yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | |
| 2 | /* |
| 3 | * edac_device.c |
| 4 | * (C) 2007 www.douglaskthompson.com |
| 5 | * |
| 6 | * This file may be distributed under the terms of the |
| 7 | * GNU General Public License. |
| 8 | * |
| 9 | * Written by Doug Thompson <norsk5@xmission.com> |
| 10 | * |
| 11 | * edac_device API implementation |
| 12 | * 19 Jan 2007 |
| 13 | */ |
| 14 | |
| 15 | #include <linux/module.h> |
| 16 | #include <linux/types.h> |
| 17 | #include <linux/smp.h> |
| 18 | #include <linux/init.h> |
| 19 | #include <linux/sysctl.h> |
| 20 | #include <linux/highmem.h> |
| 21 | #include <linux/timer.h> |
| 22 | #include <linux/slab.h> |
| 23 | #include <linux/jiffies.h> |
| 24 | #include <linux/spinlock.h> |
| 25 | #include <linux/list.h> |
| 26 | #include <linux/ctype.h> |
| 27 | #include <linux/workqueue.h> |
| 28 | #include <asm/uaccess.h> |
| 29 | #include <asm/page.h> |
| 30 | |
| 31 | #include "edac_core.h" |
| 32 | #include "edac_module.h" |
| 33 | |
| 34 | /* lock for the list: 'edac_device_list', manipulation of this list |
| 35 | * is protected by the 'device_ctls_mutex' lock |
| 36 | */ |
| 37 | static DEFINE_MUTEX(device_ctls_mutex); |
| 38 | static LIST_HEAD(edac_device_list); |
| 39 | |
| 40 | #ifdef CONFIG_EDAC_DEBUG |
| 41 | static void edac_device_dump_device(struct edac_device_ctl_info *edac_dev) |
| 42 | { |
| 43 | debugf3("\tedac_dev = %p dev_idx=%d \n", edac_dev, edac_dev->dev_idx); |
| 44 | debugf4("\tedac_dev->edac_check = %p\n", edac_dev->edac_check); |
| 45 | debugf3("\tdev = %p\n", edac_dev->dev); |
| 46 | debugf3("\tmod_name:ctl_name = %s:%s\n", |
| 47 | edac_dev->mod_name, edac_dev->ctl_name); |
| 48 | debugf3("\tpvt_info = %p\n\n", edac_dev->pvt_info); |
| 49 | } |
| 50 | #endif /* CONFIG_EDAC_DEBUG */ |
| 51 | |
| 52 | |
| 53 | /* |
| 54 | * edac_device_alloc_ctl_info() |
| 55 | * Allocate a new edac device control info structure |
| 56 | * |
| 57 | * The control structure is allocated in complete chunk |
| 58 | * from the OS. It is in turn sub allocated to the |
| 59 | * various objects that compose the struture |
| 60 | * |
| 61 | * The structure has a 'nr_instance' array within itself. |
| 62 | * Each instance represents a major component |
| 63 | * Example: L1 cache and L2 cache are 2 instance components |
| 64 | * |
| 65 | * Within each instance is an array of 'nr_blocks' blockoffsets |
| 66 | */ |
| 67 | struct edac_device_ctl_info *edac_device_alloc_ctl_info( |
| 68 | unsigned sz_private, |
| 69 | char *edac_device_name, unsigned nr_instances, |
| 70 | char *edac_block_name, unsigned nr_blocks, |
| 71 | unsigned offset_value, /* zero, 1, or other based offset */ |
| 72 | struct edac_dev_sysfs_block_attribute *attrib_spec, unsigned nr_attrib, |
| 73 | int device_index) |
| 74 | { |
| 75 | struct edac_device_ctl_info *dev_ctl; |
| 76 | struct edac_device_instance *dev_inst, *inst; |
| 77 | struct edac_device_block *dev_blk, *blk_p, *blk; |
| 78 | struct edac_dev_sysfs_block_attribute *dev_attrib, *attrib_p, *attrib; |
| 79 | unsigned total_size; |
| 80 | unsigned count; |
| 81 | unsigned instance, block, attr; |
| 82 | void *pvt; |
| 83 | int err; |
| 84 | |
| 85 | debugf4("%s() instances=%d blocks=%d\n", |
| 86 | __func__, nr_instances, nr_blocks); |
| 87 | |
