blob: b9cbd65f49b5b01070c8956124789d08be6f09f1 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * NAND flash simulator.
3 *
4 * Author: Artem B. Bityuckiy <dedekind@oktetlabs.ru>, <dedekind@infradead.org>
5 *
6 * Copyright (C) 2004 Nokia Corporation
7 *
8 * Note: NS means "NAND Simulator".
9 * Note: Input means input TO flash chip, output means output FROM chip.
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2, or (at your option) any later
14 * version.
15 *
16 * This program is distributed in the hope that it will be useful, but
17 * WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
19 * Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA
24 */
25
26#include <linux/init.h>
27#include <linux/types.h>
28#include <linux/module.h>
29#include <linux/moduleparam.h>
30#include <linux/vmalloc.h>
31#include <linux/math64.h>
32#include <linux/slab.h>
33#include <linux/errno.h>
34#include <linux/string.h>
35#include <linux/mtd/mtd.h>
36#include <linux/mtd/nand.h>
37#include <linux/mtd/nand_bch.h>
38#include <linux/mtd/partitions.h>
39#include <linux/delay.h>
40#include <linux/list.h>
41#include <linux/random.h>
42#include <linux/sched.h>
43#include <linux/fs.h>
44#include <linux/pagemap.h>
45
46/* Default simulator parameters values */
47#if !defined(CONFIG_NANDSIM_FIRST_ID_BYTE) || \
48 !defined(CONFIG_NANDSIM_SECOND_ID_BYTE) || \
49 !defined(CONFIG_NANDSIM_THIRD_ID_BYTE) || \
50 !defined(CONFIG_NANDSIM_FOURTH_ID_BYTE)
51#define CONFIG_NANDSIM_FIRST_ID_BYTE 0x98
52#define CONFIG_NANDSIM_SECOND_ID_BYTE 0x39
53#define CONFIG_NANDSIM_THIRD_ID_BYTE 0xFF /* No byte */
54#define CONFIG_NANDSIM_FOURTH_ID_BYTE 0xFF /* No byte */
55#endif
56
57#ifndef CONFIG_NANDSIM_ACCESS_DELAY
58#define CONFIG_NANDSIM_ACCESS_DELAY 25
59#endif
60#ifndef CONFIG_NANDSIM_PROGRAMM_DELAY
61#define CONFIG_NANDSIM_PROGRAMM_DELAY 200
62#endif
63#ifndef CONFIG_NANDSIM_ERASE_DELAY
64#define CONFIG_NANDSIM_ERASE_DELAY 2
65#endif
66#ifndef CONFIG_NANDSIM_OUTPUT_CYCLE
67#define CONFIG_NANDSIM_OUTPUT_CYCLE 40
68#endif
69#ifndef CONFIG_NANDSIM_INPUT_CYCLE
70#define CONFIG_NANDSIM_INPUT_CYCLE 50
71#endif
72#ifndef CONFIG_NANDSIM_BUS_WIDTH
73#define CONFIG_NANDSIM_BUS_WIDTH 8
74#endif
75#ifndef CONFIG_NANDSIM_DO_DELAYS
76#define CONFIG_NANDSIM_DO_DELAYS 0
77#endif
78#ifndef CONFIG_NANDSIM_LOG
79#define CONFIG_NANDSIM_LOG 0
80#endif
81#ifndef CONFIG_NANDSIM_DBG
82#define CONFIG_NANDSIM_DBG 0
83#endif
84#ifndef CONFIG_NANDSIM_MAX_PARTS
85#define CONFIG_NANDSIM_MAX_PARTS 32
86#endif
87
88static uint first_id_byte = CONFIG_NANDSIM_FIRST_ID_BYTE;
89static uint second_id_byte = CONFIG_NANDSIM_SECOND_ID_BYTE;
90static uint third_id_byte = CONFIG_NANDSIM_THIRD_ID_BYTE;
91static uint fourth_id_byte = CONFIG_NANDSIM_FOURTH_ID_BYTE;
92static uint access_delay = CONFIG_NANDSIM_ACCESS_DELAY;
93static uint programm_delay = CONFIG_NANDSIM_PROGRAMM_DELAY;
94static uint erase_delay = CONFIG_NANDSIM_ERASE_DELAY;
95static uint output_cycle = CONFIG_NANDSIM_OUTPUT_CYCLE;
96static uint input_cycle = CONFIG_NANDSIM_INPUT_CYCLE;
97static uint bus_width = CONFIG_NANDSIM_BUS_WIDTH;
98static uint do_delays = CONFIG_NANDSIM_DO_DELAYS;
99static uint log = CONFIG_NANDSIM_LOG;
100static uint dbg = CONFIG_NANDSIM_DBG;
101static unsigned long parts[CONFIG_NANDSIM_MAX_PARTS];
102static unsigned int parts_num;
103static char *badblocks = NULL;
104static char *weakblocks = NULL;
105static char *weakpages = NULL;
106static unsigned int bitflips = 0;
107static char *gravepages = NULL;
108static unsigned int rptwear = 0;
109static unsigned int overridesize = 0;
110static char *cache_file = NULL;
111static unsigned int bbt;
112static unsigned int bch;
113
114module_param(first_id_byte, uint, 0400);
115module_param(second_id_byte, uint, 0400);
116module_param(third_id_byte, uint, 0400);
117module_param(fourth_id_byte, uint, 0400);
118module_param(access_delay, uint, 0400);
119module_param(programm_delay, uint, 0400);
120module_param(erase_delay, uint, 0400);
121module_param(output_cycle, uint, 0400);
122module_param(input_cycle, uint, 0400);
123module_param(bus_width, uint, 0400);
124module_param(do_delays, uint, 0400);
125module_param(log, uint, 0400);
126module_param(dbg, uint, 0400);
127module_param_array(parts, ulong, &parts_num, 0400);
128module_param(badblocks, charp, 0400);
129module_param(weakblocks, charp, 0400);
130module_param(weakpages, charp, 0400);
131module_param(bitflips, uint, 0400);
132module_param(gravepages, charp, 0400);
133module_param(rptwear, uint, 0400);
134module_param(overridesize, uint, 0400);
135module_param(cache_file, charp, 0400);
136module_param(bbt, uint, 0400);
137module_param(bch, uint, 0400);
138
139MODULE_PARM_DESC(first_id_byte, "The first byte returned by NAND Flash 'read ID' command (manufacturer ID)");
140MODULE_PARM_DESC(second_id_byte, "The second byte returned by NAND Flash 'read ID' command (chip ID)");
141MODULE_PARM_DESC(third_id_byte, "The third byte returned by NAND Flash 'read ID' command");
142MODULE_PARM_DESC(fourth_id_byte, "The fourth byte returned by NAND Flash 'read ID' command");
143MODULE_PARM_DESC(access_delay, "Initial page access delay (microseconds)");
144MODULE_PARM_DESC(programm_delay, "Page programm delay (microseconds");
145MODULE_PARM_DESC(erase_delay, "Sector erase delay (milliseconds)");
146MODULE_PARM_DESC(output_cycle, "Word output (from flash) time (nanoseconds)");
147MODULE_PARM_DESC(input_cycle, "Word input (to flash) time (nanoseconds)");
148MODULE_PARM_DESC(bus_width, "Chip's bus width (8- or 16-bit)");
149MODULE_PARM_DESC(do_delays, "Simulate NAND delays using busy-waits if not zero");
150MODULE_PARM_DESC(log, "Perform logging if not zero");
151MODULE_PARM_DESC(dbg, "Output debug information if not zero");
152MODULE_PARM_DESC(parts, "Partition sizes (in erase blocks) separated by commas");
153/* Page and erase block positions for the following parameters are independent of any partitions */
154MODULE_PARM_DESC(badblocks, "Erase blocks that are initially marked bad, separated by commas");
155MODULE_PARM_DESC(weakblocks, "Weak erase blocks [: remaining erase cycles (defaults to 3)]"
156 " separated by commas e.g. 113:2 means eb 113"
157 " can be erased only twice before failing");
158MODULE_PARM_DESC(weakpages, "Weak pages [: maximum writes (defaults to 3)]"
159 " separated by commas e.g. 1401:2 means page 1401"
160 " can be written only twice before failing");
161MODULE_PARM_DESC(bitflips, "Maximum number of random bit flips per page (zero by default)");
162MODULE_PARM_DESC(gravepages, "Pages that lose data [: maximum reads (defaults to 3)]"
163 " separated by commas e.g. 1401:2 means page 1401"
164 " can be read only twice before failing");
165MODULE_PARM_DESC(rptwear, "Number of erases between reporting wear, if not zero");
