blob: 8187442c5c68b5b3b39f05766bef1fcaddcfbb27 [file] [log] [blame]
/*
* NAND Flash Controller Device Driver
* Copyright © 2009-2010, Intel Corporation and its suppliers.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
*
*/
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/wait.h>
#include <linux/mutex.h>
#include <linux/slab.h>
#include <linux/mtd/mtd.h>
#include <linux/module.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/io.h>
#include <linux/ioport.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <mach/spinlock.h>
#include <linux/wakelock.h>
#include <linux/soc/zte/pm/drv_idle.h>
#include <linux/types.h>
#include <linux/mtd/map.h>
#include <linux/mtd/partitions.h>
#include <asm/io.h>
#include "denali.h"
#include <linux/gpio.h>
MODULE_LICENSE("GPL");
/* We define a module parameter that allows the user to override
* the hardware and decide what timing mode should be used.
*/
#define NAND_DEFAULT_TIMINGS -1
static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
int denali_int_en_flag = 0;
module_param(onfi_timing_mode, int, S_IRUGO);
MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
" -1 indicates use default timings");
#define DENALI_NAND_NAME "denali-nand"
/* We define a macro here that combines all interrupts this driver uses into
* a single constant value, for convenience. */
#define DENALI_IRQ_ALL (INTR_STATUS__DMA_CMD_COMP | \
INTR_STATUS__ECC_TRANSACTION_DONE | \
INTR_STATUS__ECC_ERR | \
INTR_STATUS__PROGRAM_FAIL | \
INTR_STATUS__LOAD_COMP | \
INTR_STATUS__PROGRAM_COMP | \
INTR_STATUS__TIME_OUT | \
INTR_STATUS__ERASE_FAIL | \
INTR_STATUS__RST_COMP | \
INTR_STATUS__ERASE_COMP)
/* indicates whether or not the internal value for the flash bank is
* valid or not */
#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
/* This macro divides two integers and rounds fractional values up
* to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
/* this macro allows us to convert from an MTD structure to our own
* device context (denali) structure.
*/
#define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
/* These constants are defined by the driver to enable common driver
* configuration options. */
#define SPARE_ACCESS 0x41
#define MAIN_ACCESS 0x42
#define MAIN_SPARE_ACCESS 0x43
#define DENALI_READ 0
#define DENALI_WRITE 0x100
/* types of device accesses. We can issue commands and get status */
#define COMMAND_CYCLE 0
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
/* List of platforms this NAND controller has be integrated into */
/* forward declarations */
static void clear_interrupts(struct denali_nand_info *denali);
static uint32_t wait_for_irq(struct denali_nand_info *denali,
uint32_t irq_mask);
static void denali_irq_enable(struct denali_nand_info *denali,
uint32_t int_mask);
static uint32_t read_interrupt_status(struct denali_nand_info *denali);
static uint32_t detect_nand_bus_freq(void);
struct mtd_info *mtd_fota;
static struct wake_lock nand_wake_lock;
extern struct cmdline_mtd_partition *partitions;
struct cmdline_mtd_partition {
struct cmdline_mtd_partition *next;
char *mtd_id;
int num_parts;
struct mtd_partition *parts;
};
/* Certain operations for the denali NAND controller use
* an indexed mode to read/write data. The operation is
* performed by writing the address value of the command
* to the device memory followed by the data. This function
* abstracts this common operation.
*/
static void index_addr(struct denali_nand_info *denali,
uint32_t address, uint32_t data)
{
iowrite32(address, denali->flash_mem);
iowrite32(data, denali->flash_mem + 0x10);
}
/* Perform an indexed read of the device */
static void index_addr_read_data(struct denali_nand_info *denali,
uint32_t address, uint32_t *pdata)
{
iowrite32(address, denali->flash_mem);
*pdata = ioread32(denali->flash_mem + 0x10);
}
/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
denali->buf.head = denali->buf.tail = 0;
}
static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
{
BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
denali->buf.buf[denali->buf.tail++] = byte;
}
/* reads the status of the device */
static void read_status(struct denali_nand_info *denali)
{
uint32_t cmd = 0x0;
/* initialize the data buffer to store status */
reset_buf(denali);
cmd = ioread32(denali->flash_reg + WRITE_PROTECT);
if (cmd)
write_byte_to_buf(denali, NAND_STATUS_WP);
else
write_byte_to_buf(denali, 0);
}
/* resets a specific device connected to the core */
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__RST_COMP |
INTR_STATUS__TIME_OUT;
clear_interrupts(denali);
iowrite32(1 << denali->flash_bank, denali->flash_reg + DEVICE_RESET);
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status & INTR_STATUS__TIME_OUT)
dev_err(denali->dev, "reset bank failed.\n");
}
/* Reset the flash controller */
static uint16_t denali_nand_reset(struct denali_nand_info *denali)
{
uint32_t i;
dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
for (i = 0 ; i < denali->max_banks; i++)
iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
for (i = 0 ; i < denali->max_banks; i++) {
iowrite32(1 << i, denali->flash_reg + DEVICE_RESET);
while (!(ioread32(denali->flash_reg +
INTR_STATUS(i)) &
(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT)))
cpu_relax();
if (ioread32(denali->flash_reg + INTR_STATUS(i)) &
INTR_STATUS__TIME_OUT)
dev_dbg(denali->dev,
"NAND Reset operation timed out on bank %d\n", i);
}
for (i = 0; i < denali->max_banks; i++)
iowrite32(INTR_STATUS__RST_COMP | INTR_STATUS__TIME_OUT,
denali->flash_reg + INTR_STATUS(i));
return PASS;
}
uint32_t main_size, spare_size;
static void get_samsung_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t bus_freq;
bus_freq = 25;
main_size = 2048;
spare_size = 64;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(main_size, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(4, denali->flash_reg + ECC_CORRECTION);
iowrite32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
}
static void get_toshiba_nand_para(struct denali_nand_info *denali)
{
uint32_t tmp;
/* Workaround to fix a controller bug which reports a wrong */
/* spare area size for some kind of Toshiba NAND device */
if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
(ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
iowrite32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(tmp,
denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
#if SUPPORT_15BITECC
iowrite32(15, denali->flash_reg + ECC_CORRECTION);
#elif SUPPORT_8BITECC
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
#endif
}
}
static void get_hynix_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t bus_freq;
bus_freq = detect_nand_bus_freq();
switch (device_id) {
case 0xAC: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
main_size = 2048;
spare_size = 128;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(128, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(128, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
case 0xAA: /* Hynix H272G8_6F2C,JSC2G1G */
main_size = 2048;
spare_size = 128;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
case 0xDA: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
main_size = 2048;
spare_size = 64;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(64, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(4, denali->flash_reg + ECC_CORRECTION);
iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(64, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
default:
dev_warn(denali->dev,
"Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
}
}
