zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/kernel/timer.c b/ap/os/linux/linux-3.4.x/kernel/timer.c
new file mode 100755
index 0000000..4fef5e9
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/timer.c
@@ -0,0 +1,1925 @@
+/*
+ *  linux/kernel/timer.c
+ *
+ *  Kernel internal timers, basic process system calls
+ *
+ *  Copyright (C) 1991, 1992  Linus Torvalds
+ *
+ *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
+ *
+ *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
+ *              "A Kernel Model for Precision Timekeeping" by Dave Mills
+ *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
+ *              serialize accesses to xtime/lost_ticks).
+ *                              Copyright (C) 1998  Andrea Arcangeli
+ *  1999-03-10  Improved NTP compatibility by Ulrich Windl
+ *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
+ *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
+ *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
+ *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
+ */
+
+#include <linux/kernel_stat.h>
+#include <linux/export.h>
+#include <linux/interrupt.h>
+#include <linux/percpu.h>
+#include <linux/init.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/pid_namespace.h>
+#include <linux/notifier.h>
+#include <linux/thread_info.h>
+#include <linux/time.h>
+#include <linux/jiffies.h>
+#include <linux/posix-timers.h>
+#include <linux/cpu.h>
+#include <linux/syscalls.h>
+#include <linux/delay.h>
+#include <linux/tick.h>
+#include <linux/kallsyms.h>
+#include <linux/irq_work.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+
+#include <asm/uaccess.h>
+#include <asm/unistd.h>
+#include <asm/div64.h>
+#include <asm/timex.h>
+#include <asm/io.h>
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/timer.h>
+
+u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
+
+EXPORT_SYMBOL(jiffies_64);
+
+/*
+ * per-CPU timer vector definitions:
+ */
+#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
+#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
+#define TVN_SIZE (1 << TVN_BITS)
+#define TVR_SIZE (1 << TVR_BITS)
+#define TVN_MASK (TVN_SIZE - 1)
+#define TVR_MASK (TVR_SIZE - 1)
+#define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
+
+struct tvec {
+	struct list_head vec[TVN_SIZE];
+};
+
+struct tvec_root {
+	struct list_head vec[TVR_SIZE];
+};
+
+struct tvec_base {
+	spinlock_t lock;
+	struct timer_list *running_timer;
+#ifdef CONFIG_PREEMPT_RT_FULL
+	wait_queue_head_t wait_for_running_timer;
+#endif
+	unsigned long timer_jiffies;
+	unsigned long next_timer;
+	struct tvec_root tv1;
+	struct tvec tv2;
+	struct tvec tv3;
+	struct tvec tv4;
+	struct tvec tv5;
+} ____cacheline_aligned;
+
+struct tvec_base boot_tvec_bases;
+EXPORT_SYMBOL(boot_tvec_bases);
+static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
+
+/* Functions below help us manage 'deferrable' flag */
+static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
+{
+	return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
+}
+
+static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
+{
+	return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
+}
+
+static inline void timer_set_deferrable(struct timer_list *timer)
+{
+	timer->base = TBASE_MAKE_DEFERRED(timer->base);
+}
+
+static inline void
+timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
+{
+	timer->base = (struct tvec_base *)((unsigned long)(new_base) |
+				      tbase_get_deferrable(timer->base));
+}
+
+static unsigned long round_jiffies_common(unsigned long j, int cpu,
+		bool force_up)
+{
+	int rem;
+	unsigned long original = j;
+
+	/*
+	 * We don't want all cpus firing their timers at once hitting the
+	 * same lock or cachelines, so we skew each extra cpu with an extra
+	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
+	 * already did this.
+	 * The skew is done by adding 3*cpunr, then round, then subtract this
+	 * extra offset again.
+	 */
+	j += cpu * 3;
+
+	rem = j % HZ;
+
+	/*
+	 * If the target jiffie is just after a whole second (which can happen
+	 * due to delays of the timer irq, long irq off times etc etc) then
+	 * we should round down to the whole second, not up. Use 1/4th second
+	 * as cutoff for this rounding as an extreme upper bound for this.
+	 * But never round down if @force_up is set.
+	 */
+	if (rem < HZ/4 && !force_up) /* round down */
+		j = j - rem;
+	else /* round up */
+		j = j - rem + HZ;
+
+	/* now that we have rounded, subtract the extra skew again */
+	j -= cpu * 3;
+
+	/*
+	 * Make sure j is still in the future. Otherwise return the
+	 * unmodified value.
+	 */
+	return time_is_after_jiffies(j) ? j : original;
+}
+
+/**
+ * __round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies() rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long __round_jiffies(unsigned long j, int cpu)
+{
+	return round_jiffies_common(j, cpu, false);
+}
+EXPORT_SYMBOL_GPL(__round_jiffies);
+
+/**
+ * __round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The exact rounding is skewed for each processor to avoid all
+ * processors firing at the exact same time, which could lead
+ * to lock contention or spurious cache line bouncing.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long __round_jiffies_relative(unsigned long j, int cpu)
+{
+	unsigned long j0 = jiffies;
+
+	/* Use j0 because jiffies might change while we run */
+	return round_jiffies_common(j + j0, cpu, false) - j0;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_relative);
+
+/**
+ * round_jiffies - function to round jiffies to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ *
+ * round_jiffies() rounds an absolute time in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long round_jiffies(unsigned long j)
+{
+	return round_jiffies_common(j, raw_smp_processor_id(), false);
+}
+EXPORT_SYMBOL_GPL(round_jiffies);
+
+/**
+ * round_jiffies_relative - function to round jiffies to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ *
+ * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
+ * up or down to (approximately) full seconds. This is useful for timers
+ * for which the exact time they fire does not matter too much, as long as
+ * they fire approximately every X seconds.
+ *
+ * By rounding these timers to whole seconds, all such timers will fire
+ * at the same time, rather than at various times spread out. The goal
+ * of this is to have the CPU wake up less, which saves power.
+ *
+ * The return value is the rounded version of the @j parameter.
+ */
+unsigned long round_jiffies_relative(unsigned long j)
+{
+	return __round_jiffies_relative(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies_relative);
+
+/**
+ * __round_jiffies_up - function to round jiffies up to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * This is the same as __round_jiffies() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long __round_jiffies_up(unsigned long j, int cpu)
+{
+	return round_jiffies_common(j, cpu, true);
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_up);
+
+/**
+ * __round_jiffies_up_relative - function to round jiffies up to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ * @cpu: the processor number on which the timeout will happen
+ *
+ * This is the same as __round_jiffies_relative() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
+{
+	unsigned long j0 = jiffies;
+
+	/* Use j0 because jiffies might change while we run */
+	return round_jiffies_common(j + j0, cpu, true) - j0;
+}
+EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
+
+/**
+ * round_jiffies_up - function to round jiffies up to a full second
+ * @j: the time in (absolute) jiffies that should be rounded
+ *
+ * This is the same as round_jiffies() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long round_jiffies_up(unsigned long j)
+{
+	return round_jiffies_common(j, raw_smp_processor_id(), true);
+}
+EXPORT_SYMBOL_GPL(round_jiffies_up);
+
+/**
+ * round_jiffies_up_relative - function to round jiffies up to a full second
+ * @j: the time in (relative) jiffies that should be rounded
+ *
+ * This is the same as round_jiffies_relative() except that it will never
+ * round down.  This is useful for timeouts for which the exact time
+ * of firing does not matter too much, as long as they don't fire too
+ * early.
