zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/drivers/mtd/nand/denali.c b/ap/os/linux/linux-3.4.x/drivers/mtd/nand/denali.c
new file mode 100644
index 0000000..8187442
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/mtd/nand/denali.c
@@ -0,0 +1,2488 @@
+/*
+ * NAND Flash Controller Device Driver
+ * Copyright © 2009-2010, Intel Corporation and its suppliers.
+ *
+ * This program is free software; you can redistribute it and/or modify it
+ * under the terms and conditions of the GNU General Public License,
+ * version 2, as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope it will be useful, but WITHOUT
+ * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+ * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
+ * more details.
+ *
+ * You should have received a copy of the GNU General Public License along with
+ * this program; if not, write to the Free Software Foundation, Inc.,
+ * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
+ *
+ */
+
+#include <linux/interrupt.h>
+#include <linux/delay.h>
+#include <linux/dma-mapping.h>
+#include <linux/wait.h>
+#include <linux/mutex.h>
+#include <linux/slab.h>
+#include <linux/mtd/mtd.h>
+#include <linux/module.h>
+
+#include <linux/clk.h>
+#include <linux/err.h>
+#include <linux/io.h>
+#include <linux/ioport.h>
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+#include <linux/of.h>
+#include <linux/of_device.h>
+#include <mach/spinlock.h>
+#include <linux/wakelock.h>
+#include <linux/soc/zte/pm/drv_idle.h>
+
+#include <linux/types.h>
+#include <linux/mtd/map.h>
+#include <linux/mtd/partitions.h>
+#include <asm/io.h>
+#include "denali.h"
+#include <linux/gpio.h>
+
+MODULE_LICENSE("GPL");
+
+/* We define a module parameter that allows the user to override
+ * the hardware and decide what timing mode should be used.
+ */
+#define NAND_DEFAULT_TIMINGS	-1
+
+static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
+int denali_int_en_flag = 0;
+module_param(onfi_timing_mode, int, S_IRUGO);
+MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
+			" -1 indicates use default timings");
+
+#define DENALI_NAND_NAME    "denali-nand"
+
+/* We define a macro here that combines all interrupts this driver uses into
+ * a single constant value, for convenience. */
+#define DENALI_IRQ_ALL	(INTR_STATUS__DMA_CMD_COMP | \
+			INTR_STATUS__ECC_TRANSACTION_DONE | \
+			INTR_STATUS__ECC_ERR | \
+			INTR_STATUS__PROGRAM_FAIL | \
+			INTR_STATUS__LOAD_COMP | \
+			INTR_STATUS__PROGRAM_COMP | \
+			INTR_STATUS__TIME_OUT | \
+			INTR_STATUS__ERASE_FAIL | \
+			INTR_STATUS__RST_COMP | \
+			INTR_STATUS__ERASE_COMP)
+
+/* indicates whether or not the internal value for the flash bank is
+ * valid or not */
+#define CHIP_SELECT_INVALID	-1
+
+#define SUPPORT_8BITECC		1
+
+/* This macro divides two integers and rounds fractional values up
+ * to the nearest integer value. */
+#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
+
+/* this macro allows us to convert from an MTD structure to our own
+ * device context (denali) structure.
+ */
+#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
+
+/* These constants are defined by the driver to enable common driver
+ * configuration options. */
+#define SPARE_ACCESS		0x41
+#define MAIN_ACCESS		0x42
+#define MAIN_SPARE_ACCESS	0x43
+
+#define DENALI_READ	0
+#define DENALI_WRITE	0x100
+
+/* types of device accesses. We can issue commands and get status */
+#define COMMAND_CYCLE	0
+#define ADDR_CYCLE	1
+#define STATUS_CYCLE	2
+
+/* this is a helper macro that allows us to
+ * format the bank into the proper bits for the controller */
+#define BANK(x) ((x) << 24)
+
+/* List of platforms this NAND controller has be integrated into */
+
+
+/* forward declarations */
+static void clear_interrupts(struct denali_nand_info *denali);
+static uint32_t wait_for_irq(struct denali_nand_info *denali,
+							uint32_t irq_mask);
+static void denali_irq_enable(struct denali_nand_info *denali,
+							uint32_t int_mask);
+static uint32_t read_interrupt_status(struct denali_nand_info *denali);
+
+static uint32_t detect_nand_bus_freq(void);
+
+struct mtd_info *mtd_fota;
+static struct wake_lock nand_wake_lock;
+extern struct cmdline_mtd_partition *partitions;
+
+struct cmdline_mtd_partition {
+	struct cmdline_mtd_partition *next;
+	char *mtd_id;
+	int num_parts;
+	struct mtd_partition *parts;
+};
+
+
+/* Certain operations for the denali NAND controller use
+ * an indexed mode to read/write data. The operation is
+ * performed by writing the address value of the command
+ * to the device memory followed by the data. This function
+ * abstracts this common operation.
+*/
+static void index_addr(struct denali_nand_info *denali,
+				uint32_t address, uint32_t data)
+{
+	iowrite32(address, denali->flash_mem);
+	iowrite32(data, denali->flash_mem + 0x10);
+}
+
+/* Perform an indexed read of the device */
+static void index_addr_read_data(struct denali_nand_info *denali,
+				 uint32_t address, uint32_t *pdata)
+{
+	iowrite32(address, denali->flash_mem);
+	*pdata = ioread32(denali->flash_mem + 0x10);
+}
+
+/* We need to buffer some data for some of the NAND core routines.
+ * The operations manage buffering that data. */
+static void reset_buf(struct denali_nand_info *denali)
+{
+	denali->buf.head = denali->buf.tail = 0;
+}
+
+static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
+{
+	BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
+	denali->buf.buf[denali->buf.tail++] = byte;
+}
+
+/* reads the status of the device */
+static void read_status(struct denali_nand_info *denali)
+{
+	uint32_t cmd = 0x0;
+	/* initialize the data buffer to store status */
+	reset_buf(denali);
+
+	cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
+	if (cmd)
+		write_byte_to_buf(denali, NAND_STATUS_WP);
+	else
+		write_byte_to_buf(denali, 0);
+}
+
+/* resets a specific device connected to the core */
+static void reset_bank(struct denali_nand_info *denali)
+{
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS__RST_COMP |
+			    INTR_STATUS__TIME_OUT;
+   
+	clear_interrupts(denali);
+
+	iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
+
+	irq_status = wait_for_irq(denali, irq_mask);
+
+	if (irq_status & INTR_STATUS__TIME_OUT)
+		dev_err(denali->dev, "reset bank failed.\n");
+
+   
+}
+
+/* Reset the flash controller */
+static uint16_t denali_nand_reset(struct denali_nand_info *denali)
+{
+	uint32_t i;
+
+	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+		       __FILE__, __LINE__, __func__);
+
+	for (i = 0 ; i < denali->max_banks; i++)
+		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+		denali->flash_reg + INTR_STATUS(i));
+
+	for (i = 0 ; i < denali->max_banks; i++) {
+		iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
+		while (!(ioread32(denali->flash_reg +
+				INTR_STATUS(i)) &
+			(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
+			cpu_relax();
+		if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
+			INTR_STATUS__TIME_OUT)
+			dev_dbg(denali->dev,
+			"NAND Reset operation timed out on bank %d\n", i);
+	}
+
+	for (i = 0; i < denali->max_banks; i++)
+		iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
+			denali->flash_reg + INTR_STATUS(i));
+
+	return PASS;
+}
+
+
+uint32_t main_size, spare_size;
+static void get_samsung_nand_para(struct denali_nand_info *denali,
+							uint8_t device_id)
+{
+    uint32_t bus_freq;
+    bus_freq = 25;
+
+    main_size = 2048;
+	spare_size = 64;
+	iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+    iowrite32(main_size, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+    iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+    iowrite32(4, denali->flash_reg + ECC_CORRECTION);
+    iowrite32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+    iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+    iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8), 
+            denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+    iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8), 
+            denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+    iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+    iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+    iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+    iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+    iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+	denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+	denali->nand.ecc.size = 512;//BRUCE
+
+}
+
+static void get_toshiba_nand_para(struct denali_nand_info *denali)
+{
+	uint32_t tmp;
+
+	/* Workaround to fix a controller bug which reports a wrong */
+	/* spare area size for some kind of Toshiba NAND device */
+	if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
+		(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
+		iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+		tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
+			ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+		iowrite32(tmp,
+				denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+#if SUPPORT_15BITECC
+		iowrite32(15, denali->flash_reg + ECC_CORRECTION);
+#elif SUPPORT_8BITECC
+		iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+#endif
+	}
+}
+
+
+
+static void get_hynix_nand_para(struct denali_nand_info *denali,
+							uint8_t device_id)
+{
+	
+	uint32_t bus_freq;
+    bus_freq = detect_nand_bus_freq();
+
+	switch (device_id) {
+		
+    case 0xAC: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+		main_size = 2048;
+		spare_size = 128;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(128, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(128, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+        iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+        iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+        iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+        iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+        iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+		denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+		break;
+	case 0xAA: /* Hynix H272G8_6F2C,JSC2G1G */
+		main_size = 2048;
+		spare_size = 128;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		
+        iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+        iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+        iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+        iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+        iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+
+		denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+		break;
+	case 0xDA: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
+		main_size = 2048;
+		spare_size = 64;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(64, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(4, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(64, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+        iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+        iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+        iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+        iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+        iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+		denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+		break;
+	default:
+		dev_warn(denali->dev,
+			"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
+			"Will use default parameter values instead.\n",
+			device_id);
+	}
+}
+static void get_micron_nand_para(struct denali_nand_info *denali,
+							uint8_t device_id)
+{
+	
+    uint32_t bus_freq;
+    bus_freq = detect_nand_bus_freq();
+	switch (device_id) {
+	case 0xD5: /* Micron */
+	case 0xAA: /* Micron MT29F2G08ABBEA */
+	case 0xAC:
+		main_size = 2048;
+		spare_size = 64;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(4, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		
+        iowrite32(((60 * bus_freq)/1000+2) | (((25 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);
+        iowrite32(((100* bus_freq)/1000+2) | (((22* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);
+        iowrite32((100 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);     /*timing*/
+        iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT);
+        iowrite32((15 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT);
+        iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);
+        iowrite32((60 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);
+		denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+
+		break;
+	default:
+		dev_warn(denali->dev,
+			"Spectra: Unknown Micron NAND (Device ID: 0x%x)."