static void get_micron_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t bus_freq;
bus_freq = detect_nand_bus_freq();
switch (device_id) {
case 0xD5: /* Micron */
case 0xAA: /* Micron MT29F2G08ABBEA */
case 0xAC:
main_size = 2048;
spare_size = 64;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(4, denali->flash_reg + ECC_CORRECTION);
iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((60 * bus_freq)/1000+2) | (((25 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE);
iowrite32(((100* bus_freq)/1000+2) | (((22* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA);
iowrite32((100 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /*timing*/
iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT);
iowrite32((15 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT);
iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT);
iowrite32((60 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE);
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
default:
dev_warn(denali->dev,
"Spectra: Unknown Micron NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
}
}
static void get_jsc_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t bus_freq;
bus_freq = detect_nand_bus_freq();
switch (device_id) {
case 0xAC: /* JSFN7XB 4G2G */
main_size = 2048;
spare_size = 128;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
default:
dev_warn(denali->dev,
"Spectra: Unknown JSC NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
}
}
static void get_esmt_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t bus_freq;
bus_freq = detect_nand_bus_freq();
switch (device_id) {
case 0xAC: /* ESMT FM6BD4G2GA */
main_size = 2048;
spare_size = 64;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(4, denali->flash_reg + ECC_CORRECTION);
iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
case 0xAA: /* ESMT FM6BD2G1GA */
main_size = 2048;
spare_size = 64;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(4, denali->flash_reg + ECC_CORRECTION);
iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((80 * bus_freq)/1000+2) | (((30 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((120* bus_freq)/1000+2) | (((30* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((120 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((30 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((40 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
default:
dev_warn(denali->dev,
"Spectra: Unknown ESMT NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
}
}
static void get_nanya_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t bus_freq;
bus_freq = detect_nand_bus_freq();
switch (device_id) {
case 0xAC: /* NM1482KSLAXBJ 4G2G */
main_size = 4096;
spare_size = 256;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
iowrite32(4096, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((60 * bus_freq)/1000+2) | (((25 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((100* bus_freq)/1000+2) | (((25* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((50 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((15 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((20 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((50 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
case 0xAA: /* NM1281KSLAXAJ 2G1G */
main_size = 2048;
spare_size = 128;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(main_size, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(8, denali->flash_reg + ECC_CORRECTION);
iowrite32(main_size, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((60 * bus_freq)/1000+2) | (((25 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((100* bus_freq)/1000+2) | (((25* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((100 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((15 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((35 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((60 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
default:
dev_warn(denali->dev,
"Spectra: Unknown Nanya NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
}
}
static void get_winbond_nand_para(struct denali_nand_info *denali,
uint8_t device_id)
{
uint32_t bus_freq;
bus_freq = detect_nand_bus_freq();
switch (device_id) {
case 0xAA: /* W71NW20GF3FW */
main_size = 2048;
spare_size = 64;
iowrite32(64, denali->flash_reg + PAGES_PER_BLOCK);
iowrite32(2048, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
iowrite32(spare_size, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
iowrite32(0, denali->flash_reg + DEVICE_WIDTH);
iowrite32(4, denali->flash_reg + ECC_CORRECTION);
iowrite32(2048, denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
iowrite32(spare_size, denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
iowrite32(((80 * bus_freq)/1000+2) | (((25 * bus_freq)/1000+2)<<8),
denali->flash_reg + WE_2_RE); /* Twhr,Trr1*/
iowrite32(((100* bus_freq)/1000+2) | (((25* bus_freq)/1000+2)<<8),
denali->flash_reg + ADDR_2_DATA); /* Tadl,Trr2 */
iowrite32((100 * bus_freq)/1000+2, denali->flash_reg + RE_2_WE); /* Trhw */
iowrite32((25 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_LO_CNT); /* Trp */
iowrite32((15 * bus_freq)/1000+2, denali->flash_reg + RDWR_EN_HI_CNT); /* Treh */
iowrite32((35 * bus_freq)/1000+2, denali->flash_reg + CS_SETUP_CNT); /* Tcs */
iowrite32((80 * bus_freq)/1000+2, denali->flash_reg + RE_2_RE); /* Trhz */
denali->nand.ecc.strength = ioread32(denali->flash_reg + ECC_CORRECTION); //BRUCE
denali->nand.ecc.size = 512;//BRUCE
break;
default:
dev_warn(denali->dev,
"Spectra: Unknown ESMT NAND (Device ID: 0x%x)."
"Will use default parameter values instead.\n",
device_id);
}
}
static uint32_t detect_nand_bus_freq(void)
{
void __iomem *reg;
uint32_t clk_reg = 0;
reg = ioremap(0x01307050,4);
clk_reg = readl(reg);/*MOD_CLK_SEL[13:12]=00,7520v2 NAND 104MHz*/
clk_reg &= 0xffffcfff;
writel(clk_reg, reg);
if((((readl(reg))>>12) & 0x3) == 0)
return 104;
else
return 26;
}
/* determines how many NAND chips are connected to the controller. Note for
* Intel CE4100 devices we don't support more than one device.
*/
static void find_valid_banks(struct denali_nand_info *denali)
{
uint32_t id[denali->max_banks];
int i;
denali->total_used_banks = 1;
for (i = 0; i < denali->max_banks; i++) {
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
index_addr_read_data(denali,
(uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
dev_dbg(denali->dev,
"Return 1st ID for bank[%d]: %x\n", i, id[i]);
if (i == 0) {
if (!(id[i] & 0x0ff))
break; /* WTF? */
} else {
if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
denali->total_used_banks++;
else
break;
}
}
if (denali->platform == INTEL_CE4100) {
/* Platform limitations of the CE4100 device limit
* users to a single chip solution for NAND.
* Multichip support is not enabled.
*/
if (denali->total_used_banks != 1) {
dev_err(denali->dev,
"Sorry, Intel CE4100 only supports "
"a single NAND device.\n");
BUG();
}
}
dev_dbg(denali->dev,
"denali->total_used_banks: %d\n", denali->total_used_banks);
}
/*
* Use the configuration feature register to determine the maximum number of
* banks that the hardware supports.
*/
/*static void detect_max_banks(struct denali_nand_info *denali)
{
uint32_t features = ioread32(denali->flash_reg + FEATURES);
denali->max_banks = 2 << (features & FEATURES__N_BANKS);
}*/
static void detect_partition_feature(struct denali_nand_info *denali)
{
/* For MRST platform, denali->fwblks represent the
* number of blocks firmware is taken,
* FW is in protect partition and MTD driver has no
* permission to access it. So let driver know how many
* blocks it can't touch.
