zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/kernel/futex.c b/ap/os/linux/linux-3.4.x/kernel/futex.c
new file mode 100755
index 0000000..6501f1a
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/futex.c
@@ -0,0 +1,2901 @@
+/*
+ *  Fast Userspace Mutexes (which I call "Futexes!").
+ *  (C) Rusty Russell, IBM 2002
+ *
+ *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
+ *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
+ *
+ *  Removed page pinning, fix privately mapped COW pages and other cleanups
+ *  (C) Copyright 2003, 2004 Jamie Lokier
+ *
+ *  Robust futex support started by Ingo Molnar
+ *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
+ *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
+ *
+ *  PI-futex support started by Ingo Molnar and Thomas Gleixner
+ *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
+ *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
+ *
+ *  PRIVATE futexes by Eric Dumazet
+ *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
+ *
+ *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
+ *  Copyright (C) IBM Corporation, 2009
+ *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
+ *
+ *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
+ *  enough at me, Linus for the original (flawed) idea, Matthew
+ *  Kirkwood for proof-of-concept implementation.
+ *
+ *  "The futexes are also cursed."
+ *  "But they come in a choice of three flavours!"
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, write to the Free Software
+ *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
+ */
+#include <linux/slab.h>
+#include <linux/poll.h>
+#include <linux/fs.h>
+#include <linux/file.h>
+#include <linux/jhash.h>
+#include <linux/init.h>
+#include <linux/futex.h>
+#include <linux/mount.h>
+#include <linux/pagemap.h>
+#include <linux/syscalls.h>
+#include <linux/signal.h>
+#include <linux/export.h>
+#include <linux/magic.h>
+#include <linux/pid.h>
+#include <linux/nsproxy.h>
+#include <linux/ptrace.h>
+#include <linux/hugetlb.h>
+
+#include <asm/futex.h>
+
+#include "rtmutex_common.h"
+
+int __read_mostly futex_cmpxchg_enabled;
+
+#define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
+
+/*
+ * Futex flags used to encode options to functions and preserve them across
+ * restarts.
+ */
+#define FLAGS_SHARED		0x01
+#define FLAGS_CLOCKRT		0x02
+#define FLAGS_HAS_TIMEOUT	0x04
+
+/*
+ * Priority Inheritance state:
+ */
+struct futex_pi_state {
+	/*
+	 * list of 'owned' pi_state instances - these have to be
+	 * cleaned up in do_exit() if the task exits prematurely:
+	 */
+	struct list_head list;
+
+	/*
+	 * The PI object:
+	 */
+	struct rt_mutex pi_mutex;
+
+	struct task_struct *owner;
+	atomic_t refcount;
+
+	union futex_key key;
+};
+
+/**
+ * struct futex_q - The hashed futex queue entry, one per waiting task
+ * @list:		priority-sorted list of tasks waiting on this futex
+ * @task:		the task waiting on the futex
+ * @lock_ptr:		the hash bucket lock
+ * @key:		the key the futex is hashed on
+ * @pi_state:		optional priority inheritance state
+ * @rt_waiter:		rt_waiter storage for use with requeue_pi
+ * @requeue_pi_key:	the requeue_pi target futex key
+ * @bitset:		bitset for the optional bitmasked wakeup
+ *
+ * We use this hashed waitqueue, instead of a normal wait_queue_t, so
+ * we can wake only the relevant ones (hashed queues may be shared).
+ *
+ * A futex_q has a woken state, just like tasks have TASK_RUNNING.
+ * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
+ * The order of wakeup is always to make the first condition true, then
+ * the second.
+ *
+ * PI futexes are typically woken before they are removed from the hash list via
+ * the rt_mutex code. See unqueue_me_pi().
+ */
+struct futex_q {
+	struct plist_node list;
+
+	struct task_struct *task;
+	spinlock_t *lock_ptr;
+	union futex_key key;
+	struct futex_pi_state *pi_state;
+	struct rt_mutex_waiter *rt_waiter;
+	union futex_key *requeue_pi_key;
+	u32 bitset;
+};
+
+static const struct futex_q futex_q_init = {
+	/* list gets initialized in queue_me()*/
+	.key = FUTEX_KEY_INIT,
+	.bitset = FUTEX_BITSET_MATCH_ANY
+};
+
+/*
+ * Hash buckets are shared by all the futex_keys that hash to the same
+ * location.  Each key may have multiple futex_q structures, one for each task
+ * waiting on a futex.
+ */
+struct futex_hash_bucket {
+	spinlock_t lock;
+	struct plist_head chain;
+};
+
+static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
+
+/*
+ * We hash on the keys returned from get_futex_key (see below).
+ */
+static struct futex_hash_bucket *hash_futex(union futex_key *key)
+{
+	u32 hash = jhash2((u32*)&key->both.word,
+			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
+			  key->both.offset);
+	return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
+}
+
+/*
+ * Return 1 if two futex_keys are equal, 0 otherwise.
+ */
+static inline int match_futex(union futex_key *key1, union futex_key *key2)
+{
+	return (key1 && key2
+		&& key1->both.word == key2->both.word
+		&& key1->both.ptr == key2->both.ptr
+		&& key1->both.offset == key2->both.offset);
+}
+
+/*
+ * Take a reference to the resource addressed by a key.
+ * Can be called while holding spinlocks.
+ *
+ */
+static void get_futex_key_refs(union futex_key *key)
+{
+	if (!key->both.ptr)
+		return;
+
+	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
+	case FUT_OFF_INODE:
+		ihold(key->shared.inode);
+		break;
+	case FUT_OFF_MMSHARED:
+		atomic_inc(&key->private.mm->mm_count);
+		break;
+	}
+}
+
+/*
+ * Drop a reference to the resource addressed by a key.
+ * The hash bucket spinlock must not be held.
+ */
+static void drop_futex_key_refs(union futex_key *key)
+{
+	if (!key->both.ptr) {
+		/* If we're here then we tried to put a key we failed to get */
+		WARN_ON_ONCE(1);
+		return;
+	}
+
+	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
+	case FUT_OFF_INODE:
+		iput(key->shared.inode);
+		break;
+	case FUT_OFF_MMSHARED:
+		mmdrop(key->private.mm);
+		break;
+	default:
+		smp_mb(); /* explicit MB (B) */
+	}
+}
+
+/**
+ * get_futex_key() - Get parameters which are the keys for a futex
+ * @uaddr:	virtual address of the futex
+ * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
+ * @key:	address where result is stored.
+ * @rw:		mapping needs to be read/write (values: VERIFY_READ,
+ *              VERIFY_WRITE)
+ *
+ * Returns a negative error code or 0
+ * The key words are stored in *key on success.
+ *
+ * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
+ * offset_within_page).  For private mappings, it's (uaddr, current->mm).
+ * We can usually work out the index without swapping in the page.
+ *
+ * lock_page() might sleep, the caller should not hold a spinlock.
+ */
+static int
+get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
+{
+	unsigned long address = (unsigned long)uaddr;
+	struct mm_struct *mm = current->mm;
+	struct page *page, *page_head;
+	int err, ro = 0;
+
+	/*
+	 * The futex address must be "naturally" aligned.
+	 */
+	key->both.offset = address % PAGE_SIZE;
+	if (unlikely((address % sizeof(u32)) != 0))
+		return -EINVAL;
+	address -= key->both.offset;
+
+	/*
+	 * PROCESS_PRIVATE futexes are fast.
+	 * As the mm cannot disappear under us and the 'key' only needs
+	 * virtual address, we dont even have to find the underlying vma.
+	 * Note : We do have to check 'uaddr' is a valid user address,
+	 *        but access_ok() should be faster than find_vma()
+	 */
+	if (!fshared) {
+		if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
+			return -EFAULT;
+		key->private.mm = mm;
+		key->private.address = address;
+		get_futex_key_refs(key);
+		return 0;
+	}
+
+again:
+	err = get_user_pages_fast(address, 1, 1, &page);
+	/*
+	 * If write access is not required (eg. FUTEX_WAIT), try
+	 * and get read-only access.
+	 */
+	if (err == -EFAULT && rw == VERIFY_READ) {
+		err = get_user_pages_fast(address, 1, 0, &page);
+		ro = 1;
+	}
+	if (err < 0)
+		return err;
+	else
+		err = 0;
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+	page_head = page;
+	if (unlikely(PageTail(page))) {
+		put_page(page);
+		/* serialize against __split_huge_page_splitting() */
+		local_irq_disable();
+		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
+			page_head = compound_head(page);
+			/*
+			 * page_head is valid pointer but we must pin
+			 * it before taking the PG_lock and/or
+			 * PG_compound_lock. The moment we re-enable
+			 * irqs __split_huge_page_splitting() can
+			 * return and the head page can be freed from
+			 * under us. We can't take the PG_lock and/or
+			 * PG_compound_lock on a page that could be
+			 * freed from under us.
+			 */
+			if (page != page_head) {
+				get_page(page_head);
+				put_page(page);
+			}
+			local_irq_enable();
+		} else {
+			local_irq_enable();
+			goto again;
+		}
+	}
+#else
+	page_head = compound_head(page);
+	if (page != page_head) {
+		get_page(page_head);
+		put_page(page);
+	}
+#endif
+
+	lock_page(page_head);
+
+	/*
+	 * If page_head->mapping is NULL, then it cannot be a PageAnon
+	 * page; but it might be the ZERO_PAGE or in the gate area or
+	 * in a special mapping (all cases which we are happy to fail);
+	 * or it may have been a good file page when get_user_pages_fast
+	 * found it, but truncated or holepunched or subjected to
+	 * invalidate_complete_page2 before we got the page lock (also
+	 * cases which we are happy to fail).  And we hold a reference,
+	 * so refcount care in invalidate_complete_page's remove_mapping
+	 * prevents drop_caches from setting mapping to NULL beneath us.
+	 *
+	 * The case we do have to guard against is when memory pressure made
+	 * shmem_writepage move it from filecache to swapcache beneath us:
+	 * an unlikely race, but we do need to retry for page_head->mapping.
+	 */
+	if (!page_head->mapping) {
+		int shmem_swizzled = PageSwapCache(page_head);
+		unlock_page(page_head);
+		put_page(page_head);
+		if (shmem_swizzled)
+			goto again;
+		return -EFAULT;
+	}
+
+	/*
+	 * Private mappings are handled in a simple way.
+	 *
+	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
+	 * it's a read-only handle, it's expected that futexes attach to
+	 * the object not the particular process.
+	 */
+	if (PageAnon(page_head)) {
+		/*
+		 * A RO anonymous page will never change and thus doesn't make
+		 * sense for futex operations.
