zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/include/xen/interface/xen.h b/ap/os/linux/linux-3.4.x/include/xen/interface/xen.h
new file mode 100644
index 0000000..a890804
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/include/xen/interface/xen.h
@@ -0,0 +1,535 @@
+/******************************************************************************
+ * xen.h
+ *
+ * Guest OS interface to Xen.
+ *
+ * Copyright (c) 2004, K A Fraser
+ */
+
+#ifndef __XEN_PUBLIC_XEN_H__
+#define __XEN_PUBLIC_XEN_H__
+
+#include <asm/xen/interface.h>
+#include <asm/pvclock-abi.h>
+
+/*
+ * XEN "SYSTEM CALLS" (a.k.a. HYPERCALLS).
+ */
+
+/*
+ * x86_32: EAX = vector; EBX, ECX, EDX, ESI, EDI = args 1, 2, 3, 4, 5.
+ *         EAX = return value
+ *         (argument registers may be clobbered on return)
+ * x86_64: RAX = vector; RDI, RSI, RDX, R10, R8, R9 = args 1, 2, 3, 4, 5, 6.
+ *         RAX = return value
+ *         (argument registers not clobbered on return; RCX, R11 are)
+ */
+#define __HYPERVISOR_set_trap_table        0
+#define __HYPERVISOR_mmu_update            1
+#define __HYPERVISOR_set_gdt               2
+#define __HYPERVISOR_stack_switch          3
+#define __HYPERVISOR_set_callbacks         4
+#define __HYPERVISOR_fpu_taskswitch        5
+#define __HYPERVISOR_sched_op_compat       6
+#define __HYPERVISOR_dom0_op               7
+#define __HYPERVISOR_set_debugreg          8
+#define __HYPERVISOR_get_debugreg          9
+#define __HYPERVISOR_update_descriptor    10
+#define __HYPERVISOR_memory_op            12
+#define __HYPERVISOR_multicall            13
+#define __HYPERVISOR_update_va_mapping    14
+#define __HYPERVISOR_set_timer_op         15
+#define __HYPERVISOR_event_channel_op_compat 16
+#define __HYPERVISOR_xen_version          17
+#define __HYPERVISOR_console_io           18
+#define __HYPERVISOR_physdev_op_compat    19
+#define __HYPERVISOR_grant_table_op       20
+#define __HYPERVISOR_vm_assist            21
+#define __HYPERVISOR_update_va_mapping_otherdomain 22
+#define __HYPERVISOR_iret                 23 /* x86 only */
+#define __HYPERVISOR_vcpu_op              24
+#define __HYPERVISOR_set_segment_base     25 /* x86/64 only */
+#define __HYPERVISOR_mmuext_op            26
+#define __HYPERVISOR_acm_op               27
+#define __HYPERVISOR_nmi_op               28
+#define __HYPERVISOR_sched_op             29
+#define __HYPERVISOR_callback_op          30
+#define __HYPERVISOR_xenoprof_op          31
+#define __HYPERVISOR_event_channel_op     32
+#define __HYPERVISOR_physdev_op           33
+#define __HYPERVISOR_hvm_op               34
+#define __HYPERVISOR_tmem_op              38
+
+/* Architecture-specific hypercall definitions. */
+#define __HYPERVISOR_arch_0               48
+#define __HYPERVISOR_arch_1               49
+#define __HYPERVISOR_arch_2               50
+#define __HYPERVISOR_arch_3               51
+#define __HYPERVISOR_arch_4               52
+#define __HYPERVISOR_arch_5               53
+#define __HYPERVISOR_arch_6               54
+#define __HYPERVISOR_arch_7               55
+
+/*
+ * VIRTUAL INTERRUPTS
+ *
+ * Virtual interrupts that a guest OS may receive from Xen.
