zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/drivers/mtd/nand/s3c2410.c b/ap/os/linux/linux-3.4.x/drivers/mtd/nand/s3c2410.c
new file mode 100644
index 0000000..91121f3
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/drivers/mtd/nand/s3c2410.c
@@ -0,0 +1,1154 @@
+/* linux/drivers/mtd/nand/s3c2410.c
+ *
+ * Copyright © 2004-2008 Simtec Electronics
+ *	http://armlinux.simtec.co.uk/
+ *	Ben Dooks <ben@simtec.co.uk>
+ *
+ * Samsung S3C2410/S3C2440/S3C2412 NAND driver
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program; if not, write to the Free Software
+ * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+*/
+
+#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
+#define DEBUG
+#endif
+
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/init.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/ioport.h>
+#include <linux/platform_device.h>
+#include <linux/delay.h>
+#include <linux/err.h>
+#include <linux/slab.h>
+#include <linux/clk.h>
+#include <linux/cpufreq.h>
+
+#include <linux/mtd/mtd.h>
+#include <linux/mtd/nand.h>
+#include <linux/mtd/nand_ecc.h>
+#include <linux/mtd/partitions.h>
+
+#include <asm/io.h>
+
+#include <plat/regs-nand.h>
+#include <plat/nand.h>
+
+#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
+static int hardware_ecc = 1;
+#else
+static int hardware_ecc = 0;
+#endif
+
+#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
+static const int clock_stop = 1;
+#else
+static const int clock_stop = 0;
+#endif
+
+
+/* new oob placement block for use with hardware ecc generation
+ */
+
+static struct nand_ecclayout nand_hw_eccoob = {
+	.eccbytes = 3,
+	.eccpos = {0, 1, 2},
+	.oobfree = {{8, 8}}
+};
+
+/* controller and mtd information */
+
+struct s3c2410_nand_info;
+
+/**
+ * struct s3c2410_nand_mtd - driver MTD structure
+ * @mtd: The MTD instance to pass to the MTD layer.
+ * @chip: The NAND chip information.
+ * @set: The platform information supplied for this set of NAND chips.
+ * @info: Link back to the hardware information.
+ * @scan_res: The result from calling nand_scan_ident().
+*/
+struct s3c2410_nand_mtd {
+	struct mtd_info			mtd;
+	struct nand_chip		chip;
+	struct s3c2410_nand_set		*set;
+	struct s3c2410_nand_info	*info;
+	int				scan_res;
+};
+
+enum s3c_cpu_type {
+	TYPE_S3C2410,
+	TYPE_S3C2412,
+	TYPE_S3C2440,
+};
+
+enum s3c_nand_clk_state {
+	CLOCK_DISABLE	= 0,
+	CLOCK_ENABLE,
+	CLOCK_SUSPEND,
+};
+
+/* overview of the s3c2410 nand state */
+
+/**
+ * struct s3c2410_nand_info - NAND controller state.
+ * @mtds: An array of MTD instances on this controoler.
+ * @platform: The platform data for this board.
+ * @device: The platform device we bound to.
+ * @area: The IO area resource that came from request_mem_region().
+ * @clk: The clock resource for this controller.
+ * @regs: The area mapped for the hardware registers described by @area.
+ * @sel_reg: Pointer to the register controlling the NAND selection.
+ * @sel_bit: The bit in @sel_reg to select the NAND chip.
+ * @mtd_count: The number of MTDs created from this controller.
+ * @save_sel: The contents of @sel_reg to be saved over suspend.
+ * @clk_rate: The clock rate from @clk.
+ * @clk_state: The current clock state.
+ * @cpu_type: The exact type of this controller.
