zte's code,first commit

Change-Id: I9a04da59e459a9bc0d67f101f700d9d7dc8d681b
diff --git a/ap/os/linux/linux-3.4.x/net/sunrpc/sched.c b/ap/os/linux/linux-3.4.x/net/sunrpc/sched.c
new file mode 100644
index 0000000..c393017
--- /dev/null
+++ b/ap/os/linux/linux-3.4.x/net/sunrpc/sched.c
@@ -0,0 +1,1119 @@
+/*
+ * linux/net/sunrpc/sched.c
+ *
+ * Scheduling for synchronous and asynchronous RPC requests.
+ *
+ * Copyright (C) 1996 Olaf Kirch, <okir@monad.swb.de>
+ *
+ * TCP NFS related read + write fixes
+ * (C) 1999 Dave Airlie, University of Limerick, Ireland <airlied@linux.ie>
+ */
+
+#include <linux/module.h>
+
+#include <linux/sched.h>
+#include <linux/interrupt.h>
+#include <linux/slab.h>
+#include <linux/mempool.h>
+#include <linux/smp.h>
+#include <linux/spinlock.h>
+#include <linux/mutex.h>
+#include <linux/freezer.h>
+
+#include <linux/sunrpc/clnt.h>
+
+#include "sunrpc.h"
+
+#ifdef RPC_DEBUG
+#define RPCDBG_FACILITY		RPCDBG_SCHED
+#endif
+
+#define CREATE_TRACE_POINTS
+#include <trace/events/sunrpc.h>
+
+/*
+ * RPC slabs and memory pools
+ */
+#define RPC_BUFFER_MAXSIZE	(2048)
+#define RPC_BUFFER_POOLSIZE	(8)
+#define RPC_TASK_POOLSIZE	(8)
+static struct kmem_cache	*rpc_task_slabp __read_mostly;
+static struct kmem_cache	*rpc_buffer_slabp __read_mostly;
+static mempool_t	*rpc_task_mempool __read_mostly;
+static mempool_t	*rpc_buffer_mempool __read_mostly;
+
+static void			rpc_async_schedule(struct work_struct *);
+static void			 rpc_release_task(struct rpc_task *task);
+static void __rpc_queue_timer_fn(unsigned long ptr);
+
+/*
+ * RPC tasks sit here while waiting for conditions to improve.
+ */
+static struct rpc_wait_queue delay_queue;
+
+/*
+ * rpciod-related stuff
+ */
+struct workqueue_struct *rpciod_workqueue;
+
+/*
+ * Disable the timer for a given RPC task. Should be called with
+ * queue->lock and bh_disabled in order to avoid races within
+ * rpc_run_timer().
+ */
+static void
+__rpc_disable_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
+{
+	if (task->tk_timeout == 0)
+		return;
+	dprintk("RPC: %5u disabling timer\n", task->tk_pid);
+	task->tk_timeout = 0;
+	list_del(&task->u.tk_wait.timer_list);
+	if (list_empty(&queue->timer_list.list))
+		del_timer(&queue->timer_list.timer);
+}
+
+static void
+rpc_set_queue_timer(struct rpc_wait_queue *queue, unsigned long expires)
+{
+	queue->timer_list.expires = expires;
+	mod_timer(&queue->timer_list.timer, expires);
+}
+
+/*
+ * Set up a timer for the current task.
+ */
+static void
+__rpc_add_timer(struct rpc_wait_queue *queue, struct rpc_task *task)
+{
+	if (!task->tk_timeout)
+		return;
+
+	dprintk("RPC: %5u setting alarm for %lu ms\n",
+			task->tk_pid, task->tk_timeout * 1000 / HZ);
+
+	task->u.tk_wait.expires = jiffies + task->tk_timeout;
+	if (list_empty(&queue->timer_list.list) || time_before(task->u.tk_wait.expires, queue->timer_list.expires))
+		rpc_set_queue_timer(queue, task->u.tk_wait.expires);
+	list_add(&task->u.tk_wait.timer_list, &queue->timer_list.list);
+}
+
+/*
+ * Add new request to a priority queue.
+ */
+static void __rpc_add_wait_queue_priority(struct rpc_wait_queue *queue,
+		struct rpc_task *task,
+		unsigned char queue_priority)
+{
+	struct list_head *q;
+	struct rpc_task *t;
+
+	INIT_LIST_HEAD(&task->u.tk_wait.links);
+	q = &queue->tasks[queue_priority];
+	if (unlikely(queue_priority > queue->maxpriority))
+		q = &queue->tasks[queue->maxpriority];
+	list_for_each_entry(t, q, u.tk_wait.list) {
+		if (t->tk_owner == task->tk_owner) {
+			list_add_tail(&task->u.tk_wait.list, &t->u.tk_wait.links);
+			return;
+		}
+	}
+	list_add_tail(&task->u.tk_wait.list, q);
+}
+
+/*
+ * Add new request to wait queue.
+ *
+ * Swapper tasks always get inserted at the head of the queue.
+ * This should avoid many nasty memory deadlocks and hopefully
+ * improve overall performance.