| 88 | /* Calculate the size of memory we need to allocate AND |
| 89 | * determine the offsets of the various item arrays |
| 90 | * (instance,block,attrib) from the start of an allocated structure. |
| 91 | * We want the alignment of each item (instance,block,attrib) |
| 92 | * to be at least as stringent as what the compiler would |
| 93 | * provide if we could simply hardcode everything into a single struct. |
| 94 | */ |
| 95 | dev_ctl = (struct edac_device_ctl_info *)NULL; |
| 96 | |
| 97 | /* Calc the 'end' offset past end of ONE ctl_info structure |
| 98 | * which will become the start of the 'instance' array |
| 99 | */ |
| 100 | dev_inst = edac_align_ptr(&dev_ctl[1], sizeof(*dev_inst)); |
| 101 | |
| 102 | /* Calc the 'end' offset past the instance array within the ctl_info |
| 103 | * which will become the start of the block array |
| 104 | */ |
| 105 | dev_blk = edac_align_ptr(&dev_inst[nr_instances], sizeof(*dev_blk)); |
| 106 | |
| 107 | /* Calc the 'end' offset past the dev_blk array |
| 108 | * which will become the start of the attrib array, if any. |
| 109 | */ |
| 110 | count = nr_instances * nr_blocks; |
| 111 | dev_attrib = edac_align_ptr(&dev_blk[count], sizeof(*dev_attrib)); |
| 112 | |
| 113 | /* Check for case of when an attribute array is specified */ |
| 114 | if (nr_attrib > 0) { |
| 115 | /* calc how many nr_attrib we need */ |
| 116 | count *= nr_attrib; |
| 117 | |
| 118 | /* Calc the 'end' offset past the attributes array */ |
| 119 | pvt = edac_align_ptr(&dev_attrib[count], sz_private); |
| 120 | } else { |
| 121 | /* no attribute array specificed */ |
| 122 | pvt = edac_align_ptr(dev_attrib, sz_private); |
| 123 | } |
| 124 | |
| 125 | /* 'pvt' now points to where the private data area is. |
| 126 | * At this point 'pvt' (like dev_inst,dev_blk and dev_attrib) |
| 127 | * is baselined at ZERO |
| 128 | */ |
| 129 | total_size = ((unsigned long)pvt) + sz_private; |
| 130 | |
| 131 | /* Allocate the amount of memory for the set of control structures */ |
| 132 | dev_ctl = kzalloc(total_size, GFP_KERNEL); |
| 133 | if (dev_ctl == NULL) |
| 134 | return NULL; |
| 135 | |
| 136 | /* Adjust pointers so they point within the actual memory we |
| 137 | * just allocated rather than an imaginary chunk of memory |
| 138 | * located at address 0. |
| 139 | * 'dev_ctl' points to REAL memory, while the others are |
| 140 | * ZERO based and thus need to be adjusted to point within |
| 141 | * the allocated memory. |
| 142 | */ |
| 143 | dev_inst = (struct edac_device_instance *) |
| 144 | (((char *)dev_ctl) + ((unsigned long)dev_inst)); |
| 145 | dev_blk = (struct edac_device_block *) |
| 146 | (((char *)dev_ctl) + ((unsigned long)dev_blk)); |
| 147 | dev_attrib = (struct edac_dev_sysfs_block_attribute *) |
| 148 | (((char *)dev_ctl) + ((unsigned long)dev_attrib)); |
| 149 | pvt = sz_private ? (((char *)dev_ctl) + ((unsigned long)pvt)) : NULL; |
| 150 | |
| 151 | /* Begin storing the information into the control info structure */ |
| 152 | dev_ctl->dev_idx = device_index; |
| 153 | dev_ctl->nr_instances = nr_instances; |
| 154 | dev_ctl->instances = dev_inst; |
| 155 | dev_ctl->pvt_info = pvt; |
| 156 | |
| 157 | /* Default logging of CEs and UEs */ |
| 158 | dev_ctl->log_ce = 1; |
| 159 | dev_ctl->log_ue = 1; |
| 160 | |
| 161 | /* Name of this edac device */ |