+ */
+struct s3c2410_nand_info {
+	/* mtd info */
+	struct nand_hw_control		controller;
+	struct s3c2410_nand_mtd		*mtds;
+	struct s3c2410_platform_nand	*platform;
+
+	/* device info */
+	struct device			*device;
+	struct resource			*area;
+	struct clk			*clk;
+	void __iomem			*regs;
+	void __iomem			*sel_reg;
+	int				sel_bit;
+	int				mtd_count;
+	unsigned long			save_sel;
+	unsigned long			clk_rate;
+	enum s3c_nand_clk_state		clk_state;
+
+	enum s3c_cpu_type		cpu_type;
+
+#ifdef CONFIG_CPU_FREQ
+	struct notifier_block	freq_transition;
+#endif
+};
+
+/* conversion functions */
+
+static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
+{
+	return container_of(mtd, struct s3c2410_nand_mtd, mtd);
+}
+
+static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
+{
+	return s3c2410_nand_mtd_toours(mtd)->info;
+}
+
+static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
+{
+	return platform_get_drvdata(dev);
+}
+
+static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
+{
+	return dev->dev.platform_data;
+}
+
+static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
+{
+	return clock_stop;
+}
+
+/**
+ * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
+ * @info: The controller instance.
+ * @new_state: State to which clock should be set.
+ */
+static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
+		enum s3c_nand_clk_state new_state)
+{
+	if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
+		return;
+
+	if (info->clk_state == CLOCK_ENABLE) {
+		if (new_state != CLOCK_ENABLE)
+			clk_disable(info->clk);
+	} else {
+		if (new_state == CLOCK_ENABLE)
+			clk_enable(info->clk);
+	}
+
+	info->clk_state = new_state;
+}
+
+/* timing calculations */
+
+#define NS_IN_KHZ 1000000
+
+/**
+ * s3c_nand_calc_rate - calculate timing data.
+ * @wanted: The cycle time in nanoseconds.
+ * @clk: The clock rate in kHz.
+ * @max: The maximum divider value.
+ *
+ * Calculate the timing value from the given parameters.
+ */
+static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
+{
+	int result;
+
+	result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
+
+	pr_debug("result %d from %ld, %d\n", result, clk, wanted);
+
+	if (result > max) {
+		printk("%d ns is too big for current clock rate %ld\n", wanted, clk);
+		return -1;
+	}
+
+	if (result < 1)
+		result = 1;
+
+	return result;
+}
+
+#define to_ns(ticks,clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
+
+/* controller setup */
+
+/**
+ * s3c2410_nand_setrate - setup controller timing information.
+ * @info: The controller instance.
+ *
+ * Given the information supplied by the platform, calculate and set
+ * the necessary timing registers in the hardware to generate the
+ * necessary timing cycles to the hardware.
+ */
+static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
+{
+	struct s3c2410_platform_nand *plat = info->platform;
+	int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
+	int tacls, twrph0, twrph1;
+	unsigned long clkrate = clk_get_rate(info->clk);
+	unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
+	unsigned long flags;
+
+	/* calculate the timing information for the controller */
+
+	info->clk_rate = clkrate;
+	clkrate /= 1000;	/* turn clock into kHz for ease of use */
+
+	if (plat != NULL) {
+		tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
+		twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
+		twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
+	} else {
+		/* default timings */
+		tacls = tacls_max;
+		twrph0 = 8;
+		twrph1 = 8;
+	}
+
+	if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
+		dev_err(info->device, "cannot get suitable timings\n");
+		return -EINVAL;
+	}
+
+	dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
+	       tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate), twrph1, to_ns(twrph1, clkrate));
+
+	switch (info->cpu_type) {
+	case TYPE_S3C2410:
+		mask = (S3C2410_NFCONF_TACLS(3) |
+			S3C2410_NFCONF_TWRPH0(7) |
+			S3C2410_NFCONF_TWRPH1(7));
+		set = S3C2410_NFCONF_EN;
+		set |= S3C2410_NFCONF_TACLS(tacls - 1);
+		set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
+		set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
+		break;
+
+	case TYPE_S3C2440:
+	case TYPE_S3C2412:
+		mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
+			S3C2440_NFCONF_TWRPH0(7) |
+			S3C2440_NFCONF_TWRPH1(7));
+
+		set = S3C2440_NFCONF_TACLS(tacls - 1);
+		set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
+		set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
+		break;
+
+	default:
+		BUG();
+	}
+
+	local_irq_save(flags);
+
+	cfg = readl(info->regs + S3C2410_NFCONF);
+	cfg &= ~mask;
+	cfg |= set;
+	writel(cfg, info->regs + S3C2410_NFCONF);
+
+	local_irq_restore(flags);
+
+	dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
+
+	return 0;
+}
+
+/**
+ * s3c2410_nand_inithw - basic hardware initialisation
+ * @info: The hardware state.
