zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/mm/vmscan.c b/ap/os/linux/linux-3.4.x/mm/vmscan.c
new file mode 100644
index 0000000..5888e29
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/mm/vmscan.c
@@ -0,0 +1,3745 @@
+/*
+ *  linux/mm/vmscan.c
+ *
+ *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
+ *
+ *  Swap reorganised 29.12.95, Stephen Tweedie.
+ *  kswapd added: 7.1.96  sct
+ *  Removed kswapd_ctl limits, and swap out as many pages as needed
+ *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
+ *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
+ *  Multiqueue VM started 5.8.00, Rik van Riel.
+ */
+
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/gfp.h>
+#include <linux/kernel_stat.h>
+#include <linux/swap.h>
+#include <linux/pagemap.h>
+#include <linux/init.h>
+#include <linux/highmem.h>
+#include <linux/vmstat.h>
+#include <linux/file.h>
+#include <linux/writeback.h>
+#include <linux/blkdev.h>
+#include <linux/buffer_head.h>	/* for try_to_release_page(),
+					buffer_heads_over_limit */
+#include <linux/mm_inline.h>
+#include <linux/backing-dev.h>
+#include <linux/rmap.h>
+#include <linux/topology.h>
+#include <linux/cpu.h>
+#include <linux/cpuset.h>
+#include <linux/compaction.h>
+#include <linux/notifier.h>
+#include <linux/rwsem.h>
+#include <linux/delay.h>
+#include <linux/kthread.h>
+#include <linux/freezer.h>
+#include <linux/memcontrol.h>
+#include <linux/delayacct.h>
+#include <linux/sysctl.h>
+#include <linux/oom.h>
+#include <linux/prefetch.h>
+#include <linux/debugfs.h>
+
+#include <asm/tlbflush.h>
+#include <asm/div64.h>
+
+#include <linux/swapops.h>
+
+#include "internal.h"
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/vmscan.h>
+
+/*
+ * reclaim_mode determines how the inactive list is shrunk
+ * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
+ * RECLAIM_MODE_ASYNC:  Do not block
+ * RECLAIM_MODE_SYNC:   Allow blocking e.g. call wait_on_page_writeback
+ * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
+ *			page from the LRU and reclaim all pages within a
+ *			naturally aligned range
+ * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
+ *			order-0 pages and then compact the zone
+ */
+typedef unsigned __bitwise__ reclaim_mode_t;
+#define RECLAIM_MODE_SINGLE		((__force reclaim_mode_t)0x01u)
+#define RECLAIM_MODE_ASYNC		((__force reclaim_mode_t)0x02u)
+#define RECLAIM_MODE_SYNC		((__force reclaim_mode_t)0x04u)
+#define RECLAIM_MODE_LUMPYRECLAIM	((__force reclaim_mode_t)0x08u)
+#define RECLAIM_MODE_COMPACTION		((__force reclaim_mode_t)0x10u)
+
+struct scan_control {
+	/* Incremented by the number of inactive pages that were scanned */
+	unsigned long nr_scanned;
+
+	/* Number of pages freed so far during a call to shrink_zones() */
+	unsigned long nr_reclaimed;
+
+	/* How many pages shrink_list() should reclaim */
+	unsigned long nr_to_reclaim;
+
+	unsigned long hibernation_mode;
+
+	/* This context's GFP mask */
+	gfp_t gfp_mask;
+
+	int may_writepage;
+
+	/* Can mapped pages be reclaimed? */
+	int may_unmap;
+
+	/* Can pages be swapped as part of reclaim? */
+	int may_swap;
+
+	int order;
+
+	/*
+	 * Intend to reclaim enough continuous memory rather than reclaim
+	 * enough amount of memory. i.e, mode for high order allocation.
+	 */
+	reclaim_mode_t reclaim_mode;
+
+	/*
+	 * The memory cgroup that hit its limit and as a result is the
+	 * primary target of this reclaim invocation.
+	 */
+	struct mem_cgroup *target_mem_cgroup;
+
+	/*
+	 * Nodemask of nodes allowed by the caller. If NULL, all nodes
+	 * are scanned.
+	 */
+	nodemask_t	*nodemask;
+};
+
+struct mem_cgroup_zone {
+	struct mem_cgroup *mem_cgroup;
+	struct zone *zone;
+};
+
+#define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
+
+#ifdef ARCH_HAS_PREFETCH
+#define prefetch_prev_lru_page(_page, _base, _field)			\
+	do {								\
+		if ((_page)->lru.prev != _base) {			\
+			struct page *prev;				\
+									\
+			prev = lru_to_page(&(_page->lru));		\
+			prefetch(&prev->_field);			\
+		}							\
+	} while (0)
+#else
+#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
+#endif
+
+#ifdef ARCH_HAS_PREFETCHW
+#define prefetchw_prev_lru_page(_page, _base, _field)			\
+	do {								\
+		if ((_page)->lru.prev != _base) {			\
+			struct page *prev;				\
+									\
+			prev = lru_to_page(&(_page->lru));		\
+			prefetchw(&prev->_field);			\
+		}							\
+	} while (0)
+#else
+#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
+#endif
+
+/*
+ * From 0 .. 100.  Higher means more swappy.
+ */
+int vm_swappiness = 60;
+long vm_total_pages;	/* The total number of pages which the VM controls */
+
+static LIST_HEAD(shrinker_list);
+static DECLARE_RWSEM(shrinker_rwsem);
+
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+static bool global_reclaim(struct scan_control *sc)
+{
+	return !sc->target_mem_cgroup;
+}
+
+static bool scanning_global_lru(struct mem_cgroup_zone *mz)
+{
+	return !mz->mem_cgroup;
+}
+#else
+static bool global_reclaim(struct scan_control *sc)
+{
+	return true;
+}
+
+static bool scanning_global_lru(struct mem_cgroup_zone *mz)
+{
+	return true;
+}
+#endif
+
+static struct zone_reclaim_stat *get_reclaim_stat(struct mem_cgroup_zone *mz)
+{
+	if (!scanning_global_lru(mz))
+		return mem_cgroup_get_reclaim_stat(mz->mem_cgroup, mz->zone);
+
+	return &mz->zone->reclaim_stat;
+}
+
+static unsigned long zone_nr_lru_pages(struct mem_cgroup_zone *mz,
+				       enum lru_list lru)
+{
+	if (!scanning_global_lru(mz))
+		return mem_cgroup_zone_nr_lru_pages(mz->mem_cgroup,
+						    zone_to_nid(mz->zone),
+						    zone_idx(mz->zone),
+						    BIT(lru));
+
+	return zone_page_state(mz->zone, NR_LRU_BASE + lru);
+}
+
+struct dentry *debug_file;
+
+static int debug_shrinker_show(struct seq_file *s, void *unused)
+{
+	struct shrinker *shrinker;
+	struct shrink_control sc;
+
+	sc.gfp_mask = -1;
+	sc.nr_to_scan = 0;
+
+	down_read(&shrinker_rwsem);
+	list_for_each_entry(shrinker, &shrinker_list, list) {
+		char name[64];
+		int num_objs;
+
+		num_objs = shrinker->shrink(shrinker, &sc);
+		seq_printf(s, "%pf %d\n", shrinker->shrink, num_objs);
+	}
+	up_read(&shrinker_rwsem);
+	return 0;
+}
+
+static int debug_shrinker_open(struct inode *inode, struct file *file)
+{
+        return single_open(file, debug_shrinker_show, inode->i_private);
+}
+
+static const struct file_operations debug_shrinker_fops = {
+        .open = debug_shrinker_open,
+        .read = seq_read,
+        .llseek = seq_lseek,
+        .release = single_release,
+};
+
+/*
+ * Add a shrinker callback to be called from the vm
+ */
+void register_shrinker(struct shrinker *shrinker)
+{
+	atomic_long_set(&shrinker->nr_in_batch, 0);
+	down_write(&shrinker_rwsem);
+	list_add_tail(&shrinker->list, &shrinker_list);
+	up_write(&shrinker_rwsem);
+}
+EXPORT_SYMBOL(register_shrinker);
+
+static int __init add_shrinker_debug(void)
+{
+	debugfs_create_file("shrinker", 0644, NULL, NULL,
+			    &debug_shrinker_fops);
+	return 0;
+}
+
+late_initcall(add_shrinker_debug);
+
+/*
+ * Remove one
+ */
+void unregister_shrinker(struct shrinker *shrinker)
+{
+	down_write(&shrinker_rwsem);
+	list_del(&shrinker->list);
+	up_write(&shrinker_rwsem);
+}
+EXPORT_SYMBOL(unregister_shrinker);
+
+static inline int do_shrinker_shrink(struct shrinker *shrinker,
+				     struct shrink_control *sc,
+				     unsigned long nr_to_scan)
+{
+	sc->nr_to_scan = nr_to_scan;
+	return (*shrinker->shrink)(shrinker, sc);
+}
+
+#define SHRINK_BATCH 128
+/*
+ * Call the shrink functions to age shrinkable caches
+ *
+ * Here we assume it costs one seek to replace a lru page and that it also
+ * takes a seek to recreate a cache object.  With this in mind we age equal
+ * percentages of the lru and ageable caches.  This should balance the seeks
+ * generated by these structures.
+ *
+ * If the vm encountered mapped pages on the LRU it increase the pressure on
+ * slab to avoid swapping.
+ *
+ * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
+ *
+ * `lru_pages' represents the number of on-LRU pages in all the zones which
+ * are eligible for the caller's allocation attempt.  It is used for balancing
+ * slab reclaim versus page reclaim.
+ *
+ * Returns the number of slab objects which we shrunk.
+ */
+unsigned long shrink_slab(struct shrink_control *shrink,
+			  unsigned long nr_pages_scanned,
+			  unsigned long lru_pages)
+{
+	struct shrinker *shrinker;
+	unsigned long ret = 0;
+
+	if (nr_pages_scanned == 0)
+		nr_pages_scanned = SWAP_CLUSTER_MAX;
+
+	if (!down_read_trylock(&shrinker_rwsem)) {
+		/* Assume we'll be able to shrink next time */
+		ret = 1;
+		goto out;
+	}
+
+	list_for_each_entry(shrinker, &shrinker_list, list) {
+		unsigned long long delta;
+		long total_scan;
+		long max_pass;
+		int shrink_ret = 0;
+		long nr;
+		long new_nr;
+		long batch_size = shrinker->batch ? shrinker->batch
+						  : SHRINK_BATCH;
+
+		max_pass = do_shrinker_shrink(shrinker, shrink, 0);
+		if (max_pass <= 0)
+			continue;
+
+		/*
+		 * copy the current shrinker scan count into a local variable
+		 * and zero it so that other concurrent shrinker invocations
+		 * don't also do this scanning work.
+		 */
+		nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
+
+		total_scan = nr;
+		delta = (4 * nr_pages_scanned) / shrinker->seeks;
+		delta *= max_pass;
+		do_div(delta, lru_pages + 1);
+		total_scan += delta;
+		if (total_scan < 0) {
+			printk(KERN_ERR "shrink_slab: %pF negative objects to "
+			       "delete nr=%ld\n",
+			       shrinker->shrink, total_scan);
+			total_scan = max_pass;
+		}
+
+		/*
+		 * We need to avoid excessive windup on filesystem shrinkers
+		 * due to large numbers of GFP_NOFS allocations causing the
+		 * shrinkers to return -1 all the time. This results in a large
+		 * nr being built up so when a shrink that can do some work
+		 * comes along it empties the entire cache due to nr >>>
+		 * max_pass.  This is bad for sustaining a working set in
+		 * memory.
+		 *
+		 * Hence only allow the shrinker to scan the entire cache when
+		 * a large delta change is calculated directly.
+		 */
+		if (delta < max_pass / 4)
+			total_scan = min(total_scan, max_pass / 2);
+
+		/*
+		 * Avoid risking looping forever due to too large nr value:
+		 * never try to free more than twice the estimate number of
+		 * freeable entries.
+		 */
+		if (total_scan > max_pass * 2)
+			total_scan = max_pass * 2;
+
+		trace_mm_shrink_slab_start(shrinker, shrink, nr,
+					nr_pages_scanned, lru_pages,
+					max_pass, delta, total_scan);
+
+		while (total_scan >= batch_size) {
+			int nr_before;
+
+			nr_before = do_shrinker_shrink(shrinker, shrink, 0);
+			shrink_ret = do_shrinker_shrink(shrinker, shrink,
+							batch_size);
+			if (shrink_ret == -1)
+				break;
+			if (shrink_ret < nr_before)
+				ret += nr_before - shrink_ret;
+			count_vm_events(SLABS_SCANNED, batch_size);
+			total_scan -= batch_size;
+
+			cond_resched();
+		}
+
+		/*
+		 * move the unused scan count back into the shrinker in a
+		 * manner that handles concurrent updates. If we exhausted the
+		 * scan, there is no need to do an update.
+		 */
+		if (total_scan > 0)
+			new_nr = atomic_long_add_return(total_scan,
+					&shrinker->nr_in_batch);
+		else
+			new_nr = atomic_long_read(&shrinker->nr_in_batch);
+
+		trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
+	}
+	up_read(&shrinker_rwsem);
+out:
+	cond_resched();
+	return ret;
+}
+
+static void set_reclaim_mode(int priority, struct scan_control *sc,
+				   bool sync)
+{
+	reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
+
+	/*
+	 * Initially assume we are entering either lumpy reclaim or
+	 * reclaim/compaction.Depending on the order, we will either set the
+	 * sync mode or just reclaim order-0 pages later.
+	 */
+	if (COMPACTION_BUILD)
+		sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
+	else
+		sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
+
+	/*
+	 * Avoid using lumpy reclaim or reclaim/compaction if possible by
+	 * restricting when its set to either costly allocations or when
+	 * under memory pressure
+	 */
+	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
+		sc->reclaim_mode |= syncmode;
+	else if (sc->order && priority < DEF_PRIORITY - 2)
+		sc->reclaim_mode |= syncmode;
+	else
+		sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
+}
+
+static void reset_reclaim_mode(struct scan_control *sc)
+{
+	sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
+}
+
+static inline int is_page_cache_freeable(struct page *page)
+{
+	/*
+	 * A freeable page cache page is referenced only by the caller
+	 * that isolated the page, the page cache radix tree and
+	 * optional buffer heads at page->private.
+	 */
+	return page_count(page) - page_has_private(page) == 2;
+}
+
+static int may_write_to_queue(struct backing_dev_info *bdi,
+			      struct scan_control *sc)
+{
+	if (current->flags & PF_SWAPWRITE)
+		return 1;
+	if (!bdi_write_congested(bdi))
+		return 1;
+	if (bdi == current->backing_dev_info)
+		return 1;
+
+	/* lumpy reclaim for hugepage often need a lot of write */
+	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
+		return 1;
+	return 0;
+}
+
+/*
+ * We detected a synchronous write error writing a page out.  Probably
+ * -ENOSPC.  We need to propagate that into the address_space for a subsequent
+ * fsync(), msync() or close().