+ */
+unsigned long round_jiffies_up_relative(unsigned long j)
+{
+	return __round_jiffies_up_relative(j, raw_smp_processor_id());
+}
+EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
+
+/**
+ * set_timer_slack - set the allowed slack for a timer
+ * @timer: the timer to be modified
+ * @slack_hz: the amount of time (in jiffies) allowed for rounding
+ *
+ * Set the amount of time, in jiffies, that a certain timer has
+ * in terms of slack. By setting this value, the timer subsystem
+ * will schedule the actual timer somewhere between
+ * the time mod_timer() asks for, and that time plus the slack.
+ *
+ * By setting the slack to -1, a percentage of the delay is used
+ * instead.
+ */
+void set_timer_slack(struct timer_list *timer, int slack_hz)
+{
+	timer->slack = slack_hz;
+}
+EXPORT_SYMBOL_GPL(set_timer_slack);
+
+static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
+{
+	unsigned long expires = timer->expires;
+	unsigned long idx = expires - base->timer_jiffies;
+	struct list_head *vec;
+
+	if (idx < TVR_SIZE) {
+		int i = expires & TVR_MASK;
+		vec = base->tv1.vec + i;
+	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
+		int i = (expires >> TVR_BITS) & TVN_MASK;
+		vec = base->tv2.vec + i;
+	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
+		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
+		vec = base->tv3.vec + i;
+	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
+		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
+		vec = base->tv4.vec + i;
+	} else if ((signed long) idx < 0) {
+		/*
+		 * Can happen if you add a timer with expires == jiffies,
+		 * or you set a timer to go off in the past
+		 */
+		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
+	} else {
+		int i;
+		/* If the timeout is larger than MAX_TVAL (on 64-bit
+		 * architectures or with CONFIG_BASE_SMALL=1) then we
+		 * use the maximum timeout.
+		 */
+		if (idx > MAX_TVAL) {
+			idx = MAX_TVAL;
+			expires = idx + base->timer_jiffies;
+		}
+		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
+		vec = base->tv5.vec + i;
+	}
+	/*
+	 * Timers are FIFO:
+	 */
+	list_add_tail(&timer->entry, vec);
+}
+
+#ifdef CONFIG_TIMER_STATS
+void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
+{
+	if (timer->start_site)
+		return;
+
+	timer->start_site = addr;
+	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
+	timer->start_pid = current->pid;
+}
+
+static void timer_stats_account_timer(struct timer_list *timer)
+{
+	unsigned int flag = 0;
+
+	if (likely(!timer->start_site))
+		return;
+	if (unlikely(tbase_get_deferrable(timer->base)))
+		flag |= TIMER_STATS_FLAG_DEFERRABLE;
+
+	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
+				 timer->function, timer->start_comm, flag);
+}
+
+#else
+static void timer_stats_account_timer(struct timer_list *timer) {}
+#endif
+
+#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
+
+static struct debug_obj_descr timer_debug_descr;
+
+static void *timer_debug_hint(void *addr)
+{
+	return ((struct timer_list *) addr)->function;
+}
+
+/*
+ * fixup_init is called when:
+ * - an active object is initialized
+ */
+static int timer_fixup_init(void *addr, enum debug_obj_state state)
+{
+	struct timer_list *timer = addr;
+
+	switch (state) {
+	case ODEBUG_STATE_ACTIVE:
+		del_timer_sync(timer);
+		debug_object_init(timer, &timer_debug_descr);
+		return 1;
+	default:
+		return 0;
+	}
+}
+
+/* Stub timer callback for improperly used timers. */
+static void stub_timer(unsigned long data)
+{
+	WARN_ON(1);
+}
+
+/*
+ * fixup_activate is called when:
+ * - an active object is activated
+ * - an unknown object is activated (might be a statically initialized object)
+ */
+static int timer_fixup_activate(void *addr, enum debug_obj_state state)
+{
+	struct timer_list *timer = addr;
+
+	switch (state) {
+
+	case ODEBUG_STATE_NOTAVAILABLE:
+		/*
+		 * This is not really a fixup. The timer was
+		 * statically initialized. We just make sure that it
+		 * is tracked in the object tracker.
+		 */
+		if (timer->entry.next == NULL &&
+		    timer->entry.prev == TIMER_ENTRY_STATIC) {
+			debug_object_init(timer, &timer_debug_descr);
+			debug_object_activate(timer, &timer_debug_descr);
+			return 0;
+		} else {
+			setup_timer(timer, stub_timer, 0);
+			return 1;
+		}
+		return 0;
+
+	case ODEBUG_STATE_ACTIVE:
+		WARN_ON(1);
+
+	default:
+		return 0;
+	}
+}
+
+/*
+ * fixup_free is called when:
+ * - an active object is freed
+ */
+static int timer_fixup_free(void *addr, enum debug_obj_state state)
+{
+	struct timer_list *timer = addr;
+
+	switch (state) {
+	case ODEBUG_STATE_ACTIVE:
+		del_timer_sync(timer);
+		debug_object_free(timer, &timer_debug_descr);
+		return 1;
+	default:
+		return 0;
+	}
+}
+
+/*
+ * fixup_assert_init is called when:
+ * - an untracked/uninit-ed object is found
+ */
+static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
+{
+	struct timer_list *timer = addr;
+
+	switch (state) {
+	case ODEBUG_STATE_NOTAVAILABLE:
+		if (timer->entry.prev == TIMER_ENTRY_STATIC) {
+			/*
+			 * This is not really a fixup. The timer was
+			 * statically initialized. We just make sure that it
+			 * is tracked in the object tracker.
