zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/kernel/trace/ring_buffer.c b/ap/os/linux/linux-3.4.x/kernel/trace/ring_buffer.c
new file mode 100644
index 0000000..04aaae2
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/kernel/trace/ring_buffer.c
@@ -0,0 +1,4125 @@
+/*
+ * Generic ring buffer
+ *
+ * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
+ */
+#include <linux/ring_buffer.h>
+#include <linux/trace_clock.h>
+#include <linux/spinlock.h>
+#include <linux/debugfs.h>
+#include <linux/uaccess.h>
+#include <linux/hardirq.h>
+#include <linux/kmemcheck.h>
+#include <linux/module.h>
+#include <linux/percpu.h>
+#include <linux/mutex.h>
+#include <linux/slab.h>
+#include <linux/init.h>
+#include <linux/hash.h>
+#include <linux/list.h>
+#include <linux/cpu.h>
+#include <linux/fs.h>
+
+#include <asm/local.h>
+#include "trace.h"
+
+/*
+ * The ring buffer header is special. We must manually up keep it.
+ */
+int ring_buffer_print_entry_header(struct trace_seq *s)
+{
+	int ret;
+
+	ret = trace_seq_printf(s, "# compressed entry header\n");
+	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
+	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
+	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
+	ret = trace_seq_printf(s, "\n");
+	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
+			       RINGBUF_TYPE_PADDING);
+	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
+			       RINGBUF_TYPE_TIME_EXTEND);
+	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
+			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
+
+	return ret;
+}
+
+/*
+ * The ring buffer is made up of a list of pages. A separate list of pages is
+ * allocated for each CPU. A writer may only write to a buffer that is
+ * associated with the CPU it is currently executing on.  A reader may read
+ * from any per cpu buffer.
+ *
+ * The reader is special. For each per cpu buffer, the reader has its own
+ * reader page. When a reader has read the entire reader page, this reader
+ * page is swapped with another page in the ring buffer.
+ *
+ * Now, as long as the writer is off the reader page, the reader can do what
+ * ever it wants with that page. The writer will never write to that page
+ * again (as long as it is out of the ring buffer).
+ *
+ * Here's some silly ASCII art.
+ *
+ *   +------+
+ *   |reader|          RING BUFFER
+ *   |page  |
+ *   +------+        +---+   +---+   +---+
+ *                   |   |-->|   |-->|   |
+ *                   +---+   +---+   +---+
+ *                     ^               |
+ *                     |               |
+ *                     +---------------+
+ *
+ *
+ *   +------+
+ *   |reader|          RING BUFFER
+ *   |page  |------------------v
+ *   +------+        +---+   +---+   +---+
+ *                   |   |-->|   |-->|   |
+ *                   +---+   +---+   +---+
+ *                     ^               |
+ *                     |               |
+ *                     +---------------+
+ *
+ *
+ *   +------+
+ *   |reader|          RING BUFFER
+ *   |page  |------------------v
+ *   +------+        +---+   +---+   +---+
+ *      ^            |   |-->|   |-->|   |
+ *      |            +---+   +---+   +---+
+ *      |                              |
+ *      |                              |
+ *      +------------------------------+
+ *
+ *
+ *   +------+
+ *   |buffer|          RING BUFFER
+ *   |page  |------------------v
+ *   +------+        +---+   +---+   +---+
+ *      ^            |   |   |   |-->|   |
+ *      |   New      +---+   +---+   +---+
+ *      |  Reader------^               |
+ *      |   page                       |
+ *      +------------------------------+
+ *
+ *
+ * After we make this swap, the reader can hand this page off to the splice
+ * code and be done with it. It can even allocate a new page if it needs to
+ * and swap that into the ring buffer.
+ *
+ * We will be using cmpxchg soon to make all this lockless.
+ *
+ */
+
+/*
+ * A fast way to enable or disable all ring buffers is to
+ * call tracing_on or tracing_off. Turning off the ring buffers
+ * prevents all ring buffers from being recorded to.
+ * Turning this switch on, makes it OK to write to the
+ * ring buffer, if the ring buffer is enabled itself.
+ *
+ * There's three layers that must be on in order to write
+ * to the ring buffer.
+ *
+ * 1) This global flag must be set.
+ * 2) The ring buffer must be enabled for recording.
+ * 3) The per cpu buffer must be enabled for recording.
+ *
+ * In case of an anomaly, this global flag has a bit set that
+ * will permantly disable all ring buffers.
+ */
+
+/*
+ * Global flag to disable all recording to ring buffers
+ *  This has two bits: ON, DISABLED
+ *
+ *  ON   DISABLED
+ * ---- ----------
+ *   0      0        : ring buffers are off
+ *   1      0        : ring buffers are on
+ *   X      1        : ring buffers are permanently disabled
+ */
+
+enum {
+	RB_BUFFERS_ON_BIT	= 0,
+	RB_BUFFERS_DISABLED_BIT	= 1,
+};
+
+enum {
+	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
+	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
+};
+
+static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
+
+/* Used for individual buffers (after the counter) */
+#define RB_BUFFER_OFF		(1 << 20)
+
+#define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
+
+/**
+ * tracing_off_permanent - permanently disable ring buffers
+ *
+ * This function, once called, will disable all ring buffers
+ * permanently.
+ */
+void tracing_off_permanent(void)
+{
+	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
+}
+
+#define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
+#define RB_ALIGNMENT		4U
+#define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
+#define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
+
+#if !defined(CONFIG_64BIT) || defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)
+# define RB_FORCE_8BYTE_ALIGNMENT	0
+# define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
+#else
+# define RB_FORCE_8BYTE_ALIGNMENT	1
+# define RB_ARCH_ALIGNMENT		8U
+#endif
+
+/* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
+#define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
+
+enum {
+	RB_LEN_TIME_EXTEND = 8,
+	RB_LEN_TIME_STAMP = 16,
+};
+
+#define skip_time_extend(event) \
+	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
+
+static inline int rb_null_event(struct ring_buffer_event *event)
+{
+	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
+}
+
+static void rb_event_set_padding(struct ring_buffer_event *event)
+{
+	/* padding has a NULL time_delta */
+	event->type_len = RINGBUF_TYPE_PADDING;
+	event->time_delta = 0;
+}
+
+static unsigned
+rb_event_data_length(struct ring_buffer_event *event)
+{
+	unsigned length;
+
+	if (event->type_len)
+		length = event->type_len * RB_ALIGNMENT;
+	else
+		length = event->array[0];
+	return length + RB_EVNT_HDR_SIZE;
+}
+
+/*
+ * Return the length of the given event. Will return
+ * the length of the time extend if the event is a
+ * time extend.
+ */
+static inline unsigned
+rb_event_length(struct ring_buffer_event *event)
+{
+	switch (event->type_len) {
+	case RINGBUF_TYPE_PADDING:
+		if (rb_null_event(event))
+			/* undefined */
+			return -1;
+		return  event->array[0] + RB_EVNT_HDR_SIZE;
+
+	case RINGBUF_TYPE_TIME_EXTEND:
+		return RB_LEN_TIME_EXTEND;
+
+	case RINGBUF_TYPE_TIME_STAMP:
+		return RB_LEN_TIME_STAMP;
+
+	case RINGBUF_TYPE_DATA:
+		return rb_event_data_length(event);
+	default:
+		BUG();
+	}
+	/* not hit */
+	return 0;
+}
+
+/*
+ * Return total length of time extend and data,
+ *   or just the event length for all other events.
+ */
+static inline unsigned
+rb_event_ts_length(struct ring_buffer_event *event)
+{
+	unsigned len = 0;
+
+	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
+		/* time extends include the data event after it */
+		len = RB_LEN_TIME_EXTEND;
+		event = skip_time_extend(event);
+	}
+	return len + rb_event_length(event);
+}
+
+/**
+ * ring_buffer_event_length - return the length of the event
+ * @event: the event to get the length of
+ *
+ * Returns the size of the data load of a data event.
+ * If the event is something other than a data event, it
+ * returns the size of the event itself. With the exception
+ * of a TIME EXTEND, where it still returns the size of the
+ * data load of the data event after it.
+ */
+unsigned ring_buffer_event_length(struct ring_buffer_event *event)
+{
+	unsigned length;
+
+	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
+		event = skip_time_extend(event);
+
+	length = rb_event_length(event);
+	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
+		return length;
+	length -= RB_EVNT_HDR_SIZE;
+	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
+                length -= sizeof(event->array[0]);
+	return length;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_event_length);
+
+/* inline for ring buffer fast paths */
+static void *
+rb_event_data(struct ring_buffer_event *event)
+{
+	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
+		event = skip_time_extend(event);
+	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
+	/* If length is in len field, then array[0] has the data */
+	if (event->type_len)
+		return (void *)&event->array[0];
+	/* Otherwise length is in array[0] and array[1] has the data */
+	return (void *)&event->array[1];
+}
+
+/**
+ * ring_buffer_event_data - return the data of the event
+ * @event: the event to get the data from
+ */
+void *ring_buffer_event_data(struct ring_buffer_event *event)
+{
+	return rb_event_data(event);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_event_data);
+
+#define for_each_buffer_cpu(buffer, cpu)		\
+	for_each_cpu(cpu, buffer->cpumask)
+
+#define TS_SHIFT	27
+#define TS_MASK		((1ULL << TS_SHIFT) - 1)
+#define TS_DELTA_TEST	(~TS_MASK)
+
+/* Flag when events were overwritten */
+#define RB_MISSED_EVENTS	(1 << 31)
+/* Missed count stored at end */
+#define RB_MISSED_STORED	(1 << 30)
+
+struct buffer_data_page {
+	u64		 time_stamp;	/* page time stamp */
+	local_t		 commit;	/* write committed index */
+	unsigned char	 data[];	/* data of buffer page */
+};
+
+/*
+ * Note, the buffer_page list must be first. The buffer pages
+ * are allocated in cache lines, which means that each buffer
+ * page will be at the beginning of a cache line, and thus
+ * the least significant bits will be zero. We use this to
+ * add flags in the list struct pointers, to make the ring buffer
+ * lockless.
+ */
+struct buffer_page {
+	struct list_head list;		/* list of buffer pages */
+	local_t		 write;		/* index for next write */
+	unsigned	 read;		/* index for next read */
+	local_t		 entries;	/* entries on this page */
+	unsigned long	 real_end;	/* real end of data */
+	struct buffer_data_page *page;	/* Actual data page */
+};
+
+/*
+ * The buffer page counters, write and entries, must be reset
+ * atomically when crossing page boundaries. To synchronize this
+ * update, two counters are inserted into the number. One is
+ * the actual counter for the write position or count on the page.
+ *
+ * The other is a counter of updaters. Before an update happens
+ * the update partition of the counter is incremented. This will
+ * allow the updater to update the counter atomically.
+ *
+ * The counter is 20 bits, and the state data is 12.
+ */
+#define RB_WRITE_MASK		0xfffff
+#define RB_WRITE_INTCNT		(1 << 20)
+
+static void rb_init_page(struct buffer_data_page *bpage)
+{
+	local_set(&bpage->commit, 0);
+}
+
+/**
+ * ring_buffer_page_len - the size of data on the page.
+ * @page: The page to read
+ *
+ * Returns the amount of data on the page, including buffer page header.
+ */
+size_t ring_buffer_page_len(void *page)
+{
+	return local_read(&((struct buffer_data_page *)page)->commit)
+		+ BUF_PAGE_HDR_SIZE;
+}
+
+/*
+ * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
+ * this issue out.
+ */
+static void free_buffer_page(struct buffer_page *bpage)
+{
+	free_page((unsigned long)bpage->page);
+	kfree(bpage);
+}
+
+/*
+ * We need to fit the time_stamp delta into 27 bits.
+ */
+static inline int test_time_stamp(u64 delta)
+{
+	if (delta & TS_DELTA_TEST)
+		return 1;
+	return 0;
+}
+
+#define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
+
+/* Max payload is BUF_PAGE_SIZE - header (8bytes) */
+#define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
+
+int ring_buffer_print_page_header(struct trace_seq *s)
+{
+	struct buffer_data_page field;
+	int ret;
+
+	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
+			       "offset:0;\tsize:%u;\tsigned:%u;\n",
+			       (unsigned int)sizeof(field.time_stamp),
+			       (unsigned int)is_signed_type(u64));
+
+	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
+			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
+			       (unsigned int)offsetof(typeof(field), commit),
+			       (unsigned int)sizeof(field.commit),
+			       (unsigned int)is_signed_type(long));
+
+	ret = trace_seq_printf(s, "\tfield: int overwrite;\t"
+			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
+			       (unsigned int)offsetof(typeof(field), commit),
+			       1,
+			       (unsigned int)is_signed_type(long));
+
+	ret = trace_seq_printf(s, "\tfield: char data;\t"
+			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
+			       (unsigned int)offsetof(typeof(field), data),
+			       (unsigned int)BUF_PAGE_SIZE,
+			       (unsigned int)is_signed_type(char));
+
+	return ret;
+}
+
+/*
+ * head_page == tail_page && head == tail then buffer is empty.