+ */
+#define VIRQ_TIMER      0  /* Timebase update, and/or requested timeout.  */
+#define VIRQ_DEBUG      1  /* Request guest to dump debug info.           */
+#define VIRQ_CONSOLE    2  /* (DOM0) Bytes received on emergency console. */
+#define VIRQ_DOM_EXC    3  /* (DOM0) Exceptional event for some domain.   */
+#define VIRQ_DEBUGGER   6  /* (DOM0) A domain has paused for debugging.   */
+
+/* Architecture-specific VIRQ definitions. */
+#define VIRQ_ARCH_0    16
+#define VIRQ_ARCH_1    17
+#define VIRQ_ARCH_2    18
+#define VIRQ_ARCH_3    19
+#define VIRQ_ARCH_4    20
+#define VIRQ_ARCH_5    21
+#define VIRQ_ARCH_6    22
+#define VIRQ_ARCH_7    23
+
+#define NR_VIRQS       24
+/*
+ * MMU-UPDATE REQUESTS
+ *
+ * HYPERVISOR_mmu_update() accepts a list of (ptr, val) pairs.
+ * A foreigndom (FD) can be specified (or DOMID_SELF for none).
+ * Where the FD has some effect, it is described below.
+ * ptr[1:0] specifies the appropriate MMU_* command.
+ *
+ * ptr[1:0] == MMU_NORMAL_PT_UPDATE:
+ * Updates an entry in a page table. If updating an L1 table, and the new
+ * table entry is valid/present, the mapped frame must belong to the FD, if
+ * an FD has been specified. If attempting to map an I/O page then the
+ * caller assumes the privilege of the FD.
+ * FD == DOMID_IO: Permit /only/ I/O mappings, at the priv level of the caller.
+ * FD == DOMID_XEN: Map restricted areas of Xen's heap space.
+ * ptr[:2]  -- Machine address of the page-table entry to modify.
+ * val      -- Value to write.
+ *
+ * ptr[1:0] == MMU_MACHPHYS_UPDATE:
+ * Updates an entry in the machine->pseudo-physical mapping table.
+ * ptr[:2]  -- Machine address within the frame whose mapping to modify.
+ *             The frame must belong to the FD, if one is specified.
+ * val      -- Value to write into the mapping entry.
+ *
+ * ptr[1:0] == MMU_PT_UPDATE_PRESERVE_AD:
+ * As MMU_NORMAL_PT_UPDATE above, but A/D bits currently in the PTE are ORed
+ * with those in @val.
+ */
+#define MMU_NORMAL_PT_UPDATE      0 /* checked '*ptr = val'. ptr is MA.       */
+#define MMU_MACHPHYS_UPDATE       1 /* ptr = MA of frame to modify entry for  */
+#define MMU_PT_UPDATE_PRESERVE_AD 2 /* atomically: *ptr = val | (*ptr&(A|D)) */
+
+/*
+ * MMU EXTENDED OPERATIONS
+ *
+ * HYPERVISOR_mmuext_op() accepts a list of mmuext_op structures.
+ * A foreigndom (FD) can be specified (or DOMID_SELF for none).
+ * Where the FD has some effect, it is described below.
+ *
+ * cmd: MMUEXT_(UN)PIN_*_TABLE
+ * mfn: Machine frame number to be (un)pinned as a p.t. page.
+ *      The frame must belong to the FD, if one is specified.
+ *
+ * cmd: MMUEXT_NEW_BASEPTR
+ * mfn: Machine frame number of new page-table base to install in MMU.
+ *
+ * cmd: MMUEXT_NEW_USER_BASEPTR [x86/64 only]
+ * mfn: Machine frame number of new page-table base to install in MMU
+ *      when in user space.
+ *
+ * cmd: MMUEXT_TLB_FLUSH_LOCAL
+ * No additional arguments. Flushes local TLB.
+ *
+ * cmd: MMUEXT_INVLPG_LOCAL
+ * linear_addr: Linear address to be flushed from the local TLB.
+ *
+ * cmd: MMUEXT_TLB_FLUSH_MULTI
+ * vcpumask: Pointer to bitmap of VCPUs to be flushed.
+ *
+ * cmd: MMUEXT_INVLPG_MULTI
+ * linear_addr: Linear address to be flushed.
+ * vcpumask: Pointer to bitmap of VCPUs to be flushed.
+ *
+ * cmd: MMUEXT_TLB_FLUSH_ALL
+ * No additional arguments. Flushes all VCPUs' TLBs.
+ *
+ * cmd: MMUEXT_INVLPG_ALL
+ * linear_addr: Linear address to be flushed from all VCPUs' TLBs.
+ *
+ * cmd: MMUEXT_FLUSH_CACHE
+ * No additional arguments. Writes back and flushes cache contents.
