zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/net/ipv4/tcp_minisocks.c b/ap/os/linux/linux-3.4.x/net/ipv4/tcp_minisocks.c
new file mode 100644
index 0000000..3cabafb
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/net/ipv4/tcp_minisocks.c
@@ -0,0 +1,794 @@
+/*
+ * INET		An implementation of the TCP/IP protocol suite for the LINUX
+ *		operating system.  INET is implemented using the  BSD Socket
+ *		interface as the means of communication with the user level.
+ *
+ *		Implementation of the Transmission Control Protocol(TCP).
+ *
+ * Authors:	Ross Biro
+ *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
+ *		Mark Evans, <evansmp@uhura.aston.ac.uk>
+ *		Corey Minyard <wf-rch!minyard@relay.EU.net>
+ *		Florian La Roche, <flla@stud.uni-sb.de>
+ *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
+ *		Linus Torvalds, <torvalds@cs.helsinki.fi>
+ *		Alan Cox, <gw4pts@gw4pts.ampr.org>
+ *		Matthew Dillon, <dillon@apollo.west.oic.com>
+ *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
+ *		Jorge Cwik, <jorge@laser.satlink.net>
+ */
+
+#include <linux/mm.h>
+#include <linux/module.h>
+#include <linux/slab.h>
+#include <linux/sysctl.h>
+#include <linux/workqueue.h>
+#include <net/tcp.h>
+#include <net/inet_common.h>
+#include <net/xfrm.h>
+
+int sysctl_tcp_syncookies __read_mostly = 1;
+EXPORT_SYMBOL(sysctl_tcp_syncookies);
+
+int sysctl_tcp_abort_on_overflow __read_mostly;
+
+struct inet_timewait_death_row tcp_death_row = {
+	.sysctl_max_tw_buckets = NR_FILE * 2,
+	.period		= TCP_TIMEWAIT_LEN / INET_TWDR_TWKILL_SLOTS,
+	.death_lock	= __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
+	.hashinfo	= &tcp_hashinfo,
+	.tw_timer	= TIMER_INITIALIZER(inet_twdr_hangman, 0,
+					    (unsigned long)&tcp_death_row),
+	.twkill_work	= __WORK_INITIALIZER(tcp_death_row.twkill_work,
+					     inet_twdr_twkill_work),
+/* Short-time timewait calendar */
+
+	.twcal_hand	= -1,
+	.twcal_timer	= TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
+					    (unsigned long)&tcp_death_row),
+};
+EXPORT_SYMBOL_GPL(tcp_death_row);
+
+/* VJ's idea. Save last timestamp seen from this destination
+ * and hold it at least for normal timewait interval to use for duplicate
+ * segment detection in subsequent connections, before they enter synchronized
+ * state.
+ */
+
+static int tcp_remember_stamp(struct sock *sk)
+{
+	const struct inet_connection_sock *icsk = inet_csk(sk);
+	struct tcp_sock *tp = tcp_sk(sk);
+	struct inet_peer *peer;
+	bool release_it;
+
+	peer = icsk->icsk_af_ops->get_peer(sk, &release_it);
+	if (peer) {
+		if ((s32)(peer->tcp_ts - tp->rx_opt.ts_recent) <= 0 ||
+		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
+		     peer->tcp_ts_stamp <= (u32)tp->rx_opt.ts_recent_stamp)) {
+			peer->tcp_ts_stamp = (u32)tp->rx_opt.ts_recent_stamp;
+			peer->tcp_ts = tp->rx_opt.ts_recent;
+		}
+		if (release_it)
+			inet_putpeer(peer);
+		return 1;
+	}
+
+	return 0;
+}
+
+static int tcp_tw_remember_stamp(struct inet_timewait_sock *tw)
+{
+	struct sock *sk = (struct sock *) tw;
+	struct inet_peer *peer;
+
+	peer = twsk_getpeer(sk);
+	if (peer) {
+		const struct tcp_timewait_sock *tcptw = tcp_twsk(sk);
+
+		if ((s32)(peer->tcp_ts - tcptw->tw_ts_recent) <= 0 ||
+		    ((u32)get_seconds() - peer->tcp_ts_stamp > TCP_PAWS_MSL &&
+		     peer->tcp_ts_stamp <= (u32)tcptw->tw_ts_recent_stamp)) {
+			peer->tcp_ts_stamp = (u32)tcptw->tw_ts_recent_stamp;
+			peer->tcp_ts	   = tcptw->tw_ts_recent;
+		}
+		inet_putpeer(peer);
+		return 1;
+	}
+	return 0;
+}
+
+static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
+{
+	if (seq == s_win)
+		return 1;
+	if (after(end_seq, s_win) && before(seq, e_win))
+		return 1;
+	return seq == e_win && seq == end_seq;
+}
+
+/*
+ * * Main purpose of TIME-WAIT state is to close connection gracefully,
+ *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
+ *   (and, probably, tail of data) and one or more our ACKs are lost.