+ * Everyone else gets appended to the queue to ensure proper FIFO behavior.
+ */
+static void __rpc_add_wait_queue(struct rpc_wait_queue *queue,
+		struct rpc_task *task,
+		unsigned char queue_priority)
+{
+	BUG_ON (RPC_IS_QUEUED(task));
+
+	if (RPC_IS_PRIORITY(queue))
+		__rpc_add_wait_queue_priority(queue, task, queue_priority);
+	else if (RPC_IS_SWAPPER(task))
+		list_add(&task->u.tk_wait.list, &queue->tasks[0]);
+	else
+		list_add_tail(&task->u.tk_wait.list, &queue->tasks[0]);
+	task->tk_waitqueue = queue;
+	queue->qlen++;
+	/* barrier matches the read in rpc_wake_up_task_queue_locked() */
+	smp_wmb();
+	rpc_set_queued(task);
+
+	dprintk("RPC: %5u added to queue %p \"%s\"\n",
+			task->tk_pid, queue, rpc_qname(queue));
+}
+
+/*
+ * Remove request from a priority queue.
+ */
+static void __rpc_remove_wait_queue_priority(struct rpc_task *task)
+{
+	struct rpc_task *t;
+
+	if (!list_empty(&task->u.tk_wait.links)) {
+		t = list_entry(task->u.tk_wait.links.next, struct rpc_task, u.tk_wait.list);
+		list_move(&t->u.tk_wait.list, &task->u.tk_wait.list);
+		list_splice_init(&task->u.tk_wait.links, &t->u.tk_wait.links);
+	}
+}
+
+/*
+ * Remove request from queue.
+ * Note: must be called with spin lock held.
+ */
+static void __rpc_remove_wait_queue(struct rpc_wait_queue *queue, struct rpc_task *task)
+{
+	__rpc_disable_timer(queue, task);
+	if (RPC_IS_PRIORITY(queue))
+		__rpc_remove_wait_queue_priority(task);
+	list_del(&task->u.tk_wait.list);
+	queue->qlen--;
+	dprintk("RPC: %5u removed from queue %p \"%s\"\n",
+			task->tk_pid, queue, rpc_qname(queue));
+}
+
+static inline void rpc_set_waitqueue_priority(struct rpc_wait_queue *queue, int priority)
+{
+	queue->priority = priority;
+	queue->count = 1 << (priority * 2);
+}
+
+static inline void rpc_set_waitqueue_owner(struct rpc_wait_queue *queue, pid_t pid)
+{
+	queue->owner = pid;
+	queue->nr = RPC_BATCH_COUNT;
+}
+
+static inline void rpc_reset_waitqueue_priority(struct rpc_wait_queue *queue)
+{
+	rpc_set_waitqueue_priority(queue, queue->maxpriority);
+	rpc_set_waitqueue_owner(queue, 0);
+}
+
+static void __rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname, unsigned char nr_queues)
+{
+	int i;
+
+	spin_lock_init(&queue->lock);
+	for (i = 0; i < ARRAY_SIZE(queue->tasks); i++)
+		INIT_LIST_HEAD(&queue->tasks[i]);
+	queue->maxpriority = nr_queues - 1;
+	rpc_reset_waitqueue_priority(queue);
+	queue->qlen = 0;
+	setup_timer(&queue->timer_list.timer, __rpc_queue_timer_fn, (unsigned long)queue);
+	INIT_LIST_HEAD(&queue->timer_list.list);
+	rpc_assign_waitqueue_name(queue, qname);
+}
+
+void rpc_init_priority_wait_queue(struct rpc_wait_queue *queue, const char *qname)
+{
+	__rpc_init_priority_wait_queue(queue, qname, RPC_NR_PRIORITY);
+}
+EXPORT_SYMBOL_GPL(rpc_init_priority_wait_queue);
+
+void rpc_init_wait_queue(struct rpc_wait_queue *queue, const char *qname)
+{
+	__rpc_init_priority_wait_queue(queue, qname, 1);
+}
+EXPORT_SYMBOL_GPL(rpc_init_wait_queue);
+
+void rpc_destroy_wait_queue(struct rpc_wait_queue *queue)
+{
+	del_timer_sync(&queue->timer_list.timer);
+}
+EXPORT_SYMBOL_GPL(rpc_destroy_wait_queue);
+
+static int rpc_wait_bit_killable(void *word)
+{
+	if (fatal_signal_pending(current))
+		return -ERESTARTSYS;
+	freezable_schedule();
+	return 0;
+}
+
+#ifdef RPC_DEBUG
+static void rpc_task_set_debuginfo(struct rpc_task *task)
+{
+	static atomic_t rpc_pid;
+
+	task->tk_pid = atomic_inc_return(&rpc_pid);
+}
+#else
+static inline void rpc_task_set_debuginfo(struct rpc_task *task)
+{
+}
+#endif
+
+static void rpc_set_active(struct rpc_task *task)
+{
+	trace_rpc_task_begin(task->tk_client, task, NULL);
+
+	rpc_task_set_debuginfo(task);
+	set_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
+}
+
+/*
+ * Mark an RPC call as having completed by clearing the 'active' bit
+ * and then waking up all tasks that were sleeping.