+ *
+ * cmd: MMUEXT_SET_LDT
+ * linear_addr: Linear address of LDT base (NB. must be page-aligned).
+ * nr_ents: Number of entries in LDT.
+ */
+#define MMUEXT_PIN_L1_TABLE      0
+#define MMUEXT_PIN_L2_TABLE      1
+#define MMUEXT_PIN_L3_TABLE      2
+#define MMUEXT_PIN_L4_TABLE      3
+#define MMUEXT_UNPIN_TABLE       4
+#define MMUEXT_NEW_BASEPTR       5
+#define MMUEXT_TLB_FLUSH_LOCAL   6
+#define MMUEXT_INVLPG_LOCAL      7
+#define MMUEXT_TLB_FLUSH_MULTI   8
+#define MMUEXT_INVLPG_MULTI      9
+#define MMUEXT_TLB_FLUSH_ALL    10
+#define MMUEXT_INVLPG_ALL       11
+#define MMUEXT_FLUSH_CACHE      12
+#define MMUEXT_SET_LDT          13
+#define MMUEXT_NEW_USER_BASEPTR 15
+
+#ifndef __ASSEMBLY__
+struct mmuext_op {
+	unsigned int cmd;
+	union {
+		/* [UN]PIN_TABLE, NEW_BASEPTR, NEW_USER_BASEPTR */
+		unsigned long mfn;
+		/* INVLPG_LOCAL, INVLPG_ALL, SET_LDT */
+		unsigned long linear_addr;
+	} arg1;
+	union {
+		/* SET_LDT */
+		unsigned int nr_ents;
+		/* TLB_FLUSH_MULTI, INVLPG_MULTI */
+		void *vcpumask;
+	} arg2;
+};
+DEFINE_GUEST_HANDLE_STRUCT(mmuext_op);
+#endif
+
+/* These are passed as 'flags' to update_va_mapping. They can be ORed. */
+/* When specifying UVMF_MULTI, also OR in a pointer to a CPU bitmap.   */
+/* UVMF_LOCAL is merely UVMF_MULTI with a NULL bitmap pointer.         */
+#define UVMF_NONE               (0UL<<0) /* No flushing at all.   */
+#define UVMF_TLB_FLUSH          (1UL<<0) /* Flush entire TLB(s).  */
+#define UVMF_INVLPG             (2UL<<0) /* Flush only one entry. */
+#define UVMF_FLUSHTYPE_MASK     (3UL<<0)
+#define UVMF_MULTI              (0UL<<2) /* Flush subset of TLBs. */
+#define UVMF_LOCAL              (0UL<<2) /* Flush local TLB.      */
+#define UVMF_ALL                (1UL<<2) /* Flush all TLBs.       */
+
+/*
+ * Commands to HYPERVISOR_console_io().
+ */
+#define CONSOLEIO_write         0
+#define CONSOLEIO_read          1
+
+/*
+ * Commands to HYPERVISOR_vm_assist().
+ */
+#define VMASST_CMD_enable                0
+#define VMASST_CMD_disable               1
+#define VMASST_TYPE_4gb_segments         0
+#define VMASST_TYPE_4gb_segments_notify  1
+#define VMASST_TYPE_writable_pagetables  2
+#define VMASST_TYPE_pae_extended_cr3     3
+#define MAX_VMASST_TYPE 3
+
+#ifndef __ASSEMBLY__
+
+typedef uint16_t domid_t;
+
+/* Domain ids >= DOMID_FIRST_RESERVED cannot be used for ordinary domains. */
+#define DOMID_FIRST_RESERVED (0x7FF0U)
+
+/* DOMID_SELF is used in certain contexts to refer to oneself. */
+#define DOMID_SELF (0x7FF0U)
+
+/*
+ * DOMID_IO is used to restrict page-table updates to mapping I/O memory.
+ * Although no Foreign Domain need be specified to map I/O pages, DOMID_IO
+ * is useful to ensure that no mappings to the OS's own heap are accidentally
+ * installed. (e.g., in Linux this could cause havoc as reference counts
+ * aren't adjusted on the I/O-mapping code path).
+ * This only makes sense in MMUEXT_SET_FOREIGNDOM, but in that context can
+ * be specified by any calling domain.
