEM);
+
+	memcpy(&smc->sm, &ops_, sizeof(smc->sm));
+	r = ca_create(&smc->old_counts, sm);
+	if (r) {
+		kfree(smc);
+		return ERR_PTR(r);
+	}
+
+	r = ca_create(&smc->counts, sm);
+	if (r) {
+		ca_destroy(&smc->old_counts);
+		kfree(smc);
+		return ERR_PTR(r);
+	}
+
+	smc->real_sm = sm;
+
+	r = ca_load(&smc->counts, sm);
+	if (r) {
+		ca_destroy(&smc->counts);
+		ca_destroy(&smc->old_counts);
+		kfree(smc);
+		return ERR_PTR(r);
+	}
+
+	r = ca_commit(&smc->old_counts, &smc->counts);
+	if (r) {
+		ca_destroy(&smc->counts);
+		ca_destroy(&smc->old_counts);
+		kfree(smc);
+		return ERR_PTR(r);
+	}
+
+	return &smc->sm;
+}
+EXPORT_SYMBOL_GPL(dm_sm_checker_create);
+
+struct dm_space_map *dm_sm_checker_create_fresh(struct dm_space_map *sm)
+{
+	int r;
+	struct sm_checker *smc;
+
+	if (IS_ERR_OR_NULL(sm))
+		return ERR_PTR(-EINVAL);
+
+	smc = kmalloc(sizeof(*smc), GFP_KERNEL);
+	if (!smc)
+		return ERR_PTR(-ENOMEM);
+
+	memcpy(&smc->sm, &ops_, sizeof(smc->sm));
+	r = ca_create(&smc->old_counts, sm);
+	if (r) {
+		kfree(smc);
+		return ERR_PTR(r);
+	}
+
+	r = ca_create(&smc->counts, sm);
+	if (r) {
+		ca_destroy(&smc->old_counts);
+		kfree(smc);
+		return ERR_PTR(r);
+	}
+
+	smc->real_sm = sm;
+	return &smc->sm;
+}
+EXPORT_SYMBOL_GPL(dm_sm_checker_create_fresh);
+
+/*----------------------------------------------------------------*/
+
+#else
+
+struct dm_space_map *dm_sm_checker_create(struct dm_space_map *sm)
+{
+	return sm;
+}
+EXPORT_SYMBOL_GPL(dm_sm_checker_create);
+
+struct dm_space_map *dm_sm_checker_create_fresh(struct dm_space_map *sm)
+{
+	return sm;
+}
+EXPORT_SYMBOL_GPL(dm_sm_checker_create_fresh);
+
+/*----------------------------------------------------------------*/
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-checker.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-checker.h
new file mode 100644
index 0000000..444dccf
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-checker.h
@@ -0,0 +1,26 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef SNAPSHOTS_SPACE_MAP_CHECKER_H
+#define SNAPSHOTS_SPACE_MAP_CHECKER_H
+
+#include "dm-space-map.h"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * This space map wraps a real on-disk space map, and verifies all of its
+ * operations.  It uses a lot of memory, so only use if you have a specific
+ * problem that you're debugging.
+ *
+ * Ownership of @sm passes.
+ */
+struct dm_space_map *dm_sm_checker_create(struct dm_space_map *sm);
+struct dm_space_map *dm_sm_checker_create_fresh(struct dm_space_map *sm);
+
+/*----------------------------------------------------------------*/
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-common.c b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-common.c
new file mode 100644
index 0000000..79c02d9
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-common.c
@@ -0,0 +1,706 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-space-map-common.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/bitops.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "space map common"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Index validator.
+ */
+#define INDEX_CSUM_XOR 160478
+
+static void index_prepare_for_write(struct dm_block_validator *v,
+				    struct dm_block *b,
+				    size_t block_size)
+{
+	struct disk_metadata_index *mi_le = dm_block_data(b);
+
+	mi_le->blocknr = cpu_to_le64(dm_block_location(b));
+	mi_le->csum = cpu_to_le32(dm_bm_checksum(&mi_le->padding,
+						 block_size - sizeof(__le32),
+						 INDEX_CSUM_XOR));
+}
+
+static int index_check(struct dm_block_validator *v,
+		       struct dm_block *b,
+		       size_t block_size)
+{
+	struct disk_metadata_index *mi_le = dm_block_data(b);
+	__le32 csum_disk;
+
+	if (dm_block_location(b) != le64_to_cpu(mi_le->blocknr)) {
+		DMERR("index_check failed blocknr %llu wanted %llu",
+		      le64_to_cpu(mi_le->blocknr), dm_block_location(b));
+		return -ENOTBLK;
+	}
+
+	csum_disk = cpu_to_le32(dm_bm_checksum(&mi_le->padding,
+					       block_size - sizeof(__le32),
+					       INDEX_CSUM_XOR));
+	if (csum_disk != mi_le->csum) {
+		DMERR("index_check failed csum %u wanted %u",
+		      le32_to_cpu(csum_disk), le32_to_cpu(mi_le->csum));
+		return -EILSEQ;
+	}
+
+	return 0;
+}
+
+static struct dm_block_validator index_validator = {
+	.name = "index",
+	.prepare_for_write = index_prepare_for_write,
+	.check = index_check
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Bitmap validator
+ */
+#define BITMAP_CSUM_XOR 240779
+
+static void bitmap_prepare_for_write(struct dm_block_validator *v,
+				     struct dm_block *b,
+				     size_t block_size)
+{
+	struct disk_bitmap_header *disk_header = dm_block_data(b);
+
+	disk_header->blocknr = cpu_to_le64(dm_block_location(b));
+	disk_header->csum = cpu_to_le32(dm_bm_checksum(&disk_header->not_used,
+						       block_size - sizeof(__le32),
+						       BITMAP_CSUM_XOR));
+}
+
+static int bitmap_check(struct dm_block_validator *v,
+			struct dm_block *b,
+			size_t block_size)
+{
+	struct disk_bitmap_header *disk_header = dm_block_data(b);
+	__le32 csum_disk;
+
+	if (dm_block_location(b) != le64_to_cpu(disk_header->blocknr)) {
+		DMERR("bitmap check failed blocknr %llu wanted %llu",
+		      le64_to_cpu(disk_header->blocknr), dm_block_location(b));
+		return -ENOTBLK;
+	}
+
+	csum_disk = cpu_to_le32(dm_bm_checksum(&disk_header->not_used,
+					       block_size - sizeof(__le32),
+					       BITMAP_CSUM_XOR));
+	if (csum_disk != disk_header->csum) {
+		DMERR("bitmap check failed csum %u wanted %u",
+		      le32_to_cpu(csum_disk), le32_to_cpu(disk_header->csum));
+		return -EILSEQ;
+	}
+
+	return 0;
+}
+
+static struct dm_block_validator dm_sm_bitmap_validator = {
+	.name = "sm_bitmap",
+	.prepare_for_write = bitmap_prepare_for_write,
+	.check = bitmap_check
+};
+
+/*----------------------------------------------------------------*/
+
+#define ENTRIES_PER_WORD 32
+#define ENTRIES_SHIFT	5
+
+static void *dm_bitmap_data(struct dm_block *b)
+{
+	return dm_block_data(b) + sizeof(struct disk_bitmap_header);
+}
+
+#define WORD_MASK_HIGH 0xAAAAAAAAAAAAAAAAULL
+
+static unsigned bitmap_word_used(void *addr, unsigned b)
+{
+	__le64 *words_le = addr;
+	__le64 *w_le = words_le + (b >> ENTRIES_SHIFT);
+
+	uint64_t bits = le64_to_cpu(*w_le);
+	uint64_t mask = (bits + WORD_MASK_HIGH + 1) & WORD_MASK_HIGH;
+
+	return !(~bits & mask);
+}
+
+static unsigned sm_lookup_bitmap(void *addr, unsigned b)
+{
+	__le64 *words_le = addr;
+	__le64 *w_le = words_le + (b >> ENTRIES_SHIFT);
+	unsigned hi, lo;
+
+	b = (b & (ENTRIES_PER_WORD - 1)) << 1;
+	hi = !!test_bit_le(b, (void *) w_le);
+	lo = !!test_bit_le(b + 1, (void *) w_le);
+	return (hi << 1) | lo;
+}
+
+static void sm_set_bitmap(void *addr, unsigned b, unsigned val)
+{
+	__le64 *words_le = addr;
+	__le64 *w_le = words_le + (b >> ENTRIES_SHIFT);
+
+	b = (b & (ENTRIES_PER_WORD - 1)) << 1;
+
+	if (val & 2)
+		__set_bit_le(b, (void *) w_le);
+	else
+		__clear_bit_le(b, (void *) w_le);
+
+	if (val & 1)
+		__set_bit_le(b + 1, (void *) w_le);
+	else
+		__clear_bit_le(b + 1, (void *) w_le);
+}
+
+static int sm_find_free(void *addr, unsigned begin, unsigned end,
+			unsigned *result)
+{
+	while (begin < end) {
+		if (!(begin & (ENTRIES_PER_WORD - 1)) &&
+		    bitmap_word_used(addr, begin)) {
+			begin += ENTRIES_PER_WORD;
+			continue;
+		}
+
+		if (!sm_lookup_bitmap(addr, begin)) {
+			*result = begin;
+			return 0;
+		}
+
+		begin++;
+	}
+
+	return -ENOSPC;
+}
+
+/*----------------------------------------------------------------*/
+
+static int sm_ll_init(struct ll_disk *ll, struct dm_transaction_manager *tm)
+{
+	ll->tm = tm;
+
+	ll->bitmap_info.tm = tm;
+	ll->bitmap_info.levels = 1;
+
+	/*
+	 * Because the new bitmap blocks are created via a shadow
+	 * operation, the old entry has already had its reference count
+	 * decremented and we don't need the btree to do any bookkeeping.
+	 */
+	ll->bitmap_info.value_type.size = sizeof(struct disk_index_entry);
+	ll->bitmap_info.value_type.inc = NULL;
+	ll->bitmap_info.value_type.dec = NULL;
+	ll->bitmap_info.value_type.equal = NULL;
+
+	ll->ref_count_info.tm = tm;
+	ll->ref_count_info.levels = 1;
+	ll->ref_count_info.value_type.size = sizeof(uint32_t);
+	ll->ref_count_info.value_type.inc = NULL;
+	ll->ref_count_info.value_type.dec = NULL;
+	ll->ref_count_info.value_type.equal = NULL;
+
+	ll->block_size = dm_bm_block_size(dm_tm_get_bm(tm));
+
+	if (ll->block_size > (1 << 30)) {
+		DMERR("block size too big to hold bitmaps");
+		return -EINVAL;
+	}
+
+	ll->entries_per_block = (ll->block_size - sizeof(struct disk_bitmap_header)) *
+		ENTRIES_PER_BYTE;
+	ll->nr_blocks = 0;
+	ll->bitmap_root = 0;
+	ll->ref_count_root = 0;
+
+	return 0;
+}
+
+int sm_ll_extend(struct ll_disk *ll, dm_block_t extra_blocks)
+{
+	int r;
+	dm_block_t i, nr_blocks, nr_indexes;
+	unsigned old_blocks, blocks;
+
+	nr_blocks = ll->nr_blocks + extra_blocks;
+	old_blocks = dm_sector_div_up(ll->nr_blocks, ll->entries_per_block);
+	blocks = dm_sector_div_up(nr_blocks, ll->entries_per_block);
+
+	nr_indexes = dm_sector_div_up(nr_blocks, ll->entries_per_block);
+	if (nr_indexes > ll->max_entries(ll)) {
+		DMERR("space map too large");
+		return -EINVAL;
+	}
+
+	/*
+	 * We need to set this before the dm_tm_new_block() call below.
+	 */
+	ll->nr_blocks = nr_blocks;
+	for (i = old_blocks; i < blocks; i++) {
+		struct dm_block *b;
+		struct disk_index_entry idx;
+
+		r = dm_tm_new_block(ll->tm, &dm_sm_bitmap_validator, &b);
+		if (r < 0)
+			return r;
+
+		idx.blocknr = cpu_to_le64(dm_block_location(b));
+
+		r = dm_tm_unlock(ll->tm, b);
+		if (r < 0)
+			return r;
+
+		idx.nr_free = cpu_to_le32(ll->entries_per_block);
+		idx.none_free_before = 0;
+
+		r = ll->save_ie(ll, i, &idx);
+		if (r < 0)
+			return r;
+	}
+
+	return 0;
+}
+
+int sm_ll_lookup_bitmap(struct ll_disk *ll, dm_block_t b, uint32_t *result)
+{
+	int r;
+	dm_block_t index = b;
+	struct disk_index_entry ie_disk;
+	struct dm_block *blk;
+
+	b = do_div(index, ll->entries_per_block);
+	r = ll->load_ie(ll, index, &ie_disk);
+	if (r < 0)
+		return r;
+
+	r = dm_tm_read_lock(ll->tm, le64_to_cpu(ie_disk.blocknr),
+			    &dm_sm_bitmap_validator, &blk);
+	if (r < 0)
+		return r;
+
+	*result = sm_lookup_bitmap(dm_bitmap_data(blk), b);
+
+	return dm_tm_unlock(ll->tm, blk);
+}
+
+int sm_ll_lookup(struct ll_disk *ll, dm_block_t b, uint32_t *result)
+{
+	__le32 le_rc;
+	int r = sm_ll_lookup_bitmap(ll, b, result);
+
+	if (r)
+		return r;
+
+	if (*result != 3)
+		return r;
+
+	r = dm_btree_lookup(&ll->ref_count_info, ll->ref_count_root, &b, &le_rc);
+	if (r < 0)
+		return r;
+
+	*result = le32_to_cpu(le_rc);
+
+	return r;
+}
+
+int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin,
+			  dm_block_t end, dm_block_t *result)
+{
+	int r;
+	struct disk_index_entry ie_disk;
+	dm_block_t i, index_begin = begin;
+	dm_block_t index_end = dm_sector_div_up(end, ll->entries_per_block);
+
+	/*
+	 * FIXME: Use shifts
+	 */
+	begin = do_div(index_begin, ll->entries_per_block);
+	end = do_div(end, ll->entries_per_block);
+
+	for (i = index_begin; i < index_end; i++, begin = 0) {
+		struct dm_block *blk;
+		unsigned position;
+		uint32_t bit_end;
+
+		r = ll->load_ie(ll, i, &ie_disk);
+		if (r < 0)
+			return r;
+
+		if (le32_to_cpu(ie_disk.nr_free) == 0)
+			continue;
+
+		r = dm_tm_read_lock(ll->tm, le64_to_cpu(ie_disk.blocknr),
+				    &dm_sm_bitmap_validator, &blk);
+		if (r < 0)
+			return r;
+
+		bit_end = (i == index_end - 1) ?  end : ll->entries_per_block;
+
+		r = sm_find_free(dm_bitmap_data(blk),
+				 max_t(unsigned, begin, le32_to_cpu(ie_disk.none_free_before)),
+				 bit_end, &position);
+		if (r == -ENOSPC) {
+			/*
+			 * This might happen because we started searching
+			 * part way through the bitmap.
+			 */
+			dm_tm_unlock(ll->tm, blk);
+			continue;
+
+		} else if (r < 0) {
+			dm_tm_unlock(ll->tm, blk);
+			return r;
+		}
+
+		r = dm_tm_unlock(ll->tm, blk);
+		if (r < 0)
+			return r;
+
+		*result = i * ll->entries_per_block + (dm_block_t) position;
+		return 0;
+	}
+
+	return -ENOSPC;
+}
+
+int sm_ll_insert(struct ll_disk *ll, dm_block_t b,
+		 uint32_t ref_count, enum allocation_event *ev)
+{
+	int r;
+	uint32_t bit, old;
+	struct dm_block *nb;
+	dm_block_t index = b;
+	struct disk_index_entry ie_disk;
+	void *bm_le;
+	int inc;
+
+	bit = do_div(index, ll->entries_per_block);
+	r = ll->load_ie(ll, index, &ie_disk);
+	if (r < 0)
+		return r;
+
+	r = dm_tm_shadow_block(ll->tm, le64_to_cpu(ie_disk.blocknr),
+			       &dm_sm_bitmap_validator, &nb, &inc);
+	if (r < 0) {
+		DMERR("dm_tm_shadow_block() failed");
+		return r;
+	}
+	ie_disk.blocknr = cpu_to_le64(dm_block_location(nb));
+
+	bm_le = dm_bitmap_data(nb);
+	old = sm_lookup_bitmap(bm_le, bit);
+
+	if (ref_count <= 2) {
+		sm_set_bitmap(bm_le, bit, ref_count);
+
+		r = dm_tm_unlock(ll->tm, nb);
+		if (r < 0)
+			return r;
+
+		if (old > 2) {
+			r = dm_btree_remove(&ll->ref_count_info,
+					    ll->ref_count_root,
+					    &b, &ll->ref_count_root);
+			if (r)
+				return r;
+		}
+
+	} else {
+		__le32 le_rc = cpu_to_le32(ref_count);
+
+		sm_set_bitmap(bm_le, bit, 3);
+		r = dm_tm_unlock(ll->tm, nb);
+		if (r < 0)
+			return r;
+
+		__dm_bless_for_disk(&le_rc);
+		r = dm_btree_insert(&ll->ref_count_info, ll->ref_count_root,
+				    &b, &le_rc, &ll->ref_count_root);
+		if (r < 0) {
+			DMERR("ref count insert failed");
+			return r;
+		}
+	}
+
+	if (ref_count && !old) {
+		*ev = SM_ALLOC;
+		ll->nr_allocated++;
+		ie_disk.nr_free = cpu_to_le32(le32_to_cpu(ie_disk.nr_free) - 1);
+		if (le32_to_cpu(ie_disk.none_free_before) == bit)
+			ie_disk.none_free_before = cpu_to_le32(bit + 1);
+
+	} else if (old && !ref_count) {
+		*ev = SM_FREE;
+		ll->nr_allocated--;
+		ie_disk.nr_free = cpu_to_le32(le32_to_cpu(ie_disk.nr_free) + 1);
+		ie_disk.none_free_before = cpu_to_le32(min(le32_to_cpu(ie_disk.none_free_before), bit));
+	}
+
+	return ll->save_ie(ll, index, &ie_disk);
+}
+
+int sm_ll_inc(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev)
+{
+	int r;
+	uint32_t rc;
+
+	r = sm_ll_lookup(ll, b, &rc);
+	if (r)
+		return r;
+
+	return sm_ll_insert(ll, b, rc + 1, ev);
+}
+
+int sm_ll_dec(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev)
+{
+	int r;
+	uint32_t rc;
+
+	r = sm_ll_lookup(ll, b, &rc);
+	if (r)
+		return r;
+
+	if (!rc)
+		return -EINVAL;
+
+	return sm_ll_insert(ll, b, rc - 1, ev);
+}
+
+int sm_ll_commit(struct ll_disk *ll)
+{
+	return ll->commit(ll);
+}
+
+/*----------------------------------------------------------------*/
+
+static int metadata_ll_load_ie(struct ll_disk *ll, dm_block_t index,
+			       struct disk_index_entry *ie)
+{
+	memcpy(ie, ll->mi_le.index + index, sizeof(*ie));
+	return 0;
+}
+
+static int metadata_ll_save_ie(struct ll_disk *ll, dm_block_t index,
+			       struct disk_index_entry *ie)
+{
+	memcpy(ll->mi_le.index + index, ie, sizeof(*ie));
+	return 0;
+}
+
+static int metadata_ll_init_index(struct ll_disk *ll)
+{
+	int r;
+	struct dm_block *b;
+
+	r = dm_tm_new_block(ll->tm, &index_validator, &b);
+	if (r < 0)
+		return r;
+
+	memcpy(dm_block_data(b), &ll->mi_le, sizeof(ll->mi_le));
+	ll->bitmap_root = dm_block_location(b);
+
+	return dm_tm_unlock(ll->tm, b);
+}
+
+static int metadata_ll_open(struct ll_disk *ll)
+{
+	int r;
+	struct dm_block *block;
+
+	r = dm_tm_read_lock(ll->tm, ll->bitmap_root,
+			    &index_validator, &block);
+	if (r)
+		return r;
+
+	memcpy(&ll->mi_le, dm_block_data(block), sizeof(ll->mi_le));
+	return dm_tm_unlock(ll->tm, block);
+}
+
+static dm_block_t metadata_ll_max_entries(struct ll_disk *ll)
+{
+	return MAX_METADATA_BITMAPS;
+}
+
+static int metadata_ll_commit(struct ll_disk *ll)
+{
+	int r, inc;
+	struct dm_block *b;
+
+	r = dm_tm_shadow_block(ll->tm, ll->bitmap_root, &index_validator, &b, &inc);
+	if (r)
+		return r;
+
+	memcpy(dm_block_data(b), &ll->mi_le, sizeof(ll->mi_le));
+	ll->bitmap_root = dm_block_location(b);
+
+	return dm_tm_unlock(ll->tm, b);
+}
+
+int sm_ll_new_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm)
+{
+	int r;
+
+	r = sm_ll_init(ll, tm);
+	if (r < 0)
+		return r;
+
+	ll->load_ie = metadata_ll_load_ie;
+	ll->save_ie = metadata_ll_save_ie;
+	ll->init_index = metadata_ll_init_index;
+	ll->open_index = metadata_ll_open;
+	ll->max_entries = metadata_ll_max_entries;
+	ll->commit = metadata_ll_commit;
+
+	ll->nr_blocks = 0;
+	ll->nr_allocated = 0;
+
+	r = ll->init_index(ll);
+	if (r < 0)
+		return r;
+
+	r = dm_btree_empty(&ll->ref_count_info, &ll->ref_count_root);
+	if (r < 0)
+		return r;
+
+	return 0;
+}
+
+int sm_ll_open_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm,
+			void *root_le, size_t len)
+{
+	int r;
+	struct disk_sm_root *smr = root_le;
+
+	if (len < sizeof(struct disk_sm_root)) {
+		DMERR("sm_metadata root too small");
+		return -ENOMEM;
+	}
+
+	r = sm_ll_init(ll, tm);
+	if (r < 0)
+		return r;
+
+	ll->load_ie = metadata_ll_load_ie;
+	ll->save_ie = metadata_ll_save_ie;
+	ll->init_index = metadata_ll_init_index;
+	ll->open_index = metadata_ll_open;
+	ll->max_entries = metadata_ll_max_entries;
+	ll->commit = metadata_ll_commit;
+
+	ll->nr_blocks = le64_to_cpu(smr->nr_blocks);
+	ll->nr_allocated = le64_to_cpu(smr->nr_allocated);
+	ll->bitmap_root = le64_to_cpu(smr->bitmap_root);
+	ll->ref_count_root = le64_to_cpu(smr->ref_count_root);
+
+	return ll->open_index(ll);
+}
+
+/*----------------------------------------------------------------*/
+
+static int disk_ll_load_ie(struct ll_disk *ll, dm_block_t index,
+			   struct disk_index_entry *ie)
+{
+	return dm_btree_lookup(&ll->bitmap_info, ll->bitmap_root, &index, ie);
+}
+
+static int disk_ll_save_ie(struct ll_disk *ll, dm_block_t index,
+			   struct disk_index_entry *ie)
+{
+	__dm_bless_for_disk(ie);
+	return dm_btree_insert(&ll->bitmap_info, ll->bitmap_root,
+			       &index, ie, &ll->bitmap_root);
+}
+
+static int disk_ll_init_index(struct ll_disk *ll)
+{
+	return dm_btree_empty(&ll->bitmap_info, &ll->bitmap_root);
+}
+
+static int disk_ll_open(struct ll_disk *ll)
+{
+	/* nothing to do */
+	return 0;
+}
+
+static dm_block_t disk_ll_max_entries(struct ll_disk *ll)
+{
+	return -1ULL;
+}
+
+static int disk_ll_commit(struct ll_disk *ll)
+{
+	return 0;
+}
+
+int sm_ll_new_disk(struct ll_disk *ll, struct dm_transaction_manager *tm)
+{
+	int r;
+
+	r = sm_ll_init(ll, tm);
+	if (r < 0)
+		return r;
+
+	ll->load_ie = disk_ll_load_ie;
+	ll->save_ie = disk_ll_save_ie;
+	ll->init_index = disk_ll_init_index;
+	ll->open_index = disk_ll_open;
+	ll->max_entries = disk_ll_max_entries;
+	ll->commit = disk_ll_commit;
+
+	ll->nr_blocks = 0;
+	ll->nr_allocated = 0;
+
+	r = ll->init_index(ll);
+	if (r < 0)
+		return r;
+
+	r = dm_btree_empty(&ll->ref_count_info, &ll->ref_count_root);
+	if (r < 0)
+		return r;
+
+	return 0;
+}
+
+int sm_ll_open_disk(struct ll_disk *ll, struct dm_transaction_manager *tm,
+		    void *root_le, size_t len)
+{
+	int r;
+	struct disk_sm_root *smr = root_le;
+
+	if (len < sizeof(struct disk_sm_root)) {
+		DMERR("sm_metadata root too small");
+		return -ENOMEM;
+	}
+
+	r = sm_ll_init(ll, tm);
+	if (r < 0)
+		return r;
+
+	ll->load_ie = disk_ll_load_ie;
+	ll->save_ie = disk_ll_save_ie;
+	ll->init_index = disk_ll_init_index;
+	ll->open_index = disk_ll_open;
+	ll->max_entries = disk_ll_max_entries;
+	ll->commit = disk_ll_commit;
+
+	ll->nr_blocks = le64_to_cpu(smr->nr_blocks);
+	ll->nr_allocated = le64_to_cpu(smr->nr_allocated);
+	ll->bitmap_root = le64_to_cpu(smr->bitmap_root);
+	ll->ref_count_root = le64_to_cpu(smr->ref_count_root);
+
+	return ll->open_index(ll);
+}
+
+/*----------------------------------------------------------------*/
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-common.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-common.h
new file mode 100644
index 0000000..8f22082
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-common.h
@@ -0,0 +1,126 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_SPACE_MAP_COMMON_H
+#define DM_SPACE_MAP_COMMON_H
+
+#include "dm-btree.h"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Low level disk format
+ *
+ * Bitmap btree
+ * ------------
+ *
+ * Each value stored in the btree is an index_entry.  This points to a
+ * block that is used as a bitmap.  Within the bitmap hold 2 bits per
+ * entry, which represent UNUSED = 0, REF_COUNT = 1, REF_COUNT = 2 and
+ * REF_COUNT = many.
+ *
+ * Refcount btree
+ * --------------
+ *
+ * Any entry that has a ref count higher than 2 gets entered in the ref
+ * count tree.  The leaf values for this tree is the 32-bit ref count.
+ */
+
+struct disk_index_entry {
+	__le64 blocknr;
+	__le32 nr_free;
+	__le32 none_free_before;
+} __packed;
+
+
+#define MAX_METADATA_BITMAPS 255
+struct disk_metadata_index {
+	__le32 csum;
+	__le32 padding;
+	__le64 blocknr;
+
+	struct disk_index_entry index[MAX_METADATA_BITMAPS];
+} __packed;
+
+struct ll_disk;
+
+typedef int (*load_ie_fn)(struct ll_disk *ll, dm_block_t index, struct disk_index_entry *result);
+typedef int (*save_ie_fn)(struct ll_disk *ll, dm_block_t index, struct disk_index_entry *ie);
+typedef int (*init_index_fn)(struct ll_disk *ll);
+typedef int (*open_index_fn)(struct ll_disk *ll);
+typedef dm_block_t (*max_index_entries_fn)(struct ll_disk *ll);
+typedef int (*commit_fn)(struct ll_disk *ll);
+
+struct ll_disk {
+	struct dm_transaction_manager *tm;
+	struct dm_btree_info bitmap_info;
+	struct dm_btree_info ref_count_info;
+
+	uint32_t block_size;
+	uint32_t entries_per_block;
+	dm_block_t nr_blocks;
+	dm_block_t nr_allocated;
+
+	/*
+	 * bitmap_root may be a btree root or a simple index.
+	 */
+	dm_block_t bitmap_root;
+
+	dm_block_t ref_count_root;
+
+	struct disk_metadata_index mi_le;
+	load_ie_fn load_ie;
+	save_ie_fn save_ie;
+	init_index_fn init_index;
+	open_index_fn open_index;
+	max_index_entries_fn max_entries;
+	commit_fn commit;
+};
+
+struct disk_sm_root {
+	__le64 nr_blocks;
+	__le64 nr_allocated;
+	__le64 bitmap_root;
+	__le64 ref_count_root;
+} __packed;
+
+#define ENTRIES_PER_BYTE 4
+
+struct disk_bitmap_header {
+	__le32 csum;
+	__le32 not_used;
+	__le64 blocknr;
+} __packed;
+
+enum allocation_event {
+	SM_NONE,
+	SM_ALLOC,
+	SM_FREE,
+};
+
+/*----------------------------------------------------------------*/
+
+int sm_ll_extend(struct ll_disk *ll, dm_block_t extra_blocks);
+int sm_ll_lookup_bitmap(struct ll_disk *ll, dm_block_t b, uint32_t *result);
+int sm_ll_lookup(struct ll_disk *ll, dm_block_t b, uint32_t *result);
+int sm_ll_find_free_block(struct ll_disk *ll, dm_block_t begin,
+			  dm_block_t end, dm_block_t *result);
+int sm_ll_insert(struct ll_disk *ll, dm_block_t b, uint32_t ref_count, enum allocation_event *ev);
+int sm_ll_inc(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev);
+int sm_ll_dec(struct ll_disk *ll, dm_block_t b, enum allocation_event *ev);
+int sm_ll_commit(struct ll_disk *ll);
+
+int sm_ll_new_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm);
+int sm_ll_open_metadata(struct ll_disk *ll, struct dm_transaction_manager *tm,
+			void *root_le, size_t len);
+
+int sm_ll_new_disk(struct ll_disk *ll, struct dm_transaction_manager *tm);
+int sm_ll_open_disk(struct ll_disk *ll, struct dm_transaction_manager *tm,
+		    void *root_le, size_t len);
+
+/*----------------------------------------------------------------*/
+
+#endif	/* DM_SPACE_MAP_COMMON_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-disk.c b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-disk.c
new file mode 100644
index 0000000..3d0ed53
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-disk.c
@@ -0,0 +1,344 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-space-map-checker.h"
+#include "dm-space-map-common.h"
+#include "dm-space-map-disk.h"
+#include "dm-space-map.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/list.h>
+#include <linux/slab.h>
+#include <linux/export.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "space map disk"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Space map interface.
+ */
+struct sm_disk {
+	struct dm_space_map sm;
+
+	struct ll_disk ll;
+	struct ll_disk old_ll;
+
+	dm_block_t begin;
+	dm_block_t nr_allocated_this_transaction;
+};
+
+static void sm_disk_destroy(struct dm_space_map *sm)
+{
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+	kfree(smd);
+}
+
+static int sm_disk_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
+{
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+	return sm_ll_extend(&smd->ll, extra_blocks);
+}
+
+static int sm_disk_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count)
+{
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+	*count = smd->old_ll.nr_blocks;
+
+	return 0;
+}
+
+static int sm_disk_get_nr_free(struct dm_space_map *sm, dm_block_t *count)
+{
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+	*count = (smd->old_ll.nr_blocks - smd->old_ll.nr_allocated) - smd->nr_allocated_this_transaction;
+
+	return 0;
+}
+
+static int sm_disk_get_count(struct dm_space_map *sm, dm_block_t b,
+			     uint32_t *result)
+{
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+	return sm_ll_lookup(&smd->ll, b, result);
+}
+
+static int sm_disk_count_is_more_than_one(struct dm_space_map *sm, dm_block_t b,
+					  int *result)
+{
+	int r;
+	uint32_t count;
+
+	r = sm_disk_get_count(sm, b, &count);
+	if (r)
+		return r;
+
+	return count > 1;
+}
+
+static int sm_disk_set_count(struct dm_space_map *sm, dm_block_t b,
+			     uint32_t count)
+{
+	int r;
+	uint32_t old_count;
+	enum allocation_event ev;
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+	r = sm_ll_insert(&smd->ll, b, count, &ev);
+	if (!r) {
+		switch (ev) {
+		case SM_NONE:
+			break;
+
+		case SM_ALLOC:
+			/*
+			 * This _must_ be free in the prior transaction
+			 * otherwise we've lost atomicity.
+			 */
+			smd->nr_allocated_this_transaction++;
+			break;
+
+		case SM_FREE:
+			/*
+			 * It's only free if it's also free in the last
+			 * transaction.
+			 */
+			r = sm_ll_lookup(&smd->old_ll, b, &old_count);
+			if (r)
+				return r;
+
+			if (!old_count)
+				smd->nr_allocated_this_transaction--;
+			break;
+		}
+	}
+
+	return r;
+}
+
+static int sm_disk_inc_block(struct dm_space_map *sm, dm_block_t b)
+{
+	int r;
+	enum allocation_event ev;
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+	r = sm_ll_inc(&smd->ll, b, &ev);
+	if (!r && (ev == SM_ALLOC))
+		/*
+		 * This _must_ be free in the prior transaction
+		 * otherwise we've lost atomicity.
+		 */
+		smd->nr_allocated_this_transaction++;
+
+	return r;
+}
+
+static int sm_disk_dec_block(struct dm_space_map *sm, dm_block_t b)
+{
+	int r;
+	uint32_t old_count;
+	enum allocation_event ev;
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+	r = sm_ll_dec(&smd->ll, b, &ev);
+	if (!r && (ev == SM_FREE)) {
+		/*
+		 * It's only free if it's also free in the last
+		 * transaction.
+		 */
+		r = sm_ll_lookup(&smd->old_ll, b, &old_count);
+		if (r)
+			return r;
+
+		if (!old_count)
+			smd->nr_allocated_this_transaction--;
+	}
+
+	return r;
+}
+
+static int sm_disk_new_block(struct dm_space_map *sm, dm_block_t *b)
+{
+	int r;
+	enum allocation_event ev;
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+	/* FIXME: we should loop round a couple of times */
+	r = sm_ll_find_free_block(&smd->old_ll, smd->begin, smd->old_ll.nr_blocks, b);
+	if (r)
+		return r;
+
+	smd->begin = *b + 1;
+	r = sm_ll_inc(&smd->ll, *b, &ev);
+	if (!r) {
+		BUG_ON(ev != SM_ALLOC);
+		smd->nr_allocated_this_transaction++;
+	}
+
+	return r;
+}
+
+static int sm_disk_commit(struct dm_space_map *sm)
+{
+	int r;
+	dm_block_t nr_free;
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+
+	r = sm_disk_get_nr_free(sm, &nr_free);
+	if (r)
+		return r;
+
+	r = sm_ll_commit(&smd->ll);
+	if (r)
+		return r;
+
+	memcpy(&smd->old_ll, &smd->ll, sizeof(smd->old_ll));
+	smd->begin = 0;
+	smd->nr_allocated_this_transaction = 0;
+
+	r = sm_disk_get_nr_free(sm, &nr_free);
+	if (r)
+		return r;
+
+	return 0;
+}
+
+static int sm_disk_root_size(struct dm_space_map *sm, size_t *result)
+{
+	*result = sizeof(struct disk_sm_root);
+
+	return 0;
+}
+
+static int sm_disk_copy_root(struct dm_space_map *sm, void *where_le, size_t max)
+{
+	struct sm_disk *smd = container_of(sm, struct sm_disk, sm);
+	struct disk_sm_root root_le;
+
+	root_le.nr_blocks = cpu_to_le64(smd->ll.nr_blocks);
+	root_le.nr_allocated = cpu_to_le64(smd->ll.nr_allocated);
+	root_le.bitmap_root = cpu_to_le64(smd->ll.bitmap_root);
+	root_le.ref_count_root = cpu_to_le64(smd->ll.ref_count_root);
+
+	if (max < sizeof(root_le))
+		return -ENOSPC;
+
+	memcpy(where_le, &root_le, sizeof(root_le));
+
+	return 0;
+}
+
+/*----------------------------------------------------------------*/
+
+static struct dm_space_map ops = {
+	.destroy = sm_disk_destroy,
+	.extend = sm_disk_extend,
+	.get_nr_blocks = sm_disk_get_nr_blocks,
+	.get_nr_free = sm_disk_get_nr_free,
+	.get_count = sm_disk_get_count,
+	.count_is_more_than_one = sm_disk_count_is_more_than_one,
+	.set_count = sm_disk_set_count,
+	.inc_block = sm_disk_inc_block,
+	.dec_block = sm_disk_dec_block,
+	.new_block = sm_disk_new_block,
+	.commit = sm_disk_commit,
+	.root_size = sm_disk_root_size,
+	.copy_root = sm_disk_copy_root
+};
+
+static struct dm_space_map *dm_sm_disk_create_real(
+	struct dm_transaction_manager *tm,
+	dm_block_t nr_blocks)
+{
+	int r;
+	struct sm_disk *smd;
+
+	smd = kmalloc(sizeof(*smd), GFP_KERNEL);
+	if (!smd)
+		return ERR_PTR(-ENOMEM);
+
+	smd->begin = 0;
+	smd->nr_allocated_this_transaction = 0;
+	memcpy(&smd->sm, &ops, sizeof(smd->sm));
+
+	r = sm_ll_new_disk(&smd->ll, tm);
+	if (r)
+		goto bad;
+
+	r = sm_ll_extend(&smd->ll, nr_blocks);
+	if (r)
+		goto bad;
+
+	r = sm_disk_commit(&smd->sm);
+	if (r)
+		goto bad;
+
+	return &smd->sm;
+
+bad:
+	kfree(smd);
+	return ERR_PTR(r);
+}
+
+struct dm_space_map *dm_sm_disk_create(struct dm_transaction_manager *tm,
+				       dm_block_t nr_blocks)
+{
+	struct dm_space_map *sm = dm_sm_disk_create_real(tm, nr_blocks);
+	struct dm_space_map *smc;
+
+	if (IS_ERR_OR_NULL(sm))
+		return sm;
+
+	smc = dm_sm_checker_create_fresh(sm);
+	if (IS_ERR(smc))
+		dm_sm_destroy(sm);
+
+	return smc;
+}
+EXPORT_SYMBOL_GPL(dm_sm_disk_create);
+
+static struct dm_space_map *dm_sm_disk_open_real(
+	struct dm_transaction_manager *tm,
+	void *root_le, size_t len)
+{
+	int r;
+	struct sm_disk *smd;
+
+	smd = kmalloc(sizeof(*smd), GFP_KERNEL);
+	if (!smd)
+		return ERR_PTR(-ENOMEM);
+
+	smd->begin = 0;
+	smd->nr_allocated_this_transaction = 0;
+	memcpy(&smd->sm, &ops, sizeof(smd->sm));
+
+	r = sm_ll_open_disk(&smd->ll, tm, root_le, len);
+	if (r)
+		goto bad;
+
+	r = sm_disk_commit(&smd->sm);
+	if (r)
+		goto bad;
+
+	return &smd->sm;
+
+bad:
+	kfree(smd);
+	return ERR_PTR(r);
+}
+
+struct dm_space_map *dm_sm_disk_open(struct dm_transaction_manager *tm,
+				     void *root_le, size_t len)
+{
+	return dm_sm_checker_create(
+		dm_sm_disk_open_real(tm, root_le, len));
+}
+EXPORT_SYMBOL_GPL(dm_sm_disk_open);
+
+/*----------------------------------------------------------------*/
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-disk.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-disk.h
new file mode 100644
index 0000000..447a0a9
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-disk.h
@@ -0,0 +1,25 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_SPACE_MAP_DISK_H
+#define _LINUX_DM_SPACE_MAP_DISK_H
+
+#include "dm-block-manager.h"
+
+struct dm_space_map;
+struct dm_transaction_manager;
+
+/*
+ * Unfortunately we have to use two-phase construction due to the cycle
+ * between the tm and sm.
+ */
+struct dm_space_map *dm_sm_disk_create(struct dm_transaction_manager *tm,
+				       dm_block_t nr_blocks);
+
+struct dm_space_map *dm_sm_disk_open(struct dm_transaction_manager *tm,
+				     void *root, size_t len);
+
+#endif /* _LINUX_DM_SPACE_MAP_DISK_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-metadata.c b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-metadata.c
new file mode 100644
index 0000000..e89ae5e
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-metadata.c
@@ -0,0 +1,596 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-space-map.h"
+#include "dm-space-map-common.h"
+#include "dm-space-map-metadata.h"
+
+#include <linux/list.h>
+#include <linux/slab.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "space map metadata"
+
+/*----------------------------------------------------------------*/
+
+/*
+ * Space map interface.
+ *
+ * The low level disk format is written using the standard btree and
+ * transaction manager.  This means that performing disk operations may
+ * cause us to recurse into the space map in order to allocate new blocks.
+ * For this reason we have a pool of pre-allocated blocks large enough to
+ * service any metadata_ll_disk operation.
+ */
+
+/*
+ * FIXME: we should calculate this based on the size of the device.
+ * Only the metadata space map needs this functionality.
+ */
+#define MAX_RECURSIVE_ALLOCATIONS 1024
+
+enum block_op_type {
+	BOP_INC,
+	BOP_DEC
+};
+
+struct block_op {
+	enum block_op_type type;
+	dm_block_t block;
+};
+
+struct sm_metadata {
+	struct dm_space_map sm;
+
+	struct ll_disk ll;
+	struct ll_disk old_ll;
+
+	dm_block_t begin;
+
+	unsigned recursion_count;
+	unsigned allocated_this_transaction;
+	unsigned nr_uncommitted;
+	struct block_op uncommitted[MAX_RECURSIVE_ALLOCATIONS];
+};
+
+static int add_bop(struct sm_metadata *smm, enum block_op_type type, dm_block_t b)
+{
+	struct block_op *op;
+
+	if (smm->nr_uncommitted == MAX_RECURSIVE_ALLOCATIONS) {
+		DMERR("too many recursive allocations");
+		return -ENOMEM;
+	}
+
+	op = smm->uncommitted + smm->nr_uncommitted++;
+	op->type = type;
+	op->block = b;
+
+	return 0;
+}
+
+static int commit_bop(struct sm_metadata *smm, struct block_op *op)
+{
+	int r = 0;
+	enum allocation_event ev;
+
+	switch (op->type) {
+	case BOP_INC:
+		r = sm_ll_inc(&smm->ll, op->block, &ev);
+		break;
+
+	case BOP_DEC:
+		r = sm_ll_dec(&smm->ll, op->block, &ev);
+		break;
+	}
+
+	return r;
+}
+
+static void in(struct sm_metadata *smm)
+{
+	smm->recursion_count++;
+}
+
+static int out(struct sm_metadata *smm)
+{
+	int r = 0;
+
+	/*
+	 * If we're not recursing then very bad things are happening.
+	 */
+	if (!smm->recursion_count) {
+		DMERR("lost track of recursion depth");
+		return -ENOMEM;
+	}
+
+	if (smm->recursion_count == 1 && smm->nr_uncommitted) {
+		while (smm->nr_uncommitted && !r) {
+			smm->nr_uncommitted--;
+			r = commit_bop(smm, smm->uncommitted +
+				       smm->nr_uncommitted);
+			if (r)
+				break;
+		}
+	}
+
+	smm->recursion_count--;
+
+	return r;
+}
+
+/*
+ * When using the out() function above, we often want to combine an error
+ * code for the operation run in the recursive context with that from
+ * out().
+ */
+static int combine_errors(int r1, int r2)
+{
+	return r1 ? r1 : r2;
+}
+
+static int recursing(struct sm_metadata *smm)
+{
+	return smm->recursion_count;
+}
+
+static void sm_metadata_destroy(struct dm_space_map *sm)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	kfree(smm);
+}
+
+static int sm_metadata_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
+{
+	DMERR("doesn't support extend");
+	return -EINVAL;
+}
+
+static int sm_metadata_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	*count = smm->ll.nr_blocks;
+
+	return 0;
+}
+
+static int sm_metadata_get_nr_free(struct dm_space_map *sm, dm_block_t *count)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	*count = smm->old_ll.nr_blocks - smm->old_ll.nr_allocated -
+		 smm->allocated_this_transaction;
+
+	return 0;
+}
+
+static int sm_metadata_get_count(struct dm_space_map *sm, dm_block_t b,
+				 uint32_t *result)
+{
+	int r, i;
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+	unsigned adjustment = 0;
+
+	/*
+	 * We may have some uncommitted adjustments to add.  This list
+	 * should always be really short.
+	 */
+	for (i = 0; i < smm->nr_uncommitted; i++) {
+		struct block_op *op = smm->uncommitted + i;
+
+		if (op->block != b)
+			continue;
+
+		switch (op->type) {
+		case BOP_INC:
+			adjustment++;
+			break;
+
+		case BOP_DEC:
+			adjustment--;
+			break;
+		}
+	}
+
+	r = sm_ll_lookup(&smm->ll, b, result);
+	if (r)
+		return r;
+
+	*result += adjustment;
+
+	return 0;
+}
+
+static int sm_metadata_count_is_more_than_one(struct dm_space_map *sm,
+					      dm_block_t b, int *result)
+{
+	int r, i, adjustment = 0;
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+	uint32_t rc;
+
+	/*
+	 * We may have some uncommitted adjustments to add.  This list
+	 * should always be really short.
+	 */
+	for (i = 0; i < smm->nr_uncommitted; i++) {
+		struct block_op *op = smm->uncommitted + i;
+
+		if (op->block != b)
+			continue;
+
+		switch (op->type) {
+		case BOP_INC:
+			adjustment++;
+			break;
+
+		case BOP_DEC:
+			adjustment--;
+			break;
+		}
+	}
+
+	if (adjustment > 1) {
+		*result = 1;
+		return 0;
+	}
+
+	r = sm_ll_lookup_bitmap(&smm->ll, b, &rc);
+	if (r)
+		return r;
+
+	if (rc == 3)
+		/*
+		 * We err on the side of caution, and always return true.
+		 */
+		*result = 1;
+	else
+		*result = rc + adjustment > 1;
+
+	return 0;
+}
+
+static int sm_metadata_set_count(struct dm_space_map *sm, dm_block_t b,
+				 uint32_t count)
+{
+	int r, r2;
+	enum allocation_event ev;
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	if (smm->recursion_count) {
+		DMERR("cannot recurse set_count()");
+		return -EINVAL;
+	}
+
+	in(smm);
+	r = sm_ll_insert(&smm->ll, b, count, &ev);
+	r2 = out(smm);
+
+	return combine_errors(r, r2);
+}
+
+static int sm_metadata_inc_block(struct dm_space_map *sm, dm_block_t b)
+{
+	int r, r2 = 0;
+	enum allocation_event ev;
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	if (recursing(smm))
+		r = add_bop(smm, BOP_INC, b);
+	else {
+		in(smm);
+		r = sm_ll_inc(&smm->ll, b, &ev);
+		r2 = out(smm);
+	}
+
+	return combine_errors(r, r2);
+}
+
+static int sm_metadata_dec_block(struct dm_space_map *sm, dm_block_t b)
+{
+	int r, r2 = 0;
+	enum allocation_event ev;
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	if (recursing(smm))
+		r = add_bop(smm, BOP_DEC, b);
+	else {
+		in(smm);
+		r = sm_ll_dec(&smm->ll, b, &ev);
+		r2 = out(smm);
+	}
+
+	return combine_errors(r, r2);
+}
+
+static int sm_metadata_new_block_(struct dm_space_map *sm, dm_block_t *b)
+{
+	int r, r2 = 0;
+	enum allocation_event ev;
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	r = sm_ll_find_free_block(&smm->old_ll, smm->begin, smm->old_ll.nr_blocks, b);
+	if (r)
+		return r;
+
+	smm->begin = *b + 1;
+
+	if (recursing(smm))
+		r = add_bop(smm, BOP_INC, *b);
+	else {
+		in(smm);
+		r = sm_ll_inc(&smm->ll, *b, &ev);
+		r2 = out(smm);
+	}
+
+	if (!r)
+		smm->allocated_this_transaction++;
+
+	return combine_errors(r, r2);
+}
+
+static int sm_metadata_new_block(struct dm_space_map *sm, dm_block_t *b)
+{
+	int r = sm_metadata_new_block_(sm, b);
+	if (r)
+		DMERR("out of metadata space");
+	return r;
+}
+
+static int sm_metadata_commit(struct dm_space_map *sm)
+{
+	int r;
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	r = sm_ll_commit(&smm->ll);
+	if (r)
+		return r;
+
+	memcpy(&smm->old_ll, &smm->ll, sizeof(smm->old_ll));
+	smm->begin = 0;
+	smm->allocated_this_transaction = 0;
+
+	return 0;
+}
+
+static int sm_metadata_root_size(struct dm_space_map *sm, size_t *result)
+{
+	*result = sizeof(struct disk_sm_root);
+
+	return 0;
+}
+
+static int sm_metadata_copy_root(struct dm_space_map *sm, void *where_le, size_t max)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+	struct disk_sm_root root_le;
+
+	root_le.nr_blocks = cpu_to_le64(smm->ll.nr_blocks);
+	root_le.nr_allocated = cpu_to_le64(smm->ll.nr_allocated);
+	root_le.bitmap_root = cpu_to_le64(smm->ll.bitmap_root);
+	root_le.ref_count_root = cpu_to_le64(smm->ll.ref_count_root);
+
+	if (max < sizeof(root_le))
+		return -ENOSPC;
+
+	memcpy(where_le, &root_le, sizeof(root_le));
+
+	return 0;
+}
+
+static struct dm_space_map ops = {
+	.destroy = sm_metadata_destroy,
+	.extend = sm_metadata_extend,
+	.get_nr_blocks = sm_metadata_get_nr_blocks,
+	.get_nr_free = sm_metadata_get_nr_free,
+	.get_count = sm_metadata_get_count,
+	.count_is_more_than_one = sm_metadata_count_is_more_than_one,
+	.set_count = sm_metadata_set_count,
+	.inc_block = sm_metadata_inc_block,
+	.dec_block = sm_metadata_dec_block,
+	.new_block = sm_metadata_new_block,
+	.commit = sm_metadata_commit,
+	.root_size = sm_metadata_root_size,
+	.copy_root = sm_metadata_copy_root
+};
+
+/*----------------------------------------------------------------*/
+
+/*
+ * When a new space map is created that manages its own space.  We use
+ * this tiny bootstrap allocator.
+ */
+static void sm_bootstrap_destroy(struct dm_space_map *sm)
+{
+}
+
+static int sm_bootstrap_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
+{
+	DMERR("boostrap doesn't support extend");
+
+	return -EINVAL;
+}
+
+static int sm_bootstrap_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	return smm->ll.nr_blocks;
+}
+
+static int sm_bootstrap_get_nr_free(struct dm_space_map *sm, dm_block_t *count)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	*count = smm->ll.nr_blocks - smm->begin;
+
+	return 0;
+}
+
+static int sm_bootstrap_get_count(struct dm_space_map *sm, dm_block_t b,
+				  uint32_t *result)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	return b < smm->begin ? 1 : 0;
+}
+
+static int sm_bootstrap_count_is_more_than_one(struct dm_space_map *sm,
+					       dm_block_t b, int *result)
+{
+	*result = 0;
+
+	return 0;
+}
+
+static int sm_bootstrap_set_count(struct dm_space_map *sm, dm_block_t b,
+				  uint32_t count)
+{
+	DMERR("boostrap doesn't support set_count");
+
+	return -EINVAL;
+}
+
+static int sm_bootstrap_new_block(struct dm_space_map *sm, dm_block_t *b)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	/*
+	 * We know the entire device is unused.
+	 */
+	if (smm->begin == smm->ll.nr_blocks)
+		return -ENOSPC;
+
+	*b = smm->begin++;
+
+	return 0;
+}
+
+static int sm_bootstrap_inc_block(struct dm_space_map *sm, dm_block_t b)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	return add_bop(smm, BOP_INC, b);
+}
+
+static int sm_bootstrap_dec_block(struct dm_space_map *sm, dm_block_t b)
+{
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	return add_bop(smm, BOP_DEC, b);
+}
+
+static int sm_bootstrap_commit(struct dm_space_map *sm)
+{
+	return 0;
+}
+
+static int sm_bootstrap_root_size(struct dm_space_map *sm, size_t *result)
+{
+	DMERR("boostrap doesn't support root_size");
+
+	return -EINVAL;
+}
+
+static int sm_bootstrap_copy_root(struct dm_space_map *sm, void *where,
+				  size_t max)
+{
+	DMERR("boostrap doesn't support copy_root");
+
+	return -EINVAL;
+}
+
+static struct dm_space_map bootstrap_ops = {
+	.destroy = sm_bootstrap_destroy,
+	.extend = sm_bootstrap_extend,
+	.get_nr_blocks = sm_bootstrap_get_nr_blocks,
+	.get_nr_free = sm_bootstrap_get_nr_free,
+	.get_count = sm_bootstrap_get_count,
+	.count_is_more_than_one = sm_bootstrap_count_is_more_than_one,
+	.set_count = sm_bootstrap_set_count,
+	.inc_block = sm_bootstrap_inc_block,
+	.dec_block = sm_bootstrap_dec_block,
+	.new_block = sm_bootstrap_new_block,
+	.commit = sm_bootstrap_commit,
+	.root_size = sm_bootstrap_root_size,
+	.copy_root = sm_bootstrap_copy_root
+};
+
+/*----------------------------------------------------------------*/
+
+struct dm_space_map *dm_sm_metadata_init(void)
+{
+	struct sm_metadata *smm;
+
+	smm = kmalloc(sizeof(*smm), GFP_KERNEL);
+	if (!smm)
+		return ERR_PTR(-ENOMEM);
+
+	memcpy(&smm->sm, &ops, sizeof(smm->sm));
+
+	return &smm->sm;
+}
+
+int dm_sm_metadata_create(struct dm_space_map *sm,
+			  struct dm_transaction_manager *tm,
+			  dm_block_t nr_blocks,
+			  dm_block_t superblock)
+{
+	int r;
+	dm_block_t i;
+	enum allocation_event ev;
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	smm->begin = superblock + 1;
+	smm->recursion_count = 0;
+	smm->allocated_this_transaction = 0;
+	smm->nr_uncommitted = 0;
+
+	memcpy(&smm->sm, &bootstrap_ops, sizeof(smm->sm));
+
+	r = sm_ll_new_metadata(&smm->ll, tm);
+	if (r)
+		return r;
+
+	r = sm_ll_extend(&smm->ll, nr_blocks);
+	if (r)
+		return r;
+
+	memcpy(&smm->sm, &ops, sizeof(smm->sm));
+
+	/*
+	 * Now we need to update the newly created data structures with the
+	 * allocated blocks that they were built from.
+	 */
+	for (i = superblock; !r && i < smm->begin; i++)
+		r = sm_ll_inc(&smm->ll, i, &ev);
+
+	if (r)
+		return r;
+
+	return sm_metadata_commit(sm);
+}
+
+int dm_sm_metadata_open(struct dm_space_map *sm,
+			struct dm_transaction_manager *tm,
+			void *root_le, size_t len)
+{
+	int r;
+	struct sm_metadata *smm = container_of(sm, struct sm_metadata, sm);
+
+	r = sm_ll_open_metadata(&smm->ll, tm, root_le, len);
+	if (r)
+		return r;
+
+	smm->begin = 0;
+	smm->recursion_count = 0;
+	smm->allocated_this_transaction = 0;
+	smm->nr_uncommitted = 0;
+
+	memcpy(&smm->old_ll, &smm->ll, sizeof(smm->old_ll));
+	return 0;
+}
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-metadata.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-metadata.h
new file mode 100644
index 0000000..39bba08
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map-metadata.h
@@ -0,0 +1,33 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef DM_SPACE_MAP_METADATA_H
+#define DM_SPACE_MAP_METADATA_H
+
+#include "dm-transaction-manager.h"
+
+/*
+ * Unfortunately we have to use two-phase construction due to the cycle
+ * between the tm and sm.
+ */
+struct dm_space_map *dm_sm_metadata_init(void);
+
+/*
+ * Create a fresh space map.
+ */
+int dm_sm_metadata_create(struct dm_space_map *sm,
+			  struct dm_transaction_manager *tm,
+			  dm_block_t nr_blocks,
+			  dm_block_t superblock);
+
+/*
+ * Open from a previously-recorded root.
+ */
+int dm_sm_metadata_open(struct dm_space_map *sm,
+			struct dm_transaction_manager *tm,
+			void *root_le, size_t len);
+
+#endif	/* DM_SPACE_MAP_METADATA_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map.h
new file mode 100644
index 0000000..1cbfc6b
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-space-map.h
@@ -0,0 +1,134 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_SPACE_MAP_H
+#define _LINUX_DM_SPACE_MAP_H
+
+#include "dm-block-manager.h"
+
+/*
+ * struct dm_space_map keeps a record of how many times each block in a device
+ * is referenced.  It needs to be fixed on disk as part of the transaction.
+ */
+struct dm_space_map {
+	void (*destroy)(struct dm_space_map *sm);
+
+	/*
+	 * You must commit before allocating the newly added space.
+	 */
+	int (*extend)(struct dm_space_map *sm, dm_block_t extra_blocks);
+
+	/*
+	 * Extensions do not appear in this count until after commit has
+	 * been called.
+	 */
+	int (*get_nr_blocks)(struct dm_space_map *sm, dm_block_t *count);
+
+	/*
+	 * Space maps must never allocate a block from the previous
+	 * transaction, in case we need to rollback.  This complicates the
+	 * semantics of get_nr_free(), it should return the number of blocks
+	 * that are available for allocation _now_.  For instance you may
+	 * have blocks with a zero reference count that will not be
+	 * available for allocation until after the next commit.
+	 */
+	int (*get_nr_free)(struct dm_space_map *sm, dm_block_t *count);
+
+	int (*get_count)(struct dm_space_map *sm, dm_block_t b, uint32_t *result);
+	int (*count_is_more_than_one)(struct dm_space_map *sm, dm_block_t b,
+				      int *result);
+	int (*set_count)(struct dm_space_map *sm, dm_block_t b, uint32_t count);
+
+	int (*commit)(struct dm_space_map *sm);
+
+	int (*inc_block)(struct dm_space_map *sm, dm_block_t b);
+	int (*dec_block)(struct dm_space_map *sm, dm_block_t b);
+
+	/*
+	 * new_block will increment the returned block.
+	 */
+	int (*new_block)(struct dm_space_map *sm, dm_block_t *b);
+
+	/*
+	 * The root contains all the information needed to fix the space map.
+	 * Generally this info is small, so squirrel it away in a disk block
+	 * along with other info.
+	 */
+	int (*root_size)(struct dm_space_map *sm, size_t *result);
+	int (*copy_root)(struct dm_space_map *sm, void *copy_to_here_le, size_t len);
+};
+
+/*----------------------------------------------------------------*/
+
+static inline void dm_sm_destroy(struct dm_space_map *sm)
+{
+	sm->destroy(sm);
+}
+
+static inline int dm_sm_extend(struct dm_space_map *sm, dm_block_t extra_blocks)
+{
+	return sm->extend(sm, extra_blocks);
+}
+
+static inline int dm_sm_get_nr_blocks(struct dm_space_map *sm, dm_block_t *count)
+{
+	return sm->get_nr_blocks(sm, count);
+}
+
+static inline int dm_sm_get_nr_free(struct dm_space_map *sm, dm_block_t *count)
+{
+	return sm->get_nr_free(sm, count);
+}
+
+static inline int dm_sm_get_count(struct dm_space_map *sm, dm_block_t b,
+				  uint32_t *result)
+{
+	return sm->get_count(sm, b, result);
+}
+
+static inline int dm_sm_count_is_more_than_one(struct dm_space_map *sm,
+					       dm_block_t b, int *result)
+{
+	return sm->count_is_more_than_one(sm, b, result);
+}
+
+static inline int dm_sm_set_count(struct dm_space_map *sm, dm_block_t b,
+				  uint32_t count)
+{
+	return sm->set_count(sm, b, count);
+}
+
+static inline int dm_sm_commit(struct dm_space_map *sm)
+{
+	return sm->commit(sm);
+}
+
+static inline int dm_sm_inc_block(struct dm_space_map *sm, dm_block_t b)
+{
+	return sm->inc_block(sm, b);
+}
+
+static inline int dm_sm_dec_block(struct dm_space_map *sm, dm_block_t b)
+{
+	return sm->dec_block(sm, b);
+}
+
+static inline int dm_sm_new_block(struct dm_space_map *sm, dm_block_t *b)
+{
+	return sm->new_block(sm, b);
+}
+
+static inline int dm_sm_root_size(struct dm_space_map *sm, size_t *result)
+{
+	return sm->root_size(sm, result);
+}
+
+static inline int dm_sm_copy_root(struct dm_space_map *sm, void *copy_to_here_le, size_t len)
+{
+	return sm->copy_root(sm, copy_to_here_le, len);
+}
+
+#endif	/* _LINUX_DM_SPACE_MAP_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-transaction-manager.c b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-transaction-manager.c
new file mode 100644
index 0000000..ba54aac
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-transaction-manager.c
@@ -0,0 +1,407 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+#include "dm-transaction-manager.h"
+#include "dm-space-map.h"
+#include "dm-space-map-checker.h"
+#include "dm-space-map-disk.h"
+#include "dm-space-map-metadata.h"
+#include "dm-persistent-data-internal.h"
+
+#include <linux/export.h>
+#include <linux/slab.h>
+#include <linux/device-mapper.h>
+
+#define DM_MSG_PREFIX "transaction manager"
+
+/*----------------------------------------------------------------*/
+
+struct shadow_info {
+	struct hlist_node hlist;
+	dm_block_t where;
+};
+
+/*
+ * It would be nice if we scaled with the size of transaction.
+ */
+#define HASH_SIZE 256
+#define HASH_MASK (HASH_SIZE - 1)
+
+struct dm_transaction_manager {
+	int is_clone;
+	struct dm_transaction_manager *real;
+
+	struct dm_block_manager *bm;
+	struct dm_space_map *sm;
+
+	spinlock_t lock;
+	struct hlist_head buckets[HASH_SIZE];
+};
+
+/*----------------------------------------------------------------*/
+
+static int is_shadow(struct dm_transaction_manager *tm, dm_block_t b)
+{
+	int r = 0;
+	unsigned bucket = dm_hash_block(b, HASH_MASK);
+	struct shadow_info *si;
+	struct hlist_node *n;
+
+	spin_lock(&tm->lock);
+	hlist_for_each_entry(si, n, tm->buckets + bucket, hlist)
+		if (si->where == b) {
+			r = 1;
+			break;
+		}
+	spin_unlock(&tm->lock);
+
+	return r;
+}
+
+/*
+ * This can silently fail if there's no memory.  We're ok with this since
+ * creating redundant shadows causes no harm.
+ */
+static void insert_shadow(struct dm_transaction_manager *tm, dm_block_t b)
+{
+	unsigned bucket;
+	struct shadow_info *si;
+
+	si = kmalloc(sizeof(*si), GFP_NOIO);
+	if (si) {
+		si->where = b;
+		bucket = dm_hash_block(b, HASH_MASK);
+		spin_lock(&tm->lock);
+		hlist_add_head(&si->hlist, tm->buckets + bucket);
+		spin_unlock(&tm->lock);
+	}
+}
+
+static void wipe_shadow_table(struct dm_transaction_manager *tm)
+{
+	struct shadow_info *si;
+	struct hlist_node *n, *tmp;
+	struct hlist_head *bucket;
+	int i;
+
+	spin_lock(&tm->lock);
+	for (i = 0; i < HASH_SIZE; i++) {
+		bucket = tm->buckets + i;
+		hlist_for_each_entry_safe(si, n, tmp, bucket, hlist)
+			kfree(si);
+
+		INIT_HLIST_HEAD(bucket);
+	}
+
+	spin_unlock(&tm->lock);
+}
+
+/*----------------------------------------------------------------*/
+
+static struct dm_transaction_manager *dm_tm_create(struct dm_block_manager *bm,
+						   struct dm_space_map *sm)
+{
+	int i;
+	struct dm_transaction_manager *tm;
+
+	tm = kmalloc(sizeof(*tm), GFP_KERNEL);
+	if (!tm)
+		return ERR_PTR(-ENOMEM);
+
+	tm->is_clone = 0;
+	tm->real = NULL;
+	tm->bm = bm;
+	tm->sm = sm;
+
+	spin_lock_init(&tm->lock);
+	for (i = 0; i < HASH_SIZE; i++)
+		INIT_HLIST_HEAD(tm->buckets + i);
+
+	return tm;
+}
+
+struct dm_transaction_manager *dm_tm_create_non_blocking_clone(struct dm_transaction_manager *real)
+{
+	struct dm_transaction_manager *tm;
+
+	tm = kmalloc(sizeof(*tm), GFP_KERNEL);
+	if (tm) {
+		tm->is_clone = 1;
+		tm->real = real;
+	}
+
+	return tm;
+}
+EXPORT_SYMBOL_GPL(dm_tm_create_non_blocking_clone);
+
+void dm_tm_destroy(struct dm_transaction_manager *tm)
+{
+	if (!tm->is_clone)
+		wipe_shadow_table(tm);
+
+	kfree(tm);
+}
+EXPORT_SYMBOL_GPL(dm_tm_destroy);
+
+int dm_tm_pre_commit(struct dm_transaction_manager *tm)
+{
+	int r;
+
+	if (tm->is_clone)
+		return -EWOULDBLOCK;
+
+	r = dm_sm_commit(tm->sm);
+	if (r < 0)
+		return r;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(dm_tm_pre_commit);
+
+int dm_tm_commit(struct dm_transaction_manager *tm, struct dm_block *root)
+{
+	if (tm->is_clone)
+		return -EWOULDBLOCK;
+
+	wipe_shadow_table(tm);
+
+	return dm_bm_flush_and_unlock(tm->bm, root);
+}
+EXPORT_SYMBOL_GPL(dm_tm_commit);
+
+int dm_tm_new_block(struct dm_transaction_manager *tm,
+		    struct dm_block_validator *v,
+		    struct dm_block **result)
+{
+	int r;
+	dm_block_t new_block;
+
+	if (tm->is_clone)
+		return -EWOULDBLOCK;
+
+	r = dm_sm_new_block(tm->sm, &new_block);
+	if (r < 0)
+		return r;
+
+	r = dm_bm_write_lock_zero(tm->bm, new_block, v, result);
+	if (r < 0) {
+		dm_sm_dec_block(tm->sm, new_block);
+		return r;
+	}
+
+	/*
+	 * New blocks count as shadows in that they don't need to be
+	 * shadowed again.
+	 */
+	insert_shadow(tm, new_block);
+
+	return 0;
+}
+
+static int __shadow_block(struct dm_transaction_manager *tm, dm_block_t orig,
+			  struct dm_block_validator *v,
+			  struct dm_block **result)
+{
+	int r;
+	dm_block_t new;
+	struct dm_block *orig_block;
+
+	r = dm_sm_new_block(tm->sm, &new);
+	if (r < 0)
+		return r;
+
+	r = dm_sm_dec_block(tm->sm, orig);
+	if (r < 0)
+		return r;
+
+	r = dm_bm_read_lock(tm->bm, orig, v, &orig_block);
+	if (r < 0)
+		return r;
+
+	r = dm_bm_unlock_move(orig_block, new);
+	if (r < 0) {
+		dm_bm_unlock(orig_block);
+		return r;
+	}
+
+	return dm_bm_write_lock(tm->bm, new, v, result);
+}
+
+int dm_tm_shadow_block(struct dm_transaction_manager *tm, dm_block_t orig,
+		       struct dm_block_validator *v, struct dm_block **result,
+		       int *inc_children)
+{
+	int r;
+
+	if (tm->is_clone)
+		return -EWOULDBLOCK;
+
+	r = dm_sm_count_is_more_than_one(tm->sm, orig, inc_children);
+	if (r < 0)
+		return r;
+
+	if (is_shadow(tm, orig) && !*inc_children)
+		return dm_bm_write_lock(tm->bm, orig, v, result);
+
+	r = __shadow_block(tm, orig, v, result);
+	if (r < 0)
+		return r;
+	insert_shadow(tm, dm_block_location(*result));
+
+	return r;
+}
+
+int dm_tm_read_lock(struct dm_transaction_manager *tm, dm_block_t b,
+		    struct dm_block_validator *v,
+		    struct dm_block **blk)
+{
+	if (tm->is_clone)
+		return dm_bm_read_try_lock(tm->real->bm, b, v, blk);
+
+	return dm_bm_read_lock(tm->bm, b, v, blk);
+}
+
+int dm_tm_unlock(struct dm_transaction_manager *tm, struct dm_block *b)
+{
+	return dm_bm_unlock(b);
+}
+EXPORT_SYMBOL_GPL(dm_tm_unlock);
+
+void dm_tm_inc(struct dm_transaction_manager *tm, dm_block_t b)
+{
+	/*
+	 * The non-blocking clone doesn't support this.