+			"Will use default parameter values instead.\n",
+			device_id);
+		}
+}
+static void get_jsc_nand_para(struct denali_nand_info *denali,
+							uint8_t device_id)
+{
+	
+    uint32_t bus_freq;
+    bus_freq = detect_nand_bus_freq();
+	switch (device_id) {
+	case 0xAC: /* JSFN7XB 4G2G */
+		main_size = 2048;
+		spare_size = 128;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		
+        iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+        iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+        iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+        iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+        iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+		denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+
+		break;
+	default:
+		dev_warn(denali->dev,
+			"Spectra: Unknown JSC NAND (Device ID: 0x%x)."
+			"Will use default parameter values instead.\n",
+			device_id);
+		}
+}
+static void get_esmt_nand_para(struct denali_nand_info *denali,
+							uint8_t device_id)
+{
+	
+    uint32_t bus_freq;
+    bus_freq = detect_nand_bus_freq();
+	switch (device_id) {
+	case 0xAC: /* ESMT FM6BD4G2GA */
+		main_size = 2048;
+		spare_size = 64;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(4, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		
+        iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+        iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+        iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+        iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+        iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+		denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+		break;
+
+	case 0xAA: /* ESMT FM6BD2G1GA */
+		main_size = 2048;
+		spare_size = 64;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(4, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		
+        iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+        iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+        iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+        iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+        iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+        iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+		denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+
+		break;
+	default:
+		dev_warn(denali->dev,
+			"Spectra: Unknown ESMT NAND (Device ID: 0x%x)."
+			"Will use default parameter values instead.\n",
+			device_id);
+		}
+}
+static void get_nanya_nand_para(struct denali_nand_info *denali,
+							uint8_t device_id)
+{
+	
+    uint32_t bus_freq;
+    bus_freq = detect_nand_bus_freq();
+	switch (device_id) {
+	case 0xAC: /* NM1482KSLAXBJ 4G2G */
+		main_size = 4096;
+		spare_size = 256;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(4096, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		
+        iowrite32(((60 * bus_freq)/1000+2) | (((25 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+        iowrite32(((100* bus_freq)/1000+2) | (((25* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+        iowrite32((50 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+        iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+        iowrite32((15 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+        iowrite32((20 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+        iowrite32((50 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+		denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+		break;
+	case 0xAA: /* NM1281KSLAXAJ 2G1G */
+		main_size = 2048;
+		spare_size = 128;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(main_size, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(8, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		
+        iowrite32(((60 * bus_freq)/1000+2) | (((25 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+        iowrite32(((100* bus_freq)/1000+2) | (((25* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+        iowrite32((100 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+        iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+        iowrite32((15 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+        iowrite32((35 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+        iowrite32((60 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+        denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+
+		break;
+	default:
+		dev_warn(denali->dev,
+			"Spectra: Unknown Nanya NAND (Device ID: 0x%x)."
+			"Will use default parameter values instead.\n",
+			device_id);
+		}
+}
+
+static void get_winbond_nand_para(struct denali_nand_info *denali,
+							uint8_t device_id)
+{
+	
+    uint32_t bus_freq;
+    bus_freq = detect_nand_bus_freq();
+	switch (device_id) {
+	
+
+	case 0xAA: /* W71NW20GF3FW */
+		main_size = 2048;
+		spare_size = 64;
+		iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
+	    iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
+	    iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
+	    iowrite32(4, denali->flash_reg + ECC_CORRECTION);
+	    iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
+	    iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
+		
+        iowrite32(((80 * bus_freq)/1000+2) | (((25 * bus_freq)/1000+2)<<8), 
+                denali->flash_reg + WE_2_RE);                                  /* Twhr,Trr1*/
+        iowrite32(((100* bus_freq)/1000+2) | (((25* bus_freq)/1000+2)<<8), 
+                denali->flash_reg + ADDR_2_DATA);                              /* Tadl,Trr2 */
+        iowrite32((100 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE);       /* Trhw */
+        iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp   */
+        iowrite32((15 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
+        iowrite32((35 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);   /* Tcs   */
+        iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);        /* Trhz  */
+		denali->nand.ecc.strength =  ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
+		denali->nand.ecc.size = 512;//BRUCE
+
+		break;
+	default:
+		dev_warn(denali->dev,
+			"Spectra: Unknown ESMT NAND (Device ID: 0x%x)."
+			"Will use default parameter values instead.\n",
+			device_id);
+		}
+}
+static uint32_t detect_nand_bus_freq(void)
+{
+  void __iomem *reg;
+	uint32_t clk_reg = 0;
+	reg = ioremap(0x01307050,4);
+
+	clk_reg = readl(reg);/*MOD_CLK_SEL[13:12]=00,7520v2 NAND 104MHz*/
+	clk_reg &= 0xffffcfff;
+	writel(clk_reg, reg);
+
+	if((((readl(reg))>>12) & 0x3) == 0)        
+        return 104;
+    else
+        return 26;  
+}
+/* determines how many NAND chips are connected to the controller. Note for
+ * Intel CE4100 devices we don't support more than one device.
+ */
+static void find_valid_banks(struct denali_nand_info *denali)
+{
+	uint32_t id[denali->max_banks];
+	int i;
+
+	denali->total_used_banks = 1;
+	for (i = 0; i < denali->max_banks; i++) {
+		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
+		index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
+		index_addr_read_data(denali,
+				(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
+
+		dev_dbg(denali->dev,
+			"Return 1st ID for bank[%d]: %x\n", i, id[i]);
+
+		if (i == 0) {
+			if (!(id[i] & 0x0ff))
+				break; /* WTF? */
+		} else {
+			if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
+				denali->total_used_banks++;
+			else
+				break;
+		}
+	}
+
+	if (denali->platform == INTEL_CE4100) {
+		/* Platform limitations of the CE4100 device limit
+		 * users to a single chip solution for NAND.
+		 * Multichip support is not enabled.
+		 */
+		if (denali->total_used_banks != 1) {
+			dev_err(denali->dev,
+					"Sorry, Intel CE4100 only supports "
+					"a single NAND device.\n");
+			BUG();
+		}
+	}
+	dev_dbg(denali->dev,
+		"denali->total_used_banks: %d\n", denali->total_used_banks);
+}
+
+/*
+ * Use the configuration feature register to determine the maximum number of
+ * banks that the hardware supports.
+ */
+/*static void detect_max_banks(struct denali_nand_info *denali)
+{
+	uint32_t features = ioread32(denali->flash_reg + FEATURES);
+
+	denali->max_banks = 2 << (features & FEATURES__N_BANKS);
+}*/
+
+static void detect_partition_feature(struct denali_nand_info *denali)
+{
+	/* For MRST platform, denali->fwblks represent the
+	 * number of blocks firmware is taken,
+	 * FW is in protect partition and MTD driver has no
+	 * permission to access it. So let driver know how many
+	 * blocks it can't touch.