| 162 | snprintf(dev_ctl->name,sizeof(dev_ctl->name),"%s",edac_device_name); |
| 163 | |
| 164 | debugf4("%s() edac_dev=%p next after end=%p\n", |
| 165 | __func__, dev_ctl, pvt + sz_private ); |
| 166 | |
| 167 | /* Initialize every Instance */ |
| 168 | for (instance = 0; instance < nr_instances; instance++) { |
| 169 | inst = &dev_inst[instance]; |
| 170 | inst->ctl = dev_ctl; |
| 171 | inst->nr_blocks = nr_blocks; |
| 172 | blk_p = &dev_blk[instance * nr_blocks]; |
| 173 | inst->blocks = blk_p; |
| 174 | |
| 175 | /* name of this instance */ |
| 176 | snprintf(inst->name, sizeof(inst->name), |
| 177 | "%s%u", edac_device_name, instance); |
| 178 | |
| 179 | /* Initialize every block in each instance */ |
| 180 | for (block = 0; block < nr_blocks; block++) { |
| 181 | blk = &blk_p[block]; |
| 182 | blk->instance = inst; |
| 183 | snprintf(blk->name, sizeof(blk->name), |
| 184 | "%s%d", edac_block_name, block+offset_value); |
| 185 | |
| 186 | debugf4("%s() instance=%d inst_p=%p block=#%d " |
| 187 | "block_p=%p name='%s'\n", |
| 188 | __func__, instance, inst, block, |
| 189 | blk, blk->name); |
| 190 | |
| 191 | /* if there are NO attributes OR no attribute pointer |
| 192 | * then continue on to next block iteration |
| 193 | */ |
| 194 | if ((nr_attrib == 0) || (attrib_spec == NULL)) |
| 195 | continue; |
| 196 | |
| 197 | /* setup the attribute array for this block */ |
| 198 | blk->nr_attribs = nr_attrib; |
| 199 | attrib_p = &dev_attrib[block*nr_instances*nr_attrib]; |
| 200 | blk->block_attributes = attrib_p; |
| 201 | |
| 202 | debugf4("%s() THIS BLOCK_ATTRIB=%p\n", |
| 203 | __func__, blk->block_attributes); |
| 204 | |
| 205 | /* Initialize every user specified attribute in this |
| 206 | * block with the data the caller passed in |
| 207 | * Each block gets its own copy of pointers, |
| 208 | * and its unique 'value' |
| 209 | */ |
| 210 | for (attr = 0; attr < nr_attrib; attr++) { |
| 211 | attrib = &attrib_p[attr]; |
| 212 | |
| 213 | /* populate the unique per attrib |
| 214 | * with the code pointers and info |
| 215 | */ |
| 216 | attrib->attr = attrib_spec[attr].attr; |
| 217 | attrib->show = attrib_spec[attr].show; |
| 218 | attrib->store = attrib_spec[attr].store; |
| 219 | |
| 220 | attrib->block = blk; /* up link */ |
| 221 | |
| 222 | debugf4("%s() alloc-attrib=%p attrib_name='%s' " |
| 223 | "attrib-spec=%p spec-name=%s\n", |
| 224 | __func__, attrib, attrib->attr.name, |
| 225 | &attrib_spec[attr], |
| 226 | attrib_spec[attr].attr.name |
| 227 | ); |
| 228 | } |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | /* Mark this instance as merely ALLOCATED */ |
| 233 | dev_ctl->op_state = OP_ALLOC; |
| 234 | |
| 235 | /* |
| 236 | * Initialize the 'root' kobj for the edac_device controller |
| 237 | */ |
| 238 | err = edac_device_register_sysfs_main_kobj(dev_ctl); |
| 239 | if (err) { |
| 240 | kfree(dev_ctl); |
| 241 | return NULL; |
| 242 | } |
| 243 | |
| 244 | /* at this point, the root kobj is valid, and in order to |
| 245 | * 'free' the object, then the function: |
| 246 | * edac_device_unregister_sysfs_main_kobj() must be called |
| 247 | * which will perform kobj unregistration and the actual free |
| 248 | * will occur during the kobject callback operation |
| 249 | */ |
| 250 | |
| 251 | return dev_ctl; |
| 252 | } |