+ */
+struct ring_buffer_per_cpu {
+	int				cpu;
+	atomic_t			record_disabled;
+	struct ring_buffer		*buffer;
+	spinlock_t			reader_lock;	/* serialize readers */
+	arch_spinlock_t			lock;
+	struct lock_class_key		lock_key;
+	struct list_head		*pages;
+	struct buffer_page		*head_page;	/* read from head */
+	struct buffer_page		*tail_page;	/* write to tail */
+	struct buffer_page		*commit_page;	/* committed pages */
+	struct buffer_page		*reader_page;
+	unsigned long			lost_events;
+	unsigned long			last_overrun;
+	local_t				entries_bytes;
+	local_t				commit_overrun;
+	local_t				overrun;
+	local_t				entries;
+	local_t				committing;
+	local_t				commits;
+	unsigned long			read;
+	unsigned long			read_bytes;
+	u64				write_stamp;
+	u64				read_stamp;
+};
+
+struct ring_buffer {
+	unsigned			pages;
+	unsigned			flags;
+	int				cpus;
+	atomic_t			record_disabled;
+	cpumask_var_t			cpumask;
+
+	struct lock_class_key		*reader_lock_key;
+
+	struct mutex			mutex;
+
+	struct ring_buffer_per_cpu	**buffers;
+
+#ifdef CONFIG_HOTPLUG_CPU
+	struct notifier_block		cpu_notify;
+#endif
+	u64				(*clock)(void);
+};
+
+struct ring_buffer_iter {
+	struct ring_buffer_per_cpu	*cpu_buffer;
+	unsigned long			head;
+	struct buffer_page		*head_page;
+	struct buffer_page		*cache_reader_page;
+	unsigned long			cache_read;
+	u64				read_stamp;
+};
+
+/* buffer may be either ring_buffer or ring_buffer_per_cpu */
+#define RB_WARN_ON(b, cond)						\
+	({								\
+		int _____ret = unlikely(cond);				\
+		if (_____ret) {						\
+			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
+				struct ring_buffer_per_cpu *__b =	\
+					(void *)b;			\
+				atomic_inc(&__b->buffer->record_disabled); \
+			} else						\
+				atomic_inc(&b->record_disabled);	\
+			WARN_ON(1);					\
+		}							\
+		_____ret;						\
+	})
+
+/* Up this if you want to test the TIME_EXTENTS and normalization */
+#define DEBUG_SHIFT 0
+
+static inline u64 rb_time_stamp(struct ring_buffer *buffer)
+{
+	/* shift to debug/test normalization and TIME_EXTENTS */
+	return buffer->clock() << DEBUG_SHIFT;
+}
+
+u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
+{
+	u64 time;
+
+	preempt_disable_notrace();
+	time = rb_time_stamp(buffer);
+	preempt_enable_no_resched_notrace();
+
+	return time;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
+
+void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
+				      int cpu, u64 *ts)
+{
+	/* Just stupid testing the normalize function and deltas */
+	*ts >>= DEBUG_SHIFT;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
+
+/*
+ * Making the ring buffer lockless makes things tricky.
+ * Although writes only happen on the CPU that they are on,
+ * and they only need to worry about interrupts. Reads can
+ * happen on any CPU.
+ *
+ * The reader page is always off the ring buffer, but when the
+ * reader finishes with a page, it needs to swap its page with
+ * a new one from the buffer. The reader needs to take from
+ * the head (writes go to the tail). But if a writer is in overwrite
+ * mode and wraps, it must push the head page forward.
+ *
+ * Here lies the problem.
+ *
+ * The reader must be careful to replace only the head page, and
+ * not another one. As described at the top of the file in the
+ * ASCII art, the reader sets its old page to point to the next
+ * page after head. It then sets the page after head to point to
+ * the old reader page. But if the writer moves the head page
+ * during this operation, the reader could end up with the tail.
+ *
+ * We use cmpxchg to help prevent this race. We also do something
+ * special with the page before head. We set the LSB to 1.
+ *
+ * When the writer must push the page forward, it will clear the
+ * bit that points to the head page, move the head, and then set
+ * the bit that points to the new head page.
+ *
+ * We also don't want an interrupt coming in and moving the head
+ * page on another writer. Thus we use the second LSB to catch
+ * that too. Thus:
+ *
+ * head->list->prev->next        bit 1          bit 0
+ *                              -------        -------
+ * Normal page                     0              0
+ * Points to head page             0              1
+ * New head page                   1              0
+ *
+ * Note we can not trust the prev pointer of the head page, because:
+ *
+ * +----+       +-----+        +-----+
+ * |    |------>|  T  |---X--->|  N  |
+ * |    |<------|     |        |     |
+ * +----+       +-----+        +-----+
+ *   ^                           ^ |
+ *   |          +-----+          | |
+ *   +----------|  R  |----------+ |
+ *              |     |<-----------+
+ *              +-----+
+ *
+ * Key:  ---X-->  HEAD flag set in pointer
+ *         T      Tail page
+ *         R      Reader page
+ *         N      Next page
+ *
+ * (see __rb_reserve_next() to see where this happens)
+ *
+ *  What the above shows is that the reader just swapped out
+ *  the reader page with a page in the buffer, but before it
+ *  could make the new header point back to the new page added
+ *  it was preempted by a writer. The writer moved forward onto
+ *  the new page added by the reader and is about to move forward
+ *  again.
+ *
+ *  You can see, it is legitimate for the previous pointer of
+ *  the head (or any page) not to point back to itself. But only
+ *  temporarially.
+ */
+
+#define RB_PAGE_NORMAL		0UL
+#define RB_PAGE_HEAD		1UL
+#define RB_PAGE_UPDATE		2UL
+
+
+#define RB_FLAG_MASK		3UL
+
+/* PAGE_MOVED is not part of the mask */
+#define RB_PAGE_MOVED		4UL
+
+/*
+ * rb_list_head - remove any bit
+ */
+static struct list_head *rb_list_head(struct list_head *list)
+{
+	unsigned long val = (unsigned long)list;
+
+	return (struct list_head *)(val & ~RB_FLAG_MASK);
+}
+
+/*
+ * rb_is_head_page - test if the given page is the head page
+ *
+ * Because the reader may move the head_page pointer, we can
+ * not trust what the head page is (it may be pointing to
+ * the reader page). But if the next page is a header page,
+ * its flags will be non zero.
+ */
+static inline int
+rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
+		struct buffer_page *page, struct list_head *list)
+{
+	unsigned long val;
+
+	val = (unsigned long)list->next;
+
+	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
+		return RB_PAGE_MOVED;
+
+	return val & RB_FLAG_MASK;
+}
+
+/*
+ * rb_is_reader_page
+ *
+ * The unique thing about the reader page, is that, if the
+ * writer is ever on it, the previous pointer never points
+ * back to the reader page.
+ */
+static int rb_is_reader_page(struct buffer_page *page)
+{
+	struct list_head *list = page->list.prev;
+
+	return rb_list_head(list->next) != &page->list;
+}
+
+/*
+ * rb_set_list_to_head - set a list_head to be pointing to head.
+ */
+static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
+				struct list_head *list)
+{
+	unsigned long *ptr;
+
+	ptr = (unsigned long *)&list->next;
+	*ptr |= RB_PAGE_HEAD;
+	*ptr &= ~RB_PAGE_UPDATE;
+}
+
+/*
+ * rb_head_page_activate - sets up head page
+ */
+static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	struct buffer_page *head;
+
+	head = cpu_buffer->head_page;
+	if (!head)
+		return;
+
+	/*
+	 * Set the previous list pointer to have the HEAD flag.
+	 */
+	rb_set_list_to_head(cpu_buffer, head->list.prev);
+}
+
+static void rb_list_head_clear(struct list_head *list)
+{
+	unsigned long *ptr = (unsigned long *)&list->next;
+
+	*ptr &= ~RB_FLAG_MASK;
+}
+
+/*
+ * rb_head_page_dactivate - clears head page ptr (for free list)
+ */
+static void
+rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	struct list_head *hd;
+
+	/* Go through the whole list and clear any pointers found. */
+	rb_list_head_clear(cpu_buffer->pages);
+
+	list_for_each(hd, cpu_buffer->pages)
+		rb_list_head_clear(hd);
+}
+
+static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
+			    struct buffer_page *head,
+			    struct buffer_page *prev,
+			    int old_flag, int new_flag)
+{
+	struct list_head *list;
+	unsigned long val = (unsigned long)&head->list;
+	unsigned long ret;
+
+	list = &prev->list;
+
+	val &= ~RB_FLAG_MASK;
+
+	ret = cmpxchg((unsigned long *)&list->next,
+		      val | old_flag, val | new_flag);
+
+	/* check if the reader took the page */
+	if ((ret & ~RB_FLAG_MASK) != val)
+		return RB_PAGE_MOVED;
+
+	return ret & RB_FLAG_MASK;
+}
+
+static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
+				   struct buffer_page *head,
+				   struct buffer_page *prev,
+				   int old_flag)
+{
+	return rb_head_page_set(cpu_buffer, head, prev,
+				old_flag, RB_PAGE_UPDATE);
+}
+
+static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
+				 struct buffer_page *head,
+				 struct buffer_page *prev,
+				 int old_flag)
+{
+	return rb_head_page_set(cpu_buffer, head, prev,
+				old_flag, RB_PAGE_HEAD);
+}
+
+static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
+				   struct buffer_page *head,
+				   struct buffer_page *prev,
+				   int old_flag)
+{
+	return rb_head_page_set(cpu_buffer, head, prev,
+				old_flag, RB_PAGE_NORMAL);
+}
+
+static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
+			       struct buffer_page **bpage)
+{
+	struct list_head *p = rb_list_head((*bpage)->list.next);
+
+	*bpage = list_entry(p, struct buffer_page, list);
+}
+
+static struct buffer_page *
+rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	struct buffer_page *head;
+	struct buffer_page *page;
+	struct list_head *list;
+	int i;
+
+	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
+		return NULL;
+
+	/* sanity check */
+	list = cpu_buffer->pages;
+	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
+		return NULL;
+
+	page = head = cpu_buffer->head_page;
+	/*
+	 * It is possible that the writer moves the header behind
+	 * where we started, and we miss in one loop.
+	 * A second loop should grab the header, but we'll do
+	 * three loops just because I'm paranoid.
+	 */
+	for (i = 0; i < 3; i++) {
+		do {
+			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
+				cpu_buffer->head_page = page;
+				return page;
+			}
+			rb_inc_page(cpu_buffer, &page);
+		} while (page != head);
+	}
+
+	RB_WARN_ON(cpu_buffer, 1);
+
+	return NULL;
+}
+
+static int rb_head_page_replace(struct buffer_page *old,
+				struct buffer_page *new)
+{
+	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
+	unsigned long val;
+	unsigned long ret;
+
+	val = *ptr & ~RB_FLAG_MASK;
+	val |= RB_PAGE_HEAD;
+
+	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
+
+	return ret == val;
+}
+
+/*
+ * rb_tail_page_update - move the tail page forward
+ *
+ * Returns 1 if moved tail page, 0 if someone else did.
+ */
+static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
+			       struct buffer_page *tail_page,
+			       struct buffer_page *next_page)
+{
+	struct buffer_page *old_tail;
+	unsigned long old_entries;
+	unsigned long old_write;
+	int ret = 0;
+
+	/*
+	 * The tail page now needs to be moved forward.
+	 *
+	 * We need to reset the tail page, but without messing
+	 * with possible erasing of data brought in by interrupts
+	 * that have moved the tail page and are currently on it.
+	 *
+	 * We add a counter to the write field to denote this.
+	 */
+	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
+	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
+
+	/*
+	 * Just make sure we have seen our old_write and synchronize
+	 * with any interrupts that come in.
+	 */
+	barrier();
+
+	/*
+	 * If the tail page is still the same as what we think
+	 * it is, then it is up to us to update the tail
+	 * pointer.
+	 */
+	if (tail_page == cpu_buffer->tail_page) {
+		/* Zero the write counter */
+		unsigned long val = old_write & ~RB_WRITE_MASK;
+		unsigned long eval = old_entries & ~RB_WRITE_MASK;
+
+		/*
+		 * This will only succeed if an interrupt did
+		 * not come in and change it. In which case, we
+		 * do not want to modify it.
+		 *
+		 * We add (void) to let the compiler know that we do not care
+		 * about the return value of these functions. We use the
+		 * cmpxchg to only update if an interrupt did not already
+		 * do it for us. If the cmpxchg fails, we don't care.
+		 */
+		(void)local_cmpxchg(&next_page->write, old_write, val);
+		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
+
+		/*
+		 * No need to worry about races with clearing out the commit.
+		 * it only can increment when a commit takes place. But that
+		 * only happens in the outer most nested commit.
+		 */
+		local_set(&next_page->page->commit, 0);
+
+		old_tail = cmpxchg(&cpu_buffer->tail_page,
+				   tail_page, next_page);
+
+		if (old_tail == tail_page)
+			ret = 1;
+	}
+
+	return ret;
+}
+
+static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
+			  struct buffer_page *bpage)
+{
+	unsigned long val = (unsigned long)bpage;
+
+	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
+		return 1;
+
+	return 0;
+}
+
+/**
+ * rb_check_list - make sure a pointer to a list has the last bits zero
+ */
+static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
+			 struct list_head *list)
+{
+	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
+		return 1;
+	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
+		return 1;
+	return 0;
+}
+
+/**
+ * check_pages - integrity check of buffer pages
+ * @cpu_buffer: CPU buffer with pages to test
+ *
+ * As a safety measure we check to make sure the data pages have not
+ * been corrupted.
+ */
+static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	struct list_head *head = cpu_buffer->pages;
+	struct buffer_page *bpage, *tmp;
+
+	rb_head_page_deactivate(cpu_buffer);
+
+	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
+		return -1;
+	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
+		return -1;
+
+	if (rb_check_list(cpu_buffer, head))
+		return -1;
+
+	list_for_each_entry_safe(bpage, tmp, head, list) {
+		if (RB_WARN_ON(cpu_buffer,
+			       bpage->list.next->prev != &bpage->list))
+			return -1;
+		if (RB_WARN_ON(cpu_buffer,
+			       bpage->list.prev->next != &bpage->list))
+			return -1;
+		if (rb_check_list(cpu_buffer, &bpage->list))
+			return -1;
+	}
+
+	rb_head_page_activate(cpu_buffer);
+
+	return 0;
+}
+
+static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
+			     unsigned nr_pages)
+{
+	struct buffer_page *bpage, *tmp;
+	LIST_HEAD(pages);
+	unsigned i;
+
+	WARN_ON(!nr_pages);
+
+	for (i = 0; i < nr_pages; i++) {
+		struct page *page;
+		/*
+		 * __GFP_NORETRY flag makes sure that the allocation fails
+		 * gracefully without invoking oom-killer and the system is
+		 * not destabilized.
+		 */
+		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
+				    GFP_KERNEL | __GFP_NORETRY,
+				    cpu_to_node(cpu_buffer->cpu));
+		if (!bpage)
+			goto free_pages;
+
+		rb_check_bpage(cpu_buffer, bpage);
+
+		list_add(&bpage->list, &pages);
+
+		page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
+					GFP_KERNEL | __GFP_NORETRY, 0);
+		if (!page)
+			goto free_pages;
+		bpage->page = page_address(page);
+		rb_init_page(bpage->page);
+	}
+
+	/*
+	 * The ring buffer page list is a circular list that does not
+	 * start and end with a list head. All page list items point to
+	 * other pages.