+		 */
+		if (ro) {
+			err = -EFAULT;
+			goto out;
+		}
+
+		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
+		key->private.mm = mm;
+		key->private.address = address;
+	} else {
+		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
+		key->shared.inode = page_head->mapping->host;
+		key->shared.pgoff = basepage_index(page);
+	}
+
+	get_futex_key_refs(key);
+
+out:
+	unlock_page(page_head);
+	put_page(page_head);
+	return err;
+}
+
+static inline void put_futex_key(union futex_key *key)
+{
+	drop_futex_key_refs(key);
+}
+
+/**
+ * fault_in_user_writeable() - Fault in user address and verify RW access
+ * @uaddr:	pointer to faulting user space address
+ *
+ * Slow path to fixup the fault we just took in the atomic write
+ * access to @uaddr.
+ *
+ * We have no generic implementation of a non-destructive write to the
+ * user address. We know that we faulted in the atomic pagefault
+ * disabled section so we can as well avoid the #PF overhead by
+ * calling get_user_pages() right away.
+ */
+static int fault_in_user_writeable(u32 __user *uaddr)
+{
+	struct mm_struct *mm = current->mm;
+	int ret;
+
+	down_read(&mm->mmap_sem);
+	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
+			       FAULT_FLAG_WRITE);
+	up_read(&mm->mmap_sem);
+
+	return ret < 0 ? ret : 0;
+}
+
+/**
+ * futex_top_waiter() - Return the highest priority waiter on a futex
+ * @hb:		the hash bucket the futex_q's reside in
+ * @key:	the futex key (to distinguish it from other futex futex_q's)
+ *
+ * Must be called with the hb lock held.
+ */
+static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
+					union futex_key *key)
+{
+	struct futex_q *this;
+
+	plist_for_each_entry(this, &hb->chain, list) {
+		if (match_futex(&this->key, key))
+			return this;
+	}
+	return NULL;
+}
+
+static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
+				      u32 uval, u32 newval)
+{
+	int ret;
+
+	pagefault_disable();
+	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
+	pagefault_enable();
+
+	return ret;
+}
+
+static int get_futex_value_locked(u32 *dest, u32 __user *from)
+{
+	int ret;
+
+	pagefault_disable();
+	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
+	pagefault_enable();
+
+	return ret ? -EFAULT : 0;
+}
+
+
+/*
+ * PI code:
+ */
+static int refill_pi_state_cache(void)
+{
+	struct futex_pi_state *pi_state;
+
+	if (likely(current->pi_state_cache))
+		return 0;
+
+	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
+
+	if (!pi_state)
+		return -ENOMEM;
+
+	INIT_LIST_HEAD(&pi_state->list);
+	/* pi_mutex gets initialized later */
+	pi_state->owner = NULL;
+	atomic_set(&pi_state->refcount, 1);
+	pi_state->key = FUTEX_KEY_INIT;
+
+	current->pi_state_cache = pi_state;
+
+	return 0;
+}
+
+static struct futex_pi_state * alloc_pi_state(void)
+{
+	struct futex_pi_state *pi_state = current->pi_state_cache;
+
+	WARN_ON(!pi_state);
+	current->pi_state_cache = NULL;
+
+	return pi_state;
+}
+
+/*
+ * Must be called with the hb lock held.
+ */
+static void free_pi_state(struct futex_pi_state *pi_state)
+{
+	if (!pi_state)
+		return;
+
+	if (!atomic_dec_and_test(&pi_state->refcount))
+		return;
+
+	/*
+	 * If pi_state->owner is NULL, the owner is most probably dying
+	 * and has cleaned up the pi_state already
+	 */
+	if (pi_state->owner) {
+		raw_spin_lock_irq(&pi_state->owner->pi_lock);
+		list_del_init(&pi_state->list);
+		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
+
+		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
+	}
+
+	if (current->pi_state_cache)
+		kfree(pi_state);
+	else {
+		/*
+		 * pi_state->list is already empty.
+		 * clear pi_state->owner.
+		 * refcount is at 0 - put it back to 1.
+		 */
+		pi_state->owner = NULL;
+		atomic_set(&pi_state->refcount, 1);
+		current->pi_state_cache = pi_state;
+	}
+}
+
+/*
+ * Look up the task based on what TID userspace gave us.
+ * We dont trust it.
+ */
+static struct task_struct * futex_find_get_task(pid_t pid)
+{
+	struct task_struct *p;
+
+	rcu_read_lock();
+	p = find_task_by_vpid(pid);
+	if (p)
+		get_task_struct(p);
+
+	rcu_read_unlock();
+
+	return p;
+}
+
+/*
+ * This task is holding PI mutexes at exit time => bad.
+ * Kernel cleans up PI-state, but userspace is likely hosed.
+ * (Robust-futex cleanup is separate and might save the day for userspace.)
+ */
+void exit_pi_state_list(struct task_struct *curr)
+{
+	struct list_head *next, *head = &curr->pi_state_list;
+	struct futex_pi_state *pi_state;
+	struct futex_hash_bucket *hb;
+	union futex_key key = FUTEX_KEY_INIT;
+
+	if (!futex_cmpxchg_enabled)
+		return;
+	/*
+	 * We are a ZOMBIE and nobody can enqueue itself on
+	 * pi_state_list anymore, but we have to be careful
+	 * versus waiters unqueueing themselves:
+	 */
+	raw_spin_lock_irq(&curr->pi_lock);
+	while (!list_empty(head)) {
+
+		next = head->next;
+		pi_state = list_entry(next, struct futex_pi_state, list);
+		key = pi_state->key;
+		hb = hash_futex(&key);
+		raw_spin_unlock_irq(&curr->pi_lock);
+
+		spin_lock(&hb->lock);
+
+		raw_spin_lock_irq(&curr->pi_lock);
+		/*
+		 * We dropped the pi-lock, so re-check whether this
+		 * task still owns the PI-state:
+		 */
+		if (head->next != next) {
+			spin_unlock(&hb->lock);
+			continue;
+		}
+
+		WARN_ON(pi_state->owner != curr);
+		WARN_ON(list_empty(&pi_state->list));
+		list_del_init(&pi_state->list);
+		pi_state->owner = NULL;
+		raw_spin_unlock_irq(&curr->pi_lock);
+
+		rt_mutex_unlock(&pi_state->pi_mutex);
+
+		spin_unlock(&hb->lock);
+
+		raw_spin_lock_irq(&curr->pi_lock);
+	}
+	raw_spin_unlock_irq(&curr->pi_lock);
+}
+
+/*
+ * We need to check the following states:
+ *
+ *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
+ *
+ * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
+ * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
+ *
+ * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
+ *
+ * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
+ * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
+ *
+ * [6]  Found  | Found    | task      | 0         | 1      | Valid
+ *
+ * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
+ *
+ * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
+ * [9]  Found  | Found    | task      | 0         | 0      | Invalid
+ * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
+ *
+ * [1]	Indicates that the kernel can acquire the futex atomically. We
+ *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
+ *
+ * [2]	Valid, if TID does not belong to a kernel thread. If no matching
+ *      thread is found then it indicates that the owner TID has died.
+ *
+ * [3]	Invalid. The waiter is queued on a non PI futex
+ *
+ * [4]	Valid state after exit_robust_list(), which sets the user space
+ *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
+ *
+ * [5]	The user space value got manipulated between exit_robust_list()
+ *	and exit_pi_state_list()
+ *
+ * [6]	Valid state after exit_pi_state_list() which sets the new owner in
+ *	the pi_state but cannot access the user space value.
+ *
+ * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
+ *
+ * [8]	Owner and user space value match
+ *
+ * [9]	There is no transient state which sets the user space TID to 0
+ *	except exit_robust_list(), but this is indicated by the
+ *	FUTEX_OWNER_DIED bit. See [4]
+ *
+ * [10] There is no transient state which leaves owner and user space
+ *	TID out of sync.
+ */
+
+/*
+ * Validate that the existing waiter has a pi_state and sanity check
+ * the pi_state against the user space value. If correct, attach to
+ * it.
+ */
+static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
+			      struct futex_pi_state **ps)
+{
+	pid_t pid = uval & FUTEX_TID_MASK;
+
+	/*
+	 * Userspace might have messed up non-PI and PI futexes [3]
+	 */
+	if (unlikely(!pi_state))
+		return -EINVAL;
+
+	WARN_ON(!atomic_read(&pi_state->refcount));
+
+	/*
+	 * Handle the owner died case:
+	 */
+	if (uval & FUTEX_OWNER_DIED) {
+		/*
+		 * exit_pi_state_list sets owner to NULL and wakes the
+		 * topmost waiter. The task which acquires the
+		 * pi_state->rt_mutex will fixup owner.
+		 */
+		if (!pi_state->owner) {
+			/*
+			 * No pi state owner, but the user space TID
+			 * is not 0. Inconsistent state. [5]
+			 */
+			if (pid)
+				return -EINVAL;
+			/*
+			 * Take a ref on the state and return success. [4]
+			 */
+			goto out_state;
+		}
+
+		/*
+		 * If TID is 0, then either the dying owner has not
+		 * yet executed exit_pi_state_list() or some waiter
+		 * acquired the rtmutex in the pi state, but did not
+		 * yet fixup the TID in user space.
+		 *
+		 * Take a ref on the state and return success. [6]
+		 */
+		if (!pid)
+			goto out_state;
+	} else {
+		/*
+		 * If the owner died bit is not set, then the pi_state
+		 * must have an owner. [7]
+		 */
+		if (!pi_state->owner)
+			return -EINVAL;
+	}
+
+	/*
+	 * Bail out if user space manipulated the futex value. If pi
+	 * state exists then the owner TID must be the same as the
+	 * user space TID. [9/10]
+	 */
+	if (pid != task_pid_vnr(pi_state->owner))
+		return -EINVAL;
+out_state:
+	atomic_inc(&pi_state->refcount);
+	*ps = pi_state;
+	return 0;
+}
+
+/*
+ * Lookup the task for the TID provided from user space and attach to
+ * it after doing proper sanity checks.