+ *
+ * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
+ * to setup the hardware access speeds and set the controller to be enabled.
+*/
+static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
+{
+	int ret;
+
+	ret = s3c2410_nand_setrate(info);
+	if (ret < 0)
+		return ret;
+
+ 	switch (info->cpu_type) {
+ 	case TYPE_S3C2410:
+	default:
+		break;
+
+ 	case TYPE_S3C2440:
+ 	case TYPE_S3C2412:
+		/* enable the controller and de-assert nFCE */
+
+		writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
+	}
+
+	return 0;
+}
+
+/**
+ * s3c2410_nand_select_chip - select the given nand chip
+ * @mtd: The MTD instance for this chip.
+ * @chip: The chip number.
+ *
+ * This is called by the MTD layer to either select a given chip for the
+ * @mtd instance, or to indicate that the access has finished and the
+ * chip can be de-selected.
+ *
+ * The routine ensures that the nFCE line is correctly setup, and any
+ * platform specific selection code is called to route nFCE to the specific
+ * chip.
+ */
+static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
+{
+	struct s3c2410_nand_info *info;
+	struct s3c2410_nand_mtd *nmtd;
+	struct nand_chip *this = mtd->priv;
+	unsigned long cur;
+
+	nmtd = this->priv;
+	info = nmtd->info;
+
+	if (chip != -1)
+		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
+
+	cur = readl(info->sel_reg);
+
+	if (chip == -1) {
+		cur |= info->sel_bit;
+	} else {
+		if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
+			dev_err(info->device, "invalid chip %d\n", chip);
+			return;
+		}
+
+		if (info->platform != NULL) {
+			if (info->platform->select_chip != NULL)
+				(info->platform->select_chip) (nmtd->set, chip);
+		}
+
+		cur &= ~info->sel_bit;
+	}
+
+	writel(cur, info->sel_reg);
+
+	if (chip == -1)
+		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
+}
+
+/* s3c2410_nand_hwcontrol
+ *
+ * Issue command and address cycles to the chip
+*/
+
+static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+				   unsigned int ctrl)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		writeb(cmd, info->regs + S3C2410_NFCMD);
+	else
+		writeb(cmd, info->regs + S3C2410_NFADDR);
+}
+
+/* command and control functions */
+
+static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
+				   unsigned int ctrl)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	if (cmd == NAND_CMD_NONE)
+		return;
+
+	if (ctrl & NAND_CLE)
+		writeb(cmd, info->regs + S3C2440_NFCMD);
+	else
+		writeb(cmd, info->regs + S3C2440_NFADDR);
+}
+
+/* s3c2410_nand_devready()
+ *
+ * returns 0 if the nand is busy, 1 if it is ready
+*/
+
+static int s3c2410_nand_devready(struct mtd_info *mtd)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
+}
+
+static int s3c2440_nand_devready(struct mtd_info *mtd)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
+}
+
+static int s3c2412_nand_devready(struct mtd_info *mtd)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
+}
+
+/* ECC handling functions */
+
+static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
+				     u_char *read_ecc, u_char *calc_ecc)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned int diff0, diff1, diff2;
+	unsigned int bit, byte;
+
+	pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
+
+	diff0 = read_ecc[0] ^ calc_ecc[0];
+	diff1 = read_ecc[1] ^ calc_ecc[1];
+	diff2 = read_ecc[2] ^ calc_ecc[2];
+
+	pr_debug("%s: rd %02x%02x%02x calc %02x%02x%02x diff %02x%02x%02x\n",
+		 __func__,
+		 read_ecc[0], read_ecc[1], read_ecc[2],
+		 calc_ecc[0], calc_ecc[1], calc_ecc[2],
+		 diff0, diff1, diff2);
+
+	if (diff0 == 0 && diff1 == 0 && diff2 == 0)
+		return 0;		/* ECC is ok */
+
+	/* sometimes people do not think about using the ECC, so check
+	 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
+	 * the error, on the assumption that this is an un-eccd page.