| 253 | EXPORT_SYMBOL_GPL(edac_device_alloc_ctl_info); |
| 254 | |
| 255 | /* |
| 256 | * edac_device_free_ctl_info() |
| 257 | * frees the memory allocated by the edac_device_alloc_ctl_info() |
| 258 | * function |
| 259 | */ |
| 260 | void edac_device_free_ctl_info(struct edac_device_ctl_info *ctl_info) |
| 261 | { |
| 262 | edac_device_unregister_sysfs_main_kobj(ctl_info); |
| 263 | } |
| 264 | EXPORT_SYMBOL_GPL(edac_device_free_ctl_info); |
| 265 | |
| 266 | /* |
| 267 | * find_edac_device_by_dev |
| 268 | * scans the edac_device list for a specific 'struct device *' |
| 269 | * |
| 270 | * lock to be held prior to call: device_ctls_mutex |
| 271 | * |
| 272 | * Return: |
| 273 | * pointer to control structure managing 'dev' |
| 274 | * NULL if not found on list |
| 275 | */ |
| 276 | static struct edac_device_ctl_info *find_edac_device_by_dev(struct device *dev) |
| 277 | { |
| 278 | struct edac_device_ctl_info *edac_dev; |
| 279 | struct list_head *item; |
| 280 | |
| 281 | debugf0("%s()\n", __func__); |
| 282 | |
| 283 | list_for_each(item, &edac_device_list) { |
| 284 | edac_dev = list_entry(item, struct edac_device_ctl_info, link); |
| 285 | |
| 286 | if (edac_dev->dev == dev) |
| 287 | return edac_dev; |
| 288 | } |
| 289 | |
| 290 | return NULL; |
| 291 | } |
| 292 | |
| 293 | /* |
| 294 | * add_edac_dev_to_global_list |
| 295 | * Before calling this function, caller must |
| 296 | * assign a unique value to edac_dev->dev_idx. |
| 297 | * |
| 298 | * lock to be held prior to call: device_ctls_mutex |
| 299 | * |
| 300 | * Return: |
| 301 | * 0 on success |
| 302 | * 1 on failure. |
| 303 | */ |
| 304 | static int add_edac_dev_to_global_list(struct edac_device_ctl_info *edac_dev) |
| 305 | { |
| 306 | struct list_head *item, *insert_before; |
| 307 | struct edac_device_ctl_info *rover; |
| 308 | |
| 309 | insert_before = &edac_device_list; |
| 310 | |
| 311 | /* Determine if already on the list */ |
| 312 | rover = find_edac_device_by_dev(edac_dev->dev); |
| 313 | if (unlikely(rover != NULL)) |
| 314 | goto fail0; |
| 315 | |
| 316 | /* Insert in ascending order by 'dev_idx', so find position */ |
| 317 | list_for_each(item, &edac_device_list) { |
| 318 | rover = list_entry(item, struct edac_device_ctl_info, link); |
| 319 | |
| 320 | if (rover->dev_idx >= edac_dev->dev_idx) { |
| 321 | if (unlikely(rover->dev_idx == edac_dev->dev_idx)) |
| 322 | goto fail1; |
| 323 | |
| 324 | insert_before = item; |
| 325 | break; |
| 326 | } |
| 327 | } |
| 328 | |
| 329 | list_add_tail_rcu(&edac_dev->link, insert_before); |
| 330 | return 0; |
| 331 | |
| 332 | fail0: |
| 333 | edac_printk(KERN_WARNING, EDAC_MC, |
| 334 | "%s (%s) %s %s already assigned %d\n", |
| 335 | dev_name(rover->dev), edac_dev_name(rover), |
| 336 | rover->mod_name, rover->ctl_name, rover->dev_idx); |
| 337 | return 1; |
| 338 | |
| 339 | fail1: |
| 340 | edac_printk(KERN_WARNING, EDAC_MC, |
| 341 | "bug in low-level driver: attempt to assign\n" |
| 342 | " duplicate dev_idx %d in %s()\n", rover->dev_idx, |
| 343 | __func__); |
| 344 | return 1; |
| 345 | } |
| 346 | |
| 347 | /* |
| 348 | * del_edac_device_from_global_list |
| 349 | */ |
| 350 | static void del_edac_device_from_global_list(struct edac_device_ctl_info |
| 351 | *edac_device) |
| 352 | { |
| 353 | list_del_rcu(&edac_device->link); |
| 354 | |