+ */
+static int attach_to_pi_owner(u32 uval, union futex_key *key,
+			      struct futex_pi_state **ps)
+{
+	pid_t pid = uval & FUTEX_TID_MASK;
+	struct futex_pi_state *pi_state;
+	struct task_struct *p;
+
+	/*
+	 * We are the first waiter - try to look up the real owner and attach
+	 * the new pi_state to it, but bail out when TID = 0 [1]
+	 */
+	if (!pid)
+		return -ESRCH;
+	p = futex_find_get_task(pid);
+	if (!p)
+		return -ESRCH;
+
+	if (!p->mm) {
+		put_task_struct(p);
+		return -EPERM;
+	}
+
+	/*
+	 * We need to look at the task state flags to figure out,
+	 * whether the task is exiting. To protect against the do_exit
+	 * change of the task flags, we do this protected by
+	 * p->pi_lock:
+	 */
+	raw_spin_lock_irq(&p->pi_lock);
+	if (unlikely(p->flags & PF_EXITING)) {
+		/*
+		 * The task is on the way out. When PF_EXITPIDONE is
+		 * set, we know that the task has finished the
+		 * cleanup:
+		 */
+		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
+
+		raw_spin_unlock_irq(&p->pi_lock);
+		put_task_struct(p);
+		return ret;
+	}
+
+	/*
+	 * No existing pi state. First waiter. [2]
+	 */
+	pi_state = alloc_pi_state();
+
+	/*
+	 * Initialize the pi_mutex in locked state and make @p
+	 * the owner of it:
+	 */
+	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
+
+	/* Store the key for possible exit cleanups: */
+	pi_state->key = *key;
+
+	WARN_ON(!list_empty(&pi_state->list));
+	list_add(&pi_state->list, &p->pi_state_list);
+	pi_state->owner = p;
+	raw_spin_unlock_irq(&p->pi_lock);
+
+	put_task_struct(p);
+
+	*ps = pi_state;
+
+	return 0;
+}
+
+static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
+			   union futex_key *key, struct futex_pi_state **ps)
+{
+	struct futex_q *match = futex_top_waiter(hb, key);
+
+	/*
+	 * If there is a waiter on that futex, validate it and
+	 * attach to the pi_state when the validation succeeds.
+	 */
+	if (match)
+		return attach_to_pi_state(uval, match->pi_state, ps);
+
+	/*
+	 * We are the first waiter - try to look up the owner based on
+	 * @uval and attach to it.
+	 */
+	return attach_to_pi_owner(uval, key, ps);
+}
+
+static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
+{
+	u32 uninitialized_var(curval);
+
+	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
+		return -EFAULT;
+
+	/*If user space value changed, let the caller retry */
+	return curval != uval ? -EAGAIN : 0;
+}
+
+/**
+ * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
+ * @uaddr:		the pi futex user address
+ * @hb:			the pi futex hash bucket
+ * @key:		the futex key associated with uaddr and hb
+ * @ps:			the pi_state pointer where we store the result of the
+ *			lookup
+ * @task:		the task to perform the atomic lock work for.  This will
+ *			be "current" except in the case of requeue pi.
+ * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
+ *
+ * Returns:
+ *  0 - ready to wait
+ *  1 - acquired the lock
+ * <0 - error
+ *
+ * The hb->lock and futex_key refs shall be held by the caller.
+ */
+static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
+				union futex_key *key,
+				struct futex_pi_state **ps,
+				struct task_struct *task, int set_waiters)
+{
+	u32 uval, newval, vpid = task_pid_vnr(task);
+	struct futex_q *match;
+	int ret;
+
+	/*
+	 * Read the user space value first so we can validate a few
+	 * things before proceeding further.
+	 */
+	if (get_futex_value_locked(&uval, uaddr))
+		return -EFAULT;
+
+	/*
+	 * Detect deadlocks.
+	 */
+	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
+		return -EDEADLK;
+
+	/*
+	 * Lookup existing state first. If it exists, try to attach to
+	 * its pi_state.
+	 */
+	match = futex_top_waiter(hb, key);
+	if (match)
+		return attach_to_pi_state(uval, match->pi_state, ps);
+
+	/*
+	 * No waiter and user TID is 0. We are here because the
+	 * waiters or the owner died bit is set or called from
+	 * requeue_cmp_pi or for whatever reason something took the
+	 * syscall.
+	 */
+	if (!(uval & FUTEX_TID_MASK)) {
+		/*
+		 * We take over the futex. No other waiters and the user space
+		 * TID is 0. We preserve the owner died bit.
+		 */
+		newval = uval & FUTEX_OWNER_DIED;
+		newval |= vpid;
+
+		/* The futex requeue_pi code can enforce the waiters bit */
+		if (set_waiters)
+			newval |= FUTEX_WAITERS;
+
+		ret = lock_pi_update_atomic(uaddr, uval, newval);
+		/* If the take over worked, return 1 */
+		return ret < 0 ? ret : 1;
+	}
+
+	/*
+	 * First waiter. Set the waiters bit before attaching ourself to
+	 * the owner. If owner tries to unlock, it will be forced into
+	 * the kernel and blocked on hb->lock.
+	 */
+	newval = uval | FUTEX_WAITERS;
+	ret = lock_pi_update_atomic(uaddr, uval, newval);
+	if (ret)
+		return ret;
+	/*
+	 * If the update of the user space value succeeded, we try to
+	 * attach to the owner. If that fails, no harm done, we only
+	 * set the FUTEX_WAITERS bit in the user space variable.
+	 */
+	return attach_to_pi_owner(uval, key, ps);
+}
+
+/**
+ * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
+ * @q:	The futex_q to unqueue
+ *
+ * The q->lock_ptr must not be NULL and must be held by the caller.
+ */
+static void __unqueue_futex(struct futex_q *q)
+{
+	struct futex_hash_bucket *hb;
+
+	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
+	    || WARN_ON(plist_node_empty(&q->list)))
+		return;
+
+	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
+	plist_del(&q->list, &hb->chain);
+}
+
+/*
+ * The hash bucket lock must be held when this is called.
+ * Afterwards, the futex_q must not be accessed.
+ */
+static void wake_futex(struct futex_q *q)
+{
+	struct task_struct *p = q->task;
+
+	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
+		return;
+
+	/*
+	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
+	 * a non-futex wake up happens on another CPU then the task
+	 * might exit and p would dereference a non-existing task
+	 * struct. Prevent this by holding a reference on p across the
+	 * wake up.
+	 */
+	get_task_struct(p);
+
+	__unqueue_futex(q);
+	/*
+	 * The waiting task can free the futex_q as soon as
+	 * q->lock_ptr = NULL is written, without taking any locks. A
+	 * memory barrier is required here to prevent the following
+	 * store to lock_ptr from getting ahead of the plist_del.
+	 */
+	smp_wmb();
+	q->lock_ptr = NULL;
+
+	wake_up_state(p, TASK_NORMAL);
+	put_task_struct(p);
+}
+
+static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
+{
+	struct task_struct *new_owner;
+	struct futex_pi_state *pi_state = this->pi_state;
+	u32 uninitialized_var(curval), newval;
+	int ret = 0;
+
+	if (!pi_state)
+		return -EINVAL;
+
+	/*
+	 * If current does not own the pi_state then the futex is
+	 * inconsistent and user space fiddled with the futex value.
+	 */
+	if (pi_state->owner != current)
+		return -EINVAL;
+
+	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
+	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
+
+	/*
+	 * It is possible that the next waiter (the one that brought
+	 * this owner to the kernel) timed out and is no longer
+	 * waiting on the lock.
+	 */
+	if (!new_owner)
+		new_owner = this->task;
+
+	/*
+	 * We pass it to the next owner. The WAITERS bit is always
+	 * kept enabled while there is PI state around. We cleanup the
+	 * owner died bit, because we are the owner.
+	 */
+	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
+
+	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
+		ret = -EFAULT;
+	else if (curval != uval)
+		ret = -EINVAL;
+	if (ret) {
+		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
+		return ret;
+	}
+
+	raw_spin_lock_irq(&pi_state->owner->pi_lock);
+	WARN_ON(list_empty(&pi_state->list));
+	list_del_init(&pi_state->list);
+	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
+
+	raw_spin_lock_irq(&new_owner->pi_lock);
+	WARN_ON(!list_empty(&pi_state->list));
+	list_add(&pi_state->list, &new_owner->pi_state_list);
+	pi_state->owner = new_owner;
+	raw_spin_unlock_irq(&new_owner->pi_lock);
+
+	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
+	rt_mutex_unlock(&pi_state->pi_mutex);
+
+	return 0;
+}
+
+/*
+ * Express the locking dependencies for lockdep:
+ */
+static inline void
+double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
+{
+	if (hb1 <= hb2) {
+		spin_lock(&hb1->lock);
+		if (hb1 < hb2)
+			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
+	} else { /* hb1 > hb2 */
+		spin_lock(&hb2->lock);
+		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
+	}
+}
+
+static inline void
+double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
+{
+	spin_unlock(&hb1->lock);
+	if (hb1 != hb2)
+		spin_unlock(&hb2->lock);
+}
+
+/*
+ * Wake up waiters matching bitset queued on this futex (uaddr).