+	 */
+	if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
+	    && info->platform->ignore_unset_ecc)
+		return 0;
+
+	/* Can we correct this ECC (ie, one row and column change).
+	 * Note, this is similar to the 256 error code on smartmedia */
+
+	if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
+	    ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
+	    ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
+		/* calculate the bit position of the error */
+
+		bit  = ((diff2 >> 3) & 1) |
+		       ((diff2 >> 4) & 2) |
+		       ((diff2 >> 5) & 4);
+
+		/* calculate the byte position of the error */
+
+		byte = ((diff2 << 7) & 0x100) |
+		       ((diff1 << 0) & 0x80)  |
+		       ((diff1 << 1) & 0x40)  |
+		       ((diff1 << 2) & 0x20)  |
+		       ((diff1 << 3) & 0x10)  |
+		       ((diff0 >> 4) & 0x08)  |
+		       ((diff0 >> 3) & 0x04)  |
+		       ((diff0 >> 2) & 0x02)  |
+		       ((diff0 >> 1) & 0x01);
+
+		dev_dbg(info->device, "correcting error bit %d, byte %d\n",
+			bit, byte);
+
+		dat[byte] ^= (1 << bit);
+		return 1;
+	}
+
+	/* if there is only one bit difference in the ECC, then
+	 * one of only a row or column parity has changed, which
+	 * means the error is most probably in the ECC itself */
+
+	diff0 |= (diff1 << 8);
+	diff0 |= (diff2 << 16);
+
+	if ((diff0 & ~(1<<fls(diff0))) == 0)
+		return 1;
+
+	return -1;
+}
+
+/* ECC functions
+ *
+ * These allow the s3c2410 and s3c2440 to use the controller's ECC
+ * generator block to ECC the data as it passes through]
+*/
+
+static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ctrl;
+
+	ctrl = readl(info->regs + S3C2410_NFCONF);
+	ctrl |= S3C2410_NFCONF_INITECC;
+	writel(ctrl, info->regs + S3C2410_NFCONF);
+}
+
+static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ctrl;
+
+	ctrl = readl(info->regs + S3C2440_NFCONT);
+	writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC, info->regs + S3C2440_NFCONT);
+}
+
+static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ctrl;
+
+	ctrl = readl(info->regs + S3C2440_NFCONT);
+	writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
+}
+
+static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
+	ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
+	ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
+
+	pr_debug("%s: returning ecc %02x%02x%02x\n", __func__,
+		 ecc_code[0], ecc_code[1], ecc_code[2]);
+
+	return 0;
+}
+
+static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
+
+	ecc_code[0] = ecc;
+	ecc_code[1] = ecc >> 8;
+	ecc_code[2] = ecc >> 16;
+
+	pr_debug("calculate_ecc: returning ecc %02x,%02x,%02x\n", ecc_code[0], ecc_code[1], ecc_code[2]);
+
+	return 0;
+}
+
+static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+	unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
+
+	ecc_code[0] = ecc;
+	ecc_code[1] = ecc >> 8;
+	ecc_code[2] = ecc >> 16;
+
+	pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
+
+	return 0;
+}
+
+/* over-ride the standard functions for a little more speed. We can
+ * use read/write block to move the data buffers to/from the controller
+*/
+
+static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	readsb(this->IO_ADDR_R, buf, len);
+}
+
+static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
+
+	/* cleanup if we've got less than a word to do */
+	if (len & 3) {
+		buf += len & ~3;
+
+		for (; len & 3; len--)
+			*buf++ = readb(info->regs + S3C2440_NFDATA);