+	 * */
+	if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
+		if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
+			PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
+			denali->fwblks =
+			    ((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
+			      MIN_MAX_BANK__MIN_VALUE) *
+			     denali->blksperchip)
+			    +
+			    (ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
+			    MIN_BLK_ADDR__VALUE);
+		} else
+			denali->fwblks = SPECTRA_START_BLOCK;
+	} else
+		denali->fwblks = SPECTRA_START_BLOCK;
+}
+
+static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
+{
+	uint16_t status = PASS;
+	uint32_t id_bytes[5], addr;
+	uint8_t i, maf_id, device_id;
+
+	dev_dbg(denali->dev,
+			"%s, Line %d, Function: %s\n",
+			__FILE__, __LINE__, __func__);
+
+	/* Use read id method to get device ID and other
+	 * params. For some NAND chips, controller can't
+	 * report the correct device ID by reading from
+	 * DEVICE_ID register
+	 * */
+	addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+	index_addr(denali, (uint32_t)addr | 0, 0x90);
+	index_addr(denali, (uint32_t)addr | 1, 0);
+	for (i = 0; i < 5; i++)
+		index_addr_read_data(denali, addr | 2, &id_bytes[i]);
+	maf_id = id_bytes[0];
+	device_id = id_bytes[1];
+	dev_info(denali->dev,"maf = %x,dev = %x\n",maf_id,device_id);
+    if (maf_id == 0xEC) { /* Samsung NAND */
+		get_samsung_nand_para(denali, device_id);
+	} else if (maf_id == 0x98) { /* Toshiba NAND */
+		get_nanya_nand_para(denali, device_id);
+	} else if (maf_id == 0xAD) { /* Hynix NAND */
+		get_hynix_nand_para(denali, device_id);
+	} else if (maf_id == 0x2C) { /* Micron NAND */
+		get_micron_nand_para(denali, device_id);
+	} else if (maf_id == 0x01) { /* JSC NAND */
+		get_jsc_nand_para(denali, device_id);
+	} else if (maf_id == 0xC8) { /* ESMT NAND */
+        get_esmt_nand_para(denali, device_id);
+	} else if (maf_id == 0xEF) { /* W71NW20GF3FW NAND */
+        get_winbond_nand_para(denali, device_id);
+	}
+
+	dev_info(denali->dev,
+			"Dump timing register values:"
+			"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
+			"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
+			"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
+			ioread32(denali->flash_reg + ACC_CLKS),
+			ioread32(denali->flash_reg + RE_2_WE),
+			ioread32(denali->flash_reg + RE_2_RE),
+			ioread32(denali->flash_reg + WE_2_RE),
+			ioread32(denali->flash_reg + ADDR_2_DATA),
+			ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
+			ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
+			ioread32(denali->flash_reg + CS_SETUP_CNT));
+
+	find_valid_banks(denali);
+
+	detect_partition_feature(denali);
+
+	/* If the user specified to override the default timings
+	 * with a specific ONFI mode, we apply those changes here.
+	 */
+	/*if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
+		nand_onfi_timing_set(denali, onfi_timing_mode);*/
+
+	return status;
+}
+
+
+ void denali_set_intr_modes(struct denali_nand_info *denali,
+					uint16_t INT_ENABLE)
+{
+	dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
+		       __FILE__, __LINE__, __func__);
+
+	if (INT_ENABLE)
+		iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
+	else
+		iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
+}
+
+/* validation function to verify that the controlling software is making
+ * a valid request
+ */
+static inline bool is_flash_bank_valid(int flash_bank)
+{
+	return (flash_bank >= 0 && flash_bank < 4);
+}
+
+static void denali_irq_init(struct denali_nand_info *denali)
+{
+	uint32_t int_mask = 0;
+	int i;
+
+	/* Disable global interrupts */
+	denali_set_intr_modes(denali, false);
+
+	int_mask = DENALI_IRQ_ALL;
+
+	/* Clear all status bits */
+	for (i = 0; i < denali->max_banks; ++i)
+		iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
+
+	denali_irq_enable(denali, int_mask);
+}
+
+static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
+{
+	denali_set_intr_modes(denali, false);
+	free_irq(irqnum, denali);
+}
+
+static void denali_irq_enable(struct denali_nand_info *denali,
+							uint32_t int_mask)
+{
+	int i;
+
+	for (i = 0; i < denali->max_banks; ++i)
+		iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
+}
+
+/* This function only returns when an interrupt that this driver cares about
+ * occurs. This is to reduce the overhead of servicing interrupts
+ */
+static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
+{
+	return read_interrupt_status(denali) & DENALI_IRQ_ALL;
+}
+
+/* Interrupts are cleared by writing a 1 to the appropriate status bit */
+static inline void clear_interrupt(struct denali_nand_info *denali,
+							uint32_t irq_mask)
+{
+	uint32_t intr_status_reg = 0;
+
+	intr_status_reg = INTR_STATUS(denali->flash_bank);
+
+	iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
+}
+
+static void clear_interrupts(struct denali_nand_info *denali)
+{
+	uint32_t status = 0x0;
+	spin_lock_irq(&denali->irq_lock);
+
+	status = read_interrupt_status(denali);
+	clear_interrupt(denali, status);
+
+	denali->irq_status = 0x0;
+	spin_unlock_irq(&denali->irq_lock);
+}
+
+static uint32_t read_interrupt_status(struct denali_nand_info *denali)
+{
+	uint32_t intr_status_reg = 0;
+
+	intr_status_reg = INTR_STATUS(denali->flash_bank);
+
+	return ioread32(denali->flash_reg + intr_status_reg);
+}
+
+/* This is the interrupt service routine. It handles all interrupts
+ * sent to this device. Note that on CE4100, this is a shared
+ * interrupt.
+ */
+static irqreturn_t denali_isr(int irq, void *dev_id)
+{
+	struct denali_nand_info *denali = dev_id;
+	uint32_t irq_status = 0x0;
+	irqreturn_t result = IRQ_NONE;
+
+	spin_lock(&denali->irq_lock);
+
+	/* check to see if a valid NAND chip has
+	 * been selected.
+	 */
+	if (is_flash_bank_valid(denali->flash_bank)) {
+		/* check to see if controller generated
+		 * the interrupt, since this is a shared interrupt */
+		irq_status = denali_irq_detected(denali);
+		if (irq_status != 0) {
+			/* handle interrupt */
+			/* first acknowledge it */
+			clear_interrupt(denali, irq_status);
+			/* store the status in the device context for someone
+			   to read */
+			denali->irq_status |= irq_status;
+			/* notify anyone who cares that it happened */
+			complete(&denali->complete);
+			/* tell the OS that we've handled this */
+			result = IRQ_HANDLED;
+		}
+	}
+	spin_unlock(&denali->irq_lock);
+	return result;
+}
+#define BANK(x) ((x) << 24)
+
+static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
+{
+	unsigned long comp_res = 0;
+	uint32_t intr_status = 0;
+	bool retry = false;
+	unsigned long timeout = msecs_to_jiffies(1000);
+
+	do {
+		comp_res =
+			wait_for_completion_timeout(&denali->complete, timeout);
+		spin_lock_irq(&denali->irq_lock);
+		intr_status = denali->irq_status;
+
+		if (intr_status & irq_mask) {
+			denali->irq_status &= ~irq_mask;
+			spin_unlock_irq(&denali->irq_lock);
+			/* our interrupt was detected */
+			break;
+		} else {
+			/* these are not the interrupts you are looking for -
+			 * need to wait again */
+			spin_unlock_irq(&denali->irq_lock);
+			retry = true;
+		}
+	} while (comp_res != 0);
+
+	if (comp_res == 0) {
+		/* timeout */
+		printk(KERN_ERR "denali timeout occurred, status = 0x%x, mask = 0x%x\n",
+				intr_status, irq_mask);
+
+		intr_status = 0;
+	}
+
+	return intr_status;
+}
+
+/* This helper function setups the registers for ECC and whether or not
+ * the spare area will be transferred. */
+static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
+				bool transfer_spare)
+{
+	int ecc_en_flag = 0, transfer_spare_flag = 0;
+
+	/* set ECC, transfer spare bits if needed */
+	ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
+	transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
+
+	/* Enable spare area/ECC per user's request. */
+	iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
+	iowrite32(transfer_spare_flag,
+			denali->flash_reg + TRANSFER_SPARE_REG);
+}
+
+/* sends a pipeline command operation to the controller. See the Denali NAND
+ * controller's user guide for more information (section 4.2.3.6).
+ */
+static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
+							bool ecc_en,
+							bool transfer_spare,
+							int access_type,
+							int op)
+{
+	int status = PASS;
+	uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
+		 irq_mask = 0;
+
+	if (op == DENALI_READ)
+		irq_mask = INTR_STATUS__LOAD_COMP;
+	else if (op == DENALI_WRITE)
+		irq_mask = 0;
+	else
+		BUG();
+
+	setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
+
+	/* clear interrupts */
+	clear_interrupts(denali);
+
+	addr = BANK(denali->flash_bank) | denali->page;
+
+	if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
+		cmd = MODE_01 | addr;
+		iowrite32(cmd, denali->flash_mem);
+	} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
+		/* read spare area */
+		cmd = MODE_10 | addr;
+		index_addr(denali, (uint32_t)cmd, access_type);
+
+		cmd = MODE_01 | addr;
+		iowrite32(cmd, denali->flash_mem);
+	} else if (op == DENALI_READ) {
+		/* setup page read request for access type */
+		cmd = MODE_10 | addr;
+		index_addr(denali, (uint32_t)cmd, access_type);
+
+		/* page 33 of the NAND controller spec indicates we should not
+		   use the pipeline commands in Spare area only mode. So we
+		   don't.