166MODULE_PARM_DESC(overridesize, "Specifies the NAND Flash size overriding the ID bytes. "
167 "The size is specified in erase blocks and as the exponent of a power of two"
168 " e.g. 5 means a size of 32 erase blocks");
169MODULE_PARM_DESC(cache_file, "File to use to cache nand pages instead of memory");
170MODULE_PARM_DESC(bbt, "0 OOB, 1 BBT with marker in OOB, 2 BBT with marker in data area");
171MODULE_PARM_DESC(bch, "Enable BCH ecc and set how many bits should "
172 "be correctable in 512-byte blocks");
173
174/* The largest possible page size */
175#define NS_LARGEST_PAGE_SIZE 4096
176
177/* The prefix for simulator output */
178#define NS_OUTPUT_PREFIX "[nandsim]"
179
180/* Simulator's output macros (logging, debugging, warning, error) */
181#define NS_LOG(args...) \
182 do { if (log) printk(KERN_DEBUG NS_OUTPUT_PREFIX " log: " args); } while(0)
183#define NS_DBG(args...) \
184 do { if (dbg) printk(KERN_DEBUG NS_OUTPUT_PREFIX " debug: " args); } while(0)
185#define NS_WARN(args...) \
186 do { printk(KERN_WARNING NS_OUTPUT_PREFIX " warning: " args); } while(0)
187#define NS_ERR(args...) \
188 do { printk(KERN_ERR NS_OUTPUT_PREFIX " error: " args); } while(0)
189#define NS_INFO(args...) \
190 do { printk(KERN_INFO NS_OUTPUT_PREFIX " " args); } while(0)
191
192/* Busy-wait delay macros (microseconds, milliseconds) */
193#define NS_UDELAY(us) \
194 do { if (do_delays) udelay(us); } while(0)
195#define NS_MDELAY(us) \
196 do { if (do_delays) mdelay(us); } while(0)
197
198/* Is the nandsim structure initialized ? */
199#define NS_IS_INITIALIZED(ns) ((ns)->geom.totsz != 0)
200
201/* Good operation completion status */
202#define NS_STATUS_OK(ns) (NAND_STATUS_READY | (NAND_STATUS_WP * ((ns)->lines.wp == 0)))
203
204/* Operation failed completion status */
205#define NS_STATUS_FAILED(ns) (NAND_STATUS_FAIL | NS_STATUS_OK(ns))
206
207/* Calculate the page offset in flash RAM image by (row, column) address */
208#define NS_RAW_OFFSET(ns) \
209 (((ns)->regs.row << (ns)->geom.pgshift) + ((ns)->regs.row * (ns)->geom.oobsz) + (ns)->regs.column)
210
211/* Calculate the OOB offset in flash RAM image by (row, column) address */
212#define NS_RAW_OFFSET_OOB(ns) (NS_RAW_OFFSET(ns) + ns->geom.pgsz)
213
214/* After a command is input, the simulator goes to one of the following states */
215#define STATE_CMD_READ0 0x00000001 /* read data from the beginning of page */
216#define STATE_CMD_READ1 0x00000002 /* read data from the second half of page */
217#define STATE_CMD_READSTART 0x00000003 /* read data second command (large page devices) */
218#define STATE_CMD_PAGEPROG 0x00000004 /* start page program */
219#define STATE_CMD_READOOB 0x00000005 /* read OOB area */
220#define STATE_CMD_ERASE1 0x00000006 /* sector erase first command */
221#define STATE_CMD_STATUS 0x00000007 /* read status */
222#define STATE_CMD_STATUS_M 0x00000008 /* read multi-plane status (isn't implemented) */
223#define STATE_CMD_SEQIN 0x00000009 /* sequential data input */
224#define STATE_CMD_READID 0x0000000A /* read ID */
225#define STATE_CMD_ERASE2 0x0000000B /* sector erase second command */
226#define STATE_CMD_RESET 0x0000000C /* reset */
227#define STATE_CMD_RNDOUT 0x0000000D /* random output command */
228#define STATE_CMD_RNDOUTSTART 0x0000000E /* random output start command */
229#define STATE_CMD_MASK 0x0000000F /* command states mask */
230
231/* After an address is input, the simulator goes to one of these states */
232#define STATE_ADDR_PAGE 0x00000010 /* full (row, column) address is accepted */
233#define STATE_ADDR_SEC 0x00000020 /* sector address was accepted */
234#define STATE_ADDR_COLUMN 0x00000030 /* column address was accepted */
235#define STATE_ADDR_ZERO 0x00000040 /* one byte zero address was accepted */
236#define STATE_ADDR_MASK 0x00000070 /* address states mask */
237
238/* During data input/output the simulator is in these states */
239#define STATE_DATAIN 0x00000100 /* waiting for data input */
240#define STATE_DATAIN_MASK 0x00000100 /* data input states mask */
241
242#define STATE_DATAOUT 0x00001000 /* waiting for page data output */
243#define STATE_DATAOUT_ID 0x00002000 /* waiting for ID bytes output */
244#define STATE_DATAOUT_STATUS 0x00003000 /* waiting for status output */
245#define STATE_DATAOUT_STATUS_M 0x00004000 /* waiting for multi-plane status output */
246#define STATE_DATAOUT_MASK 0x00007000 /* data output states mask */
247
248/* Previous operation is done, ready to accept new requests */
249#define STATE_READY 0x00000000
250
251/* This state is used to mark that the next state isn't known yet */
252#define STATE_UNKNOWN 0x10000000
253
254/* Simulator's actions bit masks */
255#define ACTION_CPY 0x00100000 /* copy page/OOB to the internal buffer */
256#define ACTION_PRGPAGE 0x00200000 /* program the internal buffer to flash */
257#define ACTION_SECERASE 0x00300000 /* erase sector */
258#define ACTION_ZEROOFF 0x00400000 /* don't add any offset to address */
259#define ACTION_HALFOFF 0x00500000 /* add to address half of page */
260#define ACTION_OOBOFF 0x00600000 /* add to address OOB offset */
261#define ACTION_MASK 0x00700000 /* action mask */
262
263#define NS_OPER_NUM 13 /* Number of operations supported by the simulator */
264#define NS_OPER_STATES 6 /* Maximum number of states in operation */
265
266#define OPT_ANY 0xFFFFFFFF /* any chip supports this operation */
267#define OPT_PAGE256 0x00000001 /* 256-byte page chips */
268#define OPT_PAGE512 0x00000002 /* 512-byte page chips */
269#define OPT_PAGE2048 0x00000008 /* 2048-byte page chips */
270#define OPT_SMARTMEDIA 0x00000010 /* SmartMedia technology chips */
271#define OPT_AUTOINCR 0x00000020 /* page number auto incrementation is possible */
272#define OPT_PAGE512_8BIT 0x00000040 /* 512-byte page chips with 8-bit bus width */
273#define OPT_PAGE4096 0x00000080 /* 4096-byte page chips */
274#define OPT_LARGEPAGE (OPT_PAGE2048 | OPT_PAGE4096) /* 2048 & 4096-byte page chips */
275#define OPT_SMALLPAGE (OPT_PAGE256 | OPT_PAGE512) /* 256 and 512-byte page chips */
276
277/* Remove action bits from state */
278#define NS_STATE(x) ((x) & ~ACTION_MASK)
279
280/*
281 * Maximum previous states which need to be saved. Currently saving is
282 * only needed for page program operation with preceded read command
283 * (which is only valid for 512-byte pages).
284 */
285#define NS_MAX_PREVSTATES 1
286
287/* Maximum page cache pages needed to read or write a NAND page to the cache_file */
288#define NS_MAX_HELD_PAGES 16
289
290/*
291 * A union to represent flash memory contents and flash buffer.
292 */
293union ns_mem {
294 u_char *byte; /* for byte access */
295 uint16_t *word; /* for 16-bit word access */
296};
297
298/*
299 * The structure which describes all the internal simulator data.