+ *
+ * The tricky part is that after writepage we cannot touch the mapping: nothing
+ * prevents it from being freed up.  But we have a ref on the page and once
+ * that page is locked, the mapping is pinned.
+ *
+ * We're allowed to run sleeping lock_page() here because we know the caller has
+ * __GFP_FS.
+ */
+static void handle_write_error(struct address_space *mapping,
+				struct page *page, int error)
+{
+	lock_page(page);
+	if (page_mapping(page) == mapping)
+		mapping_set_error(mapping, error);
+	unlock_page(page);
+}
+
+/* possible outcome of pageout() */
+typedef enum {
+	/* failed to write page out, page is locked */
+	PAGE_KEEP,
+	/* move page to the active list, page is locked */
+	PAGE_ACTIVATE,
+	/* page has been sent to the disk successfully, page is unlocked */
+	PAGE_SUCCESS,
+	/* page is clean and locked */
+	PAGE_CLEAN,
+} pageout_t;
+
+/*
+ * pageout is called by shrink_page_list() for each dirty page.
+ * Calls ->writepage().
+ */
+static pageout_t pageout(struct page *page, struct address_space *mapping,
+			 struct scan_control *sc)
+{
+	/*
+	 * If the page is dirty, only perform writeback if that write
+	 * will be non-blocking.  To prevent this allocation from being
+	 * stalled by pagecache activity.  But note that there may be
+	 * stalls if we need to run get_block().  We could test
+	 * PagePrivate for that.
+	 *
+	 * If this process is currently in __generic_file_aio_write() against
+	 * this page's queue, we can perform writeback even if that
+	 * will block.
+	 *
+	 * If the page is swapcache, write it back even if that would
+	 * block, for some throttling. This happens by accident, because
+	 * swap_backing_dev_info is bust: it doesn't reflect the
+	 * congestion state of the swapdevs.  Easy to fix, if needed.
+	 */
+	if (!is_page_cache_freeable(page))
+		return PAGE_KEEP;
+	if (!mapping) {
+		/*
+		 * Some data journaling orphaned pages can have
+		 * page->mapping == NULL while being dirty with clean buffers.
+		 */
+		if (page_has_private(page)) {
+			if (try_to_free_buffers(page)) {
+				ClearPageDirty(page);
+				printk("%s: orphaned page\n", __func__);
+				return PAGE_CLEAN;
+			}
+		}
+		return PAGE_KEEP;
+	}
+	if (mapping->a_ops->writepage == NULL)
+		return PAGE_ACTIVATE;
+	if (!may_write_to_queue(mapping->backing_dev_info, sc))
+		return PAGE_KEEP;
+
+	if (clear_page_dirty_for_io(page)) {
+		int res;
+		struct writeback_control wbc = {
+			.sync_mode = WB_SYNC_NONE,
+			.nr_to_write = SWAP_CLUSTER_MAX,
+			.range_start = 0,
+			.range_end = LLONG_MAX,
+			.for_reclaim = 1,
+		};
+
+		SetPageReclaim(page);
+		res = mapping->a_ops->writepage(page, &wbc);
+		if (res < 0)
+			handle_write_error(mapping, page, res);
+		if (res == AOP_WRITEPAGE_ACTIVATE) {
+			ClearPageReclaim(page);
+			return PAGE_ACTIVATE;
+		}
+
+		if (!PageWriteback(page)) {
+			/* synchronous write or broken a_ops? */
+			ClearPageReclaim(page);
+		}
+		trace_mm_vmscan_writepage(page,
+			trace_reclaim_flags(page, sc->reclaim_mode));
+		inc_zone_page_state(page, NR_VMSCAN_WRITE);
+		return PAGE_SUCCESS;
+	}
+
+	return PAGE_CLEAN;
+}
+
+/*
+ * Same as remove_mapping, but if the page is removed from the mapping, it
+ * gets returned with a refcount of 0.
+ */
+static int __remove_mapping(struct address_space *mapping, struct page *page)
+{
+	BUG_ON(!PageLocked(page));
+	BUG_ON(mapping != page_mapping(page));
+
+	unsigned long flags;
+
+	spin_lock_irq(&mapping->tree_lock);
+	local_irq_save(flags);
+	/*
+	 * The non racy check for a busy page.
+	 *
+	 * Must be careful with the order of the tests. When someone has
+	 * a ref to the page, it may be possible that they dirty it then
+	 * drop the reference. So if PageDirty is tested before page_count
+	 * here, then the following race may occur:
+	 *
+	 * get_user_pages(&page);
+	 * [user mapping goes away]
+	 * write_to(page);
+	 *				!PageDirty(page)    [good]
+	 * SetPageDirty(page);
+	 * put_page(page);
+	 *				!page_count(page)   [good, discard it]
+	 *
+	 * [oops, our write_to data is lost]
+	 *
+	 * Reversing the order of the tests ensures such a situation cannot
+	 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
+	 * load is not satisfied before that of page->_count.
+	 *
+	 * Note that if SetPageDirty is always performed via set_page_dirty,
+	 * and thus under tree_lock, then this ordering is not required.
+	 */
+	if (!page_freeze_refs(page, 2))
+		goto cannot_free;
+	/* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
+	if (unlikely(PageDirty(page))) {
+		page_unfreeze_refs(page, 2);
+		goto cannot_free;
+	}
+
+	if (PageSwapCache(page)) {
+		swp_entry_t swap = { .val = page_private(page) };
+		__delete_from_swap_cache(page);
+		local_irq_restore(flags);
+		spin_unlock_irq(&mapping->tree_lock);
+		swapcache_free(swap, page);
+	} else {
+		void (*freepage)(struct page *);
+
+		freepage = mapping->a_ops->freepage;
+
+		__delete_from_page_cache(page);
+		local_irq_restore(flags);
+		spin_unlock_irq(&mapping->tree_lock);
+		mem_cgroup_uncharge_cache_page(page);
+
+		if (freepage != NULL)
+			freepage(page);
+	}
+
+	return 1;
+
+cannot_free:
+	local_irq_restore(flags);
+	spin_unlock_irq(&mapping->tree_lock);
+	return 0;
+}
+
+/*
+ * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
+ * someone else has a ref on the page, abort and return 0.  If it was
+ * successfully detached, return 1.  Assumes the caller has a single ref on
+ * this page.
+ */
+int remove_mapping(struct address_space *mapping, struct page *page)
+{
+	if (__remove_mapping(mapping, page)) {
+		/*
+		 * Unfreezing the refcount with 1 rather than 2 effectively
+		 * drops the pagecache ref for us without requiring another
+		 * atomic operation.
+		 */
+		page_unfreeze_refs(page, 1);
+		return 1;
+	}
+	return 0;
+}
+
+/**
+ * putback_lru_page - put previously isolated page onto appropriate LRU list
+ * @page: page to be put back to appropriate lru list
+ *
+ * Add previously isolated @page to appropriate LRU list.
+ * Page may still be unevictable for other reasons.
+ *
+ * lru_lock must not be held, interrupts must be enabled.
+ */
+void putback_lru_page(struct page *page)
+{
+	int lru;
+	int active = !!TestClearPageActive(page);
+	int was_unevictable = PageUnevictable(page);
+
+	VM_BUG_ON(PageLRU(page));
+
+redo:
+	ClearPageUnevictable(page);
+
+	if (page_evictable(page, NULL)) {
+		/*
+		 * For evictable pages, we can use the cache.
+		 * In event of a race, worst case is we end up with an
+		 * unevictable page on [in]active list.
+		 * We know how to handle that.
+		 */
+		lru = active + page_lru_base_type(page);
+		lru_cache_add_lru(page, lru);
+	} else {
+		/*
+		 * Put unevictable pages directly on zone's unevictable
+		 * list.
+		 */
+		lru = LRU_UNEVICTABLE;
+		add_page_to_unevictable_list(page);
+		/*
+		 * When racing with an mlock or AS_UNEVICTABLE clearing
+		 * (page is unlocked) make sure that if the other thread
+		 * does not observe our setting of PG_lru and fails
+		 * isolation/check_move_unevictable_pages,
+		 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
+		 * the page back to the evictable list.
+		 *
+		 * The other side is TestClearPageMlocked() or shmem_lock().
+		 */
+		smp_mb();
+	}
+
+	/*
+	 * page's status can change while we move it among lru. If an evictable
+	 * page is on unevictable list, it never be freed. To avoid that,
+	 * check after we added it to the list, again.
+	 */
+	if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
+		if (!isolate_lru_page(page)) {
+			put_page(page);
+			goto redo;
+		}
+		/* This means someone else dropped this page from LRU
+		 * So, it will be freed or putback to LRU again. There is
+		 * nothing to do here.
+		 */
+	}
+
+	if (was_unevictable && lru != LRU_UNEVICTABLE)
+		count_vm_event(UNEVICTABLE_PGRESCUED);
+	else if (!was_unevictable && lru == LRU_UNEVICTABLE)
+		count_vm_event(UNEVICTABLE_PGCULLED);
+
+	put_page(page);		/* drop ref from isolate */
+}
+
+enum page_references {
+	PAGEREF_RECLAIM,
+	PAGEREF_RECLAIM_CLEAN,
+	PAGEREF_KEEP,
+	PAGEREF_ACTIVATE,
+};
+
+static enum page_references page_check_references(struct page *page,
+						  struct mem_cgroup_zone *mz,
+						  struct scan_control *sc)
+{
+	int referenced_ptes, referenced_page;
+	unsigned long vm_flags;
+
+	referenced_ptes = page_referenced(page, 1, mz->mem_cgroup, &vm_flags);
+	referenced_page = TestClearPageReferenced(page);
+
+	/* Lumpy reclaim - ignore references */
+	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
+		return PAGEREF_RECLAIM;
+
+	/*
+	 * Mlock lost the isolation race with us.  Let try_to_unmap()
+	 * move the page to the unevictable list.
+	 */
+	if (vm_flags & VM_LOCKED)
+		return PAGEREF_RECLAIM;
+
+	if (referenced_ptes) {
+		if (PageSwapBacked(page))
+			return PAGEREF_ACTIVATE;
+		/*
+		 * All mapped pages start out with page table
+		 * references from the instantiating fault, so we need
+		 * to look twice if a mapped file page is used more
+		 * than once.
+		 *
+		 * Mark it and spare it for another trip around the
+		 * inactive list.  Another page table reference will
+		 * lead to its activation.
+		 *
+		 * Note: the mark is set for activated pages as well
+		 * so that recently deactivated but used pages are
+		 * quickly recovered.
+		 */
+		SetPageReferenced(page);
+
+		if (referenced_page || referenced_ptes > 1)
+			return PAGEREF_ACTIVATE;
+
+		/*
+		 * Activate file-backed executable pages after first usage.
+		 */
+		if (vm_flags & VM_EXEC)
+			return PAGEREF_ACTIVATE;
+
+		return PAGEREF_KEEP;
+	}
+
+	/* Reclaim if clean, defer dirty pages to writeback */
+	if (referenced_page && !PageSwapBacked(page))
+		return PAGEREF_RECLAIM_CLEAN;
+
+	return PAGEREF_RECLAIM;
+}
+
+/*
+ * shrink_page_list() returns the number of reclaimed pages
+ */
+static unsigned long shrink_page_list(struct list_head *page_list,
+				      struct mem_cgroup_zone *mz,
+				      struct scan_control *sc,
+				      int priority,
+				      unsigned long *ret_nr_dirty,
+				      unsigned long *ret_nr_writeback)
+{
+	LIST_HEAD(ret_pages);
+	LIST_HEAD(free_pages);
+	int pgactivate = 0;
+	unsigned long nr_dirty = 0;
+	unsigned long nr_congested = 0;
+	unsigned long nr_reclaimed = 0;
+	unsigned long nr_writeback = 0;
+
+	cond_resched();
+
+	while (!list_empty(page_list)) {
+		enum page_references references;
+		struct address_space *mapping;
+		struct page *page;
+		int may_enter_fs;
+
+		cond_resched();
+
+		page = lru_to_page(page_list);
+		list_del(&page->lru);
+
+		if (!trylock_page(page))
+			goto keep;
+
+		VM_BUG_ON(PageActive(page));
+		VM_BUG_ON(page_zone(page) != mz->zone);
+
+		sc->nr_scanned++;
+
+		if (unlikely(!page_evictable(page, NULL)))
+			goto cull_mlocked;
+
+		if (!sc->may_unmap && page_mapped(page))
+			goto keep_locked;
+
+		/* Double the slab pressure for mapped and swapcache pages */
+		if (page_mapped(page) || PageSwapCache(page))
+			sc->nr_scanned++;
+
+		may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
+			(PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
+
+		if (PageWriteback(page)) {
+			nr_writeback++;
+			/*
+			 * Synchronous reclaim cannot queue pages for
+			 * writeback due to the possibility of stack overflow
+			 * but if it encounters a page under writeback, wait
+			 * for the IO to complete.
+			 */
+			if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
+			    may_enter_fs)
+				wait_on_page_writeback(page);
+			else {
+				unlock_page(page);
+				goto keep_lumpy;
+			}
+		}
+
+		references = page_check_references(page, mz, sc);
+		switch (references) {
+		case PAGEREF_ACTIVATE:
+			goto activate_locked;
+		case PAGEREF_KEEP:
+			goto keep_locked;
+		case PAGEREF_RECLAIM:
+		case PAGEREF_RECLAIM_CLEAN:
+			; /* try to reclaim the page below */
+		}
+
+		/*
+		 * Anonymous process memory has backing store?
+		 * Try to allocate it some swap space here.
+		 */
+		if (PageAnon(page) && !PageSwapCache(page)) {
+			if (!(sc->gfp_mask & __GFP_IO))
+				goto keep_locked;
+			if (!add_to_swap(page))
+				goto activate_locked;
+			may_enter_fs = 1;
+		}
+
+		mapping = page_mapping(page);
+
+		/*
+		 * The page is mapped into the page tables of one or more
+		 * processes. Try to unmap it here.
+		 */
+		if (page_mapped(page) && mapping) {
+			switch (try_to_unmap(page, TTU_UNMAP)) {
+			case SWAP_FAIL:
+				goto activate_locked;
+			case SWAP_AGAIN:
+				goto keep_locked;
+			case SWAP_MLOCK:
+				goto cull_mlocked;
+			case SWAP_SUCCESS:
+				; /* try to free the page below */
+			}
+		}
+
+		if (PageDirty(page)) {
+			nr_dirty++;
+
+			/*
+			 * Only kswapd can writeback filesystem pages to
+			 * avoid risk of stack overflow but do not writeback
+			 * unless under significant pressure.
+			 */
+			if (page_is_file_cache(page) &&
+					(!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
+				/*
+				 * Immediately reclaim when written back.