+		 */
+		if (access_type == SPARE_ACCESS) 
+		{
+			cmd = MODE_01 | addr;
+			iowrite32(cmd, denali->flash_mem);
+		} else {
+			index_addr(denali, (uint32_t)cmd,
+					0x2000 | op | page_count);
+
+			/* wait for command to be accepted
+			 * can always use status0 bit as the
+			 * mask is identical for each
+			 * bank. */
+			irq_status = wait_for_irq(denali, irq_mask);
+
+			if (irq_status == 0) {
+				dev_err(denali->dev,
+						"cmd, page, addr on timeout "
+						"(0x%x, 0x%x, 0x%x)\n",
+						cmd, denali->page, addr);
+				status = FAIL;
+			} else {
+				cmd = MODE_01 | addr;
+				iowrite32(cmd, denali->flash_mem);
+			}
+		}
+	}
+	return status;
+}
+
+/* helper function that simply writes a buffer to the flash */
+static int write_data_to_flash_mem(struct denali_nand_info *denali,
+							const uint8_t *buf,
+							int len)
+{
+	uint32_t i = 0, *buf32;
+
+	/* verify that the len is a multiple of 4. see comment in
+	 * read_data_from_flash_mem() */
+	BUG_ON((len % 4) != 0);
+
+	/* write the data to the flash memory */
+	buf32 = (uint32_t *)buf;
+	for (i = 0; i < len / 4; i++)
+		iowrite32(*buf32++, denali->flash_mem + 0x10);
+	return i*4; /* intent is to return the number of bytes read */
+}
+
+/* helper function that simply reads a buffer from the flash */
+static int read_data_from_flash_mem(struct denali_nand_info *denali,
+								uint8_t *buf,
+								int len)
+{
+	uint32_t i = 0, *buf32;
+
+	/* we assume that len will be a multiple of 4, if not
+	 * it would be nice to know about it ASAP rather than
+	 * have random failures...
+	 * This assumption is based on the fact that this
+	 * function is designed to be used to read flash pages,
+	 * which are typically multiples of 4...
+	 */
+
+	BUG_ON((len % 4) != 0);
+
+	/* transfer the data from the flash */
+	buf32 = (uint32_t *)buf;
+	for (i = 0; i < len / 4; i++)
+	{
+		*buf32++ = ioread32(denali->flash_mem + 0x10);
+		
+	}
+	return i*4; /* intent is to return the number of bytes read */
+}
+
+/* writes OOB data to the device */
+static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
+						INTR_STATUS__PROGRAM_FAIL;
+	int status = 0, addr = 0x0, cmd = 0x0;
+	denali->page = page;
+    //printk("denali_write_oob %d page\n",denali->page);
+	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+							DENALI_WRITE) == PASS) {
+		write_data_to_flash_mem(denali, buf, mtd->oobsize);
+
+		/* wait for operation to complete */
+		irq_status = wait_for_irq(denali, irq_mask);
+
+		if (irq_status == 0) {
+			dev_err(denali->dev, "OOB write failed\n");
+			status = -EIO;
+		}
+	} else {
+		dev_err(denali->dev, "unable to send pipeline command\n");
+		status = -EIO;
+	}
+
+	/* We set the device back to MAIN_ACCESS here as I observed
+		 * instability with the controller if you do a block erase
+		 * and the last transaction was a SPARE_ACCESS. Block erase
+		 * is reliable (according to the MTD test infrastructure)
+		 * if you are in MAIN_ACCESS.
+		 */
+		addr = BANK(denali->flash_bank) | denali->page;
+		cmd = MODE_10 | addr;
+		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
+		
+	return status;
+}
+
+/* reads OOB data from the device */
+static int read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t irq_mask = INTR_STATUS__LOAD_COMP|INTR_STATUS__TIME_OUT,
+			 irq_status = 0, addr = 0x0, cmd = 0x0;
+	int ret = 0;
+	
+	denali->page = page;
+//	dev_err(denali->dev, "OOB read %d page\n",page);
+	if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
+							DENALI_READ) == PASS) {
+		read_data_from_flash_mem(denali, buf, mtd->oobsize);
+//		dev_err(denali->dev, "OOB read OK\n");
+		/* wait for command to be accepted
+		 * can always use status0 bit as the mask is identical for each
+		 * bank. */
+		irq_status = wait_for_irq(denali, irq_mask);
+		
+		if (irq_status == 0) {
+			ret = -ETIME;
+			dev_err(denali->dev, "page on OOB timeout %d\n",
+					denali->page);
+			}
+
+		/* We set the device back to MAIN_ACCESS here as I observed
+		 * instability with the controller if you do a block erase
+		 * and the last transaction was a SPARE_ACCESS. Block erase
+		 * is reliable (according to the MTD test infrastructure)
+		 * if you are in MAIN_ACCESS.
+		 */
+		addr = BANK(denali->flash_bank) | denali->page;
+		cmd = MODE_10 | addr;
+		index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
+	}
+
+	return ret;
+}
+
+/* this function examines buffers to see if they contain data that
+ * indicate that the buffer is part of an erased region of flash.
+ */
+bool is_erased(uint8_t *buf, int len)
+{
+	int i = 0;
+	for (i = 0; i < len; i++)
+		if (buf[i] != 0xFF)
+			return false;
+	return true;
+}
+#define ECC_SECTOR_SIZE 512
+
+#define ECC_SECTOR(x)	(((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
+#define ECC_BYTE(x)	(((x) & ECC_ERROR_ADDRESS__OFFSET))
+#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
+#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
+#define ECC_ERR_DEVICE(x)	(((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
+#define ECC_LAST_ERR(x)		((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
+
+static int handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
+					uint32_t irq_status)
+{
+    int check_erased_page = 0;
+	uint32_t err_correction_value = 0;
+	uint32_t err_correction_info = 0;
+	
+
+    /*zx297510 use*/
+	if (irq_status & INTR_STATUS__ECC_ERR) 
+	{
+        check_erased_page = 1;
+		
+	}
+	else
+	{
+	    
+		switch(denali->flash_bank)
+		{
+		    case 0:
+			err_correction_info = ioread32(denali->flash_reg +ERR_CORRECTION_INFO_B01);
+			err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B0;
+			break;
+
+			case 1:
+			err_correction_info = ioread32(denali->flash_reg +ERR_CORRECTION_INFO_B01);
+			err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B1)>>8;
+			break;
+
+			case 2:
+			err_correction_info = ioread32(denali->flash_reg +ERR_CORRECTION_INFO_B23);
+			err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B2;
+			break;
+
+			case 3:
+			err_correction_info = ioread32(denali->flash_reg +ERR_CORRECTION_INFO_B23);
+			err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B3)>>8;
+			break;
+
+			default:
+			break;
+				
+		}
+		//if(err_correction_value)
+		    //printk("correct %d bit errors on page %x.\n",err_correction_value,denali->page);
+		 
+				
+	}
+	return check_erased_page;
+
+}
+
+/* programs the controller to either enable/disable DMA transfers */
+static void denali_enable_dma(struct denali_nand_info *denali, bool en)
+{
+	uint32_t reg_val = 0x0;
+
+	if (en)
+		reg_val = DMA_ENABLE__FLAG;
+
+	iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
+	ioread32(denali->flash_reg + DMA_ENABLE);
+}
+
+/* setups the HW to perform the data DMA */
+static void denali_setup_dma(struct denali_nand_info *denali, int op)
+{
+	uint32_t mode = 0x0;
+	const int page_count = 1;
+	dma_addr_t addr = denali->buf.dma_buf;
+
+	mode = MODE_10 | BANK(denali->flash_bank);
+
+	/* DMA is a four step process */
+
+	/* 1. setup transfer type and # of pages */
+	index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
+
+	/* 2. set memory high address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
+
+	/* 3. set memory low address bits 23:8 */
+	index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
+
+	/* 4.  interrupt when complete, burst len = 64 bytes*/
+	index_addr(denali, mode | 0x14000, 0x2400);
+}
+
+/* writes a page. user specifies type, and this function handles the
+ * configuration details. */
+static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
+			const uint8_t *buf, bool raw_xfer)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	dma_addr_t addr = denali->buf.dma_buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
+						INTR_STATUS__PROGRAM_FAIL;
+
+	/* if it is a raw xfer, we want to disable ecc, and send
+	 * the spare area.