300 */
301struct nandsim {
302 struct mtd_partition partitions[CONFIG_NANDSIM_MAX_PARTS];
303 unsigned int nbparts;
304
305 uint busw; /* flash chip bus width (8 or 16) */
306 u_char ids[4]; /* chip's ID bytes */
307 uint32_t options; /* chip's characteristic bits */
308 uint32_t state; /* current chip state */
309 uint32_t nxstate; /* next expected state */
310
311 uint32_t *op; /* current operation, NULL operations isn't known yet */
312 uint32_t pstates[NS_MAX_PREVSTATES]; /* previous states */
313 uint16_t npstates; /* number of previous states saved */
314 uint16_t stateidx; /* current state index */
315
316 /* The simulated NAND flash pages array */
317 union ns_mem *pages;
318
319 /* Slab allocator for nand pages */
320 struct kmem_cache *nand_pages_slab;
321
322 /* Internal buffer of page + OOB size bytes */
323 union ns_mem buf;
324
325 /* NAND flash "geometry" */
326 struct {
327 uint64_t totsz; /* total flash size, bytes */
328 uint32_t secsz; /* flash sector (erase block) size, bytes */
329 uint pgsz; /* NAND flash page size, bytes */
330 uint oobsz; /* page OOB area size, bytes */
331 uint64_t totszoob; /* total flash size including OOB, bytes */
332 uint pgszoob; /* page size including OOB , bytes*/
333 uint secszoob; /* sector size including OOB, bytes */
334 uint pgnum; /* total number of pages */
335 uint pgsec; /* number of pages per sector */
336 uint secshift; /* bits number in sector size */
337 uint pgshift; /* bits number in page size */
338 uint oobshift; /* bits number in OOB size */
339 uint pgaddrbytes; /* bytes per page address */
340 uint secaddrbytes; /* bytes per sector address */
341 uint idbytes; /* the number ID bytes that this chip outputs */
342 } geom;
343
344 /* NAND flash internal registers */
345 struct {
346 unsigned command; /* the command register */
347 u_char status; /* the status register */
348 uint row; /* the page number */
349 uint column; /* the offset within page */
350 uint count; /* internal counter */
351 uint num; /* number of bytes which must be processed */
352 uint off; /* fixed page offset */
353 } regs;
354
355 /* NAND flash lines state */
356 struct {
357 int ce; /* chip Enable */
358 int cle; /* command Latch Enable */
359 int ale; /* address Latch Enable */
360 int wp; /* write Protect */
361 } lines;
362
363 /* Fields needed when using a cache file */
364 struct file *cfile; /* Open file */
365 unsigned char *pages_written; /* Which pages have been written */
366 void *file_buf;
367 struct page *held_pages[NS_MAX_HELD_PAGES];
368 int held_cnt;
369};
370
371/*
372 * Operations array. To perform any operation the simulator must pass
373 * through the correspondent states chain.
374 */
375static struct nandsim_operations {
376 uint32_t reqopts; /* options which are required to perform the operation */
377 uint32_t states[NS_OPER_STATES]; /* operation's states */
378} ops[NS_OPER_NUM] = {
379 /* Read page + OOB from the beginning */
380 {OPT_SMALLPAGE, {STATE_CMD_READ0 | ACTION_ZEROOFF, STATE_ADDR_PAGE | ACTION_CPY,
381 STATE_DATAOUT, STATE_READY}},
382 /* Read page + OOB from the second half */
383 {OPT_PAGE512_8BIT, {STATE_CMD_READ1 | ACTION_HALFOFF, STATE_ADDR_PAGE | ACTION_CPY,
384 STATE_DATAOUT, STATE_READY}},
385 /* Read OOB */
386 {OPT_SMALLPAGE, {STATE_CMD_READOOB | ACTION_OOBOFF, STATE_ADDR_PAGE | ACTION_CPY,
387 STATE_DATAOUT, STATE_READY}},
388 /* Program page starting from the beginning */
389 {OPT_ANY, {STATE_CMD_SEQIN, STATE_ADDR_PAGE, STATE_DATAIN,
390 STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
391 /* Program page starting from the beginning */
392 {OPT_SMALLPAGE, {STATE_CMD_READ0, STATE_CMD_SEQIN | ACTION_ZEROOFF, STATE_ADDR_PAGE,
393 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
394 /* Program page starting from the second half */
395 {OPT_PAGE512, {STATE_CMD_READ1, STATE_CMD_SEQIN | ACTION_HALFOFF, STATE_ADDR_PAGE,
396 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
397 /* Program OOB */
398 {OPT_SMALLPAGE, {STATE_CMD_READOOB, STATE_CMD_SEQIN | ACTION_OOBOFF, STATE_ADDR_PAGE,
399 STATE_DATAIN, STATE_CMD_PAGEPROG | ACTION_PRGPAGE, STATE_READY}},
400 /* Erase sector */
401 {OPT_ANY, {STATE_CMD_ERASE1, STATE_ADDR_SEC, STATE_CMD_ERASE2 | ACTION_SECERASE, STATE_READY}},
402 /* Read status */
403 {OPT_ANY, {STATE_CMD_STATUS, STATE_DATAOUT_STATUS, STATE_READY}},
404 /* Read multi-plane status */
405 {OPT_SMARTMEDIA, {STATE_CMD_STATUS_M, STATE_DATAOUT_STATUS_M, STATE_READY}},
406 /* Read ID */
407 {OPT_ANY, {STATE_CMD_READID, STATE_ADDR_ZERO, STATE_DATAOUT_ID, STATE_READY}},
408 /* Large page devices read page */
409 {OPT_LARGEPAGE, {STATE_CMD_READ0, STATE_ADDR_PAGE, STATE_CMD_READSTART | ACTION_CPY,
410 STATE_DATAOUT, STATE_READY}},
411 /* Large page devices random page read */
412 {OPT_LARGEPAGE, {STATE_CMD_RNDOUT, STATE_ADDR_COLUMN, STATE_CMD_RNDOUTSTART | ACTION_CPY,
413 STATE_DATAOUT, STATE_READY}},
414};
415
416struct weak_block {
417 struct list_head list;
418 unsigned int erase_block_no;
419 unsigned int max_erases;
420 unsigned int erases_done;
421};
422
423static LIST_HEAD(weak_blocks);
424
425struct weak_page {
426 struct list_head list;
427 unsigned int page_no;
428 unsigned int max_writes;
429 unsigned int writes_done;
430};
431
432static LIST_HEAD(weak_pages);
433
434struct grave_page {
435 struct list_head list;
436 unsigned int page_no;
437 unsigned int max_reads;
438 unsigned int reads_done;
439};
440
441static LIST_HEAD(grave_pages);
442
443static unsigned long *erase_block_wear = NULL;
444static unsigned int wear_eb_count = 0;
445static unsigned long total_wear = 0;
446static unsigned int rptwear_cnt = 0;
447
448/* MTD structure for NAND controller */
449static struct mtd_info *nsmtd;
450
451static u_char ns_verify_buf[NS_LARGEST_PAGE_SIZE];
452
453/*
454 * Allocate array of page pointers, create slab allocation for an array
455 * and initialize the array by NULL pointers.
456 *
457 * RETURNS: 0 if success, -ENOMEM if memory alloc fails.
458 */
459static int alloc_device(struct nandsim *ns)
460{
461 struct file *cfile;
462 int i, err;
463
464 if (cache_file) {
465 cfile = filp_open(cache_file, O_CREAT | O_RDWR | O_LARGEFILE, 0600);
466 if (IS_ERR(cfile))
467 return PTR_ERR(cfile);
468 if (!cfile->f_op || (!cfile->f_op->read && !cfile->f_op->aio_read)) {
469 NS_ERR("alloc_device: cache file not readable\n");
470 err = -EINVAL;
471 goto err_close;
472 }
473 if (!cfile->f_op->write && !cfile->f_op->aio_write) {
474 NS_ERR("alloc_device: cache file not writeable\n");
475 err = -EINVAL;
476 goto err_close;
477 }
478 ns->pages_written = vzalloc(ns->geom.pgnum);
479 if (!ns->pages_written) {
480 NS_ERR("alloc_device: unable to allocate pages written array\n");
481 err = -ENOMEM;
482 goto err_close;
483 }
484 ns->file_buf = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
485 if (!ns->file_buf) {
486 NS_ERR("alloc_device: unable to allocate file buf\n");
487 err = -ENOMEM;
488 goto err_free;
489 }
490 ns->cfile = cfile;
491 return 0;
492 }
493
494 ns->pages = vmalloc(ns->geom.pgnum * sizeof(union ns_mem));
495 if (!ns->pages) {
496 NS_ERR("alloc_device: unable to allocate page array\n");
497 return -ENOMEM;
498 }
499 for (i = 0; i < ns->geom.pgnum; i++) {
500 ns->pages[i].byte = NULL;
501 }
502 ns->nand_pages_slab = kmem_cache_create("nandsim",
503 ns->geom.pgszoob, 0, 0, NULL);
504 if (!ns->nand_pages_slab) {
505 NS_ERR("cache_create: unable to create kmem_cache\n");
506 return -ENOMEM;
507 }
508
509 return 0;
510
511err_free:
512 vfree(ns->pages_written);
513err_close:
514 filp_close(cfile, NULL);
515 return err;
516}
517
518/*
519 * Free any allocated pages, and free the array of page pointers.