| 355 | /* these are for safe removal of devices from global list while |
| 356 | * NMI handlers may be traversing list |
| 357 | */ |
| 358 | synchronize_rcu(); |
| 359 | INIT_LIST_HEAD(&edac_device->link); |
| 360 | } |
| 361 | |
| 362 | /* |
| 363 | * edac_device_workq_function |
| 364 | * performs the operation scheduled by a workq request |
| 365 | * |
| 366 | * this workq is embedded within an edac_device_ctl_info |
| 367 | * structure, that needs to be polled for possible error events. |
| 368 | * |
| 369 | * This operation is to acquire the list mutex lock |
| 370 | * (thus preventing insertation or deletion) |
| 371 | * and then call the device's poll function IFF this device is |
| 372 | * running polled and there is a poll function defined. |
| 373 | */ |
| 374 | static void edac_device_workq_function(struct work_struct *work_req) |
| 375 | { |
| 376 | struct delayed_work *d_work = to_delayed_work(work_req); |
| 377 | struct edac_device_ctl_info *edac_dev = to_edac_device_ctl_work(d_work); |
| 378 | |
| 379 | mutex_lock(&device_ctls_mutex); |
| 380 | |
| 381 | /* If we are being removed, bail out immediately */ |
| 382 | if (edac_dev->op_state == OP_OFFLINE) { |
| 383 | mutex_unlock(&device_ctls_mutex); |
| 384 | return; |
| 385 | } |
| 386 | |
| 387 | /* Only poll controllers that are running polled and have a check */ |
| 388 | if ((edac_dev->op_state == OP_RUNNING_POLL) && |
| 389 | (edac_dev->edac_check != NULL)) { |
| 390 | edac_dev->edac_check(edac_dev); |
| 391 | } |
| 392 | |
| 393 | mutex_unlock(&device_ctls_mutex); |
| 394 | |
| 395 | /* Reschedule the workq for the next time period to start again |
| 396 | * if the number of msec is for 1 sec, then adjust to the next |
| 397 | * whole one second to save timers fireing all over the period |
| 398 | * between integral seconds |
| 399 | */ |
| 400 | if (edac_dev->poll_msec == 1000) |
| 401 | queue_delayed_work(edac_workqueue, &edac_dev->work, |
| 402 | round_jiffies_relative(edac_dev->delay)); |
| 403 | else |
| 404 | queue_delayed_work(edac_workqueue, &edac_dev->work, |
| 405 | edac_dev->delay); |
| 406 | } |
| 407 | |
| 408 | /* |
| 409 | * edac_device_workq_setup |
| 410 | * initialize a workq item for this edac_device instance |
| 411 | * passing in the new delay period in msec |
| 412 | */ |
| 413 | void edac_device_workq_setup(struct edac_device_ctl_info *edac_dev, |
| 414 | unsigned msec) |
| 415 | { |
| 416 | debugf0("%s()\n", __func__); |
| 417 | |
| 418 | /* take the arg 'msec' and set it into the control structure |
| 419 | * to used in the time period calculation |
| 420 | * then calc the number of jiffies that represents |
| 421 | */ |
| 422 | edac_dev->poll_msec = msec; |
| 423 | edac_dev->delay = msecs_to_jiffies(msec); |
| 424 | |
| 425 | INIT_DELAYED_WORK(&edac_dev->work, edac_device_workq_function); |
| 426 | |
| 427 | /* optimize here for the 1 second case, which will be normal value, to |
| 428 | * fire ON the 1 second time event. This helps reduce all sorts of |
| 429 | * timers firing on sub-second basis, while they are happy |
| 430 | * to fire together on the 1 second exactly |
| 431 | */ |
| 432 | if (edac_dev->poll_msec == 1000) |
| 433 | queue_delayed_work(edac_workqueue, &edac_dev->work, |
| 434 | round_jiffies_relative(edac_dev->delay)); |
| 435 | else |