+	 */
+	cpu_buffer->pages = pages.next;
+	list_del(&pages);
+
+	rb_check_pages(cpu_buffer);
+
+	return 0;
+
+ free_pages:
+	list_for_each_entry_safe(bpage, tmp, &pages, list) {
+		list_del_init(&bpage->list);
+		free_buffer_page(bpage);
+	}
+	return -ENOMEM;
+}
+
+static inline int ok_to_lock(void)
+{
+	if (in_nmi())
+		return 0;
+#ifdef CONFIG_PREEMPT_RT_FULL
+	if (in_atomic() || irqs_disabled())
+		return 0;
+#endif
+	return 1;
+}
+
+static int
+read_buffer_lock(struct ring_buffer_per_cpu *cpu_buffer,
+		 unsigned long *flags)
+{
+	/*
+	 * If an NMI die dumps out the content of the ring buffer
+	 * do not grab locks. We also permanently disable the ring
+	 * buffer too. A one time deal is all you get from reading
+	 * the ring buffer from an NMI.
+	 */
+	if (!ok_to_lock()) {
+		if (spin_trylock_irqsave(&cpu_buffer->reader_lock, *flags))
+			return 1;
+		tracing_off_permanent();
+		return 0;
+	}
+	spin_lock_irqsave(&cpu_buffer->reader_lock, *flags);
+	return 1;
+}
+
+static void
+read_buffer_unlock(struct ring_buffer_per_cpu *cpu_buffer,
+		   unsigned long flags, int locked)
+{
+	if (locked)
+		spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+}
+static struct ring_buffer_per_cpu *
+rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	struct buffer_page *bpage;
+	struct page *page;
+	int ret;
+
+	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
+				  GFP_KERNEL, cpu_to_node(cpu));
+	if (!cpu_buffer)
+		return NULL;
+
+	cpu_buffer->cpu = cpu;
+	cpu_buffer->buffer = buffer;
+	spin_lock_init(&cpu_buffer->reader_lock);
+	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
+	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
+
+	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
+			    GFP_KERNEL, cpu_to_node(cpu));
+	if (!bpage)
+		goto fail_free_buffer;
+
+	rb_check_bpage(cpu_buffer, bpage);
+
+	cpu_buffer->reader_page = bpage;
+	page = alloc_pages_node(cpu_to_node(cpu), GFP_KERNEL, 0);
+	if (!page)
+		goto fail_free_reader;
+	bpage->page = page_address(page);
+	rb_init_page(bpage->page);
+
+	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
+
+	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
+	if (ret < 0)
+		goto fail_free_reader;
+
+	cpu_buffer->head_page
+		= list_entry(cpu_buffer->pages, struct buffer_page, list);
+	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
+
+	rb_head_page_activate(cpu_buffer);
+
+	return cpu_buffer;
+
+ fail_free_reader:
+	free_buffer_page(cpu_buffer->reader_page);
+
+ fail_free_buffer:
+	kfree(cpu_buffer);
+	return NULL;
+}
+
+static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	struct list_head *head = cpu_buffer->pages;
+	struct buffer_page *bpage, *tmp;
+
+	free_buffer_page(cpu_buffer->reader_page);
+
+	rb_head_page_deactivate(cpu_buffer);
+
+	if (head) {
+		list_for_each_entry_safe(bpage, tmp, head, list) {
+			list_del_init(&bpage->list);
+			free_buffer_page(bpage);
+		}
+		bpage = list_entry(head, struct buffer_page, list);
+		free_buffer_page(bpage);
+	}
+
+	kfree(cpu_buffer);
+}
+
+#ifdef CONFIG_HOTPLUG_CPU
+static int rb_cpu_notify(struct notifier_block *self,
+			 unsigned long action, void *hcpu);
+#endif
+
+/**
+ * ring_buffer_alloc - allocate a new ring_buffer
+ * @size: the size in bytes per cpu that is needed.
+ * @flags: attributes to set for the ring buffer.
+ *
+ * Currently the only flag that is available is the RB_FL_OVERWRITE
+ * flag. This flag means that the buffer will overwrite old data
+ * when the buffer wraps. If this flag is not set, the buffer will
+ * drop data when the tail hits the head.
+ */
+struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
+					struct lock_class_key *key)
+{
+	struct ring_buffer *buffer;
+	int bsize;
+	int cpu;
+
+	/* keep it in its own cache line */
+	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
+			 GFP_KERNEL);
+	if (!buffer)
+		return NULL;
+
+	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
+		goto fail_free_buffer;
+
+	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
+	buffer->flags = flags;
+	buffer->clock = trace_clock_local;
+	buffer->reader_lock_key = key;
+
+	/* need at least two pages */
+	if (buffer->pages < 2)
+		buffer->pages = 2;
+
+	/*
+	 * In case of non-hotplug cpu, if the ring-buffer is allocated
+	 * in early initcall, it will not be notified of secondary cpus.
+	 * In that off case, we need to allocate for all possible cpus.
+	 */
+#ifdef CONFIG_HOTPLUG_CPU
+	get_online_cpus();
+	cpumask_copy(buffer->cpumask, cpu_online_mask);
+#else
+	cpumask_copy(buffer->cpumask, cpu_possible_mask);
+#endif
+	buffer->cpus = nr_cpu_ids;
+
+	bsize = sizeof(void *) * nr_cpu_ids;
+	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
+				  GFP_KERNEL);
+	if (!buffer->buffers)
+		goto fail_free_cpumask;
+
+	for_each_buffer_cpu(buffer, cpu) {
+		buffer->buffers[cpu] =
+			rb_allocate_cpu_buffer(buffer, cpu);
+		if (!buffer->buffers[cpu])
+			goto fail_free_buffers;
+	}
+
+#ifdef CONFIG_HOTPLUG_CPU
+	buffer->cpu_notify.notifier_call = rb_cpu_notify;
+	buffer->cpu_notify.priority = 0;
+	register_cpu_notifier(&buffer->cpu_notify);
+#endif
+
+	put_online_cpus();
+	mutex_init(&buffer->mutex);
+
+	return buffer;
+
+ fail_free_buffers:
+	for_each_buffer_cpu(buffer, cpu) {
+		if (buffer->buffers[cpu])
+			rb_free_cpu_buffer(buffer->buffers[cpu]);
+	}
+	kfree(buffer->buffers);
+
+ fail_free_cpumask:
+	free_cpumask_var(buffer->cpumask);
+	put_online_cpus();
+
+ fail_free_buffer:
+	kfree(buffer);
+	return NULL;
+}
+EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
+
+/**
+ * ring_buffer_free - free a ring buffer.
+ * @buffer: the buffer to free.
+ */
+void
+ring_buffer_free(struct ring_buffer *buffer)
+{
+	int cpu;
+
+	get_online_cpus();
+
+#ifdef CONFIG_HOTPLUG_CPU
+	unregister_cpu_notifier(&buffer->cpu_notify);
+#endif
+
+	for_each_buffer_cpu(buffer, cpu)
+		rb_free_cpu_buffer(buffer->buffers[cpu]);
+
+	put_online_cpus();
+
+	kfree(buffer->buffers);
+	free_cpumask_var(buffer->cpumask);
+
+	kfree(buffer);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_free);
+
+void ring_buffer_set_clock(struct ring_buffer *buffer,
+			   u64 (*clock)(void))
+{
+	buffer->clock = clock;
+}
+
+static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
+
+static void
+rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
+{
+	struct buffer_page *bpage;
+	struct list_head *p;
+	unsigned long flags;
+	unsigned i;
+	int locked;
+
+	locked = read_buffer_lock(cpu_buffer, &flags);
+	rb_head_page_deactivate(cpu_buffer);
+
+	for (i = 0; i < nr_pages; i++) {
+		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
+			goto out;
+		p = cpu_buffer->pages->next;
+		bpage = list_entry(p, struct buffer_page, list);
+		list_del_init(&bpage->list);
+		free_buffer_page(bpage);
+	}
+	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
+		goto out;
+
+	rb_reset_cpu(cpu_buffer);
+	rb_check_pages(cpu_buffer);
+
+out:
+	read_buffer_unlock(cpu_buffer, flags, locked);
+}
+
+static void
+rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
+		struct list_head *pages, unsigned nr_pages)
+{
+	struct buffer_page *bpage;
+	struct list_head *p;
+	unsigned long flags;
+	unsigned i;
+	int locked;
+
+	locked = read_buffer_lock(cpu_buffer, &flags);
+	rb_head_page_deactivate(cpu_buffer);
+
+	for (i = 0; i < nr_pages; i++) {
+		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
+			goto out;
+		p = pages->next;
+		bpage = list_entry(p, struct buffer_page, list);
+		list_del_init(&bpage->list);
+		list_add_tail(&bpage->list, cpu_buffer->pages);
+	}
+	rb_reset_cpu(cpu_buffer);
+	rb_check_pages(cpu_buffer);
+
+out:
+	read_buffer_unlock(cpu_buffer, flags, locked);
+}
+
+/**
+ * ring_buffer_resize - resize the ring buffer
+ * @buffer: the buffer to resize.
+ * @size: the new size.
+ *
+ * Minimum size is 2 * BUF_PAGE_SIZE.
+ *
+ * Returns -1 on failure.
+ */
+int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned nr_pages, rm_pages, new_pages;
+	struct buffer_page *bpage, *tmp;
+	unsigned long buffer_size;
+	LIST_HEAD(pages);
+	int i, cpu;
+
+	/*
+	 * Always succeed at resizing a non-existent buffer:
+	 */
+	if (!buffer)
+		return size;
+
+	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
+	size *= BUF_PAGE_SIZE;
+	buffer_size = buffer->pages * BUF_PAGE_SIZE;
+
+	/* we need a minimum of two pages */
+	if (size < BUF_PAGE_SIZE * 2)
+		size = BUF_PAGE_SIZE * 2;
+
+	if (size == buffer_size)
+		return size;
+
+	atomic_inc(&buffer->record_disabled);
+
+	/* Make sure all writers are done with this buffer. */
+	synchronize_sched();
+
+	mutex_lock(&buffer->mutex);
+	get_online_cpus();
+
+	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
+
+	if (size < buffer_size) {
+
+		/* easy case, just free pages */
+		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
+			goto out_fail;
+
+		rm_pages = buffer->pages - nr_pages;
+
+		for_each_buffer_cpu(buffer, cpu) {
+			cpu_buffer = buffer->buffers[cpu];
+			rb_remove_pages(cpu_buffer, rm_pages);
+		}
+		goto out;
+	}
+
+	/*
+	 * This is a bit more difficult. We only want to add pages
+	 * when we can allocate enough for all CPUs. We do this
+	 * by allocating all the pages and storing them on a local
+	 * link list. If we succeed in our allocation, then we
+	 * add these pages to the cpu_buffers. Otherwise we just free
+	 * them all and return -ENOMEM;
+	 */
+	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
+		goto out_fail;
+
+	new_pages = nr_pages - buffer->pages;
+
+	for_each_buffer_cpu(buffer, cpu) {
+		for (i = 0; i < new_pages; i++) {
+			struct page *page;
+			/*
+			 * __GFP_NORETRY flag makes sure that the allocation
+			 * fails gracefully without invoking oom-killer and
+			 * the system is not destabilized.
+			 */
+			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
+						  cache_line_size()),
+					    GFP_KERNEL | __GFP_NORETRY,
+					    cpu_to_node(cpu));
+			if (!bpage)
+				goto free_pages;
+			list_add(&bpage->list, &pages);
+			page = alloc_pages_node(cpu_to_node(cpu),
+						GFP_KERNEL | __GFP_NORETRY, 0);
+			if (!page)
+				goto free_pages;
+			bpage->page = page_address(page);
+			rb_init_page(bpage->page);
+		}
+	}
+
+	for_each_buffer_cpu(buffer, cpu) {
+		cpu_buffer = buffer->buffers[cpu];
+		rb_insert_pages(cpu_buffer, &pages, new_pages);
+	}
+
+	if (RB_WARN_ON(buffer, !list_empty(&pages)))
+		goto out_fail;
+
+ out:
+	buffer->pages = nr_pages;
+	put_online_cpus();
+	mutex_unlock(&buffer->mutex);
+
+	atomic_dec(&buffer->record_disabled);
+
+	return size;
+
+ free_pages:
+	list_for_each_entry_safe(bpage, tmp, &pages, list) {
+		list_del_init(&bpage->list);
+		free_buffer_page(bpage);
+	}
+	put_online_cpus();
+	mutex_unlock(&buffer->mutex);
+	atomic_dec(&buffer->record_disabled);
+	return -ENOMEM;
+
+	/*
+	 * Something went totally wrong, and we are too paranoid
+	 * to even clean up the mess.
+	 */
+ out_fail:
+	put_online_cpus();
+	mutex_unlock(&buffer->mutex);
+	atomic_dec(&buffer->record_disabled);
+	return -1;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_resize);
+
+void ring_buffer_change_overwrite(struct ring_buffer *buffer, int val)
+{
+	mutex_lock(&buffer->mutex);
+	if (val)
+		buffer->flags |= RB_FL_OVERWRITE;
+	else
+		buffer->flags &= ~RB_FL_OVERWRITE;
+	mutex_unlock(&buffer->mutex);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
+
+static inline void *
+__rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
+{
+	return bpage->data + index;
+}
+
+static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
+{
+	return bpage->page->data + index;
+}
+
+static inline struct ring_buffer_event *
+rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	return __rb_page_index(cpu_buffer->reader_page,
+			       cpu_buffer->reader_page->read);
+}
+
+static inline struct ring_buffer_event *
+rb_iter_head_event(struct ring_buffer_iter *iter)
+{
+	return __rb_page_index(iter->head_page, iter->head);
+}
+
+static inline unsigned long rb_page_write(struct buffer_page *bpage)
+{
+	return local_read(&bpage->write) & RB_WRITE_MASK;
+}
+
+static inline unsigned rb_page_commit(struct buffer_page *bpage)
+{
+	return local_read(&bpage->page->commit);
+}
+
+static inline unsigned long rb_page_entries(struct buffer_page *bpage)
+{
+	return local_read(&bpage->entries) & RB_WRITE_MASK;
+}
+
+/* Size is determined by what has been committed */
+static inline unsigned rb_page_size(struct buffer_page *bpage)
+{
+	return rb_page_commit(bpage);
+}
+
+static inline unsigned
+rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	return rb_page_commit(cpu_buffer->commit_page);
+}
+
+static inline unsigned
+rb_event_index(struct ring_buffer_event *event)
+{
+	unsigned long addr = (unsigned long)event;
+
+	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
+}
+
+static inline int
+rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
+		   struct ring_buffer_event *event)
+{
+	unsigned long addr = (unsigned long)event;
+	unsigned long index;
+
+	index = rb_event_index(event);
+	addr &= PAGE_MASK;
+
+	return cpu_buffer->commit_page->page == (void *)addr &&
+		rb_commit_index(cpu_buffer) == index;
+}
+
+static void
+rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	unsigned long max_count;
+
+	/*
+	 * We only race with interrupts and NMIs on this CPU.