+ */
+static int rpc_complete_task(struct rpc_task *task)
+{
+	void *m = &task->tk_runstate;
+	wait_queue_head_t *wq = bit_waitqueue(m, RPC_TASK_ACTIVE);
+	struct wait_bit_key k = __WAIT_BIT_KEY_INITIALIZER(m, RPC_TASK_ACTIVE);
+	unsigned long flags;
+	int ret;
+
+	trace_rpc_task_complete(task->tk_client, task, NULL);
+
+	spin_lock_irqsave(&wq->lock, flags);
+	clear_bit(RPC_TASK_ACTIVE, &task->tk_runstate);
+	ret = atomic_dec_and_test(&task->tk_count);
+	if (waitqueue_active(wq))
+		__wake_up_locked_key(wq, TASK_NORMAL, &k);
+	spin_unlock_irqrestore(&wq->lock, flags);
+	return ret;
+}
+
+/*
+ * Allow callers to wait for completion of an RPC call
+ *
+ * Note the use of out_of_line_wait_on_bit() rather than wait_on_bit()
+ * to enforce taking of the wq->lock and hence avoid races with
+ * rpc_complete_task().
+ */
+int __rpc_wait_for_completion_task(struct rpc_task *task, int (*action)(void *))
+{
+	if (action == NULL)
+		action = rpc_wait_bit_killable;
+	return out_of_line_wait_on_bit(&task->tk_runstate, RPC_TASK_ACTIVE,
+			action, TASK_KILLABLE);
+}
+EXPORT_SYMBOL_GPL(__rpc_wait_for_completion_task);
+
+/*
+ * Make an RPC task runnable.
+ *
+ * Note: If the task is ASYNC, and is being made runnable after sitting on an
+ * rpc_wait_queue, this must be called with the queue spinlock held to protect
+ * the wait queue operation.
+ * Note the ordering of rpc_test_and_set_running() and rpc_clear_queued(),
+ * which is needed to ensure that __rpc_execute() doesn't loop (due to the
+ * lockless RPC_IS_QUEUED() test) before we've had a chance to test
+ * the RPC_TASK_RUNNING flag.
+ */
+static void rpc_make_runnable(struct rpc_task *task)
+{
+	bool need_wakeup = !rpc_test_and_set_running(task);
+
+	rpc_clear_queued(task);
+	if (!need_wakeup)
+		return;
+	if (RPC_IS_ASYNC(task)) {
+		INIT_WORK(&task->u.tk_work, rpc_async_schedule);
+		queue_work(rpciod_workqueue, &task->u.tk_work);
+	} else
+		wake_up_bit(&task->tk_runstate, RPC_TASK_QUEUED);
+}
+
+/*
+ * Prepare for sleeping on a wait queue.
+ * By always appending tasks to the list we ensure FIFO behavior.
+ * NB: An RPC task will only receive interrupt-driven events as long
+ * as it's on a wait queue.
+ */
+static void __rpc_sleep_on_priority(struct rpc_wait_queue *q,
+		struct rpc_task *task,
+		rpc_action action,
+		unsigned char queue_priority)
+{
+	dprintk("RPC: %5u sleep_on(queue \"%s\" time %lu)\n",
+			task->tk_pid, rpc_qname(q), jiffies);
+
+	trace_rpc_task_sleep(task->tk_client, task, q);
+
+	__rpc_add_wait_queue(q, task, queue_priority);
+
+	BUG_ON(task->tk_callback != NULL);
+	task->tk_callback = action;
+	__rpc_add_timer(q, task);
+}
+
+void rpc_sleep_on(struct rpc_wait_queue *q, struct rpc_task *task,
+				rpc_action action)
+{
+	/* We shouldn't ever put an inactive task to sleep */
+	BUG_ON(!RPC_IS_ACTIVATED(task));
+
+	/*
+	 * Protect the queue operations.
+	 */
+	spin_lock_bh(&q->lock);
+	__rpc_sleep_on_priority(q, task, action, task->tk_priority);
+	spin_unlock_bh(&q->lock);
+}
+EXPORT_SYMBOL_GPL(rpc_sleep_on);
+
+void rpc_sleep_on_priority(struct rpc_wait_queue *q, struct rpc_task *task,
+		rpc_action action, int priority)
+{
+	/* We shouldn't ever put an inactive task to sleep */
+	BUG_ON(!RPC_IS_ACTIVATED(task));
+
+	/*
+	 * Protect the queue operations.
+	 */
+	spin_lock_bh(&q->lock);
+	__rpc_sleep_on_priority(q, task, action, priority - RPC_PRIORITY_LOW);
+	spin_unlock_bh(&q->lock);
+}
+
+/**
+ * __rpc_do_wake_up_task - wake up a single rpc_task
+ * @queue: wait queue
+ * @task: task to be woken up
+ *
+ * Caller must hold queue->lock, and have cleared the task queued flag.