520 */
521static void free_device(struct nandsim *ns)
522{
523 int i;
524
525 if (ns->cfile) {
526 kfree(ns->file_buf);
527 vfree(ns->pages_written);
528 filp_close(ns->cfile, NULL);
529 return;
530 }
531
532 if (ns->pages) {
533 for (i = 0; i < ns->geom.pgnum; i++) {
534 if (ns->pages[i].byte)
535 kmem_cache_free(ns->nand_pages_slab,
536 ns->pages[i].byte);
537 }
538 kmem_cache_destroy(ns->nand_pages_slab);
539 vfree(ns->pages);
540 }
541}
542
543static char *get_partition_name(int i)
544{
545 char buf[64];
546 sprintf(buf, "NAND simulator partition %d", i);
547 return kstrdup(buf, GFP_KERNEL);
548}
549
550/*
551 * Initialize the nandsim structure.
552 *
553 * RETURNS: 0 if success, -ERRNO if failure.
554 */
555static int init_nandsim(struct mtd_info *mtd)
556{
557 struct nand_chip *chip = mtd->priv;
558 struct nandsim *ns = chip->priv;
559 int i, ret = 0;
560 uint64_t remains;
561 uint64_t next_offset;
562
563 if (NS_IS_INITIALIZED(ns)) {
564 NS_ERR("init_nandsim: nandsim is already initialized\n");
565 return -EIO;
566 }
567
568 /* Force mtd to not do delays */
569 chip->chip_delay = 0;
570
571 /* Initialize the NAND flash parameters */
572 ns->busw = chip->options & NAND_BUSWIDTH_16 ? 16 : 8;
573 ns->geom.totsz = mtd->size;
574 ns->geom.pgsz = mtd->writesize;
575 ns->geom.oobsz = mtd->oobsize;
576 ns->geom.secsz = mtd->erasesize;
577 ns->geom.pgszoob = ns->geom.pgsz + ns->geom.oobsz;
578 ns->geom.pgnum = div_u64(ns->geom.totsz, ns->geom.pgsz);
579 ns->geom.totszoob = ns->geom.totsz + (uint64_t)ns->geom.pgnum * ns->geom.oobsz;
580 ns->geom.secshift = ffs(ns->geom.secsz) - 1;
581 ns->geom.pgshift = chip->page_shift;
582 ns->geom.oobshift = ffs(ns->geom.oobsz) - 1;
583 ns->geom.pgsec = ns->geom.secsz / ns->geom.pgsz;
584 ns->geom.secszoob = ns->geom.secsz + ns->geom.oobsz * ns->geom.pgsec;
585 ns->options = 0;
586
587 if (ns->geom.pgsz == 256) {
588 ns->options |= OPT_PAGE256;
589 }
590 else if (ns->geom.pgsz == 512) {
591 ns->options |= (OPT_PAGE512 | OPT_AUTOINCR);
592 if (ns->busw == 8)
593 ns->options |= OPT_PAGE512_8BIT;
594 } else if (ns->geom.pgsz == 2048) {
595 ns->options |= OPT_PAGE2048;
596 } else if (ns->geom.pgsz == 4096) {
597 ns->options |= OPT_PAGE4096;
598 } else {
599 NS_ERR("init_nandsim: unknown page size %u\n", ns->geom.pgsz);
600 return -EIO;
601 }
602
603 if (ns->options & OPT_SMALLPAGE) {
604 if (ns->geom.totsz <= (32 << 20)) {
605 ns->geom.pgaddrbytes = 3;
606 ns->geom.secaddrbytes = 2;
607 } else {
608 ns->geom.pgaddrbytes = 4;
609 ns->geom.secaddrbytes = 3;
610 }
611 } else {
612 if (ns->geom.totsz <= (128 << 20)) {
613 ns->geom.pgaddrbytes = 4;
614 ns->geom.secaddrbytes = 2;
615 } else {
616 ns->geom.pgaddrbytes = 5;
617 ns->geom.secaddrbytes = 3;
618 }
619 }
620
621 /* Fill the partition_info structure */
622 if (parts_num > ARRAY_SIZE(ns->partitions)) {
623 NS_ERR("too many partitions.\n");
624 ret = -EINVAL;
625 goto error;
626 }
627 remains = ns->geom.totsz;
628 next_offset = 0;
629 for (i = 0; i < parts_num; ++i) {
630 uint64_t part_sz = (uint64_t)parts[i] * ns->geom.secsz;
631
632 if (!part_sz || part_sz > remains) {
633 NS_ERR("bad partition size.\n");
634 ret = -EINVAL;
635 goto error;
636 }
637 ns->partitions[i].name = get_partition_name(i);
638 ns->partitions[i].offset = next_offset;
639 ns->partitions[i].size = part_sz;
640 next_offset += ns->partitions[i].size;
641 remains -= ns->partitions[i].size;
642 }
643 ns->nbparts = parts_num;
644 if (remains) {
645 if (parts_num + 1 > ARRAY_SIZE(ns->partitions)) {
646 NS_ERR("too many partitions.\n");
647 ret = -EINVAL;
648 goto error;
649 }
650 ns->partitions[i].name = get_partition_name(i);
651 ns->partitions[i].offset = next_offset;
652 ns->partitions[i].size = remains;
653 ns->nbparts += 1;
654 }
655
656 /* Detect how many ID bytes the NAND chip outputs */
657 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
658 if (second_id_byte != nand_flash_ids[i].id)
659 continue;
660 if (!(nand_flash_ids[i].options & NAND_NO_AUTOINCR))
661 ns->options |= OPT_AUTOINCR;
662 }
663
664 if (ns->busw == 16)
665 NS_WARN("16-bit flashes support wasn't tested\n");
666
667 printk("flash size: %llu MiB\n",
668 (unsigned long long)ns->geom.totsz >> 20);
669 printk("page size: %u bytes\n", ns->geom.pgsz);
670 printk("OOB area size: %u bytes\n", ns->geom.oobsz);
671 printk("sector size: %u KiB\n", ns->geom.secsz >> 10);
672 printk("pages number: %u\n", ns->geom.pgnum);
673 printk("pages per sector: %u\n", ns->geom.pgsec);
674 printk("bus width: %u\n", ns->busw);
675 printk("bits in sector size: %u\n", ns->geom.secshift);
676 printk("bits in page size: %u\n", ns->geom.pgshift);
677 printk("bits in OOB size: %u\n", ns->geom.oobshift);
678 printk("flash size with OOB: %llu KiB\n",
679 (unsigned long long)ns->geom.totszoob >> 10);
680 printk("page address bytes: %u\n", ns->geom.pgaddrbytes);
681 printk("sector address bytes: %u\n", ns->geom.secaddrbytes);
682 printk("options: %#x\n", ns->options);
683
684 if ((ret = alloc_device(ns)) != 0)
685 goto error;
686
687 /* Allocate / initialize the internal buffer */
688 ns->buf.byte = kmalloc(ns->geom.pgszoob, GFP_KERNEL);
689 if (!ns->buf.byte) {
690 NS_ERR("init_nandsim: unable to allocate %u bytes for the internal buffer\n",
691 ns->geom.pgszoob);
692 ret = -ENOMEM;
693 goto error;
694 }
695 memset(ns->buf.byte, 0xFF, ns->geom.pgszoob);
696
697 return 0;
698
699error:
700 free_device(ns);
701
702 return ret;
703}
704
705/*
706 * Free the nandsim structure.