| 436 | queue_delayed_work(edac_workqueue, &edac_dev->work, |
| 437 | edac_dev->delay); |
| 438 | } |
| 439 | |
| 440 | /* |
| 441 | * edac_device_workq_teardown |
| 442 | * stop the workq processing on this edac_dev |
| 443 | */ |
| 444 | void edac_device_workq_teardown(struct edac_device_ctl_info *edac_dev) |
| 445 | { |
| 446 | int status; |
| 447 | |
| 448 | status = cancel_delayed_work(&edac_dev->work); |
| 449 | if (status == 0) { |
| 450 | /* workq instance might be running, wait for it */ |
| 451 | flush_workqueue(edac_workqueue); |
| 452 | } |
| 453 | } |
| 454 | |
| 455 | /* |
| 456 | * edac_device_reset_delay_period |
| 457 | * |
| 458 | * need to stop any outstanding workq queued up at this time |
| 459 | * because we will be resetting the sleep time. |
| 460 | * Then restart the workq on the new delay |
| 461 | */ |
| 462 | void edac_device_reset_delay_period(struct edac_device_ctl_info *edac_dev, |
| 463 | unsigned long value) |
| 464 | { |
| 465 | /* cancel the current workq request, without the mutex lock */ |
| 466 | edac_device_workq_teardown(edac_dev); |
| 467 | |
| 468 | /* acquire the mutex before doing the workq setup */ |
| 469 | mutex_lock(&device_ctls_mutex); |
| 470 | |
| 471 | /* restart the workq request, with new delay value */ |
| 472 | edac_device_workq_setup(edac_dev, value); |
| 473 | |
| 474 | mutex_unlock(&device_ctls_mutex); |
| 475 | } |
| 476 | |
| 477 | /* |
| 478 | * edac_device_alloc_index: Allocate a unique device index number |
| 479 | * |
| 480 | * Return: |
| 481 | * allocated index number |
| 482 | */ |
| 483 | int edac_device_alloc_index(void) |
| 484 | { |
| 485 | static atomic_t device_indexes = ATOMIC_INIT(0); |
| 486 | |
| 487 | return atomic_inc_return(&device_indexes) - 1; |
| 488 | } |
| 489 | EXPORT_SYMBOL_GPL(edac_device_alloc_index); |
| 490 | |
| 491 | /** |
| 492 | * edac_device_add_device: Insert the 'edac_dev' structure into the |
| 493 | * edac_device global list and create sysfs entries associated with |
| 494 | * edac_device structure. |
| 495 | * @edac_device: pointer to the edac_device structure to be added to the list |
| 496 | * 'edac_device' structure. |
| 497 | * |
| 498 | * Return: |
| 499 | * 0 Success |
| 500 | * !0 Failure |
| 501 | */ |
| 502 | int edac_device_add_device(struct edac_device_ctl_info *edac_dev) |
| 503 | { |
| 504 | debugf0("%s()\n", __func__); |
| 505 | |
| 506 | #ifdef CONFIG_EDAC_DEBUG |
| 507 | if (edac_debug_level >= 3) |
| 508 | edac_device_dump_device(edac_dev); |
| 509 | #endif |
| 510 | mutex_lock(&device_ctls_mutex); |
| 511 | |
| 512 | if (add_edac_dev_to_global_list(edac_dev)) |
| 513 | goto fail0; |
| 514 | |
| 515 | /* set load time so that error rate can be tracked */ |
| 516 | edac_dev->start_time = jiffies; |
| 517 | |
| 518 | /* create this instance's sysfs entries */ |
| 519 | if (edac_device_create_sysfs(edac_dev)) { |
| 520 | edac_device_printk(edac_dev, KERN_WARNING, |
| 521 | "failed to create sysfs device\n"); |
| 522 | goto fail1; |
| 523 | } |
| 524 | |
| 525 | /* If there IS a check routine, then we are running POLLED */ |
| 526 | if (edac_dev->edac_check != NULL) { |
| 527 | /* This instance is NOW RUNNING */ |
| 528 | edac_dev->op_state = OP_RUNNING_POLL; |
| 529 | |
| 530 | /* |
| 531 | * enable workq processing on this instance, |