+	}
+}
+
+static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct nand_chip *this = mtd->priv;
+	writesb(this->IO_ADDR_W, buf, len);
+}
+
+static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
+{
+	struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
+
+	writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
+
+	/* cleanup any fractional write */
+	if (len & 3) {
+		buf += len & ~3;
+
+		for (; len & 3; len--, buf++)
+			writeb(*buf, info->regs + S3C2440_NFDATA);
+	}
+}
+
+/* cpufreq driver support */
+
+#ifdef CONFIG_CPU_FREQ
+
+static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
+					  unsigned long val, void *data)
+{
+	struct s3c2410_nand_info *info;
+	unsigned long newclk;
+
+	info = container_of(nb, struct s3c2410_nand_info, freq_transition);
+	newclk = clk_get_rate(info->clk);
+
+	if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
+	    (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
+		s3c2410_nand_setrate(info);
+	}
+
+	return 0;
+}
+
+static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
+{
+	info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
+
+	return cpufreq_register_notifier(&info->freq_transition,
+					 CPUFREQ_TRANSITION_NOTIFIER);
+}
+
+static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
+{
+	cpufreq_unregister_notifier(&info->freq_transition,
+				    CPUFREQ_TRANSITION_NOTIFIER);
+}
+
+#else
+static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
+{
+	return 0;
+}
+
+static inline void s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
+{
+}
+#endif
+
+/* device management functions */
+
+static int s3c24xx_nand_remove(struct platform_device *pdev)
+{
+	struct s3c2410_nand_info *info = to_nand_info(pdev);
+
+	platform_set_drvdata(pdev, NULL);
+
+	if (info == NULL)
+		return 0;
+
+	s3c2410_nand_cpufreq_deregister(info);
+
+	/* Release all our mtds  and their partitions, then go through
+	 * freeing the resources used
+	 */
+
+	if (info->mtds != NULL) {
+		struct s3c2410_nand_mtd *ptr = info->mtds;
+		int mtdno;
+
+		for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
+			pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
+			nand_release(&ptr->mtd);
+		}
+
+		kfree(info->mtds);
+	}
+
+	/* free the common resources */
+
+	if (!IS_ERR(info->clk)) {
+		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
+		clk_put(info->clk);
+	}
+
+	if (info->regs != NULL) {
+		iounmap(info->regs);
+		info->regs = NULL;
+	}
+
+	if (info->area != NULL) {
+		release_resource(info->area);
+		kfree(info->area);
+		info->area = NULL;
+	}
+
+	kfree(info);
+
+	return 0;
+}
+
+static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
+				      struct s3c2410_nand_mtd *mtd,
+				      struct s3c2410_nand_set *set)
+{
+	if (set)
+		mtd->mtd.name = set->name;
+
+	return mtd_device_parse_register(&mtd->mtd, NULL, NULL,
+					 set->partitions, set->nr_partitions);
+}
+
+/**
+ * s3c2410_nand_init_chip - initialise a single instance of an chip
+ * @info: The base NAND controller the chip is on.
+ * @nmtd: The new controller MTD instance to fill in.
+ * @set: The information passed from the board specific platform data.
+ *
+ * Initialise the given @nmtd from the information in @info and @set. This
+ * readies the structure for use with the MTD layer functions by ensuring
+ * all pointers are setup and the necessary control routines selected.