* */
if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
if ((ioread32(denali->flash_reg + PERM_SRC_ID(1)) &
PERM_SRC_ID__SRCID) == SPECTRA_PARTITION_ID) {
denali->fwblks =
((ioread32(denali->flash_reg + MIN_MAX_BANK(1)) &
MIN_MAX_BANK__MIN_VALUE) *
denali->blksperchip)
+
(ioread32(denali->flash_reg + MIN_BLK_ADDR(1)) &
MIN_BLK_ADDR__VALUE);
} else
denali->fwblks = SPECTRA_START_BLOCK;
} else
denali->fwblks = SPECTRA_START_BLOCK;
}
static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
{
uint16_t status = PASS;
uint32_t id_bytes[5], addr;
uint8_t i, maf_id, device_id;
dev_dbg(denali->dev,
"%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
/* Use read id method to get device ID and other
* params. For some NAND chips, controller can't
* report the correct device ID by reading from
* DEVICE_ID register
* */
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x90);
index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++)
index_addr_read_data(denali, addr | 2, &id_bytes[i]);
maf_id = id_bytes[0];
device_id = id_bytes[1];
dev_info(denali->dev,"maf = %x,dev = %x\n",maf_id,device_id);
if (maf_id == 0xEC) { /* Samsung NAND */
get_samsung_nand_para(denali, device_id);
} else if (maf_id == 0x98) { /* Toshiba NAND */
get_nanya_nand_para(denali, device_id);
} else if (maf_id == 0xAD) { /* Hynix NAND */
get_hynix_nand_para(denali, device_id);
} else if (maf_id == 0x2C) { /* Micron NAND */
get_micron_nand_para(denali, device_id);
} else if (maf_id == 0x01) { /* JSC NAND */
get_jsc_nand_para(denali, device_id);
} else if (maf_id == 0xC8) { /* ESMT NAND */
get_esmt_nand_para(denali, device_id);
} else if (maf_id == 0xEF) { /* W71NW20GF3FW NAND */
get_winbond_nand_para(denali, device_id);
}
dev_info(denali->dev,
"Dump timing register values:"
"acc_clks: %d, re_2_we: %d, re_2_re: %d\n"
"we_2_re: %d, addr_2_data: %d, rdwr_en_lo_cnt: %d\n"
"rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
ioread32(denali->flash_reg + ACC_CLKS),
ioread32(denali->flash_reg + RE_2_WE),
ioread32(denali->flash_reg + RE_2_RE),
ioread32(denali->flash_reg + WE_2_RE),
ioread32(denali->flash_reg + ADDR_2_DATA),
ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
ioread32(denali->flash_reg + CS_SETUP_CNT));
find_valid_banks(denali);
detect_partition_feature(denali);
/* If the user specified to override the default timings
* with a specific ONFI mode, we apply those changes here.
*/
/*if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
nand_onfi_timing_set(denali, onfi_timing_mode);*/
return status;
}
void denali_set_intr_modes(struct denali_nand_info *denali,
uint16_t INT_ENABLE)
{
dev_dbg(denali->dev, "%s, Line %d, Function: %s\n",
__FILE__, __LINE__, __func__);
if (INT_ENABLE)
iowrite32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
else
iowrite32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
}
/* validation function to verify that the controlling software is making
* a valid request
*/
static inline bool is_flash_bank_valid(int flash_bank)
{
return (flash_bank >= 0 && flash_bank < 4);
}
static void denali_irq_init(struct denali_nand_info *denali)
{
uint32_t int_mask = 0;
int i;
/* Disable global interrupts */
denali_set_intr_modes(denali, false);
int_mask = DENALI_IRQ_ALL;
/* Clear all status bits */
for (i = 0; i < denali->max_banks; ++i)
iowrite32(0xFFFF, denali->flash_reg + INTR_STATUS(i));
denali_irq_enable(denali, int_mask);
}
static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
{
denali_set_intr_modes(denali, false);
free_irq(irqnum, denali);
}
static void denali_irq_enable(struct denali_nand_info *denali,
uint32_t int_mask)
{
int i;
for (i = 0; i < denali->max_banks; ++i)
iowrite32(int_mask, denali->flash_reg + INTR_EN(i));
}
/* This function only returns when an interrupt that this driver cares about
* occurs. This is to reduce the overhead of servicing interrupts
*/
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
return read_interrupt_status(denali) & DENALI_IRQ_ALL;
}
/* Interrupts are cleared by writing a 1 to the appropriate status bit */
static inline void clear_interrupt(struct denali_nand_info *denali,
uint32_t irq_mask)
{
uint32_t intr_status_reg = 0;
intr_status_reg = INTR_STATUS(denali->flash_bank);
iowrite32(irq_mask, denali->flash_reg + intr_status_reg);
}
static void clear_interrupts(struct denali_nand_info *denali)
{
uint32_t status = 0x0;
spin_lock_irq(&denali->irq_lock);
status = read_interrupt_status(denali);
clear_interrupt(denali, status);
denali->irq_status = 0x0;
spin_unlock_irq(&denali->irq_lock);
}
static uint32_t read_interrupt_status(struct denali_nand_info *denali)
{
uint32_t intr_status_reg = 0;
intr_status_reg = INTR_STATUS(denali->flash_bank);
return ioread32(denali->flash_reg + intr_status_reg);
}
/* This is the interrupt service routine. It handles all interrupts
* sent to this device. Note that on CE4100, this is a shared
* interrupt.
*/
static irqreturn_t denali_isr(int irq, void *dev_id)
{
struct denali_nand_info *denali = dev_id;
uint32_t irq_status = 0x0;
irqreturn_t result = IRQ_NONE;
spin_lock(&denali->irq_lock);
/* check to see if a valid NAND chip has
* been selected.
*/
if (is_flash_bank_valid(denali->flash_bank)) {
/* check to see if controller generated
* the interrupt, since this is a shared interrupt */
irq_status = denali_irq_detected(denali);
if (irq_status != 0) {
/* handle interrupt */
/* first acknowledge it */
clear_interrupt(denali, irq_status);
/* store the status in the device context for someone
to read */
denali->irq_status |= irq_status;
/* notify anyone who cares that it happened */
complete(&denali->complete);
/* tell the OS that we've handled this */
result = IRQ_HANDLED;
}
}
spin_unlock(&denali->irq_lock);
return result;
}
#define BANK(x) ((x) << 24)
static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
{
unsigned long comp_res = 0;
uint32_t intr_status = 0;
bool retry = false;
unsigned long timeout = msecs_to_jiffies(1000);
do {
comp_res =
wait_for_completion_timeout(&denali->complete, timeout);
spin_lock_irq(&denali->irq_lock);
intr_status = denali->irq_status;
if (intr_status & irq_mask) {
denali->irq_status &= ~irq_mask;
spin_unlock_irq(&denali->irq_lock);
/* our interrupt was detected */
break;
} else {
/* these are not the interrupts you are looking for -
* need to wait again */
spin_unlock_irq(&denali->irq_lock);
retry = true;
}
} while (comp_res != 0);
if (comp_res == 0) {
/* timeout */
printk(KERN_ERR "denali timeout occurred, status = 0x%x, mask = 0x%x\n",
intr_status, irq_mask);
intr_status = 0;
}
return intr_status;
}
/* This helper function setups the registers for ECC and whether or not
* the spare area will be transferred. */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare)
{
int ecc_en_flag = 0, transfer_spare_flag = 0;
/* set ECC, transfer spare bits if needed */
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
/* Enable spare area/ECC per user's request. */
iowrite32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
iowrite32(transfer_spare_flag,
denali->flash_reg + TRANSFER_SPARE_REG);
}
/* sends a pipeline command operation to the controller. See the Denali NAND
* controller's user guide for more information (section 4.2.3.6).