+				 * Similar in principal to deactivate_page()
+				 * except we already have the page isolated
+				 * and know it's dirty
+				 */
+				inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
+				SetPageReclaim(page);
+
+				goto keep_locked;
+			}
+
+			if (references == PAGEREF_RECLAIM_CLEAN)
+				goto keep_locked;
+			if (!may_enter_fs)
+				goto keep_locked;
+			if (!sc->may_writepage)
+				goto keep_locked;
+
+			/* Page is dirty, try to write it out here */
+			switch (pageout(page, mapping, sc)) {
+			case PAGE_KEEP:
+				nr_congested++;
+				goto keep_locked;
+			case PAGE_ACTIVATE:
+				goto activate_locked;
+			case PAGE_SUCCESS:
+				if (PageWriteback(page))
+					goto keep_lumpy;
+				if (PageDirty(page))
+					goto keep;
+
+				/*
+				 * A synchronous write - probably a ramdisk.  Go
+				 * ahead and try to reclaim the page.
+				 */
+				if (!trylock_page(page))
+					goto keep;
+				if (PageDirty(page) || PageWriteback(page))
+					goto keep_locked;
+				mapping = page_mapping(page);
+			case PAGE_CLEAN:
+				; /* try to free the page below */
+			}
+		}
+
+		/*
+		 * If the page has buffers, try to free the buffer mappings
+		 * associated with this page. If we succeed we try to free
+		 * the page as well.
+		 *
+		 * We do this even if the page is PageDirty().
+		 * try_to_release_page() does not perform I/O, but it is
+		 * possible for a page to have PageDirty set, but it is actually
+		 * clean (all its buffers are clean).  This happens if the
+		 * buffers were written out directly, with submit_bh(). ext3
+		 * will do this, as well as the blockdev mapping.
+		 * try_to_release_page() will discover that cleanness and will
+		 * drop the buffers and mark the page clean - it can be freed.
+		 *
+		 * Rarely, pages can have buffers and no ->mapping.  These are
+		 * the pages which were not successfully invalidated in
+		 * truncate_complete_page().  We try to drop those buffers here
+		 * and if that worked, and the page is no longer mapped into
+		 * process address space (page_count == 1) it can be freed.
+		 * Otherwise, leave the page on the LRU so it is swappable.
+		 */
+		if (page_has_private(page)) {
+			if (!try_to_release_page(page, sc->gfp_mask))
+				goto activate_locked;
+			if (!mapping && page_count(page) == 1) {
+				unlock_page(page);
+				if (put_page_testzero(page))
+					goto free_it;
+				else {
+					/*
+					 * rare race with speculative reference.
+					 * the speculative reference will free
+					 * this page shortly, so we may
+					 * increment nr_reclaimed here (and
+					 * leave it off the LRU).
+					 */
+					nr_reclaimed++;
+					continue;
+				}
+			}
+		}
+
+		if (!mapping || !__remove_mapping(mapping, page))
+			goto keep_locked;
+
+		/*
+		 * At this point, we have no other references and there is
+		 * no way to pick any more up (removed from LRU, removed
+		 * from pagecache). Can use non-atomic bitops now (and
+		 * we obviously don't have to worry about waking up a process
+		 * waiting on the page lock, because there are no references.
+		 */
+		__clear_page_locked(page);
+free_it:
+		nr_reclaimed++;
+
+		/*
+		 * Is there need to periodically free_page_list? It would
+		 * appear not as the counts should be low
+		 */
+		list_add(&page->lru, &free_pages);
+		continue;
+
+cull_mlocked:
+		if (PageSwapCache(page))
+			try_to_free_swap(page);
+		unlock_page(page);
+		putback_lru_page(page);
+		reset_reclaim_mode(sc);
+		continue;
+
+activate_locked:
+		/* Not a candidate for swapping, so reclaim swap space. */
+		if (PageSwapCache(page) && vm_swap_full())
+			try_to_free_swap(page);
+		VM_BUG_ON(PageActive(page));
+		SetPageActive(page);
+		pgactivate++;
+keep_locked:
+		unlock_page(page);
+keep:
+		reset_reclaim_mode(sc);
+keep_lumpy:
+		list_add(&page->lru, &ret_pages);
+		VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
+	}
+
+	/*
+	 * Tag a zone as congested if all the dirty pages encountered were
+	 * backed by a congested BDI. In this case, reclaimers should just
+	 * back off and wait for congestion to clear because further reclaim
+	 * will encounter the same problem
+	 */
+	if (nr_dirty && nr_dirty == nr_congested && global_reclaim(sc))
+		zone_set_flag(mz->zone, ZONE_CONGESTED);
+
+	free_hot_cold_page_list(&free_pages, 1);
+
+	list_splice(&ret_pages, page_list);
+	count_vm_events(PGACTIVATE, pgactivate);
+	*ret_nr_dirty += nr_dirty;
+	*ret_nr_writeback += nr_writeback;
+	return nr_reclaimed;
+}
+
+/*
+ * Attempt to remove the specified page from its LRU.  Only take this page
+ * if it is of the appropriate PageActive status.  Pages which are being
+ * freed elsewhere are also ignored.
+ *
+ * page:	page to consider
+ * mode:	one of the LRU isolation modes defined above
+ *
+ * returns 0 on success, -ve errno on failure.
+ */
+int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
+{
+	bool all_lru_mode;
+	int ret = -EINVAL;
+
+	/* Only take pages on the LRU. */
+	if (!PageLRU(page))
+		return ret;
+
+	all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
+		(ISOLATE_ACTIVE|ISOLATE_INACTIVE);
+
+	/*
+	 * When checking the active state, we need to be sure we are
+	 * dealing with comparible boolean values.  Take the logical not
+	 * of each.
+	 */
+	if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
+		return ret;
+
+	if (!all_lru_mode && !!page_is_file_cache(page) != file)
+		return ret;
+
+	/*
+	 * When this function is being called for lumpy reclaim, we
+	 * initially look into all LRU pages, active, inactive and
+	 * unevictable; only give shrink_page_list evictable pages.
+	 */
+	if (PageUnevictable(page))
+		return ret;
+
+	ret = -EBUSY;
+
+	/*
+	 * To minimise LRU disruption, the caller can indicate that it only
+	 * wants to isolate pages it will be able to operate on without
+	 * blocking - clean pages for the most part.
+	 *
+	 * ISOLATE_CLEAN means that only clean pages should be isolated. This
+	 * is used by reclaim when it is cannot write to backing storage
+	 *
+	 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
+	 * that it is possible to migrate without blocking
+	 */
+	if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
+		/* All the caller can do on PageWriteback is block */
+		if (PageWriteback(page))
+			return ret;
+
+		if (PageDirty(page)) {
+			struct address_space *mapping;
+
+			/* ISOLATE_CLEAN means only clean pages */
+			if (mode & ISOLATE_CLEAN)
+				return ret;
+
+			/*
+			 * Only pages without mappings or that have a
+			 * ->migratepage callback are possible to migrate
+			 * without blocking
+			 */
+			mapping = page_mapping(page);
+			if (mapping && !mapping->a_ops->migratepage)
+				return ret;
+		}
+	}
+
+	if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
+		return ret;
+
+	if (likely(get_page_unless_zero(page))) {
+		/*
+		 * Be careful not to clear PageLRU until after we're
+		 * sure the page is not being freed elsewhere -- the
+		 * page release code relies on it.
+		 */
+		ClearPageLRU(page);
+		ret = 0;
+	}
+
+	return ret;
+}
+
+/*
+ * zone->lru_lock is heavily contended.  Some of the functions that
+ * shrink the lists perform better by taking out a batch of pages
+ * and working on them outside the LRU lock.
+ *
+ * For pagecache intensive workloads, this function is the hottest
+ * spot in the kernel (apart from copy_*_user functions).
+ *
+ * Appropriate locks must be held before calling this function.
+ *
+ * @nr_to_scan:	The number of pages to look through on the list.
+ * @mz:		The mem_cgroup_zone to pull pages from.
+ * @dst:	The temp list to put pages on to.
+ * @nr_scanned:	The number of pages that were scanned.
+ * @sc:		The scan_control struct for this reclaim session
+ * @mode:	One of the LRU isolation modes
+ * @active:	True [1] if isolating active pages
+ * @file:	True [1] if isolating file [!anon] pages
+ *
+ * returns how many pages were moved onto *@dst.
+ */
+static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
+		struct mem_cgroup_zone *mz, struct list_head *dst,
+		unsigned long *nr_scanned, struct scan_control *sc,
+		isolate_mode_t mode, int active, int file)
+{
+	struct lruvec *lruvec;
+	struct list_head *src;
+	unsigned long nr_taken = 0;
+	unsigned long nr_lumpy_taken = 0;
+	unsigned long nr_lumpy_dirty = 0;
+	unsigned long nr_lumpy_failed = 0;
+	unsigned long scan;
+	int lru = LRU_BASE;
+
+	lruvec = mem_cgroup_zone_lruvec(mz->zone, mz->mem_cgroup);
+	if (active)
+		lru += LRU_ACTIVE;
+	if (file)
+		lru += LRU_FILE;
+	src = &lruvec->lists[lru];
+
+	for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
+		struct page *page;
+		unsigned long pfn;
+		unsigned long end_pfn;
+		unsigned long page_pfn;
+		int zone_id;
+
+		page = lru_to_page(src);
+		prefetchw_prev_lru_page(page, src, flags);
+
+		VM_BUG_ON(!PageLRU(page));
+
+		switch (__isolate_lru_page(page, mode, file)) {
+		case 0:
+			mem_cgroup_lru_del(page);
+			list_move(&page->lru, dst);
+			nr_taken += hpage_nr_pages(page);
+			break;
+
+		case -EBUSY:
+			/* else it is being freed elsewhere */
+			list_move(&page->lru, src);
+			continue;
+
+		default:
+			BUG();
+		}
+
+		if (!sc->order || !(sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM))
+			continue;
+
+		/*
+		 * Attempt to take all pages in the order aligned region
+		 * surrounding the tag page.  Only take those pages of
+		 * the same active state as that tag page.  We may safely
+		 * round the target page pfn down to the requested order
+		 * as the mem_map is guaranteed valid out to MAX_ORDER,
+		 * where that page is in a different zone we will detect
+		 * it from its zone id and abort this block scan.
+		 */
+		zone_id = page_zone_id(page);
+		page_pfn = page_to_pfn(page);
+		pfn = page_pfn & ~((1 << sc->order) - 1);
+		end_pfn = pfn + (1 << sc->order);
+		for (; pfn < end_pfn; pfn++) {
+			struct page *cursor_page;
+
+			/* The target page is in the block, ignore it. */
+			if (unlikely(pfn == page_pfn))
+				continue;
+
+			/* Avoid holes within the zone. */
+			if (unlikely(!pfn_valid_within(pfn)))
+				break;
+
+			cursor_page = pfn_to_page(pfn);
+
+			/* Check that we have not crossed a zone boundary. */
+			if (unlikely(page_zone_id(cursor_page) != zone_id))
+				break;
+
+			/*
+			 * If we don't have enough swap space, reclaiming of
+			 * anon page which don't already have a swap slot is
+			 * pointless.
+			 */
+			if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
+			    !PageSwapCache(cursor_page))
+				break;
+
+			if (__isolate_lru_page(cursor_page, mode, file) == 0) {
+				unsigned int isolated_pages;
+
+				mem_cgroup_lru_del(cursor_page);
+				list_move(&cursor_page->lru, dst);
+				isolated_pages = hpage_nr_pages(cursor_page);
+				nr_taken += isolated_pages;
+				nr_lumpy_taken += isolated_pages;
+				if (PageDirty(cursor_page))
+					nr_lumpy_dirty += isolated_pages;
+				scan++;
+				pfn += isolated_pages - 1;
+			} else {
+				/*
+				 * Check if the page is freed already.
+				 *
+				 * We can't use page_count() as that
+				 * requires compound_head and we don't
+				 * have a pin on the page here. If a
+				 * page is tail, we may or may not
+				 * have isolated the head, so assume
+				 * it's not free, it'd be tricky to
+				 * track the head status without a
+				 * page pin.
+				 */
+				if (!PageTail(cursor_page) &&
+				    !atomic_read(&cursor_page->_count))
+					continue;
+				break;
+			}
+		}
+
+		/* If we break out of the loop above, lumpy reclaim failed */
+		if (pfn < end_pfn)
+			nr_lumpy_failed++;
+	}
+
+	*nr_scanned = scan;
+
+	trace_mm_vmscan_lru_isolate(sc->order,
+			nr_to_scan, scan,
+			nr_taken,
+			nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
+			mode, file);
+	return nr_taken;
+}
+
+/**
+ * isolate_lru_page - tries to isolate a page from its LRU list
+ * @page: page to isolate from its LRU list
+ *
+ * Isolates a @page from an LRU list, clears PageLRU and adjusts the
+ * vmstat statistic corresponding to whatever LRU list the page was on.
+ *
+ * Returns 0 if the page was removed from an LRU list.
+ * Returns -EBUSY if the page was not on an LRU list.
+ *
+ * The returned page will have PageLRU() cleared.  If it was found on
+ * the active list, it will have PageActive set.  If it was found on
+ * the unevictable list, it will have the PageUnevictable bit set. That flag
+ * may need to be cleared by the caller before letting the page go.
+ *
+ * The vmstat statistic corresponding to the list on which the page was
+ * found will be decremented.
+ *
+ * Restrictions:
+ * (1) Must be called with an elevated refcount on the page. This is a
+ *     fundamentnal difference from isolate_lru_pages (which is called
+ *     without a stable reference).
+ * (2) the lru_lock must not be held.
+ * (3) interrupts must be enabled.
+ */
+int isolate_lru_page(struct page *page)
+{
+	int ret = -EBUSY;
+
+	VM_BUG_ON(!page_count(page));
+
+	if (PageLRU(page)) {
+		struct zone *zone = page_zone(page);
+
+		spin_lock_irq(&zone->lru_lock);
+		if (PageLRU(page)) {
+			int lru = page_lru(page);
+			ret = 0;
+			get_page(page);
+			ClearPageLRU(page);
+
+			del_page_from_lru_list(zone, page, lru);
+		}
+		spin_unlock_irq(&zone->lru_lock);
+	}
+	return ret;
+}
+
+/*
+ * Are there way too many processes in the direct reclaim path already?
+ */
+static int too_many_isolated(struct zone *zone, int file,
+		struct scan_control *sc)
+{
+	unsigned long inactive, isolated;
+
+	if (current_is_kswapd())
+		return 0;
+
+	if (!global_reclaim(sc))
+		return 0;
+
+	if (file) {
+		inactive = zone_page_state(zone, NR_INACTIVE_FILE);
+		isolated = zone_page_state(zone, NR_ISOLATED_FILE);
+	} else {
+		inactive = zone_page_state(zone, NR_INACTIVE_ANON);
+		isolated = zone_page_state(zone, NR_ISOLATED_ANON);
+	}
+
+	return isolated > inactive;
+}
+
+static noinline_for_stack void
+putback_inactive_pages(struct mem_cgroup_zone *mz,
+		       struct list_head *page_list)
+{
+	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
+	struct zone *zone = mz->zone;
+	LIST_HEAD(pages_to_free);
+
+	/*
+	 * Put back any unfreeable pages.