+ */
+static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
+				   struct s3c2410_nand_mtd *nmtd,
+				   struct s3c2410_nand_set *set)
+{
+	struct nand_chip *chip = &nmtd->chip;
+	void __iomem *regs = info->regs;
+
+	chip->write_buf    = s3c2410_nand_write_buf;
+	chip->read_buf     = s3c2410_nand_read_buf;
+	chip->select_chip  = s3c2410_nand_select_chip;
+	chip->chip_delay   = 50;
+	chip->priv	   = nmtd;
+	chip->options	   = set->options;
+	chip->controller   = &info->controller;
+
+	switch (info->cpu_type) {
+	case TYPE_S3C2410:
+		chip->IO_ADDR_W = regs + S3C2410_NFDATA;
+		info->sel_reg   = regs + S3C2410_NFCONF;
+		info->sel_bit	= S3C2410_NFCONF_nFCE;
+		chip->cmd_ctrl  = s3c2410_nand_hwcontrol;
+		chip->dev_ready = s3c2410_nand_devready;
+		break;
+
+	case TYPE_S3C2440:
+		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
+		info->sel_reg   = regs + S3C2440_NFCONT;
+		info->sel_bit	= S3C2440_NFCONT_nFCE;
+		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
+		chip->dev_ready = s3c2440_nand_devready;
+		chip->read_buf  = s3c2440_nand_read_buf;
+		chip->write_buf	= s3c2440_nand_write_buf;
+		break;
+
+	case TYPE_S3C2412:
+		chip->IO_ADDR_W = regs + S3C2440_NFDATA;
+		info->sel_reg   = regs + S3C2440_NFCONT;
+		info->sel_bit	= S3C2412_NFCONT_nFCE0;
+		chip->cmd_ctrl  = s3c2440_nand_hwcontrol;
+		chip->dev_ready = s3c2412_nand_devready;
+
+		if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
+			dev_info(info->device, "System booted from NAND\n");
+
+		break;
+  	}
+
+	chip->IO_ADDR_R = chip->IO_ADDR_W;
+
+	nmtd->info	   = info;
+	nmtd->mtd.priv	   = chip;
+	nmtd->mtd.owner    = THIS_MODULE;
+	nmtd->set	   = set;
+
+	if (hardware_ecc) {
+		chip->ecc.calculate = s3c2410_nand_calculate_ecc;
+		chip->ecc.correct   = s3c2410_nand_correct_data;
+		chip->ecc.mode	    = NAND_ECC_HW;
+		chip->ecc.strength  = 1;
+
+		switch (info->cpu_type) {
+		case TYPE_S3C2410:
+			chip->ecc.hwctl	    = s3c2410_nand_enable_hwecc;
+			chip->ecc.calculate = s3c2410_nand_calculate_ecc;
+			break;
+
+		case TYPE_S3C2412:
+  			chip->ecc.hwctl     = s3c2412_nand_enable_hwecc;
+  			chip->ecc.calculate = s3c2412_nand_calculate_ecc;
+			break;
+
+		case TYPE_S3C2440:
+  			chip->ecc.hwctl     = s3c2440_nand_enable_hwecc;
+  			chip->ecc.calculate = s3c2440_nand_calculate_ecc;
+			break;
+
+		}
+	} else {
+		chip->ecc.mode	    = NAND_ECC_SOFT;
+	}
+
+	if (set->ecc_layout != NULL)
+		chip->ecc.layout = set->ecc_layout;
+
+	if (set->disable_ecc)
+		chip->ecc.mode	= NAND_ECC_NONE;
+
+	switch (chip->ecc.mode) {
+	case NAND_ECC_NONE:
+		dev_info(info->device, "NAND ECC disabled\n");
+		break;
+	case NAND_ECC_SOFT:
+		dev_info(info->device, "NAND soft ECC\n");
+		break;
+	case NAND_ECC_HW:
+		dev_info(info->device, "NAND hardware ECC\n");
+		break;
+	default:
+		dev_info(info->device, "NAND ECC UNKNOWN\n");
+		break;
+	}
+
+	/* If you use u-boot BBT creation code, specifying this flag will
+	 * let the kernel fish out the BBT from the NAND, and also skip the
+	 * full NAND scan that can take 1/2s or so. Little things... */
+	if (set->flash_bbt) {
+		chip->bbt_options |= NAND_BBT_USE_FLASH;
+		chip->options |= NAND_SKIP_BBTSCAN;
+	}
+}
+
+/**
+ * s3c2410_nand_update_chip - post probe update
+ * @info: The controller instance.
+ * @nmtd: The driver version of the MTD instance.
+ *
+ * This routine is called after the chip probe has successfully completed
+ * and the relevant per-chip information updated. This call ensure that
+ * we update the internal state accordingly.