*/
static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
bool ecc_en,
bool transfer_spare,
int access_type,
int op)
{
int status = PASS;
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
irq_mask = 0;
if (op == DENALI_READ)
irq_mask = INTR_STATUS__LOAD_COMP;
else if (op == DENALI_WRITE)
irq_mask = 0;
else
BUG();
setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
/* clear interrupts */
clear_interrupts(denali);
addr = BANK(denali->flash_bank) | denali->page;
if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
} else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
/* read spare area */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
} else if (op == DENALI_READ) {
/* setup page read request for access type */
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
/* page 33 of the NAND controller spec indicates we should not
use the pipeline commands in Spare area only mode. So we
don't.
*/
if (access_type == SPARE_ACCESS)
{
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
} else {
index_addr(denali, (uint32_t)cmd,
0x2000 | op | page_count);
/* wait for command to be accepted
* can always use status0 bit as the
* mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev,
"cmd, page, addr on timeout "
"(0x%x, 0x%x, 0x%x)\n",
cmd, denali->page, addr);
status = FAIL;
} else {
cmd = MODE_01 | addr;
iowrite32(cmd, denali->flash_mem);
}
}
}
return status;
}
/* helper function that simply writes a buffer to the flash */
static int write_data_to_flash_mem(struct denali_nand_info *denali,
const uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* verify that the len is a multiple of 4. see comment in
* read_data_from_flash_mem() */
BUG_ON((len % 4) != 0);
/* write the data to the flash memory */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
iowrite32(*buf32++, denali->flash_mem + 0x10);
return i*4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
static int read_data_from_flash_mem(struct denali_nand_info *denali,
uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* we assume that len will be a multiple of 4, if not
* it would be nice to know about it ASAP rather than
* have random failures...
* This assumption is based on the fact that this
* function is designed to be used to read flash pages,
* which are typically multiples of 4...
*/
BUG_ON((len % 4) != 0);
/* transfer the data from the flash */
buf32 = (uint32_t *)buf;
for (i = 0; i < len / 4; i++)
{
*buf32++ = ioread32(denali->flash_mem + 0x10);
}
return i*4; /* intent is to return the number of bytes read */
}
/* writes OOB data to the device */
static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__PROGRAM_COMP |
INTR_STATUS__PROGRAM_FAIL;
int status = 0, addr = 0x0, cmd = 0x0;
denali->page = page;
//printk("denali_write_oob %d page\n",denali->page);
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_WRITE) == PASS) {
write_data_to_flash_mem(denali, buf, mtd->oobsize);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev, "OOB write failed\n");
status = -EIO;
}
} else {
dev_err(denali->dev, "unable to send pipeline command\n");
status = -EIO;
}
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
return status;
}
/* reads OOB data from the device */
static int read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_mask = INTR_STATUS__LOAD_COMP|INTR_STATUS__TIME_OUT,
irq_status = 0, addr = 0x0, cmd = 0x0;
int ret = 0;
denali->page = page;
// dev_err(denali->dev, "OOB read %d page\n",page);
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == PASS) {
read_data_from_flash_mem(denali, buf, mtd->oobsize);
// dev_err(denali->dev, "OOB read OK\n");
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
ret = -ETIME;
dev_err(denali->dev, "page on OOB timeout %d\n",
denali->page);
}
/* We set the device back to MAIN_ACCESS here as I observed
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
}
return ret;
}
/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
bool is_erased(uint8_t *buf, int len)
{
int i = 0;
for (i = 0; i < len; i++)
if (buf[i] != 0xFF)
return false;
return true;
}
#define ECC_SECTOR_SIZE 512
#define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
#define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
#define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
#define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO__ERROR_TYPE))
#define ECC_ERR_DEVICE(x) (((x) & ERR_CORRECTION_INFO__DEVICE_NR) >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
static int handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint32_t irq_status)
{
int check_erased_page = 0;
uint32_t err_correction_value = 0;
uint32_t err_correction_info = 0;
/*zx297510 use*/
if (irq_status & INTR_STATUS__ECC_ERR)
{
check_erased_page = 1;
}
else
{
switch(denali->flash_bank)
{
case 0:
err_correction_info = ioread32(denali->flash_reg +ERR_CORRECTION_INFO_B01);
err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B0;
break;
case 1:
err_correction_info = ioread32(denali->flash_reg +ERR_CORRECTION_INFO_B01);
err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B1)>>8;
break;
case 2:
err_correction_info = ioread32(denali->flash_reg +ERR_CORRECTION_INFO_B23);
err_correction_value = err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B2;
break;
case 3:
err_correction_info = ioread32(denali->flash_reg +ERR_CORRECTION_INFO_B23);
err_correction_value = (err_correction_info & ERR_CORRECTION_INFO_B01__MAX_ERRORS_B3)>>8;
break;
default:
break;
}
//if(err_correction_value)
//printk("correct %d bit errors on page %x.\n",err_correction_value,denali->page);
}
return check_erased_page;
}
/* programs the controller to either enable/disable DMA transfers */
static void denali_enable_dma(struct denali_nand_info *denali, bool en)
{
uint32_t reg_val = 0x0;
if (en)
reg_val = DMA_ENABLE__FLAG;
iowrite32(reg_val, denali->flash_reg + DMA_ENABLE);
ioread32(denali->flash_reg + DMA_ENABLE);
}
/* setups the HW to perform the data DMA */
static void denali_setup_dma(struct denali_nand_info *denali, int op)
{
uint32_t mode = 0x0;
const int page_count = 1;
dma_addr_t addr = denali->buf.dma_buf;
mode = MODE_10 | BANK(denali->flash_bank);
/* DMA is a four step process */
/* 1. setup transfer type and # of pages */
index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
/* 2. set memory high address bits 23:8 */
index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
/* 3. set memory low address bits 23:8 */
index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
/* 4. interrupt when complete, burst len = 64 bytes*/
index_addr(denali, mode | 0x14000, 0x2400);
}
/* writes a page. user specifies type, and this function handles the
* configuration details. */
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
INTR_STATUS__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
* the spare area.
* !raw_xfer - enable ecc
* raw_xfer - transfer spare
*/
setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
/* copy buffer into DMA buffer */
memcpy(denali->buf.buf, buf, mtd->writesize);
if (raw_xfer) {
/* transfer the data to the spare area */
memcpy(denali->buf.buf + mtd->writesize,
chip->oob_poi,
mtd->oobsize);
}
dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
clear_interrupts(denali);
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev,
"timeout on write_page (type = %d)\n",
raw_xfer);
denali->status =
(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
NAND_STATUS_FAIL : PASS;
}
denali_enable_dma(denali, false);
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
}
//add by zhouqi
static void write_page_ops(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
int N,len,sector_size,ecc_bytes,i;
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP |
INTR_STATUS__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
* the spare area.