+ */
+static void __rpc_do_wake_up_task(struct rpc_wait_queue *queue, struct rpc_task *task)
+{
+	dprintk("RPC: %5u __rpc_wake_up_task (now %lu)\n",
+			task->tk_pid, jiffies);
+
+	/* Has the task been executed yet? If not, we cannot wake it up! */
+	if (!RPC_IS_ACTIVATED(task)) {
+		printk(KERN_ERR "RPC: Inactive task (%p) being woken up!\n", task);
+		return;
+	}
+
+	trace_rpc_task_wakeup(task->tk_client, task, queue);
+
+	__rpc_remove_wait_queue(queue, task);
+
+	rpc_make_runnable(task);
+
+	dprintk("RPC:       __rpc_wake_up_task done\n");
+}
+
+/*
+ * Wake up a queued task while the queue lock is being held
+ */
+static void rpc_wake_up_task_queue_locked(struct rpc_wait_queue *queue, struct rpc_task *task)
+{
+	if (RPC_IS_QUEUED(task)) {
+		smp_rmb();
+		if (task->tk_waitqueue == queue)
+			__rpc_do_wake_up_task(queue, task);
+	}
+}
+
+/*
+ * Tests whether rpc queue is empty
+ */
+int rpc_queue_empty(struct rpc_wait_queue *queue)
+{
+	int res;
+
+	spin_lock_bh(&queue->lock);
+	res = queue->qlen;
+	spin_unlock_bh(&queue->lock);
+	return res == 0;
+}
+EXPORT_SYMBOL_GPL(rpc_queue_empty);
+
+/*
+ * Wake up a task on a specific queue
+ */
+void rpc_wake_up_queued_task(struct rpc_wait_queue *queue, struct rpc_task *task)
+{
+	spin_lock_bh(&queue->lock);
+	rpc_wake_up_task_queue_locked(queue, task);
+	spin_unlock_bh(&queue->lock);
+}
+EXPORT_SYMBOL_GPL(rpc_wake_up_queued_task);
+
+/*
+ * Wake up the next task on a priority queue.
+ */
+static struct rpc_task *__rpc_find_next_queued_priority(struct rpc_wait_queue *queue)
+{
+	struct list_head *q;
+	struct rpc_task *task;
+
+	/*
+	 * Service a batch of tasks from a single owner.
+	 */
+	q = &queue->tasks[queue->priority];
+	if (!list_empty(q)) {
+		task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
+		if (queue->owner == task->tk_owner) {
+			if (--queue->nr)
+				goto out;
+			list_move_tail(&task->u.tk_wait.list, q);
+		}
+		/*
+		 * Check if we need to switch queues.
+		 */
+		if (--queue->count)
+			goto new_owner;
+	}
+
+	/*
+	 * Service the next queue.
+	 */
+	do {
+		if (q == &queue->tasks[0])
+			q = &queue->tasks[queue->maxpriority];
+		else
+			q = q - 1;
+		if (!list_empty(q)) {
+			task = list_entry(q->next, struct rpc_task, u.tk_wait.list);
+			goto new_queue;
+		}
+	} while (q != &queue->tasks[queue->priority]);
+
+	rpc_reset_waitqueue_priority(queue);
+	return NULL;
+
+new_queue:
+	rpc_set_waitqueue_priority(queue, (unsigned int)(q - &queue->tasks[0]));
+new_owner:
+	rpc_set_waitqueue_owner(queue, task->tk_owner);
+out:
+	return task;
+}
+
+static struct rpc_task *__rpc_find_next_queued(struct rpc_wait_queue *queue)
+{
+	if (RPC_IS_PRIORITY(queue))
+		return __rpc_find_next_queued_priority(queue);
+	if (!list_empty(&queue->tasks[0]))
+		return list_first_entry(&queue->tasks[0], struct rpc_task, u.tk_wait.list);
+	return NULL;
+}
+
+/*
+ * Wake up the first task on the wait queue.
+ */
+struct rpc_task *rpc_wake_up_first(struct rpc_wait_queue *queue,
+		bool (*func)(struct rpc_task *, void *), void *data)
+{
+	struct rpc_task	*task = NULL;
+
+	dprintk("RPC:       wake_up_first(%p \"%s\")\n",
+			queue, rpc_qname(queue));
+	spin_lock_bh(&queue->lock);
+	task = __rpc_find_next_queued(queue);
+	if (task != NULL) {
+		if (func(task, data))
+			rpc_wake_up_task_queue_locked(queue, task);
+		else
+			task = NULL;
+	}
+	spin_unlock_bh(&queue->lock);
+
+	return task;
+}
+EXPORT_SYMBOL_GPL(rpc_wake_up_first);
+
+static bool rpc_wake_up_next_func(struct rpc_task *task, void *data)
+{
+	return true;
+}
+
+/*
+ * Wake up the next task on the wait queue.