+ *
+ * The internal state is currently limited to the ECC state information.
+*/
+static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
+				     struct s3c2410_nand_mtd *nmtd)
+{
+	struct nand_chip *chip = &nmtd->chip;
+
+	dev_dbg(info->device, "chip %p => page shift %d\n",
+		chip, chip->page_shift);
+
+	if (chip->ecc.mode != NAND_ECC_HW)
+		return;
+
+		/* change the behaviour depending on wether we are using
+		 * the large or small page nand device */
+
+	if (chip->page_shift > 10) {
+		chip->ecc.size	    = 256;
+		chip->ecc.bytes	    = 3;
+	} else {
+		chip->ecc.size	    = 512;
+		chip->ecc.bytes	    = 3;
+		chip->ecc.layout    = &nand_hw_eccoob;
+	}
+}
+
+/* s3c24xx_nand_probe
+ *
+ * called by device layer when it finds a device matching
+ * one our driver can handled. This code checks to see if
+ * it can allocate all necessary resources then calls the
+ * nand layer to look for devices
+*/
+static int s3c24xx_nand_probe(struct platform_device *pdev)
+{
+	struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
+	enum s3c_cpu_type cpu_type; 
+	struct s3c2410_nand_info *info;
+	struct s3c2410_nand_mtd *nmtd;
+	struct s3c2410_nand_set *sets;
+	struct resource *res;
+	int err = 0;
+	int size;
+	int nr_sets;
+	int setno;
+
+	cpu_type = platform_get_device_id(pdev)->driver_data;
+
+	pr_debug("s3c2410_nand_probe(%p)\n", pdev);
+
+	info = kzalloc(sizeof(*info), GFP_KERNEL);
+	if (info == NULL) {
+		dev_err(&pdev->dev, "no memory for flash info\n");
+		err = -ENOMEM;
+		goto exit_error;
+	}
+
+	platform_set_drvdata(pdev, info);
+
+	spin_lock_init(&info->controller.lock);
+	init_waitqueue_head(&info->controller.wq);
+
+	/* get the clock source and enable it */
+
+	info->clk = clk_get(&pdev->dev, "nand");
+	if (IS_ERR(info->clk)) {
+		dev_err(&pdev->dev, "failed to get clock\n");
+		err = -ENOENT;
+		goto exit_error;
+	}
+
+	s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
+
+	/* allocate and map the resource */
+
+	/* currently we assume we have the one resource */
+	res  = pdev->resource;
+	size = resource_size(res);
+
+	info->area = request_mem_region(res->start, size, pdev->name);
+
+	if (info->area == NULL) {
+		dev_err(&pdev->dev, "cannot reserve register region\n");
+		err = -ENOENT;
+		goto exit_error;
+	}
+
+	info->device     = &pdev->dev;
+	info->platform   = plat;
+	info->regs       = ioremap(res->start, size);
+	info->cpu_type   = cpu_type;
+
+	if (info->regs == NULL) {
+		dev_err(&pdev->dev, "cannot reserve register region\n");
+		err = -EIO;
+		goto exit_error;
+	}
+
+	dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
+
+	/* initialise the hardware */
+
+	err = s3c2410_nand_inithw(info);
+	if (err != 0)
+		goto exit_error;
+
+	sets = (plat != NULL) ? plat->sets : NULL;
+	nr_sets = (plat != NULL) ? plat->nr_sets : 1;
+
+	info->mtd_count = nr_sets;
+
+	/* allocate our information */
+
+	size = nr_sets * sizeof(*info->mtds);
+	info->mtds = kzalloc(size, GFP_KERNEL);
+	if (info->mtds == NULL) {
+		dev_err(&pdev->dev, "failed to allocate mtd storage\n");
+		err = -ENOMEM;
+		goto exit_error;
+	}
+
+	/* initialise all possible chips */
+
+	nmtd = info->mtds;
+
+	for (setno = 0; setno < nr_sets; setno++, nmtd++) {
+		pr_debug("initialising set %d (%p, info %p)\n", setno, nmtd, info);