* !raw_xfer - enable ecc
* raw_xfer - transfer spare
*/
setup_ecc_for_xfer(denali, true, true);
/* copy buffer into DMA buffer */
memset((void *)(denali->buf.buf),0xff,denali->mtd.writesize+denali->mtd.oobsize);
sector_size = denali->nand.ecc.size;
ecc_bytes = denali->nand.ecc.bytes;
N = denali->mtd.writesize/(sector_size+ecc_bytes) + 1;
len = sector_size;
for(i=0;i < N;i++)
{
if(i==N-1)
{
len = denali->mtd.writesize - (sector_size+ecc_bytes)*i;
}
memcpy((void *)(denali->buf.buf+(sector_size+ecc_bytes)*i), (void *)(buf+sector_size*i), len); ;
}
len = sector_size - len;
memcpy((void *)(denali->buf.buf + denali->mtd.writesize+2), (void *)(buf + sector_size*i -len), len);
memcpy((void *)(denali->buf.buf+denali->mtd.writesize+2+len+ecc_bytes), (void *)(chip->oob_poi + 2+len+ecc_bytes), \
denali->mtd.oobsize-2-len-ecc_bytes);
//dma_sync_single_for_device(denali->dev, addr, denali->mtd.writesize, DMA_TO_DEVICE);
dma_sync_single_for_device(denali->dev, addr, size, DMA_TO_DEVICE);
clear_interrupts(denali);
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status == 0) {
dev_err(denali->dev,
"timeout on write_page (type = %d)\n",
1);
denali->status =
(irq_status & INTR_STATUS__PROGRAM_FAIL) ?
NAND_STATUS_FAIL : PASS;
}
denali_enable_dma(denali, false);
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_TO_DEVICE);
setup_ecc_for_xfer(denali,false, false); //zhouqi
}
/* NAND core entry points */
/* this is the callback that the NAND core calls to write a page. Since
* writing a page with ECC or without is similar, all the work is done
* by write_page above.
* */
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, struct mtd_oob_ops *ops)
{
/* for regular page writes, we let HW handle all the ECC
* data written to the device. */
//write_page(mtd, chip, buf, false);
struct denali_nand_info *denali = mtd_to_denali(mtd);
if(denali->page < 512) /*zloader,no ecc*/
{
int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION);
writel(0x8, denali->flash_reg + ECC_CORRECTION);
write_page(mtd, chip, buf, false);
writel(ecc_bits, denali->flash_reg + ECC_CORRECTION);
}
else
{
if((ops->oobbuf != NULL) && (ops->ooblen != 0))
{
write_page_ops(mtd, chip, buf);
}
else
{
write_page(mtd, chip, buf, false);
}
}
}
/* This is the callback that the NAND core calls to write a page without ECC.
* raw access is similar to ECC page writes, so all the work is done in the
* write_page() function above.
*/
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
/* for raw page writes, we want to disable ECC and simply write
whatever data is in the buffer. */
write_page(mtd, chip, buf, true);
}
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return write_oob_data(mtd, chip->oob_poi, page);
}
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
return read_oob_data(mtd, chip->oob_poi, page); /* notify NAND core to send command to
NAND device. */
}
//add by zhouqi
static int read_page_ops(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
int N,len,sector_size,ecc_bytes,i;
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
// uint32_t status_mask = INTR_STATUS__ECC_ERR |
// INTR_STATUS__ECC_ERR;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
uint32_t check_erased_page = false;
int ret = 0;
if (page != denali->page) {
dev_err(denali->dev, "IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, true, true);
denali_enable_dma(denali, true);
dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
clear_interrupts(denali);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (!irq_status) {
ret = -ETIME;
}
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
sector_size = denali->nand.ecc.size;
ecc_bytes = denali->nand.ecc.bytes;
N = denali->mtd.writesize/(sector_size+ecc_bytes) + 1;
len = sector_size;
for(i=0;i < N;i++)
{
if(i==N-1)
{
len = denali->mtd.writesize - (sector_size+ecc_bytes)*i;
}
memcpy((void *)(buf+sector_size*i),(void *)( denali->buf.buf + (sector_size+ecc_bytes)*i),len);
}
len = sector_size - len;
memcpy((void *)(buf + sector_size*(N-1)+len), (void *)(denali->buf.buf + denali->mtd.writesize +2), len);
memset((void *)(chip->oob_poi), 0xFF, len +ecc_bytes+2);
memcpy((void *)(chip->oob_poi + len+ecc_bytes+2), (void *)(denali->buf.buf + denali->mtd.writesize+len+ecc_bytes+2),\
denali->mtd.oobsize-len -ecc_bytes-2);
check_erased_page = handle_ecc(denali, buf, irq_status);
denali_enable_dma(denali, false);
setup_ecc_for_xfer(denali,false, false);
if (check_erased_page) {
read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
/* check ECC failures that may have occurred on erased pages */
if (check_erased_page) {
if (!is_erased(buf, denali->mtd.writesize))
{
denali->mtd.ecc_stats.failed++;
}
if (!is_erased(chip->oob_poi, denali->mtd.oobsize))
{
//denali->mtd.ecc_stats.failed++;
}
}
}
return ret;
}
static int read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
//uint32_t irq_mask = INTR_STATUS__ECC_ERR|INTR_STATUS__DMA_CMD_COMP;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
bool check_erased_page = false;
int ret = 0;
if (page != denali->page) {
dev_err(denali->dev, "IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali,true, false);
denali_enable_dma(denali, true);
dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
clear_interrupts(denali);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
if (!irq_status) {
ret = -ETIME;
}
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
memcpy(buf, denali->buf.buf, mtd->writesize);
check_erased_page = handle_ecc(denali, buf, irq_status);
denali_enable_dma(denali, false);
setup_ecc_for_xfer(denali,false, false);
if (check_erased_page) {
read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
/* check ECC failures that may have occurred on erased pages */
if (check_erased_page) {
if (!is_erased(buf, denali->mtd.writesize))
{
denali->mtd.ecc_stats.failed++;
}
if (!is_erased(chip->oob_poi, denali->mtd.oobsize))
{
//denali->mtd.ecc_stats.failed++;
}
}
}
return ret;
}
int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dma_addr_t addr = denali->buf.dma_buf;
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS__DMA_CMD_COMP;
if (page != denali->page) {
dev_err(denali->dev, "IN %s: page %d is not"
" equal to denali->page %d, investigate!!",
__func__, page, denali->page);
BUG();
}
setup_ecc_for_xfer(denali, false, true);
denali_enable_dma(denali, true);
dma_sync_single_for_device(denali->dev, addr, size, DMA_FROM_DEVICE);
clear_interrupts(denali);
denali_setup_dma(denali, DENALI_READ);
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
dma_sync_single_for_cpu(denali->dev, addr, size, DMA_FROM_DEVICE);
denali_enable_dma(denali, false);
memcpy(buf, denali->buf.buf, mtd->writesize);
memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
return 0;
}
//add by zhouqi
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
uint8_t *buf, int page, struct mtd_oob_ops *ops)//add by zhouqi
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
if(page < 512) /*zloader,no ECC*/
{
int ecc_bits = readl(denali->flash_reg + ECC_CORRECTION);
writel(0x8, denali->flash_reg + ECC_CORRECTION);
read_page(mtd, chip, buf, page);
writel(ecc_bits, denali->flash_reg + ECC_CORRECTION);
}
else
{
if((ops->oobbuf != NULL) && ops->ooblen != 0)
{
read_page_ops(mtd, chip, buf, page);
}
else
{
read_page(mtd, chip, buf, page);
}
}
return 0;
}
static uint8_t denali_read_byte(struct mtd_info *mtd)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint8_t result = 0xff;
if (denali->buf.head < denali->buf.tail)
result = denali->buf.buf[denali->buf.head++];
return result;
}
static void denali_select_chip(struct mtd_info *mtd, int chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
spin_lock_irq(&denali->irq_lock);
denali->flash_bank = chip;
spin_unlock_irq(&denali->irq_lock);
}
static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
int status = denali->status;
denali->status = 0;
return status;
}
static void denali_erase(struct mtd_info *mtd, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t cmd = 0x0, irq_status = 0;
/* clear interrupts */
clear_interrupts(denali);
/* setup page read request for access type */
cmd = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, (uint32_t)cmd, 0x1);
/* wait for erase to complete or failure to occur */
irq_status = wait_for_irq(denali, INTR_STATUS__ERASE_COMP |
INTR_STATUS__ERASE_FAIL);
denali->status = (irq_status & INTR_STATUS__ERASE_FAIL) ?