+	 * !raw_xfer - enable ecc
+	 * raw_xfer - transfer spare
+	 */
+	setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
+
+	/* copy buffer into DMA buffer */
+	memcpy(denali->buf.buf, buf, mtd->writesize);
+
+	if (raw_xfer) {
+		/* transfer the data to the spare area */
+		memcpy(denali->buf.buf + mtd->writesize,
+			chip->oob_poi,
+			mtd->oobsize);
+	}
+
+	dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
+
+	clear_interrupts(denali);
+	denali_enable_dma(denali, true);
+
+	denali_setup_dma(denali, DENALI_WRITE);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+
+	if (irq_status == 0) {
+		dev_err(denali->dev,
+				"timeout on write_page (type = %d)\n",
+				raw_xfer);
+		denali->status =
+			(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
+			NAND_STATUS_FAIL : PASS;
+	}
+
+	denali_enable_dma(denali, false);
+	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
+}
+
+//add by zhouqi
+static void write_page_ops(struct mtd_info *mtd, struct nand_chip *chip,
+			const uint8_t *buf)
+{
+    int N,len,sector_size,ecc_bytes,i;
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	dma_addr_t addr = denali->buf.dma_buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
+						INTR_STATUS__PROGRAM_FAIL;
+
+	/* if it is a raw xfer, we want to disable ecc, and send
+	 * the spare area.
+	 * !raw_xfer - enable ecc
+	 * raw_xfer - transfer spare
+	 */
+	setup_ecc_for_xfer(denali, true, true);
+
+	/* copy buffer into DMA buffer */
+
+    memset((void *)(denali->buf.buf),0xff,denali->mtd.writesize+denali->mtd.oobsize);
+
+	sector_size = denali->nand.ecc.size;
+    ecc_bytes = denali->nand.ecc.bytes;
+    N = denali->mtd.writesize/(sector_size+ecc_bytes) + 1;
+	len = sector_size;
+
+    for(i=0;i < N;i++)
+	{
+		if(i==N-1)
+		{
+			len = denali->mtd.writesize - (sector_size+ecc_bytes)*i;
+		}
+	
+	   memcpy((void *)(denali->buf.buf+(sector_size+ecc_bytes)*i), (void *)(buf+sector_size*i), len);  ;
+		
+	}
+	
+   
+	len = sector_size - len;
+	
+    memcpy((void *)(denali->buf.buf + denali->mtd.writesize+2), (void *)(buf + sector_size*i -len), len); 
+   
+	memcpy((void *)(denali->buf.buf+denali->mtd.writesize+2+len+ecc_bytes), (void *)(chip->oob_poi + 2+len+ecc_bytes), \
+	 	denali->mtd.oobsize-2-len-ecc_bytes);  
+		
+	//dma_sync_single_for_device(denali->dev, addr, denali->mtd.writesize, DMA_TO_DEVICE);
+    dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
+	clear_interrupts(denali);
+	denali_enable_dma(denali, true);
+
+	denali_setup_dma(denali, DENALI_WRITE);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+
+	if (irq_status == 0) {
+		dev_err(denali->dev,
+				"timeout on write_page (type = %d)\n",
+				1);
+		denali->status =
+			(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
+			NAND_STATUS_FAIL : PASS;
+	}
+
+	denali_enable_dma(denali, false);
+    dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
+	setup_ecc_for_xfer(denali,false, false);   //zhouqi
+}
+/* NAND core entry points */
+
+/* this is the callback that the NAND core calls to write a page. Since
+ * writing a page with ECC or without is similar, all the work is done
+ * by write_page above.
+ * */
+static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
+				const uint8_t *buf, struct mtd_oob_ops *ops)
+{
+	/* for regular page writes, we let HW handle all the ECC
+	 * data written to the device. */
+	//write_page(mtd, chip, buf, false);
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	if(denali->page < 512)    /*zloader,no ecc*/
+	{
+		int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION);       
+		writel(0x8, denali->flash_reg + ECC_CORRECTION);		
+		write_page(mtd, chip, buf, false);		
+		writel(ecc_bits, denali->flash_reg + ECC_CORRECTION);
+	}
+	else
+	{
+	    if((ops->oobbuf != NULL) && (ops->ooblen != 0))
+	    {
+            write_page_ops(mtd, chip, buf);
+	    }
+        else
+        {
+	        write_page(mtd, chip, buf, false);
+        }
+	 }
+}
+
+/* This is the callback that the NAND core calls to write a page without ECC.
+ * raw access is similar to ECC page writes, so all the work is done in the
+ * write_page() function above.
+ */
+static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+					const uint8_t *buf)
+{
+	/* for raw page writes, we want to disable ECC and simply write
+	   whatever data is in the buffer. */
+	write_page(mtd, chip, buf, true);
+}
+
+static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			    int page)
+{
+	return write_oob_data(mtd, chip->oob_poi, page);
+}
+
+static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
+			   int page, int sndcmd)
+{
+	return read_oob_data(mtd, chip->oob_poi, page); /* notify NAND core to send command to
+			   NAND device. */
+}
+
+//add by zhouqi
+static int read_page_ops(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int page)
+{
+    int N,len,sector_size,ecc_bytes,i;
+    struct denali_nand_info *denali = mtd_to_denali(mtd);
+    dma_addr_t addr = denali->buf.dma_buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+	
+	uint32_t irq_status = 0;
+//	uint32_t status_mask = INTR_STATUS__ECC_ERR |
+//			    INTR_STATUS__ECC_ERR;
+    uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
+	uint32_t check_erased_page = false;
+    int ret = 0;
+	
+	if (page != denali->page) {
+			dev_err(denali->dev, "IN %s: page %d is not"
+					" equal to denali->page %d, investigate!!",
+					__func__, page, denali->page);
+			BUG();
+		}
+	
+
+	setup_ecc_for_xfer(denali, true, true);
+	denali_enable_dma(denali, true);
+	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
+
+	clear_interrupts(denali);
+	denali_setup_dma(denali, DENALI_READ);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+	if (!irq_status) {		
+		ret = -ETIME;
+		}
+    dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
+    sector_size = denali->nand.ecc.size;
+    ecc_bytes = denali->nand.ecc.bytes;
+    N = denali->mtd.writesize/(sector_size+ecc_bytes) + 1;
+	len = sector_size;
+
+    for(i=0;i < N;i++)
+	{
+		if(i==N-1)
+		{
+			len = denali->mtd.writesize - (sector_size+ecc_bytes)*i;
+		}
+	
+	   memcpy((void *)(buf+sector_size*i),(void *)( denali->buf.buf + (sector_size+ecc_bytes)*i),len);
+		
+	}
+	
+   
+	len = sector_size - len;
+	memcpy((void *)(buf + sector_size*(N-1)+len), (void *)(denali->buf.buf + denali->mtd.writesize +2), len);   
+	memset((void *)(chip->oob_poi), 0xFF, len +ecc_bytes+2);
+	memcpy((void *)(chip->oob_poi + len+ecc_bytes+2), (void *)(denali->buf.buf +  denali->mtd.writesize+len+ecc_bytes+2),\
+		   denali->mtd.oobsize-len -ecc_bytes-2);
+	check_erased_page = handle_ecc(denali, buf, irq_status);
+	denali_enable_dma(denali, false);
+	setup_ecc_for_xfer(denali,false, false);
+
+	if (check_erased_page) {
+		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
+
+		/* check ECC failures that may have occurred on erased pages */
+		if (check_erased_page) {
+			if (!is_erased(buf, denali->mtd.writesize))
+			{
+				denali->mtd.ecc_stats.failed++;
+			}
+			if (!is_erased(chip->oob_poi, denali->mtd.oobsize))
+			{
+				//denali->mtd.ecc_stats.failed++;
+			}
+		}
+	}
+	return ret;
+}
+static int read_page(struct mtd_info *mtd, struct nand_chip *chip,
+			    uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	dma_addr_t addr = denali->buf.dma_buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+	uint32_t irq_status = 0;
+	//uint32_t irq_mask =  INTR_STATUS__ECC_ERR|INTR_STATUS__DMA_CMD_COMP;
+	uint32_t irq_mask =  INTR_STATUS__DMA_CMD_COMP;
+	bool check_erased_page = false;
+	int ret = 0;	
+
+	if (page != denali->page) {
+		dev_err(denali->dev, "IN %s: page %d is not"
+				" equal to denali->page %d, investigate!!",
+				__func__, page, denali->page);
+		BUG();
+	}
+
+	setup_ecc_for_xfer(denali,true, false);
+	denali_enable_dma(denali, true);
+	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
+
+	clear_interrupts(denali);
+	denali_setup_dma(denali, DENALI_READ);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+	if (!irq_status) {		
+		ret = -ETIME;
+		}
+
+	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
+	memcpy(buf, denali->buf.buf, mtd->writesize);
+	check_erased_page = handle_ecc(denali, buf, irq_status);
+	denali_enable_dma(denali, false);
+	setup_ecc_for_xfer(denali,false, false);