+	 */
+	while (!list_empty(page_list)) {
+		struct page *page = lru_to_page(page_list);
+		int lru;
+
+		VM_BUG_ON(PageLRU(page));
+		list_del(&page->lru);
+		if (unlikely(!page_evictable(page, NULL))) {
+			spin_unlock_irq(&zone->lru_lock);
+			putback_lru_page(page);
+			spin_lock_irq(&zone->lru_lock);
+			continue;
+		}
+		SetPageLRU(page);
+		lru = page_lru(page);
+		add_page_to_lru_list(zone, page, lru);
+		if (is_active_lru(lru)) {
+			int file = is_file_lru(lru);
+			int numpages = hpage_nr_pages(page);
+			reclaim_stat->recent_rotated[file] += numpages;
+		}
+		if (put_page_testzero(page)) {
+			__ClearPageLRU(page);
+			__ClearPageActive(page);
+			del_page_from_lru_list(zone, page, lru);
+
+			if (unlikely(PageCompound(page))) {
+				spin_unlock_irq(&zone->lru_lock);
+				(*get_compound_page_dtor(page))(page);
+				spin_lock_irq(&zone->lru_lock);
+			} else
+				list_add(&page->lru, &pages_to_free);
+		}
+	}
+
+	/*
+	 * To save our caller's stack, now use input list for pages to free.
+	 */
+	list_splice(&pages_to_free, page_list);
+}
+
+static noinline_for_stack void
+update_isolated_counts(struct mem_cgroup_zone *mz,
+		       struct list_head *page_list,
+		       unsigned long *nr_anon,
+		       unsigned long *nr_file)
+{
+	struct zone *zone = mz->zone;
+	unsigned int count[NR_LRU_LISTS] = { 0, };
+	unsigned long nr_active = 0;
+	struct page *page;
+	int lru;
+
+	/*
+	 * Count pages and clear active flags
+	 */
+	list_for_each_entry(page, page_list, lru) {
+		int numpages = hpage_nr_pages(page);
+		lru = page_lru_base_type(page);
+		if (PageActive(page)) {
+			lru += LRU_ACTIVE;
+			ClearPageActive(page);
+			nr_active += numpages;
+		}
+		count[lru] += numpages;
+	}
+
+	preempt_disable();
+	__count_vm_events(PGDEACTIVATE, nr_active);
+
+	__mod_zone_page_state(zone, NR_ACTIVE_FILE,
+			      -count[LRU_ACTIVE_FILE]);
+	__mod_zone_page_state(zone, NR_INACTIVE_FILE,
+			      -count[LRU_INACTIVE_FILE]);
+	__mod_zone_page_state(zone, NR_ACTIVE_ANON,
+			      -count[LRU_ACTIVE_ANON]);
+	__mod_zone_page_state(zone, NR_INACTIVE_ANON,
+			      -count[LRU_INACTIVE_ANON]);
+
+	*nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
+	*nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
+
+	__mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
+	__mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
+	preempt_enable();
+}
+
+/*
+ * Returns true if a direct reclaim should wait on pages under writeback.
+ *
+ * If we are direct reclaiming for contiguous pages and we do not reclaim
+ * everything in the list, try again and wait for writeback IO to complete.
+ * This will stall high-order allocations noticeably. Only do that when really
+ * need to free the pages under high memory pressure.
+ */
+static inline bool should_reclaim_stall(unsigned long nr_taken,
+					unsigned long nr_freed,
+					int priority,
+					struct scan_control *sc)
+{
+	int lumpy_stall_priority;
+
+	/* kswapd should not stall on sync IO */
+	if (current_is_kswapd())
+		return false;
+
+	/* Only stall on lumpy reclaim */
+	if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
+		return false;
+
+	/* If we have reclaimed everything on the isolated list, no stall */
+	if (nr_freed == nr_taken)
+		return false;
+
+	/*
+	 * For high-order allocations, there are two stall thresholds.
+	 * High-cost allocations stall immediately where as lower
+	 * order allocations such as stacks require the scanning
+	 * priority to be much higher before stalling.
+	 */
+	if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
+		lumpy_stall_priority = DEF_PRIORITY;
+	else
+		lumpy_stall_priority = DEF_PRIORITY / 3;
+
+	return priority <= lumpy_stall_priority;
+}
+
+/*
+ * shrink_inactive_list() is a helper for shrink_zone().  It returns the number
+ * of reclaimed pages
+ */
+static noinline_for_stack unsigned long
+shrink_inactive_list(unsigned long nr_to_scan, struct mem_cgroup_zone *mz,
+		     struct scan_control *sc, int priority, int file)
+{
+	LIST_HEAD(page_list);
+	unsigned long nr_scanned;
+	unsigned long nr_reclaimed = 0;
+	unsigned long nr_taken;
+	unsigned long nr_anon;
+	unsigned long nr_file;
+	unsigned long nr_dirty = 0;
+	unsigned long nr_writeback = 0;
+	isolate_mode_t isolate_mode = ISOLATE_INACTIVE;
+	struct zone *zone = mz->zone;
+	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
+
+	while (unlikely(too_many_isolated(zone, file, sc))) {
+		congestion_wait(BLK_RW_ASYNC, HZ/10);
+
+		/* We are about to die and free our memory. Return now. */
+		if (fatal_signal_pending(current))
+			return SWAP_CLUSTER_MAX;
+	}
+
+	set_reclaim_mode(priority, sc, false);
+	if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
+		isolate_mode |= ISOLATE_ACTIVE;
+
+	lru_add_drain();
+
+	if (!sc->may_unmap)
+		isolate_mode |= ISOLATE_UNMAPPED;
+	if (!sc->may_writepage)
+		isolate_mode |= ISOLATE_CLEAN;
+
+	spin_lock_irq(&zone->lru_lock);
+
+	nr_taken = isolate_lru_pages(nr_to_scan, mz, &page_list, &nr_scanned,
+				     sc, isolate_mode, 0, file);
+	if (global_reclaim(sc)) {
+		zone->pages_scanned += nr_scanned;
+		if (current_is_kswapd())
+			__count_zone_vm_events(PGSCAN_KSWAPD, zone,
+					       nr_scanned);
+		else
+			__count_zone_vm_events(PGSCAN_DIRECT, zone,
+					       nr_scanned);
+	}
+	spin_unlock_irq(&zone->lru_lock);
+
+	if (nr_taken == 0)
+		return 0;
+
+	update_isolated_counts(mz, &page_list, &nr_anon, &nr_file);
+
+	nr_reclaimed = shrink_page_list(&page_list, mz, sc, priority,
+						&nr_dirty, &nr_writeback);
+
+	/* Check if we should syncronously wait for writeback */
+	if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
+		set_reclaim_mode(priority, sc, true);
+		nr_reclaimed += shrink_page_list(&page_list, mz, sc,
+					priority, &nr_dirty, &nr_writeback);
+	}
+
+	spin_lock_irq(&zone->lru_lock);
+
+	reclaim_stat->recent_scanned[0] += nr_anon;
+	reclaim_stat->recent_scanned[1] += nr_file;
+
+	if (global_reclaim(sc)) {
+		if (current_is_kswapd())
+			__count_zone_vm_events(PGSTEAL_KSWAPD, zone,
+					       nr_reclaimed);
+		else
+			__count_zone_vm_events(PGSTEAL_DIRECT, zone,
+					       nr_reclaimed);
+	}
+
+	putback_inactive_pages(mz, &page_list);
+
+	__mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
+	__mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
+
+	spin_unlock_irq(&zone->lru_lock);
+
+	free_hot_cold_page_list(&page_list, 1);
+
+	/*
+	 * If reclaim is isolating dirty pages under writeback, it implies
+	 * that the long-lived page allocation rate is exceeding the page
+	 * laundering rate. Either the global limits are not being effective
+	 * at throttling processes due to the page distribution throughout
+	 * zones or there is heavy usage of a slow backing device. The
+	 * only option is to throttle from reclaim context which is not ideal
+	 * as there is no guarantee the dirtying process is throttled in the
+	 * same way balance_dirty_pages() manages.
+	 *
+	 * This scales the number of dirty pages that must be under writeback
+	 * before throttling depending on priority. It is a simple backoff
+	 * function that has the most effect in the range DEF_PRIORITY to
+	 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
+	 * in trouble and reclaim is considered to be in trouble.
+	 *
+	 * DEF_PRIORITY   100% isolated pages must be PageWriteback to throttle
+	 * DEF_PRIORITY-1  50% must be PageWriteback
+	 * DEF_PRIORITY-2  25% must be PageWriteback, kswapd in trouble
+	 * ...
+	 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
+	 *                     isolated page is PageWriteback
+	 */
+	if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
+		wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
+
+	trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
+		zone_idx(zone),
+		nr_scanned, nr_reclaimed,
+		priority,
+		trace_shrink_flags(file, sc->reclaim_mode));
+	return nr_reclaimed;
+}
+
+/*
+ * This moves pages from the active list to the inactive list.
+ *
+ * We move them the other way if the page is referenced by one or more
+ * processes, from rmap.
+ *
+ * If the pages are mostly unmapped, the processing is fast and it is
+ * appropriate to hold zone->lru_lock across the whole operation.  But if
+ * the pages are mapped, the processing is slow (page_referenced()) so we
+ * should drop zone->lru_lock around each page.  It's impossible to balance
+ * this, so instead we remove the pages from the LRU while processing them.
+ * It is safe to rely on PG_active against the non-LRU pages in here because
+ * nobody will play with that bit on a non-LRU page.
+ *
+ * The downside is that we have to touch page->_count against each page.
+ * But we had to alter page->flags anyway.
+ */
+
+static void move_active_pages_to_lru(struct zone *zone,
+				     struct list_head *list,
+				     struct list_head *pages_to_free,
+				     enum lru_list lru)
+{
+	unsigned long pgmoved = 0;
+	struct page *page;
+
+	while (!list_empty(list)) {
+		struct lruvec *lruvec;
+
+		page = lru_to_page(list);
+
+		VM_BUG_ON(PageLRU(page));
+		SetPageLRU(page);
+
+		lruvec = mem_cgroup_lru_add_list(zone, page, lru);
+		list_move(&page->lru, &lruvec->lists[lru]);
+		pgmoved += hpage_nr_pages(page);
+
+		if (put_page_testzero(page)) {
+			__ClearPageLRU(page);
+			__ClearPageActive(page);
+			del_page_from_lru_list(zone, page, lru);
+
+			if (unlikely(PageCompound(page))) {
+				spin_unlock_irq(&zone->lru_lock);
+				(*get_compound_page_dtor(page))(page);
+				spin_lock_irq(&zone->lru_lock);
+			} else
+				list_add(&page->lru, pages_to_free);
+		}
+	}
+	__mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
+	if (!is_active_lru(lru))
+		__count_vm_events(PGDEACTIVATE, pgmoved);
+}
+
+static void shrink_active_list(unsigned long nr_to_scan,
+			       struct mem_cgroup_zone *mz,
+			       struct scan_control *sc,
+			       int priority, int file)
+{
+	unsigned long nr_taken;
+	unsigned long nr_scanned;
+	unsigned long vm_flags;
+	LIST_HEAD(l_hold);	/* The pages which were snipped off */
+	LIST_HEAD(l_active);
+	LIST_HEAD(l_inactive);
+	struct page *page;
+	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
+	unsigned long nr_rotated = 0;
+	isolate_mode_t isolate_mode = ISOLATE_ACTIVE;
+	struct zone *zone = mz->zone;
+
+	lru_add_drain();
+
+	reset_reclaim_mode(sc);
+
+	if (!sc->may_unmap)
+		isolate_mode |= ISOLATE_UNMAPPED;
+	if (!sc->may_writepage)
+		isolate_mode |= ISOLATE_CLEAN;
+
+	spin_lock_irq(&zone->lru_lock);
+
+	nr_taken = isolate_lru_pages(nr_to_scan, mz, &l_hold, &nr_scanned, sc,
+				     isolate_mode, 1, file);
+	if (global_reclaim(sc))
+		zone->pages_scanned += nr_scanned;
+
+	reclaim_stat->recent_scanned[file] += nr_taken;
+
+	__count_zone_vm_events(PGREFILL, zone, nr_scanned);
+	if (file)
+		__mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
+	else
+		__mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
+	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
+	spin_unlock_irq(&zone->lru_lock);
+
+	while (!list_empty(&l_hold)) {
+		cond_resched();
+		page = lru_to_page(&l_hold);
+		list_del(&page->lru);
+
+		if (unlikely(!page_evictable(page, NULL))) {
+			putback_lru_page(page);
+			continue;
+		}
+
+		if (unlikely(buffer_heads_over_limit)) {
+			if (page_has_private(page) && trylock_page(page)) {
+				if (page_has_private(page))
+					try_to_release_page(page, 0);
+				unlock_page(page);
+			}
+		}
+
+		if (page_referenced(page, 0, mz->mem_cgroup, &vm_flags)) {
+			nr_rotated += hpage_nr_pages(page);
+			/*
+			 * Identify referenced, file-backed active pages and
+			 * give them one more trip around the active list. So
+			 * that executable code get better chances to stay in
+			 * memory under moderate memory pressure.  Anon pages
+			 * are not likely to be evicted by use-once streaming
+			 * IO, plus JVM can create lots of anon VM_EXEC pages,
+			 * so we ignore them here.
+			 */
+			if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
+				list_add(&page->lru, &l_active);
+				continue;
+			}
+		}
+
+		ClearPageActive(page);	/* we are de-activating */
+		list_add(&page->lru, &l_inactive);
+	}
+
+	/*
+	 * Move pages back to the lru list.
+	 */
+	spin_lock_irq(&zone->lru_lock);
+	/*
+	 * Count referenced pages from currently used mappings as rotated,
+	 * even though only some of them are actually re-activated.  This
+	 * helps balance scan pressure between file and anonymous pages in
+	 * get_scan_ratio.
+	 */
+	reclaim_stat->recent_rotated[file] += nr_rotated;
+
+	move_active_pages_to_lru(zone, &l_active, &l_hold,
+						LRU_ACTIVE + file * LRU_FILE);
+	move_active_pages_to_lru(zone, &l_inactive, &l_hold,
+						LRU_BASE   + file * LRU_FILE);
+	__mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
+	spin_unlock_irq(&zone->lru_lock);
+
+	free_hot_cold_page_list(&l_hold, 1);
+}
+
+#ifdef CONFIG_SWAP
+static int inactive_anon_is_low_global(struct zone *zone)
+{
+	unsigned long active, inactive;
+
+	active = zone_page_state(zone, NR_ACTIVE_ANON);
+	inactive = zone_page_state(zone, NR_INACTIVE_ANON);
+
+	if (inactive * zone->inactive_ratio < active)
+		return 1;
+
+	return 0;
+}
+
+/**
+ * inactive_anon_is_low - check if anonymous pages need to be deactivated
+ * @zone: zone to check
+ * @sc:   scan control of this context
+ *
+ * Returns true if the zone does not have enough inactive anon pages,
+ * meaning some active anon pages need to be deactivated.
+ */
+static int inactive_anon_is_low(struct mem_cgroup_zone *mz)
+{
+	/*
+	 * If we don't have swap space, anonymous page deactivation
+	 * is pointless.