+			 */
+			debug_object_init(timer, &timer_debug_descr);
+			return 0;
+		} else {
+			setup_timer(timer, stub_timer, 0);
+			return 1;
+		}
+	default:
+		return 0;
+	}
+}
+
+static struct debug_obj_descr timer_debug_descr = {
+	.name			= "timer_list",
+	.debug_hint		= timer_debug_hint,
+	.fixup_init		= timer_fixup_init,
+	.fixup_activate		= timer_fixup_activate,
+	.fixup_free		= timer_fixup_free,
+	.fixup_assert_init	= timer_fixup_assert_init,
+};
+
+static inline void debug_timer_init(struct timer_list *timer)
+{
+	debug_object_init(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_activate(struct timer_list *timer)
+{
+	debug_object_activate(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_deactivate(struct timer_list *timer)
+{
+	debug_object_deactivate(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_free(struct timer_list *timer)
+{
+	debug_object_free(timer, &timer_debug_descr);
+}
+
+static inline void debug_timer_assert_init(struct timer_list *timer)
+{
+	debug_object_assert_init(timer, &timer_debug_descr);
+}
+
+static void __init_timer(struct timer_list *timer,
+			 const char *name,
+			 struct lock_class_key *key);
+
+void init_timer_on_stack_key(struct timer_list *timer,
+			     const char *name,
+			     struct lock_class_key *key)
+{
+	debug_object_init_on_stack(timer, &timer_debug_descr);
+	__init_timer(timer, name, key);
+}
+EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
+
+void destroy_timer_on_stack(struct timer_list *timer)
+{
+	debug_object_free(timer, &timer_debug_descr);
+}
+EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
+
+#else
+static inline void debug_timer_init(struct timer_list *timer) { }
+static inline void debug_timer_activate(struct timer_list *timer) { }
+static inline void debug_timer_deactivate(struct timer_list *timer) { }
+static inline void debug_timer_assert_init(struct timer_list *timer) { }
+#endif
+
+static inline void debug_init(struct timer_list *timer)
+{
+	debug_timer_init(timer);
+	trace_timer_init(timer);
+}
+
+static inline void
+debug_activate(struct timer_list *timer, unsigned long expires)
+{
+	debug_timer_activate(timer);
+	trace_timer_start(timer, expires);
+}
+
+static inline void debug_deactivate(struct timer_list *timer)
+{
+	debug_timer_deactivate(timer);
+	trace_timer_cancel(timer);
+}
+
+static inline void debug_assert_init(struct timer_list *timer)
+{
+	debug_timer_assert_init(timer);
+}
+
+static void __init_timer(struct timer_list *timer,
+			 const char *name,
+			 struct lock_class_key *key)
+{
+	timer->entry.next = NULL;
+	timer->base = __raw_get_cpu_var(tvec_bases);
+	timer->slack = -1;
+#ifdef CONFIG_TIMER_STATS
+	timer->start_site = NULL;
+	timer->start_pid = -1;
+	memset(timer->start_comm, 0, TASK_COMM_LEN);
+#endif
+	lockdep_init_map(&timer->lockdep_map, name, key, 0);
+}
+
+void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
+					 const char *name,
+					 struct lock_class_key *key,
+					 void (*function)(unsigned long),
+					 unsigned long data)
+{
+	timer->function = function;
+	timer->data = data;
+	init_timer_on_stack_key(timer, name, key);
+	timer_set_deferrable(timer);
+}
+EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
+
+/**
+ * init_timer_key - initialize a timer
+ * @timer: the timer to be initialized
+ * @name: name of the timer
+ * @key: lockdep class key of the fake lock used for tracking timer
+ *       sync lock dependencies
+ *
+ * init_timer_key() must be done to a timer prior calling *any* of the
+ * other timer functions.
+ */
+void init_timer_key(struct timer_list *timer,
+		    const char *name,
+		    struct lock_class_key *key)
+{
+	debug_init(timer);
+	__init_timer(timer, name, key);
+}
+EXPORT_SYMBOL(init_timer_key);
+
+void init_timer_deferrable_key(struct timer_list *timer,
+			       const char *name,
+			       struct lock_class_key *key)
+{
+	init_timer_key(timer, name, key);
+	timer_set_deferrable(timer);
+}
+EXPORT_SYMBOL(init_timer_deferrable_key);
+
+static inline void detach_timer(struct timer_list *timer,
+				int clear_pending)
+{
+	struct list_head *entry = &timer->entry;
+
+	debug_deactivate(timer);
+
+	__list_del(entry->prev, entry->next);
+	if (clear_pending)
+		entry->next = NULL;
+	entry->prev = LIST_POISON2;
+}
+
+/*
+ * We are using hashed locking: holding per_cpu(tvec_bases).lock
+ * means that all timers which are tied to this base via timer->base are
+ * locked, and the base itself is locked too.
+ *
+ * So __run_timers/migrate_timers can safely modify all timers which could
+ * be found on ->tvX lists.
+ *
+ * When the timer's base is locked, and the timer removed from list, it is
+ * possible to set timer->base = NULL and drop the lock: the timer remains
+ * locked.
+ */
+static struct tvec_base *lock_timer_base(struct timer_list *timer,
+					unsigned long *flags)
+	__acquires(timer->base->lock)
+{
+	struct tvec_base *base;
+
+	for (;;) {
+		struct tvec_base *prelock_base = timer->base;
+		base = tbase_get_base(prelock_base);
+		if (likely(base != NULL)) {
+			spin_lock_irqsave(&base->lock, *flags);
+			if (likely(prelock_base == timer->base))
+				return base;
+			/* The timer has migrated to another CPU */
+			spin_unlock_irqrestore(&base->lock, *flags);
+		}
+		cpu_relax();
+	}
+}
+
+#ifndef CONFIG_PREEMPT_RT_FULL
+static inline struct tvec_base *switch_timer_base(struct timer_list *timer,
+						  struct tvec_base *old,
+						  struct tvec_base *new)
+{
+	/* See the comment in lock_timer_base() */
+	timer_set_base(timer, NULL);
+	spin_unlock(&old->lock);
+	spin_lock(&new->lock);
+	timer_set_base(timer, new);
+	return new;
+}
+#else
+static inline struct tvec_base *switch_timer_base(struct timer_list *timer,
+						  struct tvec_base *old,
+						  struct tvec_base *new)
+{
+	/*
+	 * We cannot do the above because we might be preempted and
+	 * then the preempter would see NULL and loop forever.
+	 */
+	if (spin_trylock(&new->lock)) {
+		timer_set_base(timer, new);
+		spin_unlock(&old->lock);
+		return new;
+	}
+	return old;
+}
+#endif
+
+static inline int
+__mod_timer(struct timer_list *timer, unsigned long expires,
+						bool pending_only, int pinned)
+{
+	struct tvec_base *base, *new_base;
+	unsigned long flags;
+	int ret = 0 , cpu;
+
+	timer_stats_timer_set_start_info(timer);
+	BUG_ON(!timer->function);
+
+	base = lock_timer_base(timer, &flags);
+
+	if (timer_pending(timer)) {
+		detach_timer(timer, 0);
+		if (timer->expires == base->next_timer &&
+		    !tbase_get_deferrable(timer->base))
+			base->next_timer = base->timer_jiffies;
+		ret = 1;
+	} else {
+		if (pending_only)
+			goto out_unlock;
+	}
+
+	debug_activate(timer, expires);
+
+	preempt_disable_rt();
+	cpu = smp_processor_id();
+
+#if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
+	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
+		cpu = get_nohz_timer_target();
+#endif
+	preempt_enable_rt();
+
+	new_base = per_cpu(tvec_bases, cpu);
+
+	if (base != new_base) {
+		/*
+		 * We are trying to schedule the timer on the local CPU.
+		 * However we can't change timer's base while it is running,
+		 * otherwise del_timer_sync() can't detect that the timer's
+		 * handler yet has not finished. This also guarantees that
+		 * the timer is serialized wrt itself.