| 532 | * default = 1000 msec |
| 533 | */ |
| 534 | edac_device_workq_setup(edac_dev, 1000); |
| 535 | } else { |
| 536 | edac_dev->op_state = OP_RUNNING_INTERRUPT; |
| 537 | } |
| 538 | |
| 539 | /* Report action taken */ |
| 540 | edac_device_printk(edac_dev, KERN_INFO, |
| 541 | "Giving out device to module '%s' controller " |
| 542 | "'%s': DEV '%s' (%s)\n", |
| 543 | edac_dev->mod_name, |
| 544 | edac_dev->ctl_name, |
| 545 | edac_dev_name(edac_dev), |
| 546 | edac_op_state_to_string(edac_dev->op_state)); |
| 547 | |
| 548 | mutex_unlock(&device_ctls_mutex); |
| 549 | return 0; |
| 550 | |
| 551 | fail1: |
| 552 | /* Some error, so remove the entry from the lsit */ |
| 553 | del_edac_device_from_global_list(edac_dev); |
| 554 | |
| 555 | fail0: |
| 556 | mutex_unlock(&device_ctls_mutex); |
| 557 | return 1; |
| 558 | } |
| 559 | EXPORT_SYMBOL_GPL(edac_device_add_device); |
| 560 | |
| 561 | /** |
| 562 | * edac_device_del_device: |
| 563 | * Remove sysfs entries for specified edac_device structure and |
| 564 | * then remove edac_device structure from global list |
| 565 | * |
| 566 | * @pdev: |
| 567 | * Pointer to 'struct device' representing edac_device |
| 568 | * structure to remove. |
| 569 | * |
| 570 | * Return: |
| 571 | * Pointer to removed edac_device structure, |
| 572 | * OR NULL if device not found. |
| 573 | */ |
| 574 | struct edac_device_ctl_info *edac_device_del_device(struct device *dev) |
| 575 | { |
| 576 | struct edac_device_ctl_info *edac_dev; |
| 577 | |
| 578 | debugf0("%s()\n", __func__); |
| 579 | |
| 580 | mutex_lock(&device_ctls_mutex); |
| 581 | |
| 582 | /* Find the structure on the list, if not there, then leave */ |
| 583 | edac_dev = find_edac_device_by_dev(dev); |
| 584 | if (edac_dev == NULL) { |
| 585 | mutex_unlock(&device_ctls_mutex); |
| 586 | return NULL; |
| 587 | } |
| 588 | |
| 589 | /* mark this instance as OFFLINE */ |
| 590 | edac_dev->op_state = OP_OFFLINE; |
| 591 | |
| 592 | /* deregister from global list */ |
| 593 | del_edac_device_from_global_list(edac_dev); |
| 594 | |
| 595 | mutex_unlock(&device_ctls_mutex); |
| 596 | |
| 597 | /* clear workq processing on this instance */ |
| 598 | edac_device_workq_teardown(edac_dev); |
| 599 | |
| 600 | /* Tear down the sysfs entries for this instance */ |
| 601 | edac_device_remove_sysfs(edac_dev); |
| 602 | |
| 603 | edac_printk(KERN_INFO, EDAC_MC, |
| 604 | "Removed device %d for %s %s: DEV %s\n", |
| 605 | edac_dev->dev_idx, |
| 606 | edac_dev->mod_name, edac_dev->ctl_name, edac_dev_name(edac_dev)); |
| 607 | |
| 608 | return edac_dev; |
| 609 | } |
| 610 | EXPORT_SYMBOL_GPL(edac_device_del_device); |
| 611 | |
| 612 | static inline int edac_device_get_log_ce(struct edac_device_ctl_info *edac_dev) |
| 613 | { |
| 614 | return edac_dev->log_ce; |
| 615 | } |
| 616 | |
| 617 | static inline int edac_device_get_log_ue(struct edac_device_ctl_info *edac_dev) |
| 618 | { |
| 619 | return edac_dev->log_ue; |
| 620 | } |
| 621 | |
| 622 | static inline int edac_device_get_panic_on_ue(struct edac_device_ctl_info |
| 623 | *edac_dev) |
| 624 | { |
| 625 | return edac_dev->panic_on_ue; |
| 626 | } |
| 627 | |
| 628 | /* |
| 629 | * edac_device_handle_ce |
| 630 | * perform a common output and handling of an 'edac_dev' CE event |
| 631 | */ |
| 632 | void edac_device_handle_ce(struct edac_device_ctl_info *edac_dev, |