+ */
+static int
+futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
+{
+	struct futex_hash_bucket *hb;
+	struct futex_q *this, *next;
+	struct plist_head *head;
+	union futex_key key = FUTEX_KEY_INIT;
+	int ret;
+
+	if (!bitset)
+		return -EINVAL;
+
+	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
+	if (unlikely(ret != 0))
+		goto out;
+
+	hb = hash_futex(&key);
+	spin_lock(&hb->lock);
+	head = &hb->chain;
+
+	plist_for_each_entry_safe(this, next, head, list) {
+		if (match_futex (&this->key, &key)) {
+			if (this->pi_state || this->rt_waiter) {
+				ret = -EINVAL;
+				break;
+			}
+
+			/* Check if one of the bits is set in both bitsets */
+			if (!(this->bitset & bitset))
+				continue;
+
+			wake_futex(this);
+			if (++ret >= nr_wake)
+				break;
+		}
+	}
+
+	spin_unlock(&hb->lock);
+	put_futex_key(&key);
+out:
+	return ret;
+}
+
+/*
+ * Wake up all waiters hashed on the physical page that is mapped
+ * to this virtual address:
+ */
+static int
+futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
+	      int nr_wake, int nr_wake2, int op)
+{
+	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
+	struct futex_hash_bucket *hb1, *hb2;
+	struct plist_head *head;
+	struct futex_q *this, *next;
+	int ret, op_ret;
+
+retry:
+	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
+	if (unlikely(ret != 0))
+		goto out;
+	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
+	if (unlikely(ret != 0))
+		goto out_put_key1;
+
+	hb1 = hash_futex(&key1);
+	hb2 = hash_futex(&key2);
+
+retry_private:
+	double_lock_hb(hb1, hb2);
+	op_ret = futex_atomic_op_inuser(op, uaddr2);
+	if (unlikely(op_ret < 0)) {
+
+		double_unlock_hb(hb1, hb2);
+
+#ifndef CONFIG_MMU
+		/*
+		 * we don't get EFAULT from MMU faults if we don't have an MMU,
+		 * but we might get them from range checking
+		 */
+		ret = op_ret;
+		goto out_put_keys;
+#endif
+
+		if (unlikely(op_ret != -EFAULT)) {
+			ret = op_ret;
+			goto out_put_keys;
+		}
+
+		ret = fault_in_user_writeable(uaddr2);
+		if (ret)
+			goto out_put_keys;
+
+		if (!(flags & FLAGS_SHARED))
+			goto retry_private;
+
+		put_futex_key(&key2);
+		put_futex_key(&key1);
+		goto retry;
+	}
+
+	head = &hb1->chain;
+
+	plist_for_each_entry_safe(this, next, head, list) {
+		if (match_futex (&this->key, &key1)) {
+			if (this->pi_state || this->rt_waiter) {
+				ret = -EINVAL;
+				goto out_unlock;
+			}
+			wake_futex(this);
+			if (++ret >= nr_wake)
+				break;
+		}
+	}
+
+	if (op_ret > 0) {
+		head = &hb2->chain;
+
+		op_ret = 0;
+		plist_for_each_entry_safe(this, next, head, list) {
+			if (match_futex (&this->key, &key2)) {
+				if (this->pi_state || this->rt_waiter) {
+					ret = -EINVAL;
+					goto out_unlock;
+				}
+				wake_futex(this);
+				if (++op_ret >= nr_wake2)
+					break;
+			}
+		}
+		ret += op_ret;
+	}
+
+out_unlock:
+	double_unlock_hb(hb1, hb2);
+out_put_keys:
+	put_futex_key(&key2);
+out_put_key1:
+	put_futex_key(&key1);
+out:
+	return ret;
+}
+
+/**
+ * requeue_futex() - Requeue a futex_q from one hb to another
+ * @q:		the futex_q to requeue
+ * @hb1:	the source hash_bucket
+ * @hb2:	the target hash_bucket
+ * @key2:	the new key for the requeued futex_q
+ */
+static inline
+void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
+		   struct futex_hash_bucket *hb2, union futex_key *key2)
+{
+
+	/*
+	 * If key1 and key2 hash to the same bucket, no need to
+	 * requeue.
+	 */
+	if (likely(&hb1->chain != &hb2->chain)) {
+		plist_del(&q->list, &hb1->chain);
+		plist_add(&q->list, &hb2->chain);
+		q->lock_ptr = &hb2->lock;
+	}
+	get_futex_key_refs(key2);
+	q->key = *key2;
+}
+
+/**
+ * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
+ * @q:		the futex_q
+ * @key:	the key of the requeue target futex
+ * @hb:		the hash_bucket of the requeue target futex
+ *
+ * During futex_requeue, with requeue_pi=1, it is possible to acquire the
+ * target futex if it is uncontended or via a lock steal.  Set the futex_q key
+ * to the requeue target futex so the waiter can detect the wakeup on the right
+ * futex, but remove it from the hb and NULL the rt_waiter so it can detect
+ * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
+ * to protect access to the pi_state to fixup the owner later.  Must be called
+ * with both q->lock_ptr and hb->lock held.
+ */
+static inline
+void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
+			   struct futex_hash_bucket *hb)
+{
+	get_futex_key_refs(key);
+	q->key = *key;
+
+	__unqueue_futex(q);
+
+	WARN_ON(!q->rt_waiter);
+	q->rt_waiter = NULL;
+
+	q->lock_ptr = &hb->lock;
+
+	wake_up_state(q->task, TASK_NORMAL);
+}
+
+/**
+ * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
+ * @pifutex:		the user address of the to futex
+ * @hb1:		the from futex hash bucket, must be locked by the caller
+ * @hb2:		the to futex hash bucket, must be locked by the caller
+ * @key1:		the from futex key
+ * @key2:		the to futex key
+ * @ps:			address to store the pi_state pointer
+ * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
+ *
+ * Try and get the lock on behalf of the top waiter if we can do it atomically.
+ * Wake the top waiter if we succeed.  If the caller specified set_waiters,
+ * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
+ * hb1 and hb2 must be held by the caller.
+ *
+ * Returns:
+ *  0 - failed to acquire the lock atomicly
+ * >0 - acquired the lock, return value is vpid of the top_waiter
+ * <0 - error
+ */
+static int futex_proxy_trylock_atomic(u32 __user *pifutex,
+				 struct futex_hash_bucket *hb1,
+				 struct futex_hash_bucket *hb2,
+				 union futex_key *key1, union futex_key *key2,
+				 struct futex_pi_state **ps, int set_waiters)
+{
+	struct futex_q *top_waiter = NULL;
+	u32 curval;
+	int ret, vpid;
+
+	if (get_futex_value_locked(&curval, pifutex))
+		return -EFAULT;
+
+	/*
+	 * Find the top_waiter and determine if there are additional waiters.
+	 * If the caller intends to requeue more than 1 waiter to pifutex,
+	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
+	 * as we have means to handle the possible fault.  If not, don't set
+	 * the bit unecessarily as it will force the subsequent unlock to enter
+	 * the kernel.
+	 */
+	top_waiter = futex_top_waiter(hb1, key1);
+
+	/* There are no waiters, nothing for us to do. */
+	if (!top_waiter)
+		return 0;
+
+	/* Ensure we requeue to the expected futex. */
+	if (!match_futex(top_waiter->requeue_pi_key, key2))
+		return -EINVAL;
+
+	/*
+	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
+	 * the contended case or if set_waiters is 1.  The pi_state is returned
+	 * in ps in contended cases.
+	 */
+	vpid = task_pid_vnr(top_waiter->task);
+	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
+				   set_waiters);
+	if (ret == 1) {
+		requeue_pi_wake_futex(top_waiter, key2, hb2);
+		return vpid;
+	}
+	return ret;
+}
+
+/**
+ * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
+ * @uaddr1:	source futex user address
+ * @flags:	futex flags (FLAGS_SHARED, etc.)
+ * @uaddr2:	target futex user address
+ * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
+ * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
+ * @cmpval:	@uaddr1 expected value (or %NULL)
+ * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
+ *		pi futex (pi to pi requeue is not supported)
+ *
+ * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
+ * uaddr2 atomically on behalf of the top waiter.
+ *
+ * Returns:
+ * >=0 - on success, the number of tasks requeued or woken
+ *  <0 - on error
+ */
+static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
+			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
+			 u32 *cmpval, int requeue_pi)
+{
+	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
+	int drop_count = 0, task_count = 0, ret;
+	struct futex_pi_state *pi_state = NULL;
+	struct futex_hash_bucket *hb1, *hb2;
+	struct plist_head *head1;
+	struct futex_q *this, *next;
+
+       /*Fix for HUB CVE-2018-6927*/
+	if (nr_wake < 0 || nr_requeue < 0)
+		return -EINVAL;
+	
+	if (requeue_pi) {
+		/*
+		 * Requeue PI only works on two distinct uaddrs. This
+		 * check is only valid for private futexes. See below.
+		 */
+		if (uaddr1 == uaddr2)
+			return -EINVAL;
+
+		/*
+		 * requeue_pi requires a pi_state, try to allocate it now
+		 * without any locks in case it fails.
+		 */
+		if (refill_pi_state_cache())
+			return -ENOMEM;
+		/*
+		 * requeue_pi must wake as many tasks as it can, up to nr_wake
+		 * + nr_requeue, since it acquires the rt_mutex prior to
+		 * returning to userspace, so as to not leave the rt_mutex with
+		 * waiters and no owner.  However, second and third wake-ups
+		 * cannot be predicted as they involve race conditions with the
+		 * first wake and a fault while looking up the pi_state.  Both
+		 * pthread_cond_signal() and pthread_cond_broadcast() should
+		 * use nr_wake=1.
+		 */
+		if (nr_wake != 1)
+			return -EINVAL;
+	}
+
+retry:
+	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
+	if (unlikely(ret != 0))
+		goto out;
+	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
+			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
+	if (unlikely(ret != 0))
+		goto out_put_key1;
+
+	/*
+	 * The check above which compares uaddrs is not sufficient for
+	 * shared futexes. We need to compare the keys:
+	 */
+	if (requeue_pi && match_futex(&key1, &key2)) {
+		ret = -EINVAL;
+		goto out_put_keys;
+	}
+
+	hb1 = hash_futex(&key1);
+	hb2 = hash_futex(&key2);
+
+retry_private:
+	double_lock_hb(hb1, hb2);
+
+	if (likely(cmpval != NULL)) {
+		u32 curval;
+
+		ret = get_futex_value_locked(&curval, uaddr1);
+
+		if (unlikely(ret)) {
+			double_unlock_hb(hb1, hb2);
+
+			ret = get_user(curval, uaddr1);
+			if (ret)
+				goto out_put_keys;
+
+			if (!(flags & FLAGS_SHARED))
+				goto retry_private;
+
+			put_futex_key(&key2);
+			put_futex_key(&key1);
+			goto retry;
+		}
+		if (curval != *cmpval) {
+			ret = -EAGAIN;
+			goto out_unlock;
+		}
+	}
+
+	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
+		/*
+		 * Attempt to acquire uaddr2 and wake the top waiter. If we
+		 * intend to requeue waiters, force setting the FUTEX_WAITERS
+		 * bit.  We force this here where we are able to easily handle
+		 * faults rather in the requeue loop below.
+		 */
+		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
+						 &key2, &pi_state, nr_requeue);
+
+		/*
+		 * At this point the top_waiter has either taken uaddr2 or is
+		 * waiting on it.  If the former, then the pi_state will not
+		 * exist yet, look it up one more time to ensure we have a
+		 * reference to it. If the lock was taken, ret contains the
+		 * vpid of the top waiter task.
+		 */
+		if (ret > 0) {
+			WARN_ON(pi_state);
+			drop_count++;
+			task_count++;
+			/*
+			 * If we acquired the lock, then the user
+			 * space value of uaddr2 should be vpid. It
+			 * cannot be changed by the top waiter as it
+			 * is blocked on hb2 lock if it tries to do
+			 * so. If something fiddled with it behind our
+			 * back the pi state lookup might unearth
+			 * it. So we rather use the known value than
+			 * rereading and handing potential crap to
+			 * lookup_pi_state.
+			 */
+			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
+		}
+
+		switch (ret) {
+		case 0:
+			break;
+		case -EFAULT:
+			free_pi_state(pi_state);
+			pi_state = NULL;
+			double_unlock_hb(hb1, hb2);
+			put_futex_key(&key2);
+			put_futex_key(&key1);
+			ret = fault_in_user_writeable(uaddr2);
+			if (!ret)
+				goto retry;
+			goto out;
+		case -EAGAIN:
+			/*
+			 * Two reasons for this:
+			 * - Owner is exiting and we just wait for the
+			 *   exit to complete.