+	 * If we own the commit event, then we can commit
+	 * all others that interrupted us, since the interruptions
+	 * are in stack format (they finish before they come
+	 * back to us). This allows us to do a simple loop to
+	 * assign the commit to the tail.
+	 */
+ again:
+	max_count = cpu_buffer->buffer->pages * 100;
+
+	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
+		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
+			return;
+		if (RB_WARN_ON(cpu_buffer,
+			       rb_is_reader_page(cpu_buffer->tail_page)))
+			return;
+		local_set(&cpu_buffer->commit_page->page->commit,
+			  rb_page_write(cpu_buffer->commit_page));
+		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
+		cpu_buffer->write_stamp =
+			cpu_buffer->commit_page->page->time_stamp;
+		/* add barrier to keep gcc from optimizing too much */
+		barrier();
+	}
+	while (rb_commit_index(cpu_buffer) !=
+	       rb_page_write(cpu_buffer->commit_page)) {
+
+		local_set(&cpu_buffer->commit_page->page->commit,
+			  rb_page_write(cpu_buffer->commit_page));
+		RB_WARN_ON(cpu_buffer,
+			   local_read(&cpu_buffer->commit_page->page->commit) &
+			   ~RB_WRITE_MASK);
+		barrier();
+	}
+
+	/* again, keep gcc from optimizing */
+	barrier();
+
+	/*
+	 * If an interrupt came in just after the first while loop
+	 * and pushed the tail page forward, we will be left with
+	 * a dangling commit that will never go forward.
+	 */
+	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
+		goto again;
+}
+
+static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
+	cpu_buffer->reader_page->read = 0;
+}
+
+static void rb_inc_iter(struct ring_buffer_iter *iter)
+{
+	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+
+	/*
+	 * The iterator could be on the reader page (it starts there).
+	 * But the head could have moved, since the reader was
+	 * found. Check for this case and assign the iterator
+	 * to the head page instead of next.
+	 */
+	if (iter->head_page == cpu_buffer->reader_page)
+		iter->head_page = rb_set_head_page(cpu_buffer);
+	else
+		rb_inc_page(cpu_buffer, &iter->head_page);
+
+	iter->read_stamp = iter->head_page->page->time_stamp;
+	iter->head = 0;
+}
+
+/* Slow path, do not inline */
+static noinline struct ring_buffer_event *
+rb_add_time_stamp(struct ring_buffer_event *event, u64 delta)
+{
+	event->type_len = RINGBUF_TYPE_TIME_EXTEND;
+
+	/* Not the first event on the page? */
+	if (rb_event_index(event)) {
+		event->time_delta = delta & TS_MASK;
+		event->array[0] = delta >> TS_SHIFT;
+	} else {
+		/* nope, just zero it */
+		event->time_delta = 0;
+		event->array[0] = 0;
+	}
+
+	return skip_time_extend(event);
+}
+
+/**
+ * ring_buffer_update_event - update event type and data
+ * @event: the even to update
+ * @type: the type of event
+ * @length: the size of the event field in the ring buffer
+ *
+ * Update the type and data fields of the event. The length
+ * is the actual size that is written to the ring buffer,
+ * and with this, we can determine what to place into the
+ * data field.
+ */
+static void
+rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
+		struct ring_buffer_event *event, unsigned length,
+		int add_timestamp, u64 delta)
+{
+	/* Only a commit updates the timestamp */
+	if (unlikely(!rb_event_is_commit(cpu_buffer, event)))
+		delta = 0;
+
+	/*
+	 * If we need to add a timestamp, then we
+	 * add it to the start of the resevered space.
+	 */
+	if (unlikely(add_timestamp)) {
+		event = rb_add_time_stamp(event, delta);
+		length -= RB_LEN_TIME_EXTEND;
+		delta = 0;
+	}
+
+	event->time_delta = delta;
+	length -= RB_EVNT_HDR_SIZE;
+	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
+		event->type_len = 0;
+		event->array[0] = length;
+	} else
+		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
+}
+
+/*
+ * rb_handle_head_page - writer hit the head page
+ *
+ * Returns: +1 to retry page
+ *           0 to continue
+ *          -1 on error
+ */
+static int
+rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
+		    struct buffer_page *tail_page,
+		    struct buffer_page *next_page)
+{
+	struct buffer_page *new_head;
+	int entries;
+	int type;
+	int ret;
+
+	entries = rb_page_entries(next_page);
+
+	/*
+	 * The hard part is here. We need to move the head
+	 * forward, and protect against both readers on
+	 * other CPUs and writers coming in via interrupts.
+	 */
+	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
+				       RB_PAGE_HEAD);
+
+	/*
+	 * type can be one of four:
+	 *  NORMAL - an interrupt already moved it for us
+	 *  HEAD   - we are the first to get here.
+	 *  UPDATE - we are the interrupt interrupting
+	 *           a current move.
+	 *  MOVED  - a reader on another CPU moved the next
+	 *           pointer to its reader page. Give up
+	 *           and try again.
+	 */
+
+	switch (type) {
+	case RB_PAGE_HEAD:
+		/*
+		 * We changed the head to UPDATE, thus
+		 * it is our responsibility to update
+		 * the counters.
+		 */
+		local_add(entries, &cpu_buffer->overrun);
+		local_sub(BUF_PAGE_SIZE, &cpu_buffer->entries_bytes);
+
+		/*
+		 * The entries will be zeroed out when we move the
+		 * tail page.
+		 */
+
+		/* still more to do */
+		break;
+
+	case RB_PAGE_UPDATE:
+		/*
+		 * This is an interrupt that interrupt the
+		 * previous update. Still more to do.
+		 */
+		break;
+	case RB_PAGE_NORMAL:
+		/*
+		 * An interrupt came in before the update
+		 * and processed this for us.
+		 * Nothing left to do.
+		 */
+		return 1;
+	case RB_PAGE_MOVED:
+		/*
+		 * The reader is on another CPU and just did
+		 * a swap with our next_page.
+		 * Try again.
+		 */
+		return 1;
+	default:
+		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
+		return -1;
+	}
+
+	/*
+	 * Now that we are here, the old head pointer is
+	 * set to UPDATE. This will keep the reader from
+	 * swapping the head page with the reader page.
+	 * The reader (on another CPU) will spin till
+	 * we are finished.
+	 *
+	 * We just need to protect against interrupts
+	 * doing the job. We will set the next pointer
+	 * to HEAD. After that, we set the old pointer
+	 * to NORMAL, but only if it was HEAD before.
+	 * otherwise we are an interrupt, and only
+	 * want the outer most commit to reset it.
+	 */
+	new_head = next_page;
+	rb_inc_page(cpu_buffer, &new_head);
+
+	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
+				    RB_PAGE_NORMAL);
+
+	/*
+	 * Valid returns are:
+	 *  HEAD   - an interrupt came in and already set it.
+	 *  NORMAL - One of two things:
+	 *            1) We really set it.
+	 *            2) A bunch of interrupts came in and moved
+	 *               the page forward again.
+	 */
+	switch (ret) {
+	case RB_PAGE_HEAD:
+	case RB_PAGE_NORMAL:
+		/* OK */
+		break;
+	default:
+		RB_WARN_ON(cpu_buffer, 1);
+		return -1;
+	}
+
+	/*
+	 * It is possible that an interrupt came in,
+	 * set the head up, then more interrupts came in
+	 * and moved it again. When we get back here,
+	 * the page would have been set to NORMAL but we
+	 * just set it back to HEAD.
+	 *
+	 * How do you detect this? Well, if that happened
+	 * the tail page would have moved.
+	 */
+	if (ret == RB_PAGE_NORMAL) {
+		/*
+		 * If the tail had moved passed next, then we need
+		 * to reset the pointer.
+		 */
+		if (cpu_buffer->tail_page != tail_page &&
+		    cpu_buffer->tail_page != next_page)
+			rb_head_page_set_normal(cpu_buffer, new_head,
+						next_page,
+						RB_PAGE_HEAD);
+	}
+
+	/*
+	 * If this was the outer most commit (the one that
+	 * changed the original pointer from HEAD to UPDATE),
+	 * then it is up to us to reset it to NORMAL.
+	 */
+	if (type == RB_PAGE_HEAD) {
+		ret = rb_head_page_set_normal(cpu_buffer, next_page,
+					      tail_page,
+					      RB_PAGE_UPDATE);
+		if (RB_WARN_ON(cpu_buffer,
+			       ret != RB_PAGE_UPDATE))
+			return -1;
+	}
+
+	return 0;
+}
+
+static unsigned rb_calculate_event_length(unsigned length)
+{
+	struct ring_buffer_event event; /* Used only for sizeof array */
+
+	/* zero length can cause confusions */
+	if (!length)
+		length = 1;
+
+	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
+		length += sizeof(event.array[0]);
+
+	length += RB_EVNT_HDR_SIZE;
+	length = ALIGN(length, RB_ARCH_ALIGNMENT);
+
+	return length;
+}
+
+static inline void
+rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
+	      struct buffer_page *tail_page,
+	      unsigned long tail, unsigned long length)
+{
+	struct ring_buffer_event *event;
+
+	/*
+	 * Only the event that crossed the page boundary
+	 * must fill the old tail_page with padding.
+	 */
+	if (tail >= BUF_PAGE_SIZE) {
+		/*
+		 * If the page was filled, then we still need
+		 * to update the real_end. Reset it to zero
+		 * and the reader will ignore it.
+		 */
+		if (tail == BUF_PAGE_SIZE)
+			tail_page->real_end = 0;
+
+		local_sub(length, &tail_page->write);
+		return;
+	}
+
+	event = __rb_page_index(tail_page, tail);
+	kmemcheck_annotate_bitfield(event, bitfield);
+
+	/* account for padding bytes */
+	local_add(BUF_PAGE_SIZE - tail, &cpu_buffer->entries_bytes);
+
+	/*
+	 * Save the original length to the meta data.
+	 * This will be used by the reader to add lost event
+	 * counter.
+	 */
+	tail_page->real_end = tail;
+
+	/*
+	 * If this event is bigger than the minimum size, then
+	 * we need to be careful that we don't subtract the
+	 * write counter enough to allow another writer to slip
+	 * in on this page.
+	 * We put in a discarded commit instead, to make sure
+	 * that this space is not used again.
+	 *
+	 * If we are less than the minimum size, we don't need to
+	 * worry about it.
+	 */
+	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
+		/* No room for any events */
+
+		/* Mark the rest of the page with padding */
+		rb_event_set_padding(event);
+
+		/* Set the write back to the previous setting */
+		local_sub(length, &tail_page->write);
+		return;
+	}
+
+	/* Put in a discarded event */
+	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
+	event->type_len = RINGBUF_TYPE_PADDING;
+	/* time delta must be non zero */
+	event->time_delta = 1;
+
+	/* Set write to end of buffer */
+	length = (tail + length) - BUF_PAGE_SIZE;
+	local_sub(length, &tail_page->write);
+}
+
+/*
+ * This is the slow path, force gcc not to inline it.
+ */
+static noinline struct ring_buffer_event *
+rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
+	     unsigned long length, unsigned long tail,
+	     struct buffer_page *tail_page, u64 ts)
+{
+	struct buffer_page *commit_page = cpu_buffer->commit_page;
+	struct ring_buffer *buffer = cpu_buffer->buffer;
+	struct buffer_page *next_page;
+	int ret;
+
+	next_page = tail_page;
+
+	rb_inc_page(cpu_buffer, &next_page);
+
+	/*
+	 * If for some reason, we had an interrupt storm that made
+	 * it all the way around the buffer, bail, and warn
+	 * about it.
+	 */
+	if (unlikely(next_page == commit_page)) {
+		local_inc(&cpu_buffer->commit_overrun);
+		goto out_reset;
+	}
+
+	/*
+	 * This is where the fun begins!
+	 *
+	 * We are fighting against races between a reader that
+	 * could be on another CPU trying to swap its reader
+	 * page with the buffer head.
+	 *
+	 * We are also fighting against interrupts coming in and
+	 * moving the head or tail on us as well.
+	 *
+	 * If the next page is the head page then we have filled
+	 * the buffer, unless the commit page is still on the
+	 * reader page.
+	 */
+	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
+
+		/*
+		 * If the commit is not on the reader page, then
+		 * move the header page.
+		 */
+		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
+			/*
+			 * If we are not in overwrite mode,
+			 * this is easy, just stop here.
+			 */
+			if (!(buffer->flags & RB_FL_OVERWRITE))
+				goto out_reset;
+
+			ret = rb_handle_head_page(cpu_buffer,
+						  tail_page,
+						  next_page);
+			if (ret < 0)
+				goto out_reset;
+			if (ret)
+				goto out_again;
+		} else {
+			/*
+			 * We need to be careful here too. The
+			 * commit page could still be on the reader
+			 * page. We could have a small buffer, and
+			 * have filled up the buffer with events
+			 * from interrupts and such, and wrapped.
+			 *
+			 * Note, if the tail page is also the on the
+			 * reader_page, we let it move out.