+*/
+struct rpc_task *rpc_wake_up_next(struct rpc_wait_queue *queue)
+{
+	return rpc_wake_up_first(queue, rpc_wake_up_next_func, NULL);
+}
+EXPORT_SYMBOL_GPL(rpc_wake_up_next);
+
+/**
+ * rpc_wake_up - wake up all rpc_tasks
+ * @queue: rpc_wait_queue on which the tasks are sleeping
+ *
+ * Grabs queue->lock
+ */
+void rpc_wake_up(struct rpc_wait_queue *queue)
+{
+	struct list_head *head;
+
+	spin_lock_bh(&queue->lock);
+	head = &queue->tasks[queue->maxpriority];
+	for (;;) {
+		while (!list_empty(head)) {
+			struct rpc_task *task;
+			task = list_first_entry(head,
+					struct rpc_task,
+					u.tk_wait.list);
+			rpc_wake_up_task_queue_locked(queue, task);
+		}
+		if (head == &queue->tasks[0])
+			break;
+		head--;
+	}
+	spin_unlock_bh(&queue->lock);
+}
+EXPORT_SYMBOL_GPL(rpc_wake_up);
+
+/**
+ * rpc_wake_up_status - wake up all rpc_tasks and set their status value.
+ * @queue: rpc_wait_queue on which the tasks are sleeping
+ * @status: status value to set
+ *
+ * Grabs queue->lock
+ */
+void rpc_wake_up_status(struct rpc_wait_queue *queue, int status)
+{
+	struct list_head *head;
+
+	spin_lock_bh(&queue->lock);
+	head = &queue->tasks[queue->maxpriority];
+	for (;;) {
+		while (!list_empty(head)) {
+			struct rpc_task *task;
+			task = list_first_entry(head,
+					struct rpc_task,
+					u.tk_wait.list);
+			task->tk_status = status;
+			rpc_wake_up_task_queue_locked(queue, task);
+		}
+		if (head == &queue->tasks[0])
+			break;
+		head--;
+	}
+	spin_unlock_bh(&queue->lock);
+}
+EXPORT_SYMBOL_GPL(rpc_wake_up_status);
+
+static void __rpc_queue_timer_fn(unsigned long ptr)
+{
+	struct rpc_wait_queue *queue = (struct rpc_wait_queue *)ptr;
+	struct rpc_task *task, *n;
+	unsigned long expires, now, timeo;
+
+	spin_lock(&queue->lock);
+	expires = now = jiffies;
+	list_for_each_entry_safe(task, n, &queue->timer_list.list, u.tk_wait.timer_list) {
+		timeo = task->u.tk_wait.expires;
+		if (time_after_eq(now, timeo)) {
+			dprintk("RPC: %5u timeout\n", task->tk_pid);
+			task->tk_status = -ETIMEDOUT;
+			rpc_wake_up_task_queue_locked(queue, task);
+			continue;
+		}
+		if (expires == now || time_after(expires, timeo))
+			expires = timeo;
+	}
+	if (!list_empty(&queue->timer_list.list))
+		rpc_set_queue_timer(queue, expires);
+	spin_unlock(&queue->lock);
+}
+
+static void __rpc_atrun(struct rpc_task *task)
+{
+	task->tk_status = 0;
+}
+
+/*
+ * Run a task at a later time
+ */
+void rpc_delay(struct rpc_task *task, unsigned long delay)
+{
+	task->tk_timeout = delay;
+	rpc_sleep_on(&delay_queue, task, __rpc_atrun);
+}
+EXPORT_SYMBOL_GPL(rpc_delay);
+
+/*
+ * Helper to call task->tk_ops->rpc_call_prepare
+ */
+void rpc_prepare_task(struct rpc_task *task)
+{
+	task->tk_ops->rpc_call_prepare(task, task->tk_calldata);
+}
+
+static void
+rpc_init_task_statistics(struct rpc_task *task)
+{
+	/* Initialize retry counters */
+	task->tk_garb_retry = 2;
+	task->tk_cred_retry = 2;
+	task->tk_rebind_retry = 2;
+
+	/* starting timestamp */
+	task->tk_start = ktime_get();
+}
+
+static void
+rpc_reset_task_statistics(struct rpc_task *task)
+{
+	task->tk_timeouts = 0;
+	task->tk_flags &= ~(RPC_CALL_MAJORSEEN|RPC_TASK_KILLED|RPC_TASK_SENT);
+
+	rpc_init_task_statistics(task);
+}
+
+/*
+ * Helper that calls task->tk_ops->rpc_call_done if it exists
+ */
+void rpc_exit_task(struct rpc_task *task)
+{
+	task->tk_action = NULL;
+	if (task->tk_ops->rpc_call_done != NULL) {
+		task->tk_ops->rpc_call_done(task, task->tk_calldata);
+		if (task->tk_action != NULL) {
+			WARN_ON(RPC_ASSASSINATED(task));
+			/* Always release the RPC slot and buffer memory */
+			xprt_release(task);
+			rpc_reset_task_statistics(task);
+		}
+	}
+}
+
+void rpc_exit(struct rpc_task *task, int status)
+{
+	task->tk_status = status;
+	task->tk_action = rpc_exit_task;
+	if (RPC_IS_QUEUED(task))
+		rpc_wake_up_queued_task(task->tk_waitqueue, task);
+}
+EXPORT_SYMBOL_GPL(rpc_exit);
+
+void rpc_release_calldata(const struct rpc_call_ops *ops, void *calldata)
+{
+	if (ops->rpc_release != NULL)
+		ops->rpc_release(calldata);
+}
+
+/*
+ * This is the RPC `scheduler' (or rather, the finite state machine).