+			 * - The user space value changed.
+			 */
+			free_pi_state(pi_state);
+			pi_state = NULL;
+			double_unlock_hb(hb1, hb2);
+			put_futex_key(&key2);
+			put_futex_key(&key1);
+			cond_resched();
+			goto retry;
+		default:
+			goto out_unlock;
+		}
+	}
+
+	head1 = &hb1->chain;
+	plist_for_each_entry_safe(this, next, head1, list) {
+		if (task_count - nr_wake >= nr_requeue)
+			break;
+
+		if (!match_futex(&this->key, &key1))
+			continue;
+
+		/*
+		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
+		 * be paired with each other and no other futex ops.
+		 *
+		 * We should never be requeueing a futex_q with a pi_state,
+		 * which is awaiting a futex_unlock_pi().
+		 */
+		if ((requeue_pi && !this->rt_waiter) ||
+		    (!requeue_pi && this->rt_waiter) ||
+		    this->pi_state) {
+			ret = -EINVAL;
+			break;
+		}
+
+		/*
+		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
+		 * lock, we already woke the top_waiter.  If not, it will be
+		 * woken by futex_unlock_pi().
+		 */
+		if (++task_count <= nr_wake && !requeue_pi) {
+			wake_futex(this);
+			continue;
+		}
+
+		/* Ensure we requeue to the expected futex for requeue_pi. */
+		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
+			ret = -EINVAL;
+			break;
+		}
+
+		/*
+		 * Requeue nr_requeue waiters and possibly one more in the case
+		 * of requeue_pi if we couldn't acquire the lock atomically.
+		 */
+		if (requeue_pi) {
+			/* Prepare the waiter to take the rt_mutex. */
+			atomic_inc(&pi_state->refcount);
+			this->pi_state = pi_state;
+			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
+							this->rt_waiter,
+							this->task);
+			if (ret == 1) {
+				/* We got the lock. */
+				requeue_pi_wake_futex(this, &key2, hb2);
+				drop_count++;
+				continue;
+			} else if (ret == -EAGAIN) {
+				/*
+				 * Waiter was woken by timeout or
+				 * signal and has set pi_blocked_on to
+				 * PI_WAKEUP_INPROGRESS before we
+				 * tried to enqueue it on the rtmutex.
+				 */
+				this->pi_state = NULL;
+				free_pi_state(pi_state);
+				continue;
+			} else if (ret) {
+				/* -EDEADLK */
+				this->pi_state = NULL;
+				free_pi_state(pi_state);
+				goto out_unlock;
+			}
+		}
+		requeue_futex(this, hb1, hb2, &key2);
+		drop_count++;
+	}
+
+out_unlock:
+	free_pi_state(pi_state);
+	double_unlock_hb(hb1, hb2);
+
+	/*
+	 * drop_futex_key_refs() must be called outside the spinlocks. During
+	 * the requeue we moved futex_q's from the hash bucket at key1 to the
+	 * one at key2 and updated their key pointer.  We no longer need to
+	 * hold the references to key1.
+	 */
+	while (--drop_count >= 0)
+		drop_futex_key_refs(&key1);
+
+out_put_keys:
+	put_futex_key(&key2);
+out_put_key1:
+	put_futex_key(&key1);
+out:
+	return ret ? ret : task_count;
+}
+
+/* The key must be already stored in q->key. */
+static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
+	__acquires(&hb->lock)
+{
+	struct futex_hash_bucket *hb;
+
+	hb = hash_futex(&q->key);
+	q->lock_ptr = &hb->lock;
+
+	spin_lock(&hb->lock);
+	return hb;
+}
+
+static inline void
+queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
+	__releases(&hb->lock)
+{
+	spin_unlock(&hb->lock);
+}
+
+/**
+ * queue_me() - Enqueue the futex_q on the futex_hash_bucket
+ * @q:	The futex_q to enqueue
+ * @hb:	The destination hash bucket
+ *
+ * The hb->lock must be held by the caller, and is released here. A call to
+ * queue_me() is typically paired with exactly one call to unqueue_me().  The
+ * exceptions involve the PI related operations, which may use unqueue_me_pi()
+ * or nothing if the unqueue is done as part of the wake process and the unqueue
+ * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
+ * an example).
+ */
+static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
+	__releases(&hb->lock)
+{
+	int prio;
+
+	/*
+	 * The priority used to register this element is
+	 * - either the real thread-priority for the real-time threads
+	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
+	 * - or MAX_RT_PRIO for non-RT threads.
+	 * Thus, all RT-threads are woken first in priority order, and
+	 * the others are woken last, in FIFO order.
+	 */
+	prio = min(current->normal_prio, MAX_RT_PRIO);
+
+	plist_node_init(&q->list, prio);
+	plist_add(&q->list, &hb->chain);
+	q->task = current;
+	spin_unlock(&hb->lock);
+}
+
+/**
+ * unqueue_me() - Remove the futex_q from its futex_hash_bucket
+ * @q:	The futex_q to unqueue
+ *
+ * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
+ * be paired with exactly one earlier call to queue_me().
+ *
+ * Returns:
+ *   1 - if the futex_q was still queued (and we removed unqueued it)
+ *   0 - if the futex_q was already removed by the waking thread
+ */
+static int unqueue_me(struct futex_q *q)
+{
+	spinlock_t *lock_ptr;
+	int ret = 0;
+
+	/* In the common case we don't take the spinlock, which is nice. */
+retry:
+	lock_ptr = q->lock_ptr;
+	barrier();
+	if (lock_ptr != NULL) {
+		spin_lock(lock_ptr);
+		/*
+		 * q->lock_ptr can change between reading it and
+		 * spin_lock(), causing us to take the wrong lock.  This
+		 * corrects the race condition.
+		 *
+		 * Reasoning goes like this: if we have the wrong lock,
+		 * q->lock_ptr must have changed (maybe several times)
+		 * between reading it and the spin_lock().  It can
+		 * change again after the spin_lock() but only if it was
+		 * already changed before the spin_lock().  It cannot,
+		 * however, change back to the original value.  Therefore
+		 * we can detect whether we acquired the correct lock.
+		 */
+		if (unlikely(lock_ptr != q->lock_ptr)) {
+			spin_unlock(lock_ptr);
+			goto retry;
+		}
+		__unqueue_futex(q);
+
+		BUG_ON(q->pi_state);
+
+		spin_unlock(lock_ptr);
+		ret = 1;
+	}
+
+	drop_futex_key_refs(&q->key);
+	return ret;
+}
+
+/*
+ * PI futexes can not be requeued and must remove themself from the
+ * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
+ * and dropped here.
+ */
+static void unqueue_me_pi(struct futex_q *q)
+	__releases(q->lock_ptr)
+{
+	__unqueue_futex(q);
+
+	BUG_ON(!q->pi_state);
+	free_pi_state(q->pi_state);
+	q->pi_state = NULL;
+
+	spin_unlock(q->lock_ptr);
+}
+
+/*
+ * Fixup the pi_state owner with the new owner.
+ *
+ * Must be called with hash bucket lock held and mm->sem held for non
+ * private futexes.
+ */
+static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
+				struct task_struct *newowner)
+{
+	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
+	struct futex_pi_state *pi_state = q->pi_state;
+	struct task_struct *oldowner = pi_state->owner;
+	u32 uval, uninitialized_var(curval), newval;
+	int ret;
+
+	/* Owner died? */
+	if (!pi_state->owner)
+		newtid |= FUTEX_OWNER_DIED;
+
+	/*
+	 * We are here either because we stole the rtmutex from the
+	 * previous highest priority waiter or we are the highest priority
+	 * waiter but failed to get the rtmutex the first time.
+	 * We have to replace the newowner TID in the user space variable.
+	 * This must be atomic as we have to preserve the owner died bit here.
+	 *
+	 * Note: We write the user space value _before_ changing the pi_state
+	 * because we can fault here. Imagine swapped out pages or a fork
+	 * that marked all the anonymous memory readonly for cow.
+	 *
+	 * Modifying pi_state _before_ the user space value would
+	 * leave the pi_state in an inconsistent state when we fault
+	 * here, because we need to drop the hash bucket lock to
+	 * handle the fault. This might be observed in the PID check
+	 * in lookup_pi_state.
+	 */
+retry:
+	if (get_futex_value_locked(&uval, uaddr))
+		goto handle_fault;
+
+	while (1) {
+		newval = (uval & FUTEX_OWNER_DIED) | newtid;
+
+		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
+			goto handle_fault;
+		if (curval == uval)
+			break;
+		uval = curval;
+	}
+
+	/*
+	 * We fixed up user space. Now we need to fix the pi_state
+	 * itself.
+	 */
+	if (pi_state->owner != NULL) {
+		raw_spin_lock_irq(&pi_state->owner->pi_lock);
+		WARN_ON(list_empty(&pi_state->list));
+		list_del_init(&pi_state->list);
+		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
+	}
+
+	pi_state->owner = newowner;
+
+	raw_spin_lock_irq(&newowner->pi_lock);
+	WARN_ON(!list_empty(&pi_state->list));
+	list_add(&pi_state->list, &newowner->pi_state_list);
+	raw_spin_unlock_irq(&newowner->pi_lock);
+	return 0;
+
+	/*
+	 * To handle the page fault we need to drop the hash bucket
+	 * lock here. That gives the other task (either the highest priority
+	 * waiter itself or the task which stole the rtmutex) the
+	 * chance to try the fixup of the pi_state. So once we are
+	 * back from handling the fault we need to check the pi_state
+	 * after reacquiring the hash bucket lock and before trying to
+	 * do another fixup. When the fixup has been done already we
+	 * simply return.
+	 */
+handle_fault:
+	spin_unlock(q->lock_ptr);
+
+	ret = fault_in_user_writeable(uaddr);
+
+	spin_lock(q->lock_ptr);
+
+	/*
+	 * Check if someone else fixed it for us:
+	 */
+	if (pi_state->owner != oldowner)
+		return 0;
+
+	if (ret)
+		return ret;
+
+	goto retry;
+}
+
+static long futex_wait_restart(struct restart_block *restart);
+
+/**
+ * fixup_owner() - Post lock pi_state and corner case management
+ * @uaddr:	user address of the futex
+ * @q:		futex_q (contains pi_state and access to the rt_mutex)
+ * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
+ *
+ * After attempting to lock an rt_mutex, this function is called to cleanup
+ * the pi_state owner as well as handle race conditions that may allow us to
+ * acquire the lock. Must be called with the hb lock held.