+		 */
+		if (likely(base->running_timer != timer))
+			base = switch_timer_base(timer, base, new_base);
+	}
+
+	timer->expires = expires;
+	if (time_before(timer->expires, base->next_timer) &&
+	    !tbase_get_deferrable(timer->base))
+		base->next_timer = timer->expires;
+	internal_add_timer(base, timer);
+
+out_unlock:
+	spin_unlock_irqrestore(&base->lock, flags);
+
+	return ret;
+}
+
+/**
+ * mod_timer_pending - modify a pending timer's timeout
+ * @timer: the pending timer to be modified
+ * @expires: new timeout in jiffies
+ *
+ * mod_timer_pending() is the same for pending timers as mod_timer(),
+ * but will not re-activate and modify already deleted timers.
+ *
+ * It is useful for unserialized use of timers.
+ */
+int mod_timer_pending(struct timer_list *timer, unsigned long expires)
+{
+	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
+}
+EXPORT_SYMBOL(mod_timer_pending);
+
+/*
+ * Decide where to put the timer while taking the slack into account
+ *
+ * Algorithm:
+ *   1) calculate the maximum (absolute) time
+ *   2) calculate the highest bit where the expires and new max are different
+ *   3) use this bit to make a mask
+ *   4) use the bitmask to round down the maximum time, so that all last
+ *      bits are zeros
+ */
+static inline
+unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
+{
+	unsigned long expires_limit, mask;
+	int bit;
+
+	if (timer->slack >= 0) {
+		expires_limit = expires + timer->slack;
+	} else {
+		long delta = expires - jiffies;
+
+		if (delta < 256)
+			return expires;
+
+		expires_limit = expires + delta / 256;
+	}
+	mask = expires ^ expires_limit;
+	if (mask == 0)
+		return expires;
+
+	bit = find_last_bit(&mask, BITS_PER_LONG);
+
+	mask = (1UL << bit) - 1;
+
+	expires_limit = expires_limit & ~(mask);
+
+	return expires_limit;
+}
+
+/**
+ * mod_timer - modify a timer's timeout
+ * @timer: the timer to be modified
+ * @expires: new timeout in jiffies
+ *
+ * mod_timer() is a more efficient way to update the expire field of an
+ * active timer (if the timer is inactive it will be activated)
+ *
+ * mod_timer(timer, expires) is equivalent to:
+ *
+ *     del_timer(timer); timer->expires = expires; add_timer(timer);
+ *
+ * Note that if there are multiple unserialized concurrent users of the
+ * same timer, then mod_timer() is the only safe way to modify the timeout,
+ * since add_timer() cannot modify an already running timer.
+ *
+ * The function returns whether it has modified a pending timer or not.
+ * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
+ * active timer returns 1.)
+ */
+int mod_timer(struct timer_list *timer, unsigned long expires)
+{
+	expires = apply_slack(timer, expires);
+
+	/*
+	 * This is a common optimization triggered by the
+	 * networking code - if the timer is re-modified
+	 * to be the same thing then just return:
+	 */
+	if (timer_pending(timer) && timer->expires == expires)
+		return 1;
+
+	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
+}
+EXPORT_SYMBOL(mod_timer);
+
+/**
+ * mod_timer_pinned - modify a timer's timeout
+ * @timer: the timer to be modified
+ * @expires: new timeout in jiffies
+ *
+ * mod_timer_pinned() is a way to update the expire field of an
+ * active timer (if the timer is inactive it will be activated)
+ * and not allow the timer to be migrated to a different CPU.
+ *
+ * mod_timer_pinned(timer, expires) is equivalent to:
+ *
+ *     del_timer(timer); timer->expires = expires; add_timer(timer);
+ */
+int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
+{
+	if (timer->expires == expires && timer_pending(timer))
+		return 1;
+
+	return __mod_timer(timer, expires, false, TIMER_PINNED);
+}
+EXPORT_SYMBOL(mod_timer_pinned);
+
+/**
+ * add_timer - start a timer
+ * @timer: the timer to be added
+ *
+ * The kernel will do a ->function(->data) callback from the
+ * timer interrupt at the ->expires point in the future. The
+ * current time is 'jiffies'.
+ *
+ * The timer's ->expires, ->function (and if the handler uses it, ->data)
+ * fields must be set prior calling this function.
+ *
+ * Timers with an ->expires field in the past will be executed in the next
+ * timer tick.
+ */
+void add_timer(struct timer_list *timer)
+{
+	BUG_ON(timer_pending(timer));
+	mod_timer(timer, timer->expires);
+}
+EXPORT_SYMBOL(add_timer);
+
+/**
+ * add_timer_on - start a timer on a particular CPU
+ * @timer: the timer to be added
+ * @cpu: the CPU to start it on
+ *
+ * This is not very scalable on SMP. Double adds are not possible.
+ */
+void add_timer_on(struct timer_list *timer, int cpu)
+{
+	struct tvec_base *base = per_cpu(tvec_bases, cpu);
+	unsigned long flags;
+
+	timer_stats_timer_set_start_info(timer);
+	BUG_ON(timer_pending(timer) || !timer->function);
+	spin_lock_irqsave(&base->lock, flags);
+	timer_set_base(timer, base);
+	debug_activate(timer, timer->expires);
+	if (time_before(timer->expires, base->next_timer) &&
+	    !tbase_get_deferrable(timer->base))
+		base->next_timer = timer->expires;
+	internal_add_timer(base, timer);
+	/*
+	 * Check whether the other CPU is idle and needs to be
+	 * triggered to reevaluate the timer wheel when nohz is
+	 * active. We are protected against the other CPU fiddling
+	 * with the timer by holding the timer base lock. This also
+	 * makes sure that a CPU on the way to idle can not evaluate
+	 * the timer wheel.
+	 */
+	wake_up_idle_cpu(cpu);
+	spin_unlock_irqrestore(&base->lock, flags);
+}
+EXPORT_SYMBOL_GPL(add_timer_on);
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+/*
+ * Wait for a running timer
+ */
+static void wait_for_running_timer(struct timer_list *timer)
+{
+	struct tvec_base *base = timer->base;
+
+	if (base->running_timer == timer)
+		wait_event(base->wait_for_running_timer,
+			   base->running_timer != timer);
+}
+
+# define wakeup_timer_waiters(b)	wake_up(&(b)->wait_for_running_timer)
+#else
+static inline void wait_for_running_timer(struct timer_list *timer)
+{
+	cpu_relax();
+}
+
+# define wakeup_timer_waiters(b)	do { } while (0)
+#endif
+
+/**
+ * del_timer - deactive a timer.
+ * @timer: the timer to be deactivated
+ *
+ * del_timer() deactivates a timer - this works on both active and inactive
+ * timers.
+ *
+ * The function returns whether it has deactivated a pending timer or not.
+ * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
+ * active timer returns 1.)