+	 */
+	BUG_ON(tm->is_clone);
+
+	dm_sm_inc_block(tm->sm, b);
+}
+EXPORT_SYMBOL_GPL(dm_tm_inc);
+
+void dm_tm_dec(struct dm_transaction_manager *tm, dm_block_t b)
+{
+	/*
+	 * The non-blocking clone doesn't support this.
+	 */
+	BUG_ON(tm->is_clone);
+
+	dm_sm_dec_block(tm->sm, b);
+}
+EXPORT_SYMBOL_GPL(dm_tm_dec);
+
+int dm_tm_ref(struct dm_transaction_manager *tm, dm_block_t b,
+	      uint32_t *result)
+{
+	if (tm->is_clone)
+		return -EWOULDBLOCK;
+
+	return dm_sm_get_count(tm->sm, b, result);
+}
+
+struct dm_block_manager *dm_tm_get_bm(struct dm_transaction_manager *tm)
+{
+	return tm->bm;
+}
+
+/*----------------------------------------------------------------*/
+
+static int dm_tm_create_internal(struct dm_block_manager *bm,
+				 dm_block_t sb_location,
+				 struct dm_block_validator *sb_validator,
+				 size_t root_offset, size_t root_max_len,
+				 struct dm_transaction_manager **tm,
+				 struct dm_space_map **sm,
+				 struct dm_block **sblock,
+				 int create)
+{
+	int r;
+	struct dm_space_map *inner;
+
+	inner = dm_sm_metadata_init();
+	if (IS_ERR(inner))
+		return PTR_ERR(inner);
+
+	*tm = dm_tm_create(bm, inner);
+	if (IS_ERR(*tm)) {
+		dm_sm_destroy(inner);
+		return PTR_ERR(*tm);
+	}
+
+	if (create) {
+		r = dm_bm_write_lock_zero(dm_tm_get_bm(*tm), sb_location,
+					  sb_validator, sblock);
+		if (r < 0) {
+			DMERR("couldn't lock superblock");
+			goto bad1;
+		}
+
+		r = dm_sm_metadata_create(inner, *tm, dm_bm_nr_blocks(bm),
+					  sb_location);
+		if (r) {
+			DMERR("couldn't create metadata space map");
+			goto bad2;
+		}
+
+		*sm = dm_sm_checker_create(inner);
+		if (IS_ERR(*sm)) {
+			r = PTR_ERR(*sm);
+			goto bad2;
+		}
+
+	} else {
+		r = dm_bm_write_lock(dm_tm_get_bm(*tm), sb_location,
+				     sb_validator, sblock);
+		if (r < 0) {
+			DMERR("couldn't lock superblock");
+			goto bad1;
+		}
+
+		r = dm_sm_metadata_open(inner, *tm,
+					dm_block_data(*sblock) + root_offset,
+					root_max_len);
+		if (r) {
+			DMERR("couldn't open metadata space map");
+			goto bad2;
+		}
+
+		*sm = dm_sm_checker_create(inner);
+		if (IS_ERR(*sm)) {
+			r = PTR_ERR(*sm);
+			goto bad2;
+		}
+	}
+
+	return 0;
+
+bad2:
+	dm_tm_unlock(*tm, *sblock);
+bad1:
+	dm_tm_destroy(*tm);
+	dm_sm_destroy(inner);
+	return r;
+}
+
+int dm_tm_create_with_sm(struct dm_block_manager *bm, dm_block_t sb_location,
+			 struct dm_block_validator *sb_validator,
+			 struct dm_transaction_manager **tm,
+			 struct dm_space_map **sm, struct dm_block **sblock)
+{
+	return dm_tm_create_internal(bm, sb_location, sb_validator,
+				     0, 0, tm, sm, sblock, 1);
+}
+EXPORT_SYMBOL_GPL(dm_tm_create_with_sm);
+
+int dm_tm_open_with_sm(struct dm_block_manager *bm, dm_block_t sb_location,
+		       struct dm_block_validator *sb_validator,
+		       size_t root_offset, size_t root_max_len,
+		       struct dm_transaction_manager **tm,
+		       struct dm_space_map **sm, struct dm_block **sblock)
+{
+	return dm_tm_create_internal(bm, sb_location, sb_validator, root_offset,
+				     root_max_len, tm, sm, sblock, 0);
+}
+EXPORT_SYMBOL_GPL(dm_tm_open_with_sm);
+
+/*----------------------------------------------------------------*/
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-transaction-manager.h b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-transaction-manager.h
new file mode 100644
index 0000000..6da7848
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/persistent-data/dm-transaction-manager.h
@@ -0,0 +1,130 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#ifndef _LINUX_DM_TRANSACTION_MANAGER_H
+#define _LINUX_DM_TRANSACTION_MANAGER_H
+
+#include "dm-block-manager.h"
+
+struct dm_transaction_manager;
+struct dm_space_map;
+
+/*----------------------------------------------------------------*/
+
+/*
+ * This manages the scope of a transaction.  It also enforces immutability
+ * of the on-disk data structures by limiting access to writeable blocks.
+ *
+ * Clients should not fiddle with the block manager directly.
+ */
+
+void dm_tm_destroy(struct dm_transaction_manager *tm);
+
+/*
+ * The non-blocking version of a transaction manager is intended for use in
+ * fast path code that needs to do lookups e.g. a dm mapping function.
+ * You create the non-blocking variant from a normal tm.  The interface is
+ * the same, except that most functions will just return -EWOULDBLOCK.
+ * Methods that return void yet may block should not be called on a clone
+ * viz. dm_tm_inc, dm_tm_dec.  Call dm_tm_destroy() as you would with a normal
+ * tm when you've finished with it.  You may not destroy the original prior
+ * to clones.
+ */
+struct dm_transaction_manager *dm_tm_create_non_blocking_clone(struct dm_transaction_manager *real);
+
+/*
+ * We use a 2-phase commit here.
+ *
+ * i) In the first phase the block manager is told to start flushing, and
+ * the changes to the space map are written to disk.  You should interrogate
+ * your particular space map to get detail of its root node etc. to be
+ * included in your superblock.
+ *
+ * ii) @root will be committed last.  You shouldn't use more than the
+ * first 512 bytes of @root if you wish the transaction to survive a power
+ * failure.  You *must* have a write lock held on @root for both stage (i)
+ * and (ii).  The commit will drop the write lock.
+ */
+int dm_tm_pre_commit(struct dm_transaction_manager *tm);
+int dm_tm_commit(struct dm_transaction_manager *tm, struct dm_block *root);
+
+/*
+ * These methods are the only way to get hold of a writeable block.
+ */
+
+/*
+ * dm_tm_new_block() is pretty self-explanatory.  Make sure you do actually
+ * write to the whole of @data before you unlock, otherwise you could get
+ * a data leak.  (The other option is for tm_new_block() to zero new blocks
+ * before handing them out, which will be redundant in most, if not all,
+ * cases).
+ * Zeroes the new block and returns with write lock held.
+ */
+int dm_tm_new_block(struct dm_transaction_manager *tm,
+		    struct dm_block_validator *v,
+		    struct dm_block **result);
+
+/*
+ * dm_tm_shadow_block() allocates a new block and copies the data from @orig
+ * to it.  It then decrements the reference count on original block.  Use
+ * this to update the contents of a block in a data structure, don't
+ * confuse this with a clone - you shouldn't access the orig block after
+ * this operation.  Because the tm knows the scope of the transaction it
+ * can optimise requests for a shadow of a shadow to a no-op.  Don't forget
+ * to unlock when you've finished with the shadow.
+ *
+ * The @inc_children flag is used to tell the caller whether it needs to
+ * adjust reference counts for children.  (Data in the block may refer to
+ * other blocks.)
+ *
+ * Shadowing implicitly drops a reference on @orig so you must not have
+ * it locked when you call this.
+ */
+int dm_tm_shadow_block(struct dm_transaction_manager *tm, dm_block_t orig,
+		       struct dm_block_validator *v,
+		       struct dm_block **result, int *inc_children);
+
+/*
+ * Read access.  You can lock any block you want.  If there's a write lock
+ * on it outstanding then it'll block.
+ */
+int dm_tm_read_lock(struct dm_transaction_manager *tm, dm_block_t b,
+		    struct dm_block_validator *v,
+		    struct dm_block **result);
+
+int dm_tm_unlock(struct dm_transaction_manager *tm, struct dm_block *b);
+
+/*
+ * Functions for altering the reference count of a block directly.
+ */
+void dm_tm_inc(struct dm_transaction_manager *tm, dm_block_t b);
+
+void dm_tm_dec(struct dm_transaction_manager *tm, dm_block_t b);
+
+int dm_tm_ref(struct dm_transaction_manager *tm, dm_block_t b,
+	      uint32_t *result);
+
+struct dm_block_manager *dm_tm_get_bm(struct dm_transaction_manager *tm);
+
+/*
+ * A little utility that ties the knot by producing a transaction manager
+ * that has a space map managed by the transaction manager...
+ *
+ * Returns a tm that has an open transaction to write the new disk sm.
+ * Caller should store the new sm root and commit.
+ */
+int dm_tm_create_with_sm(struct dm_block_manager *bm, dm_block_t sb_location,
+			 struct dm_block_validator *sb_validator,
+			 struct dm_transaction_manager **tm,
+			 struct dm_space_map **sm, struct dm_block **sblock);
+
+int dm_tm_open_with_sm(struct dm_block_manager *bm, dm_block_t sb_location,
+		       struct dm_block_validator *sb_validator,
+		       size_t root_offset, size_t root_max_len,
+		       struct dm_transaction_manager **tm,
+		       struct dm_space_map **sm, struct dm_block **sblock);
+
+#endif	/* _LINUX_DM_TRANSACTION_MANAGER_H */
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/raid0.c b/ap/os/linux/linux-3.4.x/drivers/md/raid0.c
new file mode 100644
index 0000000..06a0257
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/raid0.c
@@ -0,0 +1,740 @@
+/*
+   raid0.c : Multiple Devices driver for Linux
+             Copyright (C) 1994-96 Marc ZYNGIER
+	     <zyngier@ufr-info-p7.ibp.fr> or
+	     <maz@gloups.fdn.fr>
+             Copyright (C) 1999, 2000 Ingo Molnar, Red Hat
+
+
+   RAID-0 management functions.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2, or (at your option)
+   any later version.
+   
+   You should have received a copy of the GNU General Public License
+   (for example /usr/src/linux/COPYING); if not, write to the Free
+   Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  
+*/
+
+#include <linux/blkdev.h>
+#include <linux/seq_file.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include "md.h"
+#include "raid0.h"
+#include "raid5.h"
+
+static int raid0_congested(void *data, int bits)
+{
+	struct mddev *mddev = data;
+	struct r0conf *conf = mddev->private;
+	struct md_rdev **devlist = conf->devlist;
+	int raid_disks = conf->strip_zone[0].nb_dev;
+	int i, ret = 0;
+
+	if (mddev_congested(mddev, bits))
+		return 1;
+
+	for (i = 0; i < raid_disks && !ret ; i++) {
+		struct request_queue *q = bdev_get_queue(devlist[i]->bdev);
+
+		ret |= bdi_congested(&q->backing_dev_info, bits);
+	}
+	return ret;
+}
+
+/*
+ * inform the user of the raid configuration
+*/
+static void dump_zones(struct mddev *mddev)
+{
+	int j, k;
+	sector_t zone_size = 0;
+	sector_t zone_start = 0;
+	char b[BDEVNAME_SIZE];
+	struct r0conf *conf = mddev->private;
+	int raid_disks = conf->strip_zone[0].nb_dev;
+	printk(KERN_INFO "md: RAID0 configuration for %s - %d zone%s\n",
+	       mdname(mddev),
+	       conf->nr_strip_zones, conf->nr_strip_zones==1?"":"s");
+	for (j = 0; j < conf->nr_strip_zones; j++) {
+		printk(KERN_INFO "md: zone%d=[", j);
+		for (k = 0; k < conf->strip_zone[j].nb_dev; k++)
+			printk(KERN_CONT "%s%s", k?"/":"",
+			bdevname(conf->devlist[j*raid_disks
+						+ k]->bdev, b));
+		printk(KERN_CONT "]\n");
+
+		zone_size  = conf->strip_zone[j].zone_end - zone_start;
+		printk(KERN_INFO "      zone-offset=%10lluKB, "
+				"device-offset=%10lluKB, size=%10lluKB\n",
+			(unsigned long long)zone_start>>1,
+			(unsigned long long)conf->strip_zone[j].dev_start>>1,
+			(unsigned long long)zone_size>>1);
+		zone_start = conf->strip_zone[j].zone_end;
+	}
+	printk(KERN_INFO "\n");
+}
+
+static int create_strip_zones(struct mddev *mddev, struct r0conf **private_conf)
+{
+	int i, c, err;
+	sector_t curr_zone_end, sectors;
+	struct md_rdev *smallest, *rdev1, *rdev2, *rdev, **dev;
+	struct strip_zone *zone;
+	int cnt;
+	char b[BDEVNAME_SIZE];
+	char b2[BDEVNAME_SIZE];
+	struct r0conf *conf = kzalloc(sizeof(*conf), GFP_KERNEL);
+
+	if (!conf)
+		return -ENOMEM;
+	rdev_for_each(rdev1, mddev) {
+		pr_debug("md/raid0:%s: looking at %s\n",
+			 mdname(mddev),
+			 bdevname(rdev1->bdev, b));
+		c = 0;
+
+		/* round size to chunk_size */
+		sectors = rdev1->sectors;
+		sector_div(sectors, mddev->chunk_sectors);
+		rdev1->sectors = sectors * mddev->chunk_sectors;
+
+		rdev_for_each(rdev2, mddev) {
+			pr_debug("md/raid0:%s:   comparing %s(%llu)"
+				 " with %s(%llu)\n",
+				 mdname(mddev),
+				 bdevname(rdev1->bdev,b),
+				 (unsigned long long)rdev1->sectors,
+				 bdevname(rdev2->bdev,b2),
+				 (unsigned long long)rdev2->sectors);
+			if (rdev2 == rdev1) {
+				pr_debug("md/raid0:%s:   END\n",
+					 mdname(mddev));
+				break;
+			}
+			if (rdev2->sectors == rdev1->sectors) {
+				/*
+				 * Not unique, don't count it as a new
+				 * group
+				 */
+				pr_debug("md/raid0:%s:   EQUAL\n",
+					 mdname(mddev));
+				c = 1;
+				break;
+			}
+			pr_debug("md/raid0:%s:   NOT EQUAL\n",
+				 mdname(mddev));
+		}
+		if (!c) {
+			pr_debug("md/raid0:%s:   ==> UNIQUE\n",
+				 mdname(mddev));
+			conf->nr_strip_zones++;
+			pr_debug("md/raid0:%s: %d zones\n",
+				 mdname(mddev), conf->nr_strip_zones);
+		}
+	}
+	pr_debug("md/raid0:%s: FINAL %d zones\n",
+		 mdname(mddev), conf->nr_strip_zones);
+	err = -ENOMEM;
+	conf->strip_zone = kzalloc(sizeof(struct strip_zone)*
+				conf->nr_strip_zones, GFP_KERNEL);
+	if (!conf->strip_zone)
+		goto abort;
+	conf->devlist = kzalloc(sizeof(struct md_rdev*)*
+				conf->nr_strip_zones*mddev->raid_disks,
+				GFP_KERNEL);
+	if (!conf->devlist)
+		goto abort;
+
+	/* The first zone must contain all devices, so here we check that
+	 * there is a proper alignment of slots to devices and find them all
+	 */
+	zone = &conf->strip_zone[0];
+	cnt = 0;
+	smallest = NULL;
+	dev = conf->devlist;
+	err = -EINVAL;
+	rdev_for_each(rdev1, mddev) {
+		int j = rdev1->raid_disk;
+
+		if (mddev->level == 10) {
+			/* taking over a raid10-n2 array */
+			j /= 2;
+			rdev1->new_raid_disk = j;
+		}
+
+		if (mddev->level == 1) {
+			/* taiking over a raid1 array-
+			 * we have only one active disk
+			 */
+			j = 0;
+			rdev1->new_raid_disk = j;
+		}
+
+		if (j < 0 || j >= mddev->raid_disks) {
+			printk(KERN_ERR "md/raid0:%s: bad disk number %d - "
+			       "aborting!\n", mdname(mddev), j);
+			goto abort;
+		}
+		if (dev[j]) {
+			printk(KERN_ERR "md/raid0:%s: multiple devices for %d - "
+			       "aborting!\n", mdname(mddev), j);
+			goto abort;
+		}
+		dev[j] = rdev1;
+
+		disk_stack_limits(mddev->gendisk, rdev1->bdev,
+				  rdev1->data_offset << 9);
+
+		if (rdev1->bdev->bd_disk->queue->merge_bvec_fn)
+			conf->has_merge_bvec = 1;
+
+		if (!smallest || (rdev1->sectors < smallest->sectors))
+			smallest = rdev1;
+		cnt++;
+	}
+	if (cnt != mddev->raid_disks) {
+		printk(KERN_ERR "md/raid0:%s: too few disks (%d of %d) - "
+		       "aborting!\n", mdname(mddev), cnt, mddev->raid_disks);
+		goto abort;
+	}
+	zone->nb_dev = cnt;
+	zone->zone_end = smallest->sectors * cnt;
+
+	curr_zone_end = zone->zone_end;
+
+	/* now do the other zones */
+	for (i = 1; i < conf->nr_strip_zones; i++)
+	{
+		int j;
+
+		zone = conf->strip_zone + i;
+		dev = conf->devlist + i * mddev->raid_disks;
+
+		pr_debug("md/raid0:%s: zone %d\n", mdname(mddev), i);
+		zone->dev_start = smallest->sectors;
+		smallest = NULL;
+		c = 0;
+
+		for (j=0; j<cnt; j++) {
+			rdev = conf->devlist[j];
+			if (rdev->sectors <= zone->dev_start) {
+				pr_debug("md/raid0:%s: checking %s ... nope\n",
+					 mdname(mddev),
+					 bdevname(rdev->bdev, b));
+				continue;
+			}
+			pr_debug("md/raid0:%s: checking %s ..."
+				 " contained as device %d\n",
+				 mdname(mddev),
+				 bdevname(rdev->bdev, b), c);
+			dev[c] = rdev;
+			c++;
+			if (!smallest || rdev->sectors < smallest->sectors) {
+				smallest = rdev;
+				pr_debug("md/raid0:%s:  (%llu) is smallest!.\n",
+					 mdname(mddev),
+					 (unsigned long long)rdev->sectors);
+			}
+		}
+
+		zone->nb_dev = c;
+		sectors = (smallest->sectors - zone->dev_start) * c;
+		pr_debug("md/raid0:%s: zone->nb_dev: %d, sectors: %llu\n",
+			 mdname(mddev),
+			 zone->nb_dev, (unsigned long long)sectors);
+
+		curr_zone_end += sectors;
+		zone->zone_end = curr_zone_end;
+
+		pr_debug("md/raid0:%s: current zone start: %llu\n",
+			 mdname(mddev),
+			 (unsigned long long)smallest->sectors);
+	}
+	mddev->queue->backing_dev_info.congested_fn = raid0_congested;
+	mddev->queue->backing_dev_info.congested_data = mddev;
+
+	/*
+	 * now since we have the hard sector sizes, we can make sure
+	 * chunk size is a multiple of that sector size
+	 */
+	if ((mddev->chunk_sectors << 9) % queue_logical_block_size(mddev->queue)) {
+		printk(KERN_ERR "md/raid0:%s: chunk_size of %d not valid\n",
+		       mdname(mddev),
+		       mddev->chunk_sectors << 9);
+		goto abort;
+	}
+
+	blk_queue_io_min(mddev->queue, mddev->chunk_sectors << 9);
+	blk_queue_io_opt(mddev->queue,
+			 (mddev->chunk_sectors << 9) * mddev->raid_disks);
+
+	pr_debug("md/raid0:%s: done.\n", mdname(mddev));
+	*private_conf = conf;
+
+	return 0;
+abort:
+	kfree(conf->strip_zone);
+	kfree(conf->devlist);
+	kfree(conf);
+	*private_conf = ERR_PTR(err);
+	return err;
+}
+
+/* Find the zone which holds a particular offset
+ * Update *sectorp to be an offset in that zone
+ */
+static struct strip_zone *find_zone(struct r0conf *conf,
+				    sector_t *sectorp)
+{
+	int i;
+	struct strip_zone *z = conf->strip_zone;
+	sector_t sector = *sectorp;
+
+	for (i = 0; i < conf->nr_strip_zones; i++)
+		if (sector < z[i].zone_end) {
+			if (i)
+				*sectorp = sector - z[i-1].zone_end;
+			return z + i;
+		}
+	BUG();
+}
+
+/*
+ * remaps the bio to the target device. we separate two flows.
+ * power 2 flow and a general flow for the sake of perfromance
+*/
+static struct md_rdev *map_sector(struct mddev *mddev, struct strip_zone *zone,
+				sector_t sector, sector_t *sector_offset)
+{
+	unsigned int sect_in_chunk;
+	sector_t chunk;
+	struct r0conf *conf = mddev->private;
+	int raid_disks = conf->strip_zone[0].nb_dev;
+	unsigned int chunk_sects = mddev->chunk_sectors;
+
+	if (is_power_of_2(chunk_sects)) {
+		int chunksect_bits = ffz(~chunk_sects);
+		/* find the sector offset inside the chunk */
+		sect_in_chunk  = sector & (chunk_sects - 1);
+		sector >>= chunksect_bits;
+		/* chunk in zone */
+		chunk = *sector_offset;
+		/* quotient is the chunk in real device*/
+		sector_div(chunk, zone->nb_dev << chunksect_bits);
+	} else{
+		sect_in_chunk = sector_div(sector, chunk_sects);
+		chunk = *sector_offset;
+		sector_div(chunk, chunk_sects * zone->nb_dev);
+	}
+	/*
+	*  position the bio over the real device
+	*  real sector = chunk in device + starting of zone
+	*	+ the position in the chunk
+	*/
+	*sector_offset = (chunk * chunk_sects) + sect_in_chunk;
+	return conf->devlist[(zone - conf->strip_zone)*raid_disks
+			     + sector_div(sector, zone->nb_dev)];
+}
+
+/**
+ *	raid0_mergeable_bvec -- tell bio layer if two requests can be merged
+ *	@q: request queue
+ *	@bvm: properties of new bio
+ *	@biovec: the request that could be merged to it.
+ *
+ *	Return amount of bytes we can accept at this offset
+ */
+static int raid0_mergeable_bvec(struct request_queue *q,
+				struct bvec_merge_data *bvm,
+				struct bio_vec *biovec)
+{
+	struct mddev *mddev = q->queuedata;
+	struct r0conf *conf = mddev->private;
+	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
+	sector_t sector_offset = sector;
+	int max;
+	unsigned int chunk_sectors = mddev->chunk_sectors;
+	unsigned int bio_sectors = bvm->bi_size >> 9;
+	struct strip_zone *zone;
+	struct md_rdev *rdev;
+	struct request_queue *subq;
+
+	if (is_power_of_2(chunk_sectors))
+		max =  (chunk_sectors - ((sector & (chunk_sectors-1))
+						+ bio_sectors)) << 9;
+	else
+		max =  (chunk_sectors - (sector_div(sector, chunk_sectors)
+						+ bio_sectors)) << 9;
+	if (max < 0)
+		max = 0; /* bio_add cannot handle a negative return */
+	if (max <= biovec->bv_len && bio_sectors == 0)
+		return biovec->bv_len;
+	if (max < biovec->bv_len)
+		/* too small already, no need to check further */
+		return max;
+	if (!conf->has_merge_bvec)
+		return max;
+
+	/* May need to check subordinate device */
+	sector = sector_offset;
+	zone = find_zone(mddev->private, &sector_offset);
+	rdev = map_sector(mddev, zone, sector, &sector_offset);
+	subq = bdev_get_queue(rdev->bdev);
+	if (subq->merge_bvec_fn) {
+		bvm->bi_bdev = rdev->bdev;
+		bvm->bi_sector = sector_offset + zone->dev_start +
+			rdev->data_offset;
+		return min(max, subq->merge_bvec_fn(subq, bvm, biovec));
+	} else
+		return max;
+}
+
+static sector_t raid0_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+	sector_t array_sectors = 0;
+	struct md_rdev *rdev;
+
+	WARN_ONCE(sectors || raid_disks,
+		  "%s does not support generic reshape\n", __func__);
+
+	rdev_for_each(rdev, mddev)
+		array_sectors += (rdev->sectors &
+				  ~(sector_t)(mddev->chunk_sectors-1));
+
+	return array_sectors;
+}
+
+static int raid0_stop(struct mddev *mddev);
+
+static int raid0_run(struct mddev *mddev)
+{
+	struct r0conf *conf;
+	int ret;
+
+	if (mddev->chunk_sectors == 0) {
+		printk(KERN_ERR "md/raid0:%s: chunk size must be set.\n",
+		       mdname(mddev));
+		return -EINVAL;
+	}
+	if (md_check_no_bitmap(mddev))
+		return -EINVAL;
+	blk_queue_max_hw_sectors(mddev->queue, mddev->chunk_sectors);
+
+	/* if private is not null, we are here after takeover */
+	if (mddev->private == NULL) {
+		ret = create_strip_zones(mddev, &conf);
+		if (ret < 0)
+			return ret;
+		mddev->private = conf;
+	}
+	conf = mddev->private;
+
+	/* calculate array device size */
+	md_set_array_sectors(mddev, raid0_size(mddev, 0, 0));
+
+	printk(KERN_INFO "md/raid0:%s: md_size is %llu sectors.\n",
+	       mdname(mddev),
+	       (unsigned long long)mddev->array_sectors);
+	/* calculate the max read-ahead size.
+	 * For read-ahead of large files to be effective, we need to
+	 * readahead at least twice a whole stripe. i.e. number of devices
+	 * multiplied by chunk size times 2.
+	 * If an individual device has an ra_pages greater than the
+	 * chunk size, then we will not drive that device as hard as it
+	 * wants.  We consider this a configuration error: a larger
+	 * chunksize should be used in that case.
+	 */
+	{
+		int stripe = mddev->raid_disks *
+			(mddev->chunk_sectors << 9) / PAGE_SIZE;
+		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
+			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
+	}
+
+	blk_queue_merge_bvec(mddev->queue, raid0_mergeable_bvec);
+	dump_zones(mddev);
+
+	ret = md_integrity_register(mddev);
+	if (ret)
+		raid0_stop(mddev);
+
+	return ret;
+}
+
+static int raid0_stop(struct mddev *mddev)
+{
+	struct r0conf *conf = mddev->private;
+
+	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
+	kfree(conf->strip_zone);
+	kfree(conf->devlist);
+	kfree(conf);
+	mddev->private = NULL;
+	return 0;
+}
+
+/*
+ * Is io distribute over 1 or more chunks ?
+*/
+static inline int is_io_in_chunk_boundary(struct mddev *mddev,
+			unsigned int chunk_sects, struct bio *bio)
+{
+	if (likely(is_power_of_2(chunk_sects))) {
+		return chunk_sects >= ((bio->bi_sector & (chunk_sects-1))
+					+ (bio->bi_size >> 9));
+	} else{
+		sector_t sector = bio->bi_sector;
+		return chunk_sects >= (sector_div(sector, chunk_sects)
+						+ (bio->bi_size >> 9));
+	}
+}
+
+static void raid0_make_request(struct mddev *mddev, struct bio *bio)
+{
+	unsigned int chunk_sects;
+	sector_t sector_offset;
+	struct strip_zone *zone;
+	struct md_rdev *tmp_dev;
+
+	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
+		md_flush_request(mddev, bio);
+		return;
+	}
+
+	chunk_sects = mddev->chunk_sectors;
+	if (unlikely(!is_io_in_chunk_boundary(mddev, chunk_sects, bio))) {
+		sector_t sector = bio->bi_sector;
+		struct bio_pair *bp;
+		/* Sanity check -- queue functions should prevent this happening */
+		if (bio->bi_vcnt != 1 ||
+		    bio->bi_idx != 0)
+			goto bad_map;
+		/* This is a one page bio that upper layers
+		 * refuse to split for us, so we need to split it.
+		 */
+		if (likely(is_power_of_2(chunk_sects)))
+			bp = bio_split(bio, chunk_sects - (sector &
+							   (chunk_sects-1)));
+		else
+			bp = bio_split(bio, chunk_sects -
+				       sector_div(sector, chunk_sects));
+		raid0_make_request(mddev, &bp->bio1);
+		raid0_make_request(mddev, &bp->bio2);
+		bio_pair_release(bp);
+		return;
+	}
+
+	sector_offset = bio->bi_sector;
+	zone = find_zone(mddev->private, &sector_offset);
+	tmp_dev = map_sector(mddev, zone, bio->bi_sector,
+			     &sector_offset);
+	bio->bi_bdev = tmp_dev->bdev;
+	bio->bi_sector = sector_offset + zone->dev_start +
+		tmp_dev->data_offset;
+
+	generic_make_request(bio);
+	return;
+
+bad_map:
+	printk("md/raid0:%s: make_request bug: can't convert block across chunks"
+	       " or bigger than %dk %llu %d\n",
+	       mdname(mddev), chunk_sects / 2,
+	       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
+
+	bio_io_error(bio);
+	return;
+}
+
+static void raid0_status(struct seq_file *seq, struct mddev *mddev)
+{
+	seq_printf(seq, " %dk chunks", mddev->chunk_sectors / 2);
+	return;
+}
+
+static void *raid0_takeover_raid45(struct mddev *mddev)
+{
+	struct md_rdev *rdev;
+	struct r0conf *priv_conf;
+
+	if (mddev->degraded != 1) {
+		printk(KERN_ERR "md/raid0:%s: raid5 must be degraded! Degraded disks: %d\n",
+		       mdname(mddev),
+		       mddev->degraded);
+		return ERR_PTR(-EINVAL);
+	}
+
+	rdev_for_each(rdev, mddev) {
+		/* check slot number for a disk */
+		if (rdev->raid_disk == mddev->raid_disks-1) {
+			printk(KERN_ERR "md/raid0:%s: raid5 must have missing parity disk!\n",
+			       mdname(mddev));
+			return ERR_PTR(-EINVAL);
+		}
+	}
+
+	/* Set new parameters */
+	mddev->new_level = 0;
+	mddev->new_layout = 0;
+	mddev->new_chunk_sectors = mddev->chunk_sectors;
+	mddev->raid_disks--;
+	mddev->delta_disks = -1;
+	/* make sure it will be not marked as dirty */
+	mddev->recovery_cp = MaxSector;
+
+	create_strip_zones(mddev, &priv_conf);
+	return priv_conf;
+}
+
+static void *raid0_takeover_raid10(struct mddev *mddev)
+{
+	struct r0conf *priv_conf;
+
+	/* Check layout:
+	 *  - far_copies must be 1
+	 *  - near_copies must be 2
+	 *  - disks number must be even
+	 *  - all mirrors must be already degraded
+	 */
+	if (mddev->layout != ((1 << 8) + 2)) {
+		printk(KERN_ERR "md/raid0:%s:: Raid0 cannot takover layout: 0x%x\n",
+		       mdname(mddev),
+		       mddev->layout);
+		return ERR_PTR(-EINVAL);
+	}
+	if (mddev->raid_disks & 1) {
+		printk(KERN_ERR "md/raid0:%s: Raid0 cannot takover Raid10 with odd disk number.\n",
+		       mdname(mddev));
+		return ERR_PTR(-EINVAL);
+	}
+	if (mddev->degraded != (mddev->raid_disks>>1)) {
+		printk(KERN_ERR "md/raid0:%s: All mirrors must be already degraded!\n",
+		       mdname(mddev));
+		return ERR_PTR(-EINVAL);
+	}
+
+	/* Set new parameters */
+	mddev->new_level = 0;
+	mddev->new_layout = 0;
+	mddev->new_chunk_sectors = mddev->chunk_sectors;
+	mddev->delta_disks = - mddev->raid_disks / 2;
+	mddev->raid_disks += mddev->delta_disks;
+	mddev->degraded = 0;
+	/* make sure it will be not marked as dirty */
+	mddev->recovery_cp = MaxSector;
+
+	create_strip_zones(mddev, &priv_conf);
+	return priv_conf;
+}
+
+static void *raid0_takeover_raid1(struct mddev *mddev)
+{
+	struct r0conf *priv_conf;
+	int chunksect;
+
+	/* Check layout:
+	 *  - (N - 1) mirror drives must be already faulty
+	 */
+	if ((mddev->raid_disks - 1) != mddev->degraded) {
+		printk(KERN_ERR "md/raid0:%s: (N - 1) mirrors drives must be already faulty!\n",
+		       mdname(mddev));
+		return ERR_PTR(-EINVAL);
+	}
+
+	/*
+	 * a raid1 doesn't have the notion of chunk size, so
+	 * figure out the largest suitable size we can use.
+	 */
+	chunksect = 64 * 2; /* 64K by default */
+
+	/* The array must be an exact multiple of chunksize */
+	while (chunksect && (mddev->array_sectors & (chunksect - 1)))
+		chunksect >>= 1;
+
+	if ((chunksect << 9) < PAGE_SIZE)
+		/* array size does not allow a suitable chunk size */
+		return ERR_PTR(-EINVAL);
+
+	/* Set new parameters */
+	mddev->new_level = 0;
+	mddev->new_layout = 0;
+	mddev->new_chunk_sectors = chunksect;
+	mddev->chunk_sectors = chunksect;
+	mddev->delta_disks = 1 - mddev->raid_disks;
+	mddev->raid_disks = 1;
+	/* make sure it will be not marked as dirty */
+	mddev->recovery_cp = MaxSector;
+
+	create_strip_zones(mddev, &priv_conf);
+	return priv_conf;
+}
+
+static void *raid0_takeover(struct mddev *mddev)
+{
+	/* raid0 can take over:
+	 *  raid4 - if all data disks are active.
+	 *  raid5 - providing it is Raid4 layout and one disk is faulty
+	 *  raid10 - assuming we have all necessary active disks
+	 *  raid1 - with (N -1) mirror drives faulty
+	 */
+	if (mddev->level == 4)
+		return raid0_takeover_raid45(mddev);
+
+	if (mddev->level == 5) {
+		if (mddev->layout == ALGORITHM_PARITY_N)
+			return raid0_takeover_raid45(mddev);
+
+		printk(KERN_ERR "md/raid0:%s: Raid can only takeover Raid5 with layout: %d\n",
+		       mdname(mddev), ALGORITHM_PARITY_N);
+	}
+
+	if (mddev->level == 10)
+		return raid0_takeover_raid10(mddev);
+
+	if (mddev->level == 1)
+		return raid0_takeover_raid1(mddev);
+
+	printk(KERN_ERR "Takeover from raid%i to raid0 not supported\n",
+		mddev->level);
+
+	return ERR_PTR(-EINVAL);
+}
+
+static void raid0_quiesce(struct mddev *mddev, int state)
+{
+}
+
+static struct md_personality raid0_personality=
+{
+	.name		= "raid0",
+	.level		= 0,
+	.owner		= THIS_MODULE,
+	.make_request	= raid0_make_request,
+	.run		= raid0_run,
+	.stop		= raid0_stop,
+	.status		= raid0_status,
+	.size		= raid0_size,
+	.takeover	= raid0_takeover,
+	.quiesce	= raid0_quiesce,
+};
+
+static int __init raid0_init (void)
+{
+	return register_md_personality (&raid0_personality);
+}
+
+static void raid0_exit (void)
+{
+	unregister_md_personality (&raid0_personality);
+}
+
+module_init(raid0_init);
+module_exit(raid0_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RAID0 (striping) personality for MD");
+MODULE_ALIAS("md-personality-2"); /* RAID0 */
+MODULE_ALIAS("md-raid0");
+MODULE_ALIAS("md-level-0");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/raid0.h b/ap/os/linux/linux-3.4.x/drivers/md/raid0.h
new file mode 100644
index 0000000..05539d9
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/raid0.h
@@ -0,0 +1,19 @@
+#ifndef _RAID0_H
+#define _RAID0_H
+
+struct strip_zone {
+	sector_t zone_end;	/* Start of the next zone (in sectors) */
+	sector_t dev_start;	/* Zone offset in real dev (in sectors) */
+	int	 nb_dev;	/* # of devices attached to the zone */
+};
+
+struct r0conf {
+	struct strip_zone	*strip_zone;
+	struct md_rdev		**devlist; /* lists of rdevs, pointed to
+					    * by strip_zone->dev */
+	int			nr_strip_zones;
+	int			has_merge_bvec;	/* at least one member has
+						 * a merge_bvec_fn */
+};
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/raid1.c b/ap/os/linux/linux-3.4.x/drivers/md/raid1.c
new file mode 100644
index 0000000..75e66c6
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/raid1.c
@@ -0,0 +1,2974 @@
+/*
+ * raid1.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
+ *
+ * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
+ *
+ * RAID-1 management functions.
+ *
+ * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
+ *
+ * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
+ * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
+ *
+ * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
+ * bitmapped intelligence in resync:
+ *
+ *      - bitmap marked during normal i/o
+ *      - bitmap used to skip nondirty blocks during sync
+ *
+ * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
+ * - persistent bitmap code
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * You should have received a copy of the GNU General Public License
+ * (for example /usr/src/linux/COPYING); if not, write to the Free
+ * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include <linux/ratelimit.h>
+#include "md.h"
+#include "raid1.h"
+#include "bitmap.h"
+
+/*
+ * Number of guaranteed r1bios in case of extreme VM load:
+ */
+#define	NR_RAID1_BIOS 256
+
+/* When there are this many requests queue to be written by
+ * the raid1 thread, we become 'congested' to provide back-pressure
+ * for writeback.
+ */
+static int max_queued_requests = 1024;
+
+static void allow_barrier(struct r1conf *conf);
+static void lower_barrier(struct r1conf *conf);
+
+static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
+{
+	struct pool_info *pi = data;
+	int size = offsetof(struct r1bio, bios[pi->raid_disks]);
+
+	/* allocate a r1bio with room for raid_disks entries in the bios array */
+	return kzalloc(size, gfp_flags);
+}
+
+static void r1bio_pool_free(void *r1_bio, void *data)
+{
+	kfree(r1_bio);
+}
+
+#define RESYNC_BLOCK_SIZE (64*1024)
+//#define RESYNC_BLOCK_SIZE PAGE_SIZE
+#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
+#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
+#define RESYNC_WINDOW (2048*1024)
+
+static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
+{
+	struct pool_info *pi = data;
+	struct page *page;
+	struct r1bio *r1_bio;
+	struct bio *bio;
+	int i, j;
+
+	r1_bio = r1bio_pool_alloc(gfp_flags, pi);
+	if (!r1_bio)
+		return NULL;
+
+	/*
+	 * Allocate bios : 1 for reading, n-1 for writing
+	 */
+	for (j = pi->raid_disks ; j-- ; ) {
+		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
+		if (!bio)
+			goto out_free_bio;
+		r1_bio->bios[j] = bio;
+	}
+	/*
+	 * Allocate RESYNC_PAGES data pages and attach them to
+	 * the first bio.
+	 * If this is a user-requested check/repair, allocate
+	 * RESYNC_PAGES for each bio.
+	 */
+	if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
+		j = pi->raid_disks;
+	else
+		j = 1;
+	while(j--) {
+		bio = r1_bio->bios[j];
+		for (i = 0; i < RESYNC_PAGES; i++) {
+			page = alloc_page(gfp_flags);
+			if (unlikely(!page))
+				goto out_free_pages;
+
+			bio->bi_io_vec[i].bv_page = page;
+			bio->bi_vcnt = i+1;
+		}
+	}
+	/* If not user-requests, copy the page pointers to all bios */
+	if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
+		for (i=0; i<RESYNC_PAGES ; i++)
+			for (j=1; j<pi->raid_disks; j++)
+				r1_bio->bios[j]->bi_io_vec[i].bv_page =
+					r1_bio->bios[0]->bi_io_vec[i].bv_page;
+	}
+
+	r1_bio->master_bio = NULL;
+
+	return r1_bio;
+
+out_free_pages:
+	for (j=0 ; j < pi->raid_disks; j++)
+		for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
+			put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
+	j = -1;
+out_free_bio:
+	while (++j < pi->raid_disks)
+		bio_put(r1_bio->bios[j]);
+	r1bio_pool_free(r1_bio, data);
+	return NULL;
+}
+
+static void r1buf_pool_free(void *__r1_bio, void *data)
+{
+	struct pool_info *pi = data;
+	int i,j;
+	struct r1bio *r1bio = __r1_bio;
+
+	for (i = 0; i < RESYNC_PAGES; i++)
+		for (j = pi->raid_disks; j-- ;) {
+			if (j == 0 ||
+			    r1bio->bios[j]->bi_io_vec[i].bv_page !=
+			    r1bio->bios[0]->bi_io_vec[i].bv_page)
+				safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
+		}
+	for (i=0 ; i < pi->raid_disks; i++)
+		bio_put(r1bio->bios[i]);
+
+	r1bio_pool_free(r1bio, data);
+}
+
+static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
+{
+	int i;
+
+	for (i = 0; i < conf->raid_disks * 2; i++) {
+		struct bio **bio = r1_bio->bios + i;
+		if (!BIO_SPECIAL(*bio))
+			bio_put(*bio);
+		*bio = NULL;
+	}
+}
+
+static void free_r1bio(struct r1bio *r1_bio)
+{
+	struct r1conf *conf = r1_bio->mddev->private;
+
+	put_all_bios(conf, r1_bio);
+	mempool_free(r1_bio, conf->r1bio_pool);
+}
+
+static void put_buf(struct r1bio *r1_bio)
+{
+	struct r1conf *conf = r1_bio->mddev->private;
+	int i;
+
+	for (i = 0; i < conf->raid_disks * 2; i++) {
+		struct bio *bio = r1_bio->bios[i];
+		if (bio->bi_end_io)
+			rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
+	}
+
+	mempool_free(r1_bio, conf->r1buf_pool);
+
+	lower_barrier(conf);
+}
+
+static void reschedule_retry(struct r1bio *r1_bio)
+{
+	unsigned long flags;
+	struct mddev *mddev = r1_bio->mddev;
+	struct r1conf *conf = mddev->private;
+
+	spin_lock_irqsave(&conf->device_lock, flags);
+	list_add(&r1_bio->retry_list, &conf->retry_list);
+	conf->nr_queued ++;
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+
+	wake_up(&conf->wait_barrier);
+	md_wakeup_thread(mddev->thread);
+}
+
+/*
+ * raid_end_bio_io() is called when we have finished servicing a mirrored
+ * operation and are ready to return a success/failure code to the buffer
+ * cache layer.
+ */
+static void call_bio_endio(struct r1bio *r1_bio)
+{
+	struct bio *bio = r1_bio->master_bio;
+	int done;
+	struct r1conf *conf = r1_bio->mddev->private;
+
+	if (bio->bi_phys_segments) {
+		unsigned long flags;
+		spin_lock_irqsave(&conf->device_lock, flags);
+		bio->bi_phys_segments--;
+		done = (bio->bi_phys_segments == 0);
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+	} else
+		done = 1;
+
+	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
+		clear_bit(BIO_UPTODATE, &bio->bi_flags);
+	if (done) {
+		bio_endio(bio, 0);
+		/*
+		 * Wake up any possible resync thread that waits for the device
+		 * to go idle.
+		 */
+		allow_barrier(conf);
+	}
+}
+
+static void raid_end_bio_io(struct r1bio *r1_bio)
+{
+	struct bio *bio = r1_bio->master_bio;
+
+	/* if nobody has done the final endio yet, do it now */
+	if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
+		pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
+			 (bio_data_dir(bio) == WRITE) ? "write" : "read",
+			 (unsigned long long) bio->bi_sector,
+			 (unsigned long long) bio->bi_sector +
+			 (bio->bi_size >> 9) - 1);
+
+		call_bio_endio(r1_bio);
+	}
+	free_r1bio(r1_bio);
+}
+
+/*
+ * Update disk head position estimator based on IRQ completion info.
+ */
+static inline void update_head_pos(int disk, struct r1bio *r1_bio)
+{
+	struct r1conf *conf = r1_bio->mddev->private;
+
+	conf->mirrors[disk].head_position =
+		r1_bio->sector + (r1_bio->sectors);
+}
+
+/*
+ * Find the disk number which triggered given bio
+ */
+static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
+{
+	int mirror;
+	struct r1conf *conf = r1_bio->mddev->private;
+	int raid_disks = conf->raid_disks;
+
+	for (mirror = 0; mirror < raid_disks * 2; mirror++)
+		if (r1_bio->bios[mirror] == bio)
+			break;
+
+	BUG_ON(mirror == raid_disks * 2);
+	update_head_pos(mirror, r1_bio);
+
+	return mirror;
+}
+
+static void raid1_end_read_request(struct bio *bio, int error)
+{
+	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+	struct r1bio *r1_bio = bio->bi_private;
+	int mirror;
+	struct r1conf *conf = r1_bio->mddev->private;
+
+	mirror = r1_bio->read_disk;
+	/*
+	 * this branch is our 'one mirror IO has finished' event handler:
+	 */
+	update_head_pos(mirror, r1_bio);
+
+	if (uptodate)
+		set_bit(R1BIO_Uptodate, &r1_bio->state);
+	else {
+		/* If all other devices have failed, we want to return
+		 * the error upwards rather than fail the last device.
+		 * Here we redefine "uptodate" to mean "Don't want to retry"
+		 */
+		unsigned long flags;
+		spin_lock_irqsave(&conf->device_lock, flags);
+		if (r1_bio->mddev->degraded == conf->raid_disks ||
+		    (r1_bio->mddev->degraded == conf->raid_disks-1 &&
+		     !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
+			uptodate = 1;
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+	}
+
+	if (uptodate)
+		raid_end_bio_io(r1_bio);
+	else {
+		/*
+		 * oops, read error:
+		 */
+		char b[BDEVNAME_SIZE];
+		printk_ratelimited(
+			KERN_ERR "md/raid1:%s: %s: "
+			"rescheduling sector %llu\n",
+			mdname(conf->mddev),
+			bdevname(conf->mirrors[mirror].rdev->bdev,
+				 b),
+			(unsigned long long)r1_bio->sector);
+		set_bit(R1BIO_ReadError, &r1_bio->state);
+		reschedule_retry(r1_bio);
+	}
+
+	rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
+}
+
+static void close_write(struct r1bio *r1_bio)
+{
+	/* it really is the end of this request */
+	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
+		/* free extra copy of the data pages */
+		int i = r1_bio->behind_page_count;
+		while (i--)
+			safe_put_page(r1_bio->behind_bvecs[i].bv_page);
+		kfree(r1_bio->behind_bvecs);
+		r1_bio->behind_bvecs = NULL;
+	}
+	/* clear the bitmap if all writes complete successfully */
+	bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
+			r1_bio->sectors,
+			!test_bit(R1BIO_Degraded, &r1_bio->state),
+			test_bit(R1BIO_BehindIO, &r1_bio->state));
+	md_write_end(r1_bio->mddev);
+}
+
+static void r1_bio_write_done(struct r1bio *r1_bio)
+{
+	if (!atomic_dec_and_test(&r1_bio->remaining))
+		return;
+
+	if (test_bit(R1BIO_WriteError, &r1_bio->state))
+		reschedule_retry(r1_bio);
+	else {
+		close_write(r1_bio);
+		if (test_bit(R1BIO_MadeGood, &r1_bio->state))
+			reschedule_retry(r1_bio);
+		else
+			raid_end_bio_io(r1_bio);
+	}
+}
+
+static void raid1_end_write_request(struct bio *bio, int error)
+{
+	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+	struct r1bio *r1_bio = bio->bi_private;
+	int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
+	struct r1conf *conf = r1_bio->mddev->private;
+	struct bio *to_put = NULL;
+
+	mirror = find_bio_disk(r1_bio, bio);
+
+	/*
+	 * 'one mirror IO has finished' event handler:
+	 */
+	if (!uptodate) {
+		set_bit(WriteErrorSeen,
+			&conf->mirrors[mirror].rdev->flags);
+		if (!test_and_set_bit(WantReplacement,
+				      &conf->mirrors[mirror].rdev->flags))
+			set_bit(MD_RECOVERY_NEEDED, &
+				conf->mddev->recovery);
+
+		set_bit(R1BIO_WriteError, &r1_bio->state);
+	} else {
+		/*
+		 * Set R1BIO_Uptodate in our master bio, so that we
+		 * will return a good error code for to the higher
+		 * levels even if IO on some other mirrored buffer
+		 * fails.
+		 *
+		 * The 'master' represents the composite IO operation
+		 * to user-side. So if something waits for IO, then it
+		 * will wait for the 'master' bio.
+		 */
+		sector_t first_bad;
+		int bad_sectors;
+
+		r1_bio->bios[mirror] = NULL;
+		to_put = bio;
+		/*
+		 * Do not set R1BIO_Uptodate if the current device is
+		 * rebuilding or Faulty. This is because we cannot use
+		 * such device for properly reading the data back (we could
+		 * potentially use it, if the current write would have felt
+		 * before rdev->recovery_offset, but for simplicity we don't
+		 * check this here.
+		 */
+		if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
+		    !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
+			set_bit(R1BIO_Uptodate, &r1_bio->state);
+
+		/* Maybe we can clear some bad blocks. */
+		if (is_badblock(conf->mirrors[mirror].rdev,
+				r1_bio->sector, r1_bio->sectors,
+				&first_bad, &bad_sectors)) {
+			r1_bio->bios[mirror] = IO_MADE_GOOD;
+			set_bit(R1BIO_MadeGood, &r1_bio->state);
+		}
+	}
+
+	if (behind) {
+		if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
+			atomic_dec(&r1_bio->behind_remaining);
+
+		/*
+		 * In behind mode, we ACK the master bio once the I/O
+		 * has safely reached all non-writemostly
+		 * disks. Setting the Returned bit ensures that this
+		 * gets done only once -- we don't ever want to return
+		 * -EIO here, instead we'll wait
+		 */
+		if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
+		    test_bit(R1BIO_Uptodate, &r1_bio->state)) {
+			/* Maybe we can return now */
+			if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
+				struct bio *mbio = r1_bio->master_bio;
+				pr_debug("raid1: behind end write sectors"
+					 " %llu-%llu\n",
+					 (unsigned long long) mbio->bi_sector,
+					 (unsigned long long) mbio->bi_sector +
+					 (mbio->bi_size >> 9) - 1);
+				call_bio_endio(r1_bio);
+			}
+		}
+	}
+	if (r1_bio->bios[mirror] == NULL)
+		rdev_dec_pending(conf->mirrors[mirror].rdev,
+				 conf->mddev);
+
+	/*
+	 * Let's see if all mirrored write operations have finished
+	 * already.
+	 */
+	r1_bio_write_done(r1_bio);
+
+	if (to_put)
+		bio_put(to_put);
+}
+
+
+/*
+ * This routine returns the disk from which the requested read should
+ * be done. There is a per-array 'next expected sequential IO' sector
+ * number - if this matches on the next IO then we use the last disk.
+ * There is also a per-disk 'last know head position' sector that is
+ * maintained from IRQ contexts, both the normal and the resync IO
+ * completion handlers update this position correctly. If there is no
+ * perfect sequential match then we pick the disk whose head is closest.
+ *
+ * If there are 2 mirrors in the same 2 devices, performance degrades
+ * because position is mirror, not device based.
+ *
+ * The rdev for the device selected will have nr_pending incremented.
+ */
+static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
+{
+	const sector_t this_sector = r1_bio->sector;
+	int sectors;
+	int best_good_sectors;
+	int start_disk;
+	int best_disk;
+	int i;
+	sector_t best_dist;
+	struct md_rdev *rdev;
+	int choose_first;
+
+	rcu_read_lock();
+	/*
+	 * Check if we can balance. We can balance on the whole
+	 * device if no resync is going on, or below the resync window.
+	 * We take the first readable disk when above the resync window.
+	 */
+ retry:
+	sectors = r1_bio->sectors;
+	best_disk = -1;
+	best_dist = MaxSector;
+	best_good_sectors = 0;
+
+	if (conf->mddev->recovery_cp < MaxSector &&
+	    (this_sector + sectors >= conf->next_resync)) {
+		choose_first = 1;
+		start_disk = 0;
+	} else {
+		choose_first = 0;
+		start_disk = conf->last_used;
+	}
+
+	for (i = 0 ; i < conf->raid_disks * 2 ; i++) {
+		sector_t dist;
+		sector_t first_bad;
+		int bad_sectors;
+
+		int disk = start_disk + i;
+		if (disk >= conf->raid_disks)
+			disk -= conf->raid_disks;
+
+		rdev = rcu_dereference(conf->mirrors[disk].rdev);
+		if (r1_bio->bios[disk] == IO_BLOCKED
+		    || rdev == NULL
+		    || test_bit(Unmerged, &rdev->flags)
+		    || test_bit(Faulty, &rdev->flags))
+			continue;
+		if (!test_bit(In_sync, &rdev->flags) &&
+		    rdev->recovery_offset < this_sector + sectors)
+			continue;
+		if (test_bit(WriteMostly, &rdev->flags)) {
+			/* Don't balance among write-mostly, just
+			 * use the first as a last resort */
+			if (best_disk < 0) {
+				if (is_badblock(rdev, this_sector, sectors,
+						&first_bad, &bad_sectors)) {
+					if (first_bad < this_sector)
+						/* Cannot use this */
+						continue;
+					best_good_sectors = first_bad - this_sector;
+				} else
+					best_good_sectors = sectors;
+				best_disk = disk;
+			}
+			continue;
+		}
+		/* This is a reasonable device to use.  It might
+		 * even be best.
+		 */
+		if (is_badblock(rdev, this_sector, sectors,
+				&first_bad, &bad_sectors)) {
+			if (best_dist < MaxSector)
+				/* already have a better device */
+				continue;
+			if (first_bad <= this_sector) {
+				/* cannot read here. If this is the 'primary'
+				 * device, then we must not read beyond
+				 * bad_sectors from another device..
+				 */
+				bad_sectors -= (this_sector - first_bad);
+				if (choose_first && sectors > bad_sectors)
+					sectors = bad_sectors;
+				if (best_good_sectors > sectors)
+					best_good_sectors = sectors;
+
+			} else {
+				sector_t good_sectors = first_bad - this_sector;
+				if (good_sectors > best_good_sectors) {
+					best_good_sectors = good_sectors;
+					best_disk = disk;
+				}
+				if (choose_first)
+					break;
+			}
+			continue;
+		} else
+			best_good_sectors = sectors;
+
+		dist = abs(this_sector - conf->mirrors[disk].head_position);
+		if (choose_first
+		    /* Don't change to another disk for sequential reads */
+		    || conf->next_seq_sect == this_sector
+		    || dist == 0
+		    /* If device is idle, use it */
+		    || atomic_read(&rdev->nr_pending) == 0) {
+			best_disk = disk;
+			break;
+		}
+		if (dist < best_dist) {
+			best_dist = dist;
+			best_disk = disk;
+		}
+	}
+
+	if (best_disk >= 0) {
+		rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
+		if (!rdev)
+			goto retry;
+		atomic_inc(&rdev->nr_pending);
+		if (test_bit(Faulty, &rdev->flags)) {
+			/* cannot risk returning a device that failed
+			 * before we inc'ed nr_pending
+			 */
+			rdev_dec_pending(rdev, conf->mddev);
+			goto retry;
+		}
+		sectors = best_good_sectors;
+		conf->next_seq_sect = this_sector + sectors;
+		conf->last_used = best_disk;
+	}
+	rcu_read_unlock();
+	*max_sectors = sectors;
+
+	return best_disk;
+}
+
+static int raid1_mergeable_bvec(struct request_queue *q,
+				struct bvec_merge_data *bvm,
+				struct bio_vec *biovec)
+{
+	struct mddev *mddev = q->queuedata;
+	struct r1conf *conf = mddev->private;
+	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
+	int max = biovec->bv_len;
+
+	if (mddev->merge_check_needed) {
+		int disk;
+		rcu_read_lock();
+		for (disk = 0; disk < conf->raid_disks * 2; disk++) {
+			struct md_rdev *rdev = rcu_dereference(
+				conf->mirrors[disk].rdev);
+			if (rdev && !test_bit(Faulty, &rdev->flags)) {
+				struct request_queue *q =
+					bdev_get_queue(rdev->bdev);
+				if (q->merge_bvec_fn) {
+					bvm->bi_sector = sector +
+						rdev->data_offset;
+					bvm->bi_bdev = rdev->bdev;
+					max = min(max, q->merge_bvec_fn(
+							  q, bvm, biovec));
+				}
+			}
+		}
+		rcu_read_unlock();
+	}
+	return max;
+
+}
+
+int md_raid1_congested(struct mddev *mddev, int bits)
+{
+	struct r1conf *conf = mddev->private;
+	int i, ret = 0;
+
+	if ((bits & (1 << BDI_async_congested)) &&
+	    conf->pending_count >= max_queued_requests)
+		return 1;
+
+	rcu_read_lock();
+	for (i = 0; i < conf->raid_disks * 2; i++) {
+		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+		if (rdev && !test_bit(Faulty, &rdev->flags)) {
+			struct request_queue *q = bdev_get_queue(rdev->bdev);
+
+			BUG_ON(!q);
+
+			/* Note the '|| 1' - when read_balance prefers
+			 * non-congested targets, it can be removed
+			 */
+			if ((bits & (1<<BDI_async_congested)) || 1)
+				ret |= bdi_congested(&q->backing_dev_info, bits);
+			else
+				ret &= bdi_congested(&q->backing_dev_info, bits);
+		}
+	}
+	rcu_read_unlock();
+	return ret;
+}
+EXPORT_SYMBOL_GPL(md_raid1_congested);
+
+static int raid1_congested(void *data, int bits)
+{
+	struct mddev *mddev = data;
+
+	return mddev_congested(mddev, bits) ||
+		md_raid1_congested(mddev, bits);
+}
+
+static void flush_pending_writes(struct r1conf *conf)
+{
+	/* Any writes that have been queued but are awaiting
+	 * bitmap updates get flushed here.
+	 */
+	spin_lock_irq(&conf->device_lock);
+
+	if (conf->pending_bio_list.head) {
+		struct bio *bio;
+		bio = bio_list_get(&conf->pending_bio_list);
+		conf->pending_count = 0;
+		spin_unlock_irq(&conf->device_lock);
+		/* flush any pending bitmap writes to
+		 * disk before proceeding w/ I/O */
+		bitmap_unplug(conf->mddev->bitmap);
+		wake_up(&conf->wait_barrier);
+
+		while (bio) { /* submit pending writes */
+			struct bio *next = bio->bi_next;
+			bio->bi_next = NULL;
+			generic_make_request(bio);
+			bio = next;
+		}
+	} else
+		spin_unlock_irq(&conf->device_lock);
+}
+
+/* Barriers....
+ * Sometimes we need to suspend IO while we do something else,
+ * either some resync/recovery, or reconfigure the array.
+ * To do this we raise a 'barrier'.
+ * The 'barrier' is a counter that can be raised multiple times
+ * to count how many activities are happening which preclude
+ * normal IO.
+ * We can only raise the barrier if there is no pending IO.
+ * i.e. if nr_pending == 0.
+ * We choose only to raise the barrier if no-one is waiting for the
+ * barrier to go down.  This means that as soon as an IO request
+ * is ready, no other operations which require a barrier will start
+ * until the IO request has had a chance.
+ *
+ * So: regular IO calls 'wait_barrier'.  When that returns there
+ *    is no backgroup IO happening,  It must arrange to call
+ *    allow_barrier when it has finished its IO.
+ * backgroup IO calls must call raise_barrier.  Once that returns
+ *    there is no normal IO happeing.  It must arrange to call
+ *    lower_barrier when the particular background IO completes.
+ */
+#define RESYNC_DEPTH 32
+
+static void raise_barrier(struct r1conf *conf)
+{
+	spin_lock_irq(&conf->resync_lock);
+
+	/* Wait until no block IO is waiting */
+	wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
+			    conf->resync_lock, );
+
+	/* block any new IO from starting */
+	conf->barrier++;
+
+	/* Now wait for all pending IO to complete */
+	wait_event_lock_irq(conf->wait_barrier,
+			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
+			    conf->resync_lock, );
+
+	spin_unlock_irq(&conf->resync_lock);
+}
+
+static void lower_barrier(struct r1conf *conf)
+{
+	unsigned long flags;
+	BUG_ON(conf->barrier <= 0);
+	spin_lock_irqsave(&conf->resync_lock, flags);
+	conf->barrier--;
+	spin_unlock_irqrestore(&conf->resync_lock, flags);
+	wake_up(&conf->wait_barrier);
+}
+
+static void wait_barrier(struct r1conf *conf)
+{
+	spin_lock_irq(&conf->resync_lock);
+	if (conf->barrier) {
+		conf->nr_waiting++;
+		/* Wait for the barrier to drop.
+		 * However if there are already pending
+		 * requests (preventing the barrier from
+		 * rising completely), and the
+		 * pre-process bio queue isn't empty,
+		 * then don't wait, as we need to empty
+		 * that queue to get the nr_pending
+		 * count down.
+		 */
+		wait_event_lock_irq(conf->wait_barrier,
+				    !conf->barrier ||
+				    (conf->nr_pending &&
+				     current->bio_list &&
+				     !bio_list_empty(current->bio_list)),
+				    conf->resync_lock,
+			);
+		conf->nr_waiting--;
+	}
+	conf->nr_pending++;
+	spin_unlock_irq(&conf->resync_lock);
+}
+
+static void allow_barrier(struct r1conf *conf)
+{
+	unsigned long flags;
+	spin_lock_irqsave(&conf->resync_lock, flags);
+	conf->nr_pending--;
+	spin_unlock_irqrestore(&conf->resync_lock, flags);
+	wake_up(&conf->wait_barrier);
+}
+
+static void freeze_array(struct r1conf *conf, int extra)
+{
+	/* stop syncio and normal IO and wait for everything to
+	 * go quite.
+	 * We increment barrier and nr_waiting, and then
+	 * wait until nr_pending match nr_queued+extra
+	 * This is called in the context of one normal IO request
+	 * that has failed. Thus any sync request that might be pending
+	 * will be blocked by nr_pending, and we need to wait for
+	 * pending IO requests to complete or be queued for re-try.
+	 * Thus the number queued (nr_queued) plus this request (extra)
+	 * must match the number of pending IOs (nr_pending) before
+	 * we continue.
+	 */
+	spin_lock_irq(&conf->resync_lock);
+	conf->barrier++;
+	conf->nr_waiting++;
+	wait_event_lock_irq(conf->wait_barrier,
+			    conf->nr_pending == conf->nr_queued+extra,
+			    conf->resync_lock,
+			    flush_pending_writes(conf));
+	spin_unlock_irq(&conf->resync_lock);
+}
+static void unfreeze_array(struct r1conf *conf)
+{
+	/* reverse the effect of the freeze */
+	spin_lock_irq(&conf->resync_lock);
+	conf->barrier--;
+	conf->nr_waiting--;
+	wake_up(&conf->wait_barrier);
+	spin_unlock_irq(&conf->resync_lock);
+}
+
+
+/* duplicate the data pages for behind I/O 
+ */
+static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
+{
+	int i;
+	struct bio_vec *bvec;
+	struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
+					GFP_NOIO);
+	if (unlikely(!bvecs))
+		return;
+
+	bio_for_each_segment(bvec, bio, i) {
+		bvecs[i] = *bvec;
+		bvecs[i].bv_page = alloc_page(GFP_NOIO);
+		if (unlikely(!bvecs[i].bv_page))
+			goto do_sync_io;
+		memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
+		       kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
+		kunmap(bvecs[i].bv_page);
+		kunmap(bvec->bv_page);
+	}
+	r1_bio->behind_bvecs = bvecs;
+	r1_bio->behind_page_count = bio->bi_vcnt;
+	set_bit(R1BIO_BehindIO, &r1_bio->state);
+	return;
+
+do_sync_io:
+	for (i = 0; i < bio->bi_vcnt; i++)
+		if (bvecs[i].bv_page)
+			put_page(bvecs[i].bv_page);
+	kfree(bvecs);
+	pr_debug("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
+}
+
+static void make_request(struct mddev *mddev, struct bio * bio)
+{
+	struct r1conf *conf = mddev->private;
+	struct mirror_info *mirror;
+	struct r1bio *r1_bio;
+	struct bio *read_bio;
+	int i, disks;
+	struct bitmap *bitmap;
+	unsigned long flags;
+	const int rw = bio_data_dir(bio);
+	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
+	const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
+	struct md_rdev *blocked_rdev;
+	int plugged;
+	int first_clone;
+	int sectors_handled;
+	int max_sectors;
+
+	/*
+	 * Register the new request and wait if the reconstruction
+	 * thread has put up a bar for new requests.
+	 * Continue immediately if no resync is active currently.
+	 */
+
+	md_write_start(mddev, bio); /* wait on superblock update early */
+
+	if (bio_data_dir(bio) == WRITE &&
+	    bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
+	    bio->bi_sector < mddev->suspend_hi) {
+		/* As the suspend_* range is controlled by
+		 * userspace, we want an interruptible
+		 * wait.
+		 */
+		DEFINE_WAIT(w);
+		for (;;) {
+			flush_signals(current);
+			prepare_to_wait(&conf->wait_barrier,
+					&w, TASK_INTERRUPTIBLE);
+			if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
+			    bio->bi_sector >= mddev->suspend_hi)
+				break;
+			schedule();
+		}
+		finish_wait(&conf->wait_barrier, &w);
+	}
+
+	wait_barrier(conf);
+
+	bitmap = mddev->bitmap;
+
+	/*
+	 * make_request() can abort the operation when READA is being
+	 * used and no empty request is available.
+	 *
+	 */
+	r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
+
+	r1_bio->master_bio = bio;
+	r1_bio->sectors = bio->bi_size >> 9;
+	r1_bio->state = 0;
+	r1_bio->mddev = mddev;
+	r1_bio->sector = bio->bi_sector;
+
+	/* We might need to issue multiple reads to different
+	 * devices if there are bad blocks around, so we keep
+	 * track of the number of reads in bio->bi_phys_segments.
+	 * If this is 0, there is only one r1_bio and no locking
+	 * will be needed when requests complete.  If it is
+	 * non-zero, then it is the number of not-completed requests.
+	 */
+	bio->bi_phys_segments = 0;
+	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
+
+	if (rw == READ) {
+		/*
+		 * read balancing logic:
+		 */
+		int rdisk;
+
+read_again:
+		rdisk = read_balance(conf, r1_bio, &max_sectors);
+
+		if (rdisk < 0) {
+			/* couldn't find anywhere to read from */
+			raid_end_bio_io(r1_bio);
+			return;
+		}
+		mirror = conf->mirrors + rdisk;
+
+		if (test_bit(WriteMostly, &mirror->rdev->flags) &&
+		    bitmap) {
+			/* Reading from a write-mostly device must
+			 * take care not to over-take any writes
+			 * that are 'behind'
+			 */
+			wait_event(bitmap->behind_wait,
+				   atomic_read(&bitmap->behind_writes) == 0);
+		}
+		r1_bio->read_disk = rdisk;
+
+		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
+		md_trim_bio(read_bio, r1_bio->sector - bio->bi_sector,
+			    max_sectors);
+
+		r1_bio->bios[rdisk] = read_bio;
+
+		read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
+		read_bio->bi_bdev = mirror->rdev->bdev;
+		read_bio->bi_end_io = raid1_end_read_request;
+		read_bio->bi_rw = READ | do_sync;
+		read_bio->bi_private = r1_bio;
+
+		if (max_sectors < r1_bio->sectors) {
+			/* could not read all from this device, so we will
+			 * need another r1_bio.
+			 */
+
+			sectors_handled = (r1_bio->sector + max_sectors
+					   - bio->bi_sector);
+			r1_bio->sectors = max_sectors;
+			spin_lock_irq(&conf->device_lock);
+			if (bio->bi_phys_segments == 0)
+				bio->bi_phys_segments = 2;
+			else
+				bio->bi_phys_segments++;
+			spin_unlock_irq(&conf->device_lock);
+			/* Cannot call generic_make_request directly
+			 * as that will be queued in __make_request
+			 * and subsequent mempool_alloc might block waiting
+			 * for it.  So hand bio over to raid1d.