+			 */
+			if (unlikely((cpu_buffer->commit_page !=
+				      cpu_buffer->tail_page) &&
+				     (cpu_buffer->commit_page ==
+				      cpu_buffer->reader_page))) {
+				local_inc(&cpu_buffer->commit_overrun);
+				goto out_reset;
+			}
+		}
+	}
+
+	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
+	if (ret) {
+		/*
+		 * Nested commits always have zero deltas, so
+		 * just reread the time stamp
+		 */
+		ts = rb_time_stamp(buffer);
+		next_page->page->time_stamp = ts;
+	}
+
+ out_again:
+
+	rb_reset_tail(cpu_buffer, tail_page, tail, length);
+
+	/* fail and let the caller try again */
+	return ERR_PTR(-EAGAIN);
+
+ out_reset:
+	/* reset write */
+	rb_reset_tail(cpu_buffer, tail_page, tail, length);
+
+	return NULL;
+}
+
+static struct ring_buffer_event *
+__rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
+		  unsigned long length, u64 ts,
+		  u64 delta, int add_timestamp)
+{
+	struct buffer_page *tail_page;
+	struct ring_buffer_event *event;
+	unsigned long tail, write;
+
+	/*
+	 * If the time delta since the last event is too big to
+	 * hold in the time field of the event, then we append a
+	 * TIME EXTEND event ahead of the data event.
+	 */
+	if (unlikely(add_timestamp))
+		length += RB_LEN_TIME_EXTEND;
+
+	tail_page = cpu_buffer->tail_page;
+	write = local_add_return(length, &tail_page->write);
+
+	/* set write to only the index of the write */
+	write &= RB_WRITE_MASK;
+	tail = write - length;
+
+	/*
+	 * If this is the first commit on the page, then it has the same
+	 * timestamp as the page itself.
+	 */
+	if (!tail)
+		delta = 0;
+
+	/* See if we shot pass the end of this buffer page */
+	if (unlikely(write > BUF_PAGE_SIZE))
+		return rb_move_tail(cpu_buffer, length, tail,
+				    tail_page, ts);
+
+	/* We reserved something on the buffer */
+
+	event = __rb_page_index(tail_page, tail);
+	kmemcheck_annotate_bitfield(event, bitfield);
+	rb_update_event(cpu_buffer, event, length, add_timestamp, delta);
+
+	local_inc(&tail_page->entries);
+
+	/*
+	 * If this is the first commit on the page, then update
+	 * its timestamp.
+	 */
+	if (!tail)
+		tail_page->page->time_stamp = ts;
+
+	/* account for these added bytes */
+	local_add(length, &cpu_buffer->entries_bytes);
+
+	return event;
+}
+
+static inline int
+rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
+		  struct ring_buffer_event *event)
+{
+	unsigned long new_index, old_index;
+	struct buffer_page *bpage;
+	unsigned long index;
+	unsigned long addr;
+
+	new_index = rb_event_index(event);
+	old_index = new_index + rb_event_ts_length(event);
+	addr = (unsigned long)event;
+	addr &= PAGE_MASK;
+
+	bpage = cpu_buffer->tail_page;
+
+	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
+		unsigned long write_mask =
+			local_read(&bpage->write) & ~RB_WRITE_MASK;
+		unsigned long event_length = rb_event_length(event);
+		/*
+		 * This is on the tail page. It is possible that
+		 * a write could come in and move the tail page
+		 * and write to the next page. That is fine
+		 * because we just shorten what is on this page.
+		 */
+		old_index += write_mask;
+		new_index += write_mask;
+		index = local_cmpxchg(&bpage->write, old_index, new_index);
+		if (index == old_index) {
+			/* update counters */
+			local_sub(event_length, &cpu_buffer->entries_bytes);
+			return 1;
+		}
+	}
+
+	/* could not discard */
+	return 0;
+}
+
+static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	local_inc(&cpu_buffer->committing);
+	local_inc(&cpu_buffer->commits);
+}
+
+static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	unsigned long commits;
+
+	if (RB_WARN_ON(cpu_buffer,
+		       !local_read(&cpu_buffer->committing)))
+		return;
+
+ again:
+	commits = local_read(&cpu_buffer->commits);
+	/* synchronize with interrupts */
+	barrier();
+	if (local_read(&cpu_buffer->committing) == 1)
+		rb_set_commit_to_write(cpu_buffer);
+
+	local_dec(&cpu_buffer->committing);
+
+	/* synchronize with interrupts */
+	barrier();
+
+	/*
+	 * Need to account for interrupts coming in between the
+	 * updating of the commit page and the clearing of the
+	 * committing counter.
+	 */
+	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
+	    !local_read(&cpu_buffer->committing)) {
+		local_inc(&cpu_buffer->committing);
+		goto again;
+	}
+}
+
+static struct ring_buffer_event *
+rb_reserve_next_event(struct ring_buffer *buffer,
+		      struct ring_buffer_per_cpu *cpu_buffer,
+		      unsigned long length)
+{
+	struct ring_buffer_event *event;
+	u64 ts, delta;
+	int nr_loops = 0;
+	int add_timestamp;
+	u64 diff;
+
+	rb_start_commit(cpu_buffer);
+
+#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
+	/*
+	 * Due to the ability to swap a cpu buffer from a buffer
+	 * it is possible it was swapped before we committed.
+	 * (committing stops a swap). We check for it here and
+	 * if it happened, we have to fail the write.
+	 */
+	barrier();
+	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
+		local_dec(&cpu_buffer->committing);
+		local_dec(&cpu_buffer->commits);
+		return NULL;
+	}
+#endif
+
+	length = rb_calculate_event_length(length);
+ again:
+	add_timestamp = 0;
+	delta = 0;
+
+	/*
+	 * We allow for interrupts to reenter here and do a trace.
+	 * If one does, it will cause this original code to loop
+	 * back here. Even with heavy interrupts happening, this
+	 * should only happen a few times in a row. If this happens
+	 * 1000 times in a row, there must be either an interrupt
+	 * storm or we have something buggy.
+	 * Bail!
+	 */
+	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
+		goto out_fail;
+
+	ts = rb_time_stamp(cpu_buffer->buffer);
+	diff = ts - cpu_buffer->write_stamp;
+
+	/* make sure this diff is calculated here */
+	barrier();
+
+	/* Did the write stamp get updated already? */
+	if (likely(ts >= cpu_buffer->write_stamp)) {
+		delta = diff;
+		if (unlikely(test_time_stamp(delta))) {
+			int local_clock_stable = 1;
+#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
+			local_clock_stable = sched_clock_stable;
+#endif
+			WARN_ONCE(delta > (1ULL << 59),
+				  KERN_WARNING "Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
+				  (unsigned long long)delta,
+				  (unsigned long long)ts,
+				  (unsigned long long)cpu_buffer->write_stamp,
+				  local_clock_stable ? "" :
+				  "If you just came from a suspend/resume,\n"
+				  "please switch to the trace global clock:\n"
+				  "  echo global > /sys/kernel/debug/tracing/trace_clock\n");
+			add_timestamp = 1;
+		}
+	}
+
+	event = __rb_reserve_next(cpu_buffer, length, ts,
+				  delta, add_timestamp);
+	if (unlikely(PTR_ERR(event) == -EAGAIN))
+		goto again;
+
+	if (!event)
+		goto out_fail;
+
+	return event;
+
+ out_fail:
+	rb_end_commit(cpu_buffer);
+	return NULL;
+}
+
+#ifdef CONFIG_TRACING
+
+#define TRACE_RECURSIVE_DEPTH 16
+
+/* Keep this code out of the fast path cache */
+static noinline void trace_recursive_fail(void)
+{
+	/* Disable all tracing before we do anything else */
+	tracing_off_permanent();
+
+	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
+		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
+		    trace_recursion_buffer(),
+		    hardirq_count() >> HARDIRQ_SHIFT,
+		    softirq_count() >> SOFTIRQ_SHIFT,
+		    in_nmi());
+
+	WARN_ON_ONCE(1);
+}
+
+static inline int trace_recursive_lock(void)
+{
+	trace_recursion_inc();
+
+	if (likely(trace_recursion_buffer() < TRACE_RECURSIVE_DEPTH))
+		return 0;
+
+	trace_recursive_fail();
+
+	return -1;
+}
+
+static inline void trace_recursive_unlock(void)
+{
+	WARN_ON_ONCE(!trace_recursion_buffer());
+
+	trace_recursion_dec();
+}
+
+#else
+
+#define trace_recursive_lock()		(0)
+#define trace_recursive_unlock()	do { } while (0)
+
+#endif
+
+/**
+ * ring_buffer_lock_reserve - reserve a part of the buffer
+ * @buffer: the ring buffer to reserve from
+ * @length: the length of the data to reserve (excluding event header)
+ *
+ * Returns a reseverd event on the ring buffer to copy directly to.
+ * The user of this interface will need to get the body to write into
+ * and can use the ring_buffer_event_data() interface.
+ *
+ * The length is the length of the data needed, not the event length
+ * which also includes the event header.
+ *
+ * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
+ * If NULL is returned, then nothing has been allocated or locked.
+ */
+struct ring_buffer_event *
+ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	struct ring_buffer_event *event;
+	int cpu;
+
+	if (ring_buffer_flags != RB_BUFFERS_ON)
+		return NULL;
+
+	/* If we are tracing schedule, we don't want to recurse */
+	preempt_disable_notrace();
+
+	if (atomic_read(&buffer->record_disabled))
+		goto out_nocheck;
+
+	if (trace_recursive_lock())
+		goto out_nocheck;
+
+	cpu = raw_smp_processor_id();
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		goto out;
+
+	cpu_buffer = buffer->buffers[cpu];
+
+	if (atomic_read(&cpu_buffer->record_disabled))
+		goto out;
+
+	if (length > BUF_MAX_DATA_SIZE)
+		goto out;
+
+	event = rb_reserve_next_event(buffer, cpu_buffer, length);
+	if (!event)
+		goto out;
+
+	return event;
+
+ out:
+	trace_recursive_unlock();
+
+ out_nocheck:
+	preempt_enable_notrace();
+	return NULL;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
+
+static void
+rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
+		      struct ring_buffer_event *event)
+{
+	u64 delta;
+
+	/*
+	 * The event first in the commit queue updates the
+	 * time stamp.
+	 */
+	if (rb_event_is_commit(cpu_buffer, event)) {
+		/*
+		 * A commit event that is first on a page
+		 * updates the write timestamp with the page stamp
+		 */
+		if (!rb_event_index(event))
+			cpu_buffer->write_stamp =
+				cpu_buffer->commit_page->page->time_stamp;
+		else if (event->type_len == RINGBUF_TYPE_TIME_EXTEND) {
+			delta = event->array[0];
+			delta <<= TS_SHIFT;
+			delta += event->time_delta;
+			cpu_buffer->write_stamp += delta;
+		} else
+			cpu_buffer->write_stamp += event->time_delta;
+	}
+}
+
+static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
+		      struct ring_buffer_event *event)
+{
+	local_inc(&cpu_buffer->entries);
+	rb_update_write_stamp(cpu_buffer, event);
+	rb_end_commit(cpu_buffer);
+}
+
+/**
+ * ring_buffer_unlock_commit - commit a reserved
+ * @buffer: The buffer to commit to
+ * @event: The event pointer to commit.
+ *
+ * This commits the data to the ring buffer, and releases any locks held.
+ *
+ * Must be paired with ring_buffer_lock_reserve.
+ */
+int ring_buffer_unlock_commit(struct ring_buffer *buffer,
+			      struct ring_buffer_event *event)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	int cpu = raw_smp_processor_id();
+
+	cpu_buffer = buffer->buffers[cpu];
+
+	rb_commit(cpu_buffer, event);
+
+	trace_recursive_unlock();
+
+	preempt_enable_notrace();
+
+	return 0;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
+
+static inline void rb_event_discard(struct ring_buffer_event *event)
+{
+	if (event->type_len == RINGBUF_TYPE_TIME_EXTEND)
+		event = skip_time_extend(event);
+
+	/* array[0] holds the actual length for the discarded event */
+	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
+	event->type_len = RINGBUF_TYPE_PADDING;
+	/* time delta must be non zero */
+	if (!event->time_delta)
+		event->time_delta = 1;
+}
+
+/*
+ * Decrement the entries to the page that an event is on.
+ * The event does not even need to exist, only the pointer
+ * to the page it is on. This may only be called before the commit
+ * takes place.
+ */
+static inline void
+rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
+		   struct ring_buffer_event *event)
+{
+	unsigned long addr = (unsigned long)event;
+	struct buffer_page *bpage = cpu_buffer->commit_page;
+	struct buffer_page *start;
+
+	addr &= PAGE_MASK;
+
+	/* Do the likely case first */
+	if (likely(bpage->page == (void *)addr)) {
+		local_dec(&bpage->entries);
+		return;
+	}
+
+	/*
+	 * Because the commit page may be on the reader page we
+	 * start with the next page and check the end loop there.
+	 */
+	rb_inc_page(cpu_buffer, &bpage);
+	start = bpage;
+	do {
+		if (bpage->page == (void *)addr) {
+			local_dec(&bpage->entries);
+			return;
+		}
+		rb_inc_page(cpu_buffer, &bpage);
+	} while (bpage != start);
+
+	/* commit not part of this buffer?? */
+	RB_WARN_ON(cpu_buffer, 1);
+}
+
+/**
+ * ring_buffer_commit_discard - discard an event that has not been committed
+ * @buffer: the ring buffer
+ * @event: non committed event to discard
+ *
+ * Sometimes an event that is in the ring buffer needs to be ignored.
+ * This function lets the user discard an event in the ring buffer
+ * and then that event will not be read later.
+ *
+ * This function only works if it is called before the the item has been
+ * committed. It will try to free the event from the ring buffer
+ * if another event has not been added behind it.
+ *
+ * If another event has been added behind it, it will set the event
+ * up as discarded, and perform the commit.
+ *
+ * If this function is called, do not call ring_buffer_unlock_commit on
+ * the event.
+ */
+void ring_buffer_discard_commit(struct ring_buffer *buffer,
+				struct ring_buffer_event *event)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	int cpu;
+
+	/* The event is discarded regardless */
+	rb_event_discard(event);
+
+	cpu = smp_processor_id();
+	cpu_buffer = buffer->buffers[cpu];
+
+	/*
+	 * This must only be called if the event has not been
+	 * committed yet. Thus we can assume that preemption
+	 * is still disabled.
+	 */
+	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
+
+	rb_decrement_entry(cpu_buffer, event);
+	if (rb_try_to_discard(cpu_buffer, event))
+		goto out;
+
+	/*
+	 * The commit is still visible by the reader, so we
+	 * must still update the timestamp.
+	 */
+	rb_update_write_stamp(cpu_buffer, event);
+ out:
+	rb_end_commit(cpu_buffer);
+
+	trace_recursive_unlock();
+
+	preempt_enable_notrace();
+
+}
+EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
+
+/**
+ * ring_buffer_write - write data to the buffer without reserving
+ * @buffer: The ring buffer to write to.