+ */
+#define DOMID_IO   (0x7FF1U)
+
+/*
+ * DOMID_XEN is used to allow privileged domains to map restricted parts of
+ * Xen's heap space (e.g., the machine_to_phys table).
+ * This only makes sense in MMUEXT_SET_FOREIGNDOM, and is only permitted if
+ * the caller is privileged.
+ */
+#define DOMID_XEN  (0x7FF2U)
+
+/*
+ * Send an array of these to HYPERVISOR_mmu_update().
+ * NB. The fields are natural pointer/address size for this architecture.
+ */
+struct mmu_update {
+    uint64_t ptr;       /* Machine address of PTE. */
+    uint64_t val;       /* New contents of PTE.    */
+};
+DEFINE_GUEST_HANDLE_STRUCT(mmu_update);
+
+/*
+ * Send an array of these to HYPERVISOR_multicall().
+ * NB. The fields are natural register size for this architecture.
+ */
+struct multicall_entry {
+    unsigned long op;
+    long result;
+    unsigned long args[6];
+};
+DEFINE_GUEST_HANDLE_STRUCT(multicall_entry);
+
+/*
+ * Event channel endpoints per domain:
+ *  1024 if a long is 32 bits; 4096 if a long is 64 bits.
+ */
+#define NR_EVENT_CHANNELS (sizeof(unsigned long) * sizeof(unsigned long) * 64)
+
+struct vcpu_time_info {
+	/*
+	 * Updates to the following values are preceded and followed
+	 * by an increment of 'version'. The guest can therefore
+	 * detect updates by looking for changes to 'version'. If the
+	 * least-significant bit of the version number is set then an
+	 * update is in progress and the guest must wait to read a
+	 * consistent set of values.  The correct way to interact with
+	 * the version number is similar to Linux's seqlock: see the
+	 * implementations of read_seqbegin/read_seqretry.
+	 */
+	uint32_t version;
+	uint32_t pad0;
+	uint64_t tsc_timestamp;   /* TSC at last update of time vals.  */
+	uint64_t system_time;     /* Time, in nanosecs, since boot.    */
+	/*
+	 * Current system time:
+	 *   system_time + ((tsc - tsc_timestamp) << tsc_shift) * tsc_to_system_mul
+	 * CPU frequency (Hz):
+	 *   ((10^9 << 32) / tsc_to_system_mul) >> tsc_shift
+	 */
+	uint32_t tsc_to_system_mul;
+	int8_t   tsc_shift;
+	int8_t   pad1[3];
+}; /* 32 bytes */
+
+struct vcpu_info {
+	/*
+	 * 'evtchn_upcall_pending' is written non-zero by Xen to indicate
+	 * a pending notification for a particular VCPU. It is then cleared
+	 * by the guest OS /before/ checking for pending work, thus avoiding
+	 * a set-and-check race. Note that the mask is only accessed by Xen
+	 * on the CPU that is currently hosting the VCPU. This means that the
+	 * pending and mask flags can be updated by the guest without special
+	 * synchronisation (i.e., no need for the x86 LOCK prefix).
+	 * This may seem suboptimal because if the pending flag is set by
+	 * a different CPU then an IPI may be scheduled even when the mask
+	 * is set. However, note:
+	 *  1. The task of 'interrupt holdoff' is covered by the per-event-
+	 *     channel mask bits. A 'noisy' event that is continually being
+	 *     triggered can be masked at source at this very precise
+	 *     granularity.
+	 *  2. The main purpose of the per-VCPU mask is therefore to restrict
+	 *     reentrant execution: whether for concurrency control, or to
+	 *     prevent unbounded stack usage. Whatever the purpose, we expect
+	 *     that the mask will be asserted only for short periods at a time,
+	 *     and so the likelihood of a 'spurious' IPI is suitably small.
+	 * The mask is read before making an event upcall to the guest: a
+	 * non-zero mask therefore guarantees that the VCPU will not receive
+	 * an upcall activation. The mask is cleared when the VCPU requests
+	 * to block: this avoids wakeup-waiting races.
+	 */
+	uint8_t evtchn_upcall_pending;
+	uint8_t evtchn_upcall_mask;
+	unsigned long evtchn_pending_sel;
+	struct arch_vcpu_info arch;
+	struct pvclock_vcpu_time_info time;
+}; /* 64 bytes (x86) */
+
+/*
+ * Xen/kernel shared data -- pointer provided in start_info.