+			 */
+			reschedule_retry(r1_bio);
+
+			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
+
+			r1_bio->master_bio = bio;
+			r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
+			r1_bio->state = 0;
+			r1_bio->mddev = mddev;
+			r1_bio->sector = bio->bi_sector + sectors_handled;
+			goto read_again;
+		} else
+			generic_make_request(read_bio);
+		return;
+	}
+
+	/*
+	 * WRITE:
+	 */
+	if (conf->pending_count >= max_queued_requests) {
+		md_wakeup_thread(mddev->thread);
+		wait_event(conf->wait_barrier,
+			   conf->pending_count < max_queued_requests);
+	}
+	/* first select target devices under rcu_lock and
+	 * inc refcount on their rdev.  Record them by setting
+	 * bios[x] to bio
+	 * If there are known/acknowledged bad blocks on any device on
+	 * which we have seen a write error, we want to avoid writing those
+	 * blocks.
+	 * This potentially requires several writes to write around
+	 * the bad blocks.  Each set of writes gets it's own r1bio
+	 * with a set of bios attached.
+	 */
+	plugged = mddev_check_plugged(mddev);
+
+	disks = conf->raid_disks * 2;
+ retry_write:
+	blocked_rdev = NULL;
+	rcu_read_lock();
+	max_sectors = r1_bio->sectors;
+	for (i = 0;  i < disks; i++) {
+		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
+			atomic_inc(&rdev->nr_pending);
+			blocked_rdev = rdev;
+			break;
+		}
+		r1_bio->bios[i] = NULL;
+		if (!rdev || test_bit(Faulty, &rdev->flags)
+		    || test_bit(Unmerged, &rdev->flags)) {
+			if (i < conf->raid_disks)
+				set_bit(R1BIO_Degraded, &r1_bio->state);
+			continue;
+		}
+
+		atomic_inc(&rdev->nr_pending);
+		if (test_bit(WriteErrorSeen, &rdev->flags)) {
+			sector_t first_bad;
+			int bad_sectors;
+			int is_bad;
+
+			is_bad = is_badblock(rdev, r1_bio->sector,
+					     max_sectors,
+					     &first_bad, &bad_sectors);
+			if (is_bad < 0) {
+				/* mustn't write here until the bad block is
+				 * acknowledged*/
+				set_bit(BlockedBadBlocks, &rdev->flags);
+				blocked_rdev = rdev;
+				break;
+			}
+			if (is_bad && first_bad <= r1_bio->sector) {
+				/* Cannot write here at all */
+				bad_sectors -= (r1_bio->sector - first_bad);
+				if (bad_sectors < max_sectors)
+					/* mustn't write more than bad_sectors
+					 * to other devices yet
+					 */
+					max_sectors = bad_sectors;
+				rdev_dec_pending(rdev, mddev);
+				/* We don't set R1BIO_Degraded as that
+				 * only applies if the disk is
+				 * missing, so it might be re-added,
+				 * and we want to know to recover this
+				 * chunk.
+				 * In this case the device is here,
+				 * and the fact that this chunk is not
+				 * in-sync is recorded in the bad
+				 * block log
+				 */
+				continue;
+			}
+			if (is_bad) {
+				int good_sectors = first_bad - r1_bio->sector;
+				if (good_sectors < max_sectors)
+					max_sectors = good_sectors;
+			}
+		}
+		r1_bio->bios[i] = bio;
+	}
+	rcu_read_unlock();
+
+	if (unlikely(blocked_rdev)) {
+		/* Wait for this device to become unblocked */
+		int j;
+
+		for (j = 0; j < i; j++)
+			if (r1_bio->bios[j])
+				rdev_dec_pending(conf->mirrors[j].rdev, mddev);
+		r1_bio->state = 0;
+		allow_barrier(conf);
+		md_wait_for_blocked_rdev(blocked_rdev, mddev);
+		wait_barrier(conf);
+		goto retry_write;
+	}
+
+	if (max_sectors < r1_bio->sectors) {
+		/* We are splitting this write into multiple parts, so
+		 * we need to prepare for allocating another r1_bio.
+		 */
+		r1_bio->sectors = max_sectors;
+		spin_lock_irq(&conf->device_lock);
+		if (bio->bi_phys_segments == 0)
+			bio->bi_phys_segments = 2;
+		else
+			bio->bi_phys_segments++;
+		spin_unlock_irq(&conf->device_lock);
+	}
+	sectors_handled = r1_bio->sector + max_sectors - bio->bi_sector;
+
+	atomic_set(&r1_bio->remaining, 1);
+	atomic_set(&r1_bio->behind_remaining, 0);
+
+	first_clone = 1;
+	for (i = 0; i < disks; i++) {
+		struct bio *mbio;
+		if (!r1_bio->bios[i])
+			continue;
+
+		mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
+		md_trim_bio(mbio, r1_bio->sector - bio->bi_sector, max_sectors);
+
+		if (first_clone) {
+			/* do behind I/O ?
+			 * Not if there are too many, or cannot
+			 * allocate memory, or a reader on WriteMostly
+			 * is waiting for behind writes to flush */
+			if (bitmap &&
+			    (atomic_read(&bitmap->behind_writes)
+			     < mddev->bitmap_info.max_write_behind) &&
+			    !waitqueue_active(&bitmap->behind_wait))
+				alloc_behind_pages(mbio, r1_bio);
+
+			bitmap_startwrite(bitmap, r1_bio->sector,
+					  r1_bio->sectors,
+					  test_bit(R1BIO_BehindIO,
+						   &r1_bio->state));
+			first_clone = 0;
+		}
+		if (r1_bio->behind_bvecs) {
+			struct bio_vec *bvec;
+			int j;
+
+			/* Yes, I really want the '__' version so that
+			 * we clear any unused pointer in the io_vec, rather
+			 * than leave them unchanged.  This is important
+			 * because when we come to free the pages, we won't
+			 * know the original bi_idx, so we just free
+			 * them all
+			 */
+			__bio_for_each_segment(bvec, mbio, j, 0)
+				bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
+			if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
+				atomic_inc(&r1_bio->behind_remaining);
+		}
+
+		r1_bio->bios[i] = mbio;
+
+		mbio->bi_sector	= (r1_bio->sector +
+				   conf->mirrors[i].rdev->data_offset);
+		mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
+		mbio->bi_end_io	= raid1_end_write_request;
+		mbio->bi_rw = WRITE | do_flush_fua | do_sync;
+		mbio->bi_private = r1_bio;
+
+		atomic_inc(&r1_bio->remaining);
+		spin_lock_irqsave(&conf->device_lock, flags);
+		bio_list_add(&conf->pending_bio_list, mbio);
+		conf->pending_count++;
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+	}
+	/* Mustn't call r1_bio_write_done before this next test,
+	 * as it could result in the bio being freed.
+	 */
+	if (sectors_handled < (bio->bi_size >> 9)) {
+		r1_bio_write_done(r1_bio);
+		/* We need another r1_bio.  It has already been counted
+		 * in bio->bi_phys_segments
+		 */
+		r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
+		r1_bio->master_bio = bio;
+		r1_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
+		r1_bio->state = 0;
+		r1_bio->mddev = mddev;
+		r1_bio->sector = bio->bi_sector + sectors_handled;
+		goto retry_write;
+	}
+
+	r1_bio_write_done(r1_bio);
+
+	/* In case raid1d snuck in to freeze_array */
+	wake_up(&conf->wait_barrier);
+
+	if (do_sync || !bitmap || !plugged)
+		md_wakeup_thread(mddev->thread);
+}
+
+static void status(struct seq_file *seq, struct mddev *mddev)
+{
+	struct r1conf *conf = mddev->private;
+	int i;
+
+	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
+		   conf->raid_disks - mddev->degraded);
+	rcu_read_lock();
+	for (i = 0; i < conf->raid_disks; i++) {
+		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+		seq_printf(seq, "%s",
+			   rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
+	}
+	rcu_read_unlock();
+	seq_printf(seq, "]");
+}
+
+
+static void error(struct mddev *mddev, struct md_rdev *rdev)
+{
+	char b[BDEVNAME_SIZE];
+	struct r1conf *conf = mddev->private;
+
+	/*
+	 * If it is not operational, then we have already marked it as dead
+	 * else if it is the last working disks, ignore the error, let the
+	 * next level up know.
+	 * else mark the drive as failed
+	 */
+	if (test_bit(In_sync, &rdev->flags)
+	    && (conf->raid_disks - mddev->degraded) == 1) {
+		/*
+		 * Don't fail the drive, act as though we were just a
+		 * normal single drive.
+		 * However don't try a recovery from this drive as
+		 * it is very likely to fail.
+		 */
+		conf->recovery_disabled = mddev->recovery_disabled;
+		return;
+	}
+	set_bit(Blocked, &rdev->flags);
+	if (test_and_clear_bit(In_sync, &rdev->flags)) {
+		unsigned long flags;
+		spin_lock_irqsave(&conf->device_lock, flags);
+		mddev->degraded++;
+		set_bit(Faulty, &rdev->flags);
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+		/*
+		 * if recovery is running, make sure it aborts.
+		 */
+		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+	} else
+		set_bit(Faulty, &rdev->flags);
+	set_bit(MD_CHANGE_DEVS, &mddev->flags);
+	printk(KERN_ALERT
+	       "md/raid1:%s: Disk failure on %s, disabling device.\n"
+	       "md/raid1:%s: Operation continuing on %d devices.\n",
+	       mdname(mddev), bdevname(rdev->bdev, b),
+	       mdname(mddev), conf->raid_disks - mddev->degraded);
+}
+
+static void print_conf(struct r1conf *conf)
+{
+	int i;
+
+	printk(KERN_DEBUG "RAID1 conf printout:\n");
+	if (!conf) {
+		printk(KERN_DEBUG "(!conf)\n");
+		return;
+	}
+	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
+		conf->raid_disks);
+
+	rcu_read_lock();
+	for (i = 0; i < conf->raid_disks; i++) {
+		char b[BDEVNAME_SIZE];
+		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+		if (rdev)
+			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
+			       i, !test_bit(In_sync, &rdev->flags),
+			       !test_bit(Faulty, &rdev->flags),
+			       bdevname(rdev->bdev,b));
+	}
+	rcu_read_unlock();
+}
+
+static void close_sync(struct r1conf *conf)
+{
+	wait_barrier(conf);
+	allow_barrier(conf);
+
+	mempool_destroy(conf->r1buf_pool);
+	conf->r1buf_pool = NULL;
+}
+
+static int raid1_spare_active(struct mddev *mddev)
+{
+	int i;
+	struct r1conf *conf = mddev->private;
+	int count = 0;
+	unsigned long flags;
+
+	/*
+	 * Find all failed disks within the RAID1 configuration 
+	 * and mark them readable.
+	 * Called under mddev lock, so rcu protection not needed.
+	 */
+	for (i = 0; i < conf->raid_disks; i++) {
+		struct md_rdev *rdev = conf->mirrors[i].rdev;
+		struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
+		if (repl
+		    && repl->recovery_offset == MaxSector
+		    && !test_bit(Faulty, &repl->flags)
+		    && !test_and_set_bit(In_sync, &repl->flags)) {
+			/* replacement has just become active */
+			if (!rdev ||
+			    !test_and_clear_bit(In_sync, &rdev->flags))
+				count++;
+			if (rdev) {
+				/* Replaced device not technically
+				 * faulty, but we need to be sure
+				 * it gets removed and never re-added
+				 */
+				set_bit(Faulty, &rdev->flags);
+				sysfs_notify_dirent_safe(
+					rdev->sysfs_state);
+			}
+		}
+		if (rdev
+		    && rdev->recovery_offset == MaxSector
+		    && !test_bit(Faulty, &rdev->flags)
+		    && !test_and_set_bit(In_sync, &rdev->flags)) {
+			count++;
+			sysfs_notify_dirent_safe(rdev->sysfs_state);
+		}
+	}
+	spin_lock_irqsave(&conf->device_lock, flags);
+	mddev->degraded -= count;
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+
+	print_conf(conf);
+	return count;
+}
+
+
+static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct r1conf *conf = mddev->private;
+	int err = -EEXIST;
+	int mirror = 0;
+	struct mirror_info *p;
+	int first = 0;
+	int last = conf->raid_disks - 1;
+	struct request_queue *q = bdev_get_queue(rdev->bdev);
+
+	if (mddev->recovery_disabled == conf->recovery_disabled)
+		return -EBUSY;
+
+	if (rdev->raid_disk >= 0)
+		first = last = rdev->raid_disk;
+
+	if (q->merge_bvec_fn) {
+		set_bit(Unmerged, &rdev->flags);
+		mddev->merge_check_needed = 1;
+	}
+
+	for (mirror = first; mirror <= last; mirror++) {
+		p = conf->mirrors+mirror;
+		if (!p->rdev) {
+
+			disk_stack_limits(mddev->gendisk, rdev->bdev,
+					  rdev->data_offset << 9);
+
+			p->head_position = 0;
+			rdev->raid_disk = mirror;
+			err = 0;
+			/* As all devices are equivalent, we don't need a full recovery
+			 * if this was recently any drive of the array
+			 */
+			if (rdev->saved_raid_disk < 0)
+				conf->fullsync = 1;
+			rcu_assign_pointer(p->rdev, rdev);
+			break;
+		}
+		if (test_bit(WantReplacement, &p->rdev->flags) &&
+		    p[conf->raid_disks].rdev == NULL) {
+			/* Add this device as a replacement */
+			clear_bit(In_sync, &rdev->flags);
+			set_bit(Replacement, &rdev->flags);
+			rdev->raid_disk = mirror;
+			err = 0;
+			conf->fullsync = 1;
+			rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
+			break;
+		}
+	}
+	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
+		/* Some requests might not have seen this new
+		 * merge_bvec_fn.  We must wait for them to complete
+		 * before merging the device fully.
+		 * First we make sure any code which has tested
+		 * our function has submitted the request, then
+		 * we wait for all outstanding requests to complete.
+		 */
+		synchronize_sched();
+		freeze_array(conf, 0);
+		unfreeze_array(conf);
+		clear_bit(Unmerged, &rdev->flags);
+	}
+	md_integrity_add_rdev(rdev, mddev);
+	print_conf(conf);
+	return err;
+}
+
+static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct r1conf *conf = mddev->private;
+	int err = 0;
+	int number = rdev->raid_disk;
+	struct mirror_info *p = conf->mirrors+ number;
+
+	if (rdev != p->rdev)
+		p = conf->mirrors + conf->raid_disks + number;
+
+	print_conf(conf);
+	if (rdev == p->rdev) {
+		if (test_bit(In_sync, &rdev->flags) ||
+		    atomic_read(&rdev->nr_pending)) {
+			err = -EBUSY;
+			goto abort;
+		}
+		/* Only remove non-faulty devices if recovery
+		 * is not possible.
+		 */
+		if (!test_bit(Faulty, &rdev->flags) &&
+		    mddev->recovery_disabled != conf->recovery_disabled &&
+		    mddev->degraded < conf->raid_disks) {
+			err = -EBUSY;
+			goto abort;
+		}
+		p->rdev = NULL;
+		synchronize_rcu();
+		if (atomic_read(&rdev->nr_pending)) {
+			/* lost the race, try later */
+			err = -EBUSY;
+			p->rdev = rdev;
+			goto abort;
+		} else if (conf->mirrors[conf->raid_disks + number].rdev) {
+			/* We just removed a device that is being replaced.
+			 * Move down the replacement.  We drain all IO before
+			 * doing this to avoid confusion.
+			 */
+			struct md_rdev *repl =
+				conf->mirrors[conf->raid_disks + number].rdev;
+			freeze_array(conf, 0);
+			clear_bit(Replacement, &repl->flags);
+			p->rdev = repl;
+			conf->mirrors[conf->raid_disks + number].rdev = NULL;
+			unfreeze_array(conf);
+			clear_bit(WantReplacement, &rdev->flags);
+		} else
+			clear_bit(WantReplacement, &rdev->flags);
+		err = md_integrity_register(mddev);
+	}
+abort:
+
+	print_conf(conf);
+	return err;
+}
+
+
+static void end_sync_read(struct bio *bio, int error)
+{
+	struct r1bio *r1_bio = bio->bi_private;
+
+	update_head_pos(r1_bio->read_disk, r1_bio);
+
+	/*
+	 * we have read a block, now it needs to be re-written,
+	 * or re-read if the read failed.
+	 * We don't do much here, just schedule handling by raid1d
+	 */
+	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
+		set_bit(R1BIO_Uptodate, &r1_bio->state);
+
+	if (atomic_dec_and_test(&r1_bio->remaining))
+		reschedule_retry(r1_bio);
+}
+
+static void end_sync_write(struct bio *bio, int error)
+{
+	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+	struct r1bio *r1_bio = bio->bi_private;
+	struct mddev *mddev = r1_bio->mddev;
+	struct r1conf *conf = mddev->private;
+	int mirror=0;
+	sector_t first_bad;
+	int bad_sectors;
+
+	mirror = find_bio_disk(r1_bio, bio);
+
+	if (!uptodate) {
+		sector_t sync_blocks = 0;
+		sector_t s = r1_bio->sector;
+		long sectors_to_go = r1_bio->sectors;
+		/* make sure these bits doesn't get cleared. */
+		do {
+			bitmap_end_sync(mddev->bitmap, s,
+					&sync_blocks, 1);
+			s += sync_blocks;
+			sectors_to_go -= sync_blocks;
+		} while (sectors_to_go > 0);
+		set_bit(WriteErrorSeen,
+			&conf->mirrors[mirror].rdev->flags);
+		if (!test_and_set_bit(WantReplacement,
+				      &conf->mirrors[mirror].rdev->flags))
+			set_bit(MD_RECOVERY_NEEDED, &
+				mddev->recovery);
+		set_bit(R1BIO_WriteError, &r1_bio->state);
+	} else if (is_badblock(conf->mirrors[mirror].rdev,
+			       r1_bio->sector,
+			       r1_bio->sectors,
+			       &first_bad, &bad_sectors) &&
+		   !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
+				r1_bio->sector,
+				r1_bio->sectors,
+				&first_bad, &bad_sectors)
+		)
+		set_bit(R1BIO_MadeGood, &r1_bio->state);
+
+	if (atomic_dec_and_test(&r1_bio->remaining)) {
+		int s = r1_bio->sectors;
+		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
+		    test_bit(R1BIO_WriteError, &r1_bio->state))
+			reschedule_retry(r1_bio);
+		else {
+			put_buf(r1_bio);
+			md_done_sync(mddev, s, uptodate);
+		}
+	}
+}
+
+static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
+			    int sectors, struct page *page, int rw)
+{
+	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
+		/* success */
+		return 1;
+	if (rw == WRITE) {
+		set_bit(WriteErrorSeen, &rdev->flags);
+		if (!test_and_set_bit(WantReplacement,
+				      &rdev->flags))
+			set_bit(MD_RECOVERY_NEEDED, &
+				rdev->mddev->recovery);
+	}
+	/* need to record an error - either for the block or the device */
+	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
+		md_error(rdev->mddev, rdev);
+	return 0;
+}
+
+static int fix_sync_read_error(struct r1bio *r1_bio)
+{
+	/* Try some synchronous reads of other devices to get
+	 * good data, much like with normal read errors.  Only
+	 * read into the pages we already have so we don't
+	 * need to re-issue the read request.
+	 * We don't need to freeze the array, because being in an
+	 * active sync request, there is no normal IO, and
+	 * no overlapping syncs.
+	 * We don't need to check is_badblock() again as we
+	 * made sure that anything with a bad block in range
+	 * will have bi_end_io clear.
+	 */
+	struct mddev *mddev = r1_bio->mddev;
+	struct r1conf *conf = mddev->private;
+	struct bio *bio = r1_bio->bios[r1_bio->read_disk];
+	sector_t sect = r1_bio->sector;
+	int sectors = r1_bio->sectors;
+	int idx = 0;
+
+	while(sectors) {
+		int s = sectors;
+		int d = r1_bio->read_disk;
+		int success = 0;
+		struct md_rdev *rdev;
+		int start;
+
+		if (s > (PAGE_SIZE>>9))
+			s = PAGE_SIZE >> 9;
+		do {
+			if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
+				/* No rcu protection needed here devices
+				 * can only be removed when no resync is
+				 * active, and resync is currently active
+				 */
+				rdev = conf->mirrors[d].rdev;
+				if (sync_page_io(rdev, sect, s<<9,
+						 bio->bi_io_vec[idx].bv_page,
+						 READ, false)) {
+					success = 1;
+					break;
+				}
+			}
+			d++;
+			if (d == conf->raid_disks * 2)
+				d = 0;
+		} while (!success && d != r1_bio->read_disk);
+
+		if (!success) {
+			char b[BDEVNAME_SIZE];
+			int abort = 0;
+			/* Cannot read from anywhere, this block is lost.
+			 * Record a bad block on each device.  If that doesn't
+			 * work just disable and interrupt the recovery.
+			 * Don't fail devices as that won't really help.
+			 */
+			printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
+			       " for block %llu\n",
+			       mdname(mddev),
+			       bdevname(bio->bi_bdev, b),
+			       (unsigned long long)r1_bio->sector);
+			for (d = 0; d < conf->raid_disks * 2; d++) {
+				rdev = conf->mirrors[d].rdev;
+				if (!rdev || test_bit(Faulty, &rdev->flags))
+					continue;
+				if (!rdev_set_badblocks(rdev, sect, s, 0))
+					abort = 1;
+			}
+			if (abort) {
+				conf->recovery_disabled =
+					mddev->recovery_disabled;
+				set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+				md_done_sync(mddev, r1_bio->sectors, 0);
+				put_buf(r1_bio);
+				return 0;
+			}
+			/* Try next page */
+			sectors -= s;
+			sect += s;
+			idx++;
+			continue;
+		}
+
+		start = d;
+		/* write it back and re-read */
+		while (d != r1_bio->read_disk) {
+			if (d == 0)
+				d = conf->raid_disks * 2;
+			d--;
+			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
+				continue;
+			rdev = conf->mirrors[d].rdev;
+			if (r1_sync_page_io(rdev, sect, s,
+					    bio->bi_io_vec[idx].bv_page,
+					    WRITE) == 0) {
+				r1_bio->bios[d]->bi_end_io = NULL;
+				rdev_dec_pending(rdev, mddev);
+			}
+		}
+		d = start;
+		while (d != r1_bio->read_disk) {
+			if (d == 0)
+				d = conf->raid_disks * 2;
+			d--;
+			if (r1_bio->bios[d]->bi_end_io != end_sync_read)
+				continue;
+			rdev = conf->mirrors[d].rdev;
+			if (r1_sync_page_io(rdev, sect, s,
+					    bio->bi_io_vec[idx].bv_page,
+					    READ) != 0)
+				atomic_add(s, &rdev->corrected_errors);
+		}
+		sectors -= s;
+		sect += s;
+		idx ++;
+	}
+	set_bit(R1BIO_Uptodate, &r1_bio->state);
+	set_bit(BIO_UPTODATE, &bio->bi_flags);
+	return 1;
+}
+
+static int process_checks(struct r1bio *r1_bio)
+{
+	/* We have read all readable devices.  If we haven't
+	 * got the block, then there is no hope left.
+	 * If we have, then we want to do a comparison
+	 * and skip the write if everything is the same.
+	 * If any blocks failed to read, then we need to
+	 * attempt an over-write
+	 */
+	struct mddev *mddev = r1_bio->mddev;
+	struct r1conf *conf = mddev->private;
+	int primary;
+	int i;
+	int vcnt;
+
+	for (primary = 0; primary < conf->raid_disks * 2; primary++)
+		if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
+		    test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
+			r1_bio->bios[primary]->bi_end_io = NULL;
+			rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
+			break;
+		}
+	r1_bio->read_disk = primary;
+	vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
+	for (i = 0; i < conf->raid_disks * 2; i++) {
+		int j;
+		struct bio *pbio = r1_bio->bios[primary];
+		struct bio *sbio = r1_bio->bios[i];
+		int size;
+
+		if (r1_bio->bios[i]->bi_end_io != end_sync_read)
+			continue;
+
+		if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
+			for (j = vcnt; j-- ; ) {
+				struct page *p, *s;
+				p = pbio->bi_io_vec[j].bv_page;
+				s = sbio->bi_io_vec[j].bv_page;
+				if (memcmp(page_address(p),
+					   page_address(s),
+					   sbio->bi_io_vec[j].bv_len))
+					break;
+			}
+		} else
+			j = 0;
+		if (j >= 0)
+			mddev->resync_mismatches += r1_bio->sectors;
+		if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
+			      && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
+			/* No need to write to this device. */
+			sbio->bi_end_io = NULL;
+			rdev_dec_pending(conf->mirrors[i].rdev, mddev);
+			continue;
+		}
+		/* fixup the bio for reuse */
+		sbio->bi_vcnt = vcnt;
+		sbio->bi_size = r1_bio->sectors << 9;
+		sbio->bi_idx = 0;
+		sbio->bi_phys_segments = 0;
+		sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
+		sbio->bi_flags |= 1 << BIO_UPTODATE;
+		sbio->bi_next = NULL;
+		sbio->bi_sector = r1_bio->sector +
+			conf->mirrors[i].rdev->data_offset;
+		sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
+		size = sbio->bi_size;
+		for (j = 0; j < vcnt ; j++) {
+			struct bio_vec *bi;
+			bi = &sbio->bi_io_vec[j];
+			bi->bv_offset = 0;
+			if (size > PAGE_SIZE)
+				bi->bv_len = PAGE_SIZE;
+			else
+				bi->bv_len = size;
+			size -= PAGE_SIZE;
+			memcpy(page_address(bi->bv_page),
+			       page_address(pbio->bi_io_vec[j].bv_page),
+			       PAGE_SIZE);
+		}
+	}
+	return 0;
+}
+
+static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
+{
+	struct r1conf *conf = mddev->private;
+	int i;
+	int disks = conf->raid_disks * 2;
+	struct bio *bio, *wbio;
+
+	bio = r1_bio->bios[r1_bio->read_disk];
+
+	if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
+		/* ouch - failed to read all of that. */
+		if (!fix_sync_read_error(r1_bio))
+			return;
+
+	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+		if (process_checks(r1_bio) < 0)
+			return;
+	/*
+	 * schedule writes
+	 */
+	atomic_set(&r1_bio->remaining, 1);
+	for (i = 0; i < disks ; i++) {
+		wbio = r1_bio->bios[i];
+		if (wbio->bi_end_io == NULL ||
+		    (wbio->bi_end_io == end_sync_read &&
+		     (i == r1_bio->read_disk ||
+		      !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
+			continue;
+
+		wbio->bi_rw = WRITE;
+		wbio->bi_end_io = end_sync_write;
+		atomic_inc(&r1_bio->remaining);
+		md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
+
+		generic_make_request(wbio);
+	}
+
+	if (atomic_dec_and_test(&r1_bio->remaining)) {
+		/* if we're here, all write(s) have completed, so clean up */
+		int s = r1_bio->sectors;
+		if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
+		    test_bit(R1BIO_WriteError, &r1_bio->state))
+			reschedule_retry(r1_bio);
+		else {
+			put_buf(r1_bio);
+			md_done_sync(mddev, s, 1);
+		}
+	}
+}
+
+/*
+ * This is a kernel thread which:
+ *
+ *	1.	Retries failed read operations on working mirrors.
+ *	2.	Updates the raid superblock when problems encounter.
+ *	3.	Performs writes following reads for array synchronising.
+ */
+
+static void fix_read_error(struct r1conf *conf, int read_disk,
+			   sector_t sect, int sectors)
+{
+	struct mddev *mddev = conf->mddev;
+	while(sectors) {
+		int s = sectors;
+		int d = read_disk;
+		int success = 0;
+		int start;
+		struct md_rdev *rdev;
+
+		if (s > (PAGE_SIZE>>9))
+			s = PAGE_SIZE >> 9;
+
+		do {
+			/* Note: no rcu protection needed here
+			 * as this is synchronous in the raid1d thread
+			 * which is the thread that might remove
+			 * a device.  If raid1d ever becomes multi-threaded....
+			 */
+			sector_t first_bad;
+			int bad_sectors;
+
+			rdev = conf->mirrors[d].rdev;
+			if (rdev &&
+			    test_bit(In_sync, &rdev->flags) &&
+			    is_badblock(rdev, sect, s,
+					&first_bad, &bad_sectors) == 0 &&
+			    sync_page_io(rdev, sect, s<<9,
+					 conf->tmppage, READ, false))
+				success = 1;
+			else {
+				d++;
+				if (d == conf->raid_disks * 2)
+					d = 0;
+			}
+		} while (!success && d != read_disk);
+
+		if (!success) {
+			/* Cannot read from anywhere - mark it bad */
+			struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
+			if (!rdev_set_badblocks(rdev, sect, s, 0))
+				md_error(mddev, rdev);
+			break;
+		}
+		/* write it back and re-read */
+		start = d;
+		while (d != read_disk) {
+			if (d==0)
+				d = conf->raid_disks * 2;
+			d--;
+			rdev = conf->mirrors[d].rdev;
+			if (rdev &&
+			    test_bit(In_sync, &rdev->flags))
+				r1_sync_page_io(rdev, sect, s,
+						conf->tmppage, WRITE);
+		}
+		d = start;
+		while (d != read_disk) {
+			char b[BDEVNAME_SIZE];
+			if (d==0)
+				d = conf->raid_disks * 2;
+			d--;
+			rdev = conf->mirrors[d].rdev;
+			if (rdev &&
+			    test_bit(In_sync, &rdev->flags)) {
+				if (r1_sync_page_io(rdev, sect, s,
+						    conf->tmppage, READ)) {
+					atomic_add(s, &rdev->corrected_errors);
+					printk(KERN_INFO
+					       "md/raid1:%s: read error corrected "
+					       "(%d sectors at %llu on %s)\n",
+					       mdname(mddev), s,
+					       (unsigned long long)(sect +
+					           rdev->data_offset),
+					       bdevname(rdev->bdev, b));
+				}
+			}
+		}
+		sectors -= s;
+		sect += s;
+	}
+}
+
+static void bi_complete(struct bio *bio, int error)
+{
+	complete((struct completion *)bio->bi_private);
+}
+
+static int submit_bio_wait(int rw, struct bio *bio)
+{
+	struct completion event;
+	rw |= REQ_SYNC;
+
+	init_completion(&event);
+	bio->bi_private = &event;
+	bio->bi_end_io = bi_complete;
+	submit_bio(rw, bio);
+	wait_for_completion(&event);
+
+	return test_bit(BIO_UPTODATE, &bio->bi_flags);
+}
+
+static int narrow_write_error(struct r1bio *r1_bio, int i)
+{
+	struct mddev *mddev = r1_bio->mddev;
+	struct r1conf *conf = mddev->private;
+	struct md_rdev *rdev = conf->mirrors[i].rdev;
+	int vcnt, idx;
+	struct bio_vec *vec;
+
+	/* bio has the data to be written to device 'i' where
+	 * we just recently had a write error.
+	 * We repeatedly clone the bio and trim down to one block,
+	 * then try the write.  Where the write fails we record
+	 * a bad block.
+	 * It is conceivable that the bio doesn't exactly align with
+	 * blocks.  We must handle this somehow.
+	 *
+	 * We currently own a reference on the rdev.
+	 */
+
+	int block_sectors;
+	sector_t sector;
+	int sectors;
+	int sect_to_write = r1_bio->sectors;
+	int ok = 1;
+
+	if (rdev->badblocks.shift < 0)
+		return 0;
+
+	block_sectors = 1 << rdev->badblocks.shift;
+	sector = r1_bio->sector;
+	sectors = ((sector + block_sectors)
+		   & ~(sector_t)(block_sectors - 1))
+		- sector;
+
+	if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
+		vcnt = r1_bio->behind_page_count;
+		vec = r1_bio->behind_bvecs;
+		idx = 0;
+		while (vec[idx].bv_page == NULL)
+			idx++;
+	} else {
+		vcnt = r1_bio->master_bio->bi_vcnt;
+		vec = r1_bio->master_bio->bi_io_vec;
+		idx = r1_bio->master_bio->bi_idx;
+	}
+	while (sect_to_write) {
+		struct bio *wbio;
+		if (sectors > sect_to_write)
+			sectors = sect_to_write;
+		/* Write at 'sector' for 'sectors'*/
+
+		wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
+		memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
+		wbio->bi_sector = r1_bio->sector;
+		wbio->bi_rw = WRITE;
+		wbio->bi_vcnt = vcnt;
+		wbio->bi_size = r1_bio->sectors << 9;
+		wbio->bi_idx = idx;
+
+		md_trim_bio(wbio, sector - r1_bio->sector, sectors);
+		wbio->bi_sector += rdev->data_offset;
+		wbio->bi_bdev = rdev->bdev;
+		if (submit_bio_wait(WRITE, wbio) == 0)
+			/* failure! */
+			ok = rdev_set_badblocks(rdev, sector,
+						sectors, 0)
+				&& ok;
+
+		bio_put(wbio);
+		sect_to_write -= sectors;
+		sector += sectors;
+		sectors = block_sectors;
+	}
+	return ok;
+}
+
+static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
+{
+	int m;
+	int s = r1_bio->sectors;
+	for (m = 0; m < conf->raid_disks * 2 ; m++) {
+		struct md_rdev *rdev = conf->mirrors[m].rdev;
+		struct bio *bio = r1_bio->bios[m];
+		if (bio->bi_end_io == NULL)
+			continue;
+		if (test_bit(BIO_UPTODATE, &bio->bi_flags) &&
+		    test_bit(R1BIO_MadeGood, &r1_bio->state)) {
+			rdev_clear_badblocks(rdev, r1_bio->sector, s);
+		}
+		if (!test_bit(BIO_UPTODATE, &bio->bi_flags) &&
+		    test_bit(R1BIO_WriteError, &r1_bio->state)) {
+			if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
+				md_error(conf->mddev, rdev);
+		}
+	}
+	put_buf(r1_bio);
+	md_done_sync(conf->mddev, s, 1);
+}
+
+static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
+{
+	int m;
+	for (m = 0; m < conf->raid_disks * 2 ; m++)
+		if (r1_bio->bios[m] == IO_MADE_GOOD) {
+			struct md_rdev *rdev = conf->mirrors[m].rdev;
+			rdev_clear_badblocks(rdev,
+					     r1_bio->sector,
+					     r1_bio->sectors);
+			rdev_dec_pending(rdev, conf->mddev);
+		} else if (r1_bio->bios[m] != NULL) {
+			/* This drive got a write error.  We need to
+			 * narrow down and record precise write
+			 * errors.
+			 */
+			if (!narrow_write_error(r1_bio, m)) {
+				md_error(conf->mddev,
+					 conf->mirrors[m].rdev);
+				/* an I/O failed, we can't clear the bitmap */
+				set_bit(R1BIO_Degraded, &r1_bio->state);
+			}
+			rdev_dec_pending(conf->mirrors[m].rdev,
+					 conf->mddev);
+		}
+	if (test_bit(R1BIO_WriteError, &r1_bio->state))
+		close_write(r1_bio);
+	raid_end_bio_io(r1_bio);
+}
+
+static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
+{
+	int disk;
+	int max_sectors;
+	struct mddev *mddev = conf->mddev;
+	struct bio *bio;
+	char b[BDEVNAME_SIZE];
+	struct md_rdev *rdev;
+
+	clear_bit(R1BIO_ReadError, &r1_bio->state);
+	/* we got a read error. Maybe the drive is bad.  Maybe just
+	 * the block and we can fix it.
+	 * We freeze all other IO, and try reading the block from
+	 * other devices.  When we find one, we re-write
+	 * and check it that fixes the read error.
+	 * This is all done synchronously while the array is
+	 * frozen
+	 */
+	if (mddev->ro == 0) {
+		freeze_array(conf, 1);
+		fix_read_error(conf, r1_bio->read_disk,
+			       r1_bio->sector, r1_bio->sectors);
+		unfreeze_array(conf);
+	} else
+		md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
+
+	bio = r1_bio->bios[r1_bio->read_disk];
+	bdevname(bio->bi_bdev, b);
+read_more:
+	disk = read_balance(conf, r1_bio, &max_sectors);
+	if (disk == -1) {
+		printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
+		       " read error for block %llu\n",
+		       mdname(mddev), b, (unsigned long long)r1_bio->sector);
+		raid_end_bio_io(r1_bio);
+	} else {
+		const unsigned long do_sync
+			= r1_bio->master_bio->bi_rw & REQ_SYNC;
+		if (bio) {
+			r1_bio->bios[r1_bio->read_disk] =
+				mddev->ro ? IO_BLOCKED : NULL;
+			bio_put(bio);
+		}
+		r1_bio->read_disk = disk;
+		bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
+		md_trim_bio(bio, r1_bio->sector - bio->bi_sector, max_sectors);
+		r1_bio->bios[r1_bio->read_disk] = bio;
+		rdev = conf->mirrors[disk].rdev;
+		printk_ratelimited(KERN_ERR
+				   "md/raid1:%s: redirecting sector %llu"
+				   " to other mirror: %s\n",
+				   mdname(mddev),
+				   (unsigned long long)r1_bio->sector,
+				   bdevname(rdev->bdev, b));
+		bio->bi_sector = r1_bio->sector + rdev->data_offset;
+		bio->bi_bdev = rdev->bdev;
+		bio->bi_end_io = raid1_end_read_request;
+		bio->bi_rw = READ | do_sync;
+		bio->bi_private = r1_bio;
+		if (max_sectors < r1_bio->sectors) {
+			/* Drat - have to split this up more */
+			struct bio *mbio = r1_bio->master_bio;
+			int sectors_handled = (r1_bio->sector + max_sectors
+					       - mbio->bi_sector);
+			r1_bio->sectors = max_sectors;
+			spin_lock_irq(&conf->device_lock);
+			if (mbio->bi_phys_segments == 0)
+				mbio->bi_phys_segments = 2;
+			else
+				mbio->bi_phys_segments++;
+			spin_unlock_irq(&conf->device_lock);
+			generic_make_request(bio);
+			bio = NULL;
+
+			r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
+
+			r1_bio->master_bio = mbio;
+			r1_bio->sectors = (mbio->bi_size >> 9)
+					  - sectors_handled;
+			r1_bio->state = 0;
+			set_bit(R1BIO_ReadError, &r1_bio->state);
+			r1_bio->mddev = mddev;
+			r1_bio->sector = mbio->bi_sector + sectors_handled;
+
+			goto read_more;
+		} else
+			generic_make_request(bio);
+	}
+}
+
+static void raid1d(struct mddev *mddev)
+{
+	struct r1bio *r1_bio;
+	unsigned long flags;
+	struct r1conf *conf = mddev->private;
+	struct list_head *head = &conf->retry_list;
+	struct blk_plug plug;
+
+	md_check_recovery(mddev);
+
+	blk_start_plug(&plug);
+	for (;;) {
+
+		if (atomic_read(&mddev->plug_cnt) == 0)
+			flush_pending_writes(conf);
+
+		spin_lock_irqsave(&conf->device_lock, flags);
+		if (list_empty(head)) {
+			spin_unlock_irqrestore(&conf->device_lock, flags);
+			break;
+		}
+		r1_bio = list_entry(head->prev, struct r1bio, retry_list);
+		list_del(head->prev);
+		conf->nr_queued--;
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+
+		mddev = r1_bio->mddev;
+		conf = mddev->private;
+		if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
+			if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
+			    test_bit(R1BIO_WriteError, &r1_bio->state))
+				handle_sync_write_finished(conf, r1_bio);
+			else
+				sync_request_write(mddev, r1_bio);
+		} else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
+			   test_bit(R1BIO_WriteError, &r1_bio->state))
+			handle_write_finished(conf, r1_bio);
+		else if (test_bit(R1BIO_ReadError, &r1_bio->state))
+			handle_read_error(conf, r1_bio);
+		else
+			/* just a partial read to be scheduled from separate
+			 * context
+			 */
+			generic_make_request(r1_bio->bios[r1_bio->read_disk]);
+
+		cond_resched();
+		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
+			md_check_recovery(mddev);
+	}
+	blk_finish_plug(&plug);
+}
+
+
+static int init_resync(struct r1conf *conf)
+{
+	int buffs;
+
+	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
+	BUG_ON(conf->r1buf_pool);
+	conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
+					  conf->poolinfo);
+	if (!conf->r1buf_pool)
+		return -ENOMEM;
+	conf->next_resync = 0;
+	return 0;
+}
+
+/*
+ * perform a "sync" on one "block"
+ *
+ * We need to make sure that no normal I/O request - particularly write
+ * requests - conflict with active sync requests.
+ *
+ * This is achieved by tracking pending requests and a 'barrier' concept
+ * that can be installed to exclude normal IO requests.
+ */
+
+static sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
+{
+	struct r1conf *conf = mddev->private;
+	struct r1bio *r1_bio;
+	struct bio *bio;
+	sector_t max_sector, nr_sectors;
+	int disk = -1;
+	int i;
+	int wonly = -1;
+	int write_targets = 0, read_targets = 0;
+	sector_t sync_blocks;
+	int still_degraded = 0;
+	int good_sectors = RESYNC_SECTORS;
+	int min_bad = 0; /* number of sectors that are bad in all devices */
+
+	if (!conf->r1buf_pool)
+		if (init_resync(conf))
+			return 0;
+
+	max_sector = mddev->dev_sectors;
+	if (sector_nr >= max_sector) {
+		/* If we aborted, we need to abort the
+		 * sync on the 'current' bitmap chunk (there will
+		 * only be one in raid1 resync.
+		 * We can find the current addess in mddev->curr_resync
+		 */
+		if (mddev->curr_resync < max_sector) /* aborted */
+			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
+						&sync_blocks, 1);
+		else /* completed sync */
+			conf->fullsync = 0;
+
+		bitmap_close_sync(mddev->bitmap);
+		close_sync(conf);
+		return 0;
+	}
+
+	if (mddev->bitmap == NULL &&
+	    mddev->recovery_cp == MaxSector &&
+	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
+	    conf->fullsync == 0) {
+		*skipped = 1;
+		return max_sector - sector_nr;
+	}
+	/* before building a request, check if we can skip these blocks..
+	 * This call the bitmap_start_sync doesn't actually record anything
+	 */
+	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
+	    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
+		/* We can skip this block, and probably several more */
+		*skipped = 1;
+		return sync_blocks;
+	}
+	/*
+	 * If there is non-resync activity waiting for a turn,
+	 * and resync is going fast enough,
+	 * then let it though before starting on this new sync request.
+	 */
+	if (!go_faster && conf->nr_waiting)
+		msleep_interruptible(1000);
+
+	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
+	r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
+	raise_barrier(conf);
+
+	conf->next_resync = sector_nr;
+
+	rcu_read_lock();
+	/*
+	 * If we get a correctably read error during resync or recovery,
+	 * we might want to read from a different device.  So we
+	 * flag all drives that could conceivably be read from for READ,
+	 * and any others (which will be non-In_sync devices) for WRITE.
+	 * If a read fails, we try reading from something else for which READ
+	 * is OK.
+	 */
+
+	r1_bio->mddev = mddev;
+	r1_bio->sector = sector_nr;
+	r1_bio->state = 0;
+	set_bit(R1BIO_IsSync, &r1_bio->state);
+
+	for (i = 0; i < conf->raid_disks * 2; i++) {
+		struct md_rdev *rdev;
+		bio = r1_bio->bios[i];
+
+		/* take from bio_init */
+		bio->bi_next = NULL;
+		bio->bi_flags &= ~(BIO_POOL_MASK-1);
+		bio->bi_flags |= 1 << BIO_UPTODATE;
+		bio->bi_rw = READ;
+		bio->bi_vcnt = 0;
+		bio->bi_idx = 0;
+		bio->bi_phys_segments = 0;
+		bio->bi_size = 0;
+		bio->bi_end_io = NULL;
+		bio->bi_private = NULL;
+
+		rdev = rcu_dereference(conf->mirrors[i].rdev);
+		if (rdev == NULL ||
+		    test_bit(Faulty, &rdev->flags)) {
+			if (i < conf->raid_disks)
+				still_degraded = 1;
+		} else if (!test_bit(In_sync, &rdev->flags)) {
+			bio->bi_rw = WRITE;
+			bio->bi_end_io = end_sync_write;
+			write_targets ++;
+		} else {
+			/* may need to read from here */
+			sector_t first_bad = MaxSector;
+			int bad_sectors;
+
+			if (is_badblock(rdev, sector_nr, good_sectors,
+					&first_bad, &bad_sectors)) {
+				if (first_bad > sector_nr)
+					good_sectors = first_bad - sector_nr;
+				else {
+					bad_sectors -= (sector_nr - first_bad);
+					if (min_bad == 0 ||
+					    min_bad > bad_sectors)
+						min_bad = bad_sectors;
+				}
+			}
+			if (sector_nr < first_bad) {
+				if (test_bit(WriteMostly, &rdev->flags)) {
+					if (wonly < 0)
+						wonly = i;
+				} else {
+					if (disk < 0)
+						disk = i;
+				}
+				bio->bi_rw = READ;
+				bio->bi_end_io = end_sync_read;
+				read_targets++;
+			}
+		}
+		if (bio->bi_end_io) {
+			atomic_inc(&rdev->nr_pending);
+			bio->bi_sector = sector_nr + rdev->data_offset;
+			bio->bi_bdev = rdev->bdev;
+			bio->bi_private = r1_bio;
+		}
+	}
+	rcu_read_unlock();
+	if (disk < 0)
+		disk = wonly;
+	r1_bio->read_disk = disk;
+
+	if (read_targets == 0 && min_bad > 0) {
+		/* These sectors are bad on all InSync devices, so we
+		 * need to mark them bad on all write targets
+		 */
+		int ok = 1;
+		for (i = 0 ; i < conf->raid_disks * 2 ; i++)
+			if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
+				struct md_rdev *rdev = conf->mirrors[i].rdev;
+				ok = rdev_set_badblocks(rdev, sector_nr,
+							min_bad, 0
+					) && ok;
+			}
+		set_bit(MD_CHANGE_DEVS, &mddev->flags);
+		*skipped = 1;
+		put_buf(r1_bio);
+
+		if (!ok) {
+			/* Cannot record the badblocks, so need to
+			 * abort the resync.
+			 * If there are multiple read targets, could just
+			 * fail the really bad ones ???
+			 */
+			conf->recovery_disabled = mddev->recovery_disabled;
+			set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+			return 0;
+		} else
+			return min_bad;
+
+	}
+	if (min_bad > 0 && min_bad < good_sectors) {
+		/* only resync enough to reach the next bad->good
+		 * transition */
+		good_sectors = min_bad;
+	}
+
+	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
+		/* extra read targets are also write targets */
+		write_targets += read_targets-1;
+
+	if (write_targets == 0 || read_targets == 0) {
+		/* There is nowhere to write, so all non-sync
+		 * drives must be failed - so we are finished
+		 */
+		sector_t rv;
+		if (min_bad > 0)
+			max_sector = sector_nr + min_bad;
+		rv = max_sector - sector_nr;
+		*skipped = 1;
+		put_buf(r1_bio);
+		return rv;
+	}
+
+	if (max_sector > mddev->resync_max)
+		max_sector = mddev->resync_max; /* Don't do IO beyond here */
+	if (max_sector > sector_nr + good_sectors)
+		max_sector = sector_nr + good_sectors;
+	nr_sectors = 0;
+	sync_blocks = 0;
+	do {
+		struct page *page;
+		int len = PAGE_SIZE;
+		if (sector_nr + (len>>9) > max_sector)
+			len = (max_sector - sector_nr) << 9;
+		if (len == 0)
+			break;
+		if (sync_blocks == 0) {
+			if (!bitmap_start_sync(mddev->bitmap, sector_nr,
+					       &sync_blocks, still_degraded) &&
+			    !conf->fullsync &&
+			    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
+				break;
+			BUG_ON(sync_blocks < (PAGE_SIZE>>9));
+			if ((len >> 9) > sync_blocks)
+				len = sync_blocks<<9;
+		}
+
+		for (i = 0 ; i < conf->raid_disks * 2; i++) {
+			bio = r1_bio->bios[i];
+			if (bio->bi_end_io) {
+				page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
+				if (bio_add_page(bio, page, len, 0) == 0) {
+					/* stop here */
+					bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
+					while (i > 0) {
+						i--;
+						bio = r1_bio->bios[i];
+						if (bio->bi_end_io==NULL)
+							continue;
+						/* remove last page from this bio */
+						bio->bi_vcnt--;
+						bio->bi_size -= len;
+						bio->bi_flags &= ~(1<< BIO_SEG_VALID);
+					}
+					goto bio_full;
+				}
+			}
+		}
+		nr_sectors += len>>9;
+		sector_nr += len>>9;
+		sync_blocks -= (len>>9);
+	} while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
+ bio_full:
+	r1_bio->sectors = nr_sectors;
+
+	/* For a user-requested sync, we read all readable devices and do a
+	 * compare
+	 */
+	if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
+		atomic_set(&r1_bio->remaining, read_targets);
+		for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
+			bio = r1_bio->bios[i];
+			if (bio->bi_end_io == end_sync_read) {
+				read_targets--;
+				md_sync_acct(bio->bi_bdev, nr_sectors);
+				generic_make_request(bio);
+			}
+		}
+	} else {
+		atomic_set(&r1_bio->remaining, 1);
+		bio = r1_bio->bios[r1_bio->read_disk];
+		md_sync_acct(bio->bi_bdev, nr_sectors);
+		generic_make_request(bio);
+
+	}
+	return nr_sectors;
+}
+
+static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+	if (sectors)
+		return sectors;
+
+	return mddev->dev_sectors;
+}
+
+static struct r1conf *setup_conf(struct mddev *mddev)
+{
+	struct r1conf *conf;
+	int i;
+	struct mirror_info *disk;
+	struct md_rdev *rdev;
+	int err = -ENOMEM;
+
+	conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
+	if (!conf)
+		goto abort;
+
+	conf->mirrors = kzalloc(sizeof(struct mirror_info)
+				* mddev->raid_disks * 2,
+				 GFP_KERNEL);
+	if (!conf->mirrors)
+		goto abort;
+
+	conf->tmppage = alloc_page(GFP_KERNEL);
+	if (!conf->tmppage)
+		goto abort;
+
+	conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
+	if (!conf->poolinfo)
+		goto abort;
+	conf->poolinfo->raid_disks = mddev->raid_disks * 2;
+	conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
+					  r1bio_pool_free,
+					  conf->poolinfo);
+	if (!conf->r1bio_pool)
+		goto abort;
+
+	conf->poolinfo->mddev = mddev;
+
+	err = -EINVAL;
+	spin_lock_init(&conf->device_lock);
+	rdev_for_each(rdev, mddev) {
+		struct request_queue *q;
+		int disk_idx = rdev->raid_disk;
+		if (disk_idx >= mddev->raid_disks
+		    || disk_idx < 0)
+			continue;
+		if (test_bit(Replacement, &rdev->flags))
+			disk = conf->mirrors + mddev->raid_disks + disk_idx;
+		else
+			disk = conf->mirrors + disk_idx;
+
+		if (disk->rdev)
+			goto abort;
+		disk->rdev = rdev;
+		q = bdev_get_queue(rdev->bdev);
+		if (q->merge_bvec_fn)
+			mddev->merge_check_needed = 1;
+
+		disk->head_position = 0;
+	}
+	conf->raid_disks = mddev->raid_disks;
+	conf->mddev = mddev;
+	INIT_LIST_HEAD(&conf->retry_list);
+
+	spin_lock_init(&conf->resync_lock);
+	init_waitqueue_head(&conf->wait_barrier);
+
+	bio_list_init(&conf->pending_bio_list);
+	conf->pending_count = 0;
+	conf->recovery_disabled = mddev->recovery_disabled - 1;
+
+	err = -EIO;
+	conf->last_used = -1;
+	for (i = 0; i < conf->raid_disks * 2; i++) {
+
+		disk = conf->mirrors + i;
+
+		if (i < conf->raid_disks &&
+		    disk[conf->raid_disks].rdev) {
+			/* This slot has a replacement. */
+			if (!disk->rdev) {
+				/* No original, just make the replacement
+				 * a recovering spare
+				 */
+				disk->rdev =
+					disk[conf->raid_disks].rdev;
+				disk[conf->raid_disks].rdev = NULL;
+			} else if (!test_bit(In_sync, &disk->rdev->flags))
+				/* Original is not in_sync - bad */
+				goto abort;
+		}
+
+		if (!disk->rdev ||
+		    !test_bit(In_sync, &disk->rdev->flags)) {
+			disk->head_position = 0;
+			if (disk->rdev)
+				conf->fullsync = 1;
+		} else if (conf->last_used < 0)
+			/*
+			 * The first working device is used as a
+			 * starting point to read balancing.
+			 */
+			conf->last_used = i;
+	}
+
+	if (conf->last_used < 0) {
+		printk(KERN_ERR "md/raid1:%s: no operational mirrors\n",
+		       mdname(mddev));
+		goto abort;
+	}
+	err = -ENOMEM;
+	conf->thread = md_register_thread(raid1d, mddev, NULL);
+	if (!conf->thread) {
+		printk(KERN_ERR
+		       "md/raid1:%s: couldn't allocate thread\n",
+		       mdname(mddev));
+		goto abort;
+	}
+
+	return conf;
+
+ abort:
+	if (conf) {
+		if (conf->r1bio_pool)
+			mempool_destroy(conf->r1bio_pool);
+		kfree(conf->mirrors);
+		safe_put_page(conf->tmppage);
+		kfree(conf->poolinfo);
+		kfree(conf);
+	}
+	return ERR_PTR(err);
+}
+
+static int stop(struct mddev *mddev);
+static int run(struct mddev *mddev)
+{
+	struct r1conf *conf;
+	int i;
+	struct md_rdev *rdev;
+	int ret;
+
+	if (mddev->level != 1) {
+		printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
+		       mdname(mddev), mddev->level);
+		return -EIO;
+	}
+	if (mddev->reshape_position != MaxSector) {
+		printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
+		       mdname(mddev));
+		return -EIO;
+	}
+	/*
+	 * copy the already verified devices into our private RAID1
+	 * bookkeeping area. [whatever we allocate in run(),
+	 * should be freed in stop()]
+	 */
+	if (mddev->private == NULL)
+		conf = setup_conf(mddev);
+	else
+		conf = mddev->private;
+
+	if (IS_ERR(conf))
+		return PTR_ERR(conf);
+
+	rdev_for_each(rdev, mddev) {
+		if (!mddev->gendisk)
+			continue;
+		disk_stack_limits(mddev->gendisk, rdev->bdev,
+				  rdev->data_offset << 9);
+	}
+
+	mddev->degraded = 0;
+	for (i=0; i < conf->raid_disks; i++)
+		if (conf->mirrors[i].rdev == NULL ||
+		    !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
+		    test_bit(Faulty, &conf->mirrors[i].rdev->flags))
+			mddev->degraded++;
+
+	if (conf->raid_disks - mddev->degraded == 1)
+		mddev->recovery_cp = MaxSector;
+
+	if (mddev->recovery_cp != MaxSector)
+		printk(KERN_NOTICE "md/raid1:%s: not clean"
+		       " -- starting background reconstruction\n",
+		       mdname(mddev));
+	printk(KERN_INFO 
+		"md/raid1:%s: active with %d out of %d mirrors\n",
+		mdname(mddev), mddev->raid_disks - mddev->degraded, 
+		mddev->raid_disks);
+
+	/*
+	 * Ok, everything is just fine now
+	 */
+	mddev->thread = conf->thread;
+	conf->thread = NULL;
+	mddev->private = conf;
+
+	md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
+
+	if (mddev->queue) {
+		mddev->queue->backing_dev_info.congested_fn = raid1_congested;
+		mddev->queue->backing_dev_info.congested_data = mddev;
+		blk_queue_merge_bvec(mddev->queue, raid1_mergeable_bvec);
+	}
+
+	ret =  md_integrity_register(mddev);
+	if (ret)
+		stop(mddev);
+	return ret;
+}
+
+static int stop(struct mddev *mddev)
+{
+	struct r1conf *conf = mddev->private;
+	struct bitmap *bitmap = mddev->bitmap;
+
+	/* wait for behind writes to complete */
+	if (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
+		printk(KERN_INFO "md/raid1:%s: behind writes in progress - waiting to stop.\n",
+		       mdname(mddev));
+		/* need to kick something here to make sure I/O goes? */
+		wait_event(bitmap->behind_wait,
+			   atomic_read(&bitmap->behind_writes) == 0);
+	}
+
+	raise_barrier(conf);
+	lower_barrier(conf);
+
+	md_unregister_thread(&mddev->thread);
+	if (conf->r1bio_pool)
+		mempool_destroy(conf->r1bio_pool);
+	kfree(conf->mirrors);
+	kfree(conf->poolinfo);
+	kfree(conf);
+	mddev->private = NULL;
+	return 0;
+}
+
+static int raid1_resize(struct mddev *mddev, sector_t sectors)
+{
+	/* no resync is happening, and there is enough space
+	 * on all devices, so we can resize.
+	 * We need to make sure resync covers any new space.
+	 * If the array is shrinking we should possibly wait until
+	 * any io in the removed space completes, but it hardly seems
+	 * worth it.
+	 */
+	md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
+	if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
+		return -EINVAL;
+	set_capacity(mddev->gendisk, mddev->array_sectors);
+	revalidate_disk(mddev->gendisk);
+	if (sectors > mddev->dev_sectors &&
+	    mddev->recovery_cp > mddev->dev_sectors) {
+		mddev->recovery_cp = mddev->dev_sectors;
+		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	}
+	mddev->dev_sectors = sectors;
+	mddev->resync_max_sectors = sectors;
+	return 0;
+}
+
+static int raid1_reshape(struct mddev *mddev)
+{
+	/* We need to:
+	 * 1/ resize the r1bio_pool
+	 * 2/ resize conf->mirrors
+	 *
+	 * We allocate a new r1bio_pool if we can.
+	 * Then raise a device barrier and wait until all IO stops.
+	 * Then resize conf->mirrors and swap in the new r1bio pool.
+	 *
+	 * At the same time, we "pack" the devices so that all the missing
+	 * devices have the higher raid_disk numbers.
+	 */
+	mempool_t *newpool, *oldpool;
+	struct pool_info *newpoolinfo;
+	struct mirror_info *newmirrors;
+	struct r1conf *conf = mddev->private;
+	int cnt, raid_disks;
+	unsigned long flags;
+	int d, d2, err;
+
+	/* Cannot change chunk_size, layout, or level */
+	if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
+	    mddev->layout != mddev->new_layout ||
+	    mddev->level != mddev->new_level) {
+		mddev->new_chunk_sectors = mddev->chunk_sectors;
+		mddev->new_layout = mddev->layout;
+		mddev->new_level = mddev->level;
+		return -EINVAL;
+	}
+
+	err = md_allow_write(mddev);
+	if (err)
+		return err;
+
+	raid_disks = mddev->raid_disks + mddev->delta_disks;
+
+	if (raid_disks < conf->raid_disks) {
+		cnt=0;
+		for (d= 0; d < conf->raid_disks; d++)
+			if (conf->mirrors[d].rdev)
+				cnt++;
+		if (cnt > raid_disks)
+			return -EBUSY;
+	}
+
+	newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
+	if (!newpoolinfo)
+		return -ENOMEM;
+	newpoolinfo->mddev = mddev;
+	newpoolinfo->raid_disks = raid_disks * 2;
+
+	newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
+				 r1bio_pool_free, newpoolinfo);
+	if (!newpool) {
+		kfree(newpoolinfo);
+		return -ENOMEM;
+	}
+	newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks * 2,
+			     GFP_KERNEL);
+	if (!newmirrors) {
+		kfree(newpoolinfo);
+		mempool_destroy(newpool);
+		return -ENOMEM;
+	}
+
+	freeze_array(conf, 0);
+
+	/* ok, everything is stopped */
+	oldpool = conf->r1bio_pool;
+	conf->r1bio_pool = newpool;
+
+	for (d = d2 = 0; d < conf->raid_disks; d++) {
+		struct md_rdev *rdev = conf->mirrors[d].rdev;
+		if (rdev && rdev->raid_disk != d2) {
+			sysfs_unlink_rdev(mddev, rdev);
+			rdev->raid_disk = d2;
+			sysfs_unlink_rdev(mddev, rdev);
+			if (sysfs_link_rdev(mddev, rdev))
+				printk(KERN_WARNING
+				       "md/raid1:%s: cannot register rd%d\n",
+				       mdname(mddev), rdev->raid_disk);
+		}
+		if (rdev)
+			newmirrors[d2++].rdev = rdev;
+	}
+	kfree(conf->mirrors);
+	conf->mirrors = newmirrors;
+	kfree(conf->poolinfo);
+	conf->poolinfo = newpoolinfo;
+
+	spin_lock_irqsave(&conf->device_lock, flags);
+	mddev->degraded += (raid_disks - conf->raid_disks);
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+	conf->raid_disks = mddev->raid_disks = raid_disks;
+	mddev->delta_disks = 0;
+
+	conf->last_used = 0; /* just make sure it is in-range */
+	unfreeze_array(conf);
+
+	set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	md_wakeup_thread(mddev->thread);
+
+	mempool_destroy(oldpool);
+	return 0;
+}
+
+static void raid1_quiesce(struct mddev *mddev, int state)
+{
+	struct r1conf *conf = mddev->private;
+
+	switch(state) {
+	case 2: /* wake for suspend */
+		wake_up(&conf->wait_barrier);
+		break;
+	case 1:
+		raise_barrier(conf);
+		break;
+	case 0:
+		lower_barrier(conf);
+		break;
+	}
+}
+
+static void *raid1_takeover(struct mddev *mddev)
+{
+	/* raid1 can take over:
+	 *  raid5 with 2 devices, any layout or chunk size
+	 */
+	if (mddev->level == 5 && mddev->raid_disks == 2) {
+		struct r1conf *conf;
+		mddev->new_level = 1;
+		mddev->new_layout = 0;
+		mddev->new_chunk_sectors = 0;
+		conf = setup_conf(mddev);
+		if (!IS_ERR(conf))
+			conf->barrier = 1;
+		return conf;
+	}
+	return ERR_PTR(-EINVAL);
+}
+
+static struct md_personality raid1_personality =
+{
+	.name		= "raid1",
+	.level		= 1,
+	.owner		= THIS_MODULE,
+	.make_request	= make_request,
+	.run		= run,
+	.stop		= stop,
+	.status		= status,
+	.error_handler	= error,
+	.hot_add_disk	= raid1_add_disk,
+	.hot_remove_disk= raid1_remove_disk,
+	.spare_active	= raid1_spare_active,
+	.sync_request	= sync_request,
+	.resize		= raid1_resize,
+	.size		= raid1_size,
+	.check_reshape	= raid1_reshape,
+	.quiesce	= raid1_quiesce,
+	.takeover	= raid1_takeover,
+};
+
+static int __init raid_init(void)
+{
+	return register_md_personality(&raid1_personality);
+}
+
+static void raid_exit(void)
+{
+	unregister_md_personality(&raid1_personality);
+}
+
+module_init(raid_init);
+module_exit(raid_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
+MODULE_ALIAS("md-personality-3"); /* RAID1 */
+MODULE_ALIAS("md-raid1");
+MODULE_ALIAS("md-level-1");
+
+module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/raid1.h b/ap/os/linux/linux-3.4.x/drivers/md/raid1.h
new file mode 100644
index 0000000..80ded13
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/raid1.h
@@ -0,0 +1,177 @@
+#ifndef _RAID1_H
+#define _RAID1_H
+
+struct mirror_info {
+	struct md_rdev	*rdev;
+	sector_t	head_position;
+};
+
+/*
+ * memory pools need a pointer to the mddev, so they can force an unplug
+ * when memory is tight, and a count of the number of drives that the
+ * pool was allocated for, so they know how much to allocate and free.
+ * mddev->raid_disks cannot be used, as it can change while a pool is active
+ * These two datums are stored in a kmalloced struct.
+ * The 'raid_disks' here is twice the raid_disks in r1conf.
+ * This allows space for each 'real' device can have a replacement in the
+ * second half of the array.
+ */
+
+struct pool_info {
+	struct mddev *mddev;
+	int	raid_disks;
+};
+
+struct r1conf {
+	struct mddev		*mddev;
+	struct mirror_info	*mirrors;	/* twice 'raid_disks' to
+						 * allow for replacements.
+						 */
+	int			raid_disks;
+
+	/* When choose the best device for a read (read_balance())
+	 * we try to keep sequential reads one the same device
+	 * using 'last_used' and 'next_seq_sect'
+	 */
+	int			last_used;
+	sector_t		next_seq_sect;
+	/* During resync, read_balancing is only allowed on the part
+	 * of the array that has been resynced.  'next_resync' tells us
+	 * where that is.
+	 */
+	sector_t		next_resync;
+
+	spinlock_t		device_lock;
+
+	/* list of 'struct r1bio' that need to be processed by raid1d,
+	 * whether to retry a read, writeout a resync or recovery
+	 * block, or anything else.
+	 */
+	struct list_head	retry_list;
+
+	/* queue pending writes to be submitted on unplug */
+	struct bio_list		pending_bio_list;
+	int			pending_count;
+
+	/* for use when syncing mirrors:
+	 * We don't allow both normal IO and resync/recovery IO at
+	 * the same time - resync/recovery can only happen when there
+	 * is no other IO.  So when either is active, the other has to wait.
+	 * See more details description in raid1.c near raise_barrier().
+	 */
+	wait_queue_head_t	wait_barrier;
+	spinlock_t		resync_lock;
+	int			nr_pending;
+	int			nr_waiting;
+	int			nr_queued;
+	int			barrier;
+
+	/* Set to 1 if a full sync is needed, (fresh device added).
+	 * Cleared when a sync completes.
+	 */
+	int			fullsync;
+
+	/* When the same as mddev->recovery_disabled we don't allow
+	 * recovery to be attempted as we expect a read error.
+	 */
+	int			recovery_disabled;
+
+
+	/* poolinfo contains information about the content of the
+	 * mempools - it changes when the array grows or shrinks
+	 */
+	struct pool_info	*poolinfo;
+	mempool_t		*r1bio_pool;
+	mempool_t		*r1buf_pool;
+
+	/* temporary buffer to synchronous IO when attempting to repair
+	 * a read error.
+	 */
+	struct page		*tmppage;
+
+
+	/* When taking over an array from a different personality, we store
+	 * the new thread here until we fully activate the array.
+	 */
+	struct md_thread	*thread;
+};
+
+/*
+ * this is our 'private' RAID1 bio.
+ *
+ * it contains information about what kind of IO operations were started
+ * for this RAID1 operation, and about their status:
+ */
+
+struct r1bio {
+	atomic_t		remaining; /* 'have we finished' count,
+					    * used from IRQ handlers
+					    */
+	atomic_t		behind_remaining; /* number of write-behind ios remaining
+						 * in this BehindIO request
+						 */
+	sector_t		sector;
+	int			sectors;
+	unsigned long		state;
+	struct mddev		*mddev;
+	/*
+	 * original bio going to /dev/mdx
+	 */
+	struct bio		*master_bio;
+	/*
+	 * if the IO is in READ direction, then this is where we read
+	 */
+	int			read_disk;
+
+	struct list_head	retry_list;
+	/* Next two are only valid when R1BIO_BehindIO is set */
+	struct bio_vec		*behind_bvecs;
+	int			behind_page_count;
+	/*
+	 * if the IO is in WRITE direction, then multiple bios are used.
+	 * We choose the number when they are allocated.
+	 */
+	struct bio		*bios[0];
+	/* DO NOT PUT ANY NEW FIELDS HERE - bios array is contiguously alloced*/
+};
+
+/* when we get a read error on a read-only array, we redirect to another
+ * device without failing the first device, or trying to over-write to
+ * correct the read error.  To keep track of bad blocks on a per-bio
+ * level, we store IO_BLOCKED in the appropriate 'bios' pointer
+ */
+#define IO_BLOCKED ((struct bio *)1)
+/* When we successfully write to a known bad-block, we need to remove the
+ * bad-block marking which must be done from process context.  So we record
+ * the success by setting bios[n] to IO_MADE_GOOD
+ */
+#define IO_MADE_GOOD ((struct bio *)2)
+
+#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
+
+/* bits for r1bio.state */
+#define	R1BIO_Uptodate	0
+#define	R1BIO_IsSync	1
+#define	R1BIO_Degraded	2
+#define	R1BIO_BehindIO	3
+/* Set ReadError on bios that experience a readerror so that
+ * raid1d knows what to do with them.