+ */
+int del_timer(struct timer_list *timer)
+{
+	struct tvec_base *base;
+	unsigned long flags;
+	int ret = 0;
+
+	debug_assert_init(timer);
+
+	timer_stats_timer_clear_start_info(timer);
+	if (timer_pending(timer)) {
+		base = lock_timer_base(timer, &flags);
+		if (timer_pending(timer)) {
+			detach_timer(timer, 1);
+			if (timer->expires == base->next_timer &&
+			    !tbase_get_deferrable(timer->base))
+				base->next_timer = base->timer_jiffies;
+			ret = 1;
+		}
+		spin_unlock_irqrestore(&base->lock, flags);
+	}
+
+	return ret;
+}
+EXPORT_SYMBOL(del_timer);
+
+/**
+ * try_to_del_timer_sync - Try to deactivate a timer
+ * @timer: timer do del
+ *
+ * This function tries to deactivate a timer. Upon successful (ret >= 0)
+ * exit the timer is not queued and the handler is not running on any CPU.
+ */
+int try_to_del_timer_sync(struct timer_list *timer)
+{
+	struct tvec_base *base;
+	unsigned long flags;
+	int ret = -1;
+
+	debug_assert_init(timer);
+
+	base = lock_timer_base(timer, &flags);
+
+	if (base->running_timer == timer)
+		goto out;
+
+	timer_stats_timer_clear_start_info(timer);
+	ret = 0;
+	if (timer_pending(timer)) {
+		detach_timer(timer, 1);
+		if (timer->expires == base->next_timer &&
+		    !tbase_get_deferrable(timer->base))
+			base->next_timer = base->timer_jiffies;
+		ret = 1;
+	}
+out:
+	spin_unlock_irqrestore(&base->lock, flags);
+
+	return ret;
+}
+EXPORT_SYMBOL(try_to_del_timer_sync);
+
+#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT_FULL)
+/**
+ * del_timer_sync - deactivate a timer and wait for the handler to finish.
+ * @timer: the timer to be deactivated
+ *
+ * This function only differs from del_timer() on SMP: besides deactivating
+ * the timer it also makes sure the handler has finished executing on other
+ * CPUs.
+ *
+ * Synchronization rules: Callers must prevent restarting of the timer,
+ * otherwise this function is meaningless. It must not be called from
+ * interrupt contexts. The caller must not hold locks which would prevent
+ * completion of the timer's handler. The timer's handler must not call
+ * add_timer_on(). Upon exit the timer is not queued and the handler is
+ * not running on any CPU.
+ *
+ * Note: You must not hold locks that are held in interrupt context
+ *   while calling this function. Even if the lock has nothing to do
+ *   with the timer in question.  Here's why:
+ *
+ *    CPU0                             CPU1
+ *    ----                             ----
+ *                                   <SOFTIRQ>
+ *                                   call_timer_fn();
+ *                                     base->running_timer = mytimer;
+ *  spin_lock_irq(somelock);
+ *                                     <IRQ>
+ *                                        spin_lock(somelock);
+ *  del_timer_sync(mytimer);
+ *   while (base->running_timer == mytimer);
+ *
+ * Now del_timer_sync() will never return and never release somelock.
+ * The interrupt on the other CPU is waiting to grab somelock but
+ * it has interrupted the softirq that CPU0 is waiting to finish.
+ *
+ * The function returns whether it has deactivated a pending timer or not.
+ */
+int del_timer_sync(struct timer_list *timer)
+{
+#ifdef CONFIG_LOCKDEP
+	unsigned long flags;
+
+	/*
+	 * If lockdep gives a backtrace here, please reference
+	 * the synchronization rules above.
+	 */
+	local_irq_save(flags);
+	lock_map_acquire(&timer->lockdep_map);
+	lock_map_release(&timer->lockdep_map);
+	local_irq_restore(flags);
+#endif
+	/*
+	 * don't use it in hardirq context, because it
+	 * could lead to deadlock.
+	 */
+	WARN_ON(in_irq());
+	for (;;) {
+		int ret = try_to_del_timer_sync(timer);
+		if (ret >= 0)
+			return ret;
+		wait_for_running_timer(timer);
+	}
+}
+EXPORT_SYMBOL(del_timer_sync);
+#endif
+
+static int cascade(struct tvec_base *base, struct tvec *tv, int index)
+{
+	/* cascade all the timers from tv up one level */
+	struct timer_list *timer, *tmp;
+	struct list_head tv_list;
+
+	list_replace_init(tv->vec + index, &tv_list);
+
+	/*
+	 * We are removing _all_ timers from the list, so we
+	 * don't have to detach them individually.
+	 */
+	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
+		BUG_ON(tbase_get_base(timer->base) != base);
+		internal_add_timer(base, timer);
+	}
+
+	return index;
+}
+
+static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
+			  unsigned long data)
+{
+	int preempt_count = preempt_count();
+
+#ifdef CONFIG_LOCKDEP
+	/*
+	 * It is permissible to free the timer from inside the
+	 * function that is called from it, this we need to take into
+	 * account for lockdep too. To avoid bogus "held lock freed"
+	 * warnings as well as problems when looking into
+	 * timer->lockdep_map, make a copy and use that here.
+	 */
+	struct lockdep_map lockdep_map = timer->lockdep_map;
+#endif
+	/*
+	 * Couple the lock chain with the lock chain at
+	 * del_timer_sync() by acquiring the lock_map around the fn()
+	 * call here and in del_timer_sync().
+	 */
+	lock_map_acquire(&lockdep_map);
+
+	trace_timer_expire_entry(timer);
+    zxic_trace_timer_enter(fn);
+	fn(data);
+    zxic_trace_timer_exit(fn);    
+	trace_timer_expire_exit(timer);
+
+	lock_map_release(&lockdep_map);
+
+	if (preempt_count != preempt_count()) {
+		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
+			  fn, preempt_count, preempt_count());
+		/*
+		 * Restore the preempt count. That gives us a decent
+		 * chance to survive and extract information. If the
+		 * callback kept a lock held, bad luck, but not worse
+		 * than the BUG() we had.
+		 */
+		preempt_count() = preempt_count;
+	}
+}
+
+#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
+
+/**
+ * __run_timers - run all expired timers (if any) on this CPU.
+ * @base: the timer vector to be processed.
+ *
+ * This function cascades all vectors and executes all expired timer
+ * vectors.
+ */
+static inline void __run_timers(struct tvec_base *base)
+{
+	struct timer_list *timer;
+
+	spin_lock_irq(&base->lock);
+	while (time_after_eq(jiffies, base->timer_jiffies)) {
+		struct list_head work_list;
+		struct list_head *head = &work_list;
+		int index = base->timer_jiffies & TVR_MASK;
+
+		/*
+		 * Cascade timers:
+		 */
+		if (!index &&
+			(!cascade(base, &base->tv2, INDEX(0))) &&
+				(!cascade(base, &base->tv3, INDEX(1))) &&
+					!cascade(base, &base->tv4, INDEX(2)))
+			cascade(base, &base->tv5, INDEX(3));
+		++base->timer_jiffies;
+		list_replace_init(base->tv1.vec + index, &work_list);
+		while (!list_empty(head)) {
+			void (*fn)(unsigned long);
+			unsigned long data;
+
+			timer = list_first_entry(head, struct timer_list,entry);
+			fn = timer->function;
+			data = timer->data;
+
+			timer_stats_account_timer(timer);
+
+			base->running_timer = timer;
+			detach_timer(timer, 1);
+
+			spin_unlock_irq(&base->lock);
+			call_timer_fn(timer, fn, data);
+			base->running_timer = NULL;
+			spin_lock_irq(&base->lock);
+		}
+	}
+	wakeup_timer_waiters(base);
+	spin_unlock_irq(&base->lock);
+}
+
+#ifdef CONFIG_NO_HZ
+/*
+ * Find out when the next timer event is due to happen. This
+ * is used on S/390 to stop all activity when a CPU is idle.