+ */
+static void __rpc_execute(struct rpc_task *task)
+{
+	struct rpc_wait_queue *queue;
+	int task_is_async = RPC_IS_ASYNC(task);
+	int status = 0;
+
+	dprintk("RPC: %5u __rpc_execute flags=0x%x\n",
+			task->tk_pid, task->tk_flags);
+
+	BUG_ON(RPC_IS_QUEUED(task));
+
+	for (;;) {
+		void (*do_action)(struct rpc_task *);
+
+		/*
+		 * Execute any pending callback first.
+		 */
+		do_action = task->tk_callback;
+		task->tk_callback = NULL;
+		if (do_action == NULL) {
+			/*
+			 * Perform the next FSM step.
+			 * tk_action may be NULL if the task has been killed.
+			 * In particular, note that rpc_killall_tasks may
+			 * do this at any time, so beware when dereferencing.
+			 */
+			do_action = task->tk_action;
+			if (do_action == NULL)
+				break;
+		}
+		trace_rpc_task_run_action(task->tk_client, task, task->tk_action);
+		do_action(task);
+
+		/*
+		 * Lockless check for whether task is sleeping or not.
+		 */
+		if (!RPC_IS_QUEUED(task))
+			continue;
+		/*
+		 * The queue->lock protects against races with
+		 * rpc_make_runnable().
+		 *
+		 * Note that once we clear RPC_TASK_RUNNING on an asynchronous
+		 * rpc_task, rpc_make_runnable() can assign it to a
+		 * different workqueue. We therefore cannot assume that the
+		 * rpc_task pointer may still be dereferenced.
+		 */
+		queue = task->tk_waitqueue;
+		spin_lock_bh(&queue->lock);
+		if (!RPC_IS_QUEUED(task)) {
+			spin_unlock_bh(&queue->lock);
+			continue;
+		}
+		rpc_clear_running(task);
+		spin_unlock_bh(&queue->lock);
+		if (task_is_async)
+			return;
+
+		/* sync task: sleep here */
+		dprintk("RPC: %5u sync task going to sleep\n", task->tk_pid);
+		status = out_of_line_wait_on_bit(&task->tk_runstate,
+				RPC_TASK_QUEUED, rpc_wait_bit_killable,
+				TASK_KILLABLE);
+		if (status == -ERESTARTSYS) {
+			/*
+			 * When a sync task receives a signal, it exits with
+			 * -ERESTARTSYS. In order to catch any callbacks that
+			 * clean up after sleeping on some queue, we don't
+			 * break the loop here, but go around once more.
+			 */
+			dprintk("RPC: %5u got signal\n", task->tk_pid);
+			task->tk_flags |= RPC_TASK_KILLED;
+			rpc_exit(task, -ERESTARTSYS);
+		}
+		rpc_set_running(task);
+		dprintk("RPC: %5u sync task resuming\n", task->tk_pid);
+	}
+
+	dprintk("RPC: %5u return %d, status %d\n", task->tk_pid, status,
+			task->tk_status);
+	/* Release all resources associated with the task */
+	rpc_release_task(task);
+}
+
+/*
+ * User-visible entry point to the scheduler.
+ *
+ * This may be called recursively if e.g. an async NFS task updates
+ * the attributes and finds that dirty pages must be flushed.
+ * NOTE: Upon exit of this function the task is guaranteed to be
+ *	 released. In particular note that tk_release() will have
+ *	 been called, so your task memory may have been freed.
+ */
+void rpc_execute(struct rpc_task *task)
+{
+	rpc_set_active(task);
+	rpc_make_runnable(task);
+	if (!RPC_IS_ASYNC(task))
+		__rpc_execute(task);
+}
+
+static void rpc_async_schedule(struct work_struct *work)
+{
+	current->flags |= PF_FSTRANS;
+	__rpc_execute(container_of(work, struct rpc_task, u.tk_work));
+	current->flags &= ~PF_FSTRANS;
+}
+
+/**
+ * rpc_malloc - allocate an RPC buffer
+ * @task: RPC task that will use this buffer
+ * @size: requested byte size
+ *
+ * To prevent rpciod from hanging, this allocator never sleeps,
+ * returning NULL if the request cannot be serviced immediately.
+ * The caller can arrange to sleep in a way that is safe for rpciod.
+ *
+ * Most requests are 'small' (under 2KiB) and can be serviced from a
+ * mempool, ensuring that NFS reads and writes can always proceed,
+ * and that there is good locality of reference for these buffers.