+ */
+#define R1BIO_ReadError 4
+/* For write-behind requests, we call bi_end_io when
+ * the last non-write-behind device completes, providing
+ * any write was successful.  Otherwise we call when
+ * any write-behind write succeeds, otherwise we call
+ * with failure when last write completes (and all failed).
+ * Record that bi_end_io was called with this flag...
+ */
+#define	R1BIO_Returned 6
+/* If a write for this request means we can clear some
+ * known-bad-block records, we set this flag
+ */
+#define	R1BIO_MadeGood 7
+#define	R1BIO_WriteError 8
+
+extern int md_raid1_congested(struct mddev *mddev, int bits);
+
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/raid10.c b/ap/os/linux/linux-3.4.x/drivers/md/raid10.c
new file mode 100644
index 0000000..149426c
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/raid10.c
@@ -0,0 +1,3613 @@
+/*
+ * raid10.c : Multiple Devices driver for Linux
+ *
+ * Copyright (C) 2000-2004 Neil Brown
+ *
+ * RAID-10 support for md.
+ *
+ * Base on code in raid1.c.  See raid1.c for further copyright information.
+ *
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * You should have received a copy of the GNU General Public License
+ * (for example /usr/src/linux/COPYING); if not, write to the Free
+ * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+#include <linux/slab.h>
+#include <linux/delay.h>
+#include <linux/blkdev.h>
+#include <linux/module.h>
+#include <linux/seq_file.h>
+#include <linux/ratelimit.h>
+#include "md.h"
+#include "raid10.h"
+#include "raid0.h"
+#include "bitmap.h"
+
+/*
+ * RAID10 provides a combination of RAID0 and RAID1 functionality.
+ * The layout of data is defined by
+ *    chunk_size
+ *    raid_disks
+ *    near_copies (stored in low byte of layout)
+ *    far_copies (stored in second byte of layout)
+ *    far_offset (stored in bit 16 of layout )
+ *
+ * The data to be stored is divided into chunks using chunksize.
+ * Each device is divided into far_copies sections.
+ * In each section, chunks are laid out in a style similar to raid0, but
+ * near_copies copies of each chunk is stored (each on a different drive).
+ * The starting device for each section is offset near_copies from the starting
+ * device of the previous section.
+ * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
+ * drive.
+ * near_copies and far_copies must be at least one, and their product is at most
+ * raid_disks.
+ *
+ * If far_offset is true, then the far_copies are handled a bit differently.
+ * The copies are still in different stripes, but instead of be very far apart
+ * on disk, there are adjacent stripes.
+ */
+
+/*
+ * Number of guaranteed r10bios in case of extreme VM load:
+ */
+#define	NR_RAID10_BIOS 256
+
+/* When there are this many requests queue to be written by
+ * the raid10 thread, we become 'congested' to provide back-pressure
+ * for writeback.
+ */
+static int max_queued_requests = 1024;
+
+static void allow_barrier(struct r10conf *conf);
+static void lower_barrier(struct r10conf *conf);
+static int enough(struct r10conf *conf, int ignore);
+
+static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
+{
+	struct r10conf *conf = data;
+	int size = offsetof(struct r10bio, devs[conf->copies]);
+
+	/* allocate a r10bio with room for raid_disks entries in the
+	 * bios array */
+	return kzalloc(size, gfp_flags);
+}
+
+static void r10bio_pool_free(void *r10_bio, void *data)
+{
+	kfree(r10_bio);
+}
+
+/* Maximum size of each resync request */
+#define RESYNC_BLOCK_SIZE (64*1024)
+#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
+/* amount of memory to reserve for resync requests */
+#define RESYNC_WINDOW (1024*1024)
+/* maximum number of concurrent requests, memory permitting */
+#define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
+
+/*
+ * When performing a resync, we need to read and compare, so
+ * we need as many pages are there are copies.
+ * When performing a recovery, we need 2 bios, one for read,
+ * one for write (we recover only one drive per r10buf)
+ *
+ */
+static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
+{
+	struct r10conf *conf = data;
+	struct page *page;
+	struct r10bio *r10_bio;
+	struct bio *bio;
+	int i, j;
+	int nalloc;
+
+	r10_bio = r10bio_pool_alloc(gfp_flags, conf);
+	if (!r10_bio)
+		return NULL;
+
+	if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
+		nalloc = conf->copies; /* resync */
+	else
+		nalloc = 2; /* recovery */
+
+	/*
+	 * Allocate bios.
+	 */
+	for (j = nalloc ; j-- ; ) {
+		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
+		if (!bio)
+			goto out_free_bio;
+		r10_bio->devs[j].bio = bio;
+		if (!conf->have_replacement)
+			continue;
+		bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
+		if (!bio)
+			goto out_free_bio;
+		r10_bio->devs[j].repl_bio = bio;
+	}
+	/*
+	 * Allocate RESYNC_PAGES data pages and attach them
+	 * where needed.
+	 */
+	for (j = 0 ; j < nalloc; j++) {
+		struct bio *rbio = r10_bio->devs[j].repl_bio;
+		bio = r10_bio->devs[j].bio;
+		for (i = 0; i < RESYNC_PAGES; i++) {
+			if (j == 1 && !test_bit(MD_RECOVERY_SYNC,
+						&conf->mddev->recovery)) {
+				/* we can share bv_page's during recovery */
+				struct bio *rbio = r10_bio->devs[0].bio;
+				page = rbio->bi_io_vec[i].bv_page;
+				get_page(page);
+			} else
+				page = alloc_page(gfp_flags);
+			if (unlikely(!page))
+				goto out_free_pages;
+
+			bio->bi_io_vec[i].bv_page = page;
+			if (rbio)
+				rbio->bi_io_vec[i].bv_page = page;
+		}
+	}
+
+	return r10_bio;
+
+out_free_pages:
+	for ( ; i > 0 ; i--)
+		safe_put_page(bio->bi_io_vec[i-1].bv_page);
+	while (j--)
+		for (i = 0; i < RESYNC_PAGES ; i++)
+			safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
+	j = -1;
+out_free_bio:
+	while (++j < nalloc) {
+		bio_put(r10_bio->devs[j].bio);
+		if (r10_bio->devs[j].repl_bio)
+			bio_put(r10_bio->devs[j].repl_bio);
+	}
+	r10bio_pool_free(r10_bio, conf);
+	return NULL;
+}
+
+static void r10buf_pool_free(void *__r10_bio, void *data)
+{
+	int i;
+	struct r10conf *conf = data;
+	struct r10bio *r10bio = __r10_bio;
+	int j;
+
+	for (j=0; j < conf->copies; j++) {
+		struct bio *bio = r10bio->devs[j].bio;
+		if (bio) {
+			for (i = 0; i < RESYNC_PAGES; i++) {
+				safe_put_page(bio->bi_io_vec[i].bv_page);
+				bio->bi_io_vec[i].bv_page = NULL;
+			}
+			bio_put(bio);
+		}
+		bio = r10bio->devs[j].repl_bio;
+		if (bio)
+			bio_put(bio);
+	}
+	r10bio_pool_free(r10bio, conf);
+}
+
+static void put_all_bios(struct r10conf *conf, struct r10bio *r10_bio)
+{
+	int i;
+
+	for (i = 0; i < conf->copies; i++) {
+		struct bio **bio = & r10_bio->devs[i].bio;
+		if (!BIO_SPECIAL(*bio))
+			bio_put(*bio);
+		*bio = NULL;
+		bio = &r10_bio->devs[i].repl_bio;
+		if (r10_bio->read_slot < 0 && !BIO_SPECIAL(*bio))
+			bio_put(*bio);
+		*bio = NULL;
+	}
+}
+
+static void free_r10bio(struct r10bio *r10_bio)
+{
+	struct r10conf *conf = r10_bio->mddev->private;
+
+	put_all_bios(conf, r10_bio);
+	mempool_free(r10_bio, conf->r10bio_pool);
+}
+
+static void put_buf(struct r10bio *r10_bio)
+{
+	struct r10conf *conf = r10_bio->mddev->private;
+
+	mempool_free(r10_bio, conf->r10buf_pool);
+
+	lower_barrier(conf);
+}
+
+static void reschedule_retry(struct r10bio *r10_bio)
+{
+	unsigned long flags;
+	struct mddev *mddev = r10_bio->mddev;
+	struct r10conf *conf = mddev->private;
+
+	spin_lock_irqsave(&conf->device_lock, flags);
+	list_add(&r10_bio->retry_list, &conf->retry_list);
+	conf->nr_queued ++;
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+
+	/* wake up frozen array... */
+	wake_up(&conf->wait_barrier);
+
+	md_wakeup_thread(mddev->thread);
+}
+
+/*
+ * raid_end_bio_io() is called when we have finished servicing a mirrored
+ * operation and are ready to return a success/failure code to the buffer
+ * cache layer.
+ */
+static void raid_end_bio_io(struct r10bio *r10_bio)
+{
+	struct bio *bio = r10_bio->master_bio;
+	int done;
+	struct r10conf *conf = r10_bio->mddev->private;
+
+	if (bio->bi_phys_segments) {
+		unsigned long flags;
+		spin_lock_irqsave(&conf->device_lock, flags);
+		bio->bi_phys_segments--;
+		done = (bio->bi_phys_segments == 0);
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+	} else
+		done = 1;
+	if (!test_bit(R10BIO_Uptodate, &r10_bio->state))
+		clear_bit(BIO_UPTODATE, &bio->bi_flags);
+	if (done) {
+		bio_endio(bio, 0);
+		/*
+		 * Wake up any possible resync thread that waits for the device
+		 * to go idle.
+		 */
+		allow_barrier(conf);
+	}
+	free_r10bio(r10_bio);
+}
+
+/*
+ * Update disk head position estimator based on IRQ completion info.
+ */
+static inline void update_head_pos(int slot, struct r10bio *r10_bio)
+{
+	struct r10conf *conf = r10_bio->mddev->private;
+
+	conf->mirrors[r10_bio->devs[slot].devnum].head_position =
+		r10_bio->devs[slot].addr + (r10_bio->sectors);
+}
+
+/*
+ * Find the disk number which triggered given bio
+ */
+static int find_bio_disk(struct r10conf *conf, struct r10bio *r10_bio,
+			 struct bio *bio, int *slotp, int *replp)
+{
+	int slot;
+	int repl = 0;
+
+	for (slot = 0; slot < conf->copies; slot++) {
+		if (r10_bio->devs[slot].bio == bio)
+			break;
+		if (r10_bio->devs[slot].repl_bio == bio) {
+			repl = 1;
+			break;
+		}
+	}
+
+	BUG_ON(slot == conf->copies);
+	update_head_pos(slot, r10_bio);
+
+	if (slotp)
+		*slotp = slot;
+	if (replp)
+		*replp = repl;
+	return r10_bio->devs[slot].devnum;
+}
+
+static void raid10_end_read_request(struct bio *bio, int error)
+{
+	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+	struct r10bio *r10_bio = bio->bi_private;
+	int slot, dev;
+	struct md_rdev *rdev;
+	struct r10conf *conf = r10_bio->mddev->private;
+
+
+	slot = r10_bio->read_slot;
+	dev = r10_bio->devs[slot].devnum;
+	rdev = r10_bio->devs[slot].rdev;
+	/*
+	 * this branch is our 'one mirror IO has finished' event handler:
+	 */
+	update_head_pos(slot, r10_bio);
+
+	if (uptodate) {
+		/*
+		 * Set R10BIO_Uptodate in our master bio, so that
+		 * we will return a good error code to the higher
+		 * levels even if IO on some other mirrored buffer fails.
+		 *
+		 * The 'master' represents the composite IO operation to
+		 * user-side. So if something waits for IO, then it will
+		 * wait for the 'master' bio.
+		 */
+		set_bit(R10BIO_Uptodate, &r10_bio->state);
+	} else {
+		/* If all other devices that store this block have
+		 * failed, we want to return the error upwards rather
+		 * than fail the last device.  Here we redefine
+		 * "uptodate" to mean "Don't want to retry"
+		 */
+		unsigned long flags;
+		spin_lock_irqsave(&conf->device_lock, flags);
+		if (!enough(conf, rdev->raid_disk))
+			uptodate = 1;
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+	}
+	if (uptodate) {
+		raid_end_bio_io(r10_bio);
+		rdev_dec_pending(rdev, conf->mddev);
+	} else {
+		/*
+		 * oops, read error - keep the refcount on the rdev
+		 */
+		char b[BDEVNAME_SIZE];
+		printk_ratelimited(KERN_ERR
+				   "md/raid10:%s: %s: rescheduling sector %llu\n",
+				   mdname(conf->mddev),
+				   bdevname(rdev->bdev, b),
+				   (unsigned long long)r10_bio->sector);
+		set_bit(R10BIO_ReadError, &r10_bio->state);
+		reschedule_retry(r10_bio);
+	}
+}
+
+static void close_write(struct r10bio *r10_bio)
+{
+	/* clear the bitmap if all writes complete successfully */
+	bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
+			r10_bio->sectors,
+			!test_bit(R10BIO_Degraded, &r10_bio->state),
+			0);
+	md_write_end(r10_bio->mddev);
+}
+
+static void one_write_done(struct r10bio *r10_bio)
+{
+	if (atomic_dec_and_test(&r10_bio->remaining)) {
+		if (test_bit(R10BIO_WriteError, &r10_bio->state))
+			reschedule_retry(r10_bio);
+		else {
+			close_write(r10_bio);
+			if (test_bit(R10BIO_MadeGood, &r10_bio->state))
+				reschedule_retry(r10_bio);
+			else
+				raid_end_bio_io(r10_bio);
+		}
+	}
+}
+
+static void raid10_end_write_request(struct bio *bio, int error)
+{
+	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+	struct r10bio *r10_bio = bio->bi_private;
+	int dev;
+	int dec_rdev = 1;
+	struct r10conf *conf = r10_bio->mddev->private;
+	int slot, repl;
+	struct md_rdev *rdev = NULL;
+
+	dev = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
+
+	if (repl)
+		rdev = conf->mirrors[dev].replacement;
+	if (!rdev) {
+		smp_rmb();
+		repl = 0;
+		rdev = conf->mirrors[dev].rdev;
+	}
+	/*
+	 * this branch is our 'one mirror IO has finished' event handler:
+	 */
+	if (!uptodate) {
+		if (repl)
+			/* Never record new bad blocks to replacement,
+			 * just fail it.
+			 */
+			md_error(rdev->mddev, rdev);
+		else {
+			set_bit(WriteErrorSeen,	&rdev->flags);
+			if (!test_and_set_bit(WantReplacement, &rdev->flags))
+				set_bit(MD_RECOVERY_NEEDED,
+					&rdev->mddev->recovery);
+			set_bit(R10BIO_WriteError, &r10_bio->state);
+			dec_rdev = 0;
+		}
+	} else {
+		/*
+		 * Set R10BIO_Uptodate in our master bio, so that
+		 * we will return a good error code for to the higher
+		 * levels even if IO on some other mirrored buffer fails.
+		 *
+		 * The 'master' represents the composite IO operation to
+		 * user-side. So if something waits for IO, then it will
+		 * wait for the 'master' bio.
+		 */
+		sector_t first_bad;
+		int bad_sectors;
+
+		/*
+		 * Do not set R10BIO_Uptodate if the current device is
+		 * rebuilding or Faulty. This is because we cannot use
+		 * such device for properly reading the data back (we could
+		 * potentially use it, if the current write would have felt
+		 * before rdev->recovery_offset, but for simplicity we don't
+		 * check this here.
+		 */
+		if (test_bit(In_sync, &rdev->flags) &&
+		    !test_bit(Faulty, &rdev->flags))
+			set_bit(R10BIO_Uptodate, &r10_bio->state);
+
+		/* Maybe we can clear some bad blocks. */
+		if (is_badblock(rdev,
+				r10_bio->devs[slot].addr,
+				r10_bio->sectors,
+				&first_bad, &bad_sectors)) {
+			bio_put(bio);
+			if (repl)
+				r10_bio->devs[slot].repl_bio = IO_MADE_GOOD;
+			else
+				r10_bio->devs[slot].bio = IO_MADE_GOOD;
+			dec_rdev = 0;
+			set_bit(R10BIO_MadeGood, &r10_bio->state);
+		}
+	}
+
+	/*
+	 *
+	 * Let's see if all mirrored write operations have finished
+	 * already.
+	 */
+	one_write_done(r10_bio);
+	if (dec_rdev)
+		rdev_dec_pending(rdev, conf->mddev);
+}
+
+/*
+ * RAID10 layout manager
+ * As well as the chunksize and raid_disks count, there are two
+ * parameters: near_copies and far_copies.
+ * near_copies * far_copies must be <= raid_disks.
+ * Normally one of these will be 1.
+ * If both are 1, we get raid0.
+ * If near_copies == raid_disks, we get raid1.
+ *
+ * Chunks are laid out in raid0 style with near_copies copies of the
+ * first chunk, followed by near_copies copies of the next chunk and
+ * so on.
+ * If far_copies > 1, then after 1/far_copies of the array has been assigned
+ * as described above, we start again with a device offset of near_copies.
+ * So we effectively have another copy of the whole array further down all
+ * the drives, but with blocks on different drives.
+ * With this layout, and block is never stored twice on the one device.
+ *
+ * raid10_find_phys finds the sector offset of a given virtual sector
+ * on each device that it is on.
+ *
+ * raid10_find_virt does the reverse mapping, from a device and a
+ * sector offset to a virtual address
+ */
+
+static void raid10_find_phys(struct r10conf *conf, struct r10bio *r10bio)
+{
+	int n,f;
+	sector_t sector;
+	sector_t chunk;
+	sector_t stripe;
+	int dev;
+
+	int slot = 0;
+
+	/* now calculate first sector/dev */
+	chunk = r10bio->sector >> conf->chunk_shift;
+	sector = r10bio->sector & conf->chunk_mask;
+
+	chunk *= conf->near_copies;
+	stripe = chunk;
+	dev = sector_div(stripe, conf->raid_disks);
+	if (conf->far_offset)
+		stripe *= conf->far_copies;
+
+	sector += stripe << conf->chunk_shift;
+
+	/* and calculate all the others */
+	for (n=0; n < conf->near_copies; n++) {
+		int d = dev;
+		sector_t s = sector;
+		r10bio->devs[slot].addr = sector;
+		r10bio->devs[slot].devnum = d;
+		slot++;
+
+		for (f = 1; f < conf->far_copies; f++) {
+			d += conf->near_copies;
+			if (d >= conf->raid_disks)
+				d -= conf->raid_disks;
+			s += conf->stride;
+			r10bio->devs[slot].devnum = d;
+			r10bio->devs[slot].addr = s;
+			slot++;
+		}
+		dev++;
+		if (dev >= conf->raid_disks) {
+			dev = 0;
+			sector += (conf->chunk_mask + 1);
+		}
+	}
+	BUG_ON(slot != conf->copies);
+}
+
+static sector_t raid10_find_virt(struct r10conf *conf, sector_t sector, int dev)
+{
+	sector_t offset, chunk, vchunk;
+
+	offset = sector & conf->chunk_mask;
+	if (conf->far_offset) {
+		int fc;
+		chunk = sector >> conf->chunk_shift;
+		fc = sector_div(chunk, conf->far_copies);
+		dev -= fc * conf->near_copies;
+		if (dev < 0)
+			dev += conf->raid_disks;
+	} else {
+		while (sector >= conf->stride) {
+			sector -= conf->stride;
+			if (dev < conf->near_copies)
+				dev += conf->raid_disks - conf->near_copies;
+			else
+				dev -= conf->near_copies;
+		}
+		chunk = sector >> conf->chunk_shift;
+	}
+	vchunk = chunk * conf->raid_disks + dev;
+	sector_div(vchunk, conf->near_copies);
+	return (vchunk << conf->chunk_shift) + offset;
+}
+
+/**
+ *	raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
+ *	@q: request queue
+ *	@bvm: properties of new bio
+ *	@biovec: the request that could be merged to it.
+ *
+ *	Return amount of bytes we can accept at this offset
+ *	This requires checking for end-of-chunk if near_copies != raid_disks,
+ *	and for subordinate merge_bvec_fns if merge_check_needed.
+ */
+static int raid10_mergeable_bvec(struct request_queue *q,
+				 struct bvec_merge_data *bvm,
+				 struct bio_vec *biovec)
+{
+	struct mddev *mddev = q->queuedata;
+	struct r10conf *conf = mddev->private;
+	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
+	int max;
+	unsigned int chunk_sectors = mddev->chunk_sectors;
+	unsigned int bio_sectors = bvm->bi_size >> 9;
+
+	if (conf->near_copies < conf->raid_disks) {
+		max = (chunk_sectors - ((sector & (chunk_sectors - 1))
+					+ bio_sectors)) << 9;
+		if (max < 0)
+			/* bio_add cannot handle a negative return */
+			max = 0;
+		if (max <= biovec->bv_len && bio_sectors == 0)
+			return biovec->bv_len;
+	} else
+		max = biovec->bv_len;
+
+	if (mddev->merge_check_needed) {
+		struct {
+			struct r10bio r10_bio;
+			struct r10dev devs[conf->copies];
+		} on_stack;
+		struct r10bio *r10_bio = &on_stack.r10_bio;
+		int s;
+		r10_bio->sector = sector;
+		raid10_find_phys(conf, r10_bio);
+		rcu_read_lock();
+		for (s = 0; s < conf->copies; s++) {
+			int disk = r10_bio->devs[s].devnum;
+			struct md_rdev *rdev = rcu_dereference(
+				conf->mirrors[disk].rdev);
+			if (rdev && !test_bit(Faulty, &rdev->flags)) {
+				struct request_queue *q =
+					bdev_get_queue(rdev->bdev);
+				if (q->merge_bvec_fn) {
+					bvm->bi_sector = r10_bio->devs[s].addr
+						+ rdev->data_offset;
+					bvm->bi_bdev = rdev->bdev;
+					max = min(max, q->merge_bvec_fn(
+							  q, bvm, biovec));
+				}
+			}
+			rdev = rcu_dereference(conf->mirrors[disk].replacement);
+			if (rdev && !test_bit(Faulty, &rdev->flags)) {
+				struct request_queue *q =
+					bdev_get_queue(rdev->bdev);
+				if (q->merge_bvec_fn) {
+					bvm->bi_sector = r10_bio->devs[s].addr
+						+ rdev->data_offset;
+					bvm->bi_bdev = rdev->bdev;
+					max = min(max, q->merge_bvec_fn(
+							  q, bvm, biovec));
+				}
+			}
+		}
+		rcu_read_unlock();
+	}
+	return max;
+}
+
+/*
+ * This routine returns the disk from which the requested read should
+ * be done. There is a per-array 'next expected sequential IO' sector
+ * number - if this matches on the next IO then we use the last disk.
+ * There is also a per-disk 'last know head position' sector that is
+ * maintained from IRQ contexts, both the normal and the resync IO
+ * completion handlers update this position correctly. If there is no
+ * perfect sequential match then we pick the disk whose head is closest.
+ *
+ * If there are 2 mirrors in the same 2 devices, performance degrades
+ * because position is mirror, not device based.
+ *
+ * The rdev for the device selected will have nr_pending incremented.
+ */
+
+/*
+ * FIXME: possibly should rethink readbalancing and do it differently
+ * depending on near_copies / far_copies geometry.
+ */
+static struct md_rdev *read_balance(struct r10conf *conf,
+				    struct r10bio *r10_bio,
+				    int *max_sectors)
+{
+	const sector_t this_sector = r10_bio->sector;
+	int disk, slot;
+	int sectors = r10_bio->sectors;
+	int best_good_sectors;
+	sector_t new_distance, best_dist;
+	struct md_rdev *rdev, *best_rdev;
+	int do_balance;
+	int best_slot;
+
+	raid10_find_phys(conf, r10_bio);
+	rcu_read_lock();
+retry:
+	sectors = r10_bio->sectors;
+	best_slot = -1;
+	best_rdev = NULL;
+	best_dist = MaxSector;
+	best_good_sectors = 0;
+	do_balance = 1;
+	/*
+	 * Check if we can balance. We can balance on the whole
+	 * device if no resync is going on (recovery is ok), or below
+	 * the resync window. We take the first readable disk when
+	 * above the resync window.
+	 */
+	if (conf->mddev->recovery_cp < MaxSector
+	    && (this_sector + sectors >= conf->next_resync))
+		do_balance = 0;
+
+	for (slot = 0; slot < conf->copies ; slot++) {
+		sector_t first_bad;
+		int bad_sectors;
+		sector_t dev_sector;
+
+		if (r10_bio->devs[slot].bio == IO_BLOCKED)
+			continue;
+		disk = r10_bio->devs[slot].devnum;
+		rdev = rcu_dereference(conf->mirrors[disk].replacement);
+		if (rdev == NULL || test_bit(Faulty, &rdev->flags) ||
+		    test_bit(Unmerged, &rdev->flags) ||
+		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
+			rdev = rcu_dereference(conf->mirrors[disk].rdev);
+		if (rdev == NULL ||
+		    test_bit(Faulty, &rdev->flags) ||
+		    test_bit(Unmerged, &rdev->flags))
+			continue;
+		if (!test_bit(In_sync, &rdev->flags) &&
+		    r10_bio->devs[slot].addr + sectors > rdev->recovery_offset)
+			continue;
+
+		dev_sector = r10_bio->devs[slot].addr;
+		if (is_badblock(rdev, dev_sector, sectors,
+				&first_bad, &bad_sectors)) {
+			if (best_dist < MaxSector)
+				/* Already have a better slot */
+				continue;
+			if (first_bad <= dev_sector) {
+				/* Cannot read here.  If this is the
+				 * 'primary' device, then we must not read
+				 * beyond 'bad_sectors' from another device.
+				 */
+				bad_sectors -= (dev_sector - first_bad);
+				if (!do_balance && sectors > bad_sectors)
+					sectors = bad_sectors;
+				if (best_good_sectors > sectors)
+					best_good_sectors = sectors;
+			} else {
+				sector_t good_sectors =
+					first_bad - dev_sector;
+				if (good_sectors > best_good_sectors) {
+					best_good_sectors = good_sectors;
+					best_slot = slot;
+					best_rdev = rdev;
+				}
+				if (!do_balance)
+					/* Must read from here */
+					break;
+			}
+			continue;
+		} else
+			best_good_sectors = sectors;
+
+		if (!do_balance)
+			break;
+
+		/* This optimisation is debatable, and completely destroys
+		 * sequential read speed for 'far copies' arrays.  So only
+		 * keep it for 'near' arrays, and review those later.
+		 */
+		if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
+			break;
+
+		/* for far > 1 always use the lowest address */
+		if (conf->far_copies > 1)
+			new_distance = r10_bio->devs[slot].addr;
+		else
+			new_distance = abs(r10_bio->devs[slot].addr -
+					   conf->mirrors[disk].head_position);
+		if (new_distance < best_dist) {
+			best_dist = new_distance;
+			best_slot = slot;
+			best_rdev = rdev;
+		}
+	}
+	if (slot >= conf->copies) {
+		slot = best_slot;
+		rdev = best_rdev;
+	}
+
+	if (slot >= 0) {
+		atomic_inc(&rdev->nr_pending);
+		if (test_bit(Faulty, &rdev->flags)) {
+			/* Cannot risk returning a device that failed
+			 * before we inc'ed nr_pending
+			 */
+			rdev_dec_pending(rdev, conf->mddev);
+			goto retry;
+		}
+		r10_bio->read_slot = slot;
+	} else
+		rdev = NULL;
+	rcu_read_unlock();
+	*max_sectors = best_good_sectors;
+
+	return rdev;
+}
+
+static int raid10_congested(void *data, int bits)
+{
+	struct mddev *mddev = data;
+	struct r10conf *conf = mddev->private;
+	int i, ret = 0;
+
+	if ((bits & (1 << BDI_async_congested)) &&
+	    conf->pending_count >= max_queued_requests)
+		return 1;
+
+	if (mddev_congested(mddev, bits))
+		return 1;
+	rcu_read_lock();
+	for (i = 0; i < conf->raid_disks && ret == 0; i++) {
+		struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
+		if (rdev && !test_bit(Faulty, &rdev->flags)) {
+			struct request_queue *q = bdev_get_queue(rdev->bdev);
+
+			ret |= bdi_congested(&q->backing_dev_info, bits);
+		}
+	}
+	rcu_read_unlock();
+	return ret;
+}
+
+static void flush_pending_writes(struct r10conf *conf)
+{
+	/* Any writes that have been queued but are awaiting
+	 * bitmap updates get flushed here.
+	 */
+	spin_lock_irq(&conf->device_lock);
+
+	if (conf->pending_bio_list.head) {
+		struct bio *bio;
+		bio = bio_list_get(&conf->pending_bio_list);
+		conf->pending_count = 0;
+		spin_unlock_irq(&conf->device_lock);
+		/* flush any pending bitmap writes to disk
+		 * before proceeding w/ I/O */
+		bitmap_unplug(conf->mddev->bitmap);
+		wake_up(&conf->wait_barrier);
+
+		while (bio) { /* submit pending writes */
+			struct bio *next = bio->bi_next;
+			bio->bi_next = NULL;
+			generic_make_request(bio);
+			bio = next;
+		}
+	} else
+		spin_unlock_irq(&conf->device_lock);
+}
+
+/* Barriers....
+ * Sometimes we need to suspend IO while we do something else,
+ * either some resync/recovery, or reconfigure the array.
+ * To do this we raise a 'barrier'.
+ * The 'barrier' is a counter that can be raised multiple times
+ * to count how many activities are happening which preclude
+ * normal IO.
+ * We can only raise the barrier if there is no pending IO.
+ * i.e. if nr_pending == 0.
+ * We choose only to raise the barrier if no-one is waiting for the
+ * barrier to go down.  This means that as soon as an IO request
+ * is ready, no other operations which require a barrier will start
+ * until the IO request has had a chance.
+ *
+ * So: regular IO calls 'wait_barrier'.  When that returns there
+ *    is no backgroup IO happening,  It must arrange to call
+ *    allow_barrier when it has finished its IO.
+ * backgroup IO calls must call raise_barrier.  Once that returns
+ *    there is no normal IO happeing.  It must arrange to call
+ *    lower_barrier when the particular background IO completes.
+ */
+
+static void raise_barrier(struct r10conf *conf, int force)
+{
+	BUG_ON(force && !conf->barrier);
+	spin_lock_irq(&conf->resync_lock);
+
+	/* Wait until no block IO is waiting (unless 'force') */
+	wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
+			    conf->resync_lock, );
+
+	/* block any new IO from starting */
+	conf->barrier++;
+
+	/* Now wait for all pending IO to complete */
+	wait_event_lock_irq(conf->wait_barrier,
+			    !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
+			    conf->resync_lock, );
+
+	spin_unlock_irq(&conf->resync_lock);
+}
+
+static void lower_barrier(struct r10conf *conf)
+{
+	unsigned long flags;
+	spin_lock_irqsave(&conf->resync_lock, flags);
+	conf->barrier--;
+	spin_unlock_irqrestore(&conf->resync_lock, flags);
+	wake_up(&conf->wait_barrier);
+}
+
+static void wait_barrier(struct r10conf *conf)
+{
+	spin_lock_irq(&conf->resync_lock);
+	if (conf->barrier) {
+		conf->nr_waiting++;
+		/* Wait for the barrier to drop.
+		 * However if there are already pending
+		 * requests (preventing the barrier from
+		 * rising completely), and the
+		 * pre-process bio queue isn't empty,
+		 * then don't wait, as we need to empty
+		 * that queue to get the nr_pending
+		 * count down.
+		 */
+		wait_event_lock_irq(conf->wait_barrier,
+				    !conf->barrier ||
+				    (conf->nr_pending &&
+				     current->bio_list &&
+				     !bio_list_empty(current->bio_list)),
+				    conf->resync_lock,
+			);
+		conf->nr_waiting--;
+	}
+	conf->nr_pending++;
+	spin_unlock_irq(&conf->resync_lock);
+}
+
+static void allow_barrier(struct r10conf *conf)
+{
+	unsigned long flags;
+	spin_lock_irqsave(&conf->resync_lock, flags);
+	conf->nr_pending--;
+	spin_unlock_irqrestore(&conf->resync_lock, flags);
+	wake_up(&conf->wait_barrier);
+}
+
+static void freeze_array(struct r10conf *conf, int extra)
+{
+	/* stop syncio and normal IO and wait for everything to
+	 * go quiet.
+	 * We increment barrier and nr_waiting, and then
+	 * wait until nr_pending match nr_queued+extra
+	 * This is called in the context of one normal IO request
+	 * that has failed. Thus any sync request that might be pending
+	 * will be blocked by nr_pending, and we need to wait for
+	 * pending IO requests to complete or be queued for re-try.
+	 * Thus the number queued (nr_queued) plus this request (extra)
+	 * must match the number of pending IOs (nr_pending) before
+	 * we continue.
+	 */
+	spin_lock_irq(&conf->resync_lock);
+	conf->barrier++;
+	conf->nr_waiting++;
+	wait_event_lock_irq(conf->wait_barrier,
+			    conf->nr_pending == conf->nr_queued+extra,
+			    conf->resync_lock,
+			    flush_pending_writes(conf));
+
+	spin_unlock_irq(&conf->resync_lock);
+}
+
+static void unfreeze_array(struct r10conf *conf)
+{
+	/* reverse the effect of the freeze */
+	spin_lock_irq(&conf->resync_lock);
+	conf->barrier--;
+	conf->nr_waiting--;
+	wake_up(&conf->wait_barrier);
+	spin_unlock_irq(&conf->resync_lock);
+}
+
+static void make_request(struct mddev *mddev, struct bio * bio)
+{
+	struct r10conf *conf = mddev->private;
+	struct r10bio *r10_bio;
+	struct bio *read_bio;
+	int i;
+	int chunk_sects = conf->chunk_mask + 1;
+	const int rw = bio_data_dir(bio);
+	const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
+	const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
+	unsigned long flags;
+	struct md_rdev *blocked_rdev;
+	int plugged;
+	int sectors_handled;
+	int max_sectors;
+
+	if (unlikely(bio->bi_rw & REQ_FLUSH)) {
+		md_flush_request(mddev, bio);
+		return;
+	}
+
+	/* If this request crosses a chunk boundary, we need to
+	 * split it.  This will only happen for 1 PAGE (or less) requests.
+	 */
+	if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
+		      > chunk_sects &&
+		    conf->near_copies < conf->raid_disks)) {
+		struct bio_pair *bp;
+		/* Sanity check -- queue functions should prevent this happening */
+		if (bio->bi_vcnt != 1 ||
+		    bio->bi_idx != 0)
+			goto bad_map;
+		/* This is a one page bio that upper layers
+		 * refuse to split for us, so we need to split it.
+		 */
+		bp = bio_split(bio,
+			       chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
+
+		/* Each of these 'make_request' calls will call 'wait_barrier'.
+		 * If the first succeeds but the second blocks due to the resync
+		 * thread raising the barrier, we will deadlock because the
+		 * IO to the underlying device will be queued in generic_make_request
+		 * and will never complete, so will never reduce nr_pending.
+		 * So increment nr_waiting here so no new raise_barriers will
+		 * succeed, and so the second wait_barrier cannot block.
+		 */
+		spin_lock_irq(&conf->resync_lock);
+		conf->nr_waiting++;
+		spin_unlock_irq(&conf->resync_lock);
+
+		make_request(mddev, &bp->bio1);
+		make_request(mddev, &bp->bio2);
+
+		spin_lock_irq(&conf->resync_lock);
+		conf->nr_waiting--;
+		wake_up(&conf->wait_barrier);
+		spin_unlock_irq(&conf->resync_lock);
+
+		bio_pair_release(bp);
+		return;
+	bad_map:
+		printk("md/raid10:%s: make_request bug: can't convert block across chunks"
+		       " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
+		       (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
+
+		bio_io_error(bio);
+		return;
+	}
+
+	md_write_start(mddev, bio);
+
+	/*
+	 * Register the new request and wait if the reconstruction
+	 * thread has put up a bar for new requests.
+	 * Continue immediately if no resync is active currently.
+	 */
+	wait_barrier(conf);
+
+	r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
+
+	r10_bio->master_bio = bio;
+	r10_bio->sectors = bio->bi_size >> 9;
+
+	r10_bio->mddev = mddev;
+	r10_bio->sector = bio->bi_sector;
+	r10_bio->state = 0;
+
+	/* We might need to issue multiple reads to different
+	 * devices if there are bad blocks around, so we keep
+	 * track of the number of reads in bio->bi_phys_segments.
+	 * If this is 0, there is only one r10_bio and no locking
+	 * will be needed when the request completes.  If it is
+	 * non-zero, then it is the number of not-completed requests.
+	 */
+	bio->bi_phys_segments = 0;
+	clear_bit(BIO_SEG_VALID, &bio->bi_flags);
+
+	if (rw == READ) {
+		/*
+		 * read balancing logic:
+		 */
+		struct md_rdev *rdev;
+		int slot;
+
+read_again:
+		rdev = read_balance(conf, r10_bio, &max_sectors);
+		if (!rdev) {
+			raid_end_bio_io(r10_bio);
+			return;
+		}
+		slot = r10_bio->read_slot;
+
+		read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
+		md_trim_bio(read_bio, r10_bio->sector - bio->bi_sector,
+			    max_sectors);
+
+		r10_bio->devs[slot].bio = read_bio;
+		r10_bio->devs[slot].rdev = rdev;
+
+		read_bio->bi_sector = r10_bio->devs[slot].addr +
+			rdev->data_offset;
+		read_bio->bi_bdev = rdev->bdev;
+		read_bio->bi_end_io = raid10_end_read_request;
+		read_bio->bi_rw = READ | do_sync;
+		read_bio->bi_private = r10_bio;
+
+		if (max_sectors < r10_bio->sectors) {
+			/* Could not read all from this device, so we will
+			 * need another r10_bio.
+			 */
+			sectors_handled = (r10_bio->sector + max_sectors
+					   - bio->bi_sector);
+			r10_bio->sectors = max_sectors;
+			spin_lock_irq(&conf->device_lock);
+			if (bio->bi_phys_segments == 0)
+				bio->bi_phys_segments = 2;
+			else
+				bio->bi_phys_segments++;
+			spin_unlock_irq(&conf->device_lock);
+			/* Cannot call generic_make_request directly
+			 * as that will be queued in __generic_make_request
+			 * and subsequent mempool_alloc might block
+			 * waiting for it.  so hand bio over to raid10d.
+			 */
+			reschedule_retry(r10_bio);
+
+			r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
+
+			r10_bio->master_bio = bio;
+			r10_bio->sectors = ((bio->bi_size >> 9)
+					    - sectors_handled);
+			r10_bio->state = 0;
+			r10_bio->mddev = mddev;
+			r10_bio->sector = bio->bi_sector + sectors_handled;
+			goto read_again;
+		} else
+			generic_make_request(read_bio);
+		return;
+	}
+
+	/*
+	 * WRITE:
+	 */
+	if (conf->pending_count >= max_queued_requests) {
+		md_wakeup_thread(mddev->thread);
+		wait_event(conf->wait_barrier,
+			   conf->pending_count < max_queued_requests);
+	}
+	/* first select target devices under rcu_lock and
+	 * inc refcount on their rdev.  Record them by setting
+	 * bios[x] to bio
+	 * If there are known/acknowledged bad blocks on any device
+	 * on which we have seen a write error, we want to avoid
+	 * writing to those blocks.  This potentially requires several
+	 * writes to write around the bad blocks.  Each set of writes
+	 * gets its own r10_bio with a set of bios attached.  The number
+	 * of r10_bios is recored in bio->bi_phys_segments just as with
+	 * the read case.
+	 */
+	plugged = mddev_check_plugged(mddev);
+
+	r10_bio->read_slot = -1; /* make sure repl_bio gets freed */
+	raid10_find_phys(conf, r10_bio);
+retry_write:
+	blocked_rdev = NULL;
+	rcu_read_lock();
+	max_sectors = r10_bio->sectors;
+
+	for (i = 0;  i < conf->copies; i++) {
+		int d = r10_bio->devs[i].devnum;
+		struct md_rdev *rdev = rcu_dereference(conf->mirrors[d].rdev);
+		struct md_rdev *rrdev = rcu_dereference(
+			conf->mirrors[d].replacement);
+		if (rdev == rrdev)
+			rrdev = NULL;
+		if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
+			atomic_inc(&rdev->nr_pending);
+			blocked_rdev = rdev;
+			break;
+		}
+		if (rrdev && unlikely(test_bit(Blocked, &rrdev->flags))) {
+			atomic_inc(&rrdev->nr_pending);
+			blocked_rdev = rrdev;
+			break;
+		}
+		if (rdev && (test_bit(Faulty, &rdev->flags)
+			     || test_bit(Unmerged, &rdev->flags)))
+			rdev = NULL;
+		if (rrdev && (test_bit(Faulty, &rrdev->flags)
+			      || test_bit(Unmerged, &rrdev->flags)))
+			rrdev = NULL;
+
+		r10_bio->devs[i].bio = NULL;
+		r10_bio->devs[i].repl_bio = NULL;
+
+		if (!rdev && !rrdev) {
+			set_bit(R10BIO_Degraded, &r10_bio->state);
+			continue;
+		}
+		if (rdev && test_bit(WriteErrorSeen, &rdev->flags)) {
+			sector_t first_bad;
+			sector_t dev_sector = r10_bio->devs[i].addr;
+			int bad_sectors;
+			int is_bad;
+
+			is_bad = is_badblock(rdev, dev_sector,
+					     max_sectors,
+					     &first_bad, &bad_sectors);
+			if (is_bad < 0) {
+				/* Mustn't write here until the bad block
+				 * is acknowledged
+				 */
+				atomic_inc(&rdev->nr_pending);
+				set_bit(BlockedBadBlocks, &rdev->flags);
+				blocked_rdev = rdev;
+				break;
+			}
+			if (is_bad && first_bad <= dev_sector) {
+				/* Cannot write here at all */
+				bad_sectors -= (dev_sector - first_bad);
+				if (bad_sectors < max_sectors)
+					/* Mustn't write more than bad_sectors
+					 * to other devices yet
+					 */
+					max_sectors = bad_sectors;
+				/* We don't set R10BIO_Degraded as that
+				 * only applies if the disk is missing,
+				 * so it might be re-added, and we want to
+				 * know to recover this chunk.
+				 * In this case the device is here, and the
+				 * fact that this chunk is not in-sync is
+				 * recorded in the bad block log.
+				 */
+				continue;
+			}
+			if (is_bad) {
+				int good_sectors = first_bad - dev_sector;
+				if (good_sectors < max_sectors)
+					max_sectors = good_sectors;
+			}
+		}
+		if (rdev) {
+			r10_bio->devs[i].bio = bio;
+			atomic_inc(&rdev->nr_pending);
+		}
+		if (rrdev) {
+			r10_bio->devs[i].repl_bio = bio;
+			atomic_inc(&rrdev->nr_pending);
+		}
+	}
+	rcu_read_unlock();
+
+	if (unlikely(blocked_rdev)) {
+		/* Have to wait for this device to get unblocked, then retry */
+		int j;
+		int d;
+
+		for (j = 0; j < i; j++) {
+			if (r10_bio->devs[j].bio) {
+				d = r10_bio->devs[j].devnum;
+				rdev_dec_pending(conf->mirrors[d].rdev, mddev);
+			}
+			if (r10_bio->devs[j].repl_bio) {
+				struct md_rdev *rdev;
+				d = r10_bio->devs[j].devnum;
+				rdev = conf->mirrors[d].replacement;
+				if (!rdev) {
+					/* Race with remove_disk */
+					smp_mb();
+					rdev = conf->mirrors[d].rdev;
+				}
+				rdev_dec_pending(rdev, mddev);
+			}
+		}
+		allow_barrier(conf);
+		md_wait_for_blocked_rdev(blocked_rdev, mddev);
+		wait_barrier(conf);
+		goto retry_write;
+	}
+
+	if (max_sectors < r10_bio->sectors) {
+		/* We are splitting this into multiple parts, so
+		 * we need to prepare for allocating another r10_bio.
+		 */
+		r10_bio->sectors = max_sectors;
+		spin_lock_irq(&conf->device_lock);
+		if (bio->bi_phys_segments == 0)
+			bio->bi_phys_segments = 2;
+		else
+			bio->bi_phys_segments++;
+		spin_unlock_irq(&conf->device_lock);
+	}
+	sectors_handled = r10_bio->sector + max_sectors - bio->bi_sector;
+
+	atomic_set(&r10_bio->remaining, 1);
+	bitmap_startwrite(mddev->bitmap, r10_bio->sector, r10_bio->sectors, 0);
+
+	for (i = 0; i < conf->copies; i++) {
+		struct bio *mbio;
+		int d = r10_bio->devs[i].devnum;
+		if (r10_bio->devs[i].bio) {
+			struct md_rdev *rdev = conf->mirrors[d].rdev;
+			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
+			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
+				    max_sectors);
+			r10_bio->devs[i].bio = mbio;
+
+			mbio->bi_sector	= (r10_bio->devs[i].addr+
+					   rdev->data_offset);
+			mbio->bi_bdev = rdev->bdev;
+			mbio->bi_end_io	= raid10_end_write_request;
+			mbio->bi_rw = WRITE | do_sync | do_fua;
+			mbio->bi_private = r10_bio;
+
+			atomic_inc(&r10_bio->remaining);
+			spin_lock_irqsave(&conf->device_lock, flags);
+			bio_list_add(&conf->pending_bio_list, mbio);
+			conf->pending_count++;
+			spin_unlock_irqrestore(&conf->device_lock, flags);
+		}
+
+		if (r10_bio->devs[i].repl_bio) {
+			struct md_rdev *rdev = conf->mirrors[d].replacement;
+			if (rdev == NULL) {
+				/* Replacement just got moved to main 'rdev' */
+				smp_mb();
+				rdev = conf->mirrors[d].rdev;
+			}
+			mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
+			md_trim_bio(mbio, r10_bio->sector - bio->bi_sector,
+				    max_sectors);
+			r10_bio->devs[i].repl_bio = mbio;
+
+			mbio->bi_sector	= (r10_bio->devs[i].addr+
+					   rdev->data_offset);
+			mbio->bi_bdev = rdev->bdev;
+			mbio->bi_end_io	= raid10_end_write_request;
+			mbio->bi_rw = WRITE | do_sync | do_fua;
+			mbio->bi_private = r10_bio;
+
+			atomic_inc(&r10_bio->remaining);
+			spin_lock_irqsave(&conf->device_lock, flags);
+			bio_list_add(&conf->pending_bio_list, mbio);
+			conf->pending_count++;
+			spin_unlock_irqrestore(&conf->device_lock, flags);
+		}
+	}
+
+	/* Don't remove the bias on 'remaining' (one_write_done) until
+	 * after checking if we need to go around again.
+	 */
+
+	if (sectors_handled < (bio->bi_size >> 9)) {
+		one_write_done(r10_bio);
+		/* We need another r10_bio.  It has already been counted
+		 * in bio->bi_phys_segments.
+		 */
+		r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
+
+		r10_bio->master_bio = bio;
+		r10_bio->sectors = (bio->bi_size >> 9) - sectors_handled;
+
+		r10_bio->mddev = mddev;
+		r10_bio->sector = bio->bi_sector + sectors_handled;
+		r10_bio->state = 0;
+		goto retry_write;
+	}
+	one_write_done(r10_bio);
+
+	/* In case raid10d snuck in to freeze_array */
+	wake_up(&conf->wait_barrier);
+
+	if (do_sync || !mddev->bitmap || !plugged)
+		md_wakeup_thread(mddev->thread);
+}
+
+static void status(struct seq_file *seq, struct mddev *mddev)
+{
+	struct r10conf *conf = mddev->private;
+	int i;
+
+	if (conf->near_copies < conf->raid_disks)
+		seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
+	if (conf->near_copies > 1)
+		seq_printf(seq, " %d near-copies", conf->near_copies);
+	if (conf->far_copies > 1) {
+		if (conf->far_offset)
+			seq_printf(seq, " %d offset-copies", conf->far_copies);
+		else
+			seq_printf(seq, " %d far-copies", conf->far_copies);
+	}
+	seq_printf(seq, " [%d/%d] [", conf->raid_disks,
+					conf->raid_disks - mddev->degraded);
+	for (i = 0; i < conf->raid_disks; i++)
+		seq_printf(seq, "%s",
+			      conf->mirrors[i].rdev &&
+			      test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
+	seq_printf(seq, "]");
+}
+
+/* check if there are enough drives for
+ * every block to appear on atleast one.
+ * Don't consider the device numbered 'ignore'
+ * as we might be about to remove it.
+ */
+static int enough(struct r10conf *conf, int ignore)
+{
+	int first = 0;
+
+	do {
+		int n = conf->copies;
+		int cnt = 0;
+		int this = first;
+		while (n--) {
+			if (conf->mirrors[this].rdev &&
+			    this != ignore)
+				cnt++;
+			this = (this+1) % conf->raid_disks;
+		}
+		if (cnt == 0)
+			return 0;
+		first = (first + conf->near_copies) % conf->raid_disks;
+	} while (first != 0);
+	return 1;
+}
+
+static void error(struct mddev *mddev, struct md_rdev *rdev)
+{
+	char b[BDEVNAME_SIZE];
+	struct r10conf *conf = mddev->private;
+
+	/*
+	 * If it is not operational, then we have already marked it as dead
+	 * else if it is the last working disks, ignore the error, let the
+	 * next level up know.
+	 * else mark the drive as failed
+	 */
+	if (test_bit(In_sync, &rdev->flags)
+	    && !enough(conf, rdev->raid_disk))
+		/*
+		 * Don't fail the drive, just return an IO error.
+		 */
+		return;
+	if (test_and_clear_bit(In_sync, &rdev->flags)) {
+		unsigned long flags;
+		spin_lock_irqsave(&conf->device_lock, flags);
+		mddev->degraded++;
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+		/*
+		 * if recovery is running, make sure it aborts.
+		 */
+		set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+	}
+	set_bit(Blocked, &rdev->flags);
+	set_bit(Faulty, &rdev->flags);
+	set_bit(MD_CHANGE_DEVS, &mddev->flags);
+	printk(KERN_ALERT
+	       "md/raid10:%s: Disk failure on %s, disabling device.\n"
+	       "md/raid10:%s: Operation continuing on %d devices.\n",
+	       mdname(mddev), bdevname(rdev->bdev, b),
+	       mdname(mddev), conf->raid_disks - mddev->degraded);
+}
+
+static void print_conf(struct r10conf *conf)
+{
+	int i;
+	struct mirror_info *tmp;
+
+	printk(KERN_DEBUG "RAID10 conf printout:\n");
+	if (!conf) {
+		printk(KERN_DEBUG "(!conf)\n");
+		return;
+	}
+	printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
+		conf->raid_disks);
+
+	for (i = 0; i < conf->raid_disks; i++) {
+		char b[BDEVNAME_SIZE];
+		tmp = conf->mirrors + i;
+		if (tmp->rdev)
+			printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
+				i, !test_bit(In_sync, &tmp->rdev->flags),
+			        !test_bit(Faulty, &tmp->rdev->flags),
+				bdevname(tmp->rdev->bdev,b));
+	}
+}
+
+static void close_sync(struct r10conf *conf)
+{
+	wait_barrier(conf);
+	allow_barrier(conf);
+
+	mempool_destroy(conf->r10buf_pool);
+	conf->r10buf_pool = NULL;
+}
+
+static int raid10_spare_active(struct mddev *mddev)
+{
+	int i;
+	struct r10conf *conf = mddev->private;
+	struct mirror_info *tmp;
+	int count = 0;
+	unsigned long flags;
+
+	/*
+	 * Find all non-in_sync disks within the RAID10 configuration
+	 * and mark them in_sync
+	 */
+	for (i = 0; i < conf->raid_disks; i++) {
+		tmp = conf->mirrors + i;
+		if (tmp->replacement
+		    && tmp->replacement->recovery_offset == MaxSector
+		    && !test_bit(Faulty, &tmp->replacement->flags)
+		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
+			/* Replacement has just become active */
+			if (!tmp->rdev
+			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
+				count++;
+			if (tmp->rdev) {
+				/* Replaced device not technically faulty,
+				 * but we need to be sure it gets removed
+				 * and never re-added.
+				 */
+				set_bit(Faulty, &tmp->rdev->flags);
+				sysfs_notify_dirent_safe(
+					tmp->rdev->sysfs_state);
+			}
+			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
+		} else if (tmp->rdev
+			   && tmp->rdev->recovery_offset == MaxSector
+			   && !test_bit(Faulty, &tmp->rdev->flags)
+			   && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
+			count++;
+			sysfs_notify_dirent(tmp->rdev->sysfs_state);
+		}
+	}
+	spin_lock_irqsave(&conf->device_lock, flags);
+	mddev->degraded -= count;
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+
+	print_conf(conf);
+	return count;
+}
+
+
+static int raid10_add_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct r10conf *conf = mddev->private;
+	int err = -EEXIST;
+	int mirror;
+	int first = 0;
+	int last = conf->raid_disks - 1;
+	struct request_queue *q = bdev_get_queue(rdev->bdev);
+
+	if (mddev->recovery_cp < MaxSector)
+		/* only hot-add to in-sync arrays, as recovery is
+		 * very different from resync
+		 */
+		return -EBUSY;
+	if (rdev->saved_raid_disk < 0 && !enough(conf, -1))
+		return -EINVAL;
+
+	if (rdev->raid_disk >= 0)
+		first = last = rdev->raid_disk;
+
+	if (q->merge_bvec_fn) {
+		set_bit(Unmerged, &rdev->flags);
+		mddev->merge_check_needed = 1;
+	}
+
+	if (rdev->saved_raid_disk >= first &&
+	    conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
+		mirror = rdev->saved_raid_disk;
+	else
+		mirror = first;
+	for ( ; mirror <= last ; mirror++) {
+		struct mirror_info *p = &conf->mirrors[mirror];
+		if (p->recovery_disabled == mddev->recovery_disabled)
+			continue;
+		if (p->rdev) {
+			if (!test_bit(WantReplacement, &p->rdev->flags) ||
+			    p->replacement != NULL)
+				continue;
+			clear_bit(In_sync, &rdev->flags);
+			set_bit(Replacement, &rdev->flags);
+			rdev->raid_disk = mirror;
+			err = 0;
+			disk_stack_limits(mddev->gendisk, rdev->bdev,
+					  rdev->data_offset << 9);
+			conf->fullsync = 1;
+			rcu_assign_pointer(p->replacement, rdev);
+			break;
+		}
+
+		disk_stack_limits(mddev->gendisk, rdev->bdev,
+				  rdev->data_offset << 9);
+
+		p->head_position = 0;
+		p->recovery_disabled = mddev->recovery_disabled - 1;
+		rdev->raid_disk = mirror;
+		err = 0;
+		if (rdev->saved_raid_disk != mirror)
+			conf->fullsync = 1;
+		rcu_assign_pointer(p->rdev, rdev);
+		break;
+	}
+	if (err == 0 && test_bit(Unmerged, &rdev->flags)) {
+		/* Some requests might not have seen this new
+		 * merge_bvec_fn.  We must wait for them to complete
+		 * before merging the device fully.
+		 * First we make sure any code which has tested
+		 * our function has submitted the request, then
+		 * we wait for all outstanding requests to complete.
+		 */
+		synchronize_sched();
+		freeze_array(conf, 0);
+		unfreeze_array(conf);
+		clear_bit(Unmerged, &rdev->flags);
+	}
+	md_integrity_add_rdev(rdev, mddev);
+	print_conf(conf);
+	return err;
+}
+
+static int raid10_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct r10conf *conf = mddev->private;
+	int err = 0;
+	int number = rdev->raid_disk;
+	struct md_rdev **rdevp;
+	struct mirror_info *p = conf->mirrors + number;
+
+	print_conf(conf);
+	if (rdev == p->rdev)
+		rdevp = &p->rdev;
+	else if (rdev == p->replacement)
+		rdevp = &p->replacement;
+	else
+		return 0;
+
+	if (test_bit(In_sync, &rdev->flags) ||
+	    atomic_read(&rdev->nr_pending)) {
+		err = -EBUSY;
+		goto abort;
+	}
+	/* Only remove faulty devices if recovery
+	 * is not possible.
+	 */
+	if (!test_bit(Faulty, &rdev->flags) &&
+	    mddev->recovery_disabled != p->recovery_disabled &&
+	    (!p->replacement || p->replacement == rdev) &&
+	    enough(conf, -1)) {
+		err = -EBUSY;
+		goto abort;
+	}
+	*rdevp = NULL;
+	synchronize_rcu();
+	if (atomic_read(&rdev->nr_pending)) {
+		/* lost the race, try later */
+		err = -EBUSY;
+		*rdevp = rdev;
+		goto abort;
+	} else if (p->replacement) {
+		/* We must have just cleared 'rdev' */
+		p->rdev = p->replacement;
+		clear_bit(Replacement, &p->replacement->flags);
+		smp_mb(); /* Make sure other CPUs may see both as identical
+			   * but will never see neither -- if they are careful.
+			   */
+		p->replacement = NULL;
+		clear_bit(WantReplacement, &rdev->flags);
+	} else
+		/* We might have just remove the Replacement as faulty
+		 * Clear the flag just in case
+		 */
+		clear_bit(WantReplacement, &rdev->flags);
+
+	err = md_integrity_register(mddev);
+
+abort:
+
+	print_conf(conf);
+	return err;
+}
+
+
+static void end_sync_read(struct bio *bio, int error)
+{
+	struct r10bio *r10_bio = bio->bi_private;
+	struct r10conf *conf = r10_bio->mddev->private;
+	int d;
+
+	d = find_bio_disk(conf, r10_bio, bio, NULL, NULL);
+
+	if (test_bit(BIO_UPTODATE, &bio->bi_flags))
+		set_bit(R10BIO_Uptodate, &r10_bio->state);
+	else
+		/* The write handler will notice the lack of
+		 * R10BIO_Uptodate and record any errors etc
+		 */
+		atomic_add(r10_bio->sectors,
+			   &conf->mirrors[d].rdev->corrected_errors);
+
+	/* for reconstruct, we always reschedule after a read.
+	 * for resync, only after all reads
+	 */
+	rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
+	if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
+	    atomic_dec_and_test(&r10_bio->remaining)) {
+		/* we have read all the blocks,
+		 * do the comparison in process context in raid10d
+		 */
+		reschedule_retry(r10_bio);
+	}
+}
+
+static void end_sync_request(struct r10bio *r10_bio)
+{
+	struct mddev *mddev = r10_bio->mddev;
+
+	while (atomic_dec_and_test(&r10_bio->remaining)) {
+		if (r10_bio->master_bio == NULL) {
+			/* the primary of several recovery bios */
+			sector_t s = r10_bio->sectors;
+			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
+			    test_bit(R10BIO_WriteError, &r10_bio->state))
+				reschedule_retry(r10_bio);
+			else
+				put_buf(r10_bio);
+			md_done_sync(mddev, s, 1);
+			break;
+		} else {
+			struct r10bio *r10_bio2 = (struct r10bio *)r10_bio->master_bio;
+			if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
+			    test_bit(R10BIO_WriteError, &r10_bio->state))
+				reschedule_retry(r10_bio);
+			else
+				put_buf(r10_bio);
+			r10_bio = r10_bio2;
+		}
+	}
+}
+
+static void end_sync_write(struct bio *bio, int error)
+{
+	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
+	struct r10bio *r10_bio = bio->bi_private;
+	struct mddev *mddev = r10_bio->mddev;
+	struct r10conf *conf = mddev->private;
+	int d;
+	sector_t first_bad;
+	int bad_sectors;
+	int slot;
+	int repl;
+	struct md_rdev *rdev = NULL;
+
+	d = find_bio_disk(conf, r10_bio, bio, &slot, &repl);
+	if (repl)
+		rdev = conf->mirrors[d].replacement;
+	else
+		rdev = conf->mirrors[d].rdev;
+
+	if (!uptodate) {
+		if (repl)
+			md_error(mddev, rdev);
+		else {
+			set_bit(WriteErrorSeen, &rdev->flags);
+			if (!test_and_set_bit(WantReplacement, &rdev->flags))
+				set_bit(MD_RECOVERY_NEEDED,
+					&rdev->mddev->recovery);
+			set_bit(R10BIO_WriteError, &r10_bio->state);
+		}
+	} else if (is_badblock(rdev,
+			     r10_bio->devs[slot].addr,
+			     r10_bio->sectors,
+			     &first_bad, &bad_sectors))
+		set_bit(R10BIO_MadeGood, &r10_bio->state);
+
+	rdev_dec_pending(rdev, mddev);
+
+	end_sync_request(r10_bio);
+}
+
+/*
+ * Note: sync and recover and handled very differently for raid10
+ * This code is for resync.
+ * For resync, we read through virtual addresses and read all blocks.
+ * If there is any error, we schedule a write.  The lowest numbered
+ * drive is authoritative.
+ * However requests come for physical address, so we need to map.
+ * For every physical address there are raid_disks/copies virtual addresses,
+ * which is always are least one, but is not necessarly an integer.
+ * This means that a physical address can span multiple chunks, so we may
+ * have to submit multiple io requests for a single sync request.
+ */
+/*
+ * We check if all blocks are in-sync and only write to blocks that
+ * aren't in sync
+ */
+static void sync_request_write(struct mddev *mddev, struct r10bio *r10_bio)
+{
+	struct r10conf *conf = mddev->private;
+	int i, first;
+	struct bio *tbio, *fbio;
+	int vcnt;
+
+	atomic_set(&r10_bio->remaining, 1);
+
+	/* find the first device with a block */
+	for (i=0; i<conf->copies; i++)
+		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
+			break;
+
+	if (i == conf->copies)
+		goto done;
+
+	first = i;
+	fbio = r10_bio->devs[i].bio;
+
+	vcnt = (r10_bio->sectors + (PAGE_SIZE >> 9) - 1) >> (PAGE_SHIFT - 9);
+	/* now find blocks with errors */
+	for (i=0 ; i < conf->copies ; i++) {
+		int  j, d;
+
+		tbio = r10_bio->devs[i].bio;
+
+		if (tbio->bi_end_io != end_sync_read)
+			continue;
+		if (i == first)
+			continue;
+		if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
+			/* We know that the bi_io_vec layout is the same for
+			 * both 'first' and 'i', so we just compare them.
+			 * All vec entries are PAGE_SIZE;
+			 */
+			for (j = 0; j < vcnt; j++)
+				if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
+					   page_address(tbio->bi_io_vec[j].bv_page),
+					   fbio->bi_io_vec[j].bv_len))
+					break;
+			if (j == vcnt)
+				continue;
+			mddev->resync_mismatches += r10_bio->sectors;
+			if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
+				/* Don't fix anything. */
+				continue;
+		}
+		/* Ok, we need to write this bio, either to correct an
+		 * inconsistency or to correct an unreadable block.
+		 * First we need to fixup bv_offset, bv_len and
+		 * bi_vecs, as the read request might have corrupted these
+		 */
+		tbio->bi_vcnt = vcnt;
+		tbio->bi_size = r10_bio->sectors << 9;
+		tbio->bi_idx = 0;
+		tbio->bi_phys_segments = 0;
+		tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
+		tbio->bi_flags |= 1 << BIO_UPTODATE;
+		tbio->bi_next = NULL;
+		tbio->bi_rw = WRITE;
+		tbio->bi_private = r10_bio;
+		tbio->bi_sector = r10_bio->devs[i].addr;
+
+		for (j=0; j < vcnt ; j++) {
+			tbio->bi_io_vec[j].bv_offset = 0;
+			tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
+
+			memcpy(page_address(tbio->bi_io_vec[j].bv_page),
+			       page_address(fbio->bi_io_vec[j].bv_page),
+			       PAGE_SIZE);
+		}
+		tbio->bi_end_io = end_sync_write;
+
+		d = r10_bio->devs[i].devnum;
+		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
+		atomic_inc(&r10_bio->remaining);
+		md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
+
+		tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
+		tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
+		generic_make_request(tbio);
+	}
+
+	/* Now write out to any replacement devices
+	 * that are active
+	 */
+	for (i = 0; i < conf->copies; i++) {
+		int j, d;
+
+		tbio = r10_bio->devs[i].repl_bio;
+		if (!tbio || !tbio->bi_end_io)
+			continue;
+		if (r10_bio->devs[i].bio->bi_end_io != end_sync_write
+		    && r10_bio->devs[i].bio != fbio)
+			for (j = 0; j < vcnt; j++)
+				memcpy(page_address(tbio->bi_io_vec[j].bv_page),
+				       page_address(fbio->bi_io_vec[j].bv_page),
+				       PAGE_SIZE);
+		d = r10_bio->devs[i].devnum;
+		atomic_inc(&r10_bio->remaining);
+		md_sync_acct(conf->mirrors[d].replacement->bdev,
+			     tbio->bi_size >> 9);
+		generic_make_request(tbio);
+	}
+
+done:
+	if (atomic_dec_and_test(&r10_bio->remaining)) {
+		md_done_sync(mddev, r10_bio->sectors, 1);
+		put_buf(r10_bio);
+	}
+}
+
+/*
+ * Now for the recovery code.
+ * Recovery happens across physical sectors.
+ * We recover all non-is_sync drives by finding the virtual address of
+ * each, and then choose a working drive that also has that virt address.
+ * There is a separate r10_bio for each non-in_sync drive.
+ * Only the first two slots are in use. The first for reading,
+ * The second for writing.
+ *
+ */
+static void fix_recovery_read_error(struct r10bio *r10_bio)
+{
+	/* We got a read error during recovery.
+	 * We repeat the read in smaller page-sized sections.
+	 * If a read succeeds, write it to the new device or record
+	 * a bad block if we cannot.
+	 * If a read fails, record a bad block on both old and
+	 * new devices.
+	 */
+	struct mddev *mddev = r10_bio->mddev;
+	struct r10conf *conf = mddev->private;
+	struct bio *bio = r10_bio->devs[0].bio;
+	sector_t sect = 0;
+	int sectors = r10_bio->sectors;
+	int idx = 0;
+	int dr = r10_bio->devs[0].devnum;
+	int dw = r10_bio->devs[1].devnum;
+
+	while (sectors) {
+		int s = sectors;
+		struct md_rdev *rdev;
+		sector_t addr;
+		int ok;
+
+		if (s > (PAGE_SIZE>>9))
+			s = PAGE_SIZE >> 9;
+
+		rdev = conf->mirrors[dr].rdev;
+		addr = r10_bio->devs[0].addr + sect,
+		ok = sync_page_io(rdev,
+				  addr,
+				  s << 9,
+				  bio->bi_io_vec[idx].bv_page,
+				  READ, false);
+		if (ok) {
+			rdev = conf->mirrors[dw].rdev;
+			addr = r10_bio->devs[1].addr + sect;
+			ok = sync_page_io(rdev,
+					  addr,
+					  s << 9,
+					  bio->bi_io_vec[idx].bv_page,
+					  WRITE, false);
+			if (!ok) {
+				set_bit(WriteErrorSeen, &rdev->flags);
+				if (!test_and_set_bit(WantReplacement,
+						      &rdev->flags))
+					set_bit(MD_RECOVERY_NEEDED,
+						&rdev->mddev->recovery);
+			}
+		}
+		if (!ok) {
+			/* We don't worry if we cannot set a bad block -
+			 * it really is bad so there is no loss in not
+			 * recording it yet
+			 */
+			rdev_set_badblocks(rdev, addr, s, 0);
+
+			if (rdev != conf->mirrors[dw].rdev) {
+				/* need bad block on destination too */
+				struct md_rdev *rdev2 = conf->mirrors[dw].rdev;
+				addr = r10_bio->devs[1].addr + sect;
+				ok = rdev_set_badblocks(rdev2, addr, s, 0);
+				if (!ok) {
+					/* just abort the recovery */
+					printk(KERN_NOTICE
+					       "md/raid10:%s: recovery aborted"
+					       " due to read error\n",
+					       mdname(mddev));
+
+					conf->mirrors[dw].recovery_disabled
+						= mddev->recovery_disabled;
+					set_bit(MD_RECOVERY_INTR,
+						&mddev->recovery);
+					break;
+				}
+			}
+		}
+
+		sectors -= s;
+		sect += s;
+		idx++;
+	}
+}
+
+static void recovery_request_write(struct mddev *mddev, struct r10bio *r10_bio)
+{
+	struct r10conf *conf = mddev->private;
+	int d;
+	struct bio *wbio, *wbio2;
+
+	if (!test_bit(R10BIO_Uptodate, &r10_bio->state)) {
+		fix_recovery_read_error(r10_bio);
+		end_sync_request(r10_bio);
+		return;
+	}
+
+	/*
+	 * share the pages with the first bio
+	 * and submit the write request
+	 */
+	d = r10_bio->devs[1].devnum;
+	wbio = r10_bio->devs[1].bio;
+	wbio2 = r10_bio->devs[1].repl_bio;
+	/* Need to test wbio2->bi_end_io before we call
+	 * generic_make_request as if the former is NULL,
+	 * the latter is free to free wbio2.