+
+	if (check_erased_page) {
+		read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
+
+		/* check ECC failures that may have occurred on erased pages */
+		if (check_erased_page) {
+			if (!is_erased(buf, denali->mtd.writesize))
+			{
+				denali->mtd.ecc_stats.failed++;
+			}
+			if (!is_erased(chip->oob_poi, denali->mtd.oobsize))
+			{
+				//denali->mtd.ecc_stats.failed++;
+			}
+		}
+	}
+	return ret;
+}
+
+ int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
+				uint8_t *buf, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	dma_addr_t addr = denali->buf.dma_buf;
+	size_t size = denali->mtd.writesize + denali->mtd.oobsize;
+
+	uint32_t irq_status = 0;
+	uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
+ 
+	if (page != denali->page) {
+		dev_err(denali->dev, "IN %s: page %d is not"
+				" equal to denali->page %d, investigate!!",
+				__func__, page, denali->page);
+		BUG();
+	}
+
+	setup_ecc_for_xfer(denali, false, true);
+	denali_enable_dma(denali, true);
+
+	dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
+
+	clear_interrupts(denali);
+	denali_setup_dma(denali, DENALI_READ);
+
+	/* wait for operation to complete */
+	irq_status = wait_for_irq(denali, irq_mask);
+
+	dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
+
+	denali_enable_dma(denali, false);
+
+	memcpy(buf, denali->buf.buf, mtd->writesize);
+	memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
+
+	return 0;
+}
+ //add by zhouqi
+ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
+				  uint8_t *buf, int page, struct mtd_oob_ops *ops)//add by zhouqi
+ {
+       
+	   struct denali_nand_info *denali = mtd_to_denali(mtd);
+	  if(page < 512)	/*zloader,no ECC*/
+	  {
+		  int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION);          
+		  writel(0x8, denali->flash_reg + ECC_CORRECTION);		  
+		  read_page(mtd, chip, buf, page);		  
+		  writel(ecc_bits, denali->flash_reg + ECC_CORRECTION);
+		  
+	  }
+	  else
+	  {
+	      if((ops->oobbuf != NULL) && ops->ooblen != 0)
+	      {
+		  
+		      read_page_ops(mtd, chip, buf, page);
+	      }
+	      else
+	      {
+		  
+		      read_page(mtd, chip, buf, page);
+	      }
+	  }
+	  return 0;
+ }
+
+static uint8_t denali_read_byte(struct mtd_info *mtd)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint8_t result = 0xff;
+	
+	if (denali->buf.head < denali->buf.tail)
+		result = denali->buf.buf[denali->buf.head++];
+
+	return result;
+}
+
+static void denali_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	spin_lock_irq(&denali->irq_lock);
+	denali->flash_bank = chip;
+	spin_unlock_irq(&denali->irq_lock);
+
+}
+
+static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	int status = denali->status;
+	denali->status = 0;
+
+	return status;
+}
+
+static void denali_erase(struct mtd_info *mtd, int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	uint32_t cmd = 0x0, irq_status = 0;
+
+	/* clear interrupts */
+	clear_interrupts(denali);
+
+	/* setup page read request for access type */
+	cmd = MODE_10 | BANK(denali->flash_bank) | page;
+	index_addr(denali, (uint32_t)cmd, 0x1);
+
+	/* wait for erase to complete or failure to occur */
+	irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
+					INTR_STATUS__ERASE_FAIL);
+
+	denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
+						NAND_STATUS_FAIL : PASS;
+
+
+}
+
+static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
+			   int page)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	uint32_t addr, id;
+	int i;
+
+	switch (cmd) {
+	case NAND_CMD_PAGEPROG:
+		break;
+	case NAND_CMD_STATUS:
+		read_status(denali);
+		break;
+	case NAND_CMD_READID:
+	case NAND_CMD_PARAM:
+		reset_buf(denali);
+		/*sometimes ManufactureId read from register is not right
+		 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
+		 * So here we send READID cmd to NAND insteand
+		 * */
+		addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
+		index_addr(denali, (uint32_t)addr | 0, 0x90);
+		index_addr(denali, (uint32_t)addr | 1, 0);
+		for (i = 0; i < 5; i++) {
+			index_addr_read_data(denali,
+						(uint32_t)addr | 2,
+						&id);
+			write_byte_to_buf(denali, id);
+		}
+		break;
+	case NAND_CMD_READ0:
+	case NAND_CMD_SEQIN:
+		denali->page = page;
+		break;
+	case NAND_CMD_RESET:
+		reset_bank(denali);
+		break;
+	case NAND_CMD_READOOB:
+		/* TODO: Read OOB data */
+		break;
+	default:
+		printk(KERN_ERR ": unsupported command"
+				" received 0x%x\n", cmd);
+		break;
+	}
+
+}
+
+/* stubs for ECC functions not used by the NAND core */
+static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
+				uint8_t *ecc_code)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	dev_err(denali->dev,
+			"denali_ecc_calculate called unexpectedly\n");
+	BUG();
+
+	return -EIO;
+}
+
+static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
+				uint8_t *read_ecc, uint8_t *calc_ecc)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	dev_err(denali->dev,
+			"denali_ecc_correct called unexpectedly\n");
+	BUG();
+
+	return -EIO;
+}
+
+static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+
+	dev_err(denali->dev,
+			"denali_ecc_hwctl called unexpectedly\n");
+	BUG();
+
+}
+/* end NAND core entry points */
+void denali_gpio_init(void)
+{
+	int ret;
+
+	ret = gpio_request(ZX29_GPIO_0, "nand_we");
+	if (ret) 
+	{
+		pr_info("GPIO0_NAND_WE gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_0, GPIO0_NAND_WE);
+
+	ret = gpio_request(ZX29_GPIO_1, "nand_csn");
+	if (ret) 
+	{
+		pr_info("GPIO1_NAND_CS0 gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_1, GPIO1_NAND_CS0);
+
+	ret = gpio_request(ZX29_GPIO_2, "nand_ready");
+	if (ret) 
+	{
+		pr_info("GPIO2_NAND_READY gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_2, GPIO2_NAND_READY);
+
+	ret = gpio_request(ZX29_GPIO_3, "nand_cle");
+	if (ret) 
+	{
+		pr_info("GPIO3_NAND_CLE gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_3, GPIO3_NAND_CLE);
+
+	ret = gpio_request(ZX29_GPIO_4, "nand_ale");
+	if (ret) 
+	{
+		pr_info("GPIO4_NAND_ALE gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_4, GPIO4_NAND_ALE);
+
+	ret = gpio_request(ZX29_GPIO_5, "nand_re");
+	if (ret) 
+	{
+		pr_info("GPIO5_NAND_RE gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_5, GPIO5_NAND_RE);
+
+	ret = gpio_request(ZX29_GPIO_6, "nand_wp");
+	if (ret) 
+	{
+		pr_info("GPIO6_NAND_WRITE_PROTECT gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_6, GPIO6_NAND_WRITE_PROTECT);
+
+	ret = gpio_request(ZX29_GPIO_7, "nand_data_0");
+	if (ret) 
+	{
+		pr_info("GPIO7_NAND_DATA0 gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_7, GPIO7_NAND_DATA0);
+
+	ret = gpio_request(ZX29_GPIO_8, "nand_data_1");
+	if (ret) 
+	{
+		pr_info("GPIO8_NAND_DATA1 gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_8, GPIO8_NAND_DATA1);
+
+	ret = gpio_request(ZX29_GPIO_9, "nand_data_2");
+	if (ret) 
+	{
+		pr_info("GPIO9_NAND_DATA2 gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_9, GPIO9_NAND_DATA2);
+
+	ret = gpio_request(ZX29_GPIO_10, "nand_data_3");
+	if (ret) 
+	{
+		pr_info("GPIO10_NAND_DATA3 gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_10, GPIO10_NAND_DATA3);
+
+	ret = gpio_request(ZX29_GPIO_11, "nand_data_4");
+	if (ret) 
+	{
+		pr_info("GPIO11_NAND_DATA4 gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_11, GPIO11_NAND_DATA4);
+
+	ret = gpio_request(ZX29_GPIO_12, "nand_data_5");
+	if (ret) 
+	{
+		pr_info("GPIO12_NAND_DATA5 gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_12, GPIO12_NAND_DATA5);
+
+	ret = gpio_request(ZX29_GPIO_13, "nand_data_6");
+	if (ret) 
+	{
+		pr_info("GPIO13_NAND_DATA6 gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_13, GPIO13_NAND_DATA6);
+
+	ret = gpio_request(ZX29_GPIO_14, "nand_data_7");
+	if (ret) 
+	{
+		pr_info("GPIO14_NAND_DATA7 gpio request error.\n");
+		return ;
+	}
+	zx29_gpio_config(ZX29_GPIO_14, GPIO14_NAND_DATA7);
+	return ;
+}
+/* Initialization code to bring the device up to a known good state */
+static void denali_hw_init(struct denali_nand_info *denali)
+{
+	/* tell driver how many bit controller will skip before
+	 * writing ECC code in OOB, this register may be already
+	 * set by firmware. So we read this value out.
+	 * if this value is 0, just let it be.