+
+		s3c2410_nand_init_chip(info, nmtd, sets);
+
+		nmtd->scan_res = nand_scan_ident(&nmtd->mtd,
+						 (sets) ? sets->nr_chips : 1,
+						 NULL);
+
+		if (nmtd->scan_res == 0) {
+			s3c2410_nand_update_chip(info, nmtd);
+			nand_scan_tail(&nmtd->mtd);
+			s3c2410_nand_add_partition(info, nmtd, sets);
+		}
+
+		if (sets != NULL)
+			sets++;
+	}
+
+	err = s3c2410_nand_cpufreq_register(info);
+	if (err < 0) {
+		dev_err(&pdev->dev, "failed to init cpufreq support\n");
+		goto exit_error;
+	}
+
+	if (allow_clk_suspend(info)) {
+		dev_info(&pdev->dev, "clock idle support enabled\n");
+		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
+	}
+
+	pr_debug("initialised ok\n");
+	return 0;
+
+ exit_error:
+	s3c24xx_nand_remove(pdev);
+
+	if (err == 0)
+		err = -EINVAL;
+	return err;
+}
+
+/* PM Support */
+#ifdef CONFIG_PM
+
+static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
+{
+	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
+
+	if (info) {
+		info->save_sel = readl(info->sel_reg);
+
+		/* For the moment, we must ensure nFCE is high during
+		 * the time we are suspended. This really should be
+		 * handled by suspending the MTDs we are using, but
+		 * that is currently not the case. */
+
+		writel(info->save_sel | info->sel_bit, info->sel_reg);
+
+		s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
+	}
+
+	return 0;
+}
+
+static int s3c24xx_nand_resume(struct platform_device *dev)
+{
+	struct s3c2410_nand_info *info = platform_get_drvdata(dev);
+	unsigned long sel;
+
+	if (info) {
+		s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
+		s3c2410_nand_inithw(info);
+
+		/* Restore the state of the nFCE line. */
+
+		sel = readl(info->sel_reg);
+		sel &= ~info->sel_bit;
+		sel |= info->save_sel & info->sel_bit;
+		writel(sel, info->sel_reg);
+
+		s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
+	}
+
+	return 0;
+}
+
+#else
+#define s3c24xx_nand_suspend NULL
+#define s3c24xx_nand_resume NULL
+#endif
+
+/* driver device registration */
+
+static struct platform_device_id s3c24xx_driver_ids[] = {
+	{
+		.name		= "s3c2410-nand",
+		.driver_data	= TYPE_S3C2410,
+	}, {
+		.name		= "s3c2440-nand",
+		.driver_data	= TYPE_S3C2440,
+	}, {
+		.name		= "s3c2412-nand",
+		.driver_data	= TYPE_S3C2412,
+	}, {
+		.name		= "s3c6400-nand",
+		.driver_data	= TYPE_S3C2412, /* compatible with 2412 */
+	},
+	{ }
+};
+
+MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
+
+static struct platform_driver s3c24xx_nand_driver = {
+	.probe		= s3c24xx_nand_probe,
+	.remove		= s3c24xx_nand_remove,
+	.suspend	= s3c24xx_nand_suspend,
+	.resume		= s3c24xx_nand_resume,
+	.id_table	= s3c24xx_driver_ids,
+	.driver		= {
+		.name	= "s3c24xx-nand",
+		.owner	= THIS_MODULE,
+	},
+};
+
+static int __init s3c2410_nand_init(void)
+{
+	printk("S3C24XX NAND Driver, (c) 2004 Simtec Electronics\n");
+
+	return platform_driver_register(&s3c24xx_nand_driver);
+}
+
+static void __exit s3c2410_nand_exit(void)
+{
+	platform_driver_unregister(&s3c24xx_nand_driver);
+}
+
+module_init(s3c2410_nand_init);
+module_exit(s3c2410_nand_exit);
+
+MODULE_LICENSE("GPL");
+MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
+MODULE_DESCRIPTION("S3C24XX MTD NAND driver");