NAND_STATUS_FAIL : PASS;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t addr, id;
int i;
switch (cmd) {
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
read_status(denali);
break;
case NAND_CMD_READID:
case NAND_CMD_PARAM:
reset_buf(denali);
/*sometimes ManufactureId read from register is not right
* e.g. some of Micron MT29F32G08QAA MLC NAND chips
* So here we send READID cmd to NAND insteand
* */
addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
index_addr(denali, (uint32_t)addr | 0, 0x90);
index_addr(denali, (uint32_t)addr | 1, 0);
for (i = 0; i < 5; i++) {
index_addr_read_data(denali,
(uint32_t)addr | 2,
&id);
write_byte_to_buf(denali, id);
}
break;
case NAND_CMD_READ0:
case NAND_CMD_SEQIN:
denali->page = page;
break;
case NAND_CMD_RESET:
reset_bank(denali);
break;
case NAND_CMD_READOOB:
/* TODO: Read OOB data */
break;
default:
printk(KERN_ERR ": unsupported command"
" received 0x%x\n", cmd);
break;
}
}
/* stubs for ECC functions not used by the NAND core */
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(denali->dev,
"denali_ecc_calculate called unexpectedly\n");
BUG();
return -EIO;
}
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(denali->dev,
"denali_ecc_correct called unexpectedly\n");
BUG();
return -EIO;
}
static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
dev_err(denali->dev,
"denali_ecc_hwctl called unexpectedly\n");
BUG();
}
/* end NAND core entry points */
void denali_gpio_init(void)
{
int ret;
ret = gpio_request(ZX29_GPIO_0, "nand_we");
if (ret)
{
pr_info("GPIO0_NAND_WE gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_0, GPIO0_NAND_WE);
ret = gpio_request(ZX29_GPIO_1, "nand_csn");
if (ret)
{
pr_info("GPIO1_NAND_CS0 gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_1, GPIO1_NAND_CS0);
ret = gpio_request(ZX29_GPIO_2, "nand_ready");
if (ret)
{
pr_info("GPIO2_NAND_READY gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_2, GPIO2_NAND_READY);
ret = gpio_request(ZX29_GPIO_3, "nand_cle");
if (ret)
{
pr_info("GPIO3_NAND_CLE gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_3, GPIO3_NAND_CLE);
ret = gpio_request(ZX29_GPIO_4, "nand_ale");
if (ret)
{
pr_info("GPIO4_NAND_ALE gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_4, GPIO4_NAND_ALE);
ret = gpio_request(ZX29_GPIO_5, "nand_re");
if (ret)
{
pr_info("GPIO5_NAND_RE gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_5, GPIO5_NAND_RE);
ret = gpio_request(ZX29_GPIO_6, "nand_wp");
if (ret)
{
pr_info("GPIO6_NAND_WRITE_PROTECT gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_6, GPIO6_NAND_WRITE_PROTECT);
ret = gpio_request(ZX29_GPIO_7, "nand_data_0");
if (ret)
{
pr_info("GPIO7_NAND_DATA0 gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_7, GPIO7_NAND_DATA0);
ret = gpio_request(ZX29_GPIO_8, "nand_data_1");
if (ret)
{
pr_info("GPIO8_NAND_DATA1 gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_8, GPIO8_NAND_DATA1);
ret = gpio_request(ZX29_GPIO_9, "nand_data_2");
if (ret)
{
pr_info("GPIO9_NAND_DATA2 gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_9, GPIO9_NAND_DATA2);
ret = gpio_request(ZX29_GPIO_10, "nand_data_3");
if (ret)
{
pr_info("GPIO10_NAND_DATA3 gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_10, GPIO10_NAND_DATA3);
ret = gpio_request(ZX29_GPIO_11, "nand_data_4");
if (ret)
{
pr_info("GPIO11_NAND_DATA4 gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_11, GPIO11_NAND_DATA4);
ret = gpio_request(ZX29_GPIO_12, "nand_data_5");
if (ret)
{
pr_info("GPIO12_NAND_DATA5 gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_12, GPIO12_NAND_DATA5);
ret = gpio_request(ZX29_GPIO_13, "nand_data_6");
if (ret)
{
pr_info("GPIO13_NAND_DATA6 gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_13, GPIO13_NAND_DATA6);
ret = gpio_request(ZX29_GPIO_14, "nand_data_7");
if (ret)
{
pr_info("GPIO14_NAND_DATA7 gpio request error.\n");
return ;
}
zx29_gpio_config(ZX29_GPIO_14, GPIO14_NAND_DATA7);
return ;
}
/* Initialization code to bring the device up to a known good state */
static void denali_hw_init(struct denali_nand_info *denali)
{
/* tell driver how many bit controller will skip before
* writing ECC code in OOB, this register may be already
* set by firmware. So we read this value out.
* if this value is 0, just let it be.