+	 */
+	if (wbio2 && !wbio2->bi_end_io)
+		wbio2 = NULL;
+	if (wbio->bi_end_io) {
+		atomic_inc(&conf->mirrors[d].rdev->nr_pending);
+		md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
+		generic_make_request(wbio);
+	}
+	if (wbio2) {
+		atomic_inc(&conf->mirrors[d].replacement->nr_pending);
+		md_sync_acct(conf->mirrors[d].replacement->bdev,
+			     wbio2->bi_size >> 9);
+		generic_make_request(wbio2);
+	}
+}
+
+
+/*
+ * Used by fix_read_error() to decay the per rdev read_errors.
+ * We halve the read error count for every hour that has elapsed
+ * since the last recorded read error.
+ *
+ */
+static void check_decay_read_errors(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct timespec cur_time_mon;
+	unsigned long hours_since_last;
+	unsigned int read_errors = atomic_read(&rdev->read_errors);
+
+	ktime_get_ts(&cur_time_mon);
+
+	if (rdev->last_read_error.tv_sec == 0 &&
+	    rdev->last_read_error.tv_nsec == 0) {
+		/* first time we've seen a read error */
+		rdev->last_read_error = cur_time_mon;
+		return;
+	}
+
+	hours_since_last = (cur_time_mon.tv_sec -
+			    rdev->last_read_error.tv_sec) / 3600;
+
+	rdev->last_read_error = cur_time_mon;
+
+	/*
+	 * if hours_since_last is > the number of bits in read_errors
+	 * just set read errors to 0. We do this to avoid
+	 * overflowing the shift of read_errors by hours_since_last.
+	 */
+	if (hours_since_last >= 8 * sizeof(read_errors))
+		atomic_set(&rdev->read_errors, 0);
+	else
+		atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
+}
+
+static int r10_sync_page_io(struct md_rdev *rdev, sector_t sector,
+			    int sectors, struct page *page, int rw)
+{
+	sector_t first_bad;
+	int bad_sectors;
+
+	if (is_badblock(rdev, sector, sectors, &first_bad, &bad_sectors)
+	    && (rw == READ || test_bit(WriteErrorSeen, &rdev->flags)))
+		return -1;
+	if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
+		/* success */
+		return 1;
+	if (rw == WRITE) {
+		set_bit(WriteErrorSeen, &rdev->flags);
+		if (!test_and_set_bit(WantReplacement, &rdev->flags))
+			set_bit(MD_RECOVERY_NEEDED,
+				&rdev->mddev->recovery);
+	}
+	/* need to record an error - either for the block or the device */
+	if (!rdev_set_badblocks(rdev, sector, sectors, 0))
+		md_error(rdev->mddev, rdev);
+	return 0;
+}
+
+/*
+ * This is a kernel thread which:
+ *
+ *	1.	Retries failed read operations on working mirrors.
+ *	2.	Updates the raid superblock when problems encounter.
+ *	3.	Performs writes following reads for array synchronising.
+ */
+
+static void fix_read_error(struct r10conf *conf, struct mddev *mddev, struct r10bio *r10_bio)
+{
+	int sect = 0; /* Offset from r10_bio->sector */
+	int sectors = r10_bio->sectors;
+	struct md_rdev*rdev;
+	int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
+	int d = r10_bio->devs[r10_bio->read_slot].devnum;
+
+	/* still own a reference to this rdev, so it cannot
+	 * have been cleared recently.
+	 */
+	rdev = conf->mirrors[d].rdev;
+
+	if (test_bit(Faulty, &rdev->flags))
+		/* drive has already been failed, just ignore any
+		   more fix_read_error() attempts */
+		return;
+
+	check_decay_read_errors(mddev, rdev);
+	atomic_inc(&rdev->read_errors);
+	if (atomic_read(&rdev->read_errors) > max_read_errors) {
+		char b[BDEVNAME_SIZE];
+		bdevname(rdev->bdev, b);
+
+		printk(KERN_NOTICE
+		       "md/raid10:%s: %s: Raid device exceeded "
+		       "read_error threshold [cur %d:max %d]\n",
+		       mdname(mddev), b,
+		       atomic_read(&rdev->read_errors), max_read_errors);
+		printk(KERN_NOTICE
+		       "md/raid10:%s: %s: Failing raid device\n",
+		       mdname(mddev), b);
+		md_error(mddev, conf->mirrors[d].rdev);
+		r10_bio->devs[r10_bio->read_slot].bio = IO_BLOCKED;
+		return;
+	}
+
+	while(sectors) {
+		int s = sectors;
+		int sl = r10_bio->read_slot;
+		int success = 0;
+		int start;
+
+		if (s > (PAGE_SIZE>>9))
+			s = PAGE_SIZE >> 9;
+
+		rcu_read_lock();
+		do {
+			sector_t first_bad;
+			int bad_sectors;
+
+			d = r10_bio->devs[sl].devnum;
+			rdev = rcu_dereference(conf->mirrors[d].rdev);
+			if (rdev &&
+			    !test_bit(Unmerged, &rdev->flags) &&
+			    test_bit(In_sync, &rdev->flags) &&
+			    is_badblock(rdev, r10_bio->devs[sl].addr + sect, s,
+					&first_bad, &bad_sectors) == 0) {
+				atomic_inc(&rdev->nr_pending);
+				rcu_read_unlock();
+				success = sync_page_io(rdev,
+						       r10_bio->devs[sl].addr +
+						       sect,
+						       s<<9,
+						       conf->tmppage, READ, false);
+				rdev_dec_pending(rdev, mddev);
+				rcu_read_lock();
+				if (success)
+					break;
+			}
+			sl++;
+			if (sl == conf->copies)
+				sl = 0;
+		} while (!success && sl != r10_bio->read_slot);
+		rcu_read_unlock();
+
+		if (!success) {
+			/* Cannot read from anywhere, just mark the block
+			 * as bad on the first device to discourage future
+			 * reads.
+			 */
+			int dn = r10_bio->devs[r10_bio->read_slot].devnum;
+			rdev = conf->mirrors[dn].rdev;
+
+			if (!rdev_set_badblocks(
+				    rdev,
+				    r10_bio->devs[r10_bio->read_slot].addr
+				    + sect,
+				    s, 0)) {
+				md_error(mddev, rdev);
+				r10_bio->devs[r10_bio->read_slot].bio
+					= IO_BLOCKED;
+			}
+			break;
+		}
+
+		start = sl;
+		/* write it back and re-read */
+		rcu_read_lock();
+		while (sl != r10_bio->read_slot) {
+			char b[BDEVNAME_SIZE];
+
+			if (sl==0)
+				sl = conf->copies;
+			sl--;
+			d = r10_bio->devs[sl].devnum;
+			rdev = rcu_dereference(conf->mirrors[d].rdev);
+			if (!rdev ||
+			    test_bit(Unmerged, &rdev->flags) ||
+			    !test_bit(In_sync, &rdev->flags))
+				continue;
+
+			atomic_inc(&rdev->nr_pending);
+			rcu_read_unlock();
+			if (r10_sync_page_io(rdev,
+					     r10_bio->devs[sl].addr +
+					     sect,
+					     s, conf->tmppage, WRITE)
+			    == 0) {
+				/* Well, this device is dead */
+				printk(KERN_NOTICE
+				       "md/raid10:%s: read correction "
+				       "write failed"
+				       " (%d sectors at %llu on %s)\n",
+				       mdname(mddev), s,
+				       (unsigned long long)(
+					       sect + rdev->data_offset),
+				       bdevname(rdev->bdev, b));
+				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
+				       "drive\n",
+				       mdname(mddev),
+				       bdevname(rdev->bdev, b));
+			}
+			rdev_dec_pending(rdev, mddev);
+			rcu_read_lock();
+		}
+		sl = start;
+		while (sl != r10_bio->read_slot) {
+			char b[BDEVNAME_SIZE];
+
+			if (sl==0)
+				sl = conf->copies;
+			sl--;
+			d = r10_bio->devs[sl].devnum;
+			rdev = rcu_dereference(conf->mirrors[d].rdev);
+			if (!rdev ||
+			    !test_bit(In_sync, &rdev->flags))
+				continue;
+
+			atomic_inc(&rdev->nr_pending);
+			rcu_read_unlock();
+			switch (r10_sync_page_io(rdev,
+					     r10_bio->devs[sl].addr +
+					     sect,
+					     s, conf->tmppage,
+						 READ)) {
+			case 0:
+				/* Well, this device is dead */
+				printk(KERN_NOTICE
+				       "md/raid10:%s: unable to read back "
+				       "corrected sectors"
+				       " (%d sectors at %llu on %s)\n",
+				       mdname(mddev), s,
+				       (unsigned long long)(
+					       sect + rdev->data_offset),
+				       bdevname(rdev->bdev, b));
+				printk(KERN_NOTICE "md/raid10:%s: %s: failing "
+				       "drive\n",
+				       mdname(mddev),
+				       bdevname(rdev->bdev, b));
+				break;
+			case 1:
+				printk(KERN_INFO
+				       "md/raid10:%s: read error corrected"
+				       " (%d sectors at %llu on %s)\n",
+				       mdname(mddev), s,
+				       (unsigned long long)(
+					       sect + rdev->data_offset),
+				       bdevname(rdev->bdev, b));
+				atomic_add(s, &rdev->corrected_errors);
+			}
+
+			rdev_dec_pending(rdev, mddev);
+			rcu_read_lock();
+		}
+		rcu_read_unlock();
+
+		sectors -= s;
+		sect += s;
+	}
+}
+
+static void bi_complete(struct bio *bio, int error)
+{
+	complete((struct completion *)bio->bi_private);
+}
+
+static int submit_bio_wait(int rw, struct bio *bio)
+{
+	struct completion event;
+	rw |= REQ_SYNC;
+
+	init_completion(&event);
+	bio->bi_private = &event;
+	bio->bi_end_io = bi_complete;
+	submit_bio(rw, bio);
+	wait_for_completion(&event);
+
+	return test_bit(BIO_UPTODATE, &bio->bi_flags);
+}
+
+static int narrow_write_error(struct r10bio *r10_bio, int i)
+{
+	struct bio *bio = r10_bio->master_bio;
+	struct mddev *mddev = r10_bio->mddev;
+	struct r10conf *conf = mddev->private;
+	struct md_rdev *rdev = conf->mirrors[r10_bio->devs[i].devnum].rdev;
+	/* bio has the data to be written to slot 'i' where
+	 * we just recently had a write error.
+	 * We repeatedly clone the bio and trim down to one block,
+	 * then try the write.  Where the write fails we record
+	 * a bad block.
+	 * It is conceivable that the bio doesn't exactly align with
+	 * blocks.  We must handle this.
+	 *
+	 * We currently own a reference to the rdev.
+	 */
+
+	int block_sectors;
+	sector_t sector;
+	int sectors;
+	int sect_to_write = r10_bio->sectors;
+	int ok = 1;
+
+	if (rdev->badblocks.shift < 0)
+		return 0;
+
+	block_sectors = 1 << rdev->badblocks.shift;
+	sector = r10_bio->sector;
+	sectors = ((r10_bio->sector + block_sectors)
+		   & ~(sector_t)(block_sectors - 1))
+		- sector;
+
+	while (sect_to_write) {
+		struct bio *wbio;
+		if (sectors > sect_to_write)
+			sectors = sect_to_write;
+		/* Write at 'sector' for 'sectors' */
+		wbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
+		md_trim_bio(wbio, sector - bio->bi_sector, sectors);
+		wbio->bi_sector = (r10_bio->devs[i].addr+
+				   rdev->data_offset+
+				   (sector - r10_bio->sector));
+		wbio->bi_bdev = rdev->bdev;
+		if (submit_bio_wait(WRITE, wbio) == 0)
+			/* Failure! */
+			ok = rdev_set_badblocks(rdev, sector,
+						sectors, 0)
+				&& ok;
+
+		bio_put(wbio);
+		sect_to_write -= sectors;
+		sector += sectors;
+		sectors = block_sectors;
+	}
+	return ok;
+}
+
+static void handle_read_error(struct mddev *mddev, struct r10bio *r10_bio)
+{
+	int slot = r10_bio->read_slot;
+	struct bio *bio;
+	struct r10conf *conf = mddev->private;
+	struct md_rdev *rdev = r10_bio->devs[slot].rdev;
+	char b[BDEVNAME_SIZE];
+	unsigned long do_sync;
+	int max_sectors;
+
+	/* we got a read error. Maybe the drive is bad.  Maybe just
+	 * the block and we can fix it.
+	 * We freeze all other IO, and try reading the block from
+	 * other devices.  When we find one, we re-write
+	 * and check it that fixes the read error.
+	 * This is all done synchronously while the array is
+	 * frozen.
+	 */
+	bio = r10_bio->devs[slot].bio;
+	bdevname(bio->bi_bdev, b);
+	bio_put(bio);
+	r10_bio->devs[slot].bio = NULL;
+
+	if (mddev->ro == 0) {
+		freeze_array(conf, 1);
+		fix_read_error(conf, mddev, r10_bio);
+		unfreeze_array(conf);
+	} else
+		r10_bio->devs[slot].bio = IO_BLOCKED;
+
+	rdev_dec_pending(rdev, mddev);
+
+read_more:
+	rdev = read_balance(conf, r10_bio, &max_sectors);
+	if (rdev == NULL) {
+		printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
+		       " read error for block %llu\n",
+		       mdname(mddev), b,
+		       (unsigned long long)r10_bio->sector);
+		raid_end_bio_io(r10_bio);
+		return;
+	}
+
+	do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
+	slot = r10_bio->read_slot;
+	printk_ratelimited(
+		KERN_ERR
+		"md/raid10:%s: %s: redirecting "
+		"sector %llu to another mirror\n",
+		mdname(mddev),
+		bdevname(rdev->bdev, b),
+		(unsigned long long)r10_bio->sector);
+	bio = bio_clone_mddev(r10_bio->master_bio,
+			      GFP_NOIO, mddev);
+	md_trim_bio(bio,
+		    r10_bio->sector - bio->bi_sector,
+		    max_sectors);
+	r10_bio->devs[slot].bio = bio;
+	r10_bio->devs[slot].rdev = rdev;
+	bio->bi_sector = r10_bio->devs[slot].addr
+		+ rdev->data_offset;
+	bio->bi_bdev = rdev->bdev;
+	bio->bi_rw = READ | do_sync;
+	bio->bi_private = r10_bio;
+	bio->bi_end_io = raid10_end_read_request;
+	if (max_sectors < r10_bio->sectors) {
+		/* Drat - have to split this up more */
+		struct bio *mbio = r10_bio->master_bio;
+		int sectors_handled =
+			r10_bio->sector + max_sectors
+			- mbio->bi_sector;
+		r10_bio->sectors = max_sectors;
+		spin_lock_irq(&conf->device_lock);
+		if (mbio->bi_phys_segments == 0)
+			mbio->bi_phys_segments = 2;
+		else
+			mbio->bi_phys_segments++;
+		spin_unlock_irq(&conf->device_lock);
+		generic_make_request(bio);
+
+		r10_bio = mempool_alloc(conf->r10bio_pool,
+					GFP_NOIO);
+		r10_bio->master_bio = mbio;
+		r10_bio->sectors = (mbio->bi_size >> 9)
+			- sectors_handled;
+		r10_bio->state = 0;
+		set_bit(R10BIO_ReadError,
+			&r10_bio->state);
+		r10_bio->mddev = mddev;
+		r10_bio->sector = mbio->bi_sector
+			+ sectors_handled;
+
+		goto read_more;
+	} else
+		generic_make_request(bio);
+}
+
+static void handle_write_completed(struct r10conf *conf, struct r10bio *r10_bio)
+{
+	/* Some sort of write request has finished and it
+	 * succeeded in writing where we thought there was a
+	 * bad block.  So forget the bad block.
+	 * Or possibly if failed and we need to record
+	 * a bad block.
+	 */
+	int m;
+	struct md_rdev *rdev;
+
+	if (test_bit(R10BIO_IsSync, &r10_bio->state) ||
+	    test_bit(R10BIO_IsRecover, &r10_bio->state)) {
+		for (m = 0; m < conf->copies; m++) {
+			int dev = r10_bio->devs[m].devnum;
+			rdev = conf->mirrors[dev].rdev;
+			if (r10_bio->devs[m].bio == NULL)
+				continue;
+			if (test_bit(BIO_UPTODATE,
+				     &r10_bio->devs[m].bio->bi_flags)) {
+				rdev_clear_badblocks(
+					rdev,
+					r10_bio->devs[m].addr,
+					r10_bio->sectors);
+			} else {
+				if (!rdev_set_badblocks(
+					    rdev,
+					    r10_bio->devs[m].addr,
+					    r10_bio->sectors, 0))
+					md_error(conf->mddev, rdev);
+			}
+			rdev = conf->mirrors[dev].replacement;
+			if (r10_bio->devs[m].repl_bio == NULL)
+				continue;
+			if (test_bit(BIO_UPTODATE,
+				     &r10_bio->devs[m].repl_bio->bi_flags)) {
+				rdev_clear_badblocks(
+					rdev,
+					r10_bio->devs[m].addr,
+					r10_bio->sectors);
+			} else {
+				if (!rdev_set_badblocks(
+					    rdev,
+					    r10_bio->devs[m].addr,
+					    r10_bio->sectors, 0))
+					md_error(conf->mddev, rdev);
+			}
+		}
+		put_buf(r10_bio);
+	} else {
+		for (m = 0; m < conf->copies; m++) {
+			int dev = r10_bio->devs[m].devnum;
+			struct bio *bio = r10_bio->devs[m].bio;
+			rdev = conf->mirrors[dev].rdev;
+			if (bio == IO_MADE_GOOD) {
+				rdev_clear_badblocks(
+					rdev,
+					r10_bio->devs[m].addr,
+					r10_bio->sectors);
+				rdev_dec_pending(rdev, conf->mddev);
+			} else if (bio != NULL &&
+				   !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
+				if (!narrow_write_error(r10_bio, m)) {
+					md_error(conf->mddev, rdev);
+					set_bit(R10BIO_Degraded,
+						&r10_bio->state);
+				}
+				rdev_dec_pending(rdev, conf->mddev);
+			}
+			bio = r10_bio->devs[m].repl_bio;
+			rdev = conf->mirrors[dev].replacement;
+			if (rdev && bio == IO_MADE_GOOD) {
+				rdev_clear_badblocks(
+					rdev,
+					r10_bio->devs[m].addr,
+					r10_bio->sectors);
+				rdev_dec_pending(rdev, conf->mddev);
+			}
+		}
+		if (test_bit(R10BIO_WriteError,
+			     &r10_bio->state))
+			close_write(r10_bio);
+		raid_end_bio_io(r10_bio);
+	}
+}
+
+static void raid10d(struct mddev *mddev)
+{
+	struct r10bio *r10_bio;
+	unsigned long flags;
+	struct r10conf *conf = mddev->private;
+	struct list_head *head = &conf->retry_list;
+	struct blk_plug plug;
+
+	md_check_recovery(mddev);
+
+	blk_start_plug(&plug);
+	for (;;) {
+
+		flush_pending_writes(conf);
+
+		spin_lock_irqsave(&conf->device_lock, flags);
+		if (list_empty(head)) {
+			spin_unlock_irqrestore(&conf->device_lock, flags);
+			break;
+		}
+		r10_bio = list_entry(head->prev, struct r10bio, retry_list);
+		list_del(head->prev);
+		conf->nr_queued--;
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+
+		mddev = r10_bio->mddev;
+		conf = mddev->private;
+		if (test_bit(R10BIO_MadeGood, &r10_bio->state) ||
+		    test_bit(R10BIO_WriteError, &r10_bio->state))
+			handle_write_completed(conf, r10_bio);
+		else if (test_bit(R10BIO_IsSync, &r10_bio->state))
+			sync_request_write(mddev, r10_bio);
+		else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
+			recovery_request_write(mddev, r10_bio);
+		else if (test_bit(R10BIO_ReadError, &r10_bio->state))
+			handle_read_error(mddev, r10_bio);
+		else {
+			/* just a partial read to be scheduled from a
+			 * separate context
+			 */
+			int slot = r10_bio->read_slot;
+			generic_make_request(r10_bio->devs[slot].bio);
+		}
+
+		cond_resched();
+		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
+			md_check_recovery(mddev);
+	}
+	blk_finish_plug(&plug);
+}
+
+
+static int init_resync(struct r10conf *conf)
+{
+	int buffs;
+	int i;
+
+	buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
+	BUG_ON(conf->r10buf_pool);
+	conf->have_replacement = 0;
+	for (i = 0; i < conf->raid_disks; i++)
+		if (conf->mirrors[i].replacement)
+			conf->have_replacement = 1;
+	conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
+	if (!conf->r10buf_pool)
+		return -ENOMEM;
+	conf->next_resync = 0;
+	return 0;
+}
+
+/*
+ * perform a "sync" on one "block"
+ *
+ * We need to make sure that no normal I/O request - particularly write
+ * requests - conflict with active sync requests.
+ *
+ * This is achieved by tracking pending requests and a 'barrier' concept
+ * that can be installed to exclude normal IO requests.
+ *
+ * Resync and recovery are handled very differently.
+ * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
+ *
+ * For resync, we iterate over virtual addresses, read all copies,
+ * and update if there are differences.  If only one copy is live,
+ * skip it.
+ * For recovery, we iterate over physical addresses, read a good
+ * value for each non-in_sync drive, and over-write.
+ *
+ * So, for recovery we may have several outstanding complex requests for a
+ * given address, one for each out-of-sync device.  We model this by allocating
+ * a number of r10_bio structures, one for each out-of-sync device.
+ * As we setup these structures, we collect all bio's together into a list
+ * which we then process collectively to add pages, and then process again
+ * to pass to generic_make_request.
+ *
+ * The r10_bio structures are linked using a borrowed master_bio pointer.
+ * This link is counted in ->remaining.  When the r10_bio that points to NULL
+ * has its remaining count decremented to 0, the whole complex operation
+ * is complete.
+ *
+ */
+
+static sector_t sync_request(struct mddev *mddev, sector_t sector_nr,
+			     int *skipped, int go_faster)
+{
+	struct r10conf *conf = mddev->private;
+	struct r10bio *r10_bio;
+	struct bio *biolist = NULL, *bio;
+	sector_t max_sector, nr_sectors;
+	int i;
+	int max_sync;
+	sector_t sync_blocks;
+	sector_t sectors_skipped = 0;
+	int chunks_skipped = 0;
+
+	if (!conf->r10buf_pool)
+		if (init_resync(conf))
+			return 0;
+
+ skipped:
+	max_sector = mddev->dev_sectors;
+	if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
+		max_sector = mddev->resync_max_sectors;
+	if (sector_nr >= max_sector) {
+		/* If we aborted, we need to abort the
+		 * sync on the 'current' bitmap chucks (there can
+		 * be several when recovering multiple devices).
+		 * as we may have started syncing it but not finished.
+		 * We can find the current address in
+		 * mddev->curr_resync, but for recovery,
+		 * we need to convert that to several
+		 * virtual addresses.
+		 */
+		if (mddev->curr_resync < max_sector) { /* aborted */
+			if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
+				bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
+						&sync_blocks, 1);
+			else for (i=0; i<conf->raid_disks; i++) {
+				sector_t sect =
+					raid10_find_virt(conf, mddev->curr_resync, i);
+				bitmap_end_sync(mddev->bitmap, sect,
+						&sync_blocks, 1);
+			}
+		} else {
+			/* completed sync */
+			if ((!mddev->bitmap || conf->fullsync)
+			    && conf->have_replacement
+			    && test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+				/* Completed a full sync so the replacements
+				 * are now fully recovered.
+				 */
+				for (i = 0; i < conf->raid_disks; i++)
+					if (conf->mirrors[i].replacement)
+						conf->mirrors[i].replacement
+							->recovery_offset
+							= MaxSector;
+			}
+			conf->fullsync = 0;
+		}
+		bitmap_close_sync(mddev->bitmap);
+		close_sync(conf);
+		*skipped = 1;
+		return sectors_skipped;
+	}
+	if (chunks_skipped >= conf->raid_disks) {
+		/* if there has been nothing to do on any drive,
+		 * then there is nothing to do at all..
+		 */
+		*skipped = 1;
+		return (max_sector - sector_nr) + sectors_skipped;
+	}
+
+	if (max_sector > mddev->resync_max)
+		max_sector = mddev->resync_max; /* Don't do IO beyond here */
+
+	/* make sure whole request will fit in a chunk - if chunks
+	 * are meaningful
+	 */
+	if (conf->near_copies < conf->raid_disks &&
+	    max_sector > (sector_nr | conf->chunk_mask))
+		max_sector = (sector_nr | conf->chunk_mask) + 1;
+	/*
+	 * If there is non-resync activity waiting for us then
+	 * put in a delay to throttle resync.
+	 */
+	if (!go_faster && conf->nr_waiting)
+		msleep_interruptible(1000);
+
+	/* Again, very different code for resync and recovery.
+	 * Both must result in an r10bio with a list of bios that
+	 * have bi_end_io, bi_sector, bi_bdev set,
+	 * and bi_private set to the r10bio.
+	 * For recovery, we may actually create several r10bios
+	 * with 2 bios in each, that correspond to the bios in the main one.
+	 * In this case, the subordinate r10bios link back through a
+	 * borrowed master_bio pointer, and the counter in the master
+	 * includes a ref from each subordinate.
+	 */
+	/* First, we decide what to do and set ->bi_end_io
+	 * To end_sync_read if we want to read, and
+	 * end_sync_write if we will want to write.
+	 */
+
+	max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
+	if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+		/* recovery... the complicated one */
+		int j;
+		r10_bio = NULL;
+
+		for (i=0 ; i<conf->raid_disks; i++) {
+			int still_degraded;
+			struct r10bio *rb2;
+			sector_t sect;
+			int must_sync;
+			int any_working;
+			struct mirror_info *mirror = &conf->mirrors[i];
+
+			if ((mirror->rdev == NULL ||
+			     test_bit(In_sync, &mirror->rdev->flags))
+			    &&
+			    (mirror->replacement == NULL ||
+			     test_bit(Faulty,
+				      &mirror->replacement->flags)))
+				continue;
+
+			still_degraded = 0;
+			/* want to reconstruct this device */
+			rb2 = r10_bio;
+			sect = raid10_find_virt(conf, sector_nr, i);
+			if (sect >= mddev->resync_max_sectors) {
+				/* last stripe is not complete - don't
+				 * try to recover this sector.
+				 */
+				continue;
+			}
+			/* Unless we are doing a full sync, or a replacement
+			 * we only need to recover the block if it is set in
+			 * the bitmap
+			 */
+			must_sync = bitmap_start_sync(mddev->bitmap, sect,
+						      &sync_blocks, 1);
+			if (sync_blocks < max_sync)
+				max_sync = sync_blocks;
+			if (!must_sync &&
+			    mirror->replacement == NULL &&
+			    !conf->fullsync) {
+				/* yep, skip the sync_blocks here, but don't assume
+				 * that there will never be anything to do here
+				 */
+				chunks_skipped = -1;
+				continue;
+			}
+
+			r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
+			raise_barrier(conf, rb2 != NULL);
+			atomic_set(&r10_bio->remaining, 0);
+
+			r10_bio->master_bio = (struct bio*)rb2;
+			if (rb2)
+				atomic_inc(&rb2->remaining);
+			r10_bio->mddev = mddev;
+			set_bit(R10BIO_IsRecover, &r10_bio->state);
+			r10_bio->sector = sect;
+
+			raid10_find_phys(conf, r10_bio);
+
+			/* Need to check if the array will still be
+			 * degraded
+			 */
+			for (j=0; j<conf->raid_disks; j++)
+				if (conf->mirrors[j].rdev == NULL ||
+				    test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
+					still_degraded = 1;
+					break;
+				}
+
+			must_sync = bitmap_start_sync(mddev->bitmap, sect,
+						      &sync_blocks, still_degraded);
+
+			any_working = 0;
+			for (j=0; j<conf->copies;j++) {
+				int k;
+				int d = r10_bio->devs[j].devnum;
+				sector_t from_addr, to_addr;
+				struct md_rdev *rdev;
+				sector_t sector, first_bad;
+				int bad_sectors;
+				if (!conf->mirrors[d].rdev ||
+				    !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
+					continue;
+				/* This is where we read from */
+				any_working = 1;
+				rdev = conf->mirrors[d].rdev;
+				sector = r10_bio->devs[j].addr;
+
+				if (is_badblock(rdev, sector, max_sync,
+						&first_bad, &bad_sectors)) {
+					if (first_bad > sector)
+						max_sync = first_bad - sector;
+					else {
+						bad_sectors -= (sector
+								- first_bad);
+						if (max_sync > bad_sectors)
+							max_sync = bad_sectors;
+						continue;
+					}
+				}
+				bio = r10_bio->devs[0].bio;
+				bio->bi_next = biolist;
+				biolist = bio;
+				bio->bi_private = r10_bio;
+				bio->bi_end_io = end_sync_read;
+				bio->bi_rw = READ;
+				from_addr = r10_bio->devs[j].addr;
+				bio->bi_sector = from_addr + rdev->data_offset;
+				bio->bi_bdev = rdev->bdev;
+				atomic_inc(&rdev->nr_pending);
+				/* and we write to 'i' (if not in_sync) */
+
+				for (k=0; k<conf->copies; k++)
+					if (r10_bio->devs[k].devnum == i)
+						break;
+				BUG_ON(k == conf->copies);
+				to_addr = r10_bio->devs[k].addr;
+				r10_bio->devs[0].devnum = d;
+				r10_bio->devs[0].addr = from_addr;
+				r10_bio->devs[1].devnum = i;
+				r10_bio->devs[1].addr = to_addr;
+
+				rdev = mirror->rdev;
+				if (!test_bit(In_sync, &rdev->flags)) {
+					bio = r10_bio->devs[1].bio;
+					bio->bi_next = biolist;
+					biolist = bio;
+					bio->bi_private = r10_bio;
+					bio->bi_end_io = end_sync_write;
+					bio->bi_rw = WRITE;
+					bio->bi_sector = to_addr
+						+ rdev->data_offset;
+					bio->bi_bdev = rdev->bdev;
+					atomic_inc(&r10_bio->remaining);
+				} else
+					r10_bio->devs[1].bio->bi_end_io = NULL;
+
+				/* and maybe write to replacement */
+				bio = r10_bio->devs[1].repl_bio;
+				if (bio)
+					bio->bi_end_io = NULL;
+				rdev = mirror->replacement;
+				/* Note: if rdev != NULL, then bio
+				 * cannot be NULL as r10buf_pool_alloc will
+				 * have allocated it.
+				 * So the second test here is pointless.
+				 * But it keeps semantic-checkers happy, and
+				 * this comment keeps human reviewers
+				 * happy.
+				 */
+				if (rdev == NULL || bio == NULL ||
+				    test_bit(Faulty, &rdev->flags))
+					break;
+				bio->bi_next = biolist;
+				biolist = bio;
+				bio->bi_private = r10_bio;
+				bio->bi_end_io = end_sync_write;
+				bio->bi_rw = WRITE;
+				bio->bi_sector = to_addr + rdev->data_offset;
+				bio->bi_bdev = rdev->bdev;
+				atomic_inc(&r10_bio->remaining);
+				break;
+			}
+			if (j == conf->copies) {
+				/* Cannot recover, so abort the recovery or
+				 * record a bad block */
+				if (any_working) {
+					/* problem is that there are bad blocks
+					 * on other device(s)
+					 */
+					int k;
+					for (k = 0; k < conf->copies; k++)
+						if (r10_bio->devs[k].devnum == i)
+							break;
+					if (!test_bit(In_sync,
+						      &mirror->rdev->flags)
+					    && !rdev_set_badblocks(
+						    mirror->rdev,
+						    r10_bio->devs[k].addr,
+						    max_sync, 0))
+						any_working = 0;
+					if (mirror->replacement &&
+					    !rdev_set_badblocks(
+						    mirror->replacement,
+						    r10_bio->devs[k].addr,
+						    max_sync, 0))
+						any_working = 0;
+				}
+				if (!any_working)  {
+					if (!test_and_set_bit(MD_RECOVERY_INTR,
+							      &mddev->recovery))
+						printk(KERN_INFO "md/raid10:%s: insufficient "
+						       "working devices for recovery.\n",
+						       mdname(mddev));
+					mirror->recovery_disabled
+						= mddev->recovery_disabled;
+				}
+				put_buf(r10_bio);
+				if (rb2)
+					atomic_dec(&rb2->remaining);
+				r10_bio = rb2;
+				break;
+			}
+		}
+		if (biolist == NULL) {
+			while (r10_bio) {
+				struct r10bio *rb2 = r10_bio;
+				r10_bio = (struct r10bio*) rb2->master_bio;
+				rb2->master_bio = NULL;
+				put_buf(rb2);
+			}
+			goto giveup;
+		}
+	} else {
+		/* resync. Schedule a read for every block at this virt offset */
+		int count = 0;
+
+		bitmap_cond_end_sync(mddev->bitmap, sector_nr);
+
+		if (!bitmap_start_sync(mddev->bitmap, sector_nr,
+				       &sync_blocks, mddev->degraded) &&
+		    !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
+						 &mddev->recovery)) {
+			/* We can skip this block */
+			*skipped = 1;
+			return sync_blocks + sectors_skipped;
+		}
+		if (sync_blocks < max_sync)
+			max_sync = sync_blocks;
+		r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
+
+		r10_bio->mddev = mddev;
+		atomic_set(&r10_bio->remaining, 0);
+		raise_barrier(conf, 0);
+		conf->next_resync = sector_nr;
+
+		r10_bio->master_bio = NULL;
+		r10_bio->sector = sector_nr;
+		set_bit(R10BIO_IsSync, &r10_bio->state);
+		raid10_find_phys(conf, r10_bio);
+		r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
+
+		for (i=0; i<conf->copies; i++) {
+			int d = r10_bio->devs[i].devnum;
+			sector_t first_bad, sector;
+			int bad_sectors;
+
+			if (r10_bio->devs[i].repl_bio)
+				r10_bio->devs[i].repl_bio->bi_end_io = NULL;
+
+			bio = r10_bio->devs[i].bio;
+			bio->bi_end_io = NULL;
+			clear_bit(BIO_UPTODATE, &bio->bi_flags);
+			if (conf->mirrors[d].rdev == NULL ||
+			    test_bit(Faulty, &conf->mirrors[d].rdev->flags))
+				continue;
+			sector = r10_bio->devs[i].addr;
+			if (is_badblock(conf->mirrors[d].rdev,
+					sector, max_sync,
+					&first_bad, &bad_sectors)) {
+				if (first_bad > sector)
+					max_sync = first_bad - sector;
+				else {
+					bad_sectors -= (sector - first_bad);
+					if (max_sync > bad_sectors)
+						max_sync = bad_sectors;
+					continue;
+				}
+			}
+			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
+			atomic_inc(&r10_bio->remaining);
+			bio->bi_next = biolist;
+			biolist = bio;
+			bio->bi_private = r10_bio;
+			bio->bi_end_io = end_sync_read;
+			bio->bi_rw = READ;
+			bio->bi_sector = sector +
+				conf->mirrors[d].rdev->data_offset;
+			bio->bi_bdev = conf->mirrors[d].rdev->bdev;
+			count++;
+
+			if (conf->mirrors[d].replacement == NULL ||
+			    test_bit(Faulty,
+				     &conf->mirrors[d].replacement->flags))
+				continue;
+
+			/* Need to set up for writing to the replacement */
+			bio = r10_bio->devs[i].repl_bio;
+			clear_bit(BIO_UPTODATE, &bio->bi_flags);
+
+			sector = r10_bio->devs[i].addr;
+			atomic_inc(&conf->mirrors[d].rdev->nr_pending);
+			bio->bi_next = biolist;
+			biolist = bio;
+			bio->bi_private = r10_bio;
+			bio->bi_end_io = end_sync_write;
+			bio->bi_rw = WRITE;
+			bio->bi_sector = sector +
+				conf->mirrors[d].replacement->data_offset;
+			bio->bi_bdev = conf->mirrors[d].replacement->bdev;
+			count++;
+		}
+
+		if (count < 2) {
+			for (i=0; i<conf->copies; i++) {
+				int d = r10_bio->devs[i].devnum;
+				if (r10_bio->devs[i].bio->bi_end_io)
+					rdev_dec_pending(conf->mirrors[d].rdev,
+							 mddev);
+				if (r10_bio->devs[i].repl_bio &&
+				    r10_bio->devs[i].repl_bio->bi_end_io)
+					rdev_dec_pending(
+						conf->mirrors[d].replacement,
+						mddev);
+			}
+			put_buf(r10_bio);
+			biolist = NULL;
+			goto giveup;
+		}
+	}
+
+	for (bio = biolist; bio ; bio=bio->bi_next) {
+
+		bio->bi_flags &= ~(BIO_POOL_MASK - 1);
+		if (bio->bi_end_io)
+			bio->bi_flags |= 1 << BIO_UPTODATE;
+		bio->bi_vcnt = 0;
+		bio->bi_idx = 0;
+		bio->bi_phys_segments = 0;
+		bio->bi_size = 0;
+	}
+
+	nr_sectors = 0;
+	if (sector_nr + max_sync < max_sector)
+		max_sector = sector_nr + max_sync;
+	do {
+		struct page *page;
+		int len = PAGE_SIZE;
+		if (sector_nr + (len>>9) > max_sector)
+			len = (max_sector - sector_nr) << 9;
+		if (len == 0)
+			break;
+		for (bio= biolist ; bio ; bio=bio->bi_next) {
+			struct bio *bio2;
+			page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
+			if (bio_add_page(bio, page, len, 0))
+				continue;
+
+			/* stop here */
+			bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
+			for (bio2 = biolist;
+			     bio2 && bio2 != bio;
+			     bio2 = bio2->bi_next) {
+				/* remove last page from this bio */
+				bio2->bi_vcnt--;
+				bio2->bi_size -= len;
+				bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
+			}
+			goto bio_full;
+		}
+		nr_sectors += len>>9;
+		sector_nr += len>>9;
+	} while (biolist->bi_vcnt < RESYNC_PAGES);
+ bio_full:
+	r10_bio->sectors = nr_sectors;
+
+	while (biolist) {
+		bio = biolist;
+		biolist = biolist->bi_next;
+
+		bio->bi_next = NULL;
+		r10_bio = bio->bi_private;
+		r10_bio->sectors = nr_sectors;
+
+		if (bio->bi_end_io == end_sync_read) {
+			md_sync_acct(bio->bi_bdev, nr_sectors);
+			generic_make_request(bio);
+		}
+	}
+
+	if (sectors_skipped)
+		/* pretend they weren't skipped, it makes
+		 * no important difference in this case
+		 */
+		md_done_sync(mddev, sectors_skipped, 1);
+
+	return sectors_skipped + nr_sectors;
+ giveup:
+	/* There is nowhere to write, so all non-sync
+	 * drives must be failed or in resync, all drives
+	 * have a bad block, so try the next chunk...
+	 */
+	if (sector_nr + max_sync < max_sector)
+		max_sector = sector_nr + max_sync;
+
+	sectors_skipped += (max_sector - sector_nr);
+	chunks_skipped ++;
+	sector_nr = max_sector;
+	goto skipped;
+}
+
+static sector_t
+raid10_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+	sector_t size;
+	struct r10conf *conf = mddev->private;
+
+	if (!raid_disks)
+		raid_disks = conf->raid_disks;
+	if (!sectors)
+		sectors = conf->dev_sectors;
+
+	size = sectors >> conf->chunk_shift;
+	sector_div(size, conf->far_copies);
+	size = size * raid_disks;
+	sector_div(size, conf->near_copies);
+
+	return size << conf->chunk_shift;
+}
+
+static void calc_sectors(struct r10conf *conf, sector_t size)
+{
+	/* Calculate the number of sectors-per-device that will
+	 * actually be used, and set conf->dev_sectors and
+	 * conf->stride
+	 */
+
+	size = size >> conf->chunk_shift;
+	sector_div(size, conf->far_copies);
+	size = size * conf->raid_disks;
+	sector_div(size, conf->near_copies);
+	/* 'size' is now the number of chunks in the array */
+	/* calculate "used chunks per device" */
+	size = size * conf->copies;
+
+	/* We need to round up when dividing by raid_disks to
+	 * get the stride size.
+	 */
+	size = DIV_ROUND_UP_SECTOR_T(size, conf->raid_disks);
+
+	conf->dev_sectors = size << conf->chunk_shift;
+
+	if (conf->far_offset)
+		conf->stride = 1 << conf->chunk_shift;
+	else {
+		sector_div(size, conf->far_copies);
+		conf->stride = size << conf->chunk_shift;
+	}
+}
+
+static struct r10conf *setup_conf(struct mddev *mddev)
+{
+	struct r10conf *conf = NULL;
+	int nc, fc, fo;
+	int err = -EINVAL;
+
+	if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
+	    !is_power_of_2(mddev->new_chunk_sectors)) {
+		printk(KERN_ERR "md/raid10:%s: chunk size must be "
+		       "at least PAGE_SIZE(%ld) and be a power of 2.\n",
+		       mdname(mddev), PAGE_SIZE);
+		goto out;
+	}
+
+	nc = mddev->new_layout & 255;
+	fc = (mddev->new_layout >> 8) & 255;
+	fo = mddev->new_layout & (1<<16);
+
+	if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
+	    (mddev->new_layout >> 17)) {
+		printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
+		       mdname(mddev), mddev->new_layout);
+		goto out;
+	}
+
+	err = -ENOMEM;
+	conf = kzalloc(sizeof(struct r10conf), GFP_KERNEL);
+	if (!conf)
+		goto out;
+
+	conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
+				GFP_KERNEL);
+	if (!conf->mirrors)
+		goto out;
+
+	conf->tmppage = alloc_page(GFP_KERNEL);
+	if (!conf->tmppage)
+		goto out;
+
+
+	conf->raid_disks = mddev->raid_disks;
+	conf->near_copies = nc;
+	conf->far_copies = fc;
+	conf->copies = nc*fc;
+	conf->far_offset = fo;
+	conf->chunk_mask = mddev->new_chunk_sectors - 1;
+	conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
+
+	conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
+					   r10bio_pool_free, conf);
+	if (!conf->r10bio_pool)
+		goto out;
+
+	calc_sectors(conf, mddev->dev_sectors);
+
+	spin_lock_init(&conf->device_lock);
+	INIT_LIST_HEAD(&conf->retry_list);
+
+	spin_lock_init(&conf->resync_lock);
+	init_waitqueue_head(&conf->wait_barrier);
+
+	conf->thread = md_register_thread(raid10d, mddev, NULL);
+	if (!conf->thread)
+		goto out;
+
+	conf->mddev = mddev;
+	return conf;
+
+ out:
+	printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
+	       mdname(mddev));
+	if (conf) {
+		if (conf->r10bio_pool)
+			mempool_destroy(conf->r10bio_pool);
+		kfree(conf->mirrors);
+		safe_put_page(conf->tmppage);
+		kfree(conf);
+	}
+	return ERR_PTR(err);
+}
+
+static int run(struct mddev *mddev)
+{
+	struct r10conf *conf;
+	int i, disk_idx, chunk_size;
+	struct mirror_info *disk;
+	struct md_rdev *rdev;
+	sector_t size;
+
+	/*
+	 * copy the already verified devices into our private RAID10
+	 * bookkeeping area. [whatever we allocate in run(),
+	 * should be freed in stop()]
+	 */
+
+	if (mddev->private == NULL) {
+		conf = setup_conf(mddev);
+		if (IS_ERR(conf))
+			return PTR_ERR(conf);
+		mddev->private = conf;
+	}
+	conf = mddev->private;
+	if (!conf)
+		goto out;
+
+	mddev->thread = conf->thread;
+	conf->thread = NULL;
+
+	chunk_size = mddev->chunk_sectors << 9;
+	blk_queue_io_min(mddev->queue, chunk_size);
+	if (conf->raid_disks % conf->near_copies)
+		blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
+	else
+		blk_queue_io_opt(mddev->queue, chunk_size *
+				 (conf->raid_disks / conf->near_copies));
+
+	rdev_for_each(rdev, mddev) {
+		struct request_queue *q;
+		disk_idx = rdev->raid_disk;
+		if (disk_idx >= conf->raid_disks
+		    || disk_idx < 0)
+			continue;
+		disk = conf->mirrors + disk_idx;
+
+		if (test_bit(Replacement, &rdev->flags)) {
+			if (disk->replacement)
+				goto out_free_conf;
+			disk->replacement = rdev;
+		} else {
+			if (disk->rdev)
+				goto out_free_conf;
+			disk->rdev = rdev;
+		}
+		q = bdev_get_queue(rdev->bdev);
+		if (q->merge_bvec_fn)
+			mddev->merge_check_needed = 1;
+
+		disk_stack_limits(mddev->gendisk, rdev->bdev,
+				  rdev->data_offset << 9);
+
+		disk->head_position = 0;
+	}
+	/* need to check that every block has at least one working mirror */
+	if (!enough(conf, -1)) {
+		printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
+		       mdname(mddev));
+		goto out_free_conf;
+	}
+
+	mddev->degraded = 0;
+	for (i = 0; i < conf->raid_disks; i++) {
+
+		disk = conf->mirrors + i;
+
+		if (!disk->rdev && disk->replacement) {
+			/* The replacement is all we have - use it */
+			disk->rdev = disk->replacement;
+			disk->replacement = NULL;
+			clear_bit(Replacement, &disk->rdev->flags);
+		}
+
+		if (!disk->rdev ||
+		    !test_bit(In_sync, &disk->rdev->flags)) {
+			disk->head_position = 0;
+			mddev->degraded++;
+			if (disk->rdev)
+				conf->fullsync = 1;
+		}
+		disk->recovery_disabled = mddev->recovery_disabled - 1;
+	}
+
+	if (mddev->recovery_cp != MaxSector)
+		printk(KERN_NOTICE "md/raid10:%s: not clean"
+		       " -- starting background reconstruction\n",
+		       mdname(mddev));
+	printk(KERN_INFO
+		"md/raid10:%s: active with %d out of %d devices\n",
+		mdname(mddev), conf->raid_disks - mddev->degraded,
+		conf->raid_disks);
+	/*
+	 * Ok, everything is just fine now
+	 */
+	mddev->dev_sectors = conf->dev_sectors;
+	size = raid10_size(mddev, 0, 0);
+	md_set_array_sectors(mddev, size);
+	mddev->resync_max_sectors = size;
+
+	mddev->queue->backing_dev_info.congested_fn = raid10_congested;
+	mddev->queue->backing_dev_info.congested_data = mddev;
+
+	/* Calculate max read-ahead size.
+	 * We need to readahead at least twice a whole stripe....
+	 * maybe...
+	 */
+	{
+		int stripe = conf->raid_disks *
+			((mddev->chunk_sectors << 9) / PAGE_SIZE);
+		stripe /= conf->near_copies;
+		if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
+			mddev->queue->backing_dev_info.ra_pages = 2* stripe;
+	}
+
+	blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
+
+	if (md_integrity_register(mddev))
+		goto out_free_conf;
+
+	return 0;
+
+out_free_conf:
+	md_unregister_thread(&mddev->thread);
+	if (conf->r10bio_pool)
+		mempool_destroy(conf->r10bio_pool);
+	safe_put_page(conf->tmppage);
+	kfree(conf->mirrors);
+	kfree(conf);
+	mddev->private = NULL;
+out:
+	return -EIO;
+}
+
+static int stop(struct mddev *mddev)
+{
+	struct r10conf *conf = mddev->private;
+
+	raise_barrier(conf, 0);
+	lower_barrier(conf);
+
+	md_unregister_thread(&mddev->thread);
+	blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
+	if (conf->r10bio_pool)
+		mempool_destroy(conf->r10bio_pool);
+	kfree(conf->mirrors);
+	kfree(conf);
+	mddev->private = NULL;
+	return 0;
+}
+
+static void raid10_quiesce(struct mddev *mddev, int state)
+{
+	struct r10conf *conf = mddev->private;
+
+	switch(state) {
+	case 1:
+		raise_barrier(conf, 0);
+		break;
+	case 0:
+		lower_barrier(conf);
+		break;
+	}
+}
+
+static int raid10_resize(struct mddev *mddev, sector_t sectors)
+{
+	/* Resize of 'far' arrays is not supported.
+	 * For 'near' and 'offset' arrays we can set the
+	 * number of sectors used to be an appropriate multiple
+	 * of the chunk size.
+	 * For 'offset', this is far_copies*chunksize.
+	 * For 'near' the multiplier is the LCM of
+	 * near_copies and raid_disks.
+	 * So if far_copies > 1 && !far_offset, fail.
+	 * Else find LCM(raid_disks, near_copy)*far_copies and
+	 * multiply by chunk_size.  Then round to this number.
+	 * This is mostly done by raid10_size()
+	 */
+	struct r10conf *conf = mddev->private;
+	sector_t oldsize, size;
+
+	if (conf->far_copies > 1 && !conf->far_offset)
+		return -EINVAL;
+
+	oldsize = raid10_size(mddev, 0, 0);
+	size = raid10_size(mddev, sectors, 0);
+	md_set_array_sectors(mddev, size);
+	if (mddev->array_sectors > size)
+		return -EINVAL;
+	set_capacity(mddev->gendisk, mddev->array_sectors);
+	revalidate_disk(mddev->gendisk);
+	if (sectors > mddev->dev_sectors &&
+	    mddev->recovery_cp > oldsize) {
+		mddev->recovery_cp = oldsize;
+		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	}
+	calc_sectors(conf, sectors);
+	mddev->dev_sectors = conf->dev_sectors;
+	mddev->resync_max_sectors = size;
+	return 0;
+}
+
+static void *raid10_takeover_raid0(struct mddev *mddev)
+{
+	struct md_rdev *rdev;
+	struct r10conf *conf;
+
+	if (mddev->degraded > 0) {
+		printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
+		       mdname(mddev));
+		return ERR_PTR(-EINVAL);
+	}
+
+	/* Set new parameters */
+	mddev->new_level = 10;
+	/* new layout: far_copies = 1, near_copies = 2 */
+	mddev->new_layout = (1<<8) + 2;
+	mddev->new_chunk_sectors = mddev->chunk_sectors;
+	mddev->delta_disks = mddev->raid_disks;
+	mddev->raid_disks *= 2;
+	/* make sure it will be not marked as dirty */
+	mddev->recovery_cp = MaxSector;
+
+	conf = setup_conf(mddev);
+	if (!IS_ERR(conf)) {
+		rdev_for_each(rdev, mddev)
+			if (rdev->raid_disk >= 0)
+				rdev->new_raid_disk = rdev->raid_disk * 2;
+		conf->barrier = 1;
+	}
+
+	return conf;
+}
+
+static void *raid10_takeover(struct mddev *mddev)
+{
+	struct r0conf *raid0_conf;
+
+	/* raid10 can take over:
+	 *  raid0 - providing it has only two drives
+	 */
+	if (mddev->level == 0) {
+		/* for raid0 takeover only one zone is supported */
+		raid0_conf = mddev->private;
+		if (raid0_conf->nr_strip_zones > 1) {
+			printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
+			       " with more than one zone.\n",
+			       mdname(mddev));
+			return ERR_PTR(-EINVAL);
+		}
+		return raid10_takeover_raid0(mddev);
+	}
+	return ERR_PTR(-EINVAL);
+}
+
+static struct md_personality raid10_personality =
+{
+	.name		= "raid10",
+	.level		= 10,
+	.owner		= THIS_MODULE,
+	.make_request	= make_request,
+	.run		= run,
+	.stop		= stop,
+	.status		= status,
+	.error_handler	= error,
+	.hot_add_disk	= raid10_add_disk,
+	.hot_remove_disk= raid10_remove_disk,
+	.spare_active	= raid10_spare_active,
+	.sync_request	= sync_request,
+	.quiesce	= raid10_quiesce,
+	.size		= raid10_size,
+	.resize		= raid10_resize,
+	.takeover	= raid10_takeover,
+};
+
+static int __init raid_init(void)
+{
+	return register_md_personality(&raid10_personality);
+}
+
+static void raid_exit(void)
+{
+	unregister_md_personality(&raid10_personality);
+}
+
+module_init(raid_init);
+module_exit(raid_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
+MODULE_ALIAS("md-personality-9"); /* RAID10 */
+MODULE_ALIAS("md-raid10");
+MODULE_ALIAS("md-level-10");
+
+module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/raid10.h b/ap/os/linux/linux-3.4.x/drivers/md/raid10.h
new file mode 100644
index 0000000..24d45b8
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/raid10.h
@@ -0,0 +1,150 @@
+#ifndef _RAID10_H
+#define _RAID10_H
+
+struct mirror_info {
+	struct md_rdev	*rdev, *replacement;
+	sector_t	head_position;
+	int		recovery_disabled;	/* matches
+						 * mddev->recovery_disabled
+						 * when we shouldn't try
+						 * recovering this device.
+						 */
+};
+
+struct r10conf {
+	struct mddev		*mddev;
+	struct mirror_info	*mirrors;
+	int			raid_disks;
+	spinlock_t		device_lock;
+
+	/* geometry */
+	int			near_copies;  /* number of copies laid out
+					       * raid0 style */
+	int 			far_copies;   /* number of copies laid out
+					       * at large strides across drives
+					       */
+	int			far_offset;   /* far_copies are offset by 1
+					       * stripe instead of many
+					       */
+	int			copies;	      /* near_copies * far_copies.
+					       * must be <= raid_disks
+					       */
+	sector_t		stride;	      /* distance between far copies.
+					       * This is size / far_copies unless
+					       * far_offset, in which case it is
+					       * 1 stripe.
+					       */
+
+	sector_t		dev_sectors;  /* temp copy of
+					       * mddev->dev_sectors */
+
+	int			chunk_shift; /* shift from chunks to sectors */
+	sector_t		chunk_mask;
+
+	struct list_head	retry_list;
+	/* queue pending writes and submit them on unplug */
+	struct bio_list		pending_bio_list;
+	int			pending_count;
+
+	spinlock_t		resync_lock;
+	int			nr_pending;
+	int			nr_waiting;
+	int			nr_queued;
+	int			barrier;
+	sector_t		next_resync;
+	int			fullsync;  /* set to 1 if a full sync is needed,
+					    * (fresh device added).
+					    * Cleared when a sync completes.
+					    */
+	int			have_replacement; /* There is at least one
+						   * replacement device.
+						   */
+	wait_queue_head_t	wait_barrier;
+
+	mempool_t		*r10bio_pool;
+	mempool_t		*r10buf_pool;
+	struct page		*tmppage;
+
+	/* When taking over an array from a different personality, we store
+	 * the new thread here until we fully activate the array.
+	 */
+	struct md_thread	*thread;
+};
+
+/*
+ * this is our 'private' RAID10 bio.
+ *
+ * it contains information about what kind of IO operations were started
+ * for this RAID10 operation, and about their status:
+ */
+
+struct r10bio {
+	atomic_t		remaining; /* 'have we finished' count,
+					    * used from IRQ handlers
+					    */
+	sector_t		sector;	/* virtual sector number */
+	int			sectors;
+	unsigned long		state;
+	struct mddev		*mddev;
+	/*
+	 * original bio going to /dev/mdx
+	 */
+	struct bio		*master_bio;
+	/*
+	 * if the IO is in READ direction, then this is where we read
+	 */
+	int			read_slot;
+
+	struct list_head	retry_list;
+	/*
+	 * if the IO is in WRITE direction, then multiple bios are used,
+	 * one for each copy.
+	 * When resyncing we also use one for each copy.
+	 * When reconstructing, we use 2 bios, one for read, one for write.
+	 * We choose the number when they are allocated.
+	 * We sometimes need an extra bio to write to the replacement.
+	 */
+	struct r10dev {
+		struct bio	*bio;
+		union {
+			struct bio	*repl_bio; /* used for resync and
+						    * writes */
+			struct md_rdev	*rdev;	   /* used for reads
+						    * (read_slot >= 0) */
+		};
+		sector_t	addr;
+		int		devnum;
+	} devs[0];
+};
+
+/* when we get a read error on a read-only array, we redirect to another
+ * device without failing the first device, or trying to over-write to
+ * correct the read error.  To keep track of bad blocks on a per-bio
+ * level, we store IO_BLOCKED in the appropriate 'bios' pointer
+ */
+#define IO_BLOCKED ((struct bio*)1)
+/* When we successfully write to a known bad-block, we need to remove the
+ * bad-block marking which must be done from process context.  So we record
+ * the success by setting devs[n].bio to IO_MADE_GOOD
+ */
+#define IO_MADE_GOOD ((struct bio *)2)
+
+#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
+
+/* bits for r10bio.state */
+enum r10bio_state {
+	R10BIO_Uptodate,
+	R10BIO_IsSync,
+	R10BIO_IsRecover,
+	R10BIO_Degraded,
+/* Set ReadError on bios that experience a read error
+ * so that raid10d knows what to do with them.
+ */
+	R10BIO_ReadError,
+/* If a write for this request means we can clear some
+ * known-bad-block records, we set this flag.
+ */
+	R10BIO_MadeGood,
+	R10BIO_WriteError,
+};
+#endif
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/raid5.c b/ap/os/linux/linux-3.4.x/drivers/md/raid5.c
new file mode 100644
index 0000000..73e73c3
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/raid5.c
@@ -0,0 +1,6065 @@
+/*
+ * raid5.c : Multiple Devices driver for Linux
+ *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
+ *	   Copyright (C) 1999, 2000 Ingo Molnar
+ *	   Copyright (C) 2002, 2003 H. Peter Anvin
+ *
+ * RAID-4/5/6 management functions.
+ * Thanks to Penguin Computing for making the RAID-6 development possible
+ * by donating a test server!
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2, or (at your option)
+ * any later version.
+ *
+ * You should have received a copy of the GNU General Public License
+ * (for example /usr/src/linux/COPYING); if not, write to the Free
+ * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ */
+
+/*
+ * BITMAP UNPLUGGING:
+ *
+ * The sequencing for updating the bitmap reliably is a little
+ * subtle (and I got it wrong the first time) so it deserves some
+ * explanation.
+ *
+ * We group bitmap updates into batches.  Each batch has a number.
+ * We may write out several batches at once, but that isn't very important.
+ * conf->seq_write is the number of the last batch successfully written.
+ * conf->seq_flush is the number of the last batch that was closed to
+ *    new additions.
+ * When we discover that we will need to write to any block in a stripe
+ * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
+ * the number of the batch it will be in. This is seq_flush+1.
+ * When we are ready to do a write, if that batch hasn't been written yet,
+ *   we plug the array and queue the stripe for later.
+ * When an unplug happens, we increment bm_flush, thus closing the current
+ *   batch.
+ * When we notice that bm_flush > bm_write, we write out all pending updates
+ * to the bitmap, and advance bm_write to where bm_flush was.
+ * This may occasionally write a bit out twice, but is sure never to
+ * miss any bits.
+ */
+
+#include <linux/blkdev.h>
+#include <linux/kthread.h>
+#include <linux/raid/pq.h>
+#include <linux/async_tx.h>
+#include <linux/module.h>
+#include <linux/async.h>
+#include <linux/seq_file.h>
+#include <linux/cpu.h>
+#include <linux/slab.h>
+#include <linux/ratelimit.h>
+#include "md.h"
+#include "raid5.h"
+#include "raid0.h"
+#include "bitmap.h"
+
+/*
+ * Stripe cache
+ */
+
+#define NR_STRIPES		256
+#define STRIPE_SIZE		PAGE_SIZE
+#define STRIPE_SHIFT		(PAGE_SHIFT - 9)
+#define STRIPE_SECTORS		(STRIPE_SIZE>>9)
+#define	IO_THRESHOLD		1
+#define BYPASS_THRESHOLD	1
+#define NR_HASH			(PAGE_SIZE / sizeof(struct hlist_head))
+#define HASH_MASK		(NR_HASH - 1)
+
+static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
+{
+	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
+	return &conf->stripe_hashtbl[hash];
+}
+
+/* bio's attached to a stripe+device for I/O are linked together in bi_sector
+ * order without overlap.  There may be several bio's per stripe+device, and
+ * a bio could span several devices.
+ * When walking this list for a particular stripe+device, we must never proceed
+ * beyond a bio that extends past this device, as the next bio might no longer
+ * be valid.
+ * This function is used to determine the 'next' bio in the list, given the sector
+ * of the current stripe+device
+ */
+static inline struct bio *r5_next_bio(struct bio *bio, sector_t sector)
+{
+	int sectors = bio->bi_size >> 9;
+	if (bio->bi_sector + sectors < sector + STRIPE_SECTORS)
+		return bio->bi_next;
+	else
+		return NULL;
+}
+
+/*
+ * We maintain a biased count of active stripes in the bottom 16 bits of
+ * bi_phys_segments, and a count of processed stripes in the upper 16 bits
+ */
+static inline int raid5_bi_phys_segments(struct bio *bio)
+{
+	return bio->bi_phys_segments & 0xffff;
+}
+
+static inline int raid5_bi_hw_segments(struct bio *bio)
+{
+	return (bio->bi_phys_segments >> 16) & 0xffff;
+}
+
+static inline int raid5_dec_bi_phys_segments(struct bio *bio)
+{
+	--bio->bi_phys_segments;
+	return raid5_bi_phys_segments(bio);
+}
+
+static inline int raid5_dec_bi_hw_segments(struct bio *bio)
+{
+	unsigned short val = raid5_bi_hw_segments(bio);
+
+	--val;
+	bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
+	return val;
+}
+
+static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
+{
+	bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
+}
+
+/* Find first data disk in a raid6 stripe */
+static inline int raid6_d0(struct stripe_head *sh)
+{
+	if (sh->ddf_layout)
+		/* ddf always start from first device */
+		return 0;
+	/* md starts just after Q block */
+	if (sh->qd_idx == sh->disks - 1)
+		return 0;
+	else
+		return sh->qd_idx + 1;
+}
+static inline int raid6_next_disk(int disk, int raid_disks)
+{
+	disk++;
+	return (disk < raid_disks) ? disk : 0;
+}
+
+/* When walking through the disks in a raid5, starting at raid6_d0,
+ * We need to map each disk to a 'slot', where the data disks are slot
+ * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
+ * is raid_disks-1.  This help does that mapping.
+ */
+static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
+			     int *count, int syndrome_disks)
+{
+	int slot = *count;
+
+	if (sh->ddf_layout)
+		(*count)++;
+	if (idx == sh->pd_idx)
+		return syndrome_disks;
+	if (idx == sh->qd_idx)
+		return syndrome_disks + 1;
+	if (!sh->ddf_layout)
+		(*count)++;
+	return slot;
+}
+
+static void return_io(struct bio *return_bi)
+{
+	struct bio *bi = return_bi;
+	while (bi) {
+
+		return_bi = bi->bi_next;
+		bi->bi_next = NULL;
+		bi->bi_size = 0;
+		bio_endio(bi, 0);
+		bi = return_bi;
+	}
+}
+
+static void print_raid5_conf (struct r5conf *conf);
+
+static int stripe_operations_active(struct stripe_head *sh)
+{
+	return sh->check_state || sh->reconstruct_state ||
+	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
+	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
+}
+
+static void __release_stripe(struct r5conf *conf, struct stripe_head *sh)
+{
+	if (atomic_dec_and_test(&sh->count)) {
+		BUG_ON(!list_empty(&sh->lru));
+		BUG_ON(atomic_read(&conf->active_stripes)==0);
+		if (test_bit(STRIPE_HANDLE, &sh->state)) {
+			if (test_bit(STRIPE_DELAYED, &sh->state) &&
+			    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+				list_add_tail(&sh->lru, &conf->delayed_list);
+			else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
+				   sh->bm_seq - conf->seq_write > 0)
+				list_add_tail(&sh->lru, &conf->bitmap_list);
+			else {
+				clear_bit(STRIPE_DELAYED, &sh->state);
+				clear_bit(STRIPE_BIT_DELAY, &sh->state);
+				list_add_tail(&sh->lru, &conf->handle_list);
+			}
+			md_wakeup_thread(conf->mddev->thread);
+		} else {
+			BUG_ON(stripe_operations_active(sh));
+			if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+				if (atomic_dec_return(&conf->preread_active_stripes)
+				    < IO_THRESHOLD)
+					md_wakeup_thread(conf->mddev->thread);
+			atomic_dec(&conf->active_stripes);
+			if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
+				list_add_tail(&sh->lru, &conf->inactive_list);
+				wake_up(&conf->wait_for_stripe);
+				if (conf->retry_read_aligned)
+					md_wakeup_thread(conf->mddev->thread);
+			}
+		}
+	}
+}
+
+static void release_stripe(struct stripe_head *sh)
+{
+	struct r5conf *conf = sh->raid_conf;
+	unsigned long flags;
+
+	spin_lock_irqsave(&conf->device_lock, flags);
+	__release_stripe(conf, sh);
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+}
+
+static inline void remove_hash(struct stripe_head *sh)
+{
+	pr_debug("remove_hash(), stripe %llu\n",
+		(unsigned long long)sh->sector);
+
+	hlist_del_init(&sh->hash);
+}
+
+static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
+{
+	struct hlist_head *hp = stripe_hash(conf, sh->sector);
+
+	pr_debug("insert_hash(), stripe %llu\n",
+		(unsigned long long)sh->sector);
+
+	hlist_add_head(&sh->hash, hp);
+}
+
+
+/* find an idle stripe, make sure it is unhashed, and return it. */
+static struct stripe_head *get_free_stripe(struct r5conf *conf)
+{
+	struct stripe_head *sh = NULL;
+	struct list_head *first;
+
+	if (list_empty(&conf->inactive_list))
+		goto out;
+	first = conf->inactive_list.next;
+	sh = list_entry(first, struct stripe_head, lru);
+	list_del_init(first);
+	remove_hash(sh);
+	atomic_inc(&conf->active_stripes);
+out:
+	return sh;
+}
+
+static void shrink_buffers(struct stripe_head *sh)
+{
+	struct page *p;
+	int i;
+	int num = sh->raid_conf->pool_size;
+
+	for (i = 0; i < num ; i++) {
+		p = sh->dev[i].page;
+		if (!p)
+			continue;
+		sh->dev[i].page = NULL;
+		put_page(p);
+	}
+}
+
+static int grow_buffers(struct stripe_head *sh)
+{
+	int i;
+	int num = sh->raid_conf->pool_size;
+
+	for (i = 0; i < num; i++) {
+		struct page *page;
+
+		if (!(page = alloc_page(GFP_KERNEL))) {
+			return 1;
+		}
+		sh->dev[i].page = page;
+	}
+	return 0;
+}
+
+static void raid5_build_block(struct stripe_head *sh, int i, int previous);
+static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
+			    struct stripe_head *sh);
+
+static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
+{
+	struct r5conf *conf = sh->raid_conf;
+	int i;
+
+	BUG_ON(atomic_read(&sh->count) != 0);
+	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
+	BUG_ON(stripe_operations_active(sh));
+
+	pr_debug("init_stripe called, stripe %llu\n",
+		(unsigned long long)sh->sector);
+
+	remove_hash(sh);
+
+	sh->generation = conf->generation - previous;
+	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
+	sh->sector = sector;
+	stripe_set_idx(sector, conf, previous, sh);
+	sh->state = 0;
+
+
+	for (i = sh->disks; i--; ) {
+		struct r5dev *dev = &sh->dev[i];
+
+		if (dev->toread || dev->read || dev->towrite || dev->written ||
+		    test_bit(R5_LOCKED, &dev->flags)) {
+			printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
+			       (unsigned long long)sh->sector, i, dev->toread,
+			       dev->read, dev->towrite, dev->written,
+			       test_bit(R5_LOCKED, &dev->flags));
+			WARN_ON(1);
+		}
+		dev->flags = 0;
+		raid5_build_block(sh, i, previous);
+	}
+	insert_hash(conf, sh);
+}
+
+static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
+					 short generation)
+{
+	struct stripe_head *sh;
+	struct hlist_node *hn;
+
+	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
+	hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
+		if (sh->sector == sector && sh->generation == generation)
+			return sh;
+	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
+	return NULL;
+}
+
+/*
+ * Need to check if array has failed when deciding whether to:
+ *  - start an array
+ *  - remove non-faulty devices
+ *  - add a spare
+ *  - allow a reshape
+ * This determination is simple when no reshape is happening.