+ *
+ * In order to avoid memory starvation triggering more writebacks of
+ * NFS requests, we avoid using GFP_KERNEL.
+ */
+void *rpc_malloc(struct rpc_task *task, size_t size)
+{
+	struct rpc_buffer *buf;
+	gfp_t gfp = RPC_IS_SWAPPER(task) ? GFP_ATOMIC : GFP_NOWAIT;
+
+	size += sizeof(struct rpc_buffer);
+	if (size <= RPC_BUFFER_MAXSIZE)
+		buf = mempool_alloc(rpc_buffer_mempool, gfp);
+	else
+		buf = kmalloc(size, gfp);
+
+	if (!buf)
+		return NULL;
+
+	buf->len = size;
+	dprintk("RPC: %5u allocated buffer of size %zu at %p\n",
+			task->tk_pid, size, buf);
+	return &buf->data;
+}
+EXPORT_SYMBOL_GPL(rpc_malloc);
+
+/**
+ * rpc_free - free buffer allocated via rpc_malloc
+ * @buffer: buffer to free
+ *
+ */
+void rpc_free(void *buffer)
+{
+	size_t size;
+	struct rpc_buffer *buf;
+
+	if (!buffer)
+		return;
+
+	buf = container_of(buffer, struct rpc_buffer, data);
+	size = buf->len;
+
+	dprintk("RPC:       freeing buffer of size %zu at %p\n",
+			size, buf);
+
+	if (size <= RPC_BUFFER_MAXSIZE)
+		mempool_free(buf, rpc_buffer_mempool);
+	else
+		kfree(buf);
+}
+EXPORT_SYMBOL_GPL(rpc_free);
+
+/*
+ * Creation and deletion of RPC task structures
+ */
+static void rpc_init_task(struct rpc_task *task, const struct rpc_task_setup *task_setup_data)
+{
+	memset(task, 0, sizeof(*task));
+	atomic_set(&task->tk_count, 1);
+	task->tk_flags  = task_setup_data->flags;
+	task->tk_ops = task_setup_data->callback_ops;
+	task->tk_calldata = task_setup_data->callback_data;
+	INIT_LIST_HEAD(&task->tk_task);
+
+	task->tk_priority = task_setup_data->priority - RPC_PRIORITY_LOW;
+	task->tk_owner = current->tgid;
+
+	/* Initialize workqueue for async tasks */
+	task->tk_workqueue = task_setup_data->workqueue;
+
+	if (task->tk_ops->rpc_call_prepare != NULL)
+		task->tk_action = rpc_prepare_task;
+
+	rpc_init_task_statistics(task);
+
+	dprintk("RPC:       new task initialized, procpid %u\n",
+				task_pid_nr(current));
+}
+
+static struct rpc_task *
+rpc_alloc_task(void)
+{
+	return (struct rpc_task *)mempool_alloc(rpc_task_mempool, GFP_NOFS);
+}
+
+/*
+ * Create a new task for the specified client.
+ */
+struct rpc_task *rpc_new_task(const struct rpc_task_setup *setup_data)
+{
+	struct rpc_task	*task = setup_data->task;
+	unsigned short flags = 0;
+
+	if (task == NULL) {
+		task = rpc_alloc_task();
+		if (task == NULL) {
+			rpc_release_calldata(setup_data->callback_ops,
+					setup_data->callback_data);
+			return ERR_PTR(-ENOMEM);
+		}
+		flags = RPC_TASK_DYNAMIC;
+	}
+
+	rpc_init_task(task, setup_data);
+	task->tk_flags |= flags;
+	dprintk("RPC:       allocated task %p\n", task);
+	return task;
+}
+
+/*
+ * rpc_free_task - release rpc task and perform cleanups
+ *
+ * Note that we free up the rpc_task _after_ rpc_release_calldata()
+ * in order to work around a workqueue dependency issue.
+ *
+ * Tejun Heo states:
+ * "Workqueue currently considers two work items to be the same if they're
+ * on the same address and won't execute them concurrently - ie. it
+ * makes a work item which is queued again while being executed wait
+ * for the previous execution to complete.
+ *
+ * If a work function frees the work item, and then waits for an event
+ * which should be performed by another work item and *that* work item
+ * recycles the freed work item, it can create a false dependency loop.
+ * There really is no reliable way to detect this short of verifying
+ * every memory free."