707 */
708static void free_nandsim(struct nandsim *ns)
709{
710 kfree(ns->buf.byte);
711 free_device(ns);
712
713 return;
714}
715
716static int parse_badblocks(struct nandsim *ns, struct mtd_info *mtd)
717{
718 char *w;
719 int zero_ok;
720 unsigned int erase_block_no;
721 loff_t offset;
722
723 if (!badblocks)
724 return 0;
725 w = badblocks;
726 do {
727 zero_ok = (*w == '0' ? 1 : 0);
728 erase_block_no = simple_strtoul(w, &w, 0);
729 if (!zero_ok && !erase_block_no) {
730 NS_ERR("invalid badblocks.\n");
731 return -EINVAL;
732 }
733 offset = erase_block_no * ns->geom.secsz;
734 if (mtd_block_markbad(mtd, offset)) {
735 NS_ERR("invalid badblocks.\n");
736 return -EINVAL;
737 }
738 if (*w == ',')
739 w += 1;
740 } while (*w);
741 return 0;
742}
743
744static int parse_weakblocks(void)
745{
746 char *w;
747 int zero_ok;
748 unsigned int erase_block_no;
749 unsigned int max_erases;
750 struct weak_block *wb;
751
752 if (!weakblocks)
753 return 0;
754 w = weakblocks;
755 do {
756 zero_ok = (*w == '0' ? 1 : 0);
757 erase_block_no = simple_strtoul(w, &w, 0);
758 if (!zero_ok && !erase_block_no) {
759 NS_ERR("invalid weakblocks.\n");
760 return -EINVAL;
761 }
762 max_erases = 3;
763 if (*w == ':') {
764 w += 1;
765 max_erases = simple_strtoul(w, &w, 0);
766 }
767 if (*w == ',')
768 w += 1;
769 wb = kzalloc(sizeof(*wb), GFP_KERNEL);
770 if (!wb) {
771 NS_ERR("unable to allocate memory.\n");
772 return -ENOMEM;
773 }
774 wb->erase_block_no = erase_block_no;
775 wb->max_erases = max_erases;
776 list_add(&wb->list, &weak_blocks);
777 } while (*w);
778 return 0;
779}
780
781static int erase_error(unsigned int erase_block_no)
782{
783 struct weak_block *wb;
784
785 list_for_each_entry(wb, &weak_blocks, list)
786 if (wb->erase_block_no == erase_block_no) {
787 if (wb->erases_done >= wb->max_erases)
788 return 1;
789 wb->erases_done += 1;
790 return 0;
791 }
792 return 0;
793}
794
795static int parse_weakpages(void)
796{
797 char *w;
798 int zero_ok;
799 unsigned int page_no;
800 unsigned int max_writes;
801 struct weak_page *wp;
802
803 if (!weakpages)
804 return 0;
805 w = weakpages;
806 do {
807 zero_ok = (*w == '0' ? 1 : 0);
808 page_no = simple_strtoul(w, &w, 0);
809 if (!zero_ok && !page_no) {
810 NS_ERR("invalid weakpagess.\n");
811 return -EINVAL;
812 }
813 max_writes = 3;
814 if (*w == ':') {
815 w += 1;
816 max_writes = simple_strtoul(w, &w, 0);
817 }
818 if (*w == ',')
819 w += 1;
820 wp = kzalloc(sizeof(*wp), GFP_KERNEL);
821 if (!wp) {
822 NS_ERR("unable to allocate memory.\n");
823 return -ENOMEM;
824 }
825 wp->page_no = page_no;
826 wp->max_writes = max_writes;
827 list_add(&wp->list, &weak_pages);
828 } while (*w);
829 return 0;
830}
831
832static int write_error(unsigned int page_no)
833{
834 struct weak_page *wp;
835
836 list_for_each_entry(wp, &weak_pages, list)
837 if (wp->page_no == page_no) {
838 if (wp->writes_done >= wp->max_writes)
839 return 1;
840 wp->writes_done += 1;
841 return 0;
842 }
843 return 0;
844}
845
846static int parse_gravepages(void)
847{
848 char *g;
849 int zero_ok;
850 unsigned int page_no;
851 unsigned int max_reads;
852 struct grave_page *gp;
853
854 if (!gravepages)
855 return 0;
856 g = gravepages;
857 do {
858 zero_ok = (*g == '0' ? 1 : 0);
859 page_no = simple_strtoul(g, &g, 0);
860 if (!zero_ok && !page_no) {
861 NS_ERR("invalid gravepagess.\n");
862 return -EINVAL;
863 }
864 max_reads = 3;
865 if (*g == ':') {
866 g += 1;
867 max_reads = simple_strtoul(g, &g, 0);
868 }
869 if (*g == ',')
870 g += 1;
871 gp = kzalloc(sizeof(*gp), GFP_KERNEL);
872 if (!gp) {
873 NS_ERR("unable to allocate memory.\n");
874 return -ENOMEM;
875 }
876 gp->page_no = page_no;
877 gp->max_reads = max_reads;
878 list_add(&gp->list, &grave_pages);
879 } while (*g);
880 return 0;
881}
882
883static int read_error(unsigned int page_no)
884{
885 struct grave_page *gp;
886
887 list_for_each_entry(gp, &grave_pages, list)
888 if (gp->page_no == page_no) {
889 if (gp->reads_done >= gp->max_reads)
890 return 1;
891 gp->reads_done += 1;
892 return 0;
893 }
894 return 0;
895}
896
897static void free_lists(void)
898{
899 struct list_head *pos, *n;
900 list_for_each_safe(pos, n, &weak_blocks) {
901 list_del(pos);
902 kfree(list_entry(pos, struct weak_block, list));
903 }
904 list_for_each_safe(pos, n, &weak_pages) {
905 list_del(pos);
906 kfree(list_entry(pos, struct weak_page, list));
907 }
908 list_for_each_safe(pos, n, &grave_pages) {
909 list_del(pos);
910 kfree(list_entry(pos, struct grave_page, list));
911 }
912 kfree(erase_block_wear);
913}
914
915static int setup_wear_reporting(struct mtd_info *mtd)
916{
917 size_t mem;
918
919 if (!rptwear)
920 return 0;
921 wear_eb_count = div_u64(mtd->size, mtd->erasesize);
922 mem = wear_eb_count * sizeof(unsigned long);
923 if (mem / sizeof(unsigned long) != wear_eb_count) {
924 NS_ERR("Too many erase blocks for wear reporting\n");
925 return -ENOMEM;
926 }
927 erase_block_wear = kzalloc(mem, GFP_KERNEL);
928 if (!erase_block_wear) {
929 NS_ERR("Too many erase blocks for wear reporting\n");
930 return -ENOMEM;
931 }
932 return 0;
933}
934
935static void update_wear(unsigned int erase_block_no)
936{
937 unsigned long wmin = -1, wmax = 0, avg;
938 unsigned long deciles[10], decile_max[10], tot = 0;
939 unsigned int i;
940
941 if (!erase_block_wear)
942 return;
943 total_wear += 1;
944 if (total_wear == 0)
945 NS_ERR("Erase counter total overflow\n");
946 erase_block_wear[erase_block_no] += 1;
947 if (erase_block_wear[erase_block_no] == 0)
948 NS_ERR("Erase counter overflow for erase block %u\n", erase_block_no);
949 rptwear_cnt += 1;
950 if (rptwear_cnt < rptwear)
951 return;
952 rptwear_cnt = 0;
953 /* Calc wear stats */
954 for (i = 0; i < wear_eb_count; ++i) {
955 unsigned long wear = erase_block_wear[i];
956 if (wear < wmin)
957 wmin = wear;
958 if (wear > wmax)
959 wmax = wear;
960 tot += wear;
961 }
962 for (i = 0; i < 9; ++i) {
963 deciles[i] = 0;
964 decile_max[i] = (wmax * (i + 1) + 5) / 10;
965 }
966 deciles[9] = 0;
967 decile_max[9] = wmax;
968 for (i = 0; i < wear_eb_count; ++i) {
969 int d;
970 unsigned long wear = erase_block_wear[i];
971 for (d = 0; d < 10; ++d)
972 if (wear <= decile_max[d]) {
973 deciles[d] += 1;
974 break;
975 }
976 }
977 avg = tot / wear_eb_count;
978 /* Output wear report */
979 NS_INFO("*** Wear Report ***\n");
980 NS_INFO("Total numbers of erases: %lu\n", tot);
981 NS_INFO("Number of erase blocks: %u\n", wear_eb_count);
982 NS_INFO("Average number of erases: %lu\n", avg);
983 NS_INFO("Maximum number of erases: %lu\n", wmax);
984 NS_INFO("Minimum number of erases: %lu\n", wmin);
985 for (i = 0; i < 10; ++i) {
986 unsigned long from = (i ? decile_max[i - 1] + 1 : 0);
987 if (from > decile_max[i])
988 continue;
989 NS_INFO("Number of ebs with erase counts from %lu to %lu : %lu\n",
990 from,
991 decile_max[i],
992 deciles[i]);
993 }
994 NS_INFO("*** End of Wear Report ***\n");
995}
996
997/*
998 * Returns the string representation of 'state' state.