+	 */
+	if (!total_swap_pages)
+		return 0;
+
+	if (!scanning_global_lru(mz))
+		return mem_cgroup_inactive_anon_is_low(mz->mem_cgroup,
+						       mz->zone);
+
+	return inactive_anon_is_low_global(mz->zone);
+}
+#else
+static inline int inactive_anon_is_low(struct mem_cgroup_zone *mz)
+{
+	return 0;
+}
+#endif
+
+static int inactive_file_is_low_global(struct zone *zone)
+{
+	unsigned long active, inactive;
+
+	active = zone_page_state(zone, NR_ACTIVE_FILE);
+	inactive = zone_page_state(zone, NR_INACTIVE_FILE);
+
+	return (active > inactive);
+}
+
+/**
+ * inactive_file_is_low - check if file pages need to be deactivated
+ * @mz: memory cgroup and zone to check
+ *
+ * When the system is doing streaming IO, memory pressure here
+ * ensures that active file pages get deactivated, until more
+ * than half of the file pages are on the inactive list.
+ *
+ * Once we get to that situation, protect the system's working
+ * set from being evicted by disabling active file page aging.
+ *
+ * This uses a different ratio than the anonymous pages, because
+ * the page cache uses a use-once replacement algorithm.
+ */
+static int inactive_file_is_low(struct mem_cgroup_zone *mz)
+{
+	if (!scanning_global_lru(mz))
+		return mem_cgroup_inactive_file_is_low(mz->mem_cgroup,
+						       mz->zone);
+
+	return inactive_file_is_low_global(mz->zone);
+}
+
+static int inactive_list_is_low(struct mem_cgroup_zone *mz, int file)
+{
+	if (file)
+		return inactive_file_is_low(mz);
+	else
+		return inactive_anon_is_low(mz);
+}
+
+static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
+				 struct mem_cgroup_zone *mz,
+				 struct scan_control *sc, int priority)
+{
+	int file = is_file_lru(lru);
+
+	if (is_active_lru(lru)) {
+		if (inactive_list_is_low(mz, file))
+			shrink_active_list(nr_to_scan, mz, sc, priority, file);
+		return 0;
+	}
+
+	return shrink_inactive_list(nr_to_scan, mz, sc, priority, file);
+}
+
+static int vmscan_swappiness(struct mem_cgroup_zone *mz,
+			     struct scan_control *sc)
+{
+	if (global_reclaim(sc))
+		return vm_swappiness;
+	return mem_cgroup_swappiness(mz->mem_cgroup);
+}
+
+/*
+ * Determine how aggressively the anon and file LRU lists should be
+ * scanned.  The relative value of each set of LRU lists is determined
+ * by looking at the fraction of the pages scanned we did rotate back
+ * onto the active list instead of evict.
+ *
+ * nr[0] = anon pages to scan; nr[1] = file pages to scan
+ */
+static void get_scan_count(struct mem_cgroup_zone *mz, struct scan_control *sc,
+			   unsigned long *nr, int priority)
+{
+	unsigned long anon, file, free;
+	unsigned long anon_prio, file_prio;
+	unsigned long ap, fp;
+	struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(mz);
+	u64 fraction[2], denominator;
+	enum lru_list lru;
+	int noswap = 0;
+	bool force_scan = false;
+
+	/*
+	 * If the zone or memcg is small, nr[l] can be 0.  This
+	 * results in no scanning on this priority and a potential
+	 * priority drop.  Global direct reclaim can go to the next
+	 * zone and tends to have no problems. Global kswapd is for
+	 * zone balancing and it needs to scan a minimum amount. When
+	 * reclaiming for a memcg, a priority drop can cause high
+	 * latencies, so it's better to scan a minimum amount there as
+	 * well.
+	 */
+	if (current_is_kswapd() && mz->zone->all_unreclaimable)
+		force_scan = true;
+	if (!global_reclaim(sc))
+		force_scan = true;
+
+	/* If we have no swap space, do not bother scanning anon pages. */
+	if (!sc->may_swap || (nr_swap_pages <= 0)) {
+		noswap = 1;
+		fraction[0] = 0;
+		fraction[1] = 1;
+		denominator = 1;
+		goto out;
+	}
+
+	anon  = zone_nr_lru_pages(mz, LRU_ACTIVE_ANON) +
+		zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
+	file  = zone_nr_lru_pages(mz, LRU_ACTIVE_FILE) +
+		zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
+
+	if (global_reclaim(sc)) {
+		free  = zone_page_state(mz->zone, NR_FREE_PAGES);
+		/* If we have very few page cache pages,
+		   force-scan anon pages. */
+		if (unlikely(file + free <= high_wmark_pages(mz->zone))) {
+			fraction[0] = 1;
+			fraction[1] = 0;
+			denominator = 1;
+			goto out;
+		}
+	}
+
+	/*
+	 * With swappiness at 100, anonymous and file have the same priority.
+	 * This scanning priority is essentially the inverse of IO cost.
+	 */
+	anon_prio = vmscan_swappiness(mz, sc);
+	file_prio = 200 - vmscan_swappiness(mz, sc);
+
+	/*
+	 * OK, so we have swap space and a fair amount of page cache
+	 * pages.  We use the recently rotated / recently scanned
+	 * ratios to determine how valuable each cache is.
+	 *
+	 * Because workloads change over time (and to avoid overflow)
+	 * we keep these statistics as a floating average, which ends
+	 * up weighing recent references more than old ones.
+	 *
+	 * anon in [0], file in [1]
+	 */
+	spin_lock_irq(&mz->zone->lru_lock);
+	if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
+		reclaim_stat->recent_scanned[0] /= 2;
+		reclaim_stat->recent_rotated[0] /= 2;
+	}
+
+	if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
+		reclaim_stat->recent_scanned[1] /= 2;
+		reclaim_stat->recent_rotated[1] /= 2;
+	}
+
+	/*
+	 * The amount of pressure on anon vs file pages is inversely
+	 * proportional to the fraction of recently scanned pages on
+	 * each list that were recently referenced and in active use.
+	 */
+	ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
+	ap /= reclaim_stat->recent_rotated[0] + 1;
+
+	fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
+	fp /= reclaim_stat->recent_rotated[1] + 1;
+	spin_unlock_irq(&mz->zone->lru_lock);
+
+	fraction[0] = ap;
+	fraction[1] = fp;
+	denominator = ap + fp + 1;
+out:
+	for_each_evictable_lru(lru) {
+		int file = is_file_lru(lru);
+		unsigned long scan;
+
+		scan = zone_nr_lru_pages(mz, lru);
+		if (priority || noswap || !vmscan_swappiness(mz, sc)) {
+			scan >>= priority;
+			if (!scan && force_scan)
+				scan = SWAP_CLUSTER_MAX;
+			scan = div64_u64(scan * fraction[file], denominator);
+		}
+		nr[lru] = scan;
+	}
+}
+
+/*
+ * Reclaim/compaction depends on a number of pages being freed. To avoid
+ * disruption to the system, a small number of order-0 pages continue to be
+ * rotated and reclaimed in the normal fashion. However, by the time we get
+ * back to the allocator and call try_to_compact_zone(), we ensure that
+ * there are enough free pages for it to be likely successful
+ */
+static inline bool should_continue_reclaim(struct mem_cgroup_zone *mz,
+					unsigned long nr_reclaimed,
+					unsigned long nr_scanned,
+					struct scan_control *sc)
+{
+	unsigned long pages_for_compaction;
+	unsigned long inactive_lru_pages;
+
+	/* If not in reclaim/compaction mode, stop */
+	if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
+		return false;
+
+	/* Consider stopping depending on scan and reclaim activity */
+	if (sc->gfp_mask & __GFP_REPEAT) {
+		/*
+		 * For __GFP_REPEAT allocations, stop reclaiming if the
+		 * full LRU list has been scanned and we are still failing
+		 * to reclaim pages. This full LRU scan is potentially
+		 * expensive but a __GFP_REPEAT caller really wants to succeed
+		 */
+		if (!nr_reclaimed && !nr_scanned)
+			return false;
+	} else {
+		/*
+		 * For non-__GFP_REPEAT allocations which can presumably
+		 * fail without consequence, stop if we failed to reclaim
+		 * any pages from the last SWAP_CLUSTER_MAX number of
+		 * pages that were scanned. This will return to the
+		 * caller faster at the risk reclaim/compaction and
+		 * the resulting allocation attempt fails
+		 */
+		if (!nr_reclaimed)
+			return false;
+	}
+
+	/*
+	 * If we have not reclaimed enough pages for compaction and the
+	 * inactive lists are large enough, continue reclaiming
+	 */
+	pages_for_compaction = (2UL << sc->order);
+	inactive_lru_pages = zone_nr_lru_pages(mz, LRU_INACTIVE_FILE);
+	if (nr_swap_pages > 0)
+		inactive_lru_pages += zone_nr_lru_pages(mz, LRU_INACTIVE_ANON);
+	if (sc->nr_reclaimed < pages_for_compaction &&
+			inactive_lru_pages > pages_for_compaction)
+		return true;
+
+	/* If compaction would go ahead or the allocation would succeed, stop */
+	switch (compaction_suitable(mz->zone, sc->order)) {
+	case COMPACT_PARTIAL:
+	case COMPACT_CONTINUE:
+		return false;
+	default:
+		return true;
+	}
+}
+
+/*
+ * This is a basic per-zone page freer.  Used by both kswapd and direct reclaim.
+ */
+static void shrink_mem_cgroup_zone(int priority, struct mem_cgroup_zone *mz,
+				   struct scan_control *sc)
+{
+	unsigned long nr[NR_LRU_LISTS];
+	unsigned long nr_to_scan;
+	enum lru_list lru;
+	unsigned long nr_reclaimed, nr_scanned;
+	unsigned long nr_to_reclaim = sc->nr_to_reclaim;
+	struct blk_plug plug;
+
+restart:
+	nr_reclaimed = 0;
+	nr_scanned = sc->nr_scanned;
+	get_scan_count(mz, sc, nr, priority);
+
+	blk_start_plug(&plug);
+	while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
+					nr[LRU_INACTIVE_FILE]) {
+		for_each_evictable_lru(lru) {
+			if (nr[lru]) {
+				nr_to_scan = min_t(unsigned long,
+						   nr[lru], SWAP_CLUSTER_MAX);
+				nr[lru] -= nr_to_scan;
+
+				nr_reclaimed += shrink_list(lru, nr_to_scan,
+							    mz, sc, priority);
+			}
+		}
+		/*
+		 * On large memory systems, scan >> priority can become
+		 * really large. This is fine for the starting priority;
+		 * we want to put equal scanning pressure on each zone.
+		 * However, if the VM has a harder time of freeing pages,
+		 * with multiple processes reclaiming pages, the total
+		 * freeing target can get unreasonably large.
+		 */
+		if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
+			break;
+	}
+	blk_finish_plug(&plug);
+	sc->nr_reclaimed += nr_reclaimed;
+
+	/*
+	 * Even if we did not try to evict anon pages at all, we want to
+	 * rebalance the anon lru active/inactive ratio.
+	 */
+	if (inactive_anon_is_low(mz))
+		shrink_active_list(SWAP_CLUSTER_MAX, mz, sc, priority, 0);
+
+	/* reclaim/compaction might need reclaim to continue */
+	if (should_continue_reclaim(mz, nr_reclaimed,
+					sc->nr_scanned - nr_scanned, sc))
+		goto restart;
+
+	throttle_vm_writeout(sc->gfp_mask);
+}
+
+static void shrink_zone(int priority, struct zone *zone,
+			struct scan_control *sc)
+{
+	struct mem_cgroup *root = sc->target_mem_cgroup;
+	struct mem_cgroup_reclaim_cookie reclaim = {
+		.zone = zone,
+		.priority = priority,
+	};
+	struct mem_cgroup *memcg;
+
+#ifdef CONFIG_LIMIT_PAGE_CACHE
+	/*
+	 * If the page cache is too big then focus on page cache
+	 * and ignore anonymous pages
+	 */
+	if (sc->may_swap && zone_page_state(zone, NR_FILE_PAGES)
+			> zone->max_pagecache_pages)
+		sc->may_swap = 0;
+#endif
+
+	memcg = mem_cgroup_iter(root, NULL, &reclaim);
+	do {
+		struct mem_cgroup_zone mz = {
+			.mem_cgroup = memcg,
+			.zone = zone,
+		};
+
+		shrink_mem_cgroup_zone(priority, &mz, sc);
+		/*
+		 * Limit reclaim has historically picked one memcg and
+		 * scanned it with decreasing priority levels until
+		 * nr_to_reclaim had been reclaimed.  This priority
+		 * cycle is thus over after a single memcg.
+		 *
+		 * Direct reclaim and kswapd, on the other hand, have
+		 * to scan all memory cgroups to fulfill the overall
+		 * scan target for the zone.
+		 */
+		if (!global_reclaim(sc)) {
+			mem_cgroup_iter_break(root, memcg);
+			break;
+		}
+		memcg = mem_cgroup_iter(root, memcg, &reclaim);
+	} while (memcg);
+}
+
+/* Returns true if compaction should go ahead for a high-order request */
+static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
+{
+	unsigned long balance_gap, watermark;
+	bool watermark_ok;
+
+	/* Do not consider compaction for orders reclaim is meant to satisfy */
+	if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
+		return false;
+
+	/*
+	 * Compaction takes time to run and there are potentially other
+	 * callers using the pages just freed. Continue reclaiming until
+	 * there is a buffer of free pages available to give compaction
+	 * a reasonable chance of completing and allocating the page
+	 */
+	balance_gap = min(low_wmark_pages(zone),
+		(zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
+			KSWAPD_ZONE_BALANCE_GAP_RATIO);
+	watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
+	watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
+
+	/*
+	 * If compaction is deferred, reclaim up to a point where
+	 * compaction will have a chance of success when re-enabled
+	 */
+	if (compaction_deferred(zone, sc->order))
+		return watermark_ok;
+
+	/* If compaction is not ready to start, keep reclaiming */
+	if (!compaction_suitable(zone, sc->order))
+		return false;
+
+	return watermark_ok;
+}
+
+/*
+ * This is the direct reclaim path, for page-allocating processes.  We only
+ * try to reclaim pages from zones which will satisfy the caller's allocation
+ * request.
+ *
+ * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
+ * Because:
+ * a) The caller may be trying to free *extra* pages to satisfy a higher-order
+ *    allocation or
+ * b) The target zone may be at high_wmark_pages(zone) but the lower zones
+ *    must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
+ *    zone defense algorithm.
+ *
+ * If a zone is deemed to be full of pinned pages then just give it a light
+ * scan then give up on it.
+ *
+ * This function returns true if a zone is being reclaimed for a costly
+ * high-order allocation and compaction is ready to begin. This indicates to
+ * the caller that it should consider retrying the allocation instead of
+ * further reclaim.