+ *
+ * Returns:
+ *  1 - success, lock taken
+ *  0 - success, lock not taken
+ * <0 - on error (-EFAULT)
+ */
+static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
+{
+	struct task_struct *owner;
+	int ret = 0;
+
+	if (locked) {
+		/*
+		 * Got the lock. We might not be the anticipated owner if we
+		 * did a lock-steal - fix up the PI-state in that case:
+		 */
+		if (q->pi_state->owner != current)
+			ret = fixup_pi_state_owner(uaddr, q, current);
+		goto out;
+	}
+
+	/*
+	 * Catch the rare case, where the lock was released when we were on the
+	 * way back before we locked the hash bucket.
+	 */
+	if (q->pi_state->owner == current) {
+		/*
+		 * Try to get the rt_mutex now. This might fail as some other
+		 * task acquired the rt_mutex after we removed ourself from the
+		 * rt_mutex waiters list.
+		 */
+		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
+			locked = 1;
+			goto out;
+		}
+
+		/*
+		 * pi_state is incorrect, some other task did a lock steal and
+		 * we returned due to timeout or signal without taking the
+		 * rt_mutex. Too late.
+		 */
+		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
+		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
+		if (!owner)
+			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
+		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
+		ret = fixup_pi_state_owner(uaddr, q, owner);
+		goto out;
+	}
+
+	/*
+	 * Paranoia check. If we did not take the lock, then we should not be
+	 * the owner of the rt_mutex.
+	 */
+	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
+		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
+				"pi-state %p\n", ret,
+				q->pi_state->pi_mutex.owner,
+				q->pi_state->owner);
+
+out:
+	return ret ? ret : locked;
+}
+
+/**
+ * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
+ * @hb:		the futex hash bucket, must be locked by the caller
+ * @q:		the futex_q to queue up on
+ * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
+ */
+static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
+				struct hrtimer_sleeper *timeout)
+{
+	/*
+	 * The task state is guaranteed to be set before another task can
+	 * wake it. set_current_state() is implemented using set_mb() and
+	 * queue_me() calls spin_unlock() upon completion, both serializing
+	 * access to the hash list and forcing another memory barrier.
+	 */
+	set_current_state(TASK_INTERRUPTIBLE);
+	queue_me(q, hb);
+
+	/* Arm the timer */
+	if (timeout) {
+		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
+		if (!hrtimer_active(&timeout->timer))
+			timeout->task = NULL;
+	}
+
+	/*
+	 * If we have been removed from the hash list, then another task
+	 * has tried to wake us, and we can skip the call to schedule().
+	 */
+	if (likely(!plist_node_empty(&q->list))) {
+		/*
+		 * If the timer has already expired, current will already be
+		 * flagged for rescheduling. Only call schedule if there
+		 * is no timeout, or if it has yet to expire.
+		 */
+		if (!timeout || timeout->task)
+			schedule();
+	}
+	__set_current_state(TASK_RUNNING);
+}
+
+/**
+ * futex_wait_setup() - Prepare to wait on a futex
+ * @uaddr:	the futex userspace address
+ * @val:	the expected value
+ * @flags:	futex flags (FLAGS_SHARED, etc.)
+ * @q:		the associated futex_q
+ * @hb:		storage for hash_bucket pointer to be returned to caller
+ *
+ * Setup the futex_q and locate the hash_bucket.  Get the futex value and
+ * compare it with the expected value.  Handle atomic faults internally.
+ * Return with the hb lock held and a q.key reference on success, and unlocked
+ * with no q.key reference on failure.
+ *
+ * Returns:
+ *  0 - uaddr contains val and hb has been locked
+ * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
+ */
+static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
+			   struct futex_q *q, struct futex_hash_bucket **hb)
+{
+	u32 uval;
+	int ret;
+
+	/*
+	 * Access the page AFTER the hash-bucket is locked.
+	 * Order is important:
+	 *
+	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
+	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
+	 *
+	 * The basic logical guarantee of a futex is that it blocks ONLY
+	 * if cond(var) is known to be true at the time of blocking, for
+	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
+	 * would open a race condition where we could block indefinitely with
+	 * cond(var) false, which would violate the guarantee.
+	 *
+	 * On the other hand, we insert q and release the hash-bucket only
+	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
+	 * absorb a wakeup if *uaddr does not match the desired values
+	 * while the syscall executes.
+	 */
+retry:
+	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
+	if (unlikely(ret != 0))
+		return ret;
+
+retry_private:
+	*hb = queue_lock(q);
+
+	ret = get_futex_value_locked(&uval, uaddr);
+
+	if (ret) {
+		queue_unlock(q, *hb);
+
+		ret = get_user(uval, uaddr);
+		if (ret)
+			goto out;
+
+		if (!(flags & FLAGS_SHARED))
+			goto retry_private;
+
+		put_futex_key(&q->key);
+		goto retry;
+	}
+
+	if (uval != val) {
+		queue_unlock(q, *hb);
+		ret = -EWOULDBLOCK;
+	}
+
+out:
+	if (ret)
+		put_futex_key(&q->key);
+	return ret;
+}
+
+static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
+		      ktime_t *abs_time, u32 bitset)
+{
+	struct hrtimer_sleeper timeout, *to = NULL;
+	struct restart_block *restart;
+	struct futex_hash_bucket *hb;
+	struct futex_q q = futex_q_init;
+	int ret;
+
+	if (!bitset)
+		return -EINVAL;
+	q.bitset = bitset;
+
+	if (abs_time) {
+		to = &timeout;
+
+		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
+				      CLOCK_REALTIME : CLOCK_MONOTONIC,
+				      HRTIMER_MODE_ABS);
+		hrtimer_init_sleeper(to, current);
+		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
+					     current->timer_slack_ns);
+	}
+
+retry:
+	/*
+	 * Prepare to wait on uaddr. On success, holds hb lock and increments
+	 * q.key refs.
+	 */
+	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
+	if (ret)
+		goto out;
+
+	/* queue_me and wait for wakeup, timeout, or a signal. */
+	futex_wait_queue_me(hb, &q, to);
+
+	/* If we were woken (and unqueued), we succeeded, whatever. */
+	ret = 0;
+	/* unqueue_me() drops q.key ref */
+	if (!unqueue_me(&q))
+		goto out;
+	ret = -ETIMEDOUT;
+	if (to && !to->task)
+		goto out;
+
+	/*
+	 * We expect signal_pending(current), but we might be the
+	 * victim of a spurious wakeup as well.
+	 */
+	if (!signal_pending(current))
+		goto retry;
+
+	ret = -ERESTARTSYS;
+	if (!abs_time)
+		goto out;
+
+	restart = &current_thread_info()->restart_block;
+	restart->fn = futex_wait_restart;
+	restart->futex.uaddr = uaddr;
+	restart->futex.val = val;
+	restart->futex.time = abs_time->tv64;
+	restart->futex.bitset = bitset;
+	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
+
+	ret = -ERESTART_RESTARTBLOCK;
+
+out:
+	if (to) {
+		hrtimer_cancel(&to->timer);
+		destroy_hrtimer_on_stack(&to->timer);
+	}
+	return ret;
+}
+
+
+static long futex_wait_restart(struct restart_block *restart)
+{
+	u32 __user *uaddr = restart->futex.uaddr;
+	ktime_t t, *tp = NULL;
+
+	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
+		t.tv64 = restart->futex.time;
+		tp = &t;
+	}
+	restart->fn = do_no_restart_syscall;
+
+	return (long)futex_wait(uaddr, restart->futex.flags,
+				restart->futex.val, tp, restart->futex.bitset);
+}
+
+
+/*
+ * Userspace tried a 0 -> TID atomic transition of the futex value
+ * and failed. The kernel side here does the whole locking operation:
+ * if there are waiters then it will block, it does PI, etc. (Due to
+ * races the kernel might see a 0 value of the futex too.)
+ */
+static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
+			 ktime_t *time, int trylock)
+{
+	struct hrtimer_sleeper timeout, *to = NULL;
+	struct futex_hash_bucket *hb;
+	struct futex_q q = futex_q_init;
+	int res, ret;
+
+	if (refill_pi_state_cache())
+		return -ENOMEM;
+
+	if (time) {
+		to = &timeout;
+		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
+				      HRTIMER_MODE_ABS);
+		hrtimer_init_sleeper(to, current);
+		hrtimer_set_expires(&to->timer, *time);
+	}
+
+retry:
+	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
+	if (unlikely(ret != 0))
+		goto out;
+
+retry_private:
+	hb = queue_lock(&q);
+
+	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
+	if (unlikely(ret)) {
+		switch (ret) {
+		case 1:
+			/* We got the lock. */
+			ret = 0;
+			goto out_unlock_put_key;
+		case -EFAULT:
+			goto uaddr_faulted;
+		case -EAGAIN:
+			/*
+			 * Two reasons for this:
+			 * - Task is exiting and we just wait for the
+			 *   exit to complete.
+			 * - The user space value changed.
+			 */
+			queue_unlock(&q, hb);
+			put_futex_key(&q.key);
+			cond_resched();
+			goto retry;
+		default:
+			goto out_unlock_put_key;
+		}
+	}
+
+	/*
+	 * Only actually queue now that the atomic ops are done:
+	 */
+	queue_me(&q, hb);
+
+	WARN_ON(!q.pi_state);
+	/*
+	 * Block on the PI mutex:
+	 */
+	if (!trylock) {
+		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
+	} else {
+		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
+		/* Fixup the trylock return value: */
+		ret = ret ? 0 : -EWOULDBLOCK;
+	}
+
+	spin_lock(q.lock_ptr);
+	/*
+	 * Fixup the pi_state owner and possibly acquire the lock if we
+	 * haven't already.
+	 */
+	res = fixup_owner(uaddr, &q, !ret);
+	/*
+	 * If fixup_owner() returned an error, proprogate that.  If it acquired
+	 * the lock, clear our -ETIMEDOUT or -EINTR.
+	 */
+	if (res)
+		ret = (res < 0) ? res : 0;
+
+	/*
+	 * If fixup_owner() faulted and was unable to handle the fault, unlock
+	 * it and return the fault to userspace.
+	 */
+	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
+		rt_mutex_unlock(&q.pi_state->pi_mutex);
+
+	/* Unqueue and drop the lock */
+	unqueue_me_pi(&q);
+
+	goto out_put_key;
+
+out_unlock_put_key:
+	queue_unlock(&q, hb);
+
+out_put_key:
+	put_futex_key(&q.key);
+out:
+	if (to)
+		destroy_hrtimer_on_stack(&to->timer);
+	return ret != -EINTR ? ret : -ERESTARTNOINTR;
+
+uaddr_faulted:
+	queue_unlock(&q, hb);
+
+	ret = fault_in_user_writeable(uaddr);
+	if (ret)
+		goto out_put_key;
+
+	if (!(flags & FLAGS_SHARED))
+		goto retry_private;
+
+	put_futex_key(&q.key);
+	goto retry;
+}
+
+/*
+ * Userspace attempted a TID -> 0 atomic transition, and failed.