999 */
1000static char *get_state_name(uint32_t state)
1001{
1002 switch (NS_STATE(state)) {
1003 case STATE_CMD_READ0:
1004 return "STATE_CMD_READ0";
1005 case STATE_CMD_READ1:
1006 return "STATE_CMD_READ1";
1007 case STATE_CMD_PAGEPROG:
1008 return "STATE_CMD_PAGEPROG";
1009 case STATE_CMD_READOOB:
1010 return "STATE_CMD_READOOB";
1011 case STATE_CMD_READSTART:
1012 return "STATE_CMD_READSTART";
1013 case STATE_CMD_ERASE1:
1014 return "STATE_CMD_ERASE1";
1015 case STATE_CMD_STATUS:
1016 return "STATE_CMD_STATUS";
1017 case STATE_CMD_STATUS_M:
1018 return "STATE_CMD_STATUS_M";
1019 case STATE_CMD_SEQIN:
1020 return "STATE_CMD_SEQIN";
1021 case STATE_CMD_READID:
1022 return "STATE_CMD_READID";
1023 case STATE_CMD_ERASE2:
1024 return "STATE_CMD_ERASE2";
1025 case STATE_CMD_RESET:
1026 return "STATE_CMD_RESET";
1027 case STATE_CMD_RNDOUT:
1028 return "STATE_CMD_RNDOUT";
1029 case STATE_CMD_RNDOUTSTART:
1030 return "STATE_CMD_RNDOUTSTART";
1031 case STATE_ADDR_PAGE:
1032 return "STATE_ADDR_PAGE";
1033 case STATE_ADDR_SEC:
1034 return "STATE_ADDR_SEC";
1035 case STATE_ADDR_ZERO:
1036 return "STATE_ADDR_ZERO";
1037 case STATE_ADDR_COLUMN:
1038 return "STATE_ADDR_COLUMN";
1039 case STATE_DATAIN:
1040 return "STATE_DATAIN";
1041 case STATE_DATAOUT:
1042 return "STATE_DATAOUT";
1043 case STATE_DATAOUT_ID:
1044 return "STATE_DATAOUT_ID";
1045 case STATE_DATAOUT_STATUS:
1046 return "STATE_DATAOUT_STATUS";
1047 case STATE_DATAOUT_STATUS_M:
1048 return "STATE_DATAOUT_STATUS_M";
1049 case STATE_READY:
1050 return "STATE_READY";
1051 case STATE_UNKNOWN:
1052 return "STATE_UNKNOWN";
1053 }
1054
1055 NS_ERR("get_state_name: unknown state, BUG\n");
1056 return NULL;
1057}
1058
1059/*
1060 * Check if command is valid.
1061 *
1062 * RETURNS: 1 if wrong command, 0 if right.
1063 */
1064static int check_command(int cmd)
1065{
1066 switch (cmd) {
1067
1068 case NAND_CMD_READ0:
1069 case NAND_CMD_READ1:
1070 case NAND_CMD_READSTART:
1071 case NAND_CMD_PAGEPROG:
1072 case NAND_CMD_READOOB:
1073 case NAND_CMD_ERASE1:
1074 case NAND_CMD_STATUS:
1075 case NAND_CMD_SEQIN:
1076 case NAND_CMD_READID:
1077 case NAND_CMD_ERASE2:
1078 case NAND_CMD_RESET:
1079 case NAND_CMD_RNDOUT:
1080 case NAND_CMD_RNDOUTSTART:
1081 return 0;
1082
1083 case NAND_CMD_STATUS_MULTI:
1084 default:
1085 return 1;
1086 }
1087}
1088
1089/*
1090 * Returns state after command is accepted by command number.
1091 */
1092static uint32_t get_state_by_command(unsigned command)
1093{
1094 switch (command) {
1095 case NAND_CMD_READ0:
1096 return STATE_CMD_READ0;
1097 case NAND_CMD_READ1:
1098 return STATE_CMD_READ1;
1099 case NAND_CMD_PAGEPROG:
1100 return STATE_CMD_PAGEPROG;
1101 case NAND_CMD_READSTART:
1102 return STATE_CMD_READSTART;
1103 case NAND_CMD_READOOB:
1104 return STATE_CMD_READOOB;
1105 case NAND_CMD_ERASE1:
1106 return STATE_CMD_ERASE1;
1107 case NAND_CMD_STATUS:
1108 return STATE_CMD_STATUS;
1109 case NAND_CMD_STATUS_MULTI:
1110 return STATE_CMD_STATUS_M;
1111 case NAND_CMD_SEQIN:
1112 return STATE_CMD_SEQIN;
1113 case NAND_CMD_READID:
1114 return STATE_CMD_READID;
1115 case NAND_CMD_ERASE2:
1116 return STATE_CMD_ERASE2;
1117 case NAND_CMD_RESET:
1118 return STATE_CMD_RESET;
1119 case NAND_CMD_RNDOUT:
1120 return STATE_CMD_RNDOUT;
1121 case NAND_CMD_RNDOUTSTART:
1122 return STATE_CMD_RNDOUTSTART;
1123 }
1124
1125 NS_ERR("get_state_by_command: unknown command, BUG\n");
1126 return 0;
1127}
1128
1129/*
1130 * Move an address byte to the correspondent internal register.
1131 */
1132static inline void accept_addr_byte(struct nandsim *ns, u_char bt)
1133{
1134 uint byte = (uint)bt;
1135
1136 if (ns->regs.count < (ns->geom.pgaddrbytes - ns->geom.secaddrbytes))
1137 ns->regs.column |= (byte << 8 * ns->regs.count);
1138 else {
1139 ns->regs.row |= (byte << 8 * (ns->regs.count -
1140 ns->geom.pgaddrbytes +
1141 ns->geom.secaddrbytes));
1142 }
1143
1144 return;
1145}
1146
1147/*
1148 * Switch to STATE_READY state.
1149 */
1150static inline void switch_to_ready_state(struct nandsim *ns, u_char status)
1151{
1152 NS_DBG("switch_to_ready_state: switch to %s state\n", get_state_name(STATE_READY));
1153
1154 ns->state = STATE_READY;
1155 ns->nxstate = STATE_UNKNOWN;
1156 ns->op = NULL;
1157 ns->npstates = 0;
1158 ns->stateidx = 0;
1159 ns->regs.num = 0;
1160 ns->regs.count = 0;
1161 ns->regs.off = 0;
1162 ns->regs.row = 0;
1163 ns->regs.column = 0;
1164 ns->regs.status = status;
1165}
1166
1167/*
1168 * If the operation isn't known yet, try to find it in the global array
1169 * of supported operations.
1170 *
1171 * Operation can be unknown because of the following.
1172 * 1. New command was accepted and this is the first call to find the
1173 * correspondent states chain. In this case ns->npstates = 0;
1174 * 2. There are several operations which begin with the same command(s)
1175 * (for example program from the second half and read from the
1176 * second half operations both begin with the READ1 command). In this
1177 * case the ns->pstates[] array contains previous states.
1178 *
1179 * Thus, the function tries to find operation containing the following
1180 * states (if the 'flag' parameter is 0):
1181 * ns->pstates[0], ... ns->pstates[ns->npstates], ns->state
1182 *
1183 * If (one and only one) matching operation is found, it is accepted (
1184 * ns->ops, ns->state, ns->nxstate are initialized, ns->npstate is
1185 * zeroed).
1186 *
1187 * If there are several matches, the current state is pushed to the
1188 * ns->pstates.
1189 *
1190 * The operation can be unknown only while commands are input to the chip.
1191 * As soon as address command is accepted, the operation must be known.
1192 * In such situation the function is called with 'flag' != 0, and the
1193 * operation is searched using the following pattern:
1194 * ns->pstates[0], ... ns->pstates[ns->npstates], <address input>
1195 *
1196 * It is supposed that this pattern must either match one operation or
1197 * none. There can't be ambiguity in that case.
1198 *
1199 * If no matches found, the function does the following:
1200 * 1. if there are saved states present, try to ignore them and search
1201 * again only using the last command. If nothing was found, switch
1202 * to the STATE_READY state.
1203 * 2. if there are no saved states, switch to the STATE_READY state.
1204 *
1205 * RETURNS: -2 - no matched operations found.
1206 * -1 - several matches.
1207 * 0 - operation is found.