+ *
+ */
+static void rpc_free_task(struct rpc_task *task)
+{
+	unsigned short tk_flags = task->tk_flags;
+
+	rpc_release_calldata(task->tk_ops, task->tk_calldata);
+
+	if (tk_flags & RPC_TASK_DYNAMIC) {
+		dprintk("RPC: %5u freeing task\n", task->tk_pid);
+		mempool_free(task, rpc_task_mempool);
+	}
+}
+
+static void rpc_async_release(struct work_struct *work)
+{
+	rpc_free_task(container_of(work, struct rpc_task, u.tk_work));
+}
+
+static void rpc_release_resources_task(struct rpc_task *task)
+{
+	xprt_release(task);
+	if (task->tk_msg.rpc_cred) {
+		put_rpccred(task->tk_msg.rpc_cred);
+		task->tk_msg.rpc_cred = NULL;
+	}
+	rpc_task_release_client(task);
+}
+
+static void rpc_final_put_task(struct rpc_task *task,
+		struct workqueue_struct *q)
+{
+	if (q != NULL) {
+		INIT_WORK(&task->u.tk_work, rpc_async_release);
+		queue_work(q, &task->u.tk_work);
+	} else
+		rpc_free_task(task);
+}
+
+static void rpc_do_put_task(struct rpc_task *task, struct workqueue_struct *q)
+{
+	if (atomic_dec_and_test(&task->tk_count)) {
+		rpc_release_resources_task(task);
+		rpc_final_put_task(task, q);
+	}
+}
+
+void rpc_put_task(struct rpc_task *task)
+{
+	rpc_do_put_task(task, NULL);
+}
+EXPORT_SYMBOL_GPL(rpc_put_task);
+
+void rpc_put_task_async(struct rpc_task *task)
+{
+	rpc_do_put_task(task, task->tk_workqueue);
+}
+EXPORT_SYMBOL_GPL(rpc_put_task_async);
+
+static void rpc_release_task(struct rpc_task *task)
+{
+	dprintk("RPC: %5u release task\n", task->tk_pid);
+
+	BUG_ON (RPC_IS_QUEUED(task));
+
+	rpc_release_resources_task(task);
+
+	/*
+	 * Note: at this point we have been removed from rpc_clnt->cl_tasks,
+	 * so it should be safe to use task->tk_count as a test for whether
+	 * or not any other processes still hold references to our rpc_task.
+	 */
+	if (atomic_read(&task->tk_count) != 1 + !RPC_IS_ASYNC(task)) {
+		/* Wake up anyone who may be waiting for task completion */
+		if (!rpc_complete_task(task))
+			return;
+	} else {
+		if (!atomic_dec_and_test(&task->tk_count))
+			return;
+	}
+	rpc_final_put_task(task, task->tk_workqueue);
+}
+
+int rpciod_up(void)
+{
+	return try_module_get(THIS_MODULE) ? 0 : -EINVAL;
+}
+
+void rpciod_down(void)
+{
+	module_put(THIS_MODULE);
+}
+
+/*
+ * Start up the rpciod workqueue.
+ */
+static int rpciod_start(void)
+{
+	struct workqueue_struct *wq;
+
+	/*
+	 * Create the rpciod thread and wait for it to start.
+	 */
+	dprintk("RPC:       creating workqueue rpciod\n");
+	wq = alloc_workqueue("rpciod", WQ_MEM_RECLAIM, 0);
+	rpciod_workqueue = wq;
+	return rpciod_workqueue != NULL;
+}
+
+static void rpciod_stop(void)
+{
+	struct workqueue_struct *wq = NULL;
+
+	if (rpciod_workqueue == NULL)
+		return;
+	dprintk("RPC:       destroying workqueue rpciod\n");
+
+	wq = rpciod_workqueue;
+	rpciod_workqueue = NULL;
+	destroy_workqueue(wq);
+}
+
+void
+rpc_destroy_mempool(void)
+{
+	rpciod_stop();
+	if (rpc_buffer_mempool)
+		mempool_destroy(rpc_buffer_mempool);
+	if (rpc_task_mempool)
+		mempool_destroy(rpc_task_mempool);
+	if (rpc_task_slabp)
+		kmem_cache_destroy(rpc_task_slabp);
+	if (rpc_buffer_slabp)
+		kmem_cache_destroy(rpc_buffer_slabp);
+	rpc_destroy_wait_queue(&delay_queue);
+}
+
+int
+rpc_init_mempool(void)
+{
+	/*
+	 * The following is not strictly a mempool initialisation,
+	 * but there is no harm in doing it here
+	 */
+	rpc_init_wait_queue(&delay_queue, "delayq");
+	if (!rpciod_start())
+		goto err_nomem;
+
+	rpc_task_slabp = kmem_cache_create("rpc_tasks",
+					     sizeof(struct rpc_task),
+					     0, SLAB_HWCACHE_ALIGN,
+					     NULL);
+	if (!rpc_task_slabp)
+		goto err_nomem;
+	rpc_buffer_slabp = kmem_cache_create("rpc_buffers",
+					     RPC_BUFFER_MAXSIZE,
+					     0, SLAB_HWCACHE_ALIGN,
+					     NULL);
+	if (!rpc_buffer_slabp)
+		goto err_nomem;
+	rpc_task_mempool = mempool_create_slab_pool(RPC_TASK_POOLSIZE,
+						    rpc_task_slabp);
+	if (!rpc_task_mempool)
+		goto err_nomem;
+	rpc_buffer_mempool = mempool_create_slab_pool(RPC_BUFFER_POOLSIZE,
+						      rpc_buffer_slabp);
+	if (!rpc_buffer_mempool)
+		goto err_nomem;
+	return 0;
+err_nomem:
+	rpc_destroy_mempool();
+	return -ENOMEM;
+}