+ * * What is TIME-WAIT timeout? It is associated with maximal packet
+ *   lifetime in the internet, which results in wrong conclusion, that
+ *   it is set to catch "old duplicate segments" wandering out of their path.
+ *   It is not quite correct. This timeout is calculated so that it exceeds
+ *   maximal retransmission timeout enough to allow to lose one (or more)
+ *   segments sent by peer and our ACKs. This time may be calculated from RTO.
+ * * When TIME-WAIT socket receives RST, it means that another end
+ *   finally closed and we are allowed to kill TIME-WAIT too.
+ * * Second purpose of TIME-WAIT is catching old duplicate segments.
+ *   Well, certainly it is pure paranoia, but if we load TIME-WAIT
+ *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
+ * * If we invented some more clever way to catch duplicates
+ *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
+ *
+ * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
+ * When you compare it to RFCs, please, read section SEGMENT ARRIVES
+ * from the very beginning.
+ *
+ * NOTE. With recycling (and later with fin-wait-2) TW bucket
+ * is _not_ stateless. It means, that strictly speaking we must
+ * spinlock it. I do not want! Well, probability of misbehaviour
+ * is ridiculously low and, seems, we could use some mb() tricks
+ * to avoid misread sequence numbers, states etc.  --ANK
+ */
+enum tcp_tw_status
+tcp_timewait_state_process(struct inet_timewait_sock *tw, struct sk_buff *skb,
+			   const struct tcphdr *th)
+{
+	struct tcp_options_received tmp_opt;
+	const u8 *hash_location;
+	struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
+	int paws_reject = 0;
+
+	tmp_opt.saw_tstamp = 0;
+	if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
+		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
+
+		if (tmp_opt.saw_tstamp) {
+			tmp_opt.ts_recent	= tcptw->tw_ts_recent;
+			tmp_opt.ts_recent_stamp	= tcptw->tw_ts_recent_stamp;
+			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
+		}
+	}
+
+	if (tw->tw_substate == TCP_FIN_WAIT2) {
+		/* Just repeat all the checks of tcp_rcv_state_process() */
+
+		/* Out of window, send ACK */
+		if (paws_reject ||
+		    !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
+				   tcptw->tw_rcv_nxt,
+				   tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
+			return TCP_TW_ACK;
+
+		if (th->rst)
+			goto kill;
+
+		if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
+			goto kill_with_rst;
+
+		/* Dup ACK? */
+		if (!th->ack ||
+		    !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
+		    TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
+			inet_twsk_put(tw);
+			return TCP_TW_SUCCESS;
+		}
+
+		/* New data or FIN. If new data arrive after half-duplex close,
+		 * reset.
+		 */
+		if (!th->fin ||
+		    TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
+kill_with_rst:
+			inet_twsk_deschedule(tw, &tcp_death_row);
+			inet_twsk_put(tw);
+			return TCP_TW_RST;
+		}
+
+		/* FIN arrived, enter true time-wait state. */
+		tw->tw_substate	  = TCP_TIME_WAIT;
+		tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
+		if (tmp_opt.saw_tstamp) {
+			tcptw->tw_ts_recent_stamp = get_seconds();
+			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
+		}
+
+		if (tcp_death_row.sysctl_tw_recycle &&
+		    tcptw->tw_ts_recent_stamp &&
+		    tcp_tw_remember_stamp(tw))
+			inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
+					   TCP_TIMEWAIT_LEN);
+		else
+			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
+					   TCP_TIMEWAIT_LEN);
+		return TCP_TW_ACK;
+	}
+
+	/*
+	 *	Now real TIME-WAIT state.