+ * However if there is a reshape, we need to carefully check
+ * both the before and after sections.
+ * This is because some failed devices may only affect one
+ * of the two sections, and some non-in_sync devices may
+ * be insync in the section most affected by failed devices.
+ */
+static int calc_degraded(struct r5conf *conf)
+{
+	int degraded, degraded2;
+	int i;
+
+	rcu_read_lock();
+	degraded = 0;
+	for (i = 0; i < conf->previous_raid_disks; i++) {
+		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
+		if (rdev && test_bit(Faulty, &rdev->flags))
+			rdev = rcu_dereference(conf->disks[i].replacement);
+		if (!rdev || test_bit(Faulty, &rdev->flags))
+			degraded++;
+		else if (test_bit(In_sync, &rdev->flags))
+			;
+		else
+			/* not in-sync or faulty.
+			 * If the reshape increases the number of devices,
+			 * this is being recovered by the reshape, so
+			 * this 'previous' section is not in_sync.
+			 * If the number of devices is being reduced however,
+			 * the device can only be part of the array if
+			 * we are reverting a reshape, so this section will
+			 * be in-sync.
+			 */
+			if (conf->raid_disks >= conf->previous_raid_disks)
+				degraded++;
+	}
+	rcu_read_unlock();
+	if (conf->raid_disks == conf->previous_raid_disks)
+		return degraded;
+	rcu_read_lock();
+	degraded2 = 0;
+	for (i = 0; i < conf->raid_disks; i++) {
+		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
+		if (rdev && test_bit(Faulty, &rdev->flags))
+			rdev = rcu_dereference(conf->disks[i].replacement);
+		if (!rdev || test_bit(Faulty, &rdev->flags))
+			degraded2++;
+		else if (test_bit(In_sync, &rdev->flags))
+			;
+		else
+			/* not in-sync or faulty.
+			 * If reshape increases the number of devices, this
+			 * section has already been recovered, else it
+			 * almost certainly hasn't.
+			 */
+			if (conf->raid_disks <= conf->previous_raid_disks)
+				degraded2++;
+	}
+	rcu_read_unlock();
+	if (degraded2 > degraded)
+		return degraded2;
+	return degraded;
+}
+
+static int has_failed(struct r5conf *conf)
+{
+	int degraded;
+
+	if (conf->mddev->reshape_position == MaxSector)
+		return conf->mddev->degraded > conf->max_degraded;
+
+	degraded = calc_degraded(conf);
+	if (degraded > conf->max_degraded)
+		return 1;
+	return 0;
+}
+
+static struct stripe_head *
+get_active_stripe(struct r5conf *conf, sector_t sector,
+		  int previous, int noblock, int noquiesce)
+{
+	struct stripe_head *sh;
+
+	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
+
+	spin_lock_irq(&conf->device_lock);
+
+	do {
+		wait_event_lock_irq(conf->wait_for_stripe,
+				    conf->quiesce == 0 || noquiesce,
+				    conf->device_lock, /* nothing */);
+		sh = __find_stripe(conf, sector, conf->generation - previous);
+		if (!sh) {
+			if (!conf->inactive_blocked)
+				sh = get_free_stripe(conf);
+			if (noblock && sh == NULL)
+				break;
+			if (!sh) {
+				conf->inactive_blocked = 1;
+				wait_event_lock_irq(conf->wait_for_stripe,
+						    !list_empty(&conf->inactive_list) &&
+						    (atomic_read(&conf->active_stripes)
+						     < (conf->max_nr_stripes *3/4)
+						     || !conf->inactive_blocked),
+						    conf->device_lock,
+						    );
+				conf->inactive_blocked = 0;
+			} else
+				init_stripe(sh, sector, previous);
+		} else {
+			if (atomic_read(&sh->count)) {
+				BUG_ON(!list_empty(&sh->lru)
+				    && !test_bit(STRIPE_EXPANDING, &sh->state));
+			} else {
+				if (!test_bit(STRIPE_HANDLE, &sh->state))
+					atomic_inc(&conf->active_stripes);
+				if (list_empty(&sh->lru) &&
+				    !test_bit(STRIPE_EXPANDING, &sh->state))
+					BUG();
+				list_del_init(&sh->lru);
+			}
+		}
+	} while (sh == NULL);
+
+	if (sh)
+		atomic_inc(&sh->count);
+
+	spin_unlock_irq(&conf->device_lock);
+	return sh;
+}
+
+static void
+raid5_end_read_request(struct bio *bi, int error);
+static void
+raid5_end_write_request(struct bio *bi, int error);
+
+static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
+{
+	struct r5conf *conf = sh->raid_conf;
+	int i, disks = sh->disks;
+
+	might_sleep();
+
+	for (i = disks; i--; ) {
+		int rw;
+		int replace_only = 0;
+		struct bio *bi, *rbi;
+		struct md_rdev *rdev, *rrdev = NULL;
+		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
+			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
+				rw = WRITE_FUA;
+			else
+				rw = WRITE;
+		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
+			rw = READ;
+		else if (test_and_clear_bit(R5_WantReplace,
+					    &sh->dev[i].flags)) {
+			rw = WRITE;
+			replace_only = 1;
+		} else
+			continue;
+
+		bi = &sh->dev[i].req;
+		rbi = &sh->dev[i].rreq; /* For writing to replacement */
+
+		bi->bi_rw = rw;
+		rbi->bi_rw = rw;
+		if (rw & WRITE) {
+			bi->bi_end_io = raid5_end_write_request;
+			rbi->bi_end_io = raid5_end_write_request;
+		} else
+			bi->bi_end_io = raid5_end_read_request;
+
+		rcu_read_lock();
+		rrdev = rcu_dereference(conf->disks[i].replacement);
+		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
+		rdev = rcu_dereference(conf->disks[i].rdev);
+		if (!rdev) {
+			rdev = rrdev;
+			rrdev = NULL;
+		}
+		if (rw & WRITE) {
+			if (replace_only)
+				rdev = NULL;
+			if (rdev == rrdev)
+				/* We raced and saw duplicates */
+				rrdev = NULL;
+		} else {
+			if (test_bit(R5_ReadRepl, &sh->dev[i].flags) && rrdev)
+				rdev = rrdev;
+			rrdev = NULL;
+		}
+
+		if (rdev && test_bit(Faulty, &rdev->flags))
+			rdev = NULL;
+		if (rdev)
+			atomic_inc(&rdev->nr_pending);
+		if (rrdev && test_bit(Faulty, &rrdev->flags))
+			rrdev = NULL;
+		if (rrdev)
+			atomic_inc(&rrdev->nr_pending);
+		rcu_read_unlock();
+
+		/* We have already checked bad blocks for reads.  Now
+		 * need to check for writes.  We never accept write errors
+		 * on the replacement, so we don't to check rrdev.
+		 */
+		while ((rw & WRITE) && rdev &&
+		       test_bit(WriteErrorSeen, &rdev->flags)) {
+			sector_t first_bad;
+			int bad_sectors;
+			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
+					      &first_bad, &bad_sectors);
+			if (!bad)
+				break;
+
+			if (bad < 0) {
+				set_bit(BlockedBadBlocks, &rdev->flags);
+				if (!conf->mddev->external &&
+				    conf->mddev->flags) {
+					/* It is very unlikely, but we might
+					 * still need to write out the
+					 * bad block log - better give it
+					 * a chance*/
+					md_check_recovery(conf->mddev);
+				}
+				/*
+				 * Because md_wait_for_blocked_rdev
+				 * will dec nr_pending, we must
+				 * increment it first.
+				 */
+				atomic_inc(&rdev->nr_pending);
+				md_wait_for_blocked_rdev(rdev, conf->mddev);
+			} else {
+				/* Acknowledged bad block - skip the write */
+				rdev_dec_pending(rdev, conf->mddev);
+				rdev = NULL;
+			}
+		}
+
+		if (rdev) {
+			if (s->syncing || s->expanding || s->expanded
+			    || s->replacing)
+				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
+
+			set_bit(STRIPE_IO_STARTED, &sh->state);
+
+			bi->bi_bdev = rdev->bdev;
+			pr_debug("%s: for %llu schedule op %ld on disc %d\n",
+				__func__, (unsigned long long)sh->sector,
+				bi->bi_rw, i);
+			atomic_inc(&sh->count);
+			bi->bi_sector = sh->sector + rdev->data_offset;
+			bi->bi_flags = 1 << BIO_UPTODATE;
+			bi->bi_idx = 0;
+			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
+			bi->bi_io_vec[0].bv_offset = 0;
+			bi->bi_size = STRIPE_SIZE;
+			bi->bi_next = NULL;
+			if (rrdev)
+				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
+			generic_make_request(bi);
+		}
+		if (rrdev) {
+			if (s->syncing || s->expanding || s->expanded
+			    || s->replacing)
+				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
+
+			set_bit(STRIPE_IO_STARTED, &sh->state);
+
+			rbi->bi_bdev = rrdev->bdev;
+			pr_debug("%s: for %llu schedule op %ld on "
+				 "replacement disc %d\n",
+				__func__, (unsigned long long)sh->sector,
+				rbi->bi_rw, i);
+			atomic_inc(&sh->count);
+			rbi->bi_sector = sh->sector + rrdev->data_offset;
+			rbi->bi_flags = 1 << BIO_UPTODATE;
+			rbi->bi_idx = 0;
+			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
+			rbi->bi_io_vec[0].bv_offset = 0;
+			rbi->bi_size = STRIPE_SIZE;
+			rbi->bi_next = NULL;
+			generic_make_request(rbi);
+		}
+		if (!rdev && !rrdev) {
+			if (rw & WRITE)
+				set_bit(STRIPE_DEGRADED, &sh->state);
+			pr_debug("skip op %ld on disc %d for sector %llu\n",
+				bi->bi_rw, i, (unsigned long long)sh->sector);
+			clear_bit(R5_LOCKED, &sh->dev[i].flags);
+			set_bit(STRIPE_HANDLE, &sh->state);
+		}
+	}
+}
+
+static struct dma_async_tx_descriptor *
+async_copy_data(int frombio, struct bio *bio, struct page *page,
+	sector_t sector, struct dma_async_tx_descriptor *tx)
+{
+	struct bio_vec *bvl;
+	struct page *bio_page;
+	int i;
+	int page_offset;
+	struct async_submit_ctl submit;
+	enum async_tx_flags flags = 0;
+
+	if (bio->bi_sector >= sector)
+		page_offset = (signed)(bio->bi_sector - sector) * 512;
+	else
+		page_offset = (signed)(sector - bio->bi_sector) * -512;
+
+	if (frombio)
+		flags |= ASYNC_TX_FENCE;
+	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
+
+	bio_for_each_segment(bvl, bio, i) {
+		int len = bvl->bv_len;
+		int clen;
+		int b_offset = 0;
+
+		if (page_offset < 0) {
+			b_offset = -page_offset;
+			page_offset += b_offset;
+			len -= b_offset;
+		}
+
+		if (len > 0 && page_offset + len > STRIPE_SIZE)
+			clen = STRIPE_SIZE - page_offset;
+		else
+			clen = len;
+
+		if (clen > 0) {
+			b_offset += bvl->bv_offset;
+			bio_page = bvl->bv_page;
+			if (frombio)
+				tx = async_memcpy(page, bio_page, page_offset,
+						  b_offset, clen, &submit);
+			else
+				tx = async_memcpy(bio_page, page, b_offset,
+						  page_offset, clen, &submit);
+		}
+		/* chain the operations */
+		submit.depend_tx = tx;
+
+		if (clen < len) /* hit end of page */
+			break;
+		page_offset +=  len;
+	}
+
+	return tx;
+}
+
+static void ops_complete_biofill(void *stripe_head_ref)
+{
+	struct stripe_head *sh = stripe_head_ref;
+	struct bio *return_bi = NULL;
+	struct r5conf *conf = sh->raid_conf;
+	int i;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+
+	/* clear completed biofills */
+	spin_lock_irq(&conf->device_lock);
+	for (i = sh->disks; i--; ) {
+		struct r5dev *dev = &sh->dev[i];
+
+		/* acknowledge completion of a biofill operation */
+		/* and check if we need to reply to a read request,
+		 * new R5_Wantfill requests are held off until
+		 * !STRIPE_BIOFILL_RUN
+		 */
+		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
+			struct bio *rbi, *rbi2;
+
+			BUG_ON(!dev->read);
+			rbi = dev->read;
+			dev->read = NULL;
+			while (rbi && rbi->bi_sector <
+				dev->sector + STRIPE_SECTORS) {
+				rbi2 = r5_next_bio(rbi, dev->sector);
+				if (!raid5_dec_bi_phys_segments(rbi)) {
+					rbi->bi_next = return_bi;
+					return_bi = rbi;
+				}
+				rbi = rbi2;
+			}
+		}
+	}
+	spin_unlock_irq(&conf->device_lock);
+	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
+
+	return_io(return_bi);
+
+	set_bit(STRIPE_HANDLE, &sh->state);
+	release_stripe(sh);
+}
+
+static void ops_run_biofill(struct stripe_head *sh)
+{
+	struct dma_async_tx_descriptor *tx = NULL;
+	struct r5conf *conf = sh->raid_conf;
+	struct async_submit_ctl submit;
+	int i;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+
+	for (i = sh->disks; i--; ) {
+		struct r5dev *dev = &sh->dev[i];
+		if (test_bit(R5_Wantfill, &dev->flags)) {
+			struct bio *rbi;
+			spin_lock_irq(&conf->device_lock);
+			dev->read = rbi = dev->toread;
+			dev->toread = NULL;
+			spin_unlock_irq(&conf->device_lock);
+			while (rbi && rbi->bi_sector <
+				dev->sector + STRIPE_SECTORS) {
+				tx = async_copy_data(0, rbi, dev->page,
+					dev->sector, tx);
+				rbi = r5_next_bio(rbi, dev->sector);
+			}
+		}
+	}
+
+	atomic_inc(&sh->count);
+	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
+	async_trigger_callback(&submit);
+}
+
+static void mark_target_uptodate(struct stripe_head *sh, int target)
+{
+	struct r5dev *tgt;
+
+	if (target < 0)
+		return;
+
+	tgt = &sh->dev[target];
+	set_bit(R5_UPTODATE, &tgt->flags);
+	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
+	clear_bit(R5_Wantcompute, &tgt->flags);
+}
+
+static void ops_complete_compute(void *stripe_head_ref)
+{
+	struct stripe_head *sh = stripe_head_ref;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+
+	/* mark the computed target(s) as uptodate */
+	mark_target_uptodate(sh, sh->ops.target);
+	mark_target_uptodate(sh, sh->ops.target2);
+
+	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
+	if (sh->check_state == check_state_compute_run)
+		sh->check_state = check_state_compute_result;
+	set_bit(STRIPE_HANDLE, &sh->state);
+	release_stripe(sh);
+}
+
+/* return a pointer to the address conversion region of the scribble buffer */
+static addr_conv_t *to_addr_conv(struct stripe_head *sh,
+				 struct raid5_percpu *percpu)
+{
+	return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
+{
+	int disks = sh->disks;
+	struct page **xor_srcs = percpu->scribble;
+	int target = sh->ops.target;
+	struct r5dev *tgt = &sh->dev[target];
+	struct page *xor_dest = tgt->page;
+	int count = 0;
+	struct dma_async_tx_descriptor *tx;
+	struct async_submit_ctl submit;
+	int i;
+
+	pr_debug("%s: stripe %llu block: %d\n",
+		__func__, (unsigned long long)sh->sector, target);
+	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
+
+	for (i = disks; i--; )
+		if (i != target)
+			xor_srcs[count++] = sh->dev[i].page;
+
+	atomic_inc(&sh->count);
+
+	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
+			  ops_complete_compute, sh, to_addr_conv(sh, percpu));
+	if (unlikely(count == 1))
+		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
+	else
+		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
+
+	return tx;
+}
+
+/* set_syndrome_sources - populate source buffers for gen_syndrome
+ * @srcs - (struct page *) array of size sh->disks
+ * @sh - stripe_head to parse
+ *
+ * Populates srcs in proper layout order for the stripe and returns the
+ * 'count' of sources to be used in a call to async_gen_syndrome.  The P
+ * destination buffer is recorded in srcs[count] and the Q destination
+ * is recorded in srcs[count+1]].
+ */
+static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
+{
+	int disks = sh->disks;
+	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
+	int d0_idx = raid6_d0(sh);
+	int count;
+	int i;
+
+	for (i = 0; i < disks; i++)
+		srcs[i] = NULL;
+
+	count = 0;
+	i = d0_idx;
+	do {
+		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
+
+		srcs[slot] = sh->dev[i].page;
+		i = raid6_next_disk(i, disks);
+	} while (i != d0_idx);
+
+	return syndrome_disks;
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
+{
+	int disks = sh->disks;
+	struct page **blocks = percpu->scribble;
+	int target;
+	int qd_idx = sh->qd_idx;
+	struct dma_async_tx_descriptor *tx;
+	struct async_submit_ctl submit;
+	struct r5dev *tgt;
+	struct page *dest;
+	int i;
+	int count;
+
+	if (sh->ops.target < 0)
+		target = sh->ops.target2;
+	else if (sh->ops.target2 < 0)
+		target = sh->ops.target;
+	else
+		/* we should only have one valid target */
+		BUG();
+	BUG_ON(target < 0);
+	pr_debug("%s: stripe %llu block: %d\n",
+		__func__, (unsigned long long)sh->sector, target);
+
+	tgt = &sh->dev[target];
+	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
+	dest = tgt->page;
+
+	atomic_inc(&sh->count);
+
+	if (target == qd_idx) {
+		count = set_syndrome_sources(blocks, sh);
+		blocks[count] = NULL; /* regenerating p is not necessary */
+		BUG_ON(blocks[count+1] != dest); /* q should already be set */
+		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
+				  ops_complete_compute, sh,
+				  to_addr_conv(sh, percpu));
+		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
+	} else {
+		/* Compute any data- or p-drive using XOR */
+		count = 0;
+		for (i = disks; i-- ; ) {
+			if (i == target || i == qd_idx)
+				continue;
+			blocks[count++] = sh->dev[i].page;
+		}
+
+		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
+				  NULL, ops_complete_compute, sh,
+				  to_addr_conv(sh, percpu));
+		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
+	}
+
+	return tx;
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
+{
+	int i, count, disks = sh->disks;
+	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
+	int d0_idx = raid6_d0(sh);
+	int faila = -1, failb = -1;
+	int target = sh->ops.target;
+	int target2 = sh->ops.target2;
+	struct r5dev *tgt = &sh->dev[target];
+	struct r5dev *tgt2 = &sh->dev[target2];
+	struct dma_async_tx_descriptor *tx;
+	struct page **blocks = percpu->scribble;
+	struct async_submit_ctl submit;
+
+	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
+		 __func__, (unsigned long long)sh->sector, target, target2);
+	BUG_ON(target < 0 || target2 < 0);
+	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
+	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
+
+	/* we need to open-code set_syndrome_sources to handle the
+	 * slot number conversion for 'faila' and 'failb'
+	 */
+	for (i = 0; i < disks ; i++)
+		blocks[i] = NULL;
+	count = 0;
+	i = d0_idx;
+	do {
+		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
+
+		blocks[slot] = sh->dev[i].page;
+
+		if (i == target)
+			faila = slot;
+		if (i == target2)
+			failb = slot;
+		i = raid6_next_disk(i, disks);
+	} while (i != d0_idx);
+
+	BUG_ON(faila == failb);
+	if (failb < faila)
+		swap(faila, failb);
+	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
+		 __func__, (unsigned long long)sh->sector, faila, failb);
+
+	atomic_inc(&sh->count);
+
+	if (failb == syndrome_disks+1) {
+		/* Q disk is one of the missing disks */
+		if (faila == syndrome_disks) {
+			/* Missing P+Q, just recompute */
+			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
+					  ops_complete_compute, sh,
+					  to_addr_conv(sh, percpu));
+			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
+						  STRIPE_SIZE, &submit);
+		} else {
+			struct page *dest;
+			int data_target;
+			int qd_idx = sh->qd_idx;
+
+			/* Missing D+Q: recompute D from P, then recompute Q */
+			if (target == qd_idx)
+				data_target = target2;
+			else
+				data_target = target;
+
+			count = 0;
+			for (i = disks; i-- ; ) {
+				if (i == data_target || i == qd_idx)
+					continue;
+				blocks[count++] = sh->dev[i].page;
+			}
+			dest = sh->dev[data_target].page;
+			init_async_submit(&submit,
+					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
+					  NULL, NULL, NULL,
+					  to_addr_conv(sh, percpu));
+			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
+				       &submit);
+
+			count = set_syndrome_sources(blocks, sh);
+			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
+					  ops_complete_compute, sh,
+					  to_addr_conv(sh, percpu));
+			return async_gen_syndrome(blocks, 0, count+2,
+						  STRIPE_SIZE, &submit);
+		}
+	} else {
+		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
+				  ops_complete_compute, sh,
+				  to_addr_conv(sh, percpu));
+		if (failb == syndrome_disks) {
+			/* We're missing D+P. */
+			return async_raid6_datap_recov(syndrome_disks+2,
+						       STRIPE_SIZE, faila,
+						       blocks, &submit);
+		} else {
+			/* We're missing D+D. */
+			return async_raid6_2data_recov(syndrome_disks+2,
+						       STRIPE_SIZE, faila, failb,
+						       blocks, &submit);
+		}
+	}
+}
+
+
+static void ops_complete_prexor(void *stripe_head_ref)
+{
+	struct stripe_head *sh = stripe_head_ref;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
+	       struct dma_async_tx_descriptor *tx)
+{
+	int disks = sh->disks;
+	struct page **xor_srcs = percpu->scribble;
+	int count = 0, pd_idx = sh->pd_idx, i;
+	struct async_submit_ctl submit;
+
+	/* existing parity data subtracted */
+	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+
+	for (i = disks; i--; ) {
+		struct r5dev *dev = &sh->dev[i];
+		/* Only process blocks that are known to be uptodate */
+		if (test_bit(R5_Wantdrain, &dev->flags))
+			xor_srcs[count++] = dev->page;
+	}
+
+	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
+			  ops_complete_prexor, sh, to_addr_conv(sh, percpu));
+	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
+
+	return tx;
+}
+
+static struct dma_async_tx_descriptor *
+ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
+{
+	int disks = sh->disks;
+	int i;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+
+	for (i = disks; i--; ) {
+		struct r5dev *dev = &sh->dev[i];
+		struct bio *chosen;
+
+		if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
+			struct bio *wbi;
+
+			spin_lock_irq(&sh->raid_conf->device_lock);
+			chosen = dev->towrite;
+			dev->towrite = NULL;
+			BUG_ON(dev->written);
+			wbi = dev->written = chosen;
+			spin_unlock_irq(&sh->raid_conf->device_lock);
+
+			while (wbi && wbi->bi_sector <
+				dev->sector + STRIPE_SECTORS) {
+				if (wbi->bi_rw & REQ_FUA)
+					set_bit(R5_WantFUA, &dev->flags);
+				tx = async_copy_data(1, wbi, dev->page,
+					dev->sector, tx);
+				wbi = r5_next_bio(wbi, dev->sector);
+			}
+		}
+	}
+
+	return tx;
+}
+
+static void ops_complete_reconstruct(void *stripe_head_ref)
+{
+	struct stripe_head *sh = stripe_head_ref;
+	int disks = sh->disks;
+	int pd_idx = sh->pd_idx;
+	int qd_idx = sh->qd_idx;
+	int i;
+	bool fua = false;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+
+	for (i = disks; i--; )
+		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
+
+	for (i = disks; i--; ) {
+		struct r5dev *dev = &sh->dev[i];
+
+		if (dev->written || i == pd_idx || i == qd_idx) {
+			set_bit(R5_UPTODATE, &dev->flags);
+			if (fua)
+				set_bit(R5_WantFUA, &dev->flags);
+		}
+	}
+
+	if (sh->reconstruct_state == reconstruct_state_drain_run)
+		sh->reconstruct_state = reconstruct_state_drain_result;
+	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
+		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
+	else {
+		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
+		sh->reconstruct_state = reconstruct_state_result;
+	}
+
+	set_bit(STRIPE_HANDLE, &sh->state);
+	release_stripe(sh);
+}
+
+static void
+ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
+		     struct dma_async_tx_descriptor *tx)
+{
+	int disks = sh->disks;
+	struct page **xor_srcs = percpu->scribble;
+	struct async_submit_ctl submit;
+	int count = 0, pd_idx = sh->pd_idx, i;
+	struct page *xor_dest;
+	int prexor = 0;
+	unsigned long flags;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+
+	/* check if prexor is active which means only process blocks
+	 * that are part of a read-modify-write (written)
+	 */
+	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
+		prexor = 1;
+		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
+		for (i = disks; i--; ) {
+			struct r5dev *dev = &sh->dev[i];
+			if (dev->written)
+				xor_srcs[count++] = dev->page;
+		}
+	} else {
+		xor_dest = sh->dev[pd_idx].page;
+		for (i = disks; i--; ) {
+			struct r5dev *dev = &sh->dev[i];
+			if (i != pd_idx)
+				xor_srcs[count++] = dev->page;
+		}
+	}
+
+	/* 1/ if we prexor'd then the dest is reused as a source
+	 * 2/ if we did not prexor then we are redoing the parity
+	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
+	 * for the synchronous xor case
+	 */
+	flags = ASYNC_TX_ACK |
+		(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
+
+	atomic_inc(&sh->count);
+
+	init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
+			  to_addr_conv(sh, percpu));
+	if (unlikely(count == 1))
+		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
+	else
+		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
+}
+
+static void
+ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
+		     struct dma_async_tx_descriptor *tx)
+{
+	struct async_submit_ctl submit;
+	struct page **blocks = percpu->scribble;
+	int count;
+
+	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
+
+	count = set_syndrome_sources(blocks, sh);
+
+	atomic_inc(&sh->count);
+
+	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
+			  sh, to_addr_conv(sh, percpu));
+	async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
+}
+
+static void ops_complete_check(void *stripe_head_ref)
+{
+	struct stripe_head *sh = stripe_head_ref;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+
+	sh->check_state = check_state_check_result;
+	set_bit(STRIPE_HANDLE, &sh->state);
+	release_stripe(sh);
+}
+
+static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
+{
+	int disks = sh->disks;
+	int pd_idx = sh->pd_idx;
+	int qd_idx = sh->qd_idx;
+	struct page *xor_dest;
+	struct page **xor_srcs = percpu->scribble;
+	struct dma_async_tx_descriptor *tx;
+	struct async_submit_ctl submit;
+	int count;
+	int i;
+
+	pr_debug("%s: stripe %llu\n", __func__,
+		(unsigned long long)sh->sector);
+
+	count = 0;
+	xor_dest = sh->dev[pd_idx].page;
+	xor_srcs[count++] = xor_dest;
+	for (i = disks; i--; ) {
+		if (i == pd_idx || i == qd_idx)
+			continue;
+		xor_srcs[count++] = sh->dev[i].page;
+	}
+
+	init_async_submit(&submit, 0, NULL, NULL, NULL,
+			  to_addr_conv(sh, percpu));
+	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
+			   &sh->ops.zero_sum_result, &submit);
+
+	atomic_inc(&sh->count);
+	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
+	tx = async_trigger_callback(&submit);
+}
+
+static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
+{
+	struct page **srcs = percpu->scribble;
+	struct async_submit_ctl submit;
+	int count;
+
+	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
+		(unsigned long long)sh->sector, checkp);
+
+	count = set_syndrome_sources(srcs, sh);
+	if (!checkp)
+		srcs[count] = NULL;
+
+	atomic_inc(&sh->count);
+	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
+			  sh, to_addr_conv(sh, percpu));
+	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
+			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
+}
+
+static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
+{
+	int overlap_clear = 0, i, disks = sh->disks;
+	struct dma_async_tx_descriptor *tx = NULL;
+	struct r5conf *conf = sh->raid_conf;
+	int level = conf->level;
+	struct raid5_percpu *percpu;
+	unsigned long cpu;
+
+	cpu = get_cpu_light();
+	percpu = per_cpu_ptr(conf->percpu, cpu);
+	spin_lock(&percpu->lock);
+	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
+		ops_run_biofill(sh);
+		overlap_clear++;
+	}
+
+	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
+		if (level < 6)
+			tx = ops_run_compute5(sh, percpu);
+		else {
+			if (sh->ops.target2 < 0 || sh->ops.target < 0)
+				tx = ops_run_compute6_1(sh, percpu);
+			else
+				tx = ops_run_compute6_2(sh, percpu);
+		}
+		/* terminate the chain if reconstruct is not set to be run */
+		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
+			async_tx_ack(tx);
+	}
+
+	if (test_bit(STRIPE_OP_PREXOR, &ops_request))
+		tx = ops_run_prexor(sh, percpu, tx);
+
+	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
+		tx = ops_run_biodrain(sh, tx);
+		overlap_clear++;
+	}
+
+	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
+		if (level < 6)
+			ops_run_reconstruct5(sh, percpu, tx);
+		else
+			ops_run_reconstruct6(sh, percpu, tx);
+	}
+
+	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
+		if (sh->check_state == check_state_run)
+			ops_run_check_p(sh, percpu);
+		else if (sh->check_state == check_state_run_q)
+			ops_run_check_pq(sh, percpu, 0);
+		else if (sh->check_state == check_state_run_pq)
+			ops_run_check_pq(sh, percpu, 1);
+		else
+			BUG();
+	}
+
+	if (overlap_clear)
+		for (i = disks; i--; ) {
+			struct r5dev *dev = &sh->dev[i];
+			if (test_and_clear_bit(R5_Overlap, &dev->flags))
+				wake_up(&sh->raid_conf->wait_for_overlap);
+		}
+	spin_unlock(&percpu->lock);
+	put_cpu_light();
+}
+
+#ifdef CONFIG_MULTICORE_RAID456
+static void async_run_ops(void *param, async_cookie_t cookie)
+{
+	struct stripe_head *sh = param;
+	unsigned long ops_request = sh->ops.request;
+
+	clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
+	wake_up(&sh->ops.wait_for_ops);
+
+	__raid_run_ops(sh, ops_request);
+	release_stripe(sh);
+}
+
+static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
+{
+	/* since handle_stripe can be called outside of raid5d context
+	 * we need to ensure sh->ops.request is de-staged before another
+	 * request arrives
+	 */
+	wait_event(sh->ops.wait_for_ops,
+		   !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
+	sh->ops.request = ops_request;
+
+	atomic_inc(&sh->count);
+	async_schedule(async_run_ops, sh);
+}
+#else
+#define raid_run_ops __raid_run_ops
+#endif
+
+static int grow_one_stripe(struct r5conf *conf)
+{
+	struct stripe_head *sh;
+	sh = kmem_cache_zalloc(conf->slab_cache, GFP_KERNEL);
+	if (!sh)
+		return 0;
+
+	sh->raid_conf = conf;
+	#ifdef CONFIG_MULTICORE_RAID456
+	init_waitqueue_head(&sh->ops.wait_for_ops);
+	#endif
+
+	if (grow_buffers(sh)) {
+		shrink_buffers(sh);
+		kmem_cache_free(conf->slab_cache, sh);
+		return 0;
+	}
+	/* we just created an active stripe so... */
+	atomic_set(&sh->count, 1);
+	atomic_inc(&conf->active_stripes);
+	INIT_LIST_HEAD(&sh->lru);
+	release_stripe(sh);
+	return 1;
+}
+
+static int grow_stripes(struct r5conf *conf, int num)
+{
+	struct kmem_cache *sc;
+	int devs = max(conf->raid_disks, conf->previous_raid_disks);
+
+	if (conf->mddev->gendisk)
+		sprintf(conf->cache_name[0],
+			"raid%d-%s", conf->level, mdname(conf->mddev));
+	else
+		sprintf(conf->cache_name[0],
+			"raid%d-%p", conf->level, conf->mddev);
+	sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
+
+	conf->active_name = 0;
+	sc = kmem_cache_create(conf->cache_name[conf->active_name],
+			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
+			       0, 0, NULL);
+	if (!sc)
+		return 1;
+	conf->slab_cache = sc;
+	conf->pool_size = devs;
+	while (num--)
+		if (!grow_one_stripe(conf))
+			return 1;
+	return 0;
+}
+
+/**
+ * scribble_len - return the required size of the scribble region
+ * @num - total number of disks in the array
+ *
+ * The size must be enough to contain:
+ * 1/ a struct page pointer for each device in the array +2
+ * 2/ room to convert each entry in (1) to its corresponding dma
+ *    (dma_map_page()) or page (page_address()) address.
+ *
+ * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
+ * calculate over all devices (not just the data blocks), using zeros in place
+ * of the P and Q blocks.
+ */
+static size_t scribble_len(int num)
+{
+	size_t len;
+
+	len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
+
+	return len;
+}
+
+static int resize_stripes(struct r5conf *conf, int newsize)
+{
+	/* Make all the stripes able to hold 'newsize' devices.
+	 * New slots in each stripe get 'page' set to a new page.
+	 *
+	 * This happens in stages:
+	 * 1/ create a new kmem_cache and allocate the required number of
+	 *    stripe_heads.
+	 * 2/ gather all the old stripe_heads and tranfer the pages across
+	 *    to the new stripe_heads.  This will have the side effect of
+	 *    freezing the array as once all stripe_heads have been collected,
+	 *    no IO will be possible.  Old stripe heads are freed once their
+	 *    pages have been transferred over, and the old kmem_cache is
+	 *    freed when all stripes are done.
+	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
+	 *    we simple return a failre status - no need to clean anything up.
+	 * 4/ allocate new pages for the new slots in the new stripe_heads.
+	 *    If this fails, we don't bother trying the shrink the
+	 *    stripe_heads down again, we just leave them as they are.
+	 *    As each stripe_head is processed the new one is released into
+	 *    active service.
+	 *
+	 * Once step2 is started, we cannot afford to wait for a write,
+	 * so we use GFP_NOIO allocations.
+	 */
+	struct stripe_head *osh, *nsh;
+	LIST_HEAD(newstripes);
+	struct disk_info *ndisks;
+	unsigned long cpu;
+	int err;
+	struct kmem_cache *sc;
+	int i;
+
+	if (newsize <= conf->pool_size)
+		return 0; /* never bother to shrink */
+
+	err = md_allow_write(conf->mddev);
+	if (err)
+		return err;
+
+	/* Step 1 */
+	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
+			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
+			       0, 0, NULL);
+	if (!sc)
+		return -ENOMEM;
+
+	for (i = conf->max_nr_stripes; i; i--) {
+		nsh = kmem_cache_zalloc(sc, GFP_KERNEL);
+		if (!nsh)
+			break;
+
+		nsh->raid_conf = conf;
+		#ifdef CONFIG_MULTICORE_RAID456
+		init_waitqueue_head(&nsh->ops.wait_for_ops);
+		#endif
+
+		list_add(&nsh->lru, &newstripes);
+	}
+	if (i) {
+		/* didn't get enough, give up */
+		while (!list_empty(&newstripes)) {
+			nsh = list_entry(newstripes.next, struct stripe_head, lru);
+			list_del(&nsh->lru);
+			kmem_cache_free(sc, nsh);
+		}
+		kmem_cache_destroy(sc);
+		return -ENOMEM;
+	}
+	/* Step 2 - Must use GFP_NOIO now.
+	 * OK, we have enough stripes, start collecting inactive
+	 * stripes and copying them over
+	 */
+	list_for_each_entry(nsh, &newstripes, lru) {
+		spin_lock_irq(&conf->device_lock);
+		wait_event_lock_irq(conf->wait_for_stripe,
+				    !list_empty(&conf->inactive_list),
+				    conf->device_lock,
+				    );
+		osh = get_free_stripe(conf);
+		spin_unlock_irq(&conf->device_lock);
+		atomic_set(&nsh->count, 1);
+		for(i=0; i<conf->pool_size; i++)
+			nsh->dev[i].page = osh->dev[i].page;
+		for( ; i<newsize; i++)
+			nsh->dev[i].page = NULL;
+		kmem_cache_free(conf->slab_cache, osh);
+	}
+	kmem_cache_destroy(conf->slab_cache);
+
+	/* Step 3.
+	 * At this point, we are holding all the stripes so the array
+	 * is completely stalled, so now is a good time to resize
+	 * conf->disks and the scribble region
+	 */
+	ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
+	if (ndisks) {
+		for (i=0; i<conf->raid_disks; i++)
+			ndisks[i] = conf->disks[i];
+		kfree(conf->disks);
+		conf->disks = ndisks;
+	} else
+		err = -ENOMEM;
+
+	get_online_cpus();
+	conf->scribble_len = scribble_len(newsize);
+	for_each_present_cpu(cpu) {
+		struct raid5_percpu *percpu;
+		void *scribble;
+
+		percpu = per_cpu_ptr(conf->percpu, cpu);
+		scribble = kmalloc(conf->scribble_len, GFP_NOIO);
+
+		if (scribble) {
+			kfree(percpu->scribble);
+			percpu->scribble = scribble;
+		} else {
+			err = -ENOMEM;
+			break;
+		}
+	}
+	put_online_cpus();
+
+	/* Step 4, return new stripes to service */
+	while(!list_empty(&newstripes)) {
+		nsh = list_entry(newstripes.next, struct stripe_head, lru);
+		list_del_init(&nsh->lru);
+
+		for (i=conf->raid_disks; i < newsize; i++)
+			if (nsh->dev[i].page == NULL) {
+				struct page *p = alloc_page(GFP_NOIO);
+				nsh->dev[i].page = p;
+				if (!p)
+					err = -ENOMEM;
+			}
+		release_stripe(nsh);
+	}
+	/* critical section pass, GFP_NOIO no longer needed */
+
+	conf->slab_cache = sc;
+	conf->active_name = 1-conf->active_name;
+	if (!err)
+		conf->pool_size = newsize;
+	return err;
+}
+
+static int drop_one_stripe(struct r5conf *conf)
+{
+	struct stripe_head *sh;
+
+	spin_lock_irq(&conf->device_lock);
+	sh = get_free_stripe(conf);
+	spin_unlock_irq(&conf->device_lock);
+	if (!sh)
+		return 0;
+	BUG_ON(atomic_read(&sh->count));
+	shrink_buffers(sh);
+	kmem_cache_free(conf->slab_cache, sh);
+	atomic_dec(&conf->active_stripes);
+	return 1;
+}
+
+static void shrink_stripes(struct r5conf *conf)
+{
+	while (drop_one_stripe(conf))
+		;
+
+	if (conf->slab_cache)
+		kmem_cache_destroy(conf->slab_cache);
+	conf->slab_cache = NULL;
+}
+
+static void raid5_end_read_request(struct bio * bi, int error)
+{
+	struct stripe_head *sh = bi->bi_private;
+	struct r5conf *conf = sh->raid_conf;
+	int disks = sh->disks, i;
+	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
+	char b[BDEVNAME_SIZE];
+	struct md_rdev *rdev = NULL;
+
+
+	for (i=0 ; i<disks; i++)
+		if (bi == &sh->dev[i].req)
+			break;
+
+	pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
+		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
+		uptodate);
+	if (i == disks) {
+		BUG();
+		return;
+	}
+	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
+		/* If replacement finished while this request was outstanding,
+		 * 'replacement' might be NULL already.
+		 * In that case it moved down to 'rdev'.
+		 * rdev is not removed until all requests are finished.
+		 */
+		rdev = conf->disks[i].replacement;
+	if (!rdev)
+		rdev = conf->disks[i].rdev;
+
+	if (uptodate) {
+		set_bit(R5_UPTODATE, &sh->dev[i].flags);
+		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
+			/* Note that this cannot happen on a
+			 * replacement device.  We just fail those on
+			 * any error
+			 */
+			printk_ratelimited(
+				KERN_INFO
+				"md/raid:%s: read error corrected"
+				" (%lu sectors at %llu on %s)\n",
+				mdname(conf->mddev), STRIPE_SECTORS,
+				(unsigned long long)(sh->sector
+						     + rdev->data_offset),
+				bdevname(rdev->bdev, b));
+			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
+			clear_bit(R5_ReadError, &sh->dev[i].flags);
+			clear_bit(R5_ReWrite, &sh->dev[i].flags);
+		}
+		if (atomic_read(&rdev->read_errors))
+			atomic_set(&rdev->read_errors, 0);
+	} else {
+		const char *bdn = bdevname(rdev->bdev, b);
+		int retry = 0;
+
+		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
+		atomic_inc(&rdev->read_errors);
+		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
+			printk_ratelimited(
+				KERN_WARNING
+				"md/raid:%s: read error on replacement device "
+				"(sector %llu on %s).\n",
+				mdname(conf->mddev),
+				(unsigned long long)(sh->sector
+						     + rdev->data_offset),
+				bdn);
+		else if (conf->mddev->degraded >= conf->max_degraded)
+			printk_ratelimited(
+				KERN_WARNING
+				"md/raid:%s: read error not correctable "
+				"(sector %llu on %s).\n",
+				mdname(conf->mddev),
+				(unsigned long long)(sh->sector
+						     + rdev->data_offset),
+				bdn);
+		else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
+			/* Oh, no!!! */
+			printk_ratelimited(
+				KERN_WARNING
+				"md/raid:%s: read error NOT corrected!! "
+				"(sector %llu on %s).\n",
+				mdname(conf->mddev),
+				(unsigned long long)(sh->sector
+						     + rdev->data_offset),
+				bdn);
+		else if (atomic_read(&rdev->read_errors)
+			 > conf->max_nr_stripes)
+			printk(KERN_WARNING
+			       "md/raid:%s: Too many read errors, failing device %s.\n",
+			       mdname(conf->mddev), bdn);
+		else
+			retry = 1;
+		if (retry)
+			set_bit(R5_ReadError, &sh->dev[i].flags);
+		else {
+			clear_bit(R5_ReadError, &sh->dev[i].flags);
+			clear_bit(R5_ReWrite, &sh->dev[i].flags);
+			md_error(conf->mddev, rdev);
+		}
+	}
+	rdev_dec_pending(rdev, conf->mddev);
+	clear_bit(R5_LOCKED, &sh->dev[i].flags);
+	set_bit(STRIPE_HANDLE, &sh->state);
+	release_stripe(sh);
+}
+
+static void raid5_end_write_request(struct bio *bi, int error)
+{
+	struct stripe_head *sh = bi->bi_private;
+	struct r5conf *conf = sh->raid_conf;
+	int disks = sh->disks, i;
+	struct md_rdev *uninitialized_var(rdev);
+	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
+	sector_t first_bad;
+	int bad_sectors;
+	int replacement = 0;
+
+	for (i = 0 ; i < disks; i++) {
+		if (bi == &sh->dev[i].req) {
+			rdev = conf->disks[i].rdev;
+			break;
+		}
+		if (bi == &sh->dev[i].rreq) {
+			rdev = conf->disks[i].replacement;
+			if (rdev)
+				replacement = 1;
+			else
+				/* rdev was removed and 'replacement'
+				 * replaced it.  rdev is not removed
+				 * until all requests are finished.
+				 */
+				rdev = conf->disks[i].rdev;
+			break;
+		}
+	}
+	pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
+		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
+		uptodate);
+	if (i == disks) {
+		BUG();
+		return;
+	}
+
+	if (replacement) {
+		if (!uptodate)
+			md_error(conf->mddev, rdev);
+		else if (is_badblock(rdev, sh->sector,
+				     STRIPE_SECTORS,
+				     &first_bad, &bad_sectors))
+			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
+	} else {
+		if (!uptodate) {
+			set_bit(STRIPE_DEGRADED, &sh->state);
+			set_bit(WriteErrorSeen, &rdev->flags);
+			set_bit(R5_WriteError, &sh->dev[i].flags);
+			if (!test_and_set_bit(WantReplacement, &rdev->flags))
+				set_bit(MD_RECOVERY_NEEDED,
+					&rdev->mddev->recovery);
+		} else if (is_badblock(rdev, sh->sector,
+				       STRIPE_SECTORS,
+				       &first_bad, &bad_sectors))
+			set_bit(R5_MadeGood, &sh->dev[i].flags);
+	}
+	rdev_dec_pending(rdev, conf->mddev);
+
+	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
+		clear_bit(R5_LOCKED, &sh->dev[i].flags);
+	set_bit(STRIPE_HANDLE, &sh->state);
+	release_stripe(sh);
+}
+
+static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
+	
+static void raid5_build_block(struct stripe_head *sh, int i, int previous)
+{
+	struct r5dev *dev = &sh->dev[i];
+
+	bio_init(&dev->req);
+	dev->req.bi_io_vec = &dev->vec;
+	dev->req.bi_vcnt++;
+	dev->req.bi_max_vecs++;
+	dev->req.bi_private = sh;
+	dev->vec.bv_page = dev->page;
+
+	bio_init(&dev->rreq);
+	dev->rreq.bi_io_vec = &dev->rvec;
+	dev->rreq.bi_vcnt++;
+	dev->rreq.bi_max_vecs++;
+	dev->rreq.bi_private = sh;
+	dev->rvec.bv_page = dev->page;
+
+	dev->flags = 0;
+	dev->sector = compute_blocknr(sh, i, previous);
+}
+
+static void error(struct mddev *mddev, struct md_rdev *rdev)
+{
+	char b[BDEVNAME_SIZE];
+	struct r5conf *conf = mddev->private;
+	unsigned long flags;
+	pr_debug("raid456: error called\n");
+
+	spin_lock_irqsave(&conf->device_lock, flags);
+	clear_bit(In_sync, &rdev->flags);
+	mddev->degraded = calc_degraded(conf);
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
+
+	set_bit(Blocked, &rdev->flags);
+	set_bit(Faulty, &rdev->flags);
+	set_bit(MD_CHANGE_DEVS, &mddev->flags);
+	printk(KERN_ALERT
+	       "md/raid:%s: Disk failure on %s, disabling device.\n"
+	       "md/raid:%s: Operation continuing on %d devices.\n",
+	       mdname(mddev),
+	       bdevname(rdev->bdev, b),
+	       mdname(mddev),
+	       conf->raid_disks - mddev->degraded);
+}
+
+/*
+ * Input: a 'big' sector number,
+ * Output: index of the data and parity disk, and the sector # in them.
+ */
+static sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
+				     int previous, int *dd_idx,
+				     struct stripe_head *sh)
+{
+	sector_t stripe, stripe2;
+	sector_t chunk_number;
+	unsigned int chunk_offset;
+	int pd_idx, qd_idx;
+	int ddf_layout = 0;
+	sector_t new_sector;
+	int algorithm = previous ? conf->prev_algo
+				 : conf->algorithm;
+	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
+					 : conf->chunk_sectors;
+	int raid_disks = previous ? conf->previous_raid_disks
+				  : conf->raid_disks;
+	int data_disks = raid_disks - conf->max_degraded;
+
+	/* First compute the information on this sector */
+
+	/*
+	 * Compute the chunk number and the sector offset inside the chunk
+	 */
+	chunk_offset = sector_div(r_sector, sectors_per_chunk);
+	chunk_number = r_sector;
+
+	/*
+	 * Compute the stripe number
+	 */
+	stripe = chunk_number;
+	*dd_idx = sector_div(stripe, data_disks);
+	stripe2 = stripe;
+	/*
+	 * Select the parity disk based on the user selected algorithm.
+	 */
+	pd_idx = qd_idx = -1;
+	switch(conf->level) {
+	case 4:
+		pd_idx = data_disks;
+		break;
+	case 5:
+		switch (algorithm) {
+		case ALGORITHM_LEFT_ASYMMETRIC:
+			pd_idx = data_disks - sector_div(stripe2, raid_disks);
+			if (*dd_idx >= pd_idx)
+				(*dd_idx)++;
+			break;
+		case ALGORITHM_RIGHT_ASYMMETRIC:
+			pd_idx = sector_div(stripe2, raid_disks);
+			if (*dd_idx >= pd_idx)
+				(*dd_idx)++;
+			break;
+		case ALGORITHM_LEFT_SYMMETRIC:
+			pd_idx = data_disks - sector_div(stripe2, raid_disks);
+			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
+			break;
+		case ALGORITHM_RIGHT_SYMMETRIC:
+			pd_idx = sector_div(stripe2, raid_disks);
+			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
+			break;
+		case ALGORITHM_PARITY_0:
+			pd_idx = 0;
+			(*dd_idx)++;
+			break;
+		case ALGORITHM_PARITY_N:
+			pd_idx = data_disks;
+			break;
+		default:
+			BUG();
+		}
+		break;
+	case 6:
+
+		switch (algorithm) {
+		case ALGORITHM_LEFT_ASYMMETRIC:
+			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
+			qd_idx = pd_idx + 1;
+			if (pd_idx == raid_disks-1) {
+				(*dd_idx)++;	/* Q D D D P */
+				qd_idx = 0;
+			} else if (*dd_idx >= pd_idx)
+				(*dd_idx) += 2; /* D D P Q D */
+			break;
+		case ALGORITHM_RIGHT_ASYMMETRIC:
+			pd_idx = sector_div(stripe2, raid_disks);
+			qd_idx = pd_idx + 1;
+			if (pd_idx == raid_disks-1) {
+				(*dd_idx)++;	/* Q D D D P */
+				qd_idx = 0;
+			} else if (*dd_idx >= pd_idx)
+				(*dd_idx) += 2; /* D D P Q D */
+			break;
+		case ALGORITHM_LEFT_SYMMETRIC:
+			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
+			qd_idx = (pd_idx + 1) % raid_disks;
+			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
+			break;
+		case ALGORITHM_RIGHT_SYMMETRIC:
+			pd_idx = sector_div(stripe2, raid_disks);
+			qd_idx = (pd_idx + 1) % raid_disks;
+			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
+			break;
+
+		case ALGORITHM_PARITY_0:
+			pd_idx = 0;
+			qd_idx = 1;
+			(*dd_idx) += 2;
+			break;
+		case ALGORITHM_PARITY_N:
+			pd_idx = data_disks;
+			qd_idx = data_disks + 1;
+			break;
+
+		case ALGORITHM_ROTATING_ZERO_RESTART:
+			/* Exactly the same as RIGHT_ASYMMETRIC, but or
+			 * of blocks for computing Q is different.
+			 */
+			pd_idx = sector_div(stripe2, raid_disks);
+			qd_idx = pd_idx + 1;
+			if (pd_idx == raid_disks-1) {
+				(*dd_idx)++;	/* Q D D D P */
+				qd_idx = 0;
+			} else if (*dd_idx >= pd_idx)
+				(*dd_idx) += 2; /* D D P Q D */
+			ddf_layout = 1;
+			break;
+
+		case ALGORITHM_ROTATING_N_RESTART:
+			/* Same a left_asymmetric, by first stripe is
+			 * D D D P Q  rather than
+			 * Q D D D P
+			 */
+			stripe2 += 1;
+			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
+			qd_idx = pd_idx + 1;
+			if (pd_idx == raid_disks-1) {
+				(*dd_idx)++;	/* Q D D D P */
+				qd_idx = 0;
+			} else if (*dd_idx >= pd_idx)
+				(*dd_idx) += 2; /* D D P Q D */
+			ddf_layout = 1;
+			break;
+
+		case ALGORITHM_ROTATING_N_CONTINUE:
+			/* Same as left_symmetric but Q is before P */
+			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
+			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
+			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
+			ddf_layout = 1;
+			break;
+
+		case ALGORITHM_LEFT_ASYMMETRIC_6:
+			/* RAID5 left_asymmetric, with Q on last device */
+			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
+			if (*dd_idx >= pd_idx)
+				(*dd_idx)++;
+			qd_idx = raid_disks - 1;
+			break;
+
+		case ALGORITHM_RIGHT_ASYMMETRIC_6:
+			pd_idx = sector_div(stripe2, raid_disks-1);
+			if (*dd_idx >= pd_idx)
+				(*dd_idx)++;
+			qd_idx = raid_disks - 1;
+			break;
+
+		case ALGORITHM_LEFT_SYMMETRIC_6:
+			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
+			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
+			qd_idx = raid_disks - 1;
+			break;
+
+		case ALGORITHM_RIGHT_SYMMETRIC_6:
+			pd_idx = sector_div(stripe2, raid_disks-1);
+			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
+			qd_idx = raid_disks - 1;
+			break;
+
+		case ALGORITHM_PARITY_0_6:
+			pd_idx = 0;
+			(*dd_idx)++;
+			qd_idx = raid_disks - 1;
+			break;
+
+		default:
+			BUG();
+		}
+		break;
+	}
+
+	if (sh) {
+		sh->pd_idx = pd_idx;
+		sh->qd_idx = qd_idx;
+		sh->ddf_layout = ddf_layout;
+	}
+	/*
+	 * Finally, compute the new sector number
+	 */
+	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
+	return new_sector;
+}
+
+
+static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
+{
+	struct r5conf *conf = sh->raid_conf;
+	int raid_disks = sh->disks;
+	int data_disks = raid_disks - conf->max_degraded;
+	sector_t new_sector = sh->sector, check;
+	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
+					 : conf->chunk_sectors;
+	int algorithm = previous ? conf->prev_algo
+				 : conf->algorithm;
+	sector_t stripe;
+	int chunk_offset;
+	sector_t chunk_number;
+	int dummy1, dd_idx = i;
+	sector_t r_sector;
+	struct stripe_head sh2;
+
+
+	chunk_offset = sector_div(new_sector, sectors_per_chunk);
+	stripe = new_sector;
+
+	if (i == sh->pd_idx)
+		return 0;
+	switch(conf->level) {
+	case 4: break;
+	case 5:
+		switch (algorithm) {
+		case ALGORITHM_LEFT_ASYMMETRIC:
+		case ALGORITHM_RIGHT_ASYMMETRIC:
+			if (i > sh->pd_idx)
+				i--;
+			break;
+		case ALGORITHM_LEFT_SYMMETRIC:
+		case ALGORITHM_RIGHT_SYMMETRIC:
+			if (i < sh->pd_idx)
+				i += raid_disks;
+			i -= (sh->pd_idx + 1);
+			break;
+		case ALGORITHM_PARITY_0:
+			i -= 1;
+			break;
+		case ALGORITHM_PARITY_N:
+			break;
+		default:
+			BUG();
+		}
+		break;
+	case 6:
+		if (i == sh->qd_idx)
+			return 0; /* It is the Q disk */
+		switch (algorithm) {
+		case ALGORITHM_LEFT_ASYMMETRIC:
+		case ALGORITHM_RIGHT_ASYMMETRIC:
+		case ALGORITHM_ROTATING_ZERO_RESTART:
+		case ALGORITHM_ROTATING_N_RESTART:
+			if (sh->pd_idx == raid_disks-1)
+				i--;	/* Q D D D P */
+			else if (i > sh->pd_idx)
+				i -= 2; /* D D P Q D */
+			break;
+		case ALGORITHM_LEFT_SYMMETRIC:
+		case ALGORITHM_RIGHT_SYMMETRIC:
+			if (sh->pd_idx == raid_disks-1)
+				i--; /* Q D D D P */
+			else {
+				/* D D P Q D */
+				if (i < sh->pd_idx)
+					i += raid_disks;
+				i -= (sh->pd_idx + 2);
+			}
+			break;
+		case ALGORITHM_PARITY_0:
+			i -= 2;
+			break;
+		case ALGORITHM_PARITY_N:
+			break;
+		case ALGORITHM_ROTATING_N_CONTINUE:
+			/* Like left_symmetric, but P is before Q */
+			if (sh->pd_idx == 0)
+				i--;	/* P D D D Q */
+			else {
+				/* D D Q P D */
+				if (i < sh->pd_idx)
+					i += raid_disks;
+				i -= (sh->pd_idx + 1);
+			}
+			break;
+		case ALGORITHM_LEFT_ASYMMETRIC_6:
+		case ALGORITHM_RIGHT_ASYMMETRIC_6:
+			if (i > sh->pd_idx)
+				i--;
+			break;
+		case ALGORITHM_LEFT_SYMMETRIC_6:
+		case ALGORITHM_RIGHT_SYMMETRIC_6:
+			if (i < sh->pd_idx)
+				i += data_disks + 1;
+			i -= (sh->pd_idx + 1);
+			break;
+		case ALGORITHM_PARITY_0_6:
+			i -= 1;
+			break;
+		default:
+			BUG();
+		}
+		break;
+	}
+
+	chunk_number = stripe * data_disks + i;
+	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
+
+	check = raid5_compute_sector(conf, r_sector,
+				     previous, &dummy1, &sh2);
+	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
+		|| sh2.qd_idx != sh->qd_idx) {
+		printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
+		       mdname(conf->mddev));
+		return 0;
+	}
+	return r_sector;
+}
+
+
+static void
+schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
+			 int rcw, int expand)
+{
+	int i, pd_idx = sh->pd_idx, disks = sh->disks;
+	struct r5conf *conf = sh->raid_conf;
+	int level = conf->level;
+
+	if (rcw) {
+		/* if we are not expanding this is a proper write request, and
+		 * there will be bios with new data to be drained into the
+		 * stripe cache
+		 */
+		if (!expand) {
+			sh->reconstruct_state = reconstruct_state_drain_run;
+			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
+		} else
+			sh->reconstruct_state = reconstruct_state_run;
+
+		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
+
+		for (i = disks; i--; ) {
+			struct r5dev *dev = &sh->dev[i];
+
+			if (dev->towrite) {
+				set_bit(R5_LOCKED, &dev->flags);
+				set_bit(R5_Wantdrain, &dev->flags);
+				if (!expand)
+					clear_bit(R5_UPTODATE, &dev->flags);
+				s->locked++;
+			}
+		}
+		if (s->locked + conf->max_degraded == disks)
+			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
+				atomic_inc(&conf->pending_full_writes);
+	} else {
+		BUG_ON(level == 6);
+		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
+			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
+
+		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
+		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
+		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
+		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
+
+		for (i = disks; i--; ) {
+			struct r5dev *dev = &sh->dev[i];
+			if (i == pd_idx)
+				continue;
+
+			if (dev->towrite &&
+			    (test_bit(R5_UPTODATE, &dev->flags) ||
+			     test_bit(R5_Wantcompute, &dev->flags))) {
+				set_bit(R5_Wantdrain, &dev->flags);
+				set_bit(R5_LOCKED, &dev->flags);
+				clear_bit(R5_UPTODATE, &dev->flags);
+				s->locked++;
+			}
+		}
+	}
+
+	/* keep the parity disk(s) locked while asynchronous operations
+	 * are in flight
+	 */
+	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
+	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
+	s->locked++;
+
+	if (level == 6) {
+		int qd_idx = sh->qd_idx;
+		struct r5dev *dev = &sh->dev[qd_idx];
+
+		set_bit(R5_LOCKED, &dev->flags);
+		clear_bit(R5_UPTODATE, &dev->flags);
+		s->locked++;
+	}
+
+	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
+		__func__, (unsigned long long)sh->sector,
+		s->locked, s->ops_request);
+}
+
+/*
+ * Each stripe/dev can have one or more bion attached.
+ * toread/towrite point to the first in a chain.
+ * The bi_next chain must be in order.
+ */
+static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
+{
+	struct bio **bip;
+	struct r5conf *conf = sh->raid_conf;
+	int firstwrite=0;
+
+	pr_debug("adding bi b#%llu to stripe s#%llu\n",
+		(unsigned long long)bi->bi_sector,
+		(unsigned long long)sh->sector);
+
+
+	spin_lock_irq(&conf->device_lock);
+	if (forwrite) {
+		bip = &sh->dev[dd_idx].towrite;
+		if (*bip == NULL && sh->dev[dd_idx].written == NULL)
+			firstwrite = 1;
+	} else
+		bip = &sh->dev[dd_idx].toread;
+	while (*bip && (*bip)->bi_sector < bi->bi_sector) {
+		if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
+			goto overlap;
+		bip = & (*bip)->bi_next;
+	}
+	if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
+		goto overlap;
+
+	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
+	if (*bip)
+		bi->bi_next = *bip;
+	*bip = bi;
+	bi->bi_phys_segments++;
+
+	if (forwrite) {
+		/* check if page is covered */
+		sector_t sector = sh->dev[dd_idx].sector;
+		for (bi=sh->dev[dd_idx].towrite;
+		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
+			     bi && bi->bi_sector <= sector;
+		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
+			if (bi->bi_sector + (bi->bi_size>>9) >= sector)
+				sector = bi->bi_sector + (bi->bi_size>>9);
+		}
+		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
+			set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
+	}
+	spin_unlock_irq(&conf->device_lock);
+
+	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
+		(unsigned long long)(*bip)->bi_sector,
+		(unsigned long long)sh->sector, dd_idx);
+
+	if (conf->mddev->bitmap && firstwrite) {
+		bitmap_startwrite(conf->mddev->bitmap, sh->sector,
+				  STRIPE_SECTORS, 0);
+		sh->bm_seq = conf->seq_flush+1;
+		set_bit(STRIPE_BIT_DELAY, &sh->state);
+	}
+	return 1;
+
+ overlap:
+	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
+	spin_unlock_irq(&conf->device_lock);
+	return 0;
+}
+
+static void end_reshape(struct r5conf *conf);
+
+static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
+			    struct stripe_head *sh)
+{
+	int sectors_per_chunk =
+		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
+	int dd_idx;
+	int chunk_offset = sector_div(stripe, sectors_per_chunk);
+	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
+
+	raid5_compute_sector(conf,
+			     stripe * (disks - conf->max_degraded)
+			     *sectors_per_chunk + chunk_offset,
+			     previous,
+			     &dd_idx, sh);
+}
+
+static void
+handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
+				struct stripe_head_state *s, int disks,
+				struct bio **return_bi)
+{
+	int i;
+	for (i = disks; i--; ) {
+		struct bio *bi;
+		int bitmap_end = 0;
+
+		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
+			struct md_rdev *rdev;
+			rcu_read_lock();
+			rdev = rcu_dereference(conf->disks[i].rdev);
+			if (rdev && test_bit(In_sync, &rdev->flags))
+				atomic_inc(&rdev->nr_pending);
+			else
+				rdev = NULL;
+			rcu_read_unlock();
+			if (rdev) {
+				if (!rdev_set_badblocks(
+					    rdev,
+					    sh->sector,
+					    STRIPE_SECTORS, 0))
+					md_error(conf->mddev, rdev);
+				rdev_dec_pending(rdev, conf->mddev);
+			}
+		}
+		spin_lock_irq(&conf->device_lock);
+		/* fail all writes first */
+		bi = sh->dev[i].towrite;
+		sh->dev[i].towrite = NULL;
+		if (bi) {
+			s->to_write--;
+			bitmap_end = 1;
+		}
+
+		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+			wake_up(&conf->wait_for_overlap);
+
+		while (bi && bi->bi_sector <
+			sh->dev[i].sector + STRIPE_SECTORS) {
+			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
+			clear_bit(BIO_UPTODATE, &bi->bi_flags);
+			if (!raid5_dec_bi_phys_segments(bi)) {
+				md_write_end(conf->mddev);
+				bi->bi_next = *return_bi;
+				*return_bi = bi;
+			}
+			bi = nextbi;
+		}
+		/* and fail all 'written' */
+		bi = sh->dev[i].written;
+		sh->dev[i].written = NULL;
+		if (bi) bitmap_end = 1;
+		while (bi && bi->bi_sector <
+		       sh->dev[i].sector + STRIPE_SECTORS) {
+			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
+			clear_bit(BIO_UPTODATE, &bi->bi_flags);
+			if (!raid5_dec_bi_phys_segments(bi)) {
+				md_write_end(conf->mddev);
+				bi->bi_next = *return_bi;
+				*return_bi = bi;
+			}
+			bi = bi2;
+		}
+
+		/* fail any reads if this device is non-operational and
+		 * the data has not reached the cache yet.
+		 */
+		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
+		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
+		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
+			bi = sh->dev[i].toread;
+			sh->dev[i].toread = NULL;
+			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
+				wake_up(&conf->wait_for_overlap);
+			if (bi) s->to_read--;
+			while (bi && bi->bi_sector <
+			       sh->dev[i].sector + STRIPE_SECTORS) {
+				struct bio *nextbi =
+					r5_next_bio(bi, sh->dev[i].sector);
+				clear_bit(BIO_UPTODATE, &bi->bi_flags);
+				if (!raid5_dec_bi_phys_segments(bi)) {
+					bi->bi_next = *return_bi;
+					*return_bi = bi;
+				}
+				bi = nextbi;
+			}
+		}
+		spin_unlock_irq(&conf->device_lock);
+		if (bitmap_end)
+			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
+					STRIPE_SECTORS, 0, 0);
+		/* If we were in the middle of a write the parity block might
+		 * still be locked - so just clear all R5_LOCKED flags
+		 */
+		clear_bit(R5_LOCKED, &sh->dev[i].flags);
+	}
+
+	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
+		if (atomic_dec_and_test(&conf->pending_full_writes))
+			md_wakeup_thread(conf->mddev->thread);
+}
+
+static void
+handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
+		   struct stripe_head_state *s)
+{
+	int abort = 0;
+	int i;
+
+	clear_bit(STRIPE_SYNCING, &sh->state);
+	s->syncing = 0;
+	s->replacing = 0;
+	/* There is nothing more to do for sync/check/repair.
+	 * Don't even need to abort as that is handled elsewhere
+	 * if needed, and not always wanted e.g. if there is a known
+	 * bad block here.
+	 * For recover/replace we need to record a bad block on all
+	 * non-sync devices, or abort the recovery
+	 */
+	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
+		/* During recovery devices cannot be removed, so
+		 * locking and refcounting of rdevs is not needed
+		 */
+		for (i = 0; i < conf->raid_disks; i++) {
+			struct md_rdev *rdev = conf->disks[i].rdev;
+			if (rdev
+			    && !test_bit(Faulty, &rdev->flags)
+			    && !test_bit(In_sync, &rdev->flags)
+			    && !rdev_set_badblocks(rdev, sh->sector,
+						   STRIPE_SECTORS, 0))
+				abort = 1;
+			rdev = conf->disks[i].replacement;
+			if (rdev
+			    && !test_bit(Faulty, &rdev->flags)
+			    && !test_bit(In_sync, &rdev->flags)
+			    && !rdev_set_badblocks(rdev, sh->sector,
+						   STRIPE_SECTORS, 0))
+				abort = 1;
+		}
+		if (abort)
+			conf->recovery_disabled =
+				conf->mddev->recovery_disabled;
+	}
+	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
+}
+
+static int want_replace(struct stripe_head *sh, int disk_idx)
+{
+	struct md_rdev *rdev;
+	int rv = 0;
+	/* Doing recovery so rcu locking not required */
+	rdev = sh->raid_conf->disks[disk_idx].replacement;
+	if (rdev
+	    && !test_bit(Faulty, &rdev->flags)
+	    && !test_bit(In_sync, &rdev->flags)
+	    && (rdev->recovery_offset <= sh->sector
+		|| rdev->mddev->recovery_cp <= sh->sector))
+		rv = 1;
+
+	return rv;
+}
+
+/* fetch_block - checks the given member device to see if its data needs
+ * to be read or computed to satisfy a request.
+ *
+ * Returns 1 when no more member devices need to be checked, otherwise returns
+ * 0 to tell the loop in handle_stripe_fill to continue
+ */
+static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
+		       int disk_idx, int disks)
+{
+	struct r5dev *dev = &sh->dev[disk_idx];
+	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
+				  &sh->dev[s->failed_num[1]] };
+
+	/* is the data in this block needed, and can we get it? */
+	if (!test_bit(R5_LOCKED, &dev->flags) &&
+	    !test_bit(R5_UPTODATE, &dev->flags) &&
+	    (dev->toread ||
+	     (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
+	     s->syncing || s->expanding ||
+	     (s->replacing && want_replace(sh, disk_idx)) ||
+	     (s->failed >= 1 && fdev[0]->toread) ||
+	     (s->failed >= 2 && fdev[1]->toread) ||
+	     (sh->raid_conf->level <= 5 && s->failed && fdev[0]->towrite &&
+	      !test_bit(R5_OVERWRITE, &fdev[0]->flags)) ||
+	     (sh->raid_conf->level == 6 && s->failed && s->to_write))) {
+		/* we would like to get this block, possibly by computing it,
+		 * otherwise read it if the backing disk is insync
+		 */
+		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
+		BUG_ON(test_bit(R5_Wantread, &dev->flags));
+		if ((s->uptodate == disks - 1) &&
+		    (s->failed && (disk_idx == s->failed_num[0] ||
+				   disk_idx == s->failed_num[1]))) {
+			/* have disk failed, and we're requested to fetch it;
+			 * do compute it
+			 */
+			pr_debug("Computing stripe %llu block %d\n",
+			       (unsigned long long)sh->sector, disk_idx);
+			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
+			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
+			set_bit(R5_Wantcompute, &dev->flags);
+			sh->ops.target = disk_idx;
+			sh->ops.target2 = -1; /* no 2nd target */
+			s->req_compute = 1;
+			/* Careful: from this point on 'uptodate' is in the eye
+			 * of raid_run_ops which services 'compute' operations
+			 * before writes. R5_Wantcompute flags a block that will
+			 * be R5_UPTODATE by the time it is needed for a
+			 * subsequent operation.