+ * @length: The length of the data being written (excluding the event header)
+ * @data: The data to write to the buffer.
+ *
+ * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
+ * one function. If you already have the data to write to the buffer, it
+ * may be easier to simply call this function.
+ *
+ * Note, like ring_buffer_lock_reserve, the length is the length of the data
+ * and not the length of the event which would hold the header.
+ */
+int ring_buffer_write(struct ring_buffer *buffer,
+			unsigned long length,
+			void *data)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	struct ring_buffer_event *event;
+	void *body;
+	int ret = -EBUSY;
+	int cpu;
+
+	if (ring_buffer_flags != RB_BUFFERS_ON)
+		return -EBUSY;
+
+	preempt_disable_notrace();
+
+	if (atomic_read(&buffer->record_disabled))
+		goto out;
+
+	cpu = raw_smp_processor_id();
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		goto out;
+
+	cpu_buffer = buffer->buffers[cpu];
+
+	if (atomic_read(&cpu_buffer->record_disabled))
+		goto out;
+
+	if (length > BUF_MAX_DATA_SIZE)
+		goto out;
+
+	event = rb_reserve_next_event(buffer, cpu_buffer, length);
+	if (!event)
+		goto out;
+
+	body = rb_event_data(event);
+
+	memcpy(body, data, length);
+
+	rb_commit(cpu_buffer, event);
+
+	ret = 0;
+ out:
+	preempt_enable_notrace();
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_write);
+
+static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	struct buffer_page *reader = cpu_buffer->reader_page;
+	struct buffer_page *head = rb_set_head_page(cpu_buffer);
+	struct buffer_page *commit = cpu_buffer->commit_page;
+
+	/* In case of error, head will be NULL */
+	if (unlikely(!head))
+		return 1;
+
+	return reader->read == rb_page_commit(reader) &&
+		(commit == reader ||
+		 (commit == head &&
+		  head->read == rb_page_commit(commit)));
+}
+
+/**
+ * ring_buffer_record_disable - stop all writes into the buffer
+ * @buffer: The ring buffer to stop writes to.
+ *
+ * This prevents all writes to the buffer. Any attempt to write
+ * to the buffer after this will fail and return NULL.
+ *
+ * The caller should call synchronize_sched() after this.
+ */
+void ring_buffer_record_disable(struct ring_buffer *buffer)
+{
+	atomic_inc(&buffer->record_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
+
+/**
+ * ring_buffer_record_enable - enable writes to the buffer
+ * @buffer: The ring buffer to enable writes
+ *
+ * Note, multiple disables will need the same number of enables
+ * to truly enable the writing (much like preempt_disable).
+ */
+void ring_buffer_record_enable(struct ring_buffer *buffer)
+{
+	atomic_dec(&buffer->record_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
+
+/**
+ * ring_buffer_record_off - stop all writes into the buffer
+ * @buffer: The ring buffer to stop writes to.
+ *
+ * This prevents all writes to the buffer. Any attempt to write
+ * to the buffer after this will fail and return NULL.
+ *
+ * This is different than ring_buffer_record_disable() as
+ * it works like an on/off switch, where as the disable() verison
+ * must be paired with a enable().
+ */
+void ring_buffer_record_off(struct ring_buffer *buffer)
+{
+	unsigned int rd;
+	unsigned int new_rd;
+
+	do {
+		rd = atomic_read(&buffer->record_disabled);
+		new_rd = rd | RB_BUFFER_OFF;
+	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_off);
+
+/**
+ * ring_buffer_record_on - restart writes into the buffer
+ * @buffer: The ring buffer to start writes to.
+ *
+ * This enables all writes to the buffer that was disabled by
+ * ring_buffer_record_off().
+ *
+ * This is different than ring_buffer_record_enable() as
+ * it works like an on/off switch, where as the enable() verison
+ * must be paired with a disable().
+ */
+void ring_buffer_record_on(struct ring_buffer *buffer)
+{
+	unsigned int rd;
+	unsigned int new_rd;
+
+	do {
+		rd = atomic_read(&buffer->record_disabled);
+		new_rd = rd & ~RB_BUFFER_OFF;
+	} while (atomic_cmpxchg(&buffer->record_disabled, rd, new_rd) != rd);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_on);
+
+/**
+ * ring_buffer_record_is_on - return true if the ring buffer can write
+ * @buffer: The ring buffer to see if write is enabled
+ *
+ * Returns true if the ring buffer is in a state that it accepts writes.
+ */
+int ring_buffer_record_is_on(struct ring_buffer *buffer)
+{
+	return !atomic_read(&buffer->record_disabled);
+}
+
+/**
+ * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
+ * @buffer: The ring buffer to stop writes to.
+ * @cpu: The CPU buffer to stop
+ *
+ * This prevents all writes to the buffer. Any attempt to write
+ * to the buffer after this will fail and return NULL.
+ *
+ * The caller should call synchronize_sched() after this.
+ */
+void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return;
+
+	cpu_buffer = buffer->buffers[cpu];
+	atomic_inc(&cpu_buffer->record_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
+
+/**
+ * ring_buffer_record_enable_cpu - enable writes to the buffer
+ * @buffer: The ring buffer to enable writes
+ * @cpu: The CPU to enable.
+ *
+ * Note, multiple disables will need the same number of enables
+ * to truly enable the writing (much like preempt_disable).
+ */
+void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return;
+
+	cpu_buffer = buffer->buffers[cpu];
+	atomic_dec(&cpu_buffer->record_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
+
+/*
+ * The total entries in the ring buffer is the running counter
+ * of entries entered into the ring buffer, minus the sum of
+ * the entries read from the ring buffer and the number of
+ * entries that were overwritten.
+ */
+static inline unsigned long
+rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	return local_read(&cpu_buffer->entries) -
+		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
+}
+
+/**
+ * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to read from.
+ */
+unsigned long ring_buffer_oldest_event_ts(struct ring_buffer *buffer, int cpu)
+{
+	unsigned long flags;
+	struct ring_buffer_per_cpu *cpu_buffer;
+	struct buffer_page *bpage;
+	unsigned long ret = 0;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return 0;
+
+	cpu_buffer = buffer->buffers[cpu];
+	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
+	/*
+	 * if the tail is on reader_page, oldest time stamp is on the reader
+	 * page
+	 */
+	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
+		bpage = cpu_buffer->reader_page;
+	else
+		bpage = rb_set_head_page(cpu_buffer);
+	if (bpage)
+		ret = bpage->page->time_stamp;
+	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
+
+/**
+ * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to read from.
+ */
+unsigned long ring_buffer_bytes_cpu(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned long ret;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return 0;
+
+	cpu_buffer = buffer->buffers[cpu];
+	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
+
+/**
+ * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to get the entries from.
+ */
+unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return 0;
+
+	cpu_buffer = buffer->buffers[cpu];
+
+	return rb_num_of_entries(cpu_buffer);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
+
+/**
+ * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to get the number of overruns from
+ */
+unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned long ret;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return 0;
+
+	cpu_buffer = buffer->buffers[cpu];
+	ret = local_read(&cpu_buffer->overrun);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
+
+/**
+ * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
+ * @buffer: The ring buffer
+ * @cpu: The per CPU buffer to get the number of overruns from
+ */
+unsigned long
+ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned long ret;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return 0;
+
+	cpu_buffer = buffer->buffers[cpu];
+	ret = local_read(&cpu_buffer->commit_overrun);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
+
+/**
+ * ring_buffer_entries - get the number of entries in a buffer
+ * @buffer: The ring buffer
+ *
+ * Returns the total number of entries in the ring buffer
+ * (all CPU entries)
+ */
+unsigned long ring_buffer_entries(struct ring_buffer *buffer)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned long entries = 0;
+	int cpu;
+
+	/* if you care about this being correct, lock the buffer */
+	for_each_buffer_cpu(buffer, cpu) {
+		cpu_buffer = buffer->buffers[cpu];
+		entries += rb_num_of_entries(cpu_buffer);
+	}
+
+	return entries;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_entries);
+
+/**
+ * ring_buffer_overruns - get the number of overruns in buffer
+ * @buffer: The ring buffer
+ *
+ * Returns the total number of overruns in the ring buffer
+ * (all CPU entries)
+ */
+unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned long overruns = 0;
+	int cpu;
+
+	/* if you care about this being correct, lock the buffer */
+	for_each_buffer_cpu(buffer, cpu) {
+		cpu_buffer = buffer->buffers[cpu];
+		overruns += local_read(&cpu_buffer->overrun);
+	}
+
+	return overruns;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_overruns);
+
+static void rb_iter_reset(struct ring_buffer_iter *iter)
+{
+	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+
+	/* Iterator usage is expected to have record disabled */
+	if (list_empty(&cpu_buffer->reader_page->list)) {
+		iter->head_page = rb_set_head_page(cpu_buffer);
+		if (unlikely(!iter->head_page))
+			return;
+		iter->head = iter->head_page->read;
+	} else {
+		iter->head_page = cpu_buffer->reader_page;
+		iter->head = cpu_buffer->reader_page->read;
+	}
+	if (iter->head)
+		iter->read_stamp = cpu_buffer->read_stamp;
+	else
+		iter->read_stamp = iter->head_page->page->time_stamp;
+	iter->cache_reader_page = cpu_buffer->reader_page;
+	iter->cache_read = cpu_buffer->read;
+}
+
+/**
+ * ring_buffer_iter_reset - reset an iterator
+ * @iter: The iterator to reset
+ *
+ * Resets the iterator, so that it will start from the beginning
+ * again.
+ */
+void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned long flags;
+	int locked;
+
+	if (!iter)
+		return;
+
+	cpu_buffer = iter->cpu_buffer;
+
+	locked = read_buffer_lock(cpu_buffer, &flags);
+	rb_iter_reset(iter);
+	read_buffer_unlock(cpu_buffer, flags, locked);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
+
+/**
+ * ring_buffer_iter_empty - check if an iterator has no more to read
+ * @iter: The iterator to check
+ */
+int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+
+	cpu_buffer = iter->cpu_buffer;
+
+	return iter->head_page == cpu_buffer->commit_page &&
+		iter->head == rb_commit_index(cpu_buffer);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
+
+static void
+rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
+		     struct ring_buffer_event *event)
+{
+	u64 delta;
+
+	switch (event->type_len) {
+	case RINGBUF_TYPE_PADDING:
+		return;
+
+	case RINGBUF_TYPE_TIME_EXTEND:
+		delta = event->array[0];
+		delta <<= TS_SHIFT;
+		delta += event->time_delta;
+		cpu_buffer->read_stamp += delta;
+		return;
+
+	case RINGBUF_TYPE_TIME_STAMP:
+		/* FIXME: not implemented */
+		return;
+
+	case RINGBUF_TYPE_DATA:
+		cpu_buffer->read_stamp += event->time_delta;
+		return;
+
+	default:
+		BUG();
+	}
+	return;
+}
+
+static void
+rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
+			  struct ring_buffer_event *event)
+{
+	u64 delta;
+
+	switch (event->type_len) {
+	case RINGBUF_TYPE_PADDING:
+		return;
+
+	case RINGBUF_TYPE_TIME_EXTEND:
+		delta = event->array[0];
+		delta <<= TS_SHIFT;
+		delta += event->time_delta;
+		iter->read_stamp += delta;
+		return;
+
+	case RINGBUF_TYPE_TIME_STAMP:
+		/* FIXME: not implemented */
+		return;
+
+	case RINGBUF_TYPE_DATA:
+		iter->read_stamp += event->time_delta;
+		return;
+
+	default:
+		BUG();
+	}
+	return;
+}
+
+static struct buffer_page *
+rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	struct buffer_page *reader = NULL;
+	unsigned long overwrite;
+	unsigned long flags;
+	int nr_loops = 0;
+	int ret;
+
+	local_irq_save(flags);
+	arch_spin_lock(&cpu_buffer->lock);
+
+ again:
+	/*
+	 * This should normally only loop twice. But because the
+	 * start of the reader inserts an empty page, it causes
+	 * a case where we will loop three times. There should be no
+	 * reason to loop four times (that I know of).
+	 */
+	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
+		reader = NULL;
+		goto out;
+	}
+
+	reader = cpu_buffer->reader_page;
+
+	/* If there's more to read, return this page */
+	if (cpu_buffer->reader_page->read < rb_page_size(reader))
+		goto out;
+
+	/* Never should we have an index greater than the size */
+	if (RB_WARN_ON(cpu_buffer,
+		       cpu_buffer->reader_page->read > rb_page_size(reader)))
+		goto out;
+
+	/* check if we caught up to the tail */
+	reader = NULL;
+	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
+		goto out;
+
+	/*
+	 * Reset the reader page to size zero.
+	 */
+	local_set(&cpu_buffer->reader_page->write, 0);
+	local_set(&cpu_buffer->reader_page->entries, 0);
+	local_set(&cpu_buffer->reader_page->page->commit, 0);
+	cpu_buffer->reader_page->real_end = 0;
+
+ spin:
+	/*
+	 * Splice the empty reader page into the list around the head.
+	 */
+	reader = rb_set_head_page(cpu_buffer);
+	if (!reader)
+		goto out;
+	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
+	cpu_buffer->reader_page->list.prev = reader->list.prev;
+
+	/*
+	 * cpu_buffer->pages just needs to point to the buffer, it
+	 *  has no specific buffer page to point to. Lets move it out
+	 *  of our way so we don't accidentally swap it.
+	 */
+	cpu_buffer->pages = reader->list.prev;
+
+	/* The reader page will be pointing to the new head */
+	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
+
+	/*
+	 * We want to make sure we read the overruns after we set up our
+	 * pointers to the next object. The writer side does a
+	 * cmpxchg to cross pages which acts as the mb on the writer
+	 * side. Note, the reader will constantly fail the swap
+	 * while the writer is updating the pointers, so this
+	 * guarantees that the overwrite recorded here is the one we
+	 * want to compare with the last_overrun.
+	 */
+	smp_mb();
+	overwrite = local_read(&(cpu_buffer->overrun));
+
+	/*
+	 * Here's the tricky part.
+	 *
+	 * We need to move the pointer past the header page.