+	 *
+	 *	RFC 1122:
+	 *	"When a connection is [...] on TIME-WAIT state [...]
+	 *	[a TCP] MAY accept a new SYN from the remote TCP to
+	 *	reopen the connection directly, if it:
+	 *
+	 *	(1)  assigns its initial sequence number for the new
+	 *	connection to be larger than the largest sequence
+	 *	number it used on the previous connection incarnation,
+	 *	and
+	 *
+	 *	(2)  returns to TIME-WAIT state if the SYN turns out
+	 *	to be an old duplicate".
+	 */
+
+	if (!paws_reject &&
+	    (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
+	     (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
+		/* In window segment, it may be only reset or bare ack. */
+
+		if (th->rst) {
+			/* This is TIME_WAIT assassination, in two flavors.
+			 * Oh well... nobody has a sufficient solution to this
+			 * protocol bug yet.
+			 */
+			if (sysctl_tcp_rfc1337 == 0) {
+kill:
+				inet_twsk_deschedule(tw, &tcp_death_row);
+				inet_twsk_put(tw);
+				return TCP_TW_SUCCESS;
+			}
+		}
+		inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
+				   TCP_TIMEWAIT_LEN);
+
+		if (tmp_opt.saw_tstamp) {
+			tcptw->tw_ts_recent	  = tmp_opt.rcv_tsval;
+			tcptw->tw_ts_recent_stamp = get_seconds();
+		}
+
+		inet_twsk_put(tw);
+		return TCP_TW_SUCCESS;
+	}
+
+	/* Out of window segment.
+
+	   All the segments are ACKed immediately.
+
+	   The only exception is new SYN. We accept it, if it is
+	   not old duplicate and we are not in danger to be killed
+	   by delayed old duplicates. RFC check is that it has
+	   newer sequence number works at rates <40Mbit/sec.
+	   However, if paws works, it is reliable AND even more,
+	   we even may relax silly seq space cutoff.
+
+	   RED-PEN: we violate main RFC requirement, if this SYN will appear
+	   old duplicate (i.e. we receive RST in reply to SYN-ACK),
+	   we must return socket to time-wait state. It is not good,
+	   but not fatal yet.
+	 */
+
+	if (th->syn && !th->rst && !th->ack && !paws_reject &&
+	    (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
+	     (tmp_opt.saw_tstamp &&
+	      (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
+		u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
+		if (isn == 0)
+			isn++;
+		TCP_SKB_CB(skb)->when = isn;
+		return TCP_TW_SYN;
+	}
+
+	if (paws_reject)
+		NET_INC_STATS_BH(twsk_net(tw), LINUX_MIB_PAWSESTABREJECTED);
+
+	if (!th->rst) {
+		/* In this case we must reset the TIMEWAIT timer.
+		 *
+		 * If it is ACKless SYN it may be both old duplicate
+		 * and new good SYN with random sequence number <rcv_nxt.
+		 * Do not reschedule in the last case.
+		 */
+		if (paws_reject || th->ack)
+			inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
+					   TCP_TIMEWAIT_LEN);
+
+		/* Send ACK. Note, we do not put the bucket,
+		 * it will be released by caller.
+		 */
+		return TCP_TW_ACK;
+	}
+	inet_twsk_put(tw);
+	return TCP_TW_SUCCESS;
+}
+EXPORT_SYMBOL(tcp_timewait_state_process);
+
+/*
+ * Move a socket to time-wait or dead fin-wait-2 state.