* */
//detect_max_banks(denali);zangxiaofeng mod
denali_gpio_init();
denali->max_banks = 1;
denali_nand_reset(denali);
iowrite32(2, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
denali->bbtskipbytes = ioread32(denali->flash_reg +
SPARE_AREA_SKIP_BYTES);
iowrite32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
iowrite32(0,denali->flash_reg + CHIP_ENABLE_DONT_CARE);
iowrite32(1,denali->flash_reg + DEVICES_CONNECTED);
iowrite32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
/* Should set value for these registers when init */
iowrite32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
iowrite32(1, denali->flash_reg + ECC_ENABLE);
denali_nand_timing_set(denali);
denali_irq_init(denali);
}
void denali_nand_lock(struct mtd_info *mtd)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
wake_lock(&nand_wake_lock);
zx_cpuidle_set_busy(IDLE_FLAG_FLASH);
soft_spin_lock(NAND_SFLOCK);
if(!denali_int_en_flag)
{
enable_irq(denali->irq);
denali_int_en_flag = 1;
}
}
void denali_nand_unlock(struct mtd_info *mtd)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
clear_interrupts(denali);
if(denali_int_en_flag)
{
disable_irq(denali->irq);
denali_int_en_flag = 0;
}
soft_spin_unlock(NAND_SFLOCK);
zx_cpuidle_set_free(IDLE_FLAG_FLASH);
wake_unlock(&nand_wake_lock);
}
/* Althogh controller spec said SLC ECC is forceb to be 4bit,
* but denali controller in MRST only support 15bit and 8bit ECC
* correction
* */
static struct nand_ecclayout g_nand_oob;
static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
static struct nand_bbt_descr bbt_main_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP|NAND_BBT_SAVECONTENT,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = bbt_pattern,
};
static struct nand_bbt_descr bbt_mirror_descr = {
.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP|NAND_BBT_SAVECONTENT,
.offs = 8,
.len = 4,
.veroffs = 12,
.maxblocks = 4,
.pattern = mirror_pattern,
};
/* initialize driver data structures */
void denali_drv_init(struct denali_nand_info *denali)
{
denali->idx = 0;
/* setup interrupt handler */
/* the completion object will be used to notify
* the callee that the interrupt is done */
init_completion(&denali->complete);
/* the spinlock will be used to synchronize the ISR
* with any element that might be access shared
* data (interrupt status) */
spin_lock_init(&denali->irq_lock);
/* indicate that MTD has not selected a valid bank yet */
denali->flash_bank = CHIP_SELECT_INVALID;
/* initialize our irq_status variable to indicate no interrupts */
denali->irq_status = 0;
}
/* driver entry point */
struct denali_dt {
struct denali_nand_info denali;
struct clk *clk;
};
static void __iomem *request_and_map(struct device *dev,
const struct resource *res)
{
void __iomem *ptr;
if (!devm_request_mem_region(dev, res->start, resource_size(res),
"denali-dt")) {
dev_err(dev, "unable to request %s\n", res->name);
return NULL;
}
ptr = devm_ioremap_nocache(dev, res->start, resource_size(res));
if (!ptr)
dev_err(dev, "ioremap_nocache of %s failed!", res->name);
return ptr;
}
static const struct of_device_id denali_nand_dt_ids[] = {
{ .compatible = "denali,denali-nand-dt" },
{ /* sentinel */ }
};
unsigned char *flag_buf = NULL;
int fota_flag_store()
{
size_t retlen = 0;
struct cmdline_mtd_partition *part;
struct erase_info ei;
size_t fotalen = 0;
int offset = 0;
int size = 0;
int addr = 0;
int i =0;
int ret = 0;
part = partitions;
for(i=0;i<part->num_parts;i++)
{
if ( strcmp( (char *)part->parts[i].name, "fotaflag" ) == 0 )
break;
}
offset = (int)part->parts[i].offset;
size = (int)part->parts[i].size;
flag_buf = kzalloc(mtd_fota->writesize, GFP_KERNEL);
fotalen = mtd_fota->writesize;
/* read partition */
addr = offset;
while (addr < (offset+size))
{
if (mtd_fota->_block_isbad (mtd_fota, addr))
{
addr += mtd_fota->erasesize;
continue;
}
ret = mtd_fota->_read(mtd_fota, addr, fotalen, &retlen, flag_buf);
if(ret == 0)
{
break;
}
else if (ret)
{
return ret;
}
}
printk(" fota flag: %s \n", flag_buf);
/* erase partition */
memset(&ei, 0, sizeof(struct erase_info) );
ei.mtd = mtd_fota;
ei.addr = (uint64_t)offset;
ei.len = (uint64_t)(mtd_fota->erasesize);
while((ei.addr < (offset+size)))
{
if(mtd_fota->_block_isbad (mtd_fota, ei.addr))
{
ei.addr += mtd_fota->erasesize;
continue ;
}
ei.state = 0;
ret = mtd_fota->_erase(mtd_fota, &ei);
if(ret == 0)
{
break;
}
else if(ret && (ei.state == MTD_ERASE_FAILED))
{
mtd_fota->_block_markbad(mtd_fota,ei.addr);
}
else
{
printk(" erase fota_flag error\n");
return ret;
}
ei.addr += mtd_fota->erasesize;
}
/* read partition */
while (addr < (offset+size))
{
if (mtd_fota->_block_isbad (mtd_fota, addr))
{
addr += mtd_fota->erasesize;
continue;
}
ret = mtd_fota->_read(mtd_fota, addr, fotalen, &retlen, flag_buf);
if(ret == 0)
{
break;
}
else if (ret)
{
return ret;
}
}
printk(" fota flag after erase: %s \n", flag_buf);
/* write partition */
memcpy(flag_buf,"FOTA-UPDATE",12);
addr = offset;
while ((addr < (offset+size)))
{
if (mtd_fota->_block_isbad (mtd_fota, addr))
{
addr += mtd_fota->erasesize ;
continue;
}
ret = mtd_fota->_write(mtd_fota, addr, fotalen, &retlen,
(const u_char *)flag_buf);
if(ret == 0)
{
break;
}
else if (ret != 0)
{
printk(" write fota_flag error\n");
return ret;
}
}
/* read partition */
while (addr < (offset+size))
{
if (mtd_fota->_block_isbad (mtd_fota, addr))
{
addr += mtd_fota->erasesize;
continue;
}
ret = mtd_fota->_read(mtd_fota, addr, fotalen, &retlen, flag_buf);
if(ret == 0)
{
break;
}
else if (ret)
{
return ret;
}
}
printk(" fota flag after write: %s \n", flag_buf);
kfree(flag_buf);
return 0;
}
MODULE_DEVICE_TABLE(of, denali_nand_dt_ids);
static u64 denali_dma_mask;
static int denali_nand_ecc_init(struct denali_nand_info *denali)
{
int i,eccpos_start;
denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
denali->nand.ecc.steps = denali->mtd.writesize/denali->nand.ecc.size;
switch (denali->nand.ecc.size) {
case 512:
denali->nand.ecc.bytes =
( denali->nand.ecc.strength * 13 + 15) / 16 * 2;
break;
case 1024:
denali->nand.ecc.bytes =
( denali->nand.ecc.strength * 14 + 15) / 16 * 2;
break;
default:
printk("Unsupported ECC sector size\n");
BUG();
}
denali->nand.ecc.total = denali->nand.ecc.bytes* denali->nand.ecc.steps;
if(denali->mtd.oobsize >= (denali->nand.ecc.total+denali->bbtskipbytes + 8))
{
g_nand_oob.eccbytes = denali->nand.ecc.total;
eccpos_start = denali->bbtskipbytes;
for (i = 0; i < g_nand_oob.eccbytes; i++)
{
g_nand_oob.eccpos[i] = eccpos_start + i;
}
g_nand_oob.oobfree[0].offset = g_nand_oob.eccbytes+denali->bbtskipbytes;
