blob: 1bbb1b200cecda10f0e04a7dba738ba544320cdf [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * tracing clocks
3 *
4 * Copyright (C) 2009 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Implements 3 trace clock variants, with differing scalability/precision
7 * tradeoffs:
8 *
9 * - local: CPU-local trace clock
10 * - medium: scalable global clock with some jitter
11 * - global: globally monotonic, serialized clock
12 *
13 * Tracer plugins will chose a default from these clocks.
14 */
15#include <linux/spinlock.h>
16#include <linux/irqflags.h>
17#include <linux/hardirq.h>
18#include <linux/module.h>
19#include <linux/percpu.h>
20#include <linux/sched.h>
21#include <linux/ktime.h>
22#include <linux/trace_clock.h>
23
24#include "trace.h"
25
26/*
27 * trace_clock_local(): the simplest and least coherent tracing clock.
28 *
29 * Useful for tracing that does not cross to other CPUs nor
30 * does it go through idle events.
31 */
32u64 notrace trace_clock_local(void)
33{
34 u64 clock;
35
36 /*
37 * sched_clock() is an architecture implemented, fast, scalable,
38 * lockless clock. It is not guaranteed to be coherent across
39 * CPUs, nor across CPU idle events.
40 */
41 preempt_disable_notrace();
42 clock = sched_clock();
43 preempt_enable_notrace();
44
45 return clock;
46}
47EXPORT_SYMBOL_GPL(trace_clock_local);
48
49/*
50 * trace_clock(): 'between' trace clock. Not completely serialized,
51 * but not completely incorrect when crossing CPUs either.
52 *
53 * This is based on cpu_clock(), which will allow at most ~1 jiffy of
54 * jitter between CPUs. So it's a pretty scalable clock, but there
55 * can be offsets in the trace data.
56 */
57u64 notrace trace_clock(void)
58{
59 return local_clock();
60}
61
62
63/*
64 * trace_clock_global(): special globally coherent trace clock
65 *
66 * It has higher overhead than the other trace clocks but is still
67 * an order of magnitude faster than GTOD derived hardware clocks.
68 *
69 * Used by plugins that need globally coherent timestamps.
70 */
71
72/* keep prev_time and lock in the same cacheline. */
73static struct {
74 u64 prev_time;
75 arch_spinlock_t lock;
76} trace_clock_struct ____cacheline_aligned_in_smp =
77 {
78 .lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED,
79 };
80
81u64 notrace trace_clock_global(void)
82{
83 unsigned long flags;
84 int this_cpu;
85 u64 now;
86
87 local_irq_save(flags);
88
89 this_cpu = raw_smp_processor_id();
90 now = cpu_clock(this_cpu);
91 /*
92 * If in an NMI context then dont risk lockups and return the
93 * cpu_clock() time:
94 */
95 if (unlikely(in_nmi()))
96 goto out;
97
98 arch_spin_lock(&trace_clock_struct.lock);
99
100 /*
101 * TODO: if this happens often then maybe we should reset
102 * my_scd->clock to prev_time+1, to make sure
103 * we start ticking with the local clock from now on?
104 */
105 if ((s64)(now - trace_clock_struct.prev_time) < 0)
106 now = trace_clock_struct.prev_time + 1;
107
108 trace_clock_struct.prev_time = now;
109
110 arch_spin_unlock(&trace_clock_struct.lock);
111
112 out:
113 local_irq_restore(flags);
114
115 return now;
116}
117
118static atomic64_t trace_counter;
119
120/*
121 * trace_clock_counter(): simply an atomic counter.
122 * Use the trace_counter "counter" for cases where you do not care
123 * about timings, but are interested in strict ordering.
124 */
125u64 notrace trace_clock_counter(void)
126{
127 return atomic64_add_return(1, &trace_counter);
128}