+ * This function needs to be called with interrupts disabled.
+ */
+static unsigned long __next_timer_interrupt(struct tvec_base *base)
+{
+	unsigned long timer_jiffies = base->timer_jiffies;
+	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
+	int index, slot, array, found = 0;
+	struct timer_list *nte;
+	struct tvec *varray[4];
+
+	/* Look for timer events in tv1. */
+	index = slot = timer_jiffies & TVR_MASK;
+	do {
+		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
+			if (tbase_get_deferrable(nte->base))
+				continue;
+
+			found = 1;
+			expires = nte->expires;
+			/* Look at the cascade bucket(s)? */
+			if (!index || slot < index)
+				goto cascade;
+			return expires;
+		}
+		slot = (slot + 1) & TVR_MASK;
+	} while (slot != index);
+
+cascade:
+	/* Calculate the next cascade event */
+	if (index)
+		timer_jiffies += TVR_SIZE - index;
+	timer_jiffies >>= TVR_BITS;
+
+	/* Check tv2-tv5. */
+	varray[0] = &base->tv2;
+	varray[1] = &base->tv3;
+	varray[2] = &base->tv4;
+	varray[3] = &base->tv5;
+
+	for (array = 0; array < 4; array++) {
+		struct tvec *varp = varray[array];
+
+		index = slot = timer_jiffies & TVN_MASK;
+		do {
+			list_for_each_entry(nte, varp->vec + slot, entry) {
+				if (tbase_get_deferrable(nte->base))
+					continue;
+
+				found = 1;
+				if (time_before(nte->expires, expires))
+					expires = nte->expires;
+			}
+			/*
+			 * Do we still search for the first timer or are
+			 * we looking up the cascade buckets ?
+			 */
+			if (found) {
+				/* Look at the cascade bucket(s)? */
+				if (!index || slot < index)
+					break;
+				return expires;
+			}
+			slot = (slot + 1) & TVN_MASK;
+		} while (slot != index);
+
+		if (index)
+			timer_jiffies += TVN_SIZE - index;
+		timer_jiffies >>= TVN_BITS;
+	}
+	return expires;
+}
+
+/*
+ * Check, if the next hrtimer event is before the next timer wheel
+ * event:
+ */
+static unsigned long cmp_next_hrtimer_event(unsigned long now,
+					    unsigned long expires)
+{
+	ktime_t hr_delta = hrtimer_get_next_event();
+	struct timespec tsdelta;
+	unsigned long delta;
+
+	if (hr_delta.tv64 == KTIME_MAX)
+		return expires;
+
+	/*
+	 * Expired timer available, let it expire in the next tick
+	 */
+	if (hr_delta.tv64 <= 0)
+		return now + 1;
+
+	tsdelta = ktime_to_timespec(hr_delta);
+	delta = timespec_to_jiffies(&tsdelta);
+
+	/*
+	 * Limit the delta to the max value, which is checked in
+	 * tick_nohz_stop_sched_tick():
+	 */
+	if (delta > NEXT_TIMER_MAX_DELTA)
+		delta = NEXT_TIMER_MAX_DELTA;
+
+	/*
+	 * Take rounding errors in to account and make sure, that it
+	 * expires in the next tick. Otherwise we go into an endless
+	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
+	 * the timer softirq
+	 */
+	if (delta < 1)
+		delta = 1;
+	now += delta;
+	if (time_before(now, expires))
+		return now;
+	return expires;
+}
+
+/**
+ * get_next_timer_interrupt - return the jiffy of the next pending timer
+ * @now: current time (in jiffies)
+ */
+unsigned long get_next_timer_interrupt(unsigned long now)
+{
+	struct tvec_base *base = __this_cpu_read(tvec_bases);
+	unsigned long expires;
+
+	/*
+	 * Pretend that there is no timer pending if the cpu is offline.
+	 * Possible pending timers will be migrated later to an active cpu.
+	 */
+	if (cpu_is_offline(smp_processor_id()))
+		return now + NEXT_TIMER_MAX_DELTA;
+
+#ifdef CONFIG_PREEMPT_RT_FULL
+	/*
+	 * On PREEMPT_RT we cannot sleep here. If the trylock does not
+	 * succeed then we return the worst-case 'expires in 1 tick'
+	 * value. We use the rt functions here directly to avoid a
+	 * migrate_disable() call.
+	 */
+	if (spin_do_trylock(&base->lock)) {
+		if (time_before_eq(base->next_timer, base->timer_jiffies))
+			base->next_timer = __next_timer_interrupt(base);
+		expires = base->next_timer;
+		rt_spin_unlock_after_trylock_in_irq(&base->lock);
+	} else {
+		expires = now + 1;
+	}
+#else
+	spin_lock(&base->lock);
+	if (time_before_eq(base->next_timer, base->timer_jiffies))
+		base->next_timer = __next_timer_interrupt(base);
+	expires = base->next_timer;
+	spin_unlock(&base->lock);
+
+	if (time_before_eq(expires, now))
+		return now;
+#endif
+	return cmp_next_hrtimer_event(now, expires);
+}
+#endif
+
+/*
+ * Called from the timer interrupt handler to charge one tick to the current
+ * process.  user_tick is 1 if the tick is user time, 0 for system.
+ */
+void update_process_times(int user_tick)
+{
+	struct task_struct *p = current;
+	int cpu = smp_processor_id();
+
+	/* Note: this timer irq context must be accounted for as well. */
+	account_process_tick(p, user_tick);
+	scheduler_tick();
+	run_local_timers();
+	rcu_check_callbacks(cpu, user_tick);
+#if defined(CONFIG_IRQ_WORK) && !defined(CONFIG_PREEMPT_RT_FULL)
+	if (in_irq())
+		irq_work_run();
+#endif
+	run_posix_cpu_timers(p);
+}
+
+/*
+ * This function runs timers and the timer-tq in bottom half context.
+ */
+static void run_timer_softirq(struct softirq_action *h)
+{
+	struct tvec_base *base = __this_cpu_read(tvec_bases);
+
+#if defined(CONFIG_IRQ_WORK) && defined(CONFIG_PREEMPT_RT_FULL)
+	irq_work_run();
+#endif
+
+	printk_tick();
+	hrtimer_run_pending();
+
+	if (time_after_eq(jiffies, base->timer_jiffies))
+		__run_timers(base);
+}
+
+/*
+ * Called by the local, per-CPU timer interrupt on SMP.