+ */
+static bool shrink_zones(int priority, struct zonelist *zonelist,
+					struct scan_control *sc)
+{
+	struct zoneref *z;
+	struct zone *zone;
+	unsigned long nr_soft_reclaimed;
+	unsigned long nr_soft_scanned;
+	bool aborted_reclaim = false;
+
+	/*
+	 * If the number of buffer_heads in the machine exceeds the maximum
+	 * allowed level, force direct reclaim to scan the highmem zone as
+	 * highmem pages could be pinning lowmem pages storing buffer_heads
+	 */
+	if (buffer_heads_over_limit)
+		sc->gfp_mask |= __GFP_HIGHMEM;
+
+	for_each_zone_zonelist_nodemask(zone, z, zonelist,
+					gfp_zone(sc->gfp_mask), sc->nodemask) {
+		if (!populated_zone(zone))
+			continue;
+		/*
+		 * Take care memory controller reclaiming has small influence
+		 * to global LRU.
+		 */
+		if (global_reclaim(sc)) {
+			if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
+				continue;
+			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
+				continue;	/* Let kswapd poll it */
+			if (COMPACTION_BUILD) {
+				/*
+				 * If we already have plenty of memory free for
+				 * compaction in this zone, don't free any more.
+				 * Even though compaction is invoked for any
+				 * non-zero order, only frequent costly order
+				 * reclamation is disruptive enough to become a
+				 * noticeable problem, like transparent huge
+				 * page allocations.
+				 */
+				if (compaction_ready(zone, sc)) {
+					aborted_reclaim = true;
+					continue;
+				}
+			}
+			/*
+			 * This steals pages from memory cgroups over softlimit
+			 * and returns the number of reclaimed pages and
+			 * scanned pages. This works for global memory pressure
+			 * and balancing, not for a memcg's limit.
+			 */
+			nr_soft_scanned = 0;
+			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
+						sc->order, sc->gfp_mask,
+						&nr_soft_scanned);
+			sc->nr_reclaimed += nr_soft_reclaimed;
+			sc->nr_scanned += nr_soft_scanned;
+			/* need some check for avoid more shrink_zone() */
+		}
+
+		shrink_zone(priority, zone, sc);
+	}
+
+	return aborted_reclaim;
+}
+
+static bool zone_reclaimable(struct zone *zone)
+{
+	return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
+}
+
+/* All zones in zonelist are unreclaimable? */
+static bool all_unreclaimable(struct zonelist *zonelist,
+		struct scan_control *sc)
+{
+	struct zoneref *z;
+	struct zone *zone;
+
+	for_each_zone_zonelist_nodemask(zone, z, zonelist,
+			gfp_zone(sc->gfp_mask), sc->nodemask) {
+		if (!populated_zone(zone))
+			continue;
+		if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
+			continue;
+		if (!zone->all_unreclaimable)
+			return false;
+	}
+
+	return true;
+}
+
+/*
+ * This is the main entry point to direct page reclaim.
+ *
+ * If a full scan of the inactive list fails to free enough memory then we
+ * are "out of memory" and something needs to be killed.
+ *
+ * If the caller is !__GFP_FS then the probability of a failure is reasonably
+ * high - the zone may be full of dirty or under-writeback pages, which this
+ * caller can't do much about.  We kick the writeback threads and take explicit
+ * naps in the hope that some of these pages can be written.  But if the
+ * allocating task holds filesystem locks which prevent writeout this might not
+ * work, and the allocation attempt will fail.
+ *
+ * returns:	0, if no pages reclaimed
+ * 		else, the number of pages reclaimed
+ */
+static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
+					struct scan_control *sc,
+					struct shrink_control *shrink)
+{
+	int priority;
+	unsigned long total_scanned = 0;
+	struct reclaim_state *reclaim_state = current->reclaim_state;
+	struct zoneref *z;
+	struct zone *zone;
+	unsigned long writeback_threshold;
+	bool aborted_reclaim;
+
+	delayacct_freepages_start();
+
+	if (global_reclaim(sc))
+		count_vm_event(ALLOCSTALL);
+
+	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
+#ifdef  CONFIG_SPEED_OPT_DYNAMIC_POOL
+		extern void skb_sys_pool_delete(void);
+             skb_sys_pool_delete();
+#endif		
+		sc->nr_scanned = 0;
+		if (!priority)
+			disable_swap_token(sc->target_mem_cgroup);
+		aborted_reclaim = shrink_zones(priority, zonelist, sc);
+
+		/*
+		 * Don't shrink slabs when reclaiming memory from
+		 * over limit cgroups
+		 */
+		if (global_reclaim(sc)) {
+			unsigned long lru_pages = 0;
+			for_each_zone_zonelist(zone, z, zonelist,
+					gfp_zone(sc->gfp_mask)) {
+				if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
+					continue;
+
+				lru_pages += zone_reclaimable_pages(zone);
+			}
+
+			shrink_slab(shrink, sc->nr_scanned, lru_pages);
+			if (reclaim_state) {
+				sc->nr_reclaimed += reclaim_state->reclaimed_slab;
+				reclaim_state->reclaimed_slab = 0;
+			}
+		}
+		total_scanned += sc->nr_scanned;
+		if (sc->nr_reclaimed >= sc->nr_to_reclaim)
+			goto out;
+
+		/*
+		 * Try to write back as many pages as we just scanned.  This
+		 * tends to cause slow streaming writers to write data to the
+		 * disk smoothly, at the dirtying rate, which is nice.   But
+		 * that's undesirable in laptop mode, where we *want* lumpy
+		 * writeout.  So in laptop mode, write out the whole world.
+		 */
+		writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
+		if (total_scanned > writeback_threshold) {
+			wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
+						WB_REASON_TRY_TO_FREE_PAGES);
+			sc->may_writepage = 1;
+		}
+
+		/* Take a nap, wait for some writeback to complete */
+		if (!sc->hibernation_mode && sc->nr_scanned &&
+		    priority < DEF_PRIORITY - 2) {
+			struct zone *preferred_zone;
+
+			first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
+						&cpuset_current_mems_allowed,
+						&preferred_zone);
+			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
+		}
+	}
+
+out:
+	delayacct_freepages_end();
+
+	if (sc->nr_reclaimed)
+		return sc->nr_reclaimed;
+
+	/*
+	 * As hibernation is going on, kswapd is freezed so that it can't mark
+	 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
+	 * check.
+	 */
+	if (oom_killer_disabled)
+		return 0;
+
+	/* Aborted reclaim to try compaction? don't OOM, then */
+	if (aborted_reclaim)
+		return 1;
+
+	/* top priority shrink_zones still had more to do? don't OOM, then */
+	if (global_reclaim(sc) && !all_unreclaimable(zonelist, sc))
+		return 1;
+
+	return 0;
+}
+
+unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
+				gfp_t gfp_mask, nodemask_t *nodemask)
+{
+	unsigned long nr_reclaimed;
+	struct scan_control sc = {
+		.gfp_mask = gfp_mask,
+		.may_writepage = !laptop_mode,
+		.nr_to_reclaim = SWAP_CLUSTER_MAX,
+		.may_unmap = 1,
+		.may_swap = 1,
+		.order = order,
+		.target_mem_cgroup = NULL,
+		.nodemask = nodemask,
+	};
+	struct shrink_control shrink = {
+		.gfp_mask = sc.gfp_mask,
+	};
+
+	trace_mm_vmscan_direct_reclaim_begin(order,
+				sc.may_writepage,
+				gfp_mask);
+
+	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
+
+	trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
+
+	return nr_reclaimed;
+}
+
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+
+unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *memcg,
+						gfp_t gfp_mask, bool noswap,
+						struct zone *zone,
+						unsigned long *nr_scanned)
+{
+	struct scan_control sc = {
+		.nr_scanned = 0,
+		.nr_to_reclaim = SWAP_CLUSTER_MAX,
+		.may_writepage = !laptop_mode,
+		.may_unmap = 1,
+		.may_swap = !noswap,
+		.order = 0,
+		.target_mem_cgroup = memcg,
+	};
+	struct mem_cgroup_zone mz = {
+		.mem_cgroup = memcg,
+		.zone = zone,
+	};
+
+	sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
+			(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
+
+	trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
+						      sc.may_writepage,
+						      sc.gfp_mask);
+
+	/*
+	 * NOTE: Although we can get the priority field, using it
+	 * here is not a good idea, since it limits the pages we can scan.
+	 * if we don't reclaim here, the shrink_zone from balance_pgdat
+	 * will pick up pages from other mem cgroup's as well. We hack
+	 * the priority and make it zero.
+	 */
+	shrink_mem_cgroup_zone(0, &mz, &sc);
+
+	trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
+
+	*nr_scanned = sc.nr_scanned;
+	return sc.nr_reclaimed;
+}
+
+unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
+					   gfp_t gfp_mask,
+					   bool noswap)
+{
+	struct zonelist *zonelist;
+	unsigned long nr_reclaimed;
+	int nid;
+	struct scan_control sc = {
+		.may_writepage = !laptop_mode,
+		.may_unmap = 1,
+		.may_swap = !noswap,
+		.nr_to_reclaim = SWAP_CLUSTER_MAX,
+		.order = 0,
+		.target_mem_cgroup = memcg,
+		.nodemask = NULL, /* we don't care the placement */
+		.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
+				(GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
+	};
+	struct shrink_control shrink = {
+		.gfp_mask = sc.gfp_mask,
+	};
+
+	/*
+	 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
+	 * take care of from where we get pages. So the node where we start the
+	 * scan does not need to be the current node.
+	 */
+	nid = mem_cgroup_select_victim_node(memcg);
+
+	zonelist = NODE_DATA(nid)->node_zonelists;
+
+	trace_mm_vmscan_memcg_reclaim_begin(0,
+					    sc.may_writepage,
+					    sc.gfp_mask);
+
+	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
+
+	trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
+
+	return nr_reclaimed;
+}
+#endif
+
+static void age_active_anon(struct zone *zone, struct scan_control *sc,
+			    int priority)
+{
+	struct mem_cgroup *memcg;
+
+	if (!total_swap_pages)
+		return;
+
+	memcg = mem_cgroup_iter(NULL, NULL, NULL);
+	do {
+		struct mem_cgroup_zone mz = {
+			.mem_cgroup = memcg,
+			.zone = zone,
+		};
+
+		if (inactive_anon_is_low(&mz))
+			shrink_active_list(SWAP_CLUSTER_MAX, &mz,
+					   sc, priority, 0);
+
+		memcg = mem_cgroup_iter(NULL, memcg, NULL);
+	} while (memcg);
+}
+
+static bool zone_balanced(struct zone *zone, int order,
+			  unsigned long balance_gap, int classzone_idx)
+{
+	if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone) +
+				    balance_gap, classzone_idx, 0))
+		return false;
+
+	if (COMPACTION_BUILD && order && !compaction_suitable(zone, order))
+		return false;
+
+	return true;
+}
+
+/*
+ * pgdat_balanced is used when checking if a node is balanced for high-order
+ * allocations. Only zones that meet watermarks and are in a zone allowed
+ * by the callers classzone_idx are added to balanced_pages. The total of
+ * balanced pages must be at least 25% of the zones allowed by classzone_idx
+ * for the node to be considered balanced. Forcing all zones to be balanced
+ * for high orders can cause excessive reclaim when there are imbalanced zones.
+ * The choice of 25% is due to
+ *   o a 16M DMA zone that is balanced will not balance a zone on any
+ *     reasonable sized machine
+ *   o On all other machines, the top zone must be at least a reasonable
+ *     percentage of the middle zones. For example, on 32-bit x86, highmem
+ *     would need to be at least 256M for it to be balance a whole node.
+ *     Similarly, on x86-64 the Normal zone would need to be at least 1G
+ *     to balance a node on its own. These seemed like reasonable ratios.
+ */
+static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
+						int classzone_idx)
+{
+	unsigned long present_pages = 0;
+	int i;
+
+	for (i = 0; i <= classzone_idx; i++)
+		present_pages += pgdat->node_zones[i].present_pages;
+
+	/* A special case here: if zone has no page, we think it's balanced */
+	return balanced_pages >= (present_pages >> 2);
+}
+
+/* is kswapd sleeping prematurely? */
+static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
+					int classzone_idx)
+{
+	int i;
+	unsigned long balanced = 0;
+	bool all_zones_ok = true;
+
+	/* If a direct reclaimer woke kswapd within HZ/10, it's premature */
+	if (remaining)
+		return true;
+
+	/* Check the watermark levels */
+	for (i = 0; i <= classzone_idx; i++) {
+		struct zone *zone = pgdat->node_zones + i;
+
+		if (!populated_zone(zone))
+			continue;
+
+		/*
+		 * balance_pgdat() skips over all_unreclaimable after
+		 * DEF_PRIORITY. Effectively, it considers them balanced so
+		 * they must be considered balanced here as well if kswapd
+		 * is to sleep
+		 */
+		if (zone->all_unreclaimable) {
+			balanced += zone->present_pages;
+			continue;
+		}
+
+		if (!zone_balanced(zone, order, 0, i))
+			all_zones_ok = false;
+		else
+			balanced += zone->present_pages;
+	}
+
+	/*
+	 * For high-order requests, the balanced zones must contain at least
+	 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
+	 * must be balanced
+	 */
+	if (order)
+		return !pgdat_balanced(pgdat, balanced, classzone_idx);
+	else
+		return !all_zones_ok;
+}
+
+/*
+ * For kswapd, balance_pgdat() will work across all this node's zones until
+ * they are all at high_wmark_pages(zone).
+ *
+ * Returns the final order kswapd was reclaiming at
+ *
+ * There is special handling here for zones which are full of pinned pages.
+ * This can happen if the pages are all mlocked, or if they are all used by
+ * device drivers (say, ZONE_DMA).  Or if they are all in use by hugetlb.
+ * What we do is to detect the case where all pages in the zone have been
+ * scanned twice and there has been zero successful reclaim.  Mark the zone as
+ * dead and from now on, only perform a short scan.  Basically we're polling
+ * the zone for when the problem goes away.
+ *
+ * kswapd scans the zones in the highmem->normal->dma direction.  It skips
+ * zones which have free_pages > high_wmark_pages(zone), but once a zone is
+ * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
+ * lower zones regardless of the number of free pages in the lower zones. This
+ * interoperates with the page allocator fallback scheme to ensure that aging
+ * of pages is balanced across the zones.
+ */
+static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
+							int *classzone_idx)
+{
+	int all_zones_ok;
+	unsigned long balanced;
+	int priority;
+	int i;
+	int end_zone = 0;	/* Inclusive.  0 = ZONE_DMA */
+	unsigned long total_scanned;
+	struct reclaim_state *reclaim_state = current->reclaim_state;
+	unsigned long nr_soft_reclaimed;
+	unsigned long nr_soft_scanned;
+	struct scan_control sc = {
+		.gfp_mask = GFP_KERNEL,
+		.may_unmap = 1,
+		.may_swap = 1,
+		/*
+		 * kswapd doesn't want to be bailed out while reclaim. because
+		 * we want to put equal scanning pressure on each zone.