+			 */
+			s->uptodate++;
+			return 1;
+		} else if (s->uptodate == disks-2 && s->failed >= 2) {
+			/* Computing 2-failure is *very* expensive; only
+			 * do it if failed >= 2
+			 */
+			int other;
+			for (other = disks; other--; ) {
+				if (other == disk_idx)
+					continue;
+				if (!test_bit(R5_UPTODATE,
+				      &sh->dev[other].flags))
+					break;
+			}
+			BUG_ON(other < 0);
+			pr_debug("Computing stripe %llu blocks %d,%d\n",
+			       (unsigned long long)sh->sector,
+			       disk_idx, other);
+			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
+			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
+			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
+			set_bit(R5_Wantcompute, &sh->dev[other].flags);
+			sh->ops.target = disk_idx;
+			sh->ops.target2 = other;
+			s->uptodate += 2;
+			s->req_compute = 1;
+			return 1;
+		} else if (test_bit(R5_Insync, &dev->flags)) {
+			set_bit(R5_LOCKED, &dev->flags);
+			set_bit(R5_Wantread, &dev->flags);
+			s->locked++;
+			pr_debug("Reading block %d (sync=%d)\n",
+				disk_idx, s->syncing);
+		}
+	}
+
+	return 0;
+}
+
+/**
+ * handle_stripe_fill - read or compute data to satisfy pending requests.
+ */
+static void handle_stripe_fill(struct stripe_head *sh,
+			       struct stripe_head_state *s,
+			       int disks)
+{
+	int i;
+
+	/* look for blocks to read/compute, skip this if a compute
+	 * is already in flight, or if the stripe contents are in the
+	 * midst of changing due to a write
+	 */
+	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
+	    !sh->reconstruct_state)
+		for (i = disks; i--; )
+			if (fetch_block(sh, s, i, disks))
+				break;
+	set_bit(STRIPE_HANDLE, &sh->state);
+}
+
+
+/* handle_stripe_clean_event
+ * any written block on an uptodate or failed drive can be returned.
+ * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
+ * never LOCKED, so we don't need to test 'failed' directly.
+ */
+static void handle_stripe_clean_event(struct r5conf *conf,
+	struct stripe_head *sh, int disks, struct bio **return_bi)
+{
+	int i;
+	struct r5dev *dev;
+
+	for (i = disks; i--; )
+		if (sh->dev[i].written) {
+			dev = &sh->dev[i];
+			if (!test_bit(R5_LOCKED, &dev->flags) &&
+				test_bit(R5_UPTODATE, &dev->flags)) {
+				/* We can return any write requests */
+				struct bio *wbi, *wbi2;
+				int bitmap_end = 0;
+				pr_debug("Return write for disc %d\n", i);
+				spin_lock_irq(&conf->device_lock);
+				wbi = dev->written;
+				dev->written = NULL;
+				while (wbi && wbi->bi_sector <
+					dev->sector + STRIPE_SECTORS) {
+					wbi2 = r5_next_bio(wbi, dev->sector);
+					if (!raid5_dec_bi_phys_segments(wbi)) {
+						md_write_end(conf->mddev);
+						wbi->bi_next = *return_bi;
+						*return_bi = wbi;
+					}
+					wbi = wbi2;
+				}
+				if (dev->towrite == NULL)
+					bitmap_end = 1;
+				spin_unlock_irq(&conf->device_lock);
+				if (bitmap_end)
+					bitmap_endwrite(conf->mddev->bitmap,
+							sh->sector,
+							STRIPE_SECTORS,
+					 !test_bit(STRIPE_DEGRADED, &sh->state),
+							0);
+			}
+		}
+
+	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
+		if (atomic_dec_and_test(&conf->pending_full_writes))
+			md_wakeup_thread(conf->mddev->thread);
+}
+
+static void handle_stripe_dirtying(struct r5conf *conf,
+				   struct stripe_head *sh,
+				   struct stripe_head_state *s,
+				   int disks)
+{
+	int rmw = 0, rcw = 0, i;
+	if (conf->max_degraded == 2) {
+		/* RAID6 requires 'rcw' in current implementation
+		 * Calculate the real rcw later - for now fake it
+		 * look like rcw is cheaper
+		 */
+		rcw = 1; rmw = 2;
+	} else for (i = disks; i--; ) {
+		/* would I have to read this buffer for read_modify_write */
+		struct r5dev *dev = &sh->dev[i];
+		if ((dev->towrite || i == sh->pd_idx) &&
+		    !test_bit(R5_LOCKED, &dev->flags) &&
+		    !(test_bit(R5_UPTODATE, &dev->flags) ||
+		      test_bit(R5_Wantcompute, &dev->flags))) {
+			if (test_bit(R5_Insync, &dev->flags))
+				rmw++;
+			else
+				rmw += 2*disks;  /* cannot read it */
+		}
+		/* Would I have to read this buffer for reconstruct_write */
+		if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
+		    !test_bit(R5_LOCKED, &dev->flags) &&
+		    !(test_bit(R5_UPTODATE, &dev->flags) ||
+		    test_bit(R5_Wantcompute, &dev->flags))) {
+			if (test_bit(R5_Insync, &dev->flags)) rcw++;
+			else
+				rcw += 2*disks;
+		}
+	}
+	pr_debug("for sector %llu, rmw=%d rcw=%d\n",
+		(unsigned long long)sh->sector, rmw, rcw);
+	set_bit(STRIPE_HANDLE, &sh->state);
+	if (rmw < rcw && rmw > 0)
+		/* prefer read-modify-write, but need to get some data */
+		for (i = disks; i--; ) {
+			struct r5dev *dev = &sh->dev[i];
+			if ((dev->towrite || i == sh->pd_idx) &&
+			    !test_bit(R5_LOCKED, &dev->flags) &&
+			    !(test_bit(R5_UPTODATE, &dev->flags) ||
+			    test_bit(R5_Wantcompute, &dev->flags)) &&
+			    test_bit(R5_Insync, &dev->flags)) {
+				if (
+				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
+					pr_debug("Read_old block "
+						"%d for r-m-w\n", i);
+					set_bit(R5_LOCKED, &dev->flags);
+					set_bit(R5_Wantread, &dev->flags);
+					s->locked++;
+				} else {
+					set_bit(STRIPE_DELAYED, &sh->state);
+					set_bit(STRIPE_HANDLE, &sh->state);
+				}
+			}
+		}
+	if (rcw <= rmw && rcw > 0) {
+		/* want reconstruct write, but need to get some data */
+		rcw = 0;
+		for (i = disks; i--; ) {
+			struct r5dev *dev = &sh->dev[i];
+			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
+			    i != sh->pd_idx && i != sh->qd_idx &&
+			    !test_bit(R5_LOCKED, &dev->flags) &&
+			    !(test_bit(R5_UPTODATE, &dev->flags) ||
+			      test_bit(R5_Wantcompute, &dev->flags))) {
+				rcw++;
+				if (!test_bit(R5_Insync, &dev->flags))
+					continue; /* it's a failed drive */
+				if (
+				  test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
+					pr_debug("Read_old block "
+						"%d for Reconstruct\n", i);
+					set_bit(R5_LOCKED, &dev->flags);
+					set_bit(R5_Wantread, &dev->flags);
+					s->locked++;
+				} else {
+					set_bit(STRIPE_DELAYED, &sh->state);
+					set_bit(STRIPE_HANDLE, &sh->state);
+				}
+			}
+		}
+	}
+	/* now if nothing is locked, and if we have enough data,
+	 * we can start a write request
+	 */
+	/* since handle_stripe can be called at any time we need to handle the
+	 * case where a compute block operation has been submitted and then a
+	 * subsequent call wants to start a write request.  raid_run_ops only
+	 * handles the case where compute block and reconstruct are requested
+	 * simultaneously.  If this is not the case then new writes need to be
+	 * held off until the compute completes.
+	 */
+	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
+	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
+	    !test_bit(STRIPE_BIT_DELAY, &sh->state)))
+		schedule_reconstruction(sh, s, rcw == 0, 0);
+}
+
+static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
+				struct stripe_head_state *s, int disks)
+{
+	struct r5dev *dev = NULL;
+
+	set_bit(STRIPE_HANDLE, &sh->state);
+
+	switch (sh->check_state) {
+	case check_state_idle:
+		/* start a new check operation if there are no failures */
+		if (s->failed == 0) {
+			BUG_ON(s->uptodate != disks);
+			sh->check_state = check_state_run;
+			set_bit(STRIPE_OP_CHECK, &s->ops_request);
+			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
+			s->uptodate--;
+			break;
+		}
+		dev = &sh->dev[s->failed_num[0]];
+		/* fall through */
+	case check_state_compute_result:
+		sh->check_state = check_state_idle;
+		if (!dev)
+			dev = &sh->dev[sh->pd_idx];
+
+		/* check that a write has not made the stripe insync */
+		if (test_bit(STRIPE_INSYNC, &sh->state))
+			break;
+
+		/* either failed parity check, or recovery is happening */
+		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
+		BUG_ON(s->uptodate != disks);
+
+		set_bit(R5_LOCKED, &dev->flags);
+		s->locked++;
+		set_bit(R5_Wantwrite, &dev->flags);
+
+		clear_bit(STRIPE_DEGRADED, &sh->state);
+		set_bit(STRIPE_INSYNC, &sh->state);
+		break;
+	case check_state_run:
+		break; /* we will be called again upon completion */
+	case check_state_check_result:
+		sh->check_state = check_state_idle;
+
+		/* if a failure occurred during the check operation, leave
+		 * STRIPE_INSYNC not set and let the stripe be handled again
+		 */
+		if (s->failed)
+			break;
+
+		/* handle a successful check operation, if parity is correct
+		 * we are done.  Otherwise update the mismatch count and repair
+		 * parity if !MD_RECOVERY_CHECK
+		 */
+		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
+			/* parity is correct (on disc,
+			 * not in buffer any more)
+			 */
+			set_bit(STRIPE_INSYNC, &sh->state);
+		else {
+			conf->mddev->resync_mismatches += STRIPE_SECTORS;
+			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
+				/* don't try to repair!! */
+				set_bit(STRIPE_INSYNC, &sh->state);
+			else {
+				sh->check_state = check_state_compute_run;
+				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
+				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
+				set_bit(R5_Wantcompute,
+					&sh->dev[sh->pd_idx].flags);
+				sh->ops.target = sh->pd_idx;
+				sh->ops.target2 = -1;
+				s->uptodate++;
+			}
+		}
+		break;
+	case check_state_compute_run:
+		break;
+	default:
+		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
+		       __func__, sh->check_state,
+		       (unsigned long long) sh->sector);
+		BUG();
+	}
+}
+
+
+static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
+				  struct stripe_head_state *s,
+				  int disks)
+{
+	int pd_idx = sh->pd_idx;
+	int qd_idx = sh->qd_idx;
+	struct r5dev *dev;
+
+	set_bit(STRIPE_HANDLE, &sh->state);
+
+	BUG_ON(s->failed > 2);
+
+	/* Want to check and possibly repair P and Q.
+	 * However there could be one 'failed' device, in which
+	 * case we can only check one of them, possibly using the
+	 * other to generate missing data
+	 */
+
+	switch (sh->check_state) {
+	case check_state_idle:
+		/* start a new check operation if there are < 2 failures */
+		if (s->failed == s->q_failed) {
+			/* The only possible failed device holds Q, so it
+			 * makes sense to check P (If anything else were failed,
+			 * we would have used P to recreate it).
+			 */
+			sh->check_state = check_state_run;
+		}
+		if (!s->q_failed && s->failed < 2) {
+			/* Q is not failed, and we didn't use it to generate
+			 * anything, so it makes sense to check it
+			 */
+			if (sh->check_state == check_state_run)
+				sh->check_state = check_state_run_pq;
+			else
+				sh->check_state = check_state_run_q;
+		}
+
+		/* discard potentially stale zero_sum_result */
+		sh->ops.zero_sum_result = 0;
+
+		if (sh->check_state == check_state_run) {
+			/* async_xor_zero_sum destroys the contents of P */
+			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
+			s->uptodate--;
+		}
+		if (sh->check_state >= check_state_run &&
+		    sh->check_state <= check_state_run_pq) {
+			/* async_syndrome_zero_sum preserves P and Q, so
+			 * no need to mark them !uptodate here
+			 */
+			set_bit(STRIPE_OP_CHECK, &s->ops_request);
+			break;
+		}
+
+		/* we have 2-disk failure */
+		BUG_ON(s->failed != 2);
+		/* fall through */
+	case check_state_compute_result:
+		sh->check_state = check_state_idle;
+
+		/* check that a write has not made the stripe insync */
+		if (test_bit(STRIPE_INSYNC, &sh->state))
+			break;
+
+		/* now write out any block on a failed drive,
+		 * or P or Q if they were recomputed
+		 */
+		BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
+		if (s->failed == 2) {
+			dev = &sh->dev[s->failed_num[1]];
+			s->locked++;
+			set_bit(R5_LOCKED, &dev->flags);
+			set_bit(R5_Wantwrite, &dev->flags);
+		}
+		if (s->failed >= 1) {
+			dev = &sh->dev[s->failed_num[0]];
+			s->locked++;
+			set_bit(R5_LOCKED, &dev->flags);
+			set_bit(R5_Wantwrite, &dev->flags);
+		}
+		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
+			dev = &sh->dev[pd_idx];
+			s->locked++;
+			set_bit(R5_LOCKED, &dev->flags);
+			set_bit(R5_Wantwrite, &dev->flags);
+		}
+		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
+			dev = &sh->dev[qd_idx];
+			s->locked++;
+			set_bit(R5_LOCKED, &dev->flags);
+			set_bit(R5_Wantwrite, &dev->flags);
+		}
+		clear_bit(STRIPE_DEGRADED, &sh->state);
+
+		set_bit(STRIPE_INSYNC, &sh->state);
+		break;
+	case check_state_run:
+	case check_state_run_q:
+	case check_state_run_pq:
+		break; /* we will be called again upon completion */
+	case check_state_check_result:
+		sh->check_state = check_state_idle;
+
+		/* handle a successful check operation, if parity is correct
+		 * we are done.  Otherwise update the mismatch count and repair
+		 * parity if !MD_RECOVERY_CHECK
+		 */
+		if (sh->ops.zero_sum_result == 0) {
+			/* both parities are correct */
+			if (!s->failed)
+				set_bit(STRIPE_INSYNC, &sh->state);
+			else {
+				/* in contrast to the raid5 case we can validate
+				 * parity, but still have a failure to write
+				 * back
+				 */
+				sh->check_state = check_state_compute_result;
+				/* Returning at this point means that we may go
+				 * off and bring p and/or q uptodate again so
+				 * we make sure to check zero_sum_result again
+				 * to verify if p or q need writeback
+				 */
+			}
+		} else {
+			conf->mddev->resync_mismatches += STRIPE_SECTORS;
+			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
+				/* don't try to repair!! */
+				set_bit(STRIPE_INSYNC, &sh->state);
+			else {
+				int *target = &sh->ops.target;
+
+				sh->ops.target = -1;
+				sh->ops.target2 = -1;
+				sh->check_state = check_state_compute_run;
+				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
+				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
+				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
+					set_bit(R5_Wantcompute,
+						&sh->dev[pd_idx].flags);
+					*target = pd_idx;
+					target = &sh->ops.target2;
+					s->uptodate++;
+				}
+				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
+					set_bit(R5_Wantcompute,
+						&sh->dev[qd_idx].flags);
+					*target = qd_idx;
+					s->uptodate++;
+				}
+			}
+		}
+		break;
+	case check_state_compute_run:
+		break;
+	default:
+		printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
+		       __func__, sh->check_state,
+		       (unsigned long long) sh->sector);
+		BUG();
+	}
+}
+
+static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
+{
+	int i;
+
+	/* We have read all the blocks in this stripe and now we need to
+	 * copy some of them into a target stripe for expand.
+	 */
+	struct dma_async_tx_descriptor *tx = NULL;
+	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
+	for (i = 0; i < sh->disks; i++)
+		if (i != sh->pd_idx && i != sh->qd_idx) {
+			int dd_idx, j;
+			struct stripe_head *sh2;
+			struct async_submit_ctl submit;
+
+			sector_t bn = compute_blocknr(sh, i, 1);
+			sector_t s = raid5_compute_sector(conf, bn, 0,
+							  &dd_idx, NULL);
+			sh2 = get_active_stripe(conf, s, 0, 1, 1);
+			if (sh2 == NULL)
+				/* so far only the early blocks of this stripe
+				 * have been requested.  When later blocks
+				 * get requested, we will try again
+				 */
+				continue;
+			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
+			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
+				/* must have already done this block */
+				release_stripe(sh2);
+				continue;
+			}
+
+			/* place all the copies on one channel */
+			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
+			tx = async_memcpy(sh2->dev[dd_idx].page,
+					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
+					  &submit);
+
+			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
+			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
+			for (j = 0; j < conf->raid_disks; j++)
+				if (j != sh2->pd_idx &&
+				    j != sh2->qd_idx &&
+				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
+					break;
+			if (j == conf->raid_disks) {
+				set_bit(STRIPE_EXPAND_READY, &sh2->state);
+				set_bit(STRIPE_HANDLE, &sh2->state);
+			}
+			release_stripe(sh2);
+
+		}
+	/* done submitting copies, wait for them to complete */
+	if (tx) {
+		async_tx_ack(tx);
+		dma_wait_for_async_tx(tx);
+	}
+}
+
+/*
+ * handle_stripe - do things to a stripe.
+ *
+ * We lock the stripe by setting STRIPE_ACTIVE and then examine the
+ * state of various bits to see what needs to be done.
+ * Possible results:
+ *    return some read requests which now have data
+ *    return some write requests which are safely on storage
+ *    schedule a read on some buffers
+ *    schedule a write of some buffers
+ *    return confirmation of parity correctness
+ *
+ */
+
+static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
+{
+	struct r5conf *conf = sh->raid_conf;
+	int disks = sh->disks;
+	struct r5dev *dev;
+	int i;
+	int do_recovery = 0;
+
+	memset(s, 0, sizeof(*s));
+
+	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
+	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
+	s->failed_num[0] = -1;
+	s->failed_num[1] = -1;
+
+	/* Now to look around and see what can be done */
+	rcu_read_lock();
+	spin_lock_irq(&conf->device_lock);
+	for (i=disks; i--; ) {
+		struct md_rdev *rdev;
+		sector_t first_bad;
+		int bad_sectors;
+		int is_bad = 0;
+
+		dev = &sh->dev[i];
+
+		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
+			 i, dev->flags,
+			 dev->toread, dev->towrite, dev->written);
+		/* maybe we can reply to a read
+		 *
+		 * new wantfill requests are only permitted while
+		 * ops_complete_biofill is guaranteed to be inactive
+		 */
+		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
+		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
+			set_bit(R5_Wantfill, &dev->flags);
+
+		/* now count some things */
+		if (test_bit(R5_LOCKED, &dev->flags))
+			s->locked++;
+		if (test_bit(R5_UPTODATE, &dev->flags))
+			s->uptodate++;
+		if (test_bit(R5_Wantcompute, &dev->flags)) {
+			s->compute++;
+			BUG_ON(s->compute > 2);
+		}
+
+		if (test_bit(R5_Wantfill, &dev->flags))
+			s->to_fill++;
+		else if (dev->toread)
+			s->to_read++;
+		if (dev->towrite) {
+			s->to_write++;
+			if (!test_bit(R5_OVERWRITE, &dev->flags))
+				s->non_overwrite++;
+		}
+		if (dev->written)
+			s->written++;
+		/* Prefer to use the replacement for reads, but only
+		 * if it is recovered enough and has no bad blocks.
+		 */
+		rdev = rcu_dereference(conf->disks[i].replacement);
+		if (rdev && !test_bit(Faulty, &rdev->flags) &&
+		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
+		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
+				 &first_bad, &bad_sectors))
+			set_bit(R5_ReadRepl, &dev->flags);
+		else {
+			if (rdev)
+				set_bit(R5_NeedReplace, &dev->flags);
+			rdev = rcu_dereference(conf->disks[i].rdev);
+			clear_bit(R5_ReadRepl, &dev->flags);
+		}
+		if (rdev && test_bit(Faulty, &rdev->flags))
+			rdev = NULL;
+		if (rdev) {
+			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
+					     &first_bad, &bad_sectors);
+			if (s->blocked_rdev == NULL
+			    && (test_bit(Blocked, &rdev->flags)
+				|| is_bad < 0)) {
+				if (is_bad < 0)
+					set_bit(BlockedBadBlocks,
+						&rdev->flags);
+				s->blocked_rdev = rdev;
+				atomic_inc(&rdev->nr_pending);
+			}
+		}
+		clear_bit(R5_Insync, &dev->flags);
+		if (!rdev)
+			/* Not in-sync */;
+		else if (is_bad) {
+			/* also not in-sync */
+			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
+			    test_bit(R5_UPTODATE, &dev->flags)) {
+				/* treat as in-sync, but with a read error
+				 * which we can now try to correct
+				 */
+				set_bit(R5_Insync, &dev->flags);
+				set_bit(R5_ReadError, &dev->flags);
+			}
+		} else if (test_bit(In_sync, &rdev->flags))
+			set_bit(R5_Insync, &dev->flags);
+		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
+			/* in sync if before recovery_offset */
+			set_bit(R5_Insync, &dev->flags);
+		else if (test_bit(R5_UPTODATE, &dev->flags) &&
+			 test_bit(R5_Expanded, &dev->flags))
+			/* If we've reshaped into here, we assume it is Insync.
+			 * We will shortly update recovery_offset to make
+			 * it official.
+			 */
+			set_bit(R5_Insync, &dev->flags);
+
+		if (rdev && test_bit(R5_WriteError, &dev->flags)) {
+			/* This flag does not apply to '.replacement'
+			 * only to .rdev, so make sure to check that*/
+			struct md_rdev *rdev2 = rcu_dereference(
+				conf->disks[i].rdev);
+			if (rdev2 == rdev)
+				clear_bit(R5_Insync, &dev->flags);
+			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
+				s->handle_bad_blocks = 1;
+				atomic_inc(&rdev2->nr_pending);
+			} else
+				clear_bit(R5_WriteError, &dev->flags);
+		}
+		if (rdev && test_bit(R5_MadeGood, &dev->flags)) {
+			/* This flag does not apply to '.replacement'
+			 * only to .rdev, so make sure to check that*/
+			struct md_rdev *rdev2 = rcu_dereference(
+				conf->disks[i].rdev);
+			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
+				s->handle_bad_blocks = 1;
+				atomic_inc(&rdev2->nr_pending);
+			} else
+				clear_bit(R5_MadeGood, &dev->flags);
+		}
+		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
+			struct md_rdev *rdev2 = rcu_dereference(
+				conf->disks[i].replacement);
+			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
+				s->handle_bad_blocks = 1;
+				atomic_inc(&rdev2->nr_pending);
+			} else
+				clear_bit(R5_MadeGoodRepl, &dev->flags);
+		}
+		if (!test_bit(R5_Insync, &dev->flags)) {
+			/* The ReadError flag will just be confusing now */
+			clear_bit(R5_ReadError, &dev->flags);
+			clear_bit(R5_ReWrite, &dev->flags);
+		}
+		if (test_bit(R5_ReadError, &dev->flags))
+			clear_bit(R5_Insync, &dev->flags);
+		if (!test_bit(R5_Insync, &dev->flags)) {
+			if (s->failed < 2)
+				s->failed_num[s->failed] = i;
+			s->failed++;
+			if (rdev && !test_bit(Faulty, &rdev->flags))
+				do_recovery = 1;
+		}
+	}
+	spin_unlock_irq(&conf->device_lock);
+	if (test_bit(STRIPE_SYNCING, &sh->state)) {
+		/* If there is a failed device being replaced,
+		 *     we must be recovering.
+		 * else if we are after recovery_cp, we must be syncing
+		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
+		 * else we can only be replacing
+		 * sync and recovery both need to read all devices, and so
+		 * use the same flag.
+		 */
+		if (do_recovery ||
+		    sh->sector >= conf->mddev->recovery_cp ||
+		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
+			s->syncing = 1;
+		else
+			s->replacing = 1;
+	}
+	rcu_read_unlock();
+}
+
+static void handle_stripe(struct stripe_head *sh)
+{
+	struct stripe_head_state s;
+	struct r5conf *conf = sh->raid_conf;
+	int i;
+	int prexor;
+	int disks = sh->disks;
+	struct r5dev *pdev, *qdev;
+
+	clear_bit(STRIPE_HANDLE, &sh->state);
+	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
+		/* already being handled, ensure it gets handled
+		 * again when current action finishes */
+		set_bit(STRIPE_HANDLE, &sh->state);
+		return;
+	}
+
+	if (test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
+		set_bit(STRIPE_SYNCING, &sh->state);
+		clear_bit(STRIPE_INSYNC, &sh->state);
+		clear_bit(STRIPE_REPLACED, &sh->state);
+	}
+	clear_bit(STRIPE_DELAYED, &sh->state);
+
+	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
+		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
+	       (unsigned long long)sh->sector, sh->state,
+	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
+	       sh->check_state, sh->reconstruct_state);
+
+	analyse_stripe(sh, &s);
+
+	if (s.handle_bad_blocks) {
+		set_bit(STRIPE_HANDLE, &sh->state);
+		goto finish;
+	}
+
+	if (unlikely(s.blocked_rdev)) {
+		if (s.syncing || s.expanding || s.expanded ||
+		    s.replacing || s.to_write || s.written) {
+			set_bit(STRIPE_HANDLE, &sh->state);
+			goto finish;
+		}
+		/* There is nothing for the blocked_rdev to block */
+		rdev_dec_pending(s.blocked_rdev, conf->mddev);
+		s.blocked_rdev = NULL;
+	}
+
+	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
+		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
+		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
+	}
+
+	pr_debug("locked=%d uptodate=%d to_read=%d"
+	       " to_write=%d failed=%d failed_num=%d,%d\n",
+	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
+	       s.failed_num[0], s.failed_num[1]);
+	/* check if the array has lost more than max_degraded devices and,
+	 * if so, some requests might need to be failed.
+	 */
+	if (s.failed > conf->max_degraded) {
+		sh->check_state = 0;
+		sh->reconstruct_state = 0;
+		if (s.to_read+s.to_write+s.written)
+			handle_failed_stripe(conf, sh, &s, disks, &s.return_bi);
+		if (s.syncing + s.replacing)
+			handle_failed_sync(conf, sh, &s);
+	}
+
+	/*
+	 * might be able to return some write requests if the parity blocks
+	 * are safe, or on a failed drive
+	 */
+	pdev = &sh->dev[sh->pd_idx];
+	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
+		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
+	qdev = &sh->dev[sh->qd_idx];
+	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
+		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
+		|| conf->level < 6;
+
+	if (s.written &&
+	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
+			     && !test_bit(R5_LOCKED, &pdev->flags)
+			     && test_bit(R5_UPTODATE, &pdev->flags)))) &&
+	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
+			     && !test_bit(R5_LOCKED, &qdev->flags)
+			     && test_bit(R5_UPTODATE, &qdev->flags)))))
+		handle_stripe_clean_event(conf, sh, disks, &s.return_bi);
+
+	/* Now we might consider reading some blocks, either to check/generate
+	 * parity, or to satisfy requests
+	 * or to load a block that is being partially written.
+	 */
+	if (s.to_read || s.non_overwrite
+	    || (conf->level == 6 && s.to_write && s.failed)
+	    || (s.syncing && (s.uptodate + s.compute < disks))
+	    || s.replacing
+	    || s.expanding)
+		handle_stripe_fill(sh, &s, disks);
+
+	/* Now we check to see if any write operations have recently
+	 * completed
+	 */
+	prexor = 0;
+	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
+		prexor = 1;
+	if (sh->reconstruct_state == reconstruct_state_drain_result ||
+	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
+		sh->reconstruct_state = reconstruct_state_idle;
+
+		/* All the 'written' buffers and the parity block are ready to
+		 * be written back to disk
+		 */
+		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
+		BUG_ON(sh->qd_idx >= 0 &&
+		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags));
+		for (i = disks; i--; ) {
+			struct r5dev *dev = &sh->dev[i];
+			if (test_bit(R5_LOCKED, &dev->flags) &&
+				(i == sh->pd_idx || i == sh->qd_idx ||
+				 dev->written)) {
+				pr_debug("Writing block %d\n", i);
+				set_bit(R5_Wantwrite, &dev->flags);
+				if (prexor)
+					continue;
+				if (s.failed > 1)
+					continue;
+				if (!test_bit(R5_Insync, &dev->flags) ||
+				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
+				     s.failed == 0))
+					set_bit(STRIPE_INSYNC, &sh->state);
+			}
+		}
+		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+			s.dec_preread_active = 1;
+	}
+
+	/* Now to consider new write requests and what else, if anything
+	 * should be read.  We do not handle new writes when:
+	 * 1/ A 'write' operation (copy+xor) is already in flight.
+	 * 2/ A 'check' operation is in flight, as it may clobber the parity
+	 *    block.
+	 */
+	if (s.to_write && !sh->reconstruct_state && !sh->check_state)
+		handle_stripe_dirtying(conf, sh, &s, disks);
+
+	/* maybe we need to check and possibly fix the parity for this stripe
+	 * Any reads will already have been scheduled, so we just see if enough
+	 * data is available.  The parity check is held off while parity
+	 * dependent operations are in flight.
+	 */
+	if (sh->check_state ||
+	    (s.syncing && s.locked == 0 &&
+	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
+	     !test_bit(STRIPE_INSYNC, &sh->state))) {
+		if (conf->level == 6)
+			handle_parity_checks6(conf, sh, &s, disks);
+		else
+			handle_parity_checks5(conf, sh, &s, disks);
+	}
+
+	if ((s.replacing || s.syncing) && s.locked == 0
+	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
+	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
+		/* Write out to replacement devices where possible */
+		for (i = 0; i < conf->raid_disks; i++)
+			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
+				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
+				set_bit(R5_WantReplace, &sh->dev[i].flags);
+				set_bit(R5_LOCKED, &sh->dev[i].flags);
+				s.locked++;
+			}
+		if (s.replacing)
+			set_bit(STRIPE_INSYNC, &sh->state);
+		set_bit(STRIPE_REPLACED, &sh->state);
+	}
+	if ((s.syncing || s.replacing) && s.locked == 0 &&
+	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
+	    test_bit(STRIPE_INSYNC, &sh->state)) {
+		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
+		clear_bit(STRIPE_SYNCING, &sh->state);
+	}
+
+	/* If the failed drives are just a ReadError, then we might need
+	 * to progress the repair/check process
+	 */
+	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
+		for (i = 0; i < s.failed; i++) {
+			struct r5dev *dev = &sh->dev[s.failed_num[i]];
+			if (test_bit(R5_ReadError, &dev->flags)
+			    && !test_bit(R5_LOCKED, &dev->flags)
+			    && test_bit(R5_UPTODATE, &dev->flags)
+				) {
+				if (!test_bit(R5_ReWrite, &dev->flags)) {
+					set_bit(R5_Wantwrite, &dev->flags);
+					set_bit(R5_ReWrite, &dev->flags);
+					set_bit(R5_LOCKED, &dev->flags);
+					s.locked++;
+				} else {
+					/* let's read it back */
+					set_bit(R5_Wantread, &dev->flags);
+					set_bit(R5_LOCKED, &dev->flags);
+					s.locked++;
+				}
+			}
+		}
+
+
+	/* Finish reconstruct operations initiated by the expansion process */
+	if (sh->reconstruct_state == reconstruct_state_result) {
+		struct stripe_head *sh_src
+			= get_active_stripe(conf, sh->sector, 1, 1, 1);
+		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
+			/* sh cannot be written until sh_src has been read.
+			 * so arrange for sh to be delayed a little
+			 */
+			set_bit(STRIPE_DELAYED, &sh->state);
+			set_bit(STRIPE_HANDLE, &sh->state);
+			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
+					      &sh_src->state))
+				atomic_inc(&conf->preread_active_stripes);
+			release_stripe(sh_src);
+			goto finish;
+		}
+		if (sh_src)
+			release_stripe(sh_src);
+
+		sh->reconstruct_state = reconstruct_state_idle;
+		clear_bit(STRIPE_EXPANDING, &sh->state);
+		for (i = conf->raid_disks; i--; ) {
+			set_bit(R5_Wantwrite, &sh->dev[i].flags);
+			set_bit(R5_LOCKED, &sh->dev[i].flags);
+			s.locked++;
+		}
+	}
+
+	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
+	    !sh->reconstruct_state) {
+		/* Need to write out all blocks after computing parity */
+		sh->disks = conf->raid_disks;
+		stripe_set_idx(sh->sector, conf, 0, sh);
+		schedule_reconstruction(sh, &s, 1, 1);
+	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
+		clear_bit(STRIPE_EXPAND_READY, &sh->state);
+		atomic_dec(&conf->reshape_stripes);
+		wake_up(&conf->wait_for_overlap);
+		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
+	}
+
+	if (s.expanding && s.locked == 0 &&
+	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
+		handle_stripe_expansion(conf, sh);
+
+finish:
+	/* wait for this device to become unblocked */
+	if (conf->mddev->external && unlikely(s.blocked_rdev))
+		md_wait_for_blocked_rdev(s.blocked_rdev, conf->mddev);
+
+	if (s.handle_bad_blocks)
+		for (i = disks; i--; ) {
+			struct md_rdev *rdev;
+			struct r5dev *dev = &sh->dev[i];
+			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
+				/* We own a safe reference to the rdev */
+				rdev = conf->disks[i].rdev;
+				if (!rdev_set_badblocks(rdev, sh->sector,
+							STRIPE_SECTORS, 0))
+					md_error(conf->mddev, rdev);
+				rdev_dec_pending(rdev, conf->mddev);
+			}
+			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
+				rdev = conf->disks[i].rdev;
+				rdev_clear_badblocks(rdev, sh->sector,
+						     STRIPE_SECTORS);
+				rdev_dec_pending(rdev, conf->mddev);
+			}
+			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
+				rdev = conf->disks[i].replacement;
+				if (!rdev)
+					/* rdev have been moved down */
+					rdev = conf->disks[i].rdev;
+				rdev_clear_badblocks(rdev, sh->sector,
+						     STRIPE_SECTORS);
+				rdev_dec_pending(rdev, conf->mddev);
+			}
+		}
+
+	if (s.ops_request)
+		raid_run_ops(sh, s.ops_request);
+
+	ops_run_io(sh, &s);
+
+	if (s.dec_preread_active) {
+		/* We delay this until after ops_run_io so that if make_request
+		 * is waiting on a flush, it won't continue until the writes
+		 * have actually been submitted.
+		 */
+		atomic_dec(&conf->preread_active_stripes);
+		if (atomic_read(&conf->preread_active_stripes) <
+		    IO_THRESHOLD)
+			md_wakeup_thread(conf->mddev->thread);
+	}
+
+	return_io(s.return_bi);
+
+	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
+}
+
+static void raid5_activate_delayed(struct r5conf *conf)
+{
+	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
+		while (!list_empty(&conf->delayed_list)) {
+			struct list_head *l = conf->delayed_list.next;
+			struct stripe_head *sh;
+			sh = list_entry(l, struct stripe_head, lru);
+			list_del_init(l);
+			clear_bit(STRIPE_DELAYED, &sh->state);
+			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+				atomic_inc(&conf->preread_active_stripes);
+			list_add_tail(&sh->lru, &conf->hold_list);
+		}
+	}
+}
+
+static void activate_bit_delay(struct r5conf *conf)
+{
+	/* device_lock is held */
+	struct list_head head;
+	list_add(&head, &conf->bitmap_list);
+	list_del_init(&conf->bitmap_list);
+	while (!list_empty(&head)) {
+		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
+		list_del_init(&sh->lru);
+		atomic_inc(&sh->count);
+		__release_stripe(conf, sh);
+	}
+}
+
+int md_raid5_congested(struct mddev *mddev, int bits)
+{
+	struct r5conf *conf = mddev->private;
+
+	/* No difference between reads and writes.  Just check
+	 * how busy the stripe_cache is
+	 */
+
+	if (conf->inactive_blocked)
+		return 1;
+	if (conf->quiesce)
+		return 1;
+	if (list_empty_careful(&conf->inactive_list))
+		return 1;
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(md_raid5_congested);
+
+static int raid5_congested(void *data, int bits)
+{
+	struct mddev *mddev = data;
+
+	return mddev_congested(mddev, bits) ||
+		md_raid5_congested(mddev, bits);
+}
+
+/* We want read requests to align with chunks where possible,
+ * but write requests don't need to.
+ */
+static int raid5_mergeable_bvec(struct request_queue *q,
+				struct bvec_merge_data *bvm,
+				struct bio_vec *biovec)
+{
+	struct mddev *mddev = q->queuedata;
+	sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
+	int max;
+	unsigned int chunk_sectors = mddev->chunk_sectors;
+	unsigned int bio_sectors = bvm->bi_size >> 9;
+
+	if ((bvm->bi_rw & 1) == WRITE)
+		return biovec->bv_len; /* always allow writes to be mergeable */
+
+	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
+		chunk_sectors = mddev->new_chunk_sectors;
+	max =  (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
+	if (max < 0) max = 0;
+	if (max <= biovec->bv_len && bio_sectors == 0)
+		return biovec->bv_len;
+	else
+		return max;
+}
+
+
+static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
+{
+	sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
+	unsigned int chunk_sectors = mddev->chunk_sectors;
+	unsigned int bio_sectors = bio->bi_size >> 9;
+
+	if (mddev->new_chunk_sectors < mddev->chunk_sectors)
+		chunk_sectors = mddev->new_chunk_sectors;
+	return  chunk_sectors >=
+		((sector & (chunk_sectors - 1)) + bio_sectors);
+}
+
+/*
+ *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
+ *  later sampled by raid5d.
+ */
+static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
+{
+	unsigned long flags;
+
+	spin_lock_irqsave(&conf->device_lock, flags);
+
+	bi->bi_next = conf->retry_read_aligned_list;
+	conf->retry_read_aligned_list = bi;
+
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+	md_wakeup_thread(conf->mddev->thread);
+}
+
+
+static struct bio *remove_bio_from_retry(struct r5conf *conf)
+{
+	struct bio *bi;
+
+	bi = conf->retry_read_aligned;
+	if (bi) {
+		conf->retry_read_aligned = NULL;
+		return bi;
+	}
+	bi = conf->retry_read_aligned_list;
+	if(bi) {
+		conf->retry_read_aligned_list = bi->bi_next;
+		bi->bi_next = NULL;
+		/*
+		 * this sets the active strip count to 1 and the processed
+		 * strip count to zero (upper 8 bits)
+		 */
+		bi->bi_phys_segments = 1; /* biased count of active stripes */
+	}
+
+	return bi;
+}
+
+
+/*
+ *  The "raid5_align_endio" should check if the read succeeded and if it
+ *  did, call bio_endio on the original bio (having bio_put the new bio
+ *  first).
+ *  If the read failed..
+ */
+static void raid5_align_endio(struct bio *bi, int error)
+{
+	struct bio* raid_bi  = bi->bi_private;
+	struct mddev *mddev;
+	struct r5conf *conf;
+	int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
+	struct md_rdev *rdev;
+
+	bio_put(bi);
+
+	rdev = (void*)raid_bi->bi_next;
+	raid_bi->bi_next = NULL;
+	mddev = rdev->mddev;
+	conf = mddev->private;
+
+	rdev_dec_pending(rdev, conf->mddev);
+
+	if (!error && uptodate) {
+		bio_endio(raid_bi, 0);
+		if (atomic_dec_and_test(&conf->active_aligned_reads))
+			wake_up(&conf->wait_for_stripe);
+		return;
+	}
+
+
+	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
+
+	add_bio_to_retry(raid_bi, conf);
+}
+
+static int bio_fits_rdev(struct bio *bi)
+{
+	struct request_queue *q = bdev_get_queue(bi->bi_bdev);
+
+	if ((bi->bi_size>>9) > queue_max_sectors(q))
+		return 0;
+	blk_recount_segments(q, bi);
+	if (bi->bi_phys_segments > queue_max_segments(q))
+		return 0;
+
+	if (q->merge_bvec_fn)
+		/* it's too hard to apply the merge_bvec_fn at this stage,
+		 * just just give up
+		 */
+		return 0;
+
+	return 1;
+}
+
+
+static int chunk_aligned_read(struct mddev *mddev, struct bio * raid_bio)
+{
+	struct r5conf *conf = mddev->private;
+	int dd_idx;
+	struct bio* align_bi;
+	struct md_rdev *rdev;
+	sector_t end_sector;
+
+	if (!in_chunk_boundary(mddev, raid_bio)) {
+		pr_debug("chunk_aligned_read : non aligned\n");
+		return 0;
+	}
+	/*
+	 * use bio_clone_mddev to make a copy of the bio
+	 */
+	align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
+	if (!align_bi)
+		return 0;
+	/*
+	 *   set bi_end_io to a new function, and set bi_private to the
+	 *     original bio.
+	 */
+	align_bi->bi_end_io  = raid5_align_endio;
+	align_bi->bi_private = raid_bio;
+	/*
+	 *	compute position
+	 */
+	align_bi->bi_sector =  raid5_compute_sector(conf, raid_bio->bi_sector,
+						    0,
+						    &dd_idx, NULL);
+
+	end_sector = align_bi->bi_sector + (align_bi->bi_size >> 9);
+	rcu_read_lock();
+	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
+	if (!rdev || test_bit(Faulty, &rdev->flags) ||
+	    rdev->recovery_offset < end_sector) {
+		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
+		if (rdev &&
+		    (test_bit(Faulty, &rdev->flags) ||
+		    !(test_bit(In_sync, &rdev->flags) ||
+		      rdev->recovery_offset >= end_sector)))
+			rdev = NULL;
+	}
+	if (rdev) {
+		sector_t first_bad;
+		int bad_sectors;
+
+		atomic_inc(&rdev->nr_pending);
+		rcu_read_unlock();
+		raid_bio->bi_next = (void*)rdev;
+		align_bi->bi_bdev =  rdev->bdev;
+		align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
+
+		if (!bio_fits_rdev(align_bi) ||
+		    is_badblock(rdev, align_bi->bi_sector, align_bi->bi_size>>9,
+				&first_bad, &bad_sectors)) {
+			/* too big in some way, or has a known bad block */
+			bio_put(align_bi);
+			rdev_dec_pending(rdev, mddev);
+			return 0;
+		}
+
+		/* No reshape active, so we can trust rdev->data_offset */
+		align_bi->bi_sector += rdev->data_offset;
+
+		spin_lock_irq(&conf->device_lock);
+		wait_event_lock_irq(conf->wait_for_stripe,
+				    conf->quiesce == 0,
+				    conf->device_lock, /* nothing */);
+		atomic_inc(&conf->active_aligned_reads);
+		spin_unlock_irq(&conf->device_lock);
+
+		generic_make_request(align_bi);
+		return 1;
+	} else {
+		rcu_read_unlock();
+		bio_put(align_bi);
+		return 0;
+	}
+}
+
+/* __get_priority_stripe - get the next stripe to process
+ *
+ * Full stripe writes are allowed to pass preread active stripes up until
+ * the bypass_threshold is exceeded.  In general the bypass_count
+ * increments when the handle_list is handled before the hold_list; however, it
+ * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
+ * stripe with in flight i/o.  The bypass_count will be reset when the
+ * head of the hold_list has changed, i.e. the head was promoted to the
+ * handle_list.
+ */
+static struct stripe_head *__get_priority_stripe(struct r5conf *conf)
+{
+	struct stripe_head *sh;
+
+	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
+		  __func__,
+		  list_empty(&conf->handle_list) ? "empty" : "busy",
+		  list_empty(&conf->hold_list) ? "empty" : "busy",
+		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
+
+	if (!list_empty(&conf->handle_list)) {
+		sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
+
+		if (list_empty(&conf->hold_list))
+			conf->bypass_count = 0;
+		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
+			if (conf->hold_list.next == conf->last_hold)
+				conf->bypass_count++;
+			else {
+				conf->last_hold = conf->hold_list.next;
+				conf->bypass_count -= conf->bypass_threshold;
+				if (conf->bypass_count < 0)
+					conf->bypass_count = 0;
+			}
+		}
+	} else if (!list_empty(&conf->hold_list) &&
+		   ((conf->bypass_threshold &&
+		     conf->bypass_count > conf->bypass_threshold) ||
+		    atomic_read(&conf->pending_full_writes) == 0)) {
+		sh = list_entry(conf->hold_list.next,
+				typeof(*sh), lru);
+		conf->bypass_count -= conf->bypass_threshold;
+		if (conf->bypass_count < 0)
+			conf->bypass_count = 0;
+	} else
+		return NULL;
+
+	list_del_init(&sh->lru);
+	atomic_inc(&sh->count);
+	BUG_ON(atomic_read(&sh->count) != 1);
+	return sh;
+}
+
+static void make_request(struct mddev *mddev, struct bio * bi)
+{
+	struct r5conf *conf = mddev->private;
+	int dd_idx;
+	sector_t new_sector;
+	sector_t logical_sector, last_sector;
+	struct stripe_head *sh;
+	const int rw = bio_data_dir(bi);
+	int remaining;
+	int plugged;
+
+	if (unlikely(bi->bi_rw & REQ_FLUSH)) {
+		md_flush_request(mddev, bi);
+		return;
+	}
+
+	md_write_start(mddev, bi);
+
+	if (rw == READ &&
+	     mddev->reshape_position == MaxSector &&
+	     chunk_aligned_read(mddev,bi))
+		return;
+
+	logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
+	last_sector = bi->bi_sector + (bi->bi_size>>9);
+	bi->bi_next = NULL;
+	bi->bi_phys_segments = 1;	/* over-loaded to count active stripes */
+
+	plugged = mddev_check_plugged(mddev);
+	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
+		DEFINE_WAIT(w);
+		int disks, data_disks;
+		int previous;
+
+	retry:
+		previous = 0;
+		disks = conf->raid_disks;
+		prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
+		if (unlikely(conf->reshape_progress != MaxSector)) {
+			/* spinlock is needed as reshape_progress may be
+			 * 64bit on a 32bit platform, and so it might be
+			 * possible to see a half-updated value
+			 * Of course reshape_progress could change after
+			 * the lock is dropped, so once we get a reference
+			 * to the stripe that we think it is, we will have
+			 * to check again.
+			 */
+			spin_lock_irq(&conf->device_lock);
+			if (mddev->delta_disks < 0
+			    ? logical_sector < conf->reshape_progress
+			    : logical_sector >= conf->reshape_progress) {
+				disks = conf->previous_raid_disks;
+				previous = 1;
+			} else {
+				if (mddev->delta_disks < 0
+				    ? logical_sector < conf->reshape_safe
+				    : logical_sector >= conf->reshape_safe) {
+					spin_unlock_irq(&conf->device_lock);
+					schedule();
+					goto retry;
+				}
+			}
+			spin_unlock_irq(&conf->device_lock);
+		}
+		data_disks = disks - conf->max_degraded;
+
+		new_sector = raid5_compute_sector(conf, logical_sector,
+						  previous,
+						  &dd_idx, NULL);
+		pr_debug("raid456: make_request, sector %llu logical %llu\n",
+			(unsigned long long)new_sector, 
+			(unsigned long long)logical_sector);
+
+		sh = get_active_stripe(conf, new_sector, previous,
+				       (bi->bi_rw&RWA_MASK), 0);
+		if (sh) {
+			if (unlikely(previous)) {
+				/* expansion might have moved on while waiting for a
+				 * stripe, so we must do the range check again.
+				 * Expansion could still move past after this
+				 * test, but as we are holding a reference to
+				 * 'sh', we know that if that happens,
+				 *  STRIPE_EXPANDING will get set and the expansion
+				 * won't proceed until we finish with the stripe.
+				 */
+				int must_retry = 0;
+				spin_lock_irq(&conf->device_lock);
+				if (mddev->delta_disks < 0
+				    ? logical_sector >= conf->reshape_progress
+				    : logical_sector < conf->reshape_progress)
+					/* mismatch, need to try again */
+					must_retry = 1;
+				spin_unlock_irq(&conf->device_lock);
+				if (must_retry) {
+					release_stripe(sh);
+					schedule();
+					goto retry;
+				}
+			}
+
+			if (rw == WRITE &&
+			    logical_sector >= mddev->suspend_lo &&
+			    logical_sector < mddev->suspend_hi) {
+				release_stripe(sh);
+				/* As the suspend_* range is controlled by
+				 * userspace, we want an interruptible
+				 * wait.
+				 */
+				flush_signals(current);
+				prepare_to_wait(&conf->wait_for_overlap,
+						&w, TASK_INTERRUPTIBLE);
+				if (logical_sector >= mddev->suspend_lo &&
+				    logical_sector < mddev->suspend_hi)
+					schedule();
+				goto retry;
+			}
+
+			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
+			    !add_stripe_bio(sh, bi, dd_idx, rw)) {
+				/* Stripe is busy expanding or
+				 * add failed due to overlap.  Flush everything
+				 * and wait a while
+				 */
+				md_wakeup_thread(mddev->thread);
+				release_stripe(sh);
+				schedule();
+				goto retry;
+			}
+			finish_wait(&conf->wait_for_overlap, &w);
+			set_bit(STRIPE_HANDLE, &sh->state);
+			clear_bit(STRIPE_DELAYED, &sh->state);
+			if ((bi->bi_rw & REQ_SYNC) &&
+			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
+				atomic_inc(&conf->preread_active_stripes);
+			release_stripe(sh);
+		} else {
+			/* cannot get stripe for read-ahead, just give-up */
+			clear_bit(BIO_UPTODATE, &bi->bi_flags);
+			finish_wait(&conf->wait_for_overlap, &w);
+			break;
+		}
+			
+	}
+	if (!plugged)
+		md_wakeup_thread(mddev->thread);
+
+	spin_lock_irq(&conf->device_lock);
+	remaining = raid5_dec_bi_phys_segments(bi);
+	spin_unlock_irq(&conf->device_lock);
+	if (remaining == 0) {
+
+		if ( rw == WRITE )
+			md_write_end(mddev);
+
+		bio_endio(bi, 0);
+	}
+}
+
+static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
+
+static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
+{
+	/* reshaping is quite different to recovery/resync so it is
+	 * handled quite separately ... here.
+	 *
+	 * On each call to sync_request, we gather one chunk worth of
+	 * destination stripes and flag them as expanding.
+	 * Then we find all the source stripes and request reads.
+	 * As the reads complete, handle_stripe will copy the data
+	 * into the destination stripe and release that stripe.
+	 */
+	struct r5conf *conf = mddev->private;
+	struct stripe_head *sh;
+	sector_t first_sector, last_sector;
+	int raid_disks = conf->previous_raid_disks;
+	int data_disks = raid_disks - conf->max_degraded;
+	int new_data_disks = conf->raid_disks - conf->max_degraded;
+	int i;
+	int dd_idx;
+	sector_t writepos, readpos, safepos;
+	sector_t stripe_addr;
+	int reshape_sectors;
+	struct list_head stripes;
+
+	if (sector_nr == 0) {
+		/* If restarting in the middle, skip the initial sectors */
+		if (mddev->delta_disks < 0 &&
+		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
+			sector_nr = raid5_size(mddev, 0, 0)
+				- conf->reshape_progress;
+		} else if (mddev->delta_disks >= 0 &&
+			   conf->reshape_progress > 0)
+			sector_nr = conf->reshape_progress;
+		sector_div(sector_nr, new_data_disks);
+		if (sector_nr) {
+			mddev->curr_resync_completed = sector_nr;
+			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
+			*skipped = 1;
+			return sector_nr;
+		}
+	}
+
+	/* We need to process a full chunk at a time.
+	 * If old and new chunk sizes differ, we need to process the
+	 * largest of these
+	 */
+	if (mddev->new_chunk_sectors > mddev->chunk_sectors)
+		reshape_sectors = mddev->new_chunk_sectors;
+	else
+		reshape_sectors = mddev->chunk_sectors;
+
+	/* we update the metadata when there is more than 3Meg
+	 * in the block range (that is rather arbitrary, should
+	 * probably be time based) or when the data about to be
+	 * copied would over-write the source of the data at
+	 * the front of the range.
+	 * i.e. one new_stripe along from reshape_progress new_maps
+	 * to after where reshape_safe old_maps to
+	 */
+	writepos = conf->reshape_progress;
+	sector_div(writepos, new_data_disks);
+	readpos = conf->reshape_progress;
+	sector_div(readpos, data_disks);
+	safepos = conf->reshape_safe;
+	sector_div(safepos, data_disks);
+	if (mddev->delta_disks < 0) {
+		writepos -= min_t(sector_t, reshape_sectors, writepos);
+		readpos += reshape_sectors;
+		safepos += reshape_sectors;
+	} else {
+		writepos += reshape_sectors;
+		readpos -= min_t(sector_t, reshape_sectors, readpos);
+		safepos -= min_t(sector_t, reshape_sectors, safepos);
+	}
+
+	/* 'writepos' is the most advanced device address we might write.
+	 * 'readpos' is the least advanced device address we might read.
+	 * 'safepos' is the least address recorded in the metadata as having
+	 *     been reshaped.
+	 * If 'readpos' is behind 'writepos', then there is no way that we can
+	 * ensure safety in the face of a crash - that must be done by userspace
+	 * making a backup of the data.  So in that case there is no particular
+	 * rush to update metadata.
+	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
+	 * update the metadata to advance 'safepos' to match 'readpos' so that
+	 * we can be safe in the event of a crash.
+	 * So we insist on updating metadata if safepos is behind writepos and
+	 * readpos is beyond writepos.
+	 * In any case, update the metadata every 10 seconds.
+	 * Maybe that number should be configurable, but I'm not sure it is
+	 * worth it.... maybe it could be a multiple of safemode_delay???
+	 */
+	if ((mddev->delta_disks < 0
+	     ? (safepos > writepos && readpos < writepos)
+	     : (safepos < writepos && readpos > writepos)) ||
+	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
+		/* Cannot proceed until we've updated the superblock... */
+		wait_event(conf->wait_for_overlap,
+			   atomic_read(&conf->reshape_stripes)==0);
+		mddev->reshape_position = conf->reshape_progress;
+		mddev->curr_resync_completed = sector_nr;
+		conf->reshape_checkpoint = jiffies;
+		set_bit(MD_CHANGE_DEVS, &mddev->flags);
+		md_wakeup_thread(mddev->thread);
+		wait_event(mddev->sb_wait, mddev->flags == 0 ||
+			   kthread_should_stop());
+		spin_lock_irq(&conf->device_lock);
+		conf->reshape_safe = mddev->reshape_position;
+		spin_unlock_irq(&conf->device_lock);
+		wake_up(&conf->wait_for_overlap);
+		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
+	}
+
+	if (mddev->delta_disks < 0) {
+		BUG_ON(conf->reshape_progress == 0);
+		stripe_addr = writepos;
+		BUG_ON((mddev->dev_sectors &
+			~((sector_t)reshape_sectors - 1))
+		       - reshape_sectors - stripe_addr
+		       != sector_nr);
+	} else {
+		BUG_ON(writepos != sector_nr + reshape_sectors);
+		stripe_addr = sector_nr;
+	}
+	INIT_LIST_HEAD(&stripes);
+	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
+		int j;
+		int skipped_disk = 0;
+		sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
+		set_bit(STRIPE_EXPANDING, &sh->state);
+		atomic_inc(&conf->reshape_stripes);
+		/* If any of this stripe is beyond the end of the old
+		 * array, then we need to zero those blocks
+		 */
+		for (j=sh->disks; j--;) {
+			sector_t s;
+			if (j == sh->pd_idx)
+				continue;
+			if (conf->level == 6 &&
+			    j == sh->qd_idx)
+				continue;
+			s = compute_blocknr(sh, j, 0);
+			if (s < raid5_size(mddev, 0, 0)) {
+				skipped_disk = 1;
+				continue;
+			}
+			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
+			set_bit(R5_Expanded, &sh->dev[j].flags);
+			set_bit(R5_UPTODATE, &sh->dev[j].flags);
+		}
+		if (!skipped_disk) {
+			set_bit(STRIPE_EXPAND_READY, &sh->state);
+			set_bit(STRIPE_HANDLE, &sh->state);
+		}
+		list_add(&sh->lru, &stripes);
+	}
+	spin_lock_irq(&conf->device_lock);
+	if (mddev->delta_disks < 0)
+		conf->reshape_progress -= reshape_sectors * new_data_disks;
+	else
+		conf->reshape_progress += reshape_sectors * new_data_disks;
+	spin_unlock_irq(&conf->device_lock);
+	/* Ok, those stripe are ready. We can start scheduling
+	 * reads on the source stripes.
+	 * The source stripes are determined by mapping the first and last
+	 * block on the destination stripes.
+	 */
+	first_sector =
+		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
+				     1, &dd_idx, NULL);
+	last_sector =
+		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
+					    * new_data_disks - 1),
+				     1, &dd_idx, NULL);
+	if (last_sector >= mddev->dev_sectors)
+		last_sector = mddev->dev_sectors - 1;
+	while (first_sector <= last_sector) {
+		sh = get_active_stripe(conf, first_sector, 1, 0, 1);
+		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
+		set_bit(STRIPE_HANDLE, &sh->state);
+		release_stripe(sh);
+		first_sector += STRIPE_SECTORS;
+	}
+	/* Now that the sources are clearly marked, we can release
+	 * the destination stripes
+	 */
+	while (!list_empty(&stripes)) {
+		sh = list_entry(stripes.next, struct stripe_head, lru);
+		list_del_init(&sh->lru);
+		release_stripe(sh);
+	}
+	/* If this takes us to the resync_max point where we have to pause,
+	 * then we need to write out the superblock.
+	 */
+	sector_nr += reshape_sectors;
+	if ((sector_nr - mddev->curr_resync_completed) * 2
+	    >= mddev->resync_max - mddev->curr_resync_completed) {
+		/* Cannot proceed until we've updated the superblock... */
+		wait_event(conf->wait_for_overlap,
+			   atomic_read(&conf->reshape_stripes) == 0);
+		mddev->reshape_position = conf->reshape_progress;
+		mddev->curr_resync_completed = sector_nr;
+		conf->reshape_checkpoint = jiffies;
+		set_bit(MD_CHANGE_DEVS, &mddev->flags);
+		md_wakeup_thread(mddev->thread);
+		wait_event(mddev->sb_wait,
+			   !test_bit(MD_CHANGE_DEVS, &mddev->flags)
+			   || kthread_should_stop());
+		spin_lock_irq(&conf->device_lock);
+		conf->reshape_safe = mddev->reshape_position;
+		spin_unlock_irq(&conf->device_lock);
+		wake_up(&conf->wait_for_overlap);
+		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
+	}
+	return reshape_sectors;
+}
+
+/* FIXME go_faster isn't used */
+static inline sector_t sync_request(struct mddev *mddev, sector_t sector_nr, int *skipped, int go_faster)
+{
+	struct r5conf *conf = mddev->private;
+	struct stripe_head *sh;
+	sector_t max_sector = mddev->dev_sectors;
+	sector_t sync_blocks;
+	int still_degraded = 0;
+	int i;
+
+	if (sector_nr >= max_sector) {
+		/* just being told to finish up .. nothing much to do */
+
+		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
+			end_reshape(conf);
+			return 0;
+		}
+
+		if (mddev->curr_resync < max_sector) /* aborted */
+			bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
+					&sync_blocks, 1);
+		else /* completed sync */
+			conf->fullsync = 0;
+		bitmap_close_sync(mddev->bitmap);
+
+		return 0;
+	}
+
+	/* Allow raid5_quiesce to complete */
+	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
+
+	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
+		return reshape_request(mddev, sector_nr, skipped);
+
+	/* No need to check resync_max as we never do more than one
+	 * stripe, and as resync_max will always be on a chunk boundary,
+	 * if the check in md_do_sync didn't fire, there is no chance
+	 * of overstepping resync_max here
+	 */
+
+	/* if there is too many failed drives and we are trying
+	 * to resync, then assert that we are finished, because there is
+	 * nothing we can do.
+	 */
+	if (mddev->degraded >= conf->max_degraded &&
+	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
+		sector_t rv = mddev->dev_sectors - sector_nr;
+		*skipped = 1;
+		return rv;
+	}
+	if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
+	    !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
+	    !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
+		/* we can skip this block, and probably more */
+		sync_blocks /= STRIPE_SECTORS;
+		*skipped = 1;
+		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
+	}
+
+	bitmap_cond_end_sync(mddev->bitmap, sector_nr);
+
+	sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
+	if (sh == NULL) {
+		sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
+		/* make sure we don't swamp the stripe cache if someone else
+		 * is trying to get access
+		 */
+		schedule_timeout_uninterruptible(1);
+	}
+	/* Need to check if array will still be degraded after recovery/resync
+	 * We don't need to check the 'failed' flag as when that gets set,
+	 * recovery aborts.
+	 */
+	for (i = 0; i < conf->raid_disks; i++)
+		if (conf->disks[i].rdev == NULL)
+			still_degraded = 1;
+
+	bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
+
+	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
+
+	handle_stripe(sh);
+	release_stripe(sh);
+
+	return STRIPE_SECTORS;
+}
+
+static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio)
+{
+	/* We may not be able to submit a whole bio at once as there
+	 * may not be enough stripe_heads available.
+	 * We cannot pre-allocate enough stripe_heads as we may need
+	 * more than exist in the cache (if we allow ever large chunks).
+	 * So we do one stripe head at a time and record in
+	 * ->bi_hw_segments how many have been done.
+	 *
+	 * We *know* that this entire raid_bio is in one chunk, so
+	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
+	 */
+	struct stripe_head *sh;
+	int dd_idx;
+	sector_t sector, logical_sector, last_sector;
+	int scnt = 0;
+	int remaining;
+	int handled = 0;
+
+	logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
+	sector = raid5_compute_sector(conf, logical_sector,
+				      0, &dd_idx, NULL);
+	last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
+
+	for (; logical_sector < last_sector;
+	     logical_sector += STRIPE_SECTORS,
+		     sector += STRIPE_SECTORS,
+		     scnt++) {
+
+		if (scnt < raid5_bi_hw_segments(raid_bio))
+			/* already done this stripe */
+			continue;
+
+		sh = get_active_stripe(conf, sector, 0, 1, 0);
+
+		if (!sh) {
+			/* failed to get a stripe - must wait */
+			raid5_set_bi_hw_segments(raid_bio, scnt);
+			conf->retry_read_aligned = raid_bio;
+			return handled;
+		}
+
+		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
+			release_stripe(sh);
+			raid5_set_bi_hw_segments(raid_bio, scnt);
+			conf->retry_read_aligned = raid_bio;
+			return handled;
+		}
+
+		handle_stripe(sh);
+		release_stripe(sh);
+		handled++;
+	}
+	spin_lock_irq(&conf->device_lock);
+	remaining = raid5_dec_bi_phys_segments(raid_bio);
+	spin_unlock_irq(&conf->device_lock);
+	if (remaining == 0)
+		bio_endio(raid_bio, 0);
+	if (atomic_dec_and_test(&conf->active_aligned_reads))
+		wake_up(&conf->wait_for_stripe);
+	return handled;
+}
+
+
+/*
+ * This is our raid5 kernel thread.
+ *
+ * We scan the hash table for stripes which can be handled now.
+ * During the scan, completed stripes are saved for us by the interrupt
+ * handler, so that they will not have to wait for our next wakeup.