+ */
+void run_local_timers(void)
+{
+	hrtimer_run_queues();
+	raise_softirq(TIMER_SOFTIRQ);
+}
+
+#ifdef __ARCH_WANT_SYS_ALARM
+
+/*
+ * For backwards compatibility?  This can be done in libc so Alpha
+ * and all newer ports shouldn't need it.
+ */
+SYSCALL_DEFINE1(alarm, unsigned int, seconds)
+{
+	return alarm_setitimer(seconds);
+}
+
+#endif
+
+#ifndef __alpha__
+
+/*
+ * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
+ * should be moved into arch/i386 instead?
+ */
+
+/**
+ * sys_getpid - return the thread group id of the current process
+ *
+ * Note, despite the name, this returns the tgid not the pid.  The tgid and
+ * the pid are identical unless CLONE_THREAD was specified on clone() in
+ * which case the tgid is the same in all threads of the same group.
+ *
+ * This is SMP safe as current->tgid does not change.
+ */
+SYSCALL_DEFINE0(getpid)
+{
+	return task_tgid_vnr(current);
+}
+
+/*
+ * Accessing ->real_parent is not SMP-safe, it could
+ * change from under us. However, we can use a stale
+ * value of ->real_parent under rcu_read_lock(), see
+ * release_task()->call_rcu(delayed_put_task_struct).
+ */
+SYSCALL_DEFINE0(getppid)
+{
+	int pid;
+
+	rcu_read_lock();
+	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
+	rcu_read_unlock();
+
+	return pid;
+}
+
+SYSCALL_DEFINE0(getuid)
+{
+	/* Only we change this so SMP safe */
+	return current_uid();
+}
+
+SYSCALL_DEFINE0(geteuid)
+{
+	/* Only we change this so SMP safe */
+	return current_euid();
+}
+
+SYSCALL_DEFINE0(getgid)
+{
+	/* Only we change this so SMP safe */
+	return current_gid();
+}
+
+SYSCALL_DEFINE0(getegid)
+{
+	/* Only we change this so SMP safe */
+	return  current_egid();
+}
+
+#endif
+
+static void process_timeout(unsigned long __data)
+{
+	wake_up_process((struct task_struct *)__data);
+}
+
+/**
+ * schedule_timeout - sleep until timeout
+ * @timeout: timeout value in jiffies
+ *
+ * Make the current task sleep until @timeout jiffies have
+ * elapsed. The routine will return immediately unless
+ * the current task state has been set (see set_current_state()).
+ *
+ * You can set the task state as follows -
+ *
+ * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
+ * pass before the routine returns. The routine will return 0
+ *
+ * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
+ * delivered to the current task. In this case the remaining time
+ * in jiffies will be returned, or 0 if the timer expired in time
+ *
+ * The current task state is guaranteed to be TASK_RUNNING when this
+ * routine returns.
+ *
+ * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
+ * the CPU away without a bound on the timeout. In this case the return
+ * value will be %MAX_SCHEDULE_TIMEOUT.
+ *
+ * In all cases the return value is guaranteed to be non-negative.
+ */
+signed long __sched schedule_timeout(signed long timeout)
+{
+	struct timer_list timer;
+	unsigned long expire;
+
+	switch (timeout)
+	{
+	case MAX_SCHEDULE_TIMEOUT:
+		/*
+		 * These two special cases are useful to be comfortable
+		 * in the caller. Nothing more. We could take
+		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
+		 * but I' d like to return a valid offset (>=0) to allow
+		 * the caller to do everything it want with the retval.
+		 */
+		schedule();
+		goto out;
+	default:
+		/*
+		 * Another bit of PARANOID. Note that the retval will be
+		 * 0 since no piece of kernel is supposed to do a check
+		 * for a negative retval of schedule_timeout() (since it
+		 * should never happens anyway). You just have the printk()
+		 * that will tell you if something is gone wrong and where.
+		 */
+		if (timeout < 0) {
+			printk(KERN_ERR "schedule_timeout: wrong timeout "
+				"value %lx\n", timeout);
+			dump_stack();
+			current->state = TASK_RUNNING;
+			goto out;
+		}
+	}
+
+	expire = timeout + jiffies;
+
+	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
+	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
+	schedule();
+	del_singleshot_timer_sync(&timer);
+
+	/* Remove the timer from the object tracker */
+	destroy_timer_on_stack(&timer);
+
+	timeout = expire - jiffies;
+
+ out:
+	return timeout < 0 ? 0 : timeout;
+}
+EXPORT_SYMBOL(schedule_timeout);
+
+/*
+ * We can use __set_current_state() here because schedule_timeout() calls
+ * schedule() unconditionally.
+ */
+signed long __sched schedule_timeout_interruptible(signed long timeout)
+{
+	__set_current_state(TASK_INTERRUPTIBLE);
+	return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_interruptible);
+
+signed long __sched schedule_timeout_killable(signed long timeout)
+{
+	__set_current_state(TASK_KILLABLE);
+	return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_killable);
+
+signed long __sched schedule_timeout_uninterruptible(signed long timeout)
+{
+	__set_current_state(TASK_UNINTERRUPTIBLE);
+	return schedule_timeout(timeout);
+}
+EXPORT_SYMBOL(schedule_timeout_uninterruptible);
+
+/* Thread ID - the internal kernel "pid" */
+SYSCALL_DEFINE0(gettid)
+{
+	return task_pid_vnr(current);
+}
+
+/**
+ * do_sysinfo - fill in sysinfo struct
+ * @info: pointer to buffer to fill
+ */
+int do_sysinfo(struct sysinfo *info)
+{
+	unsigned long mem_total, sav_total;
+	unsigned int mem_unit, bitcount;
+	struct timespec tp;
+
+	memset(info, 0, sizeof(struct sysinfo));
+
+	ktime_get_ts(&tp);
+	monotonic_to_bootbased(&tp);
+	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
+
+	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
+
+	info->procs = nr_threads;
+
+	si_meminfo(info);
+	si_swapinfo(info);
+
+	/*
+	 * If the sum of all the available memory (i.e. ram + swap)
+	 * is less than can be stored in a 32 bit unsigned long then
+	 * we can be binary compatible with 2.2.x kernels.  If not,
+	 * well, in that case 2.2.x was broken anyways...
+	 *
+	 *  -Erik Andersen <andersee@debian.org>
+	 */
+
+	mem_total = info->totalram + info->totalswap;
+	if (mem_total < info->totalram || mem_total < info->totalswap)
+		goto out;
+	bitcount = 0;
+	mem_unit = info->mem_unit;
+	while (mem_unit > 1) {
+		bitcount++;
+		mem_unit >>= 1;
+		sav_total = mem_total;
+		mem_total <<= 1;
+		if (mem_total < sav_total)
+			goto out;
+	}
+
+	/*
+	 * If mem_total did not overflow, multiply all memory values by
+	 * info->mem_unit and set it to 1.  This leaves things compatible
+	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
+	 * kernels...