1208 */
1209static int find_operation(struct nandsim *ns, uint32_t flag)
1210{
1211 int opsfound = 0;
1212 int i, j, idx = 0;
1213
1214 for (i = 0; i < NS_OPER_NUM; i++) {
1215
1216 int found = 1;
1217
1218 if (!(ns->options & ops[i].reqopts))
1219 /* Ignore operations we can't perform */
1220 continue;
1221
1222 if (flag) {
1223 if (!(ops[i].states[ns->npstates] & STATE_ADDR_MASK))
1224 continue;
1225 } else {
1226 if (NS_STATE(ns->state) != NS_STATE(ops[i].states[ns->npstates]))
1227 continue;
1228 }
1229
1230 for (j = 0; j < ns->npstates; j++)
1231 if (NS_STATE(ops[i].states[j]) != NS_STATE(ns->pstates[j])
1232 && (ns->options & ops[idx].reqopts)) {
1233 found = 0;
1234 break;
1235 }
1236
1237 if (found) {
1238 idx = i;
1239 opsfound += 1;
1240 }
1241 }
1242
1243 if (opsfound == 1) {
1244 /* Exact match */
1245 ns->op = &ops[idx].states[0];
1246 if (flag) {
1247 /*
1248 * In this case the find_operation function was
1249 * called when address has just began input. But it isn't
1250 * yet fully input and the current state must
1251 * not be one of STATE_ADDR_*, but the STATE_ADDR_*
1252 * state must be the next state (ns->nxstate).
1253 */
1254 ns->stateidx = ns->npstates - 1;
1255 } else {
1256 ns->stateidx = ns->npstates;
1257 }
1258 ns->npstates = 0;
1259 ns->state = ns->op[ns->stateidx];
1260 ns->nxstate = ns->op[ns->stateidx + 1];
1261 NS_DBG("find_operation: operation found, index: %d, state: %s, nxstate %s\n",
1262 idx, get_state_name(ns->state), get_state_name(ns->nxstate));
1263 return 0;
1264 }
1265
1266 if (opsfound == 0) {
1267 /* Nothing was found. Try to ignore previous commands (if any) and search again */
1268 if (ns->npstates != 0) {
1269 NS_DBG("find_operation: no operation found, try again with state %s\n",
1270 get_state_name(ns->state));
1271 ns->npstates = 0;
1272 return find_operation(ns, 0);
1273
1274 }
1275 NS_DBG("find_operation: no operations found\n");
1276 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1277 return -2;
1278 }
1279
1280 if (flag) {
1281 /* This shouldn't happen */
1282 NS_DBG("find_operation: BUG, operation must be known if address is input\n");
1283 return -2;
1284 }
1285
1286 NS_DBG("find_operation: there is still ambiguity\n");
1287
1288 ns->pstates[ns->npstates++] = ns->state;
1289
1290 return -1;
1291}
1292
1293static void put_pages(struct nandsim *ns)
1294{
1295 int i;
1296
1297 for (i = 0; i < ns->held_cnt; i++)
1298 page_cache_release(ns->held_pages[i]);
1299}
1300
1301/* Get page cache pages in advance to provide NOFS memory allocation */
1302static int get_pages(struct nandsim *ns, struct file *file, size_t count, loff_t pos)
1303{
1304 pgoff_t index, start_index, end_index;
1305 struct page *page;
1306 struct address_space *mapping = file->f_mapping;
1307
1308 start_index = pos >> PAGE_CACHE_SHIFT;
1309 end_index = (pos + count - 1) >> PAGE_CACHE_SHIFT;
1310 if (end_index - start_index + 1 > NS_MAX_HELD_PAGES)
1311 return -EINVAL;
1312 ns->held_cnt = 0;
1313 for (index = start_index; index <= end_index; index++) {
1314 page = find_get_page(mapping, index);
1315 if (page == NULL) {
1316 page = find_or_create_page(mapping, index, GFP_NOFS);
1317 if (page == NULL) {
1318 write_inode_now(mapping->host, 1);
1319 page = find_or_create_page(mapping, index, GFP_NOFS);
1320 }
1321 if (page == NULL) {
1322 put_pages(ns);
1323 return -ENOMEM;
1324 }
1325 unlock_page(page);
1326 }
1327 ns->held_pages[ns->held_cnt++] = page;
1328 }
1329 return 0;
1330}
1331
1332static int set_memalloc(void)
1333{
1334 if (current->flags & PF_MEMALLOC)
1335 return 0;
1336 current->flags |= PF_MEMALLOC;
1337 return 1;
1338}
1339
1340static void clear_memalloc(int memalloc)
1341{
1342 if (memalloc)
1343 current->flags &= ~PF_MEMALLOC;
1344}
1345
1346static ssize_t read_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1347{
1348 mm_segment_t old_fs;
1349 ssize_t tx;
1350 int err, memalloc;
1351
1352 err = get_pages(ns, file, count, *pos);
1353 if (err)
1354 return err;
1355 old_fs = get_fs();
1356 set_fs(get_ds());
1357 memalloc = set_memalloc();
1358 tx = vfs_read(file, (char __user *)buf, count, pos);
1359 clear_memalloc(memalloc);
1360 set_fs(old_fs);
1361 put_pages(ns);
1362 return tx;
1363}
1364
1365static ssize_t write_file(struct nandsim *ns, struct file *file, void *buf, size_t count, loff_t *pos)
1366{
1367 mm_segment_t old_fs;
1368 ssize_t tx;
1369 int err, memalloc;
1370
1371 err = get_pages(ns, file, count, *pos);
1372 if (err)
1373 return err;
1374 old_fs = get_fs();
1375 set_fs(get_ds());
1376 memalloc = set_memalloc();
1377 tx = vfs_write(file, (char __user *)buf, count, pos);
1378 clear_memalloc(memalloc);
1379 set_fs(old_fs);
1380 put_pages(ns);
1381 return tx;
1382}
1383
1384/*
1385 * Returns a pointer to the current page.
1386 */
1387static inline union ns_mem *NS_GET_PAGE(struct nandsim *ns)
1388{
1389 return &(ns->pages[ns->regs.row]);
1390}
1391
1392/*
1393 * Retuns a pointer to the current byte, within the current page.
1394 */
1395static inline u_char *NS_PAGE_BYTE_OFF(struct nandsim *ns)
1396{
1397 return NS_GET_PAGE(ns)->byte + ns->regs.column + ns->regs.off;
1398}
1399
1400int do_read_error(struct nandsim *ns, int num)
1401{
1402 unsigned int page_no = ns->regs.row;
1403
1404 if (read_error(page_no)) {
1405 int i;
1406 memset(ns->buf.byte, 0xFF, num);
1407 for (i = 0; i < num; ++i)
1408 ns->buf.byte[i] = random32();
1409 NS_WARN("simulating read error in page %u\n", page_no);
1410 return 1;
1411 }
1412 return 0;
1413}
1414
1415void do_bit_flips(struct nandsim *ns, int num)
1416{
1417 if (bitflips && random32() < (1 << 22)) {
1418 int flips = 1;
1419 if (bitflips > 1)
1420 flips = (random32() % (int) bitflips) + 1;
1421 while (flips--) {
1422 int pos = random32() % (num * 8);
1423 ns->buf.byte[pos / 8] ^= (1 << (pos % 8));
1424 NS_WARN("read_page: flipping bit %d in page %d "
1425 "reading from %d ecc: corrected=%u failed=%u\n",
1426 pos, ns->regs.row, ns->regs.column + ns->regs.off,
1427 nsmtd->ecc_stats.corrected, nsmtd->ecc_stats.failed);
1428 }
1429 }
1430}
1431
1432/*
1433 * Fill the NAND buffer with data read from the specified page.
1434 */
1435static void read_page(struct nandsim *ns, int num)
1436{
1437 union ns_mem *mypage;
1438
1439 if (ns->cfile) {
1440 if (!ns->pages_written[ns->regs.row]) {
1441 NS_DBG("read_page: page %d not written\n", ns->regs.row);
1442 memset(ns->buf.byte, 0xFF, num);
1443 } else {
1444 loff_t pos;
1445 ssize_t tx;
1446
1447 NS_DBG("read_page: page %d written, reading from %d\n",
1448 ns->regs.row, ns->regs.column + ns->regs.off);
1449 if (do_read_error(ns, num))
1450 return;
1451 pos = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1452 tx = read_file(ns, ns->cfile, ns->buf.byte, num, &pos);
1453 if (tx != num) {
1454 NS_ERR("read_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1455 return;
1456 }
1457 do_bit_flips(ns, num);
1458 }
1459 return;
1460 }
1461
1462 mypage = NS_GET_PAGE(ns);
1463 if (mypage->byte == NULL) {
1464 NS_DBG("read_page: page %d not allocated\n", ns->regs.row);
1465 memset(ns->buf.byte, 0xFF, num);
1466 } else {
1467 NS_DBG("read_page: page %d allocated, reading from %d\n",
1468 ns->regs.row, ns->regs.column + ns->regs.off);
1469 if (do_read_error(ns, num))
1470 return;
1471 memcpy(ns->buf.byte, NS_PAGE_BYTE_OFF(ns), num);
1472 do_bit_flips(ns, num);
1473 }
1474}
1475
1476/*
1477 * Erase all pages in the specified sector.