+ * NB. We expect that this struct is smaller than a page.
+ */
+struct shared_info {
+	struct vcpu_info vcpu_info[MAX_VIRT_CPUS];
+
+	/*
+	 * A domain can create "event channels" on which it can send and receive
+	 * asynchronous event notifications. There are three classes of event that
+	 * are delivered by this mechanism:
+	 *  1. Bi-directional inter- and intra-domain connections. Domains must
+	 *     arrange out-of-band to set up a connection (usually by allocating
+	 *     an unbound 'listener' port and avertising that via a storage service
+	 *     such as xenstore).
+	 *  2. Physical interrupts. A domain with suitable hardware-access
+	 *     privileges can bind an event-channel port to a physical interrupt
+	 *     source.
+	 *  3. Virtual interrupts ('events'). A domain can bind an event-channel
+	 *     port to a virtual interrupt source, such as the virtual-timer
+	 *     device or the emergency console.
+	 *
+	 * Event channels are addressed by a "port index". Each channel is
+	 * associated with two bits of information:
+	 *  1. PENDING -- notifies the domain that there is a pending notification
+	 *     to be processed. This bit is cleared by the guest.
+	 *  2. MASK -- if this bit is clear then a 0->1 transition of PENDING
+	 *     will cause an asynchronous upcall to be scheduled. This bit is only
+	 *     updated by the guest. It is read-only within Xen. If a channel
+	 *     becomes pending while the channel is masked then the 'edge' is lost
+	 *     (i.e., when the channel is unmasked, the guest must manually handle
+	 *     pending notifications as no upcall will be scheduled by Xen).
+	 *
+	 * To expedite scanning of pending notifications, any 0->1 pending
+	 * transition on an unmasked channel causes a corresponding bit in a
+	 * per-vcpu selector word to be set. Each bit in the selector covers a
+	 * 'C long' in the PENDING bitfield array.
+	 */
+	unsigned long evtchn_pending[sizeof(unsigned long) * 8];
+	unsigned long evtchn_mask[sizeof(unsigned long) * 8];
+
+	/*
+	 * Wallclock time: updated only by control software. Guests should base
+	 * their gettimeofday() syscall on this wallclock-base value.
+	 */
+	struct pvclock_wall_clock wc;
+
+	struct arch_shared_info arch;
+
+};
+
+/*
+ * Start-of-day memory layout for the initial domain (DOM0):
+ *  1. The domain is started within contiguous virtual-memory region.
+ *  2. The contiguous region begins and ends on an aligned 4MB boundary.
+ *  3. The region start corresponds to the load address of the OS image.
+ *     If the load address is not 4MB aligned then the address is rounded down.
+ *  4. This the order of bootstrap elements in the initial virtual region:
+ *      a. relocated kernel image
+ *      b. initial ram disk              [mod_start, mod_len]
+ *      c. list of allocated page frames [mfn_list, nr_pages]
+ *      d. start_info_t structure        [register ESI (x86)]
+ *      e. bootstrap page tables         [pt_base, CR3 (x86)]
+ *      f. bootstrap stack               [register ESP (x86)]
+ *  5. Bootstrap elements are packed together, but each is 4kB-aligned.
+ *  6. The initial ram disk may be omitted.
+ *  7. The list of page frames forms a contiguous 'pseudo-physical' memory
+ *     layout for the domain. In particular, the bootstrap virtual-memory
+ *     region is a 1:1 mapping to the first section of the pseudo-physical map.
+ *  8. All bootstrap elements are mapped read-writable for the guest OS. The
+ *     only exception is the bootstrap page table, which is mapped read-only.
+ *  9. There is guaranteed to be at least 512kB padding after the final
+ *     bootstrap element. If necessary, the bootstrap virtual region is
+ *     extended by an extra 4MB to ensure this.