+	 * */
+	
+	//detect_max_banks(denali);zangxiaofeng mod
+	denali_gpio_init();
+	denali->max_banks = 1;
+	denali_nand_reset(denali);
+	iowrite32(2, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
+	denali->bbtskipbytes = ioread32(denali->flash_reg +
+						SPARE_AREA_SKIP_BYTES);
+	iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
+	iowrite32(0,denali->flash_reg + CHIP_ENABLE_DONT_CARE);
+	iowrite32(1,denali->flash_reg + DEVICES_CONNECTED);
+	
+	iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
+
+	/* Should set value for these registers when init */
+	iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
+	iowrite32(1, denali->flash_reg + ECC_ENABLE);
+	denali_nand_timing_set(denali);
+	denali_irq_init(denali);
+}
+
+void denali_nand_lock(struct mtd_info *mtd)
+{    
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	 wake_lock(&nand_wake_lock);
+	 zx_cpuidle_set_busy(IDLE_FLAG_FLASH);
+	soft_spin_lock(NAND_SFLOCK);
+	if(!denali_int_en_flag)
+	{
+		enable_irq(denali->irq);
+		denali_int_en_flag = 1;
+	}
+	
+}
+void denali_nand_unlock(struct mtd_info *mtd)
+{
+	struct denali_nand_info *denali = mtd_to_denali(mtd);
+	clear_interrupts(denali);
+	if(denali_int_en_flag)
+	{
+		disable_irq(denali->irq);
+		denali_int_en_flag = 0;
+	}
+    soft_spin_unlock(NAND_SFLOCK);
+	zx_cpuidle_set_free(IDLE_FLAG_FLASH);
+	wake_unlock(&nand_wake_lock);
+}
+
+/* Althogh controller spec said SLC ECC is forceb to be 4bit,
+ * but denali controller in MRST only support 15bit and 8bit ECC
+ * correction
+ * */
+
+
+static struct nand_ecclayout g_nand_oob;
+	
+static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
+static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
+
+static struct nand_bbt_descr bbt_main_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP|NAND_BBT_SAVECONTENT,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = 4,
+	.pattern = bbt_pattern,
+};
+
+static struct nand_bbt_descr bbt_mirror_descr = {
+	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
+		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP|NAND_BBT_SAVECONTENT,
+	.offs =	8,
+	.len = 4,
+	.veroffs = 12,
+	.maxblocks = 4,
+	.pattern = mirror_pattern,
+};
+
+/* initialize driver data structures */
+void denali_drv_init(struct denali_nand_info *denali)
+{
+	denali->idx = 0;
+
+	/* setup interrupt handler */
+	/* the completion object will be used to notify
+	 * the callee that the interrupt is done */
+	init_completion(&denali->complete);
+
+	/* the spinlock will be used to synchronize the ISR
+	 * with any element that might be access shared
+	 * data (interrupt status) */
+	spin_lock_init(&denali->irq_lock);
+
+	/* indicate that MTD has not selected a valid bank yet */
+	denali->flash_bank = CHIP_SELECT_INVALID;
+
+	/* initialize our irq_status variable to indicate no interrupts */
+	denali->irq_status = 0;
+}
+
+/* driver entry point */
+struct denali_dt {
+	struct denali_nand_info	denali;
+	struct clk		*clk;
+};
+
+static void __iomem *request_and_map(struct device *dev,
+				     const struct resource *res)
+{
+	void __iomem *ptr;
+
+	if (!devm_request_mem_region(dev, res->start, resource_size(res),
+				     "denali-dt")) {
+		dev_err(dev, "unable to request %s\n", res->name);
+		return NULL;
+	}
+
+	ptr = devm_ioremap_nocache(dev, res->start, resource_size(res));
+	if (!ptr)
+		dev_err(dev, "ioremap_nocache of %s failed!", res->name);
+
+	return ptr;
+}
+static const struct of_device_id denali_nand_dt_ids[] = {
+		{ .compatible = "denali,denali-nand-dt" },
+		{ /* sentinel */ }
+	};
+
+unsigned char *flag_buf = NULL;
+int fota_flag_store()
+{
+    size_t retlen = 0;
+	struct cmdline_mtd_partition *part;
+	struct erase_info ei;
+	size_t fotalen = 0;
+	int offset = 0;
+	int size = 0;
+	int addr = 0;
+	int i =0;
+	int ret = 0;
+	
+	part = partitions;
+	for(i=0;i<part->num_parts;i++)
+	{
+	    if ( strcmp( (char *)part->parts[i].name, "fotaflag" ) == 0 )
+            break;
+	}
+	offset = (int)part->parts[i].offset;
+	size = (int)part->parts[i].size;
+	flag_buf = kzalloc(mtd_fota->writesize, GFP_KERNEL);
+	fotalen = mtd_fota->writesize;
+
+	/* read partition */
+    addr = offset;
+    while (addr < (offset+size)) 
+    {
+		if (mtd_fota->_block_isbad (mtd_fota, addr)) 
+        {          
+			addr += mtd_fota->erasesize;
+			continue;
+		}
+		ret = mtd_fota->_read(mtd_fota, addr, fotalen, &retlen, flag_buf);
+		if(ret == 0)
+		{
+		    break;
+		}
+		else if (ret) 
+        {
+			return ret;
+		}
+	}	
+	printk(" fota flag: %s \n", flag_buf); 
+
+	/* erase partition */
+	memset(&ei, 0, sizeof(struct erase_info) );
+	
+	ei.mtd = mtd_fota;
+	ei.addr = (uint64_t)offset;
+	ei.len  = (uint64_t)(mtd_fota->erasesize); 
+	while((ei.addr < (offset+size)))
+	{
+		if(mtd_fota->_block_isbad (mtd_fota, ei.addr))
+		{
+			ei.addr += mtd_fota->erasesize;
+			continue ;
+		}
+
+		ei.state = 0;
+		ret = mtd_fota->_erase(mtd_fota, &ei);
+		if(ret == 0)
+		{
+            break;
+		}
+		else if(ret  && (ei.state == MTD_ERASE_FAILED))
+		{
+			mtd_fota->_block_markbad(mtd_fota,ei.addr);
+		}
+		else
+		{
+            printk(" erase fota_flag error\n");	
+			return ret;
+		}
+	
+		ei.addr += mtd_fota->erasesize;
+	}
+
+	
+	/* read partition */
+    while (addr < (offset+size)) 
+    {
+		if (mtd_fota->_block_isbad (mtd_fota, addr)) 
+        {          
+			addr += mtd_fota->erasesize;
+			continue;
+		}
+		ret = mtd_fota->_read(mtd_fota, addr, fotalen, &retlen, flag_buf);
+		if(ret == 0)
+		{
+		    break;
+		}
+		else if (ret) 
+        {
+			return ret;
+		}
+	}	
+	printk(" fota flag after erase: %s \n", flag_buf); 
+
+	
+	/* write partition */
+    memcpy(flag_buf,"FOTA-UPDATE",12);
+    addr = offset;
+    while ((addr < (offset+size))) 
+	{
+		if (mtd_fota->_block_isbad (mtd_fota, addr)) 
+		{
+			addr += mtd_fota->erasesize ;
+			continue;
+		}
+
+		ret = mtd_fota->_write(mtd_fota, addr, fotalen, &retlen,
+					(const u_char *)flag_buf);
+		if(ret == 0)
+        {
+            break;
+		}
+		else if (ret != 0) 
+		{
+		    printk(" write fota_flag error\n");	
+			return ret;
+		}
+
+	}
+
+	/* read partition */
+    while (addr < (offset+size)) 
+    {
+		if (mtd_fota->_block_isbad (mtd_fota, addr)) 
+        {          
+			addr += mtd_fota->erasesize;
+			continue;
+		}
+		ret = mtd_fota->_read(mtd_fota, addr, fotalen, &retlen, flag_buf);
+		if(ret == 0)
+		{
+		    break;
+		}
+		else if (ret) 
+        {
+			return ret;
+		}
+	}	
+	printk(" fota flag after write: %s \n", flag_buf); 
+
+	kfree(flag_buf);
+	return 0;
+}
+
+
+MODULE_DEVICE_TABLE(of, denali_nand_dt_ids);
+static u64 denali_dma_mask;
+
+static int denali_nand_ecc_init(struct denali_nand_info  *denali)
+{
+    int i,eccpos_start;
+    denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
+    denali->nand.ecc.steps = denali->mtd.writesize/denali->nand.ecc.size;
+	
+	switch (denali->nand.ecc.size) {
+	case 512:
+		denali->nand.ecc.bytes =
+			( denali->nand.ecc.strength  * 13 + 15) / 16 * 2;
+		break;
+	case 1024:
+		denali->nand.ecc.bytes =
+			( denali->nand.ecc.strength  * 14 + 15) / 16 * 2;
+		break;
+	default:
+		printk("Unsupported ECC sector size\n");
+		BUG();
+	}
+
+	denali->nand.ecc.total = denali->nand.ecc.bytes* denali->nand.ecc.steps;
+	if(denali->mtd.oobsize >= (denali->nand.ecc.total+denali->bbtskipbytes + 8))
+	{
+        g_nand_oob.eccbytes = denali->nand.ecc.total;
+	