+ */
+void tcp_time_wait(struct sock *sk, int state, int timeo)
+{
+	struct inet_timewait_sock *tw = NULL;
+	const struct inet_connection_sock *icsk = inet_csk(sk);
+	const struct tcp_sock *tp = tcp_sk(sk);
+	int recycle_ok = 0;
+
+	if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
+		recycle_ok = tcp_remember_stamp(sk);
+
+	if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
+		tw = inet_twsk_alloc(sk, state);
+
+	if (tw != NULL) {
+		struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
+		const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
+
+		tw->tw_transparent	= inet_sk(sk)->transparent;
+		tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale;
+		tcptw->tw_rcv_nxt	= tp->rcv_nxt;
+		tcptw->tw_snd_nxt	= tp->snd_nxt;
+		tcptw->tw_rcv_wnd	= tcp_receive_window(tp);
+		tcptw->tw_ts_recent	= tp->rx_opt.ts_recent;
+		tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
+
+#if IS_ENABLED(CONFIG_IPV6)
+		if (tw->tw_family == PF_INET6) {
+			struct ipv6_pinfo *np = inet6_sk(sk);
+			struct inet6_timewait_sock *tw6;
+
+			tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
+			tw6 = inet6_twsk((struct sock *)tw);
+			tw6->tw_v6_daddr = np->daddr;
+			tw6->tw_v6_rcv_saddr = np->rcv_saddr;
+			tw->tw_tclass = np->tclass;
+			tw->tw_ipv6only = np->ipv6only;
+		}
+#endif
+
+#ifdef CONFIG_TCP_MD5SIG
+		/*
+		 * The timewait bucket does not have the key DB from the
+		 * sock structure. We just make a quick copy of the
+		 * md5 key being used (if indeed we are using one)
+		 * so the timewait ack generating code has the key.
+		 */
+		do {
+			struct tcp_md5sig_key *key;
+			tcptw->tw_md5_key = NULL;
+			key = tp->af_specific->md5_lookup(sk, sk);
+			if (key != NULL) {
+				tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
+				if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
+					BUG();
+			}
+		} while (0);
+#endif
+
+		/* Linkage updates. */
+		__inet_twsk_hashdance(tw, sk, &tcp_hashinfo);
+
+		/* Get the TIME_WAIT timeout firing. */
+		if (timeo < rto)
+			timeo = rto;
+
+		if (recycle_ok) {
+			tw->tw_timeout = rto;
+		} else {
+			tw->tw_timeout = TCP_TIMEWAIT_LEN;
+			if (state == TCP_TIME_WAIT)
+				timeo = TCP_TIMEWAIT_LEN;
+		}
+
+		inet_twsk_schedule(tw, &tcp_death_row, timeo,
+				   TCP_TIMEWAIT_LEN);
+		inet_twsk_put(tw);
+	} else {
+		/* Sorry, if we're out of memory, just CLOSE this
+		 * socket up.  We've got bigger problems than
+		 * non-graceful socket closings.
+		 */
+		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEWAITOVERFLOW);
+	}
+
+	tcp_update_metrics(sk);
+	tcp_done(sk);
+}
+
+void tcp_twsk_destructor(struct sock *sk)
+{
+#ifdef CONFIG_TCP_MD5SIG
+	struct tcp_timewait_sock *twsk = tcp_twsk(sk);
+	if (twsk->tw_md5_key) {
+		tcp_free_md5sig_pool();
+		kfree_rcu(twsk->tw_md5_key, rcu);
+	}
+#endif
+}
+EXPORT_SYMBOL_GPL(tcp_twsk_destructor);
+
+static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
+					 struct request_sock *req)
+{
+	tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
+}
+
+/* This is not only more efficient than what we used to do, it eliminates
+ * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
+ *
+ * Actually, we could lots of memory writes here. tp of listening
+ * socket contains all necessary default parameters.
+ */
+struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
+{
+	struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
+
+	if (newsk != NULL) {
+		const struct inet_request_sock *ireq = inet_rsk(req);
+		struct tcp_request_sock *treq = tcp_rsk(req);
+		struct inet_connection_sock *newicsk = inet_csk(newsk);
+		struct tcp_sock *newtp = tcp_sk(newsk);
+		struct tcp_sock *oldtp = tcp_sk(sk);
+		struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
+
+		/* TCP Cookie Transactions require space for the cookie pair,
+		 * as it differs for each connection.  There is no need to
+		 * copy any s_data_payload stored at the original socket.
+		 * Failure will prevent resuming the connection.