+	 * But we can only do that if a writer is not currently
+	 * moving it. The page before the header page has the
+	 * flag bit '1' set if it is pointing to the page we want.
+	 * but if the writer is in the process of moving it
+	 * than it will be '2' or already moved '0'.
+	 */
+
+	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
+
+	/*
+	 * If we did not convert it, then we must try again.
+	 */
+	if (!ret)
+		goto spin;
+
+	/*
+	 * Yeah! We succeeded in replacing the page.
+	 *
+	 * Now make the new head point back to the reader page.
+	 */
+	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
+	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
+
+	/* Finally update the reader page to the new head */
+	cpu_buffer->reader_page = reader;
+	rb_reset_reader_page(cpu_buffer);
+
+	if (overwrite != cpu_buffer->last_overrun) {
+		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
+		cpu_buffer->last_overrun = overwrite;
+	}
+
+	goto again;
+
+ out:
+	arch_spin_unlock(&cpu_buffer->lock);
+	local_irq_restore(flags);
+
+	return reader;
+}
+
+static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	struct ring_buffer_event *event;
+	struct buffer_page *reader;
+	unsigned length;
+
+	reader = rb_get_reader_page(cpu_buffer);
+
+	/* This function should not be called when buffer is empty */
+	if (RB_WARN_ON(cpu_buffer, !reader))
+		return;
+
+	event = rb_reader_event(cpu_buffer);
+
+	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
+		cpu_buffer->read++;
+
+	rb_update_read_stamp(cpu_buffer, event);
+
+	length = rb_event_length(event);
+	cpu_buffer->reader_page->read += length;
+}
+
+static void rb_advance_iter(struct ring_buffer_iter *iter)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	struct ring_buffer_event *event;
+	unsigned length;
+
+	cpu_buffer = iter->cpu_buffer;
+
+	/*
+	 * Check if we are at the end of the buffer.
+	 */
+	if (iter->head >= rb_page_size(iter->head_page)) {
+		/* discarded commits can make the page empty */
+		if (iter->head_page == cpu_buffer->commit_page)
+			return;
+		rb_inc_iter(iter);
+		return;
+	}
+
+	event = rb_iter_head_event(iter);
+
+	length = rb_event_length(event);
+
+	/*
+	 * This should not be called to advance the header if we are
+	 * at the tail of the buffer.
+	 */
+	if (RB_WARN_ON(cpu_buffer,
+		       (iter->head_page == cpu_buffer->commit_page) &&
+		       (iter->head + length > rb_commit_index(cpu_buffer))))
+		return;
+
+	rb_update_iter_read_stamp(iter, event);
+
+	iter->head += length;
+
+	/* check for end of page padding */
+	if ((iter->head >= rb_page_size(iter->head_page)) &&
+	    (iter->head_page != cpu_buffer->commit_page))
+		rb_advance_iter(iter);
+}
+
+static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	return cpu_buffer->lost_events;
+}
+
+static struct ring_buffer_event *
+rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
+	       unsigned long *lost_events)
+{
+	struct ring_buffer_event *event;
+	struct buffer_page *reader;
+	int nr_loops = 0;
+
+ again:
+	/*
+	 * We repeat when a time extend is encountered.
+	 * Since the time extend is always attached to a data event,
+	 * we should never loop more than once.
+	 * (We never hit the following condition more than twice).
+	 */
+	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
+		return NULL;
+
+	reader = rb_get_reader_page(cpu_buffer);
+	if (!reader)
+		return NULL;
+
+	event = rb_reader_event(cpu_buffer);
+
+	switch (event->type_len) {
+	case RINGBUF_TYPE_PADDING:
+		if (rb_null_event(event))
+			RB_WARN_ON(cpu_buffer, 1);
+		/*
+		 * Because the writer could be discarding every
+		 * event it creates (which would probably be bad)
+		 * if we were to go back to "again" then we may never
+		 * catch up, and will trigger the warn on, or lock
+		 * the box. Return the padding, and we will release
+		 * the current locks, and try again.
+		 */
+		return event;
+
+	case RINGBUF_TYPE_TIME_EXTEND:
+		/* Internal data, OK to advance */
+		rb_advance_reader(cpu_buffer);
+		goto again;
+
+	case RINGBUF_TYPE_TIME_STAMP:
+		/* FIXME: not implemented */
+		rb_advance_reader(cpu_buffer);
+		goto again;
+
+	case RINGBUF_TYPE_DATA:
+		if (ts) {
+			*ts = cpu_buffer->read_stamp + event->time_delta;
+			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
+							 cpu_buffer->cpu, ts);
+		}
+		if (lost_events)
+			*lost_events = rb_lost_events(cpu_buffer);
+		return event;
+
+	default:
+		BUG();
+	}
+
+	return NULL;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_peek);
+
+static struct ring_buffer_event *
+rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
+{
+	struct ring_buffer *buffer;
+	struct ring_buffer_per_cpu *cpu_buffer;
+	struct ring_buffer_event *event;
+	int nr_loops = 0;
+
+	cpu_buffer = iter->cpu_buffer;
+	buffer = cpu_buffer->buffer;
+
+	/*
+	 * Check if someone performed a consuming read to
+	 * the buffer. A consuming read invalidates the iterator
+	 * and we need to reset the iterator in this case.
+	 */
+	if (unlikely(iter->cache_read != cpu_buffer->read ||
+		     iter->cache_reader_page != cpu_buffer->reader_page))
+		rb_iter_reset(iter);
+
+ again:
+	if (ring_buffer_iter_empty(iter))
+		return NULL;
+
+	/*
+	 * We repeat when a time extend is encountered.
+	 * Since the time extend is always attached to a data event,
+	 * we should never loop more than once.
+	 * (We never hit the following condition more than twice).
+	 */
+	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
+		return NULL;
+
+	if (rb_per_cpu_empty(cpu_buffer))
+		return NULL;
+
+	if (iter->head >= local_read(&iter->head_page->page->commit)) {
+		rb_inc_iter(iter);
+		goto again;
+	}
+
+	event = rb_iter_head_event(iter);
+
+	switch (event->type_len) {
+	case RINGBUF_TYPE_PADDING:
+		if (rb_null_event(event)) {
+			rb_inc_iter(iter);
+			goto again;
+		}
+		rb_advance_iter(iter);
+		return event;
+
+	case RINGBUF_TYPE_TIME_EXTEND:
+		/* Internal data, OK to advance */
+		rb_advance_iter(iter);
+		goto again;
+
+	case RINGBUF_TYPE_TIME_STAMP:
+		/* FIXME: not implemented */
+		rb_advance_iter(iter);
+		goto again;
+
+	case RINGBUF_TYPE_DATA:
+		if (ts) {
+			*ts = iter->read_stamp + event->time_delta;
+			ring_buffer_normalize_time_stamp(buffer,
+							 cpu_buffer->cpu, ts);
+		}
+		return event;
+
+	default:
+		BUG();
+	}
+
+	return NULL;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
+
+/**
+ * ring_buffer_peek - peek at the next event to be read
+ * @buffer: The ring buffer to read
+ * @cpu: The cpu to peak at
+ * @ts: The timestamp counter of this event.
+ * @lost_events: a variable to store if events were lost (may be NULL)
+ *
+ * This will return the event that will be read next, but does
+ * not consume the data.
+ */
+struct ring_buffer_event *
+ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts,
+		 unsigned long *lost_events)
+{
+	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
+	struct ring_buffer_event *event;
+	unsigned long flags;
+	int locked;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return NULL;
+
+ again:
+	locked = read_buffer_lock(cpu_buffer, &flags);
+	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
+	if (event && event->type_len == RINGBUF_TYPE_PADDING)
+		rb_advance_reader(cpu_buffer);
+	read_buffer_unlock(cpu_buffer, flags, locked);
+
+	if (event && event->type_len == RINGBUF_TYPE_PADDING)
+		goto again;
+
+	return event;
+}
+
+/**
+ * ring_buffer_iter_peek - peek at the next event to be read
+ * @iter: The ring buffer iterator
+ * @ts: The timestamp counter of this event.
+ *
+ * This will return the event that will be read next, but does
+ * not increment the iterator.
+ */
+struct ring_buffer_event *
+ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
+{
+	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+	struct ring_buffer_event *event;
+	unsigned long flags;
+	int locked;
+
+ again:
+	locked = read_buffer_lock(cpu_buffer, &flags);
+	event = rb_iter_peek(iter, ts);
+	read_buffer_unlock(cpu_buffer, flags, locked);
+
+	if (event && event->type_len == RINGBUF_TYPE_PADDING)
+		goto again;
+
+	return event;
+}
+
+/**
+ * ring_buffer_consume - return an event and consume it
+ * @buffer: The ring buffer to get the next event from
+ * @cpu: the cpu to read the buffer from
+ * @ts: a variable to store the timestamp (may be NULL)
+ * @lost_events: a variable to store if events were lost (may be NULL)
+ *
+ * Returns the next event in the ring buffer, and that event is consumed.
+ * Meaning, that sequential reads will keep returning a different event,
+ * and eventually empty the ring buffer if the producer is slower.
+ */
+struct ring_buffer_event *
+ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts,
+		    unsigned long *lost_events)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	struct ring_buffer_event *event = NULL;
+	unsigned long flags;
+	int locked;
+
+ again:
+	/* might be called in atomic */
+	preempt_disable();
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		goto out;
+
+	cpu_buffer = buffer->buffers[cpu];
+	locked = read_buffer_lock(cpu_buffer, &flags);
+
+	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
+	if (event) {
+		cpu_buffer->lost_events = 0;
+		rb_advance_reader(cpu_buffer);
+	}
+
+	read_buffer_unlock(cpu_buffer, flags, locked);
+
+
+ out:
+	preempt_enable();
+
+	if (event && event->type_len == RINGBUF_TYPE_PADDING)
+		goto again;
+
+	return event;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_consume);
+
+/**
+ * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
+ * @buffer: The ring buffer to read from
+ * @cpu: The cpu buffer to iterate over
+ *
+ * This performs the initial preparations necessary to iterate
+ * through the buffer.  Memory is allocated, buffer recording
+ * is disabled, and the iterator pointer is returned to the caller.
+ *
+ * Disabling buffer recordng prevents the reading from being
+ * corrupted. This is not a consuming read, so a producer is not
+ * expected.
+ *
+ * After a sequence of ring_buffer_read_prepare calls, the user is
+ * expected to make at least one call to ring_buffer_prepare_sync.
+ * Afterwards, ring_buffer_read_start is invoked to get things going
+ * for real.
+ *
+ * This overall must be paired with ring_buffer_finish.
+ */
+struct ring_buffer_iter *
+ring_buffer_read_prepare(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	struct ring_buffer_iter *iter;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return NULL;
+
+	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
+	if (!iter)
+		return NULL;
+
+	cpu_buffer = buffer->buffers[cpu];
+
+	iter->cpu_buffer = cpu_buffer;
+
+	atomic_inc(&cpu_buffer->record_disabled);
+
+	return iter;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
+
+/**
+ * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
+ *
+ * All previously invoked ring_buffer_read_prepare calls to prepare
+ * iterators will be synchronized.  Afterwards, read_buffer_read_start
+ * calls on those iterators are allowed.
+ */
+void
+ring_buffer_read_prepare_sync(void)
+{
+	synchronize_sched();
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
+
+/**
+ * ring_buffer_read_start - start a non consuming read of the buffer
+ * @iter: The iterator returned by ring_buffer_read_prepare
+ *
+ * This finalizes the startup of an iteration through the buffer.
+ * The iterator comes from a call to ring_buffer_read_prepare and
+ * an intervening ring_buffer_read_prepare_sync must have been
+ * performed.
+ *
+ * Must be paired with ring_buffer_finish.
+ */
+void
+ring_buffer_read_start(struct ring_buffer_iter *iter)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned long flags;
+	int locked;
+
+	if (!iter)
+		return;
+
+	cpu_buffer = iter->cpu_buffer;
+
+	locked = read_buffer_lock(cpu_buffer, &flags);
+	arch_spin_lock(&cpu_buffer->lock);
+	rb_iter_reset(iter);
+	arch_spin_unlock(&cpu_buffer->lock);
+	read_buffer_unlock(cpu_buffer, flags, locked);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_start);
+
+/**
+ * ring_buffer_finish - finish reading the iterator of the buffer
+ * @iter: The iterator retrieved by ring_buffer_start
+ *
+ * This re-enables the recording to the buffer, and frees the
+ * iterator.
+ */
+void
+ring_buffer_read_finish(struct ring_buffer_iter *iter)
+{
+	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+
+	atomic_dec(&cpu_buffer->record_disabled);
+	kfree(iter);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
+
+/**
+ * ring_buffer_read - read the next item in the ring buffer by the iterator
+ * @iter: The ring buffer iterator
+ * @ts: The time stamp of the event read.
+ *
+ * This reads the next event in the ring buffer and increments the iterator.
+ */
+struct ring_buffer_event *
+ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
+{
+	struct ring_buffer_event *event;
+	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
+	unsigned long flags;
+	int locked;
+
+	locked = read_buffer_lock(cpu_buffer, &flags);
+ again:
+	event = rb_iter_peek(iter, ts);
+	if (!event)
+		goto out;
+
+	if (event->type_len == RINGBUF_TYPE_PADDING)
+		goto again;
+
+	rb_advance_iter(iter);
+ out:
+	read_buffer_unlock(cpu_buffer, flags, locked);
+
+	return event;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read);
+
+/**
+ * ring_buffer_size - return the size of the ring buffer (in bytes)
+ * @buffer: The ring buffer.