| 633 | int inst_nr, int block_nr, const char *msg) |
| 634 | { |
| 635 | struct edac_device_instance *instance; |
| 636 | struct edac_device_block *block = NULL; |
| 637 | |
| 638 | if ((inst_nr >= edac_dev->nr_instances) || (inst_nr < 0)) { |
| 639 | edac_device_printk(edac_dev, KERN_ERR, |
| 640 | "INTERNAL ERROR: 'instance' out of range " |
| 641 | "(%d >= %d)\n", inst_nr, |
| 642 | edac_dev->nr_instances); |
| 643 | return; |
| 644 | } |
| 645 | |
| 646 | instance = edac_dev->instances + inst_nr; |
| 647 | |
| 648 | if ((block_nr >= instance->nr_blocks) || (block_nr < 0)) { |
| 649 | edac_device_printk(edac_dev, KERN_ERR, |
| 650 | "INTERNAL ERROR: instance %d 'block' " |
| 651 | "out of range (%d >= %d)\n", |
| 652 | inst_nr, block_nr, |
| 653 | instance->nr_blocks); |
| 654 | return; |
| 655 | } |
| 656 | |
| 657 | if (instance->nr_blocks > 0) { |
| 658 | block = instance->blocks + block_nr; |
| 659 | block->counters.ce_count++; |
| 660 | } |
| 661 | |
| 662 | /* Propagate the count up the 'totals' tree */ |
| 663 | instance->counters.ce_count++; |
| 664 | edac_dev->counters.ce_count++; |
| 665 | |
| 666 | if (edac_device_get_log_ce(edac_dev)) |
| 667 | edac_device_printk(edac_dev, KERN_WARNING, |
| 668 | "CE: %s instance: %s block: %s '%s'\n", |
| 669 | edac_dev->ctl_name, instance->name, |
| 670 | block ? block->name : "N/A", msg); |
| 671 | } |
| 672 | EXPORT_SYMBOL_GPL(edac_device_handle_ce); |
| 673 | |
| 674 | /* |
| 675 | * edac_device_handle_ue |
| 676 | * perform a common output and handling of an 'edac_dev' UE event |
| 677 | */ |
| 678 | void edac_device_handle_ue(struct edac_device_ctl_info *edac_dev, |
| 679 | int inst_nr, int block_nr, const char *msg) |
| 680 | { |
| 681 | struct edac_device_instance *instance; |
| 682 | struct edac_device_block *block = NULL; |
| 683 | |
| 684 | if ((inst_nr >= edac_dev->nr_instances) || (inst_nr < 0)) { |
| 685 | edac_device_printk(edac_dev, KERN_ERR, |
| 686 | "INTERNAL ERROR: 'instance' out of range " |
| 687 | "(%d >= %d)\n", inst_nr, |
| 688 | edac_dev->nr_instances); |
| 689 | return; |
| 690 | } |
| 691 | |
| 692 | instance = edac_dev->instances + inst_nr; |
| 693 | |
| 694 | if ((block_nr >= instance->nr_blocks) || (block_nr < 0)) { |
| 695 | edac_device_printk(edac_dev, KERN_ERR, |
| 696 | "INTERNAL ERROR: instance %d 'block' " |
| 697 | "out of range (%d >= %d)\n", |
| 698 | inst_nr, block_nr, |
| 699 | instance->nr_blocks); |
| 700 | return; |
| 701 | } |
| 702 | |
| 703 | if (instance->nr_blocks > 0) { |
| 704 | block = instance->blocks + block_nr; |
| 705 | block->counters.ue_count++; |
| 706 | } |
| 707 | |
| 708 | /* Propagate the count up the 'totals' tree */ |
| 709 | instance->counters.ue_count++; |
| 710 | edac_dev->counters.ue_count++; |
| 711 | |
| 712 | if (edac_device_get_log_ue(edac_dev)) |
| 713 | edac_device_printk(edac_dev, KERN_EMERG, |
| 714 | "UE: %s instance: %s block: %s '%s'\n", |
| 715 | edac_dev->ctl_name, instance->name, |
| 716 | block ? block->name : "N/A", msg); |
| 717 | |
| 718 | if (edac_device_get_panic_on_ue(edac_dev)) |
| 719 | panic("EDAC %s: UE instance: %s block %s '%s'\n", |
| 720 | edac_dev->ctl_name, instance->name, |
| 721 | block ? block->name : "N/A", msg); |
| 722 | } |
| 723 | EXPORT_SYMBOL_GPL(edac_device_handle_ue); |