+ * This is the in-kernel slowpath: we look up the PI state (if any),
+ * and do the rt-mutex unlock.
+ */
+static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
+{
+	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
+	union futex_key key = FUTEX_KEY_INIT;
+	struct futex_hash_bucket *hb;
+	struct futex_q *match;
+	int ret;
+
+retry:
+	if (get_user(uval, uaddr))
+		return -EFAULT;
+	/*
+	 * We release only a lock we actually own:
+	 */
+	if ((uval & FUTEX_TID_MASK) != vpid)
+		return -EPERM;
+
+	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
+	if (ret)
+		return ret;
+
+	hb = hash_futex(&key);
+	spin_lock(&hb->lock);
+
+	/*
+	 * Check waiters first. We do not trust user space values at
+	 * all and we at least want to know if user space fiddled
+	 * with the futex value instead of blindly unlocking.
+	 */
+	match = futex_top_waiter(hb, &key);
+	if (match) {
+		ret = wake_futex_pi(uaddr, uval, match);
+		/*
+		 * The atomic access to the futex value generated a
+		 * pagefault, so retry the user-access and the wakeup:
+		 */
+		if (ret == -EFAULT)
+			goto pi_faulted;
+		goto out_unlock;
+	}
+
+	/*
+	 * We have no kernel internal state, i.e. no waiters in the
+	 * kernel. Waiters which are about to queue themselves are stuck
+	 * on hb->lock. So we can safely ignore them. We do neither
+	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
+	 * owner.
+	 */
+	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
+		goto pi_faulted;
+
+	/*
+	 * If uval has changed, let user space handle it.
+	 */
+	ret = (curval == uval) ? 0 : -EAGAIN;
+
+out_unlock:
+	spin_unlock(&hb->lock);
+	put_futex_key(&key);
+	return ret;
+
+
+pi_faulted:
+	spin_unlock(&hb->lock);
+	put_futex_key(&key);
+
+	ret = fault_in_user_writeable(uaddr);
+	if (!ret)
+		goto retry;
+
+	return ret;
+}
+
+/**
+ * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
+ * @hb:		the hash_bucket futex_q was original enqueued on
+ * @q:		the futex_q woken while waiting to be requeued
+ * @key2:	the futex_key of the requeue target futex
+ * @timeout:	the timeout associated with the wait (NULL if none)
+ *
+ * Detect if the task was woken on the initial futex as opposed to the requeue
+ * target futex.  If so, determine if it was a timeout or a signal that caused
+ * the wakeup and return the appropriate error code to the caller.  Must be
+ * called with the hb lock held.
+ *
+ * Returns
+ *  0 - no early wakeup detected
+ * <0 - -ETIMEDOUT or -ERESTARTNOINTR
+ */
+static inline
+int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
+				   struct futex_q *q, union futex_key *key2,
+				   struct hrtimer_sleeper *timeout)
+{
+	int ret = 0;
+
+	/*
+	 * With the hb lock held, we avoid races while we process the wakeup.
+	 * We only need to hold hb (and not hb2) to ensure atomicity as the
+	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
+	 * It can't be requeued from uaddr2 to something else since we don't
+	 * support a PI aware source futex for requeue.
+	 */
+	if (!match_futex(&q->key, key2)) {
+		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
+		/*
+		 * We were woken prior to requeue by a timeout or a signal.
+		 * Unqueue the futex_q and determine which it was.
+		 */
+		plist_del(&q->list, &hb->chain);
+
+		/* Handle spurious wakeups gracefully */
+		ret = -EWOULDBLOCK;
+		if (timeout && !timeout->task)
+			ret = -ETIMEDOUT;
+		else if (signal_pending(current))
+			ret = -ERESTARTNOINTR;
+	}
+	return ret;
+}
+
+/**
+ * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
+ * @uaddr:	the futex we initially wait on (non-pi)
+ * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
+ * 		the same type, no requeueing from private to shared, etc.
+ * @val:	the expected value of uaddr
+ * @abs_time:	absolute timeout
+ * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
+ * @clockrt:	whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
+ * @uaddr2:	the pi futex we will take prior to returning to user-space
+ *
+ * The caller will wait on uaddr and will be requeued by futex_requeue() to
+ * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
+ * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
+ * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
+ * without one, the pi logic would not know which task to boost/deboost, if
+ * there was a need to.
+ *
+ * We call schedule in futex_wait_queue_me() when we enqueue and return there
+ * via the following:
+ * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
+ * 2) wakeup on uaddr2 after a requeue
+ * 3) signal
+ * 4) timeout
+ *
+ * If 3, cleanup and return -ERESTARTNOINTR.
+ *
+ * If 2, we may then block on trying to take the rt_mutex and return via:
+ * 5) successful lock
+ * 6) signal
+ * 7) timeout
+ * 8) other lock acquisition failure
+ *
+ * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
+ *
+ * If 4 or 7, we cleanup and return with -ETIMEDOUT.
+ *
+ * Returns:
+ *  0 - On success
+ * <0 - On error
+ */
+static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
+				 u32 val, ktime_t *abs_time, u32 bitset,
+				 u32 __user *uaddr2)
+{
+	struct hrtimer_sleeper timeout, *to = NULL;
+	struct rt_mutex_waiter rt_waiter;
+	struct rt_mutex *pi_mutex = NULL;
+	struct futex_hash_bucket *hb, *hb2;
+	union futex_key key2 = FUTEX_KEY_INIT;
+	struct futex_q q = futex_q_init;
+	int res, ret;
+
+	if (uaddr == uaddr2)
+		return -EINVAL;
+
+	if (!bitset)
+		return -EINVAL;
+
+	if (abs_time) {
+		to = &timeout;
+		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
+				      CLOCK_REALTIME : CLOCK_MONOTONIC,
+				      HRTIMER_MODE_ABS);
+		hrtimer_init_sleeper(to, current);
+		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
+					     current->timer_slack_ns);
+	}
+
+	/*
+	 * The waiter is allocated on our stack, manipulated by the requeue
+	 * code while we sleep on uaddr.
+	 */
+	rt_mutex_init_waiter(&rt_waiter, false);
+
+	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
+	if (unlikely(ret != 0))
+		goto out;
+
+	q.bitset = bitset;
+	q.rt_waiter = &rt_waiter;
+	q.requeue_pi_key = &key2;
+
+	/*
+	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
+	 * count.
+	 */
+	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
+	if (ret)
+		goto out_key2;
+
+	/*
+	 * The check above which compares uaddrs is not sufficient for
+	 * shared futexes. We need to compare the keys:
+	 */
+	if (match_futex(&q.key, &key2)) {
+		queue_unlock(&q, hb);
+		ret = -EINVAL;
+		goto out_put_keys;
+	}
+
+	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
+	futex_wait_queue_me(hb, &q, to);
+
+	/*
+	 * On RT we must avoid races with requeue and trying to block
+	 * on two mutexes (hb->lock and uaddr2's rtmutex) by
+	 * serializing access to pi_blocked_on with pi_lock.
+	 */
+	raw_spin_lock_irq(&current->pi_lock);
+	if (current->pi_blocked_on) {
+		/*
+		 * We have been requeued or are in the process of
+		 * being requeued.
+		 */
+		raw_spin_unlock_irq(&current->pi_lock);
+	} else {
+		/*
+		 * Setting pi_blocked_on to PI_WAKEUP_INPROGRESS
+		 * prevents a concurrent requeue from moving us to the
+		 * uaddr2 rtmutex. After that we can safely acquire
+		 * (and possibly block on) hb->lock.
+		 */
+		current->pi_blocked_on = PI_WAKEUP_INPROGRESS;
+		raw_spin_unlock_irq(&current->pi_lock);
+
+		spin_lock(&hb->lock);
+
+		/*
+		 * Clean up pi_blocked_on. We might leak it otherwise
+		 * when we succeeded with the hb->lock in the fast
+		 * path.
+		 */
+		raw_spin_lock_irq(&current->pi_lock);
+		current->pi_blocked_on = NULL;
+		raw_spin_unlock_irq(&current->pi_lock);
+
+		ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
+		spin_unlock(&hb->lock);
+		if (ret)
+			goto out_put_keys;
+	}
+
+	/*
+	 * In order to be here, we have either been requeued, are in
+	 * the process of being requeued, or requeue successfully
+	 * acquired uaddr2 on our behalf.  If pi_blocked_on was
+	 * non-null above, we may be racing with a requeue.  Do not
+	 * rely on q->lock_ptr to be hb2->lock until after blocking on
+	 * hb->lock or hb2->lock. The futex_requeue dropped our key1
+	 * reference and incremented our key2 reference count.
+	 */
+	hb2 = hash_futex(&key2);
+
+	/* Check if the requeue code acquired the second futex for us. */
+	if (!q.rt_waiter) {
+		/*
+		 * Got the lock. We might not be the anticipated owner if we
+		 * did a lock-steal - fix up the PI-state in that case.
+		 */
+		if (q.pi_state && (q.pi_state->owner != current)) {
+			spin_lock(&hb2->lock);
+			BUG_ON(&hb2->lock != q.lock_ptr);
+			ret = fixup_pi_state_owner(uaddr2, &q, current);
+			spin_unlock(&hb2->lock);
+		}
+	} else {
+		/*
+		 * We have been woken up by futex_unlock_pi(), a timeout, or a
+		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
+		 * the pi_state.
+		 */
+		WARN_ON(!q.pi_state);
+		pi_mutex = &q.pi_state->pi_mutex;
+		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
+		debug_rt_mutex_free_waiter(&rt_waiter);
+
+		spin_lock(&hb2->lock);
+		BUG_ON(&hb2->lock != q.lock_ptr);
+		/*
+		 * Fixup the pi_state owner and possibly acquire the lock if we
+		 * haven't already.
+		 */
+		res = fixup_owner(uaddr2, &q, !ret);
+		/*
+		 * If fixup_owner() returned an error, proprogate that.  If it
+		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
+		 */
+		if (res)
+			ret = (res < 0) ? res : 0;
+
+		/* Unqueue and drop the lock. */
+		unqueue_me_pi(&q);
+	}
+
+	/*
+	 * If fixup_pi_state_owner() faulted and was unable to handle the
+	 * fault, unlock the rt_mutex and return the fault to userspace.