+		 *
+		 * Presumed copied, in order of appearance:
+		 *	cookie_in_always, cookie_out_never
+		 */
+		if (oldcvp != NULL) {
+			struct tcp_cookie_values *newcvp =
+				kzalloc(sizeof(*newtp->cookie_values),
+					GFP_ATOMIC);
+
+			if (newcvp != NULL) {
+				kref_init(&newcvp->kref);
+				newcvp->cookie_desired =
+						oldcvp->cookie_desired;
+				newtp->cookie_values = newcvp;
+			} else {
+				/* Not Yet Implemented */
+				newtp->cookie_values = NULL;
+			}
+		}
+
+		/* Now setup tcp_sock */
+		newtp->pred_flags = 0;
+
+		newtp->rcv_wup = newtp->copied_seq =
+		newtp->rcv_nxt = treq->rcv_isn + 1;
+
+		newtp->snd_sml = newtp->snd_una =
+		newtp->snd_nxt = newtp->snd_up =
+			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
+
+		tcp_prequeue_init(newtp);
+
+		tcp_init_wl(newtp, treq->rcv_isn);
+
+		newtp->srtt = 0;
+		newtp->mdev = TCP_TIMEOUT_INIT;
+		newicsk->icsk_rto = TCP_TIMEOUT_INIT;
+
+		newtp->packets_out = 0;
+		newtp->retrans_out = 0;
+		newtp->sacked_out = 0;
+		newtp->fackets_out = 0;
+		newtp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
+
+		/* So many TCP implementations out there (incorrectly) count the
+		 * initial SYN frame in their delayed-ACK and congestion control
+		 * algorithms that we must have the following bandaid to talk
+		 * efficiently to them.  -DaveM
+		 */
+		newtp->snd_cwnd = TCP_INIT_CWND;
+		newtp->snd_cwnd_cnt = 0;
+		newtp->bytes_acked = 0;
+
+		newtp->frto_counter = 0;
+		newtp->frto_highmark = 0;
+
+		if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
+		    !try_module_get(newicsk->icsk_ca_ops->owner))
+			newicsk->icsk_ca_ops = &tcp_init_congestion_ops;
+
+		tcp_set_ca_state(newsk, TCP_CA_Open);
+		tcp_init_xmit_timers(newsk);
+		skb_queue_head_init(&newtp->out_of_order_queue);
+		newtp->write_seq = newtp->pushed_seq =
+			treq->snt_isn + 1 + tcp_s_data_size(oldtp);
+
+		newtp->rx_opt.saw_tstamp = 0;
+
+		newtp->rx_opt.dsack = 0;
+		newtp->rx_opt.num_sacks = 0;
+
+		newtp->urg_data = 0;
+
+		if (sock_flag(newsk, SOCK_KEEPOPEN))
+			inet_csk_reset_keepalive_timer(newsk,
+						       keepalive_time_when(newtp));
+
+		newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
+		if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
+			if (sysctl_tcp_fack)
+				tcp_enable_fack(newtp);
+		}
+		newtp->window_clamp = req->window_clamp;
+		newtp->rcv_ssthresh = req->rcv_wnd;
+		newtp->rcv_wnd = req->rcv_wnd;
+		newtp->rx_opt.wscale_ok = ireq->wscale_ok;
+		if (newtp->rx_opt.wscale_ok) {
+			newtp->rx_opt.snd_wscale = ireq->snd_wscale;
+			newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
+		} else {
+			newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
+			newtp->window_clamp = min(newtp->window_clamp, 65535U);
+		}
+		newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
+				  newtp->rx_opt.snd_wscale);
+		newtp->max_window = newtp->snd_wnd;
+
+		if (newtp->rx_opt.tstamp_ok) {
+			newtp->rx_opt.ts_recent = req->ts_recent;
+			newtp->rx_opt.ts_recent_stamp = get_seconds();
+			newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
+		} else {
+			newtp->rx_opt.ts_recent_stamp = 0;
+			newtp->tcp_header_len = sizeof(struct tcphdr);
+		}
+#ifdef CONFIG_TCP_MD5SIG
+		newtp->md5sig_info = NULL;	/*XXX*/
+		if (newtp->af_specific->md5_lookup(sk, newsk))
+			newtp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED;
+#endif
+		if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
+			newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
+		newtp->rx_opt.mss_clamp = req->mss;
+		TCP_ECN_openreq_child(newtp, req);
+
+		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
+	}
+	return newsk;
+}
+EXPORT_SYMBOL(tcp_create_openreq_child);
+
+/*
+ *	Process an incoming packet for SYN_RECV sockets represented
+ *	as a request_sock.