+		 */
+		.nr_to_reclaim = ULONG_MAX,
+		.order = order,
+		.target_mem_cgroup = NULL,
+	};
+	struct shrink_control shrink = {
+		.gfp_mask = sc.gfp_mask,
+	};
+loop_again:
+	total_scanned = 0;
+	sc.nr_reclaimed = 0;
+	sc.may_writepage = !laptop_mode;
+	count_vm_event(PAGEOUTRUN);
+
+	for (priority = DEF_PRIORITY; priority >= 0; priority--) {
+		unsigned long lru_pages = 0;
+		int has_under_min_watermark_zone = 0;
+
+		/* The swap token gets in the way of swapout... */
+		if (!priority)
+			disable_swap_token(NULL);
+
+		all_zones_ok = 1;
+		balanced = 0;
+
+		/*
+		 * Scan in the highmem->dma direction for the highest
+		 * zone which needs scanning
+		 */
+		for (i = pgdat->nr_zones - 1; i >= 0; i--) {
+			struct zone *zone = pgdat->node_zones + i;
+
+			if (!populated_zone(zone))
+				continue;
+
+			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
+				continue;
+
+			/*
+			 * Do some background aging of the anon list, to give
+			 * pages a chance to be referenced before reclaiming.
+			 */
+			age_active_anon(zone, &sc, priority);
+
+			/*
+			 * If the number of buffer_heads in the machine
+			 * exceeds the maximum allowed level and this node
+			 * has a highmem zone, force kswapd to reclaim from
+			 * it to relieve lowmem pressure.
+			 */
+			if (buffer_heads_over_limit && is_highmem_idx(i)) {
+				end_zone = i;
+				break;
+			}
+
+			if (!zone_balanced(zone, order, 0, 0)) {
+				end_zone = i;
+				break;
+			} else {
+				/* If balanced, clear the congested flag */
+				zone_clear_flag(zone, ZONE_CONGESTED);
+			}
+		}
+		if (i < 0)
+			goto out;
+
+		for (i = 0; i <= end_zone; i++) {
+			struct zone *zone = pgdat->node_zones + i;
+
+			lru_pages += zone_reclaimable_pages(zone);
+		}
+
+		/*
+		 * Now scan the zone in the dma->highmem direction, stopping
+		 * at the last zone which needs scanning.
+		 *
+		 * We do this because the page allocator works in the opposite
+		 * direction.  This prevents the page allocator from allocating
+		 * pages behind kswapd's direction of progress, which would
+		 * cause too much scanning of the lower zones.
+		 */
+		for (i = 0; i <= end_zone; i++) {
+			struct zone *zone = pgdat->node_zones + i;
+			int nr_slab, testorder;
+			unsigned long balance_gap;
+
+			if (!populated_zone(zone))
+				continue;
+
+			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
+				continue;
+
+			sc.nr_scanned = 0;
+
+			nr_soft_scanned = 0;
+			/*
+			 * Call soft limit reclaim before calling shrink_zone.
+			 */
+			nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
+							order, sc.gfp_mask,
+							&nr_soft_scanned);
+			sc.nr_reclaimed += nr_soft_reclaimed;
+			total_scanned += nr_soft_scanned;
+
+			/*
+			 * We put equal pressure on every zone, unless
+			 * one zone has way too many pages free
+			 * already. The "too many pages" is defined
+			 * as the high wmark plus a "gap" where the
+			 * gap is either the low watermark or 1%
+			 * of the zone, whichever is smaller.
+			 */
+			balance_gap = min(low_wmark_pages(zone),
+				(zone->present_pages +
+					KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
+				KSWAPD_ZONE_BALANCE_GAP_RATIO);
+			/*
+			 * Kswapd reclaims only single pages with compaction
+			 * enabled. Trying too hard to reclaim until contiguous
+			 * free pages have become available can hurt performance
+			 * by evicting too much useful data from memory.
+			 * Do not reclaim more than needed for compaction.
+			 */
+			testorder = order;
+			if (COMPACTION_BUILD && order &&
+					compaction_suitable(zone, order) !=
+						COMPACT_SKIPPED)
+				testorder = 0;
+
+			if ((buffer_heads_over_limit && is_highmem_idx(i)) ||
+			    !zone_balanced(zone, testorder,
+					   balance_gap, end_zone)) {
+				shrink_zone(priority, zone, &sc);
+
+				reclaim_state->reclaimed_slab = 0;
+				nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
+				sc.nr_reclaimed += reclaim_state->reclaimed_slab;
+				total_scanned += sc.nr_scanned;
+
+				if (nr_slab == 0 && !zone_reclaimable(zone))
+					zone->all_unreclaimable = 1;
+			}
+
+			/*
+			 * If we've done a decent amount of scanning and
+			 * the reclaim ratio is low, start doing writepage
+			 * even in laptop mode
+			 */
+			if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
+			    total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
+				sc.may_writepage = 1;
+
+			if (zone->all_unreclaimable) {
+				if (end_zone && end_zone == i)
+					end_zone--;
+				continue;
+			}
+
+			if (!zone_balanced(zone, testorder, 0, end_zone)) {
+				all_zones_ok = 0;
+				/*
+				 * We are still under min water mark.  This
+				 * means that we have a GFP_ATOMIC allocation
+				 * failure risk. Hurry up!
+				 */
+				if (!zone_watermark_ok_safe(zone, order,
+					    min_wmark_pages(zone), end_zone, 0))
+					has_under_min_watermark_zone = 1;
+			} else {
+				/*
+				 * If a zone reaches its high watermark,
+				 * consider it to be no longer congested. It's
+				 * possible there are dirty pages backed by
+				 * congested BDIs but as pressure is relieved,
+				 * spectulatively avoid congestion waits
+				 */
+				zone_clear_flag(zone, ZONE_CONGESTED);
+				if (i <= *classzone_idx)
+					balanced += zone->present_pages;
+			}
+
+		}
+		if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
+			break;		/* kswapd: all done */
+		/*
+		 * OK, kswapd is getting into trouble.  Take a nap, then take
+		 * another pass across the zones.
+		 */
+		if (total_scanned && (priority < DEF_PRIORITY - 2)) {
+			if (has_under_min_watermark_zone)
+				count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
+			else
+				congestion_wait(BLK_RW_ASYNC, HZ/10);
+		}
+
+		/*
+		 * We do this so kswapd doesn't build up large priorities for
+		 * example when it is freeing in parallel with allocators. It
+		 * matches the direct reclaim path behaviour in terms of impact
+		 * on zone->*_priority.
+		 */
+		if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
+			break;
+	}
+out:
+
+	/*
+	 * order-0: All zones must meet high watermark for a balanced node
+	 * high-order: Balanced zones must make up at least 25% of the node
+	 *             for the node to be balanced
+	 */
+	if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
+		cond_resched();
+
+		try_to_freeze();
+
+		/*
+		 * Fragmentation may mean that the system cannot be
+		 * rebalanced for high-order allocations in all zones.
+		 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
+		 * it means the zones have been fully scanned and are still
+		 * not balanced. For high-order allocations, there is
+		 * little point trying all over again as kswapd may
+		 * infinite loop.
+		 *
+		 * Instead, recheck all watermarks at order-0 as they
+		 * are the most important. If watermarks are ok, kswapd will go
+		 * back to sleep. High-order users can still perform direct
+		 * reclaim if they wish.
+		 */
+		if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
+			order = sc.order = 0;
+
+		goto loop_again;
+	}
+
+	/*
+	 * If kswapd was reclaiming at a higher order, it has the option of
+	 * sleeping without all zones being balanced. Before it does, it must
+	 * ensure that the watermarks for order-0 on *all* zones are met and
+	 * that the congestion flags are cleared. The congestion flag must
+	 * be cleared as kswapd is the only mechanism that clears the flag
+	 * and it is potentially going to sleep here.
+	 */
+	if (order) {
+		int zones_need_compaction = 1;
+
+		for (i = 0; i <= end_zone; i++) {
+			struct zone *zone = pgdat->node_zones + i;
+
+			if (!populated_zone(zone))
+				continue;
+
+			if (zone->all_unreclaimable && priority != DEF_PRIORITY)
+				continue;
+
+			/* Would compaction fail due to lack of free memory? */
+			if (COMPACTION_BUILD &&
+			    compaction_suitable(zone, order) == COMPACT_SKIPPED)
+				goto loop_again;
+
+			/* Confirm the zone is balanced for order-0 */
+			if (!zone_watermark_ok(zone, 0,
+					high_wmark_pages(zone), 0, 0)) {
+				order = sc.order = 0;
+				goto loop_again;
+			}
+
+			/* Check if the memory needs to be defragmented. */
+			if (zone_watermark_ok(zone, order,
+				    low_wmark_pages(zone), *classzone_idx, 0))
+				zones_need_compaction = 0;
+
+			/* If balanced, clear the congested flag */
+			zone_clear_flag(zone, ZONE_CONGESTED);
+		}
+
+		if (zones_need_compaction)
+			compact_pgdat(pgdat, order);
+	}
+
+	/*
+	 * Return the order we were reclaiming at so sleeping_prematurely()
+	 * makes a decision on the order we were last reclaiming at. However,
+	 * if another caller entered the allocator slow path while kswapd
+	 * was awake, order will remain at the higher level
+	 */
+	*classzone_idx = end_zone;
+	return order;
+}
+
+static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
+{
+	long remaining = 0;
+	DEFINE_WAIT(wait);
+
+	if (freezing(current) || kthread_should_stop())
+		return;
+
+	prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
+
+	/* Try to sleep for a short interval */
+	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
+		remaining = schedule_timeout(HZ/10);
+		finish_wait(&pgdat->kswapd_wait, &wait);
+		prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
+	}
+
+	/*
+	 * After a short sleep, check if it was a premature sleep. If not, then
+	 * go fully to sleep until explicitly woken up.
+	 */
+	if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
+		trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
+
+		/*
+		 * vmstat counters are not perfectly accurate and the estimated
+		 * value for counters such as NR_FREE_PAGES can deviate from the
+		 * true value by nr_online_cpus * threshold. To avoid the zone
+		 * watermarks being breached while under pressure, we reduce the
+		 * per-cpu vmstat threshold while kswapd is awake and restore
+		 * them before going back to sleep.
+		 */
+		set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
+
+		if (!kthread_should_stop())
+			schedule();
+
+		set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
+	} else {
+		if (remaining)
+			count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
+		else
+			count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
+	}
+	finish_wait(&pgdat->kswapd_wait, &wait);
+}
+
+/*
+ * The background pageout daemon, started as a kernel thread
+ * from the init process.
+ *
+ * This basically trickles out pages so that we have _some_
+ * free memory available even if there is no other activity
+ * that frees anything up. This is needed for things like routing
+ * etc, where we otherwise might have all activity going on in
+ * asynchronous contexts that cannot page things out.
+ *
+ * If there are applications that are active memory-allocators
+ * (most normal use), this basically shouldn't matter.
+ */
+static int kswapd(void *p)
+{
+	unsigned long order, new_order;
+	unsigned balanced_order;
+	int classzone_idx, new_classzone_idx;
+	int balanced_classzone_idx;
+	pg_data_t *pgdat = (pg_data_t*)p;
+	struct task_struct *tsk = current;
+
+	struct reclaim_state reclaim_state = {
+		.reclaimed_slab = 0,
+	};
+	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
+
+	lockdep_set_current_reclaim_state(GFP_KERNEL);
+
+	if (!cpumask_empty(cpumask))
+		set_cpus_allowed_ptr(tsk, cpumask);
+	current->reclaim_state = &reclaim_state;
+
+	/*
+	 * Tell the memory management that we're a "memory allocator",
+	 * and that if we need more memory we should get access to it
+	 * regardless (see "__alloc_pages()"). "kswapd" should
+	 * never get caught in the normal page freeing logic.
+	 *
+	 * (Kswapd normally doesn't need memory anyway, but sometimes
+	 * you need a small amount of memory in order to be able to
+	 * page out something else, and this flag essentially protects
+	 * us from recursively trying to free more memory as we're
+	 * trying to free the first piece of memory in the first place).
+	 */
+	tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
+	set_freezable();
+
+	order = new_order = 0;
+	balanced_order = 0;
+	classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
+	balanced_classzone_idx = classzone_idx;
+	for ( ; ; ) {
+		int ret;
+
+		/*
+		 * If the last balance_pgdat was unsuccessful it's unlikely a
+		 * new request of a similar or harder type will succeed soon
+		 * so consider going to sleep on the basis we reclaimed at
+		 */
+		if (balanced_classzone_idx >= new_classzone_idx &&
+					balanced_order == new_order) {
+			new_order = pgdat->kswapd_max_order;
+			new_classzone_idx = pgdat->classzone_idx;
+			pgdat->kswapd_max_order =  0;
+			pgdat->classzone_idx = pgdat->nr_zones - 1;
+		}
+
+		if (order < new_order || classzone_idx > new_classzone_idx) {
+			/*
+			 * Don't sleep if someone wants a larger 'order'
+			 * allocation or has tigher zone constraints
+			 */
+			order = new_order;
+			classzone_idx = new_classzone_idx;
+		} else {
+			kswapd_try_to_sleep(pgdat, balanced_order,
+						balanced_classzone_idx);
+			order = pgdat->kswapd_max_order;
+			classzone_idx = pgdat->classzone_idx;
+			new_order = order;
+			new_classzone_idx = classzone_idx;
+			pgdat->kswapd_max_order = 0;
+			pgdat->classzone_idx = pgdat->nr_zones - 1;
+		}
+
+		ret = try_to_freeze();
+		if (kthread_should_stop())
+			break;
+
+		/*
+		 * We can speed up thawing tasks if we don't call balance_pgdat
+		 * after returning from the refrigerator
+		 */
+		if (!ret) {
+			trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
+			balanced_classzone_idx = classzone_idx;
+			balanced_order = balance_pgdat(pgdat, order,
+						&balanced_classzone_idx);
+		}
+	}
+
+	tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
+	current->reclaim_state = NULL;
+	lockdep_clear_current_reclaim_state();
+
+	return 0;
+}
+
+/*
+ * A zone is low on free memory, so wake its kswapd task to service it.
+ */
+void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
+{
+	pg_data_t *pgdat;
+
+	if (!populated_zone(zone))
+		return;
+
+	if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
+		return;
+	pgdat = zone->zone_pgdat;
+	if (pgdat->kswapd_max_order < order) {
+		pgdat->kswapd_max_order = order;
+		pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
+	}
+	if (!waitqueue_active(&pgdat->kswapd_wait))
+		return;
+	if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
+		return;
+
+	trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
+	wake_up_interruptible(&pgdat->kswapd_wait);
+}
+
+/*
+ * The reclaimable count would be mostly accurate.