+	 */
+
+	info->mem_unit = 1;
+	info->totalram <<= bitcount;
+	info->freeram <<= bitcount;
+	info->sharedram <<= bitcount;
+	info->bufferram <<= bitcount;
+	info->totalswap <<= bitcount;
+	info->freeswap <<= bitcount;
+	info->totalhigh <<= bitcount;
+	info->freehigh <<= bitcount;
+
+out:
+	return 0;
+}
+
+SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
+{
+	struct sysinfo val;
+
+	do_sysinfo(&val);
+
+	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
+		return -EFAULT;
+
+	return 0;
+}
+
+static int __cpuinit init_timers_cpu(int cpu)
+{
+	int j;
+	struct tvec_base *base;
+	static char __cpuinitdata tvec_base_done[NR_CPUS];
+
+	if (!tvec_base_done[cpu]) {
+		static char boot_done;
+
+		if (boot_done) {
+			/*
+			 * The APs use this path later in boot
+			 */
+			base = kmalloc_node(sizeof(*base),
+						GFP_KERNEL | __GFP_ZERO,
+						cpu_to_node(cpu));
+			if (!base)
+				return -ENOMEM;
+
+			/* Make sure that tvec_base is 2 byte aligned */
+			if (tbase_get_deferrable(base)) {
+				WARN_ON(1);
+				kfree(base);
+				return -ENOMEM;
+			}
+			per_cpu(tvec_bases, cpu) = base;
+		} else {
+			/*
+			 * This is for the boot CPU - we use compile-time
+			 * static initialisation because per-cpu memory isn't
+			 * ready yet and because the memory allocators are not
+			 * initialised either.
+			 */
+			boot_done = 1;
+			base = &boot_tvec_bases;
+		}
+		spin_lock_init(&base->lock);
+#ifdef CONFIG_PREEMPT_RT_FULL
+		init_waitqueue_head(&base->wait_for_running_timer);
+#endif
+		tvec_base_done[cpu] = 1;
+	} else {
+		base = per_cpu(tvec_bases, cpu);
+	}
+
+	for (j = 0; j < TVN_SIZE; j++) {
+		INIT_LIST_HEAD(base->tv5.vec + j);
+		INIT_LIST_HEAD(base->tv4.vec + j);
+		INIT_LIST_HEAD(base->tv3.vec + j);
+		INIT_LIST_HEAD(base->tv2.vec + j);
+	}
+	for (j = 0; j < TVR_SIZE; j++)
+		INIT_LIST_HEAD(base->tv1.vec + j);
+
+	base->timer_jiffies = jiffies;
+	base->next_timer = base->timer_jiffies;
+	return 0;
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
+{
+	struct timer_list *timer;
+
+	while (!list_empty(head)) {
+		timer = list_first_entry(head, struct timer_list, entry);
+		detach_timer(timer, 0);
+		timer_set_base(timer, new_base);
+		if (time_before(timer->expires, new_base->next_timer) &&
+		    !tbase_get_deferrable(timer->base))
+			new_base->next_timer = timer->expires;
+		internal_add_timer(new_base, timer);
+	}
+}
+
+static void __cpuinit migrate_timers(int cpu)
+{
+	struct tvec_base *old_base;
+	struct tvec_base *new_base;
+	int i;
+
+	BUG_ON(cpu_online(cpu));
+	old_base = per_cpu(tvec_bases, cpu);
+	new_base = get_local_var(tvec_bases);
+	/*
+	 * The caller is globally serialized and nobody else
+	 * takes two locks at once, deadlock is not possible.
+	 */
+	spin_lock_irq(&new_base->lock);
+	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
+
+	BUG_ON(old_base->running_timer);
+
+	for (i = 0; i < TVR_SIZE; i++)
+		migrate_timer_list(new_base, old_base->tv1.vec + i);
+	for (i = 0; i < TVN_SIZE; i++) {
+		migrate_timer_list(new_base, old_base->tv2.vec + i);
+		migrate_timer_list(new_base, old_base->tv3.vec + i);
+		migrate_timer_list(new_base, old_base->tv4.vec + i);
+		migrate_timer_list(new_base, old_base->tv5.vec + i);
+	}
+
+	spin_unlock(&old_base->lock);
+	spin_unlock_irq(&new_base->lock);
+	put_local_var(tvec_bases);
+}
+#endif /* CONFIG_HOTPLUG_CPU */
+
+static int __cpuinit timer_cpu_notify(struct notifier_block *self,
+				unsigned long action, void *hcpu)
+{
+	long cpu = (long)hcpu;
+	int err;
+
+	switch(action) {
+	case CPU_UP_PREPARE:
+	case CPU_UP_PREPARE_FROZEN:
+		err = init_timers_cpu(cpu);
+		if (err < 0)
+			return notifier_from_errno(err);
+		break;
+#ifdef CONFIG_HOTPLUG_CPU
+	case CPU_DEAD:
+	case CPU_DEAD_FROZEN:
+		migrate_timers(cpu);
+		break;
+#endif
+	default:
+		break;
+	}
+	return NOTIFY_OK;
+}
+
+static struct notifier_block __cpuinitdata timers_nb = {
+	.notifier_call	= timer_cpu_notify,
+};
+
+
+void __init init_timers(void)
+{
+	int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
+				(void *)(long)smp_processor_id());
+
+	init_timer_stats();
+
+	BUG_ON(err != NOTIFY_OK);
+	register_cpu_notifier(&timers_nb);
+	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
+}
+
+/**
+ * msleep - sleep safely even with waitqueue interruptions
+ * @msecs: Time in milliseconds to sleep for
+ */
+void msleep(unsigned int msecs)
+{
+	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
+
+	while (timeout)
+		timeout = schedule_timeout_uninterruptible(timeout);
+}
+
+EXPORT_SYMBOL(msleep);
+
+/**
+ * msleep_interruptible - sleep waiting for signals
+ * @msecs: Time in milliseconds to sleep for
+ */
+unsigned long msleep_interruptible(unsigned int msecs)
+{
+	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
+
+	while (timeout && !signal_pending(current))
+		timeout = schedule_timeout_interruptible(timeout);
+	return jiffies_to_msecs(timeout);
+}
+
+EXPORT_SYMBOL(msleep_interruptible);
+
+static int __sched do_usleep_range(unsigned long min, unsigned long max)
+{
+	ktime_t kmin;
+	unsigned long delta;
+
+	kmin = ktime_set(0, min * NSEC_PER_USEC);
+	delta = (max - min) * NSEC_PER_USEC;
+	return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
+}
+
+/**
+ * usleep_range - Drop in replacement for udelay where wakeup is flexible
+ * @min: Minimum time in usecs to sleep
+ * @max: Maximum time in usecs to sleep
+ */
+void usleep_range(unsigned long min, unsigned long max)
+{
+	__set_current_state(TASK_UNINTERRUPTIBLE);
+	do_usleep_range(min, max);
+}
+EXPORT_SYMBOL(usleep_range);