+ */
+
+struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
+			   struct request_sock *req,
+			   struct request_sock **prev)
+{
+	struct tcp_options_received tmp_opt;
+	const u8 *hash_location;
+	struct sock *child;
+	const struct tcphdr *th = tcp_hdr(skb);
+	__be32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK);
+	int paws_reject = 0;
+
+	tmp_opt.saw_tstamp = 0;
+	if (th->doff > (sizeof(struct tcphdr)>>2)) {
+		tcp_parse_options(skb, &tmp_opt, &hash_location, 0);
+
+		if (tmp_opt.saw_tstamp) {
+			tmp_opt.ts_recent = req->ts_recent;
+			/* We do not store true stamp, but it is not required,
+			 * it can be estimated (approximately)
+			 * from another data.
+			 */
+			tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
+			paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
+		}
+	}
+
+	/* Check for pure retransmitted SYN. */
+	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
+	    flg == TCP_FLAG_SYN &&
+	    !paws_reject) {
+		/*
+		 * RFC793 draws (Incorrectly! It was fixed in RFC1122)
+		 * this case on figure 6 and figure 8, but formal
+		 * protocol description says NOTHING.
+		 * To be more exact, it says that we should send ACK,
+		 * because this segment (at least, if it has no data)
+		 * is out of window.
+		 *
+		 *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT
+		 *  describe SYN-RECV state. All the description
+		 *  is wrong, we cannot believe to it and should
+		 *  rely only on common sense and implementation
+		 *  experience.
+		 *
+		 * Enforce "SYN-ACK" according to figure 8, figure 6
+		 * of RFC793, fixed by RFC1122.
+		 */
+		req->rsk_ops->rtx_syn_ack(sk, req, NULL);
+		return NULL;
+	}
+
+	/* Further reproduces section "SEGMENT ARRIVES"
+	   for state SYN-RECEIVED of RFC793.
+	   It is broken, however, it does not work only
+	   when SYNs are crossed.
+
+	   You would think that SYN crossing is impossible here, since
+	   we should have a SYN_SENT socket (from connect()) on our end,
+	   but this is not true if the crossed SYNs were sent to both
+	   ends by a malicious third party.  We must defend against this,
+	   and to do that we first verify the ACK (as per RFC793, page
+	   36) and reset if it is invalid.  Is this a true full defense?
+	   To convince ourselves, let us consider a way in which the ACK
+	   test can still pass in this 'malicious crossed SYNs' case.
+	   Malicious sender sends identical SYNs (and thus identical sequence
+	   numbers) to both A and B:
+
+		A: gets SYN, seq=7
+		B: gets SYN, seq=7
+
+	   By our good fortune, both A and B select the same initial
+	   send sequence number of seven :-)
+
+		A: sends SYN|ACK, seq=7, ack_seq=8
+		B: sends SYN|ACK, seq=7, ack_seq=8
+
+	   So we are now A eating this SYN|ACK, ACK test passes.  So
+	   does sequence test, SYN is truncated, and thus we consider
+	   it a bare ACK.
+
+	   If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
+	   bare ACK.  Otherwise, we create an established connection.  Both
+	   ends (listening sockets) accept the new incoming connection and try
+	   to talk to each other. 8-)
+
+	   Note: This case is both harmless, and rare.  Possibility is about the
+	   same as us discovering intelligent life on another plant tomorrow.
+
+	   But generally, we should (RFC lies!) to accept ACK
+	   from SYNACK both here and in tcp_rcv_state_process().
+	   tcp_rcv_state_process() does not, hence, we do not too.
+
+	   Note that the case is absolutely generic:
+	   we cannot optimize anything here without
+	   violating protocol. All the checks must be made
+	   before attempt to create socket.
+	 */
+
+	/* RFC793 page 36: "If the connection is in any non-synchronized state ...