g_nand_oob.oobfree[0].length = denali->mtd.oobsize -(g_nand_oob.eccbytes+denali->bbtskipbytes);
denali->nand.ecc.layout = &g_nand_oob;
}
else
{
printk("Unsupported ECC strength,please check the id table\n");
BUG();
}
return 0;
}
static int denali_nand_probe(struct platform_device *ofdev)
{
int ret = 0;
struct resource *denali_reg, *nand_data;
struct denali_dt *dt;
struct denali_nand_info *denali;
unsigned char *test_wbuf=NULL;
unsigned char *test_rbuf=NULL;
soft_spin_lock(NAND_SFLOCK);
pr_err("denali_nand_probe------------\n");
dt = devm_kzalloc(&ofdev->dev, sizeof(*dt), GFP_KERNEL);
if (!dt)
return -ENOMEM;
denali = &dt->denali;
denali_reg = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "denali_reg");
nand_data = platform_get_resource_byname(ofdev, IORESOURCE_MEM, "nand_data");
if (!denali_reg || !nand_data)
{
dev_err(&ofdev->dev, "resources not completely defined\n");
return -EINVAL;
}
denali->platform = ZX7510;
denali->dev = &ofdev->dev;
denali->irq = platform_get_irq(ofdev, 0);
if (denali->irq < 0)
{
dev_err(&ofdev->dev, "no irq defined\n");
return denali->irq;
}
denali->flash_reg = (void __iomem *)(denali_reg->start);//request_and_map(&ofdev->dev, denali_reg);
if (!denali->flash_reg)
return -ENOMEM;
denali->flash_mem = (void __iomem *)(nand_data->start);//request_and_map(&ofdev->dev, nand_data);
if (!denali->flash_mem)
return -ENOMEM;
//printk("reg=%x,data=%x\n",denali->flash_reg,denali->flash_mem);
denali->dev->dma_mask = &denali_dma_mask;
/* Is 32-bit DMA supported? */
ret = dma_set_mask(denali->dev, DMA_BIT_MASK(32));
if (ret) {
pr_err("Spectra: no usable DMA configuration\n");
return ret;
}
denali->buf.dma_buf = dma_map_single(denali->dev, denali->buf.buf,
DENALI_BUF_SIZE,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(denali->dev, denali->buf.dma_buf)) {
dev_err(denali->dev, "Spectra: failed to map DMA buffer\n");
return -EIO;
}
denali->mtd.dev.parent = denali->dev;
denali_hw_init(denali);
denali_drv_init(denali);
/* denali_isr register is done after all the hardware
* initilization is finished*/
if (request_irq(denali->irq, denali_isr, IRQF_SHARED,
DENALI_NAND_NAME, denali)) {
pr_err("Spectra: Unable to allocate IRQ\n");
return -ENODEV;
}
else
{
denali_int_en_flag = 1;
}
/* now that our ISR is registered, we can enable interrupts */
denali_set_intr_modes(denali, true);
denali->mtd.name = "denali-nand";
denali->mtd.owner = THIS_MODULE;
denali->mtd.priv = &denali->nand;
/* register the driver with the NAND core subsystem */
denali->nand.select_chip = denali_select_chip;
denali->nand.cmdfunc = denali_cmdfunc;
denali->nand.read_byte = denali_read_byte;
denali->nand.waitfunc = denali_waitfunc;
wake_lock_init(&nand_wake_lock, WAKE_LOCK_SUSPEND, "nand");
printk("deanli wakelock ok\n");
/* scan for NAND devices attached to the controller
* this is the first stage in a two step process to register
* with the nand subsystem */
if (nand_scan_ident(&denali->mtd, denali->max_banks, NULL)) {
ret = -ENXIO;
goto failed_req_irq;
}
/* MTD supported page sizes vary by kernel. We validate our
* kernel supports the device here.
*/
if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
ret = -ENODEV;
printk(KERN_ERR "Spectra: device size not supported by this "
"version of MTD.");
goto failed_req_irq;
}
/* support for multi nand
* MTD known nothing about multi nand,
* so we should tell it the real pagesize
* and anything necessery
*/
denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
denali->nand.chipsize <<= (denali->devnum - 1);
denali->nand.page_shift += (denali->devnum - 1);
denali->nand.pagemask = (denali->nand.chipsize >>
denali->nand.page_shift) - 1;
denali->nand.bbt_erase_shift += (denali->devnum - 1);
denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
denali->nand.chip_shift += (denali->devnum - 1);
denali->mtd.writesize <<= (denali->devnum - 1);
denali->mtd.oobsize <<= (denali->devnum - 1);
denali->mtd.erasesize <<= (denali->devnum - 1);
denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
denali->bbtskipbytes *= denali->devnum;
/* second stage of the NAND scan
* this stage requires information regarding ECC and
* bad block management. */
/* Bad block management */
denali->nand.bbt_td = &bbt_main_descr;
denali->nand.bbt_md = &bbt_mirror_descr;
/* skip the scan for now until we have OOB read and write support */
denali->nand.bbt_options |= NAND_BBT_USE_FLASH;
// init ecc
denali_nand_ecc_init(denali);
/* Let driver know the total blocks number and
* how many blocks contained by each nand chip.
* blksperchip will help driver to know how many
* blocks is taken by FW.
* */
denali->totalblks = denali->mtd.size >>
denali->nand.phys_erase_shift;
denali->blksperchip = denali->totalblks / denali->nand.numchips;
/* These functions are required by the NAND core framework, otherwise,
* the NAND core will assert. However, we don't need them, so we'll stub
* them out. */
denali->nand.ecc.calculate = denali_ecc_calculate;
denali->nand.ecc.correct = denali_ecc_correct;
denali->nand.ecc.hwctl = denali_ecc_hwctl;
/* override the default read operations */
denali->nand.ecc.read_page = denali_read_page;
denali->nand.ecc.read_page_raw = denali_read_page_raw;
denali->nand.ecc.write_page = denali_write_page;
denali->nand.ecc.write_page_raw = denali_write_page_raw;
denali->nand.ecc.read_oob = denali_read_oob;
denali->nand.ecc.write_oob = denali_write_oob;
denali->nand.erase_cmd = denali_erase;
if (nand_scan_tail(&denali->mtd)) {
ret = -ENXIO;
goto failed_req_irq;
}
mtd_fota = &denali->mtd;
ret = mtd_device_register(&denali->mtd, NULL, 0);
if (ret) {
dev_err(denali->dev, "Spectra: Failed to register MTD: %d\n",
ret);
goto failed_req_irq;
}
platform_set_drvdata(ofdev, dt);
soft_spin_unlock(NAND_SFLOCK);
return 0;
failed_req_irq:
denali_irq_cleanup(denali->irq, denali);
kfree(denali);
denali_nand_unlock(&denali->mtd);
wake_unlock(&nand_wake_lock);
return ret;
}
/* driver exit point */
void denali_remove(struct denali_nand_info *denali)
{
denali_irq_cleanup(denali->irq, denali);
dma_unmap_single(denali->dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
DMA_BIDIRECTIONAL);
}
static int denali_nand_remove(struct platform_device *ofdev)
{
struct denali_dt *dt = platform_get_drvdata(ofdev);
denali_remove(&dt->denali);
clk_disable(dt->clk);
clk_put(dt->clk);
wake_lock_destroy(&nand_wake_lock);
return 0;
}
static struct platform_driver denali_dt_driver = {
.probe = denali_nand_probe,
.remove = denali_nand_remove,
.driver = {
.name = "denali-nand-dt",
.owner = THIS_MODULE,
.of_match_table = denali_nand_dt_ids,
},
};
module_platform_driver(denali_dt_driver);