+ */
+static void raid5d(struct mddev *mddev)
+{
+	struct stripe_head *sh;
+	struct r5conf *conf = mddev->private;
+	int handled;
+	struct blk_plug plug;
+
+	pr_debug("+++ raid5d active\n");
+
+	md_check_recovery(mddev);
+
+	blk_start_plug(&plug);
+	handled = 0;
+	spin_lock_irq(&conf->device_lock);
+	while (1) {
+		struct bio *bio;
+
+		if (atomic_read(&mddev->plug_cnt) == 0 &&
+		    !list_empty(&conf->bitmap_list)) {
+			/* Now is a good time to flush some bitmap updates */
+			conf->seq_flush++;
+			spin_unlock_irq(&conf->device_lock);
+			bitmap_unplug(mddev->bitmap);
+			spin_lock_irq(&conf->device_lock);
+			conf->seq_write = conf->seq_flush;
+			activate_bit_delay(conf);
+		}
+		if (atomic_read(&mddev->plug_cnt) == 0)
+			raid5_activate_delayed(conf);
+
+		while ((bio = remove_bio_from_retry(conf))) {
+			int ok;
+			spin_unlock_irq(&conf->device_lock);
+			ok = retry_aligned_read(conf, bio);
+			spin_lock_irq(&conf->device_lock);
+			if (!ok)
+				break;
+			handled++;
+		}
+
+		sh = __get_priority_stripe(conf);
+
+		if (!sh)
+			break;
+		spin_unlock_irq(&conf->device_lock);
+		
+		handled++;
+		handle_stripe(sh);
+		release_stripe(sh);
+		cond_resched();
+
+		if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
+			md_check_recovery(mddev);
+
+		spin_lock_irq(&conf->device_lock);
+	}
+	pr_debug("%d stripes handled\n", handled);
+
+	spin_unlock_irq(&conf->device_lock);
+
+	async_tx_issue_pending_all();
+	blk_finish_plug(&plug);
+
+	pr_debug("--- raid5d inactive\n");
+}
+
+static ssize_t
+raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
+{
+	struct r5conf *conf = mddev->private;
+	if (conf)
+		return sprintf(page, "%d\n", conf->max_nr_stripes);
+	else
+		return 0;
+}
+
+int
+raid5_set_cache_size(struct mddev *mddev, int size)
+{
+	struct r5conf *conf = mddev->private;
+	int err;
+
+	if (size <= 16 || size > 32768)
+		return -EINVAL;
+	while (size < conf->max_nr_stripes) {
+		if (drop_one_stripe(conf))
+			conf->max_nr_stripes--;
+		else
+			break;
+	}
+	err = md_allow_write(mddev);
+	if (err)
+		return err;
+	while (size > conf->max_nr_stripes) {
+		if (grow_one_stripe(conf))
+			conf->max_nr_stripes++;
+		else break;
+	}
+	return 0;
+}
+EXPORT_SYMBOL(raid5_set_cache_size);
+
+static ssize_t
+raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
+{
+	struct r5conf *conf = mddev->private;
+	unsigned long new;
+	int err;
+
+	if (len >= PAGE_SIZE)
+		return -EINVAL;
+	if (!conf)
+		return -ENODEV;
+
+	if (strict_strtoul(page, 10, &new))
+		return -EINVAL;
+	err = raid5_set_cache_size(mddev, new);
+	if (err)
+		return err;
+	return len;
+}
+
+static struct md_sysfs_entry
+raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
+				raid5_show_stripe_cache_size,
+				raid5_store_stripe_cache_size);
+
+static ssize_t
+raid5_show_preread_threshold(struct mddev *mddev, char *page)
+{
+	struct r5conf *conf = mddev->private;
+	if (conf)
+		return sprintf(page, "%d\n", conf->bypass_threshold);
+	else
+		return 0;
+}
+
+static ssize_t
+raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
+{
+	struct r5conf *conf = mddev->private;
+	unsigned long new;
+	if (len >= PAGE_SIZE)
+		return -EINVAL;
+	if (!conf)
+		return -ENODEV;
+
+	if (strict_strtoul(page, 10, &new))
+		return -EINVAL;
+	if (new > conf->max_nr_stripes)
+		return -EINVAL;
+	conf->bypass_threshold = new;
+	return len;
+}
+
+static struct md_sysfs_entry
+raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
+					S_IRUGO | S_IWUSR,
+					raid5_show_preread_threshold,
+					raid5_store_preread_threshold);
+
+static ssize_t
+stripe_cache_active_show(struct mddev *mddev, char *page)
+{
+	struct r5conf *conf = mddev->private;
+	if (conf)
+		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
+	else
+		return 0;
+}
+
+static struct md_sysfs_entry
+raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
+
+static struct attribute *raid5_attrs[] =  {
+	&raid5_stripecache_size.attr,
+	&raid5_stripecache_active.attr,
+	&raid5_preread_bypass_threshold.attr,
+	NULL,
+};
+static struct attribute_group raid5_attrs_group = {
+	.name = NULL,
+	.attrs = raid5_attrs,
+};
+
+static sector_t
+raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
+{
+	struct r5conf *conf = mddev->private;
+
+	if (!sectors)
+		sectors = mddev->dev_sectors;
+	if (!raid_disks)
+		/* size is defined by the smallest of previous and new size */
+		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
+
+	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
+	sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
+	return sectors * (raid_disks - conf->max_degraded);
+}
+
+static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
+{
+	safe_put_page(percpu->spare_page);
+	kfree(percpu->scribble);
+	percpu->spare_page = NULL;
+	percpu->scribble = NULL;
+}
+
+static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
+{
+	if (conf->level == 6 && !percpu->spare_page)
+		percpu->spare_page = alloc_page(GFP_KERNEL);
+	if (!percpu->scribble) {
+		percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
+		spin_lock_init(&percpu->lock);
+	}
+
+	if (!percpu->scribble || (conf->level == 6 && !percpu->spare_page)) {
+		free_scratch_buffer(conf, percpu);
+		return -ENOMEM;
+	}
+
+	return 0;
+}
+
+static void raid5_free_percpu(struct r5conf *conf)
+{
+	unsigned long cpu;
+
+	if (!conf->percpu)
+		return;
+
+#ifdef CONFIG_HOTPLUG_CPU
+	unregister_cpu_notifier(&conf->cpu_notify);
+#endif
+
+	get_online_cpus();
+	for_each_possible_cpu(cpu)
+		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
+	put_online_cpus();
+
+	free_percpu(conf->percpu);
+}
+
+static void free_conf(struct r5conf *conf)
+{
+	shrink_stripes(conf);
+	raid5_free_percpu(conf);
+	kfree(conf->disks);
+	kfree(conf->stripe_hashtbl);
+	kfree(conf);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
+			      void *hcpu)
+{
+	struct r5conf *conf = container_of(nfb, struct r5conf, cpu_notify);
+	long cpu = (long)hcpu;
+	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
+
+	switch (action) {
+	case CPU_UP_PREPARE:
+	case CPU_UP_PREPARE_FROZEN:
+		if (alloc_scratch_buffer(conf, percpu)) {
+			pr_err("%s: failed memory allocation for cpu%ld\n",
+			       __func__, cpu);
+			return notifier_from_errno(-ENOMEM);
+		}
+		break;
+	case CPU_DEAD:
+	case CPU_DEAD_FROZEN:
+		free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
+		break;
+	default:
+		break;
+	}
+	return NOTIFY_OK;
+}
+#endif
+
+static int raid5_alloc_percpu(struct r5conf *conf)
+{
+	unsigned long cpu;
+	int err = 0;
+
+	conf->percpu = alloc_percpu(struct raid5_percpu);
+	if (!conf->percpu)
+		return -ENOMEM;
+
+#ifdef CONFIG_HOTPLUG_CPU
+	conf->cpu_notify.notifier_call = raid456_cpu_notify;
+	conf->cpu_notify.priority = 0;
+	err = register_cpu_notifier(&conf->cpu_notify);
+	if (err)
+		return err;
+#endif
+
+	get_online_cpus();
+	for_each_present_cpu(cpu) {
+		err = alloc_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
+		if (err) {
+			pr_err("%s: failed memory allocation for cpu%ld\n",
+			       __func__, cpu);
+			break;
+		}
+	}
+	put_online_cpus();
+
+	return err;
+}
+
+static struct r5conf *setup_conf(struct mddev *mddev)
+{
+	struct r5conf *conf;
+	int raid_disk, memory, max_disks;
+	struct md_rdev *rdev;
+	struct disk_info *disk;
+
+	if (mddev->new_level != 5
+	    && mddev->new_level != 4
+	    && mddev->new_level != 6) {
+		printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
+		       mdname(mddev), mddev->new_level);
+		return ERR_PTR(-EIO);
+	}
+	if ((mddev->new_level == 5
+	     && !algorithm_valid_raid5(mddev->new_layout)) ||
+	    (mddev->new_level == 6
+	     && !algorithm_valid_raid6(mddev->new_layout))) {
+		printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
+		       mdname(mddev), mddev->new_layout);
+		return ERR_PTR(-EIO);
+	}
+	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
+		printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
+		       mdname(mddev), mddev->raid_disks);
+		return ERR_PTR(-EINVAL);
+	}
+
+	if (!mddev->new_chunk_sectors ||
+	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
+	    !is_power_of_2(mddev->new_chunk_sectors)) {
+		printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
+		       mdname(mddev), mddev->new_chunk_sectors << 9);
+		return ERR_PTR(-EINVAL);
+	}
+
+	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
+	if (conf == NULL)
+		goto abort;
+	spin_lock_init(&conf->device_lock);
+	init_waitqueue_head(&conf->wait_for_stripe);
+	init_waitqueue_head(&conf->wait_for_overlap);
+	INIT_LIST_HEAD(&conf->handle_list);
+	INIT_LIST_HEAD(&conf->hold_list);
+	INIT_LIST_HEAD(&conf->delayed_list);
+	INIT_LIST_HEAD(&conf->bitmap_list);
+	INIT_LIST_HEAD(&conf->inactive_list);
+	atomic_set(&conf->active_stripes, 0);
+	atomic_set(&conf->preread_active_stripes, 0);
+	atomic_set(&conf->active_aligned_reads, 0);
+	conf->bypass_threshold = BYPASS_THRESHOLD;
+	conf->recovery_disabled = mddev->recovery_disabled - 1;
+
+	conf->raid_disks = mddev->raid_disks;
+	if (mddev->reshape_position == MaxSector)
+		conf->previous_raid_disks = mddev->raid_disks;
+	else
+		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
+	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
+	conf->scribble_len = scribble_len(max_disks);
+
+	conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
+			      GFP_KERNEL);
+	if (!conf->disks)
+		goto abort;
+
+	conf->mddev = mddev;
+
+	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
+		goto abort;
+
+	conf->level = mddev->new_level;
+	if (raid5_alloc_percpu(conf) != 0)
+		goto abort;
+
+	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
+
+	rdev_for_each(rdev, mddev) {
+		raid_disk = rdev->raid_disk;
+		if (raid_disk >= max_disks
+		    || raid_disk < 0)
+			continue;
+		disk = conf->disks + raid_disk;
+
+		if (test_bit(Replacement, &rdev->flags)) {
+			if (disk->replacement)
+				goto abort;
+			disk->replacement = rdev;
+		} else {
+			if (disk->rdev)
+				goto abort;
+			disk->rdev = rdev;
+		}
+
+		if (test_bit(In_sync, &rdev->flags)) {
+			char b[BDEVNAME_SIZE];
+			printk(KERN_INFO "md/raid:%s: device %s operational as raid"
+			       " disk %d\n",
+			       mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
+		} else if (rdev->saved_raid_disk != raid_disk)
+			/* Cannot rely on bitmap to complete recovery */
+			conf->fullsync = 1;
+	}
+
+	conf->chunk_sectors = mddev->new_chunk_sectors;
+	conf->level = mddev->new_level;
+	if (conf->level == 6)
+		conf->max_degraded = 2;
+	else
+		conf->max_degraded = 1;
+	conf->algorithm = mddev->new_layout;
+	conf->max_nr_stripes = NR_STRIPES;
+	conf->reshape_progress = mddev->reshape_position;
+	if (conf->reshape_progress != MaxSector) {
+		conf->prev_chunk_sectors = mddev->chunk_sectors;
+		conf->prev_algo = mddev->layout;
+	}
+
+	memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
+		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
+	if (grow_stripes(conf, conf->max_nr_stripes)) {
+		printk(KERN_ERR
+		       "md/raid:%s: couldn't allocate %dkB for buffers\n",
+		       mdname(mddev), memory);
+		goto abort;
+	} else
+		printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
+		       mdname(mddev), memory);
+
+	conf->thread = md_register_thread(raid5d, mddev, NULL);
+	if (!conf->thread) {
+		printk(KERN_ERR
+		       "md/raid:%s: couldn't allocate thread.\n",
+		       mdname(mddev));
+		goto abort;
+	}
+
+	return conf;
+
+ abort:
+	if (conf) {
+		free_conf(conf);
+		return ERR_PTR(-EIO);
+	} else
+		return ERR_PTR(-ENOMEM);
+}
+
+
+static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
+{
+	switch (algo) {
+	case ALGORITHM_PARITY_0:
+		if (raid_disk < max_degraded)
+			return 1;
+		break;
+	case ALGORITHM_PARITY_N:
+		if (raid_disk >= raid_disks - max_degraded)
+			return 1;
+		break;
+	case ALGORITHM_PARITY_0_6:
+		if (raid_disk == 0 || 
+		    raid_disk == raid_disks - 1)
+			return 1;
+		break;
+	case ALGORITHM_LEFT_ASYMMETRIC_6:
+	case ALGORITHM_RIGHT_ASYMMETRIC_6:
+	case ALGORITHM_LEFT_SYMMETRIC_6:
+	case ALGORITHM_RIGHT_SYMMETRIC_6:
+		if (raid_disk == raid_disks - 1)
+			return 1;
+	}
+	return 0;
+}
+
+static int run(struct mddev *mddev)
+{
+	struct r5conf *conf;
+	int working_disks = 0;
+	int dirty_parity_disks = 0;
+	struct md_rdev *rdev;
+	sector_t reshape_offset = 0;
+	int i;
+
+	if (mddev->recovery_cp != MaxSector)
+		printk(KERN_NOTICE "md/raid:%s: not clean"
+		       " -- starting background reconstruction\n",
+		       mdname(mddev));
+	if (mddev->reshape_position != MaxSector) {
+		/* Check that we can continue the reshape.
+		 * Currently only disks can change, it must
+		 * increase, and we must be past the point where
+		 * a stripe over-writes itself
+		 */
+		sector_t here_new, here_old;
+		int old_disks;
+		int max_degraded = (mddev->level == 6 ? 2 : 1);
+
+		if (mddev->new_level != mddev->level) {
+			printk(KERN_ERR "md/raid:%s: unsupported reshape "
+			       "required - aborting.\n",
+			       mdname(mddev));
+			return -EINVAL;
+		}
+		old_disks = mddev->raid_disks - mddev->delta_disks;
+		/* reshape_position must be on a new-stripe boundary, and one
+		 * further up in new geometry must map after here in old
+		 * geometry.
+		 */
+		here_new = mddev->reshape_position;
+		if (sector_div(here_new, mddev->new_chunk_sectors *
+			       (mddev->raid_disks - max_degraded))) {
+			printk(KERN_ERR "md/raid:%s: reshape_position not "
+			       "on a stripe boundary\n", mdname(mddev));
+			return -EINVAL;
+		}
+		reshape_offset = here_new * mddev->new_chunk_sectors;
+		/* here_new is the stripe we will write to */
+		here_old = mddev->reshape_position;
+		sector_div(here_old, mddev->chunk_sectors *
+			   (old_disks-max_degraded));
+		/* here_old is the first stripe that we might need to read
+		 * from */
+		if (mddev->delta_disks == 0) {
+			/* We cannot be sure it is safe to start an in-place
+			 * reshape.  It is only safe if user-space if monitoring
+			 * and taking constant backups.
+			 * mdadm always starts a situation like this in
+			 * readonly mode so it can take control before
+			 * allowing any writes.  So just check for that.
+			 */
+			if ((here_new * mddev->new_chunk_sectors != 
+			     here_old * mddev->chunk_sectors) ||
+			    mddev->ro == 0) {
+				printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
+				       " in read-only mode - aborting\n",
+				       mdname(mddev));
+				return -EINVAL;
+			}
+		} else if (mddev->delta_disks < 0
+		    ? (here_new * mddev->new_chunk_sectors <=
+		       here_old * mddev->chunk_sectors)
+		    : (here_new * mddev->new_chunk_sectors >=
+		       here_old * mddev->chunk_sectors)) {
+			/* Reading from the same stripe as writing to - bad */
+			printk(KERN_ERR "md/raid:%s: reshape_position too early for "
+			       "auto-recovery - aborting.\n",
+			       mdname(mddev));
+			return -EINVAL;
+		}
+		printk(KERN_INFO "md/raid:%s: reshape will continue\n",
+		       mdname(mddev));
+		/* OK, we should be able to continue; */
+	} else {
+		BUG_ON(mddev->level != mddev->new_level);
+		BUG_ON(mddev->layout != mddev->new_layout);
+		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
+		BUG_ON(mddev->delta_disks != 0);
+	}
+
+	if (mddev->private == NULL)
+		conf = setup_conf(mddev);
+	else
+		conf = mddev->private;
+
+	if (IS_ERR(conf))
+		return PTR_ERR(conf);
+
+	mddev->thread = conf->thread;
+	conf->thread = NULL;
+	mddev->private = conf;
+
+	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
+	     i++) {
+		rdev = conf->disks[i].rdev;
+		if (!rdev && conf->disks[i].replacement) {
+			/* The replacement is all we have yet */
+			rdev = conf->disks[i].replacement;
+			conf->disks[i].replacement = NULL;
+			clear_bit(Replacement, &rdev->flags);
+			conf->disks[i].rdev = rdev;
+		}
+		if (!rdev)
+			continue;
+		if (conf->disks[i].replacement &&
+		    conf->reshape_progress != MaxSector) {
+			/* replacements and reshape simply do not mix. */
+			printk(KERN_ERR "md: cannot handle concurrent "
+			       "replacement and reshape.\n");
+			goto abort;
+		}
+		if (test_bit(In_sync, &rdev->flags)) {
+			working_disks++;
+			continue;
+		}
+		/* This disc is not fully in-sync.  However if it
+		 * just stored parity (beyond the recovery_offset),
+		 * when we don't need to be concerned about the
+		 * array being dirty.
+		 * When reshape goes 'backwards', we never have
+		 * partially completed devices, so we only need
+		 * to worry about reshape going forwards.
+		 */
+		/* Hack because v0.91 doesn't store recovery_offset properly. */
+		if (mddev->major_version == 0 &&
+		    mddev->minor_version > 90)
+			rdev->recovery_offset = reshape_offset;
+			
+		if (rdev->recovery_offset < reshape_offset) {
+			/* We need to check old and new layout */
+			if (!only_parity(rdev->raid_disk,
+					 conf->algorithm,
+					 conf->raid_disks,
+					 conf->max_degraded))
+				continue;
+		}
+		if (!only_parity(rdev->raid_disk,
+				 conf->prev_algo,
+				 conf->previous_raid_disks,
+				 conf->max_degraded))
+			continue;
+		dirty_parity_disks++;
+	}
+
+	/*
+	 * 0 for a fully functional array, 1 or 2 for a degraded array.
+	 */
+	mddev->degraded = calc_degraded(conf);
+
+	if (has_failed(conf)) {
+		printk(KERN_ERR "md/raid:%s: not enough operational devices"
+			" (%d/%d failed)\n",
+			mdname(mddev), mddev->degraded, conf->raid_disks);
+		goto abort;
+	}
+
+	/* device size must be a multiple of chunk size */
+	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
+	mddev->resync_max_sectors = mddev->dev_sectors;
+
+	if (mddev->degraded > dirty_parity_disks &&
+	    mddev->recovery_cp != MaxSector) {
+		if (mddev->ok_start_degraded)
+			printk(KERN_WARNING
+			       "md/raid:%s: starting dirty degraded array"
+			       " - data corruption possible.\n",
+			       mdname(mddev));
+		else {
+			printk(KERN_ERR
+			       "md/raid:%s: cannot start dirty degraded array.\n",
+			       mdname(mddev));
+			goto abort;
+		}
+	}
+
+	if (mddev->degraded == 0)
+		printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
+		       " devices, algorithm %d\n", mdname(mddev), conf->level,
+		       mddev->raid_disks-mddev->degraded, mddev->raid_disks,
+		       mddev->new_layout);
+	else
+		printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
+		       " out of %d devices, algorithm %d\n",
+		       mdname(mddev), conf->level,
+		       mddev->raid_disks - mddev->degraded,
+		       mddev->raid_disks, mddev->new_layout);
+
+	print_raid5_conf(conf);
+
+	if (conf->reshape_progress != MaxSector) {
+		conf->reshape_safe = conf->reshape_progress;
+		atomic_set(&conf->reshape_stripes, 0);
+		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
+							"reshape");
+	}
+
+
+	/* Ok, everything is just fine now */
+	if (mddev->to_remove == &raid5_attrs_group)
+		mddev->to_remove = NULL;
+	else if (mddev->kobj.sd &&
+	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
+		printk(KERN_WARNING
+		       "raid5: failed to create sysfs attributes for %s\n",
+		       mdname(mddev));
+	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
+
+	if (mddev->queue) {
+		int chunk_size;
+		/* read-ahead size must cover two whole stripes, which
+		 * is 2 * (datadisks) * chunksize where 'n' is the
+		 * number of raid devices
+		 */
+		int data_disks = conf->previous_raid_disks - conf->max_degraded;
+		int stripe = data_disks *
+			((mddev->chunk_sectors << 9) / PAGE_SIZE);
+		if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
+			mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
+
+		blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
+
+		mddev->queue->backing_dev_info.congested_data = mddev;
+		mddev->queue->backing_dev_info.congested_fn = raid5_congested;
+
+		chunk_size = mddev->chunk_sectors << 9;
+		blk_queue_io_min(mddev->queue, chunk_size);
+		blk_queue_io_opt(mddev->queue, chunk_size *
+				 (conf->raid_disks - conf->max_degraded));
+
+		rdev_for_each(rdev, mddev)
+			disk_stack_limits(mddev->gendisk, rdev->bdev,
+					  rdev->data_offset << 9);
+	}
+
+	return 0;
+abort:
+	md_unregister_thread(&mddev->thread);
+	print_raid5_conf(conf);
+	free_conf(conf);
+	mddev->private = NULL;
+	printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
+	return -EIO;
+}
+
+static int stop(struct mddev *mddev)
+{
+	struct r5conf *conf = mddev->private;
+
+	md_unregister_thread(&mddev->thread);
+	if (mddev->queue)
+		mddev->queue->backing_dev_info.congested_fn = NULL;
+	free_conf(conf);
+	mddev->private = NULL;
+	mddev->to_remove = &raid5_attrs_group;
+	return 0;
+}
+
+static void status(struct seq_file *seq, struct mddev *mddev)
+{
+	struct r5conf *conf = mddev->private;
+	int i;
+
+	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
+		mddev->chunk_sectors / 2, mddev->layout);
+	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
+	for (i = 0; i < conf->raid_disks; i++)
+		seq_printf (seq, "%s",
+			       conf->disks[i].rdev &&
+			       test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
+	seq_printf (seq, "]");
+}
+
+static void print_raid5_conf (struct r5conf *conf)
+{
+	int i;
+	struct disk_info *tmp;
+
+	printk(KERN_DEBUG "RAID conf printout:\n");
+	if (!conf) {
+		printk("(conf==NULL)\n");
+		return;
+	}
+	printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
+	       conf->raid_disks,
+	       conf->raid_disks - conf->mddev->degraded);
+
+	for (i = 0; i < conf->raid_disks; i++) {
+		char b[BDEVNAME_SIZE];
+		tmp = conf->disks + i;
+		if (tmp->rdev)
+			printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
+			       i, !test_bit(Faulty, &tmp->rdev->flags),
+			       bdevname(tmp->rdev->bdev, b));
+	}
+}
+
+static int raid5_spare_active(struct mddev *mddev)
+{
+	int i;
+	struct r5conf *conf = mddev->private;
+	struct disk_info *tmp;
+	int count = 0;
+	unsigned long flags;
+
+	for (i = 0; i < conf->raid_disks; i++) {
+		tmp = conf->disks + i;
+		if (tmp->replacement
+		    && tmp->replacement->recovery_offset == MaxSector
+		    && !test_bit(Faulty, &tmp->replacement->flags)
+		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
+			/* Replacement has just become active. */
+			if (!tmp->rdev
+			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
+				count++;
+			if (tmp->rdev) {
+				/* Replaced device not technically faulty,
+				 * but we need to be sure it gets removed
+				 * and never re-added.
+				 */
+				set_bit(Faulty, &tmp->rdev->flags);
+				sysfs_notify_dirent_safe(
+					tmp->rdev->sysfs_state);
+			}
+			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
+		} else if (tmp->rdev
+		    && tmp->rdev->recovery_offset == MaxSector
+		    && !test_bit(Faulty, &tmp->rdev->flags)
+		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
+			count++;
+			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
+		}
+	}
+	spin_lock_irqsave(&conf->device_lock, flags);
+	mddev->degraded = calc_degraded(conf);
+	spin_unlock_irqrestore(&conf->device_lock, flags);
+	print_raid5_conf(conf);
+	return count;
+}
+
+static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct r5conf *conf = mddev->private;
+	int err = 0;
+	int number = rdev->raid_disk;
+	struct md_rdev **rdevp;
+	struct disk_info *p = conf->disks + number;
+
+	print_raid5_conf(conf);
+	if (rdev == p->rdev)
+		rdevp = &p->rdev;
+	else if (rdev == p->replacement)
+		rdevp = &p->replacement;
+	else
+		return 0;
+
+	if (number >= conf->raid_disks &&
+	    conf->reshape_progress == MaxSector)
+		clear_bit(In_sync, &rdev->flags);
+
+	if (test_bit(In_sync, &rdev->flags) ||
+	    atomic_read(&rdev->nr_pending)) {
+		err = -EBUSY;
+		goto abort;
+	}
+	/* Only remove non-faulty devices if recovery
+	 * isn't possible.
+	 */
+	if (!test_bit(Faulty, &rdev->flags) &&
+	    mddev->recovery_disabled != conf->recovery_disabled &&
+	    !has_failed(conf) &&
+	    (!p->replacement || p->replacement == rdev) &&
+	    number < conf->raid_disks) {
+		err = -EBUSY;
+		goto abort;
+	}
+	*rdevp = NULL;
+	synchronize_rcu();
+	if (atomic_read(&rdev->nr_pending)) {
+		/* lost the race, try later */
+		err = -EBUSY;
+		*rdevp = rdev;
+	} else if (p->replacement) {
+		/* We must have just cleared 'rdev' */
+		p->rdev = p->replacement;
+		clear_bit(Replacement, &p->replacement->flags);
+		smp_mb(); /* Make sure other CPUs may see both as identical
+			   * but will never see neither - if they are careful
+			   */
+		p->replacement = NULL;
+		clear_bit(WantReplacement, &rdev->flags);
+	} else
+		/* We might have just removed the Replacement as faulty-
+		 * clear the bit just in case
+		 */
+		clear_bit(WantReplacement, &rdev->flags);
+abort:
+
+	print_raid5_conf(conf);
+	return err;
+}
+
+static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
+{
+	struct r5conf *conf = mddev->private;
+	int err = -EEXIST;
+	int disk;
+	struct disk_info *p;
+	int first = 0;
+	int last = conf->raid_disks - 1;
+
+	if (mddev->recovery_disabled == conf->recovery_disabled)
+		return -EBUSY;
+
+	if (rdev->saved_raid_disk < 0 && has_failed(conf))
+		/* no point adding a device */
+		return -EINVAL;
+
+	if (rdev->raid_disk >= 0)
+		first = last = rdev->raid_disk;
+
+	/*
+	 * find the disk ... but prefer rdev->saved_raid_disk
+	 * if possible.
+	 */
+	if (rdev->saved_raid_disk >= 0 &&
+	    rdev->saved_raid_disk >= first &&
+	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
+		disk = rdev->saved_raid_disk;
+	else
+		disk = first;
+	for ( ; disk <= last ; disk++) {
+		p = conf->disks + disk;
+		if (p->rdev == NULL) {
+			clear_bit(In_sync, &rdev->flags);
+			rdev->raid_disk = disk;
+			err = 0;
+			if (rdev->saved_raid_disk != disk)
+				conf->fullsync = 1;
+			rcu_assign_pointer(p->rdev, rdev);
+			break;
+		}
+		if (test_bit(WantReplacement, &p->rdev->flags) &&
+		    p->replacement == NULL) {
+			clear_bit(In_sync, &rdev->flags);
+			set_bit(Replacement, &rdev->flags);
+			rdev->raid_disk = disk;
+			err = 0;
+			conf->fullsync = 1;
+			rcu_assign_pointer(p->replacement, rdev);
+			break;
+		}
+	}
+	print_raid5_conf(conf);
+	return err;
+}
+
+static int raid5_resize(struct mddev *mddev, sector_t sectors)
+{
+	/* no resync is happening, and there is enough space
+	 * on all devices, so we can resize.
+	 * We need to make sure resync covers any new space.
+	 * If the array is shrinking we should possibly wait until
+	 * any io in the removed space completes, but it hardly seems
+	 * worth it.
+	 */
+	sectors &= ~((sector_t)mddev->chunk_sectors - 1);
+	md_set_array_sectors(mddev, raid5_size(mddev, sectors,
+					       mddev->raid_disks));
+	if (mddev->array_sectors >
+	    raid5_size(mddev, sectors, mddev->raid_disks))
+		return -EINVAL;
+	set_capacity(mddev->gendisk, mddev->array_sectors);
+	revalidate_disk(mddev->gendisk);
+	if (sectors > mddev->dev_sectors &&
+	    mddev->recovery_cp > mddev->dev_sectors) {
+		mddev->recovery_cp = mddev->dev_sectors;
+		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
+	}
+	mddev->dev_sectors = sectors;
+	mddev->resync_max_sectors = sectors;
+	return 0;
+}
+
+static int check_stripe_cache(struct mddev *mddev)
+{
+	/* Can only proceed if there are plenty of stripe_heads.
+	 * We need a minimum of one full stripe,, and for sensible progress
+	 * it is best to have about 4 times that.
+	 * If we require 4 times, then the default 256 4K stripe_heads will
+	 * allow for chunk sizes up to 256K, which is probably OK.
+	 * If the chunk size is greater, user-space should request more
+	 * stripe_heads first.
+	 */
+	struct r5conf *conf = mddev->private;
+	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
+	    > conf->max_nr_stripes ||
+	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
+	    > conf->max_nr_stripes) {
+		printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
+		       mdname(mddev),
+		       ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
+			/ STRIPE_SIZE)*4);
+		return 0;
+	}
+	return 1;
+}
+
+static int check_reshape(struct mddev *mddev)
+{
+	struct r5conf *conf = mddev->private;
+
+	if (mddev->delta_disks == 0 &&
+	    mddev->new_layout == mddev->layout &&
+	    mddev->new_chunk_sectors == mddev->chunk_sectors)
+		return 0; /* nothing to do */
+	if (mddev->bitmap)
+		/* Cannot grow a bitmap yet */
+		return -EBUSY;
+	if (has_failed(conf))
+		return -EINVAL;
+	if (mddev->delta_disks < 0) {
+		/* We might be able to shrink, but the devices must
+		 * be made bigger first.
+		 * For raid6, 4 is the minimum size.
+		 * Otherwise 2 is the minimum
+		 */
+		int min = 2;
+		if (mddev->level == 6)
+			min = 4;
+		if (mddev->raid_disks + mddev->delta_disks < min)
+			return -EINVAL;
+	}
+
+	if (!check_stripe_cache(mddev))
+		return -ENOSPC;
+
+	return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
+}
+
+static int raid5_start_reshape(struct mddev *mddev)
+{
+	struct r5conf *conf = mddev->private;
+	struct md_rdev *rdev;
+	int spares = 0;
+	unsigned long flags;
+
+	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
+		return -EBUSY;
+
+	if (!check_stripe_cache(mddev))
+		return -ENOSPC;
+
+	rdev_for_each(rdev, mddev)
+		if (!test_bit(In_sync, &rdev->flags)
+		    && !test_bit(Faulty, &rdev->flags))
+			spares++;
+
+	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
+		/* Not enough devices even to make a degraded array
+		 * of that size
+		 */
+		return -EINVAL;
+
+	/* Refuse to reduce size of the array.  Any reductions in
+	 * array size must be through explicit setting of array_size
+	 * attribute.
+	 */
+	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
+	    < mddev->array_sectors) {
+		printk(KERN_ERR "md/raid:%s: array size must be reduced "
+		       "before number of disks\n", mdname(mddev));
+		return -EINVAL;
+	}
+
+	atomic_set(&conf->reshape_stripes, 0);
+	spin_lock_irq(&conf->device_lock);
+	conf->previous_raid_disks = conf->raid_disks;
+	conf->raid_disks += mddev->delta_disks;
+	conf->prev_chunk_sectors = conf->chunk_sectors;
+	conf->chunk_sectors = mddev->new_chunk_sectors;
+	conf->prev_algo = conf->algorithm;
+	conf->algorithm = mddev->new_layout;
+	if (mddev->delta_disks < 0)
+		conf->reshape_progress = raid5_size(mddev, 0, 0);
+	else
+		conf->reshape_progress = 0;
+	conf->reshape_safe = conf->reshape_progress;
+	conf->generation++;
+	spin_unlock_irq(&conf->device_lock);
+
+	/* Add some new drives, as many as will fit.
+	 * We know there are enough to make the newly sized array work.
+	 * Don't add devices if we are reducing the number of
+	 * devices in the array.  This is because it is not possible
+	 * to correctly record the "partially reconstructed" state of
+	 * such devices during the reshape and confusion could result.
+	 */
+	if (mddev->delta_disks >= 0) {
+		rdev_for_each(rdev, mddev)
+			if (rdev->raid_disk < 0 &&
+			    !test_bit(Faulty, &rdev->flags)) {
+				if (raid5_add_disk(mddev, rdev) == 0) {
+					if (rdev->raid_disk
+					    >= conf->previous_raid_disks)
+						set_bit(In_sync, &rdev->flags);
+					else
+						rdev->recovery_offset = 0;
+
+					if (sysfs_link_rdev(mddev, rdev))
+						/* Failure here is OK */;
+				}
+			} else if (rdev->raid_disk >= conf->previous_raid_disks
+				   && !test_bit(Faulty, &rdev->flags)) {
+				/* This is a spare that was manually added */
+				set_bit(In_sync, &rdev->flags);
+			}
+
+		/* When a reshape changes the number of devices,
+		 * ->degraded is measured against the larger of the
+		 * pre and post number of devices.
+		 */
+		spin_lock_irqsave(&conf->device_lock, flags);
+		mddev->degraded = calc_degraded(conf);
+		spin_unlock_irqrestore(&conf->device_lock, flags);
+	}
+	mddev->raid_disks = conf->raid_disks;
+	mddev->reshape_position = conf->reshape_progress;
+	set_bit(MD_CHANGE_DEVS, &mddev->flags);
+
+	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
+	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
+	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
+	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
+	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
+						"reshape");
+	if (!mddev->sync_thread) {
+		mddev->recovery = 0;
+		spin_lock_irq(&conf->device_lock);
+		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
+		conf->reshape_progress = MaxSector;
+		mddev->reshape_position = MaxSector;
+		spin_unlock_irq(&conf->device_lock);
+		return -EAGAIN;
+	}
+	conf->reshape_checkpoint = jiffies;
+	md_wakeup_thread(mddev->sync_thread);
+	md_new_event(mddev);
+	return 0;
+}
+
+/* This is called from the reshape thread and should make any
+ * changes needed in 'conf'
+ */
+static void end_reshape(struct r5conf *conf)
+{
+
+	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
+
+		spin_lock_irq(&conf->device_lock);
+		conf->previous_raid_disks = conf->raid_disks;
+		conf->reshape_progress = MaxSector;
+		spin_unlock_irq(&conf->device_lock);
+		wake_up(&conf->wait_for_overlap);
+
+		/* read-ahead size must cover two whole stripes, which is
+		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
+		 */
+		if (conf->mddev->queue) {
+			int data_disks = conf->raid_disks - conf->max_degraded;
+			int stripe = data_disks * ((conf->chunk_sectors << 9)
+						   / PAGE_SIZE);
+			if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
+				conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
+		}
+	}
+}
+
+/* This is called from the raid5d thread with mddev_lock held.
+ * It makes config changes to the device.
+ */
+static void raid5_finish_reshape(struct mddev *mddev)
+{
+	struct r5conf *conf = mddev->private;
+
+	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
+
+		if (mddev->delta_disks > 0) {
+			md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
+			set_capacity(mddev->gendisk, mddev->array_sectors);
+			revalidate_disk(mddev->gendisk);
+		} else {
+			int d;
+			spin_lock_irq(&conf->device_lock);
+			mddev->degraded = calc_degraded(conf);
+			spin_unlock_irq(&conf->device_lock);
+			for (d = conf->raid_disks ;
+			     d < conf->raid_disks - mddev->delta_disks;
+			     d++) {
+				struct md_rdev *rdev = conf->disks[d].rdev;
+				if (rdev &&
+				    raid5_remove_disk(mddev, rdev) == 0) {
+					sysfs_unlink_rdev(mddev, rdev);
+					rdev->raid_disk = -1;
+				}
+			}
+		}
+		mddev->layout = conf->algorithm;
+		mddev->chunk_sectors = conf->chunk_sectors;
+		mddev->reshape_position = MaxSector;
+		mddev->delta_disks = 0;
+	}
+}
+
+static void raid5_quiesce(struct mddev *mddev, int state)
+{
+	struct r5conf *conf = mddev->private;
+
+	switch(state) {
+	case 2: /* resume for a suspend */
+		wake_up(&conf->wait_for_overlap);
+		break;
+
+	case 1: /* stop all writes */
+		spin_lock_irq(&conf->device_lock);
+		/* '2' tells resync/reshape to pause so that all
+		 * active stripes can drain
+		 */
+		conf->quiesce = 2;
+		wait_event_lock_irq(conf->wait_for_stripe,
+				    atomic_read(&conf->active_stripes) == 0 &&
+				    atomic_read(&conf->active_aligned_reads) == 0,
+				    conf->device_lock, /* nothing */);
+		conf->quiesce = 1;
+		spin_unlock_irq(&conf->device_lock);
+		/* allow reshape to continue */
+		wake_up(&conf->wait_for_overlap);
+		break;
+
+	case 0: /* re-enable writes */
+		spin_lock_irq(&conf->device_lock);
+		conf->quiesce = 0;
+		wake_up(&conf->wait_for_stripe);
+		wake_up(&conf->wait_for_overlap);
+		spin_unlock_irq(&conf->device_lock);
+		break;
+	}
+}
+
+
+static void *raid45_takeover_raid0(struct mddev *mddev, int level)
+{
+	struct r0conf *raid0_conf = mddev->private;
+	sector_t sectors;
+
+	/* for raid0 takeover only one zone is supported */
+	if (raid0_conf->nr_strip_zones > 1) {
+		printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
+		       mdname(mddev));
+		return ERR_PTR(-EINVAL);
+	}
+
+	sectors = raid0_conf->strip_zone[0].zone_end;
+	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
+	mddev->dev_sectors = sectors;
+	mddev->new_level = level;
+	mddev->new_layout = ALGORITHM_PARITY_N;
+	mddev->new_chunk_sectors = mddev->chunk_sectors;
+	mddev->raid_disks += 1;
+	mddev->delta_disks = 1;
+	/* make sure it will be not marked as dirty */
+	mddev->recovery_cp = MaxSector;
+
+	return setup_conf(mddev);
+}
+
+
+static void *raid5_takeover_raid1(struct mddev *mddev)
+{
+	int chunksect;
+
+	if (mddev->raid_disks != 2 ||
+	    mddev->degraded > 1)
+		return ERR_PTR(-EINVAL);
+
+	/* Should check if there are write-behind devices? */
+
+	chunksect = 64*2; /* 64K by default */
+
+	/* The array must be an exact multiple of chunksize */
+	while (chunksect && (mddev->array_sectors & (chunksect-1)))
+		chunksect >>= 1;
+
+	if ((chunksect<<9) < STRIPE_SIZE)
+		/* array size does not allow a suitable chunk size */
+		return ERR_PTR(-EINVAL);
+
+	mddev->new_level = 5;
+	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
+	mddev->new_chunk_sectors = chunksect;
+
+	return setup_conf(mddev);
+}
+
+static void *raid5_takeover_raid6(struct mddev *mddev)
+{
+	int new_layout;
+
+	switch (mddev->layout) {
+	case ALGORITHM_LEFT_ASYMMETRIC_6:
+		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
+		break;
+	case ALGORITHM_RIGHT_ASYMMETRIC_6:
+		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
+		break;
+	case ALGORITHM_LEFT_SYMMETRIC_6:
+		new_layout = ALGORITHM_LEFT_SYMMETRIC;
+		break;
+	case ALGORITHM_RIGHT_SYMMETRIC_6:
+		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
+		break;
+	case ALGORITHM_PARITY_0_6:
+		new_layout = ALGORITHM_PARITY_0;
+		break;
+	case ALGORITHM_PARITY_N:
+		new_layout = ALGORITHM_PARITY_N;
+		break;
+	default:
+		return ERR_PTR(-EINVAL);
+	}
+	mddev->new_level = 5;
+	mddev->new_layout = new_layout;
+	mddev->delta_disks = -1;
+	mddev->raid_disks -= 1;
+	return setup_conf(mddev);
+}
+
+
+static int raid5_check_reshape(struct mddev *mddev)
+{
+	/* For a 2-drive array, the layout and chunk size can be changed
+	 * immediately as not restriping is needed.
+	 * For larger arrays we record the new value - after validation
+	 * to be used by a reshape pass.
+	 */
+	struct r5conf *conf = mddev->private;
+	int new_chunk = mddev->new_chunk_sectors;
+
+	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
+		return -EINVAL;
+	if (new_chunk > 0) {
+		if (!is_power_of_2(new_chunk))
+			return -EINVAL;
+		if (new_chunk < (PAGE_SIZE>>9))
+			return -EINVAL;
+		if (mddev->array_sectors & (new_chunk-1))
+			/* not factor of array size */
+			return -EINVAL;
+	}
+
+	/* They look valid */
+
+	if (mddev->raid_disks == 2) {
+		/* can make the change immediately */
+		if (mddev->new_layout >= 0) {
+			conf->algorithm = mddev->new_layout;
+			mddev->layout = mddev->new_layout;
+		}
+		if (new_chunk > 0) {
+			conf->chunk_sectors = new_chunk ;
+			mddev->chunk_sectors = new_chunk;
+		}
+		set_bit(MD_CHANGE_DEVS, &mddev->flags);
+		md_wakeup_thread(mddev->thread);
+	}
+	return check_reshape(mddev);
+}
+
+static int raid6_check_reshape(struct mddev *mddev)
+{
+	int new_chunk = mddev->new_chunk_sectors;
+
+	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
+		return -EINVAL;
+	if (new_chunk > 0) {
+		if (!is_power_of_2(new_chunk))
+			return -EINVAL;
+		if (new_chunk < (PAGE_SIZE >> 9))
+			return -EINVAL;
+		if (mddev->array_sectors & (new_chunk-1))
+			/* not factor of array size */
+			return -EINVAL;
+	}
+
+	/* They look valid */
+	return check_reshape(mddev);
+}
+
+static void *raid5_takeover(struct mddev *mddev)
+{
+	/* raid5 can take over:
+	 *  raid0 - if there is only one strip zone - make it a raid4 layout
+	 *  raid1 - if there are two drives.  We need to know the chunk size
+	 *  raid4 - trivial - just use a raid4 layout.
+	 *  raid6 - Providing it is a *_6 layout
+	 */
+	if (mddev->level == 0)
+		return raid45_takeover_raid0(mddev, 5);
+	if (mddev->level == 1)
+		return raid5_takeover_raid1(mddev);
+	if (mddev->level == 4) {
+		mddev->new_layout = ALGORITHM_PARITY_N;
+		mddev->new_level = 5;
+		return setup_conf(mddev);
+	}
+	if (mddev->level == 6)
+		return raid5_takeover_raid6(mddev);
+
+	return ERR_PTR(-EINVAL);
+}
+
+static void *raid4_takeover(struct mddev *mddev)
+{
+	/* raid4 can take over:
+	 *  raid0 - if there is only one strip zone
+	 *  raid5 - if layout is right
+	 */
+	if (mddev->level == 0)
+		return raid45_takeover_raid0(mddev, 4);
+	if (mddev->level == 5 &&
+	    mddev->layout == ALGORITHM_PARITY_N) {
+		mddev->new_layout = 0;
+		mddev->new_level = 4;
+		return setup_conf(mddev);
+	}
+	return ERR_PTR(-EINVAL);
+}
+
+static struct md_personality raid5_personality;
+
+static void *raid6_takeover(struct mddev *mddev)
+{
+	/* Currently can only take over a raid5.  We map the
+	 * personality to an equivalent raid6 personality
+	 * with the Q block at the end.
+	 */
+	int new_layout;
+
+	if (mddev->pers != &raid5_personality)
+		return ERR_PTR(-EINVAL);
+	if (mddev->degraded > 1)
+		return ERR_PTR(-EINVAL);
+	if (mddev->raid_disks > 253)
+		return ERR_PTR(-EINVAL);
+	if (mddev->raid_disks < 3)
+		return ERR_PTR(-EINVAL);
+
+	switch (mddev->layout) {
+	case ALGORITHM_LEFT_ASYMMETRIC:
+		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
+		break;
+	case ALGORITHM_RIGHT_ASYMMETRIC:
+		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
+		break;
+	case ALGORITHM_LEFT_SYMMETRIC:
+		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
+		break;
+	case ALGORITHM_RIGHT_SYMMETRIC:
+		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
+		break;
+	case ALGORITHM_PARITY_0:
+		new_layout = ALGORITHM_PARITY_0_6;
+		break;
+	case ALGORITHM_PARITY_N:
+		new_layout = ALGORITHM_PARITY_N;
+		break;
+	default:
+		return ERR_PTR(-EINVAL);
+	}
+	mddev->new_level = 6;
+	mddev->new_layout = new_layout;
+	mddev->delta_disks = 1;
+	mddev->raid_disks += 1;
+	return setup_conf(mddev);
+}
+
+
+static struct md_personality raid6_personality =
+{
+	.name		= "raid6",
+	.level		= 6,
+	.owner		= THIS_MODULE,
+	.make_request	= make_request,
+	.run		= run,
+	.stop		= stop,
+	.status		= status,
+	.error_handler	= error,
+	.hot_add_disk	= raid5_add_disk,
+	.hot_remove_disk= raid5_remove_disk,
+	.spare_active	= raid5_spare_active,
+	.sync_request	= sync_request,
+	.resize		= raid5_resize,
+	.size		= raid5_size,
+	.check_reshape	= raid6_check_reshape,
+	.start_reshape  = raid5_start_reshape,
+	.finish_reshape = raid5_finish_reshape,
+	.quiesce	= raid5_quiesce,
+	.takeover	= raid6_takeover,
+};
+static struct md_personality raid5_personality =
+{
+	.name		= "raid5",
+	.level		= 5,
+	.owner		= THIS_MODULE,
+	.make_request	= make_request,
+	.run		= run,
+	.stop		= stop,
+	.status		= status,
+	.error_handler	= error,
+	.hot_add_disk	= raid5_add_disk,
+	.hot_remove_disk= raid5_remove_disk,
+	.spare_active	= raid5_spare_active,
+	.sync_request	= sync_request,
+	.resize		= raid5_resize,
+	.size		= raid5_size,
+	.check_reshape	= raid5_check_reshape,
+	.start_reshape  = raid5_start_reshape,
+	.finish_reshape = raid5_finish_reshape,
+	.quiesce	= raid5_quiesce,
+	.takeover	= raid5_takeover,
+};
+
+static struct md_personality raid4_personality =
+{
+	.name		= "raid4",
+	.level		= 4,
+	.owner		= THIS_MODULE,
+	.make_request	= make_request,
+	.run		= run,
+	.stop		= stop,
+	.status		= status,
+	.error_handler	= error,
+	.hot_add_disk	= raid5_add_disk,
+	.hot_remove_disk= raid5_remove_disk,
+	.spare_active	= raid5_spare_active,
+	.sync_request	= sync_request,
+	.resize		= raid5_resize,
+	.size		= raid5_size,
+	.check_reshape	= raid5_check_reshape,
+	.start_reshape  = raid5_start_reshape,
+	.finish_reshape = raid5_finish_reshape,
+	.quiesce	= raid5_quiesce,
+	.takeover	= raid4_takeover,
+};
+
+static int __init raid5_init(void)
+{
+	register_md_personality(&raid6_personality);
+	register_md_personality(&raid5_personality);
+	register_md_personality(&raid4_personality);
+	return 0;
+}
+
+static void raid5_exit(void)
+{
+	unregister_md_personality(&raid6_personality);
+	unregister_md_personality(&raid5_personality);
+	unregister_md_personality(&raid4_personality);
+}
+
+module_init(raid5_init);
+module_exit(raid5_exit);
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
+MODULE_ALIAS("md-personality-4"); /* RAID5 */
+MODULE_ALIAS("md-raid5");
+MODULE_ALIAS("md-raid4");
+MODULE_ALIAS("md-level-5");
+MODULE_ALIAS("md-level-4");
+MODULE_ALIAS("md-personality-8"); /* RAID6 */
+MODULE_ALIAS("md-raid6");
+MODULE_ALIAS("md-level-6");
+
+/* This used to be two separate modules, they were: */
+MODULE_ALIAS("raid5");
+MODULE_ALIAS("raid6");
diff --git a/ap/os/linux/linux-3.4.x/drivers/md/raid5.h b/ap/os/linux/linux-3.4.x/drivers/md/raid5.h
new file mode 100644
index 0000000..cf44cfc
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/md/raid5.h
@@ -0,0 +1,521 @@
+#ifndef _RAID5_H
+#define _RAID5_H
+
+#include <linux/raid/xor.h>
+#include <linux/dmaengine.h>
+
+/*
+ *
+ * Each stripe contains one buffer per device.  Each buffer can be in
+ * one of a number of states stored in "flags".  Changes between
+ * these states happen *almost* exclusively under the protection of the
+ * STRIPE_ACTIVE flag.  Some very specific changes can happen in bi_end_io, and
+ * these are not protected by STRIPE_ACTIVE.
+ *
+ * The flag bits that are used to represent these states are:
+ *   R5_UPTODATE and R5_LOCKED
+ *
+ * State Empty == !UPTODATE, !LOCK
+ *        We have no data, and there is no active request
+ * State Want == !UPTODATE, LOCK
+ *        A read request is being submitted for this block
+ * State Dirty == UPTODATE, LOCK
+ *        Some new data is in this buffer, and it is being written out
+ * State Clean == UPTODATE, !LOCK
+ *        We have valid data which is the same as on disc
+ *
+ * The possible state transitions are:
+ *
+ *  Empty -> Want   - on read or write to get old data for  parity calc
+ *  Empty -> Dirty  - on compute_parity to satisfy write/sync request.
+ *  Empty -> Clean  - on compute_block when computing a block for failed drive
+ *  Want  -> Empty  - on failed read
+ *  Want  -> Clean  - on successful completion of read request
+ *  Dirty -> Clean  - on successful completion of write request
+ *  Dirty -> Clean  - on failed write
+ *  Clean -> Dirty  - on compute_parity to satisfy write/sync (RECONSTRUCT or RMW)
+ *
+ * The Want->Empty, Want->Clean, Dirty->Clean, transitions
+ * all happen in b_end_io at interrupt time.
+ * Each sets the Uptodate bit before releasing the Lock bit.
+ * This leaves one multi-stage transition:
+ *    Want->Dirty->Clean
+ * This is safe because thinking that a Clean buffer is actually dirty
+ * will at worst delay some action, and the stripe will be scheduled
+ * for attention after the transition is complete.
+ *
+ * There is one possibility that is not covered by these states.  That
+ * is if one drive has failed and there is a spare being rebuilt.  We
+ * can't distinguish between a clean block that has been generated
+ * from parity calculations, and a clean block that has been
+ * successfully written to the spare ( or to parity when resyncing).
+ * To distingush these states we have a stripe bit STRIPE_INSYNC that
+ * is set whenever a write is scheduled to the spare, or to the parity
+ * disc if there is no spare.  A sync request clears this bit, and
+ * when we find it set with no buffers locked, we know the sync is
+ * complete.
+ *
+ * Buffers for the md device that arrive via make_request are attached
+ * to the appropriate stripe in one of two lists linked on b_reqnext.
+ * One list (bh_read) for read requests, one (bh_write) for write.
+ * There should never be more than one buffer on the two lists
+ * together, but we are not guaranteed of that so we allow for more.
+ *
+ * If a buffer is on the read list when the associated cache buffer is
+ * Uptodate, the data is copied into the read buffer and it's b_end_io
+ * routine is called.  This may happen in the end_request routine only
+ * if the buffer has just successfully been read.  end_request should
+ * remove the buffers from the list and then set the Uptodate bit on
+ * the buffer.  Other threads may do this only if they first check
+ * that the Uptodate bit is set.  Once they have checked that they may
+ * take buffers off the read queue.
+ *
+ * When a buffer on the write list is committed for write it is copied
+ * into the cache buffer, which is then marked dirty, and moved onto a
+ * third list, the written list (bh_written).  Once both the parity
+ * block and the cached buffer are successfully written, any buffer on
+ * a written list can be returned with b_end_io.
+ *
+ * The write list and read list both act as fifos.  The read list,
+ * write list and written list are protected by the device_lock.
+ * The device_lock is only for list manipulations and will only be
+ * held for a very short time.  It can be claimed from interrupts.
+ *
+ *
+ * Stripes in the stripe cache can be on one of two lists (or on
+ * neither).  The "inactive_list" contains stripes which are not
+ * currently being used for any request.  They can freely be reused
+ * for another stripe.  The "handle_list" contains stripes that need
+ * to be handled in some way.  Both of these are fifo queues.  Each
+ * stripe is also (potentially) linked to a hash bucket in the hash
+ * table so that it can be found by sector number.  Stripes that are
+ * not hashed must be on the inactive_list, and will normally be at
+ * the front.  All stripes start life this way.
+ *
+ * The inactive_list, handle_list and hash bucket lists are all protected by the
+ * device_lock.
+ *  - stripes have a reference counter. If count==0, they are on a list.
+ *  - If a stripe might need handling, STRIPE_HANDLE is set.
+ *  - When refcount reaches zero, then if STRIPE_HANDLE it is put on
+ *    handle_list else inactive_list
+ *
+ * This, combined with the fact that STRIPE_HANDLE is only ever
+ * cleared while a stripe has a non-zero count means that if the
+ * refcount is 0 and STRIPE_HANDLE is set, then it is on the
+ * handle_list and if recount is 0 and STRIPE_HANDLE is not set, then
+ * the stripe is on inactive_list.
+ *
+ * The possible transitions are:
+ *  activate an unhashed/inactive stripe (get_active_stripe())
+ *     lockdev check-hash unlink-stripe cnt++ clean-stripe hash-stripe unlockdev
+ *  activate a hashed, possibly active stripe (get_active_stripe())
+ *     lockdev check-hash if(!cnt++)unlink-stripe unlockdev
+ *  attach a request to an active stripe (add_stripe_bh())
+ *     lockdev attach-buffer unlockdev
+ *  handle a stripe (handle_stripe())
+ *     setSTRIPE_ACTIVE,  clrSTRIPE_HANDLE ...
+ *		(lockdev check-buffers unlockdev) ..
+ *		change-state ..
+ *		record io/ops needed clearSTRIPE_ACTIVE schedule io/ops
+ *  release an active stripe (release_stripe())
+ *     lockdev if (!--cnt) { if  STRIPE_HANDLE, add to handle_list else add to inactive-list } unlockdev
+ *
+ * The refcount counts each thread that have activated the stripe,
+ * plus raid5d if it is handling it, plus one for each active request
+ * on a cached buffer, and plus one if the stripe is undergoing stripe
+ * operations.
+ *
+ * The stripe operations are:
+ * -copying data between the stripe cache and user application buffers
+ * -computing blocks to save a disk access, or to recover a missing block
+ * -updating the parity on a write operation (reconstruct write and
+ *  read-modify-write)
+ * -checking parity correctness
+ * -running i/o to disk
+ * These operations are carried out by raid5_run_ops which uses the async_tx
+ * api to (optionally) offload operations to dedicated hardware engines.
+ * When requesting an operation handle_stripe sets the pending bit for the
+ * operation and increments the count.  raid5_run_ops is then run whenever
+ * the count is non-zero.
+ * There are some critical dependencies between the operations that prevent some
+ * from being requested while another is in flight.
+ * 1/ Parity check operations destroy the in cache version of the parity block,
+ *    so we prevent parity dependent operations like writes and compute_blocks
+ *    from starting while a check is in progress.  Some dma engines can perform
+ *    the check without damaging the parity block, in these cases the parity
+ *    block is re-marked up to date (assuming the check was successful) and is
+ *    not re-read from disk.
+ * 2/ When a write operation is requested we immediately lock the affected
+ *    blocks, and mark them as not up to date.  This causes new read requests
+ *    to be held off, as well as parity checks and compute block operations.
+ * 3/ Once a compute block operation has been requested handle_stripe treats
+ *    that block as if it is up to date.  raid5_run_ops guaruntees that any
+ *    operation that is dependent on the compute block result is initiated after
+ *    the compute block completes.
+ */
+
+/*
+ * Operations state - intermediate states that are visible outside of 
+ *   STRIPE_ACTIVE.
+ * In general _idle indicates nothing is running, _run indicates a data
+ * processing operation is active, and _result means the data processing result
+ * is stable and can be acted upon.  For simple operations like biofill and
+ * compute that only have an _idle and _run state they are indicated with
+ * sh->state flags (STRIPE_BIOFILL_RUN and STRIPE_COMPUTE_RUN)
+ */
+/**
+ * enum check_states - handles syncing / repairing a stripe
+ * @check_state_idle - check operations are quiesced
+ * @check_state_run - check operation is running
+ * @check_state_result - set outside lock when check result is valid
+ * @check_state_compute_run - check failed and we are repairing
+ * @check_state_compute_result - set outside lock when compute result is valid
+ */
+enum check_states {
+	check_state_idle = 0,
+	check_state_run, /* xor parity check */
+	check_state_run_q, /* q-parity check */
+	check_state_run_pq, /* pq dual parity check */
+	check_state_check_result,
+	check_state_compute_run, /* parity repair */
+	check_state_compute_result,
+};
+
+/**
+ * enum reconstruct_states - handles writing or expanding a stripe
+ */
+enum reconstruct_states {
+	reconstruct_state_idle = 0,
+	reconstruct_state_prexor_drain_run,	/* prexor-write */
+	reconstruct_state_drain_run,		/* write */
+	reconstruct_state_run,			/* expand */
+	reconstruct_state_prexor_drain_result,
+	reconstruct_state_drain_result,
+	reconstruct_state_result,
+};
+
+struct stripe_head {
+	struct hlist_node	hash;
+	struct list_head	lru;	      /* inactive_list or handle_list */
+	struct r5conf		*raid_conf;
+	short			generation;	/* increments with every
+						 * reshape */
+	sector_t		sector;		/* sector of this row */
+	short			pd_idx;		/* parity disk index */
+	short			qd_idx;		/* 'Q' disk index for raid6 */
+	short			ddf_layout;/* use DDF ordering to calculate Q */
+	unsigned long		state;		/* state flags */
+	atomic_t		count;	      /* nr of active thread/requests */
+	int			bm_seq;	/* sequence number for bitmap flushes */
+	int			disks;		/* disks in stripe */
+	enum check_states	check_state;
+	enum reconstruct_states reconstruct_state;
+	/**
+	 * struct stripe_operations
+	 * @target - STRIPE_OP_COMPUTE_BLK target
+	 * @target2 - 2nd compute target in the raid6 case
+	 * @zero_sum_result - P and Q verification flags
+	 * @request - async service request flags for raid_run_ops
+	 */
+	struct stripe_operations {
+		int 		     target, target2;
+		enum sum_check_flags zero_sum_result;
+		#ifdef CONFIG_MULTICORE_RAID456
+		unsigned long	     request;
+		wait_queue_head_t    wait_for_ops;
+		#endif
+	} ops;
+	struct r5dev {
+		/* rreq and rvec are used for the replacement device when
+		 * writing data to both devices.
+		 */
+		struct bio	req, rreq;
+		struct bio_vec	vec, rvec;
+		struct page	*page;
+		struct bio	*toread, *read, *towrite, *written;
+		sector_t	sector;			/* sector of this page */
+		unsigned long	flags;
+	} dev[1]; /* allocated with extra space depending of RAID geometry */
+};
+
+/* stripe_head_state - collects and tracks the dynamic state of a stripe_head
+ *     for handle_stripe.
+ */
+struct stripe_head_state {
+	/* 'syncing' means that we need to read all devices, either
+	 * to check/correct parity, or to reconstruct a missing device.
+	 * 'replacing' means we are replacing one or more drives and
+	 * the source is valid at this point so we don't need to
+	 * read all devices, just the replacement targets.
+	 */
+	int syncing, expanding, expanded, replacing;
+	int locked, uptodate, to_read, to_write, failed, written;
+	int to_fill, compute, req_compute, non_overwrite;
+	int failed_num[2];
+	int p_failed, q_failed;
+	int dec_preread_active;
+	unsigned long ops_request;
+
+	struct bio *return_bi;
+	struct md_rdev *blocked_rdev;
+	int handle_bad_blocks;
+};
+
+/* Flags for struct r5dev.flags */
+enum r5dev_flags {
+	R5_UPTODATE,	/* page contains current data */
+	R5_LOCKED,	/* IO has been submitted on "req" */
+	R5_DOUBLE_LOCKED,/* Cannot clear R5_LOCKED until 2 writes complete */
+	R5_OVERWRITE,	/* towrite covers whole page */
+/* and some that are internal to handle_stripe */
+	R5_Insync,	/* rdev && rdev->in_sync at start */
+	R5_Wantread,	/* want to schedule a read */
+	R5_Wantwrite,
+	R5_Overlap,	/* There is a pending overlapping request
+			 * on this block */
+	R5_ReadError,	/* seen a read error here recently */
+	R5_ReWrite,	/* have tried to over-write the readerror */
+
+	R5_Expanded,	/* This block now has post-expand data */
+	R5_Wantcompute,	/* compute_block in progress treat as
+			 * uptodate
+			 */
+	R5_Wantfill,	/* dev->toread contains a bio that needs
+			 * filling
+			 */
+	R5_Wantdrain,	/* dev->towrite needs to be drained */
+	R5_WantFUA,	/* Write should be FUA */
+	R5_WriteError,	/* got a write error - need to record it */
+	R5_MadeGood,	/* A bad block has been fixed by writing to it */
+	R5_ReadRepl,	/* Will/did read from replacement rather than orig */
+	R5_MadeGoodRepl,/* A bad block on the replacement device has been
+			 * fixed by writing to it */
+	R5_NeedReplace,	/* This device has a replacement which is not
+			 * up-to-date at this stripe. */
+	R5_WantReplace, /* We need to update the replacement, we have read
+			 * data in, and now is a good time to write it out.
+			 */
+};
+
+/*
+ * Stripe state
+ */
+enum {
+	STRIPE_ACTIVE,
+	STRIPE_HANDLE,
+	STRIPE_SYNC_REQUESTED,
+	STRIPE_SYNCING,
+	STRIPE_INSYNC,
+	STRIPE_REPLACED,
+	STRIPE_PREREAD_ACTIVE,
+	STRIPE_DELAYED,
+	STRIPE_DEGRADED,
+	STRIPE_BIT_DELAY,
+	STRIPE_EXPANDING,
+	STRIPE_EXPAND_SOURCE,
+	STRIPE_EXPAND_READY,
+	STRIPE_IO_STARTED,	/* do not count towards 'bypass_count' */
+	STRIPE_FULL_WRITE,	/* all blocks are set to be overwritten */
+	STRIPE_BIOFILL_RUN,
+	STRIPE_COMPUTE_RUN,
+	STRIPE_OPS_REQ_PENDING,
+};
+
+/*
+ * Operation request flags
+ */
+enum {
+	STRIPE_OP_BIOFILL,
+	STRIPE_OP_COMPUTE_BLK,
+	STRIPE_OP_PREXOR,
+	STRIPE_OP_BIODRAIN,
+	STRIPE_OP_RECONSTRUCT,
+	STRIPE_OP_CHECK,
+};
+/*
+ * Plugging:
+ *
+ * To improve write throughput, we need to delay the handling of some
+ * stripes until there has been a chance that several write requests
+ * for the one stripe have all been collected.
+ * In particular, any write request that would require pre-reading
+ * is put on a "delayed" queue until there are no stripes currently
+ * in a pre-read phase.  Further, if the "delayed" queue is empty when
+ * a stripe is put on it then we "plug" the queue and do not process it
+ * until an unplug call is made. (the unplug_io_fn() is called).
+ *
+ * When preread is initiated on a stripe, we set PREREAD_ACTIVE and add
+ * it to the count of prereading stripes.
+ * When write is initiated, or the stripe refcnt == 0 (just in case) we
+ * clear the PREREAD_ACTIVE flag and decrement the count
+ * Whenever the 'handle' queue is empty and the device is not plugged, we
+ * move any strips from delayed to handle and clear the DELAYED flag and set
+ * PREREAD_ACTIVE.
+ * In stripe_handle, if we find pre-reading is necessary, we do it if
+ * PREREAD_ACTIVE is set, else we set DELAYED which will send it to the delayed queue.
+ * HANDLE gets cleared if stripe_handle leaves nothing locked.
+ */
+
+
+struct disk_info {
+	struct md_rdev	*rdev, *replacement;
+};
+
+struct r5conf {
+	struct hlist_head	*stripe_hashtbl;
+	struct mddev		*mddev;
+	int			chunk_sectors;
+	int			level, algorithm;
+	int			max_degraded;
+	int			raid_disks;
+	int			max_nr_stripes;
+
+	/* reshape_progress is the leading edge of a 'reshape'
+	 * It has value MaxSector when no reshape is happening
+	 * If delta_disks < 0, it is the last sector we started work on,
+	 * else is it the next sector to work on.
+	 */
+	sector_t		reshape_progress;
+	/* reshape_safe is the trailing edge of a reshape.  We know that
+	 * before (or after) this address, all reshape has completed.
+	 */
+	sector_t		reshape_safe;
+	int			previous_raid_disks;
+	int			prev_chunk_sectors;
+	int			prev_algo;
+	short			generation; /* increments with every reshape */
+	unsigned long		reshape_checkpoint; /* Time we last updated
+						     * metadata */
+
+	struct list_head	handle_list; /* stripes needing handling */
+	struct list_head	hold_list; /* preread ready stripes */
+	struct list_head	delayed_list; /* stripes that have plugged requests */
+	struct list_head	bitmap_list; /* stripes delaying awaiting bitmap update */
+	struct bio		*retry_read_aligned; /* currently retrying aligned bios   */
+	struct bio		*retry_read_aligned_list; /* aligned bios retry list  */
+	atomic_t		preread_active_stripes; /* stripes with scheduled io */
+	atomic_t		active_aligned_reads;
+	atomic_t		pending_full_writes; /* full write backlog */
+	int			bypass_count; /* bypassed prereads */
+	int			bypass_threshold; /* preread nice */
+	struct list_head	*last_hold; /* detect hold_list promotions */
+
+	atomic_t		reshape_stripes; /* stripes with pending writes for reshape */
+	/* unfortunately we need two cache names as we temporarily have
+	 * two caches.
+	 */
+	int			active_name;
+	char			cache_name[2][32];
+	struct kmem_cache		*slab_cache; /* for allocating stripes */
+
+	int			seq_flush, seq_write;
+	int			quiesce;
+
+	int			fullsync;  /* set to 1 if a full sync is needed,
+					    * (fresh device added).
+					    * Cleared when a sync completes.
+					    */
+	int			recovery_disabled;
+	/* per cpu variables */
+	struct raid5_percpu {
+		spinlock_t	lock;	     /* Protection for -RT */
+		struct page	*spare_page; /* Used when checking P/Q in raid6 */
+		void		*scribble;   /* space for constructing buffer
+					      * lists and performing address
+					      * conversions
+					      */
+	} __percpu *percpu;
+	size_t			scribble_len; /* size of scribble region must be
+					       * associated with conf to handle
+					       * cpu hotplug while reshaping
+					       */
+#ifdef CONFIG_HOTPLUG_CPU
+	struct notifier_block	cpu_notify;
+#endif
+
+	/*
+	 * Free stripes pool
+	 */
+	atomic_t		active_stripes;
+	struct list_head	inactive_list;
+	wait_queue_head_t	wait_for_stripe;
+	wait_queue_head_t	wait_for_overlap;
+	int			inactive_blocked;	/* release of inactive stripes blocked,
+							 * waiting for 25% to be free
+							 */
+	int			pool_size; /* number of disks in stripeheads in pool */
+	spinlock_t		device_lock;
+	struct disk_info	*disks;
+
+	/* When taking over an array from a different personality, we store
+	 * the new thread here until we fully activate the array.
+	 */
+	struct md_thread	*thread;
+};
+
+/*
+ * Our supported algorithms
+ */
+#define ALGORITHM_LEFT_ASYMMETRIC	0 /* Rotating Parity N with Data Restart */
+#define ALGORITHM_RIGHT_ASYMMETRIC	1 /* Rotating Parity 0 with Data Restart */
+#define ALGORITHM_LEFT_SYMMETRIC	2 /* Rotating Parity N with Data Continuation */
+#define ALGORITHM_RIGHT_SYMMETRIC	3 /* Rotating Parity 0 with Data Continuation */
+
+/* Define non-rotating (raid4) algorithms.  These allow
+ * conversion of raid4 to raid5.
+ */
+#define ALGORITHM_PARITY_0		4 /* P or P,Q are initial devices */
+#define ALGORITHM_PARITY_N		5 /* P or P,Q are final devices. */
+
+/* DDF RAID6 layouts differ from md/raid6 layouts in two ways.
+ * Firstly, the exact positioning of the parity block is slightly
+ * different between the 'LEFT_*' modes of md and the "_N_*" modes
+ * of DDF.
+ * Secondly, or order of datablocks over which the Q syndrome is computed
+ * is different.
+ * Consequently we have different layouts for DDF/raid6 than md/raid6.
+ * These layouts are from the DDFv1.2 spec.
+ * Interestingly DDFv1.2-Errata-A does not specify N_CONTINUE but
+ * leaves RLQ=3 as 'Vendor Specific'
+ */
+
+#define ALGORITHM_ROTATING_ZERO_RESTART	8 /* DDF PRL=6 RLQ=1 */
+#define ALGORITHM_ROTATING_N_RESTART	9 /* DDF PRL=6 RLQ=2 */
+#define ALGORITHM_ROTATING_N_CONTINUE	10 /*DDF PRL=6 RLQ=3 */
+
+
+/* For every RAID5 algorithm we define a RAID6 algorithm
+ * with exactly the same layout for data and parity, and
+ * with the Q block always on the last device (N-1).
+ * This allows trivial conversion from RAID5 to RAID6
+ */
+#define ALGORITHM_LEFT_ASYMMETRIC_6	16
+#define ALGORITHM_RIGHT_ASYMMETRIC_6	17
+#define ALGORITHM_LEFT_SYMMETRIC_6	18
+#define ALGORITHM_RIGHT_SYMMETRIC_6	19
+#define ALGORITHM_PARITY_0_6		20
+#define ALGORITHM_PARITY_N_6		ALGORITHM_PARITY_N
+
+static inline int algorithm_valid_raid5(int layout)
+{
+	return (layout >= 0) &&
+		(layout <= 5);
+}
+static inline int algorithm_valid_raid6(int layout)
+{
+	return (layout >= 0 && layout <= 5)
+		||
+		(layout >= 8 && layout <= 10)
+		||
+		(layout >= 16 && layout <= 20);
+}
+
+static inline int algorithm_is_DDF(int layout)
+{
+	return layout >= 8 && layout <= 10;
+}
+
+extern int md_raid5_congested(struct mddev *mddev, int bits);
+extern void md_raid5_kick_device(struct r5conf *conf);
+extern int raid5_set_cache_size(struct mddev *mddev, int size);
+#endif