+	 */
+	if (ret == -EFAULT) {
+		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
+			rt_mutex_unlock(pi_mutex);
+	} else if (ret == -EINTR) {
+		/*
+		 * We've already been requeued, but cannot restart by calling
+		 * futex_lock_pi() directly. We could restart this syscall, but
+		 * it would detect that the user space "val" changed and return
+		 * -EWOULDBLOCK.  Save the overhead of the restart and return
+		 * -EWOULDBLOCK directly.
+		 */
+		ret = -EWOULDBLOCK;
+	}
+
+out_put_keys:
+	put_futex_key(&q.key);
+out_key2:
+	put_futex_key(&key2);
+
+out:
+	if (to) {
+		hrtimer_cancel(&to->timer);
+		destroy_hrtimer_on_stack(&to->timer);
+	}
+	return ret;
+}
+
+/*
+ * Support for robust futexes: the kernel cleans up held futexes at
+ * thread exit time.
+ *
+ * Implementation: user-space maintains a per-thread list of locks it
+ * is holding. Upon do_exit(), the kernel carefully walks this list,
+ * and marks all locks that are owned by this thread with the
+ * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
+ * always manipulated with the lock held, so the list is private and
+ * per-thread. Userspace also maintains a per-thread 'list_op_pending'
+ * field, to allow the kernel to clean up if the thread dies after
+ * acquiring the lock, but just before it could have added itself to
+ * the list. There can only be one such pending lock.
+ */
+
+/**
+ * sys_set_robust_list() - Set the robust-futex list head of a task
+ * @head:	pointer to the list-head
+ * @len:	length of the list-head, as userspace expects
+ */
+SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
+		size_t, len)
+{
+	if (!futex_cmpxchg_enabled)
+		return -ENOSYS;
+	/*
+	 * The kernel knows only one size for now:
+	 */
+	if (unlikely(len != sizeof(*head)))
+		return -EINVAL;
+
+	current->robust_list = head;
+
+	return 0;
+}
+
+/**
+ * sys_get_robust_list() - Get the robust-futex list head of a task
+ * @pid:	pid of the process [zero for current task]
+ * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
+ * @len_ptr:	pointer to a length field, the kernel fills in the header size
+ */
+SYSCALL_DEFINE3(get_robust_list, int, pid,
+		struct robust_list_head __user * __user *, head_ptr,
+		size_t __user *, len_ptr)
+{
+	struct robust_list_head __user *head;
+	unsigned long ret;
+	struct task_struct *p;
+
+	if (!futex_cmpxchg_enabled)
+		return -ENOSYS;
+
+	rcu_read_lock();
+
+	ret = -ESRCH;
+	if (!pid)
+		p = current;
+	else {
+		p = find_task_by_vpid(pid);
+		if (!p)
+			goto err_unlock;
+	}
+
+	ret = -EPERM;
+	if (!ptrace_may_access(p, PTRACE_MODE_READ))
+		goto err_unlock;
+
+	head = p->robust_list;
+	rcu_read_unlock();
+
+	if (put_user(sizeof(*head), len_ptr))
+		return -EFAULT;
+	return put_user(head, head_ptr);
+
+err_unlock:
+	rcu_read_unlock();
+
+	return ret;
+}
+
+/*
+ * Process a futex-list entry, check whether it's owned by the
+ * dying task, and do notification if so:
+ */
+int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
+{
+	u32 uval, uninitialized_var(nval), mval;
+
+retry:
+	if (get_user(uval, uaddr))
+		return -1;
+
+	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
+		/*
+		 * Ok, this dying thread is truly holding a futex
+		 * of interest. Set the OWNER_DIED bit atomically
+		 * via cmpxchg, and if the value had FUTEX_WAITERS
+		 * set, wake up a waiter (if any). (We have to do a
+		 * futex_wake() even if OWNER_DIED is already set -
+		 * to handle the rare but possible case of recursive
+		 * thread-death.) The rest of the cleanup is done in
+		 * userspace.
+		 */
+		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
+		/*
+		 * We are not holding a lock here, but we want to have
+		 * the pagefault_disable/enable() protection because
+		 * we want to handle the fault gracefully. If the
+		 * access fails we try to fault in the futex with R/W
+		 * verification via get_user_pages. get_user() above
+		 * does not guarantee R/W access. If that fails we
+		 * give up and leave the futex locked.
+		 */
+		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
+			if (fault_in_user_writeable(uaddr))
+				return -1;
+			goto retry;
+		}
+		if (nval != uval)
+			goto retry;
+
+		/*
+		 * Wake robust non-PI futexes here. The wakeup of
+		 * PI futexes happens in exit_pi_state():
+		 */
+		if (!pi && (uval & FUTEX_WAITERS))
+			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
+	}
+	return 0;
+}
+
+/*
+ * Fetch a robust-list pointer. Bit 0 signals PI futexes:
+ */
+static inline int fetch_robust_entry(struct robust_list __user **entry,
+				     struct robust_list __user * __user *head,
+				     unsigned int *pi)
+{
+	unsigned long uentry;
+
+	if (get_user(uentry, (unsigned long __user *)head))
+		return -EFAULT;
+
+	*entry = (void __user *)(uentry & ~1UL);
+	*pi = uentry & 1;
+
+	return 0;
+}
+
+/*
+ * Walk curr->robust_list (very carefully, it's a userspace list!)
+ * and mark any locks found there dead, and notify any waiters.
+ *
+ * We silently return on any sign of list-walking problem.
+ */
+void exit_robust_list(struct task_struct *curr)
+{
+	struct robust_list_head __user *head = curr->robust_list;
+	struct robust_list __user *entry, *next_entry, *pending;
+	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
+	unsigned int uninitialized_var(next_pi);
+	unsigned long futex_offset;
+	int rc;
+
+	if (!futex_cmpxchg_enabled)
+		return;
+
+	/*
+	 * Fetch the list head (which was registered earlier, via
+	 * sys_set_robust_list()):
+	 */
+	if (fetch_robust_entry(&entry, &head->list.next, &pi))
+		return;
+	/*
+	 * Fetch the relative futex offset:
+	 */
+	if (get_user(futex_offset, &head->futex_offset))
+		return;
+	/*
+	 * Fetch any possibly pending lock-add first, and handle it
+	 * if it exists:
+	 */
+	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
+		return;
+
+	next_entry = NULL;	/* avoid warning with gcc */
+	while (entry != &head->list) {
+		/*
+		 * Fetch the next entry in the list before calling
+		 * handle_futex_death:
+		 */
+		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
+		/*
+		 * A pending lock might already be on the list, so
+		 * don't process it twice:
+		 */
+		if (entry != pending)
+			if (handle_futex_death((void __user *)entry + futex_offset,
+						curr, pi))
+				return;
+		if (rc)
+			return;
+		entry = next_entry;
+		pi = next_pi;
+		/*
+		 * Avoid excessively long or circular lists:
+		 */
+		if (!--limit)
+			break;
+
+		cond_resched();
+	}
+
+	if (pending)
+		handle_futex_death((void __user *)pending + futex_offset,
+				   curr, pip);
+}
+
+long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
+		u32 __user *uaddr2, u32 val2, u32 val3)
+{
+	int cmd = op & FUTEX_CMD_MASK;
+	unsigned int flags = 0;
+
+	if (!(op & FUTEX_PRIVATE_FLAG))
+		flags |= FLAGS_SHARED;
+
+	if (op & FUTEX_CLOCK_REALTIME) {
+		flags |= FLAGS_CLOCKRT;
+		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
+			return -ENOSYS;
+	}
+
+	switch (cmd) {
+	case FUTEX_LOCK_PI:
+	case FUTEX_UNLOCK_PI:
+	case FUTEX_TRYLOCK_PI:
+	case FUTEX_WAIT_REQUEUE_PI:
+	case FUTEX_CMP_REQUEUE_PI:
+		if (!futex_cmpxchg_enabled)
+			return -ENOSYS;
+	}
+
+	switch (cmd) {
+	case FUTEX_WAIT:
+		val3 = FUTEX_BITSET_MATCH_ANY;
+	case FUTEX_WAIT_BITSET:
+		return futex_wait(uaddr, flags, val, timeout, val3);
+	case FUTEX_WAKE:
+		val3 = FUTEX_BITSET_MATCH_ANY;
+	case FUTEX_WAKE_BITSET:
+		return futex_wake(uaddr, flags, val, val3);
+	case FUTEX_REQUEUE:
+		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
+	case FUTEX_CMP_REQUEUE:
+		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
+	case FUTEX_WAKE_OP:
+		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
+	case FUTEX_LOCK_PI:
+		return futex_lock_pi(uaddr, flags, val, timeout, 0);
+	case FUTEX_UNLOCK_PI:
+		return futex_unlock_pi(uaddr, flags);
+	case FUTEX_TRYLOCK_PI:
+		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
+	case FUTEX_WAIT_REQUEUE_PI:
+		val3 = FUTEX_BITSET_MATCH_ANY;
+		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
+					     uaddr2);
+	case FUTEX_CMP_REQUEUE_PI:
+		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
+	}
+	return -ENOSYS;
+}
+
+
+SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
+		struct timespec __user *, utime, u32 __user *, uaddr2,
+		u32, val3)
+{
+	struct timespec ts;
+	ktime_t t, *tp = NULL;
+	u32 val2 = 0;
+	int cmd = op & FUTEX_CMD_MASK;
+
+	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
+		      cmd == FUTEX_WAIT_BITSET ||
+		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
+		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
+			return -EFAULT;
+		if (!timespec_valid(&ts))
+			return -EINVAL;
+
+		t = timespec_to_ktime(ts);
+		if (cmd == FUTEX_WAIT)
+			t = ktime_add_safe(ktime_get(), t);
+		tp = &t;
+	}
+	/*
+	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
+	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
+	 */
+	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
+	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
+		val2 = (u32) (unsigned long) utime;
+
+	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
+}
+
+static int __init futex_init(void)
+{
+	u32 curval;
+	int i;
+
+	/*
+	 * This will fail and we want it. Some arch implementations do
+	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
+	 * functionality. We want to know that before we call in any
+	 * of the complex code paths. Also we want to prevent
+	 * registration of robust lists in that case. NULL is
+	 * guaranteed to fault and we get -EFAULT on functional
+	 * implementation, the non-functional ones will return
+	 * -ENOSYS.
+	 */
+	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
+		futex_cmpxchg_enabled = 1;
+
+	for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
+		plist_head_init(&futex_queues[i].chain);
+		spin_lock_init(&futex_queues[i].lock);
+	}
+
+	return 0;
+}
+__initcall(futex_init);