+		eccpos_start = denali->bbtskipbytes;
+
+		for (i = 0; i < g_nand_oob.eccbytes; i++)
+		{
+			g_nand_oob.eccpos[i] = eccpos_start + i;
+		}
+
+		g_nand_oob.oobfree[0].offset = g_nand_oob.eccbytes+denali->bbtskipbytes;
+		g_nand_oob.oobfree[0].length = denali->mtd.oobsize -(g_nand_oob.eccbytes+denali->bbtskipbytes);
+		denali->nand.ecc.layout = &g_nand_oob;
+	}
+	else
+	{
+		printk("Unsupported ECC strength,please check the id table\n");
+		BUG();
+	}
+
+	
+	return 0;
+}
+
+
+static int denali_nand_probe(struct platform_device *ofdev)
+{
+	int ret = 0;
+	struct resource *denali_reg, *nand_data;
+	struct denali_dt *dt;
+	struct denali_nand_info *denali;
+	unsigned char *test_wbuf=NULL;
+	unsigned char *test_rbuf=NULL;
+
+    soft_spin_lock(NAND_SFLOCK);
+	
+	pr_err("denali_nand_probe------------\n");
+	
+
+	dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
+	if (!dt)
+		return -ENOMEM;
+	denali = &dt->denali;
+	denali_reg = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "denali_reg");
+	nand_data = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "nand_data");
+    if (!denali_reg || !nand_data) 
+	{
+		dev_err(&ofdev->dev, "resources not completely defined\n");
+		return -EINVAL;
+	}
+    denali->platform = ZX7510;
+	denali->dev = &ofdev->dev;
+	denali->irq = platform_get_irq(ofdev, 0);
+    if (denali->irq < 0) 
+	{
+		dev_err(&ofdev->dev, "no irq defined\n");
+		return denali->irq;
+	}
+	denali->flash_reg = (void __iomem *)(denali_reg->start);//request_and_map(&ofdev->dev, denali_reg);
+	
+	if (!denali->flash_reg)
+		return -ENOMEM;
+
+	denali->flash_mem = (void __iomem *)(nand_data->start);//request_and_map(&ofdev->dev, nand_data);
+
+	if (!denali->flash_mem)
+		return -ENOMEM;
+
+	//printk("reg=%x,data=%x\n",denali->flash_reg,denali->flash_mem);
+
+    denali->dev->dma_mask = &denali_dma_mask;
+	
+	
+	/* Is 32-bit DMA supported? */
+	ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
+	if (ret) {
+		pr_err("Spectra: no usable DMA configuration\n");
+		return ret;
+	}
+	denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
+					     DENALI_BUF_SIZE,
+					     DMA_BIDIRECTIONAL);
+
+	if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
+		dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
+		return -EIO;
+	}
+	denali->mtd.dev.parent = denali->dev;	
+	denali_hw_init(denali);
+	denali_drv_init(denali);
+
+	/* denali_isr register is done after all the hardware
+	 * initilization is finished*/
+	if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
+			DENALI_NAND_NAME, denali)) {
+		pr_err("Spectra: Unable to allocate IRQ\n");
+		return -ENODEV;
+	}
+	else
+	{
+		denali_int_en_flag = 1;
+	}
+
+	/* now that our ISR is registered, we can enable interrupts */
+	denali_set_intr_modes(denali, true);
+	denali->mtd.name = "denali-nand";
+	denali->mtd.owner = THIS_MODULE;
+	denali->mtd.priv = &denali->nand;
+
+	/* register the driver with the NAND core subsystem */
+	denali->nand.select_chip = denali_select_chip;
+	denali->nand.cmdfunc = denali_cmdfunc;
+	denali->nand.read_byte = denali_read_byte;
+	denali->nand.waitfunc = denali_waitfunc;
+	
+	wake_lock_init(&nand_wake_lock, WAKE_LOCK_SUSPEND, "nand");
+    printk("deanli wakelock ok\n");
+
+	/* scan for NAND devices attached to the controller
+	 * this is the first stage in a two step process to register
+	 * with the nand subsystem */
+	if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
+		ret = -ENXIO;
+		goto failed_req_irq;
+	}
+
+	/* MTD supported page sizes vary by kernel. We validate our
+	 * kernel supports the device here.
+	 */
+	if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
+		ret = -ENODEV;
+		printk(KERN_ERR "Spectra: device size not supported by this "
+			"version of MTD.");
+		goto failed_req_irq;
+	}
+
+	/* support for multi nand
+	 * MTD known nothing about multi nand,
+	 * so we should tell it the real pagesize
+	 * and anything necessery
+	 */
+	denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
+	denali->nand.chipsize <<= (denali->devnum - 1);
+	denali->nand.page_shift += (denali->devnum - 1);
+	denali->nand.pagemask = (denali->nand.chipsize >>
+						denali->nand.page_shift) - 1;
+	denali->nand.bbt_erase_shift += (denali->devnum - 1);
+	denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
+	denali->nand.chip_shift += (denali->devnum - 1);
+	denali->mtd.writesize <<= (denali->devnum - 1);
+	denali->mtd.oobsize <<= (denali->devnum - 1);
+	denali->mtd.erasesize <<= (denali->devnum - 1);
+	denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
+	denali->bbtskipbytes *= denali->devnum;
+
+	/* second stage of the NAND scan
+	 * this stage requires information regarding ECC and
+	 * bad block management. */
+
+	/* Bad block management */
+	denali->nand.bbt_td = &bbt_main_descr;
+	denali->nand.bbt_md = &bbt_mirror_descr;
+
+	/* skip the scan for now until we have OOB read and write support */
+	denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
+	
+     // init ecc
+	 denali_nand_ecc_init(denali);
+	 
+	/* Let driver know the total blocks number and
+	 * how many blocks contained by each nand chip.
+	 * blksperchip will help driver to know how many
+	 * blocks is taken by FW.
+	 * */
+	denali->totalblks = denali->mtd.size >>
+				denali->nand.phys_erase_shift;
+	denali->blksperchip = denali->totalblks / denali->nand.numchips;
+
+	/* These functions are required by the NAND core framework, otherwise,
+	 * the NAND core will assert. However, we don't need them, so we'll stub
+	 * them out. */
+	denali->nand.ecc.calculate = denali_ecc_calculate;
+	denali->nand.ecc.correct = denali_ecc_correct;
+	denali->nand.ecc.hwctl = denali_ecc_hwctl;
+
+	/* override the default read operations */
+	denali->nand.ecc.read_page = denali_read_page;
+	denali->nand.ecc.read_page_raw = denali_read_page_raw;
+	denali->nand.ecc.write_page = denali_write_page;
+	denali->nand.ecc.write_page_raw = denali_write_page_raw;
+	denali->nand.ecc.read_oob = denali_read_oob;
+	denali->nand.ecc.write_oob = denali_write_oob;
+	denali->nand.erase_cmd = denali_erase;
+
+	if (nand_scan_tail(&denali->mtd)) {
+		ret = -ENXIO;
+		goto failed_req_irq;
+	}
+    
+    mtd_fota = &denali->mtd;
+	ret = mtd_device_register(&denali->mtd, NULL, 0);
+	if (ret) {
+		dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
+				ret);
+		goto failed_req_irq;
+	}
+	
+	platform_set_drvdata(ofdev, dt);
+	
+    soft_spin_unlock(NAND_SFLOCK);
+	return 0;
+
+failed_req_irq:
+	denali_irq_cleanup(denali->irq, denali);
+	kfree(denali);
+	denali_nand_unlock(&denali->mtd);
+	wake_unlock(&nand_wake_lock);
+	return ret;
+}
+
+/* driver exit point */
+
+void denali_remove(struct denali_nand_info *denali)
+{
+	denali_irq_cleanup(denali->irq, denali);
+	dma_unmap_single(denali->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
+			DMA_BIDIRECTIONAL);
+}
+
+
+
+static int denali_nand_remove(struct platform_device *ofdev)
+{
+	struct denali_dt *dt = platform_get_drvdata(ofdev);
+
+	denali_remove(&dt->denali);
+	clk_disable(dt->clk);
+	clk_put(dt->clk);
+	wake_lock_destroy(&nand_wake_lock);
+
+	return 0;
+}
+
+
+
+static struct platform_driver denali_dt_driver = {
+
+	.probe		= denali_nand_probe,
+
+	.remove		= denali_nand_remove,
+
+	.driver		= {
+
+		.name	= "denali-nand-dt",
+
+		.owner	= THIS_MODULE,
+
+		.of_match_table	= denali_nand_dt_ids,
+
+	},
+
+};
+
+module_platform_driver(denali_dt_driver);