+ */
+
+#define MAX_GUEST_CMDLINE 1024
+struct start_info {
+	/* THE FOLLOWING ARE FILLED IN BOTH ON INITIAL BOOT AND ON RESUME.    */
+	char magic[32];             /* "xen-<version>-<platform>".            */
+	unsigned long nr_pages;     /* Total pages allocated to this domain.  */
+	unsigned long shared_info;  /* MACHINE address of shared info struct. */
+	uint32_t flags;             /* SIF_xxx flags.                         */
+	unsigned long store_mfn;    /* MACHINE page number of shared page.    */
+	uint32_t store_evtchn;      /* Event channel for store communication. */
+	union {
+		struct {
+			unsigned long mfn;  /* MACHINE page number of console page.   */
+			uint32_t  evtchn;   /* Event channel for console page.        */
+		} domU;
+		struct {
+			uint32_t info_off;  /* Offset of console_info struct.         */
+			uint32_t info_size; /* Size of console_info struct from start.*/
+		} dom0;
+	} console;
+	/* THE FOLLOWING ARE ONLY FILLED IN ON INITIAL BOOT (NOT RESUME).     */
+	unsigned long pt_base;      /* VIRTUAL address of page directory.     */
+	unsigned long nr_pt_frames; /* Number of bootstrap p.t. frames.       */
+	unsigned long mfn_list;     /* VIRTUAL address of page-frame list.    */
+	unsigned long mod_start;    /* VIRTUAL address of pre-loaded module.  */
+	unsigned long mod_len;      /* Size (bytes) of pre-loaded module.     */
+	int8_t cmd_line[MAX_GUEST_CMDLINE];
+};
+
+struct dom0_vga_console_info {
+	uint8_t video_type;
+#define XEN_VGATYPE_TEXT_MODE_3 0x03
+#define XEN_VGATYPE_VESA_LFB    0x23
+
+	union {
+		struct {
+			/* Font height, in pixels. */
+			uint16_t font_height;
+			/* Cursor location (column, row). */
+			uint16_t cursor_x, cursor_y;
+			/* Number of rows and columns (dimensions in characters). */
+			uint16_t rows, columns;
+		} text_mode_3;
+
+		struct {
+			/* Width and height, in pixels. */
+			uint16_t width, height;
+			/* Bytes per scan line. */
+			uint16_t bytes_per_line;
+			/* Bits per pixel. */
+			uint16_t bits_per_pixel;
+			/* LFB physical address, and size (in units of 64kB). */
+			uint32_t lfb_base;
+			uint32_t lfb_size;
+			/* RGB mask offsets and sizes, as defined by VBE 1.2+ */
+			uint8_t  red_pos, red_size;
+			uint8_t  green_pos, green_size;
+			uint8_t  blue_pos, blue_size;
+			uint8_t  rsvd_pos, rsvd_size;
+
+			/* VESA capabilities (offset 0xa, VESA command 0x4f00). */
+			uint32_t gbl_caps;
+			/* Mode attributes (offset 0x0, VESA command 0x4f01). */
+			uint16_t mode_attrs;
+		} vesa_lfb;
+	} u;
+};
+
+/* These flags are passed in the 'flags' field of start_info_t. */
+#define SIF_PRIVILEGED    (1<<0)  /* Is the domain privileged? */
+#define SIF_INITDOMAIN    (1<<1)  /* Is this the initial control domain? */
+#define SIF_PM_MASK       (0xFF<<8) /* reserve 1 byte for xen-pm options */
+
+typedef uint64_t cpumap_t;
+
+typedef uint8_t xen_domain_handle_t[16];
+
+/* Turn a plain number into a C unsigned long constant. */
+#define __mk_unsigned_long(x) x ## UL
+#define mk_unsigned_long(x) __mk_unsigned_long(x)
+
+#define TMEM_SPEC_VERSION 1
+
+struct tmem_op {
+	uint32_t cmd;
+	int32_t pool_id;
+	union {
+		struct {  /* for cmd == TMEM_NEW_POOL */
+			uint64_t uuid[2];
+			uint32_t flags;
+		} new;
+		struct {
+			uint64_t oid[3];
+			uint32_t index;
+			uint32_t tmem_offset;
+			uint32_t pfn_offset;
+			uint32_t len;
+			GUEST_HANDLE(void) gmfn; /* guest machine page frame */
+		} gen;
+	} u;
+};
+
+DEFINE_GUEST_HANDLE(u64);
+
+#else /* __ASSEMBLY__ */
+
+/* In assembly code we cannot use C numeric constant suffixes. */
+#define mk_unsigned_long(x) x
+
+#endif /* !__ASSEMBLY__ */
+
+#endif /* __XEN_PUBLIC_XEN_H__ */