+	 *                  and the incoming segment acknowledges something not yet
+	 *                  sent (the segment carries an unacceptable ACK) ...
+	 *                  a reset is sent."
+	 *
+	 * Invalid ACK: reset will be sent by listening socket
+	 */
+	if ((flg & TCP_FLAG_ACK) &&
+	    (TCP_SKB_CB(skb)->ack_seq !=
+	     tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
+		return sk;
+
+	/* Also, it would be not so bad idea to check rcv_tsecr, which
+	 * is essentially ACK extension and too early or too late values
+	 * should cause reset in unsynchronized states.
+	 */
+
+	/* RFC793: "first check sequence number". */
+
+	if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
+					  tcp_rsk(req)->rcv_isn + 1, tcp_rsk(req)->rcv_isn + 1 + req->rcv_wnd)) {
+		/* Out of window: send ACK and drop. */
+		if (!(flg & TCP_FLAG_RST))
+			req->rsk_ops->send_ack(sk, skb, req);
+		if (paws_reject)
+			NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
+		return NULL;
+	}
+
+	/* In sequence, PAWS is OK. */
+
+	if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_isn + 1))
+		req->ts_recent = tmp_opt.rcv_tsval;
+
+	if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
+		/* Truncate SYN, it is out of window starting
+		   at tcp_rsk(req)->rcv_isn + 1. */
+		flg &= ~TCP_FLAG_SYN;
+	}
+
+	/* RFC793: "second check the RST bit" and
+	 *	   "fourth, check the SYN bit"
+	 */
+	if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
+		TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
+		goto embryonic_reset;
+	}
+
+	/* ACK sequence verified above, just make sure ACK is
+	 * set.  If ACK not set, just silently drop the packet.
+	 */
+	if (!(flg & TCP_FLAG_ACK))
+		return NULL;
+
+	/* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
+	if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
+	    TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
+		inet_rsk(req)->acked = 1;
+		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDEFERACCEPTDROP);
+		return NULL;
+	}
+	if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
+		tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
+	else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
+		tcp_rsk(req)->snt_synack = 0;
+
+	/* OK, ACK is valid, create big socket and
+	 * feed this segment to it. It will repeat all
+	 * the tests. THIS SEGMENT MUST MOVE SOCKET TO
+	 * ESTABLISHED STATE. If it will be dropped after
+	 * socket is created, wait for troubles.
+	 */
+	child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
+	if (child == NULL)
+		goto listen_overflow;
+
+	inet_csk_reqsk_queue_unlink(sk, req, prev);
+	inet_csk_reqsk_queue_removed(sk, req);
+
+	inet_csk_reqsk_queue_add(sk, req, child);
+	return child;
+
+listen_overflow:
+	if (!sysctl_tcp_abort_on_overflow) {
+		inet_rsk(req)->acked = 1;
+		return NULL;
+	}
+
+embryonic_reset:
+	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_EMBRYONICRSTS);
+	if (!(flg & TCP_FLAG_RST))
+		req->rsk_ops->send_reset(sk, skb);
+
+	inet_csk_reqsk_queue_drop(sk, req, prev);
+	return NULL;
+}
+EXPORT_SYMBOL(tcp_check_req);
+
+/*
+ * Queue segment on the new socket if the new socket is active,
+ * otherwise we just shortcircuit this and continue with
+ * the new socket.
+ */
+
+int tcp_child_process(struct sock *parent, struct sock *child,
+		      struct sk_buff *skb)
+{
+	int ret = 0;
+	int state = child->sk_state;
+
+	if (!sock_owned_by_user(child)) {
+		ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
+					    skb->len);
+		/* Wakeup parent, send SIGIO */
+		if (state == TCP_SYN_RECV && child->sk_state != state)
+			parent->sk_data_ready(parent, 0);
+	} else {
+		/* Alas, it is possible again, because we do lookup
+		 * in main socket hash table and lock on listening
+		 * socket does not protect us more.
+		 */
+		__sk_add_backlog(child, skb);
+	}
+
+	bh_unlock_sock(child);
+	sock_put(child);
+	return ret;
+}
+EXPORT_SYMBOL(tcp_child_process);