+ * The less reclaimable pages may be
+ * - mlocked pages, which will be moved to unevictable list when encountered
+ * - mapped pages, which may require several travels to be reclaimed
+ * - dirty pages, which is not "instantly" reclaimable
+ */
+unsigned long global_reclaimable_pages(void)
+{
+	int nr;
+
+	nr = global_page_state(NR_ACTIVE_FILE) +
+	     global_page_state(NR_INACTIVE_FILE);
+
+	if (nr_swap_pages > 0)
+		nr += global_page_state(NR_ACTIVE_ANON) +
+		      global_page_state(NR_INACTIVE_ANON);
+
+	return nr;
+}
+
+unsigned long zone_reclaimable_pages(struct zone *zone)
+{
+	int nr;
+
+	nr = zone_page_state(zone, NR_ACTIVE_FILE) +
+	     zone_page_state(zone, NR_INACTIVE_FILE);
+
+	if (nr_swap_pages > 0)
+		nr += zone_page_state(zone, NR_ACTIVE_ANON) +
+		      zone_page_state(zone, NR_INACTIVE_ANON);
+
+	return nr;
+}
+
+#ifdef CONFIG_HIBERNATION
+/*
+ * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
+ * freed pages.
+ *
+ * Rather than trying to age LRUs the aim is to preserve the overall
+ * LRU order by reclaiming preferentially
+ * inactive > active > active referenced > active mapped
+ */
+unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
+{
+	struct reclaim_state reclaim_state;
+	struct scan_control sc = {
+		.gfp_mask = GFP_HIGHUSER_MOVABLE,
+		.may_swap = 1,
+		.may_unmap = 1,
+		.may_writepage = 1,
+		.nr_to_reclaim = nr_to_reclaim,
+		.hibernation_mode = 1,
+		.order = 0,
+	};
+	struct shrink_control shrink = {
+		.gfp_mask = sc.gfp_mask,
+	};
+	struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
+	struct task_struct *p = current;
+	unsigned long nr_reclaimed;
+
+	p->flags |= PF_MEMALLOC;
+	lockdep_set_current_reclaim_state(sc.gfp_mask);
+	reclaim_state.reclaimed_slab = 0;
+	p->reclaim_state = &reclaim_state;
+
+	nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
+
+	p->reclaim_state = NULL;
+	lockdep_clear_current_reclaim_state();
+	p->flags &= ~PF_MEMALLOC;
+
+	return nr_reclaimed;
+}
+#endif /* CONFIG_HIBERNATION */
+
+/* It's optimal to keep kswapds on the same CPUs as their memory, but
+   not required for correctness.  So if the last cpu in a node goes
+   away, we get changed to run anywhere: as the first one comes back,
+   restore their cpu bindings. */
+static int __devinit cpu_callback(struct notifier_block *nfb,
+				  unsigned long action, void *hcpu)
+{
+	int nid;
+
+	if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
+		for_each_node_state(nid, N_HIGH_MEMORY) {
+			pg_data_t *pgdat = NODE_DATA(nid);
+			const struct cpumask *mask;
+
+			mask = cpumask_of_node(pgdat->node_id);
+
+			if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
+				/* One of our CPUs online: restore mask */
+				set_cpus_allowed_ptr(pgdat->kswapd, mask);
+		}
+	}
+	return NOTIFY_OK;
+}
+
+/*
+ * This kswapd start function will be called by init and node-hot-add.
+ * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
+ */
+int kswapd_run(int nid)
+{
+	pg_data_t *pgdat = NODE_DATA(nid);
+	int ret = 0;
+
+	if (pgdat->kswapd)
+		return 0;
+
+	pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
+	if (IS_ERR(pgdat->kswapd)) {
+		/* failure at boot is fatal */
+		BUG_ON(system_state == SYSTEM_BOOTING);
+		printk("Failed to start kswapd on node %d\n",nid);
+		ret = -1;
+	}
+	return ret;
+}
+
+/*
+ * Called by memory hotplug when all memory in a node is offlined.  Caller must
+ * hold lock_memory_hotplug().
+ */
+void kswapd_stop(int nid)
+{
+	struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
+
+	if (kswapd) {
+		kthread_stop(kswapd);
+		NODE_DATA(nid)->kswapd = NULL;
+	}
+}
+
+static int __init kswapd_init(void)
+{
+	int nid;
+
+	swap_setup();
+	for_each_node_state(nid, N_HIGH_MEMORY)
+ 		kswapd_run(nid);
+	hotcpu_notifier(cpu_callback, 0);
+	return 0;
+}
+
+module_init(kswapd_init)
+
+#ifdef CONFIG_NUMA
+/*
+ * Zone reclaim mode
+ *
+ * If non-zero call zone_reclaim when the number of free pages falls below
+ * the watermarks.
+ */
+int zone_reclaim_mode __read_mostly;
+
+#define RECLAIM_OFF 0
+#define RECLAIM_ZONE (1<<0)	/* Run shrink_inactive_list on the zone */
+#define RECLAIM_WRITE (1<<1)	/* Writeout pages during reclaim */
+#define RECLAIM_SWAP (1<<2)	/* Swap pages out during reclaim */
+
+/*
+ * Priority for ZONE_RECLAIM. This determines the fraction of pages
+ * of a node considered for each zone_reclaim. 4 scans 1/16th of
+ * a zone.
+ */
+#define ZONE_RECLAIM_PRIORITY 4
+
+/*
+ * Percentage of pages in a zone that must be unmapped for zone_reclaim to
+ * occur.
+ */
+int sysctl_min_unmapped_ratio = 1;
+
+/*
+ * If the number of slab pages in a zone grows beyond this percentage then
+ * slab reclaim needs to occur.
+ */
+int sysctl_min_slab_ratio = 5;
+
+static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
+{
+	unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
+	unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
+		zone_page_state(zone, NR_ACTIVE_FILE);
+
+	/*
+	 * It's possible for there to be more file mapped pages than
+	 * accounted for by the pages on the file LRU lists because
+	 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
+	 */
+	return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
+}
+
+/* Work out how many page cache pages we can reclaim in this reclaim_mode */
+static long zone_pagecache_reclaimable(struct zone *zone)
+{
+	long nr_pagecache_reclaimable;
+	long delta = 0;
+
+	/*
+	 * If RECLAIM_SWAP is set, then all file pages are considered
+	 * potentially reclaimable. Otherwise, we have to worry about
+	 * pages like swapcache and zone_unmapped_file_pages() provides
+	 * a better estimate
+	 */
+	if (zone_reclaim_mode & RECLAIM_SWAP)
+		nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
+	else
+		nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
+
+	/* If we can't clean pages, remove dirty pages from consideration */
+	if (!(zone_reclaim_mode & RECLAIM_WRITE))
+		delta += zone_page_state(zone, NR_FILE_DIRTY);
+
+	/* Watch for any possible underflows due to delta */
+	if (unlikely(delta > nr_pagecache_reclaimable))
+		delta = nr_pagecache_reclaimable;
+
+	return nr_pagecache_reclaimable - delta;
+}
+
+/*
+ * Try to free up some pages from this zone through reclaim.
+ */
+static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
+{
+	/* Minimum pages needed in order to stay on node */
+	const unsigned long nr_pages = 1 << order;
+	struct task_struct *p = current;
+	struct reclaim_state reclaim_state;
+	int priority;
+	struct scan_control sc = {
+		.may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
+		.may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
+		.may_swap = 1,
+		.nr_to_reclaim = max_t(unsigned long, nr_pages,
+				       SWAP_CLUSTER_MAX),
+		.gfp_mask = gfp_mask,
+		.order = order,
+	};
+	struct shrink_control shrink = {
+		.gfp_mask = sc.gfp_mask,
+	};
+	unsigned long nr_slab_pages0, nr_slab_pages1;
+
+	cond_resched();
+	/*
+	 * We need to be able to allocate from the reserves for RECLAIM_SWAP
+	 * and we also need to be able to write out pages for RECLAIM_WRITE
+	 * and RECLAIM_SWAP.
+	 */
+	p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
+	lockdep_set_current_reclaim_state(gfp_mask);
+	reclaim_state.reclaimed_slab = 0;
+	p->reclaim_state = &reclaim_state;
+
+	if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
+		/*
+		 * Free memory by calling shrink zone with increasing
+		 * priorities until we have enough memory freed.
+		 */
+		priority = ZONE_RECLAIM_PRIORITY;
+		do {
+			shrink_zone(priority, zone, &sc);
+			priority--;
+		} while (priority >= 0 && sc.nr_reclaimed < nr_pages);
+	}
+
+	nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
+	if (nr_slab_pages0 > zone->min_slab_pages) {
+		/*
+		 * shrink_slab() does not currently allow us to determine how
+		 * many pages were freed in this zone. So we take the current
+		 * number of slab pages and shake the slab until it is reduced
+		 * by the same nr_pages that we used for reclaiming unmapped
+		 * pages.
+		 *
+		 * Note that shrink_slab will free memory on all zones and may
+		 * take a long time.
+		 */
+		for (;;) {
+			unsigned long lru_pages = zone_reclaimable_pages(zone);
+
+			/* No reclaimable slab or very low memory pressure */
+			if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
+				break;
+
+			/* Freed enough memory */
+			nr_slab_pages1 = zone_page_state(zone,
+							NR_SLAB_RECLAIMABLE);
+			if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
+				break;
+		}
+
+		/*
+		 * Update nr_reclaimed by the number of slab pages we
+		 * reclaimed from this zone.
+		 */
+		nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
+		if (nr_slab_pages1 < nr_slab_pages0)
+			sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
+	}
+
+	p->reclaim_state = NULL;
+	current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
+	lockdep_clear_current_reclaim_state();
+	return sc.nr_reclaimed >= nr_pages;
+}
+
+int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
+{
+	int node_id;
+	int ret;
+
+	/*
+	 * Zone reclaim reclaims unmapped file backed pages and
+	 * slab pages if we are over the defined limits.
+	 *
+	 * A small portion of unmapped file backed pages is needed for
+	 * file I/O otherwise pages read by file I/O will be immediately
+	 * thrown out if the zone is overallocated. So we do not reclaim
+	 * if less than a specified percentage of the zone is used by
+	 * unmapped file backed pages.
+	 */
+	if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
+	    zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
+		return ZONE_RECLAIM_FULL;
+
+	if (zone->all_unreclaimable)
+		return ZONE_RECLAIM_FULL;
+
+	/*
+	 * Do not scan if the allocation should not be delayed.
+	 */
+	if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
+		return ZONE_RECLAIM_NOSCAN;
+
+	/*
+	 * Only run zone reclaim on the local zone or on zones that do not
+	 * have associated processors. This will favor the local processor
+	 * over remote processors and spread off node memory allocations
+	 * as wide as possible.
+	 */
+	node_id = zone_to_nid(zone);
+	if (node_state(node_id, N_CPU) && node_id != numa_node_id())
+		return ZONE_RECLAIM_NOSCAN;
+
+	if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
+		return ZONE_RECLAIM_NOSCAN;
+
+	ret = __zone_reclaim(zone, gfp_mask, order);
+	zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
+
+	if (!ret)
+		count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
+
+	return ret;
+}
+#endif
+
+/*
+ * page_evictable - test whether a page is evictable
+ * @page: the page to test
+ * @vma: the VMA in which the page is or will be mapped, may be NULL
+ *
+ * Test whether page is evictable--i.e., should be placed on active/inactive
+ * lists vs unevictable list.  The vma argument is !NULL when called from the
+ * fault path to determine how to instantate a new page.
+ *
+ * Reasons page might not be evictable:
+ * (1) page's mapping marked unevictable
+ * (2) page is part of an mlocked VMA
+ *
+ */
+int page_evictable(struct page *page, struct vm_area_struct *vma)
+{
+
+	if (mapping_unevictable(page_mapping(page)))
+		return 0;
+
+	if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
+		return 0;
+
+	return 1;
+}
+
+#ifdef CONFIG_SHMEM
+/**
+ * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
+ * @pages:	array of pages to check
+ * @nr_pages:	number of pages to check
+ *
+ * Checks pages for evictability and moves them to the appropriate lru list.
+ *
+ * This function is only used for SysV IPC SHM_UNLOCK.
+ */
+void check_move_unevictable_pages(struct page **pages, int nr_pages)
+{
+	struct lruvec *lruvec;
+	struct zone *zone = NULL;
+	int pgscanned = 0;
+	int pgrescued = 0;
+	int i;
+
+	for (i = 0; i < nr_pages; i++) {
+		struct page *page = pages[i];
+		struct zone *pagezone;
+
+		pgscanned++;
+		pagezone = page_zone(page);
+		if (pagezone != zone) {
+			if (zone)
+				spin_unlock_irq(&zone->lru_lock);
+			zone = pagezone;
+			spin_lock_irq(&zone->lru_lock);
+		}
+
+		if (!PageLRU(page) || !PageUnevictable(page))
+			continue;
+
+		if (page_evictable(page, NULL)) {
+			enum lru_list lru = page_lru_base_type(page);
+
+			VM_BUG_ON(PageActive(page));
+			ClearPageUnevictable(page);
+			__dec_zone_state(zone, NR_UNEVICTABLE);
+			lruvec = mem_cgroup_lru_move_lists(zone, page,
+						LRU_UNEVICTABLE, lru);
+			list_move(&page->lru, &lruvec->lists[lru]);
+			__inc_zone_state(zone, NR_INACTIVE_ANON + lru);
+			pgrescued++;
+		}
+	}
+
+	if (zone) {
+		__count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
+		__count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
+		spin_unlock_irq(&zone->lru_lock);
+	}
+}
+#endif /* CONFIG_SHMEM */
+
+static void warn_scan_unevictable_pages(void)
+{
+	printk_once(KERN_WARNING
+		    "%s: The scan_unevictable_pages sysctl/node-interface has been "
+		    "disabled for lack of a legitimate use case.  If you have "
+		    "one, please send an email to linux-mm@kvack.org.\n",
+		    current->comm);
+}
+
+/*
+ * scan_unevictable_pages [vm] sysctl handler.  On demand re-scan of
+ * all nodes' unevictable lists for evictable pages
+ */
+unsigned long scan_unevictable_pages;
+
+int scan_unevictable_handler(struct ctl_table *table, int write,
+			   void __user *buffer,
+			   size_t *length, loff_t *ppos)
+{
+	warn_scan_unevictable_pages();
+	proc_doulongvec_minmax(table, write, buffer, length, ppos);
+	scan_unevictable_pages = 0;
+	return 0;
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * per node 'scan_unevictable_pages' attribute.  On demand re-scan of
+ * a specified node's per zone unevictable lists for evictable pages.
+ */
+
+static ssize_t read_scan_unevictable_node(struct device *dev,
+					  struct device_attribute *attr,
+					  char *buf)
+{
+	warn_scan_unevictable_pages();
+	return sprintf(buf, "0\n");	/* always zero; should fit... */
+}
+
+static ssize_t write_scan_unevictable_node(struct device *dev,
+					   struct device_attribute *attr,
+					const char *buf, size_t count)
+{
+	warn_scan_unevictable_pages();
+	return 1;
+}
+
+
+static DEVICE_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
+			read_scan_unevictable_node,
+			write_scan_unevictable_node);
+
+int scan_unevictable_register_node(struct node *node)
+{
+	return device_create_file(&node->dev, &dev_attr_scan_unevictable_pages);
+}
+
+void scan_unevictable_unregister_node(struct node *node)
+{
+	device_remove_file(&node->dev, &dev_attr_scan_unevictable_pages);
+}
+#endif