+ */
+unsigned long ring_buffer_size(struct ring_buffer *buffer)
+{
+	return BUF_PAGE_SIZE * buffer->pages;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_size);
+
+static void
+rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
+{
+	rb_head_page_deactivate(cpu_buffer);
+
+	cpu_buffer->head_page
+		= list_entry(cpu_buffer->pages, struct buffer_page, list);
+	local_set(&cpu_buffer->head_page->write, 0);
+	local_set(&cpu_buffer->head_page->entries, 0);
+	local_set(&cpu_buffer->head_page->page->commit, 0);
+
+	cpu_buffer->head_page->read = 0;
+
+	cpu_buffer->tail_page = cpu_buffer->head_page;
+	cpu_buffer->commit_page = cpu_buffer->head_page;
+
+	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
+	local_set(&cpu_buffer->reader_page->write, 0);
+	local_set(&cpu_buffer->reader_page->entries, 0);
+	local_set(&cpu_buffer->reader_page->page->commit, 0);
+	cpu_buffer->reader_page->read = 0;
+
+	local_set(&cpu_buffer->commit_overrun, 0);
+	local_set(&cpu_buffer->entries_bytes, 0);
+	local_set(&cpu_buffer->overrun, 0);
+	local_set(&cpu_buffer->entries, 0);
+	local_set(&cpu_buffer->committing, 0);
+	local_set(&cpu_buffer->commits, 0);
+	cpu_buffer->read = 0;
+	cpu_buffer->read_bytes = 0;
+
+	cpu_buffer->write_stamp = 0;
+	cpu_buffer->read_stamp = 0;
+
+	cpu_buffer->lost_events = 0;
+	cpu_buffer->last_overrun = 0;
+
+	rb_head_page_activate(cpu_buffer);
+}
+
+/**
+ * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
+ * @buffer: The ring buffer to reset a per cpu buffer of
+ * @cpu: The CPU buffer to be reset
+ */
+void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
+	unsigned long flags;
+	int locked;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return;
+
+	atomic_inc(&cpu_buffer->record_disabled);
+
+	locked = read_buffer_lock(cpu_buffer, &flags);
+
+	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
+		goto out;
+
+	arch_spin_lock(&cpu_buffer->lock);
+
+	rb_reset_cpu(cpu_buffer);
+
+	arch_spin_unlock(&cpu_buffer->lock);
+
+ out:
+	read_buffer_unlock(cpu_buffer, flags, locked);
+
+	atomic_dec(&cpu_buffer->record_disabled);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
+
+/**
+ * ring_buffer_reset - reset a ring buffer
+ * @buffer: The ring buffer to reset all cpu buffers
+ */
+void ring_buffer_reset(struct ring_buffer *buffer)
+{
+	int cpu;
+
+	for_each_buffer_cpu(buffer, cpu)
+		ring_buffer_reset_cpu(buffer, cpu);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_reset);
+
+/**
+ * rind_buffer_empty - is the ring buffer empty?
+ * @buffer: The ring buffer to test
+ */
+int ring_buffer_empty(struct ring_buffer *buffer)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned long flags;
+	int locked;
+	int cpu;
+	int ret;
+
+	/* yes this is racy, but if you don't like the race, lock the buffer */
+	for_each_buffer_cpu(buffer, cpu) {
+		cpu_buffer = buffer->buffers[cpu];
+		locked = read_buffer_lock(cpu_buffer, &flags);
+		ret = rb_per_cpu_empty(cpu_buffer);
+		read_buffer_unlock(cpu_buffer, flags, locked);
+
+		if (!ret)
+			return 0;
+	}
+
+	return 1;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_empty);
+
+/**
+ * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
+ * @buffer: The ring buffer
+ * @cpu: The CPU buffer to test
+ */
+int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer;
+	unsigned long flags;
+	int locked;
+	int ret;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		return 1;
+
+	cpu_buffer = buffer->buffers[cpu];
+	locked = read_buffer_lock(cpu_buffer, &flags);
+	ret = rb_per_cpu_empty(cpu_buffer);
+	read_buffer_unlock(cpu_buffer, flags, locked);
+
+	return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
+
+#ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
+/**
+ * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
+ * @buffer_a: One buffer to swap with
+ * @buffer_b: The other buffer to swap with
+ *
+ * This function is useful for tracers that want to take a "snapshot"
+ * of a CPU buffer and has another back up buffer lying around.
+ * it is expected that the tracer handles the cpu buffer not being
+ * used at the moment.
+ */
+int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
+			 struct ring_buffer *buffer_b, int cpu)
+{
+	struct ring_buffer_per_cpu *cpu_buffer_a;
+	struct ring_buffer_per_cpu *cpu_buffer_b;
+	int ret = -EINVAL;
+
+	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
+	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
+		goto out;
+
+	/* At least make sure the two buffers are somewhat the same */
+	if (buffer_a->pages != buffer_b->pages)
+		goto out;
+
+	ret = -EAGAIN;
+
+	if (ring_buffer_flags != RB_BUFFERS_ON)
+		goto out;
+
+	if (atomic_read(&buffer_a->record_disabled))
+		goto out;
+
+	if (atomic_read(&buffer_b->record_disabled))
+		goto out;
+
+	cpu_buffer_a = buffer_a->buffers[cpu];
+	cpu_buffer_b = buffer_b->buffers[cpu];
+
+	if (atomic_read(&cpu_buffer_a->record_disabled))
+		goto out;
+
+	if (atomic_read(&cpu_buffer_b->record_disabled))
+		goto out;
+
+	/*
+	 * We can't do a synchronize_sched here because this
+	 * function can be called in atomic context.
+	 * Normally this will be called from the same CPU as cpu.
+	 * If not it's up to the caller to protect this.
+	 */
+	atomic_inc(&cpu_buffer_a->record_disabled);
+	atomic_inc(&cpu_buffer_b->record_disabled);
+
+	ret = -EBUSY;
+	if (local_read(&cpu_buffer_a->committing))
+		goto out_dec;
+	if (local_read(&cpu_buffer_b->committing))
+		goto out_dec;
+
+	buffer_a->buffers[cpu] = cpu_buffer_b;
+	buffer_b->buffers[cpu] = cpu_buffer_a;
+
+	cpu_buffer_b->buffer = buffer_a;
+	cpu_buffer_a->buffer = buffer_b;
+
+	ret = 0;
+
+out_dec:
+	atomic_dec(&cpu_buffer_a->record_disabled);
+	atomic_dec(&cpu_buffer_b->record_disabled);
+out:
+	return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
+#endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
+
+/**
+ * ring_buffer_alloc_read_page - allocate a page to read from buffer
+ * @buffer: the buffer to allocate for.
+ *
+ * This function is used in conjunction with ring_buffer_read_page.
+ * When reading a full page from the ring buffer, these functions
+ * can be used to speed up the process. The calling function should
+ * allocate a few pages first with this function. Then when it
+ * needs to get pages from the ring buffer, it passes the result
+ * of this function into ring_buffer_read_page, which will swap
+ * the page that was allocated, with the read page of the buffer.
+ *
+ * Returns:
+ *  The page allocated, or NULL on error.
+ */
+void *ring_buffer_alloc_read_page(struct ring_buffer *buffer, int cpu)
+{
+	struct buffer_data_page *bpage;
+	struct page *page;
+
+	page = alloc_pages_node(cpu_to_node(cpu),
+				GFP_KERNEL | __GFP_NORETRY, 0);
+	if (!page)
+		return NULL;
+
+	bpage = page_address(page);
+
+	rb_init_page(bpage);
+
+	return bpage;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
+
+/**
+ * ring_buffer_free_read_page - free an allocated read page
+ * @buffer: the buffer the page was allocate for
+ * @data: the page to free
+ *
+ * Free a page allocated from ring_buffer_alloc_read_page.
+ */
+void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
+{
+	free_page((unsigned long)data);
+}
+EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
+
+/**
+ * ring_buffer_read_page - extract a page from the ring buffer
+ * @buffer: buffer to extract from
+ * @data_page: the page to use allocated from ring_buffer_alloc_read_page
+ * @len: amount to extract
+ * @cpu: the cpu of the buffer to extract
+ * @full: should the extraction only happen when the page is full.
+ *
+ * This function will pull out a page from the ring buffer and consume it.
+ * @data_page must be the address of the variable that was returned
+ * from ring_buffer_alloc_read_page. This is because the page might be used
+ * to swap with a page in the ring buffer.
+ *
+ * for example:
+ *	rpage = ring_buffer_alloc_read_page(buffer);
+ *	if (!rpage)
+ *		return error;
+ *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
+ *	if (ret >= 0)
+ *		process_page(rpage, ret);
+ *
+ * When @full is set, the function will not return true unless
+ * the writer is off the reader page.
+ *
+ * Note: it is up to the calling functions to handle sleeps and wakeups.
+ *  The ring buffer can be used anywhere in the kernel and can not
+ *  blindly call wake_up. The layer that uses the ring buffer must be
+ *  responsible for that.
+ *
+ * Returns:
+ *  >=0 if data has been transferred, returns the offset of consumed data.
+ *  <0 if no data has been transferred.
+ */
+int ring_buffer_read_page(struct ring_buffer *buffer,
+			  void **data_page, size_t len, int cpu, int full)
+{
+	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
+	struct ring_buffer_event *event;
+	struct buffer_data_page *bpage;
+	struct buffer_page *reader;
+	unsigned long missed_events;
+	unsigned long flags;
+	unsigned int commit;
+	unsigned int read;
+	u64 save_timestamp;
+	int locked;
+	int ret = -1;
+
+	if (!cpumask_test_cpu(cpu, buffer->cpumask))
+		goto out;
+
+	/*
+	 * If len is not big enough to hold the page header, then
+	 * we can not copy anything.
+	 */
+	if (len <= BUF_PAGE_HDR_SIZE)
+		goto out;
+
+	len -= BUF_PAGE_HDR_SIZE;
+
+	if (!data_page)
+		goto out;
+
+	bpage = *data_page;
+	if (!bpage)
+		goto out;
+
+	locked = read_buffer_lock(cpu_buffer, &flags);
+
+	reader = rb_get_reader_page(cpu_buffer);
+	if (!reader)
+		goto out_unlock;
+
+	event = rb_reader_event(cpu_buffer);
+
+	read = reader->read;
+	commit = rb_page_commit(reader);
+
+	/* Check if any events were dropped */
+	missed_events = cpu_buffer->lost_events;
+
+	/*
+	 * If this page has been partially read or
+	 * if len is not big enough to read the rest of the page or
+	 * a writer is still on the page, then
+	 * we must copy the data from the page to the buffer.
+	 * Otherwise, we can simply swap the page with the one passed in.
+	 */
+	if (read || (len < (commit - read)) ||
+	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
+		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
+		unsigned int rpos = read;
+		unsigned int pos = 0;
+		unsigned int size;
+
+		if (full)
+			goto out_unlock;
+
+		if (len > (commit - read))
+			len = (commit - read);
+
+		/* Always keep the time extend and data together */
+		size = rb_event_ts_length(event);
+
+		if (len < size)
+			goto out_unlock;
+
+		/* save the current timestamp, since the user will need it */
+		save_timestamp = cpu_buffer->read_stamp;
+
+		/* Need to copy one event at a time */
+		do {
+			/* We need the size of one event, because
+			 * rb_advance_reader only advances by one event,
+			 * whereas rb_event_ts_length may include the size of
+			 * one or two events.
+			 * We have already ensured there's enough space if this
+			 * is a time extend. */
+			size = rb_event_length(event);
+			memcpy(bpage->data + pos, rpage->data + rpos, size);
+
+			len -= size;
+
+			rb_advance_reader(cpu_buffer);
+			rpos = reader->read;
+			pos += size;
+
+			if (rpos >= commit)
+				break;
+
+			event = rb_reader_event(cpu_buffer);
+			/* Always keep the time extend and data together */
+			size = rb_event_ts_length(event);
+		} while (len >= size);
+
+		/* update bpage */
+		local_set(&bpage->commit, pos);
+		bpage->time_stamp = save_timestamp;
+
+		/* we copied everything to the beginning */
+		read = 0;
+	} else {
+		/* update the entry counter */
+		cpu_buffer->read += rb_page_entries(reader);
+		cpu_buffer->read_bytes += BUF_PAGE_SIZE;
+
+		/* swap the pages */
+		rb_init_page(bpage);
+		bpage = reader->page;
+		reader->page = *data_page;
+		local_set(&reader->write, 0);
+		local_set(&reader->entries, 0);
+		reader->read = 0;
+		*data_page = bpage;
+
+		/*
+		 * Use the real_end for the data size,
+		 * This gives us a chance to store the lost events
+		 * on the page.
+		 */
+		if (reader->real_end)
+			local_set(&bpage->commit, reader->real_end);
+	}
+	ret = read;
+
+	cpu_buffer->lost_events = 0;
+
+	commit = local_read(&bpage->commit);
+	/*
+	 * Set a flag in the commit field if we lost events
+	 */
+	if (missed_events) {
+		/* If there is room at the end of the page to save the
+		 * missed events, then record it there.
+		 */
+		if (BUF_PAGE_SIZE - commit >= sizeof(missed_events)) {
+			memcpy(&bpage->data[commit], &missed_events,
+			       sizeof(missed_events));
+			local_add(RB_MISSED_STORED, &bpage->commit);
+			commit += sizeof(missed_events);
+		}
+		local_add(RB_MISSED_EVENTS, &bpage->commit);
+	}
+
+	/*
+	 * This page may be off to user land. Zero it out here.
+	 */
+	if (commit < BUF_PAGE_SIZE)
+		memset(&bpage->data[commit], 0, BUF_PAGE_SIZE - commit);
+
+ out_unlock:
+	read_buffer_unlock(cpu_buffer, flags, locked);
+
+ out:
+	return ret;
+}
+EXPORT_SYMBOL_GPL(ring_buffer_read_page);
+
+#ifdef CONFIG_HOTPLUG_CPU
+static int rb_cpu_notify(struct notifier_block *self,
+			 unsigned long action, void *hcpu)
+{
+	struct ring_buffer *buffer =
+		container_of(self, struct ring_buffer, cpu_notify);
+	long cpu = (long)hcpu;
+
+	switch (action) {
+	case CPU_UP_PREPARE:
+	case CPU_UP_PREPARE_FROZEN:
+		if (cpumask_test_cpu(cpu, buffer->cpumask))
+			return NOTIFY_OK;
+
+		buffer->buffers[cpu] =
+			rb_allocate_cpu_buffer(buffer, cpu);
+		if (!buffer->buffers[cpu]) {
+			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
+			     cpu);
+			return NOTIFY_OK;
+		}
+		smp_wmb();
+		cpumask_set_cpu(cpu, buffer->cpumask);
+		break;
+	case CPU_DOWN_PREPARE:
+	case CPU_DOWN_PREPARE_FROZEN:
+		/*
+		 * Do nothing.
+		 *  If we were to free the buffer, then the user would
+		 *  lose any trace that was in the buffer.
+		 */
+		break;
+	default:
+		break;
+	}
+	return NOTIFY_OK;
+}
+#endif