1478 */
1479static void erase_sector(struct nandsim *ns)
1480{
1481 union ns_mem *mypage;
1482 int i;
1483
1484 if (ns->cfile) {
1485 for (i = 0; i < ns->geom.pgsec; i++)
1486 if (ns->pages_written[ns->regs.row + i]) {
1487 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row + i);
1488 ns->pages_written[ns->regs.row + i] = 0;
1489 }
1490 return;
1491 }
1492
1493 mypage = NS_GET_PAGE(ns);
1494 for (i = 0; i < ns->geom.pgsec; i++) {
1495 if (mypage->byte != NULL) {
1496 NS_DBG("erase_sector: freeing page %d\n", ns->regs.row+i);
1497 kmem_cache_free(ns->nand_pages_slab, mypage->byte);
1498 mypage->byte = NULL;
1499 }
1500 mypage++;
1501 }
1502}
1503
1504/*
1505 * Program the specified page with the contents from the NAND buffer.
1506 */
1507static int prog_page(struct nandsim *ns, int num)
1508{
1509 int i;
1510 union ns_mem *mypage;
1511 u_char *pg_off;
1512
1513 if (ns->cfile) {
1514 loff_t off, pos;
1515 ssize_t tx;
1516 int all;
1517
1518 NS_DBG("prog_page: writing page %d\n", ns->regs.row);
1519 pg_off = ns->file_buf + ns->regs.column + ns->regs.off;
1520 off = (loff_t)ns->regs.row * ns->geom.pgszoob + ns->regs.column + ns->regs.off;
1521 if (!ns->pages_written[ns->regs.row]) {
1522 all = 1;
1523 memset(ns->file_buf, 0xff, ns->geom.pgszoob);
1524 } else {
1525 all = 0;
1526 pos = off;
1527 tx = read_file(ns, ns->cfile, pg_off, num, &pos);
1528 if (tx != num) {
1529 NS_ERR("prog_page: read error for page %d ret %ld\n", ns->regs.row, (long)tx);
1530 return -1;
1531 }
1532 }
1533 for (i = 0; i < num; i++)
1534 pg_off[i] &= ns->buf.byte[i];
1535 if (all) {
1536 pos = (loff_t)ns->regs.row * ns->geom.pgszoob;
1537 tx = write_file(ns, ns->cfile, ns->file_buf, ns->geom.pgszoob, &pos);
1538 if (tx != ns->geom.pgszoob) {
1539 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1540 return -1;
1541 }
1542 ns->pages_written[ns->regs.row] = 1;
1543 } else {
1544 pos = off;
1545 tx = write_file(ns, ns->cfile, pg_off, num, &pos);
1546 if (tx != num) {
1547 NS_ERR("prog_page: write error for page %d ret %ld\n", ns->regs.row, (long)tx);
1548 return -1;
1549 }
1550 }
1551 return 0;
1552 }
1553
1554 mypage = NS_GET_PAGE(ns);
1555 if (mypage->byte == NULL) {
1556 NS_DBG("prog_page: allocating page %d\n", ns->regs.row);
1557 /*
1558 * We allocate memory with GFP_NOFS because a flash FS may
1559 * utilize this. If it is holding an FS lock, then gets here,
1560 * then kernel memory alloc runs writeback which goes to the FS
1561 * again and deadlocks. This was seen in practice.
1562 */
1563 mypage->byte = kmem_cache_alloc(ns->nand_pages_slab, GFP_NOFS);
1564 if (mypage->byte == NULL) {
1565 NS_ERR("prog_page: error allocating memory for page %d\n", ns->regs.row);
1566 return -1;
1567 }
1568 memset(mypage->byte, 0xFF, ns->geom.pgszoob);
1569 }
1570
1571 pg_off = NS_PAGE_BYTE_OFF(ns);
1572 for (i = 0; i < num; i++)
1573 pg_off[i] &= ns->buf.byte[i];
1574
1575 return 0;
1576}
1577
1578/*
1579 * If state has any action bit, perform this action.
1580 *
1581 * RETURNS: 0 if success, -1 if error.
1582 */
1583static int do_state_action(struct nandsim *ns, uint32_t action)
1584{
1585 int num;
1586 int busdiv = ns->busw == 8 ? 1 : 2;
1587 unsigned int erase_block_no, page_no;
1588
1589 action &= ACTION_MASK;
1590
1591 /* Check that page address input is correct */
1592 if (action != ACTION_SECERASE && ns->regs.row >= ns->geom.pgnum) {
1593 NS_WARN("do_state_action: wrong page number (%#x)\n", ns->regs.row);
1594 return -1;
1595 }
1596
1597 switch (action) {
1598
1599 case ACTION_CPY:
1600 /*
1601 * Copy page data to the internal buffer.
1602 */
1603
1604 /* Column shouldn't be very large */
1605 if (ns->regs.column >= (ns->geom.pgszoob - ns->regs.off)) {
1606 NS_ERR("do_state_action: column number is too large\n");
1607 break;
1608 }
1609 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1610 read_page(ns, num);
1611
1612 NS_DBG("do_state_action: (ACTION_CPY:) copy %d bytes to int buf, raw offset %d\n",
1613 num, NS_RAW_OFFSET(ns) + ns->regs.off);
1614
1615 if (ns->regs.off == 0)
1616 NS_LOG("read page %d\n", ns->regs.row);
1617 else if (ns->regs.off < ns->geom.pgsz)
1618 NS_LOG("read page %d (second half)\n", ns->regs.row);
1619 else
1620 NS_LOG("read OOB of page %d\n", ns->regs.row);
1621
1622 NS_UDELAY(access_delay);
1623 NS_UDELAY(input_cycle * ns->geom.pgsz / 1000 / busdiv);
1624
1625 break;
1626
1627 case ACTION_SECERASE:
1628 /*
1629 * Erase sector.
1630 */
1631
1632 if (ns->lines.wp) {
1633 NS_ERR("do_state_action: device is write-protected, ignore sector erase\n");
1634 return -1;
1635 }
1636
1637 if (ns->regs.row >= ns->geom.pgnum - ns->geom.pgsec
1638 || (ns->regs.row & ~(ns->geom.secsz - 1))) {
1639 NS_ERR("do_state_action: wrong sector address (%#x)\n", ns->regs.row);
1640 return -1;
1641 }
1642
1643 ns->regs.row = (ns->regs.row <<
1644 8 * (ns->geom.pgaddrbytes - ns->geom.secaddrbytes)) | ns->regs.column;
1645 ns->regs.column = 0;
1646
1647 erase_block_no = ns->regs.row >> (ns->geom.secshift - ns->geom.pgshift);
1648
1649 NS_DBG("do_state_action: erase sector at address %#x, off = %d\n",
1650 ns->regs.row, NS_RAW_OFFSET(ns));
1651 NS_LOG("erase sector %u\n", erase_block_no);
1652
1653 erase_sector(ns);
1654
1655 NS_MDELAY(erase_delay);
1656
1657 if (erase_block_wear)
1658 update_wear(erase_block_no);
1659
1660 if (erase_error(erase_block_no)) {
1661 NS_WARN("simulating erase failure in erase block %u\n", erase_block_no);
1662 return -1;
1663 }
1664
1665 break;
1666
1667 case ACTION_PRGPAGE:
1668 /*
1669 * Program page - move internal buffer data to the page.
1670 */
1671
1672 if (ns->lines.wp) {
1673 NS_WARN("do_state_action: device is write-protected, programm\n");
1674 return -1;
1675 }
1676
1677 num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1678 if (num != ns->regs.count) {
1679 NS_ERR("do_state_action: too few bytes were input (%d instead of %d)\n",
1680 ns->regs.count, num);
1681 return -1;
1682 }
1683
1684 if (prog_page(ns, num) == -1)
1685 return -1;
1686
1687 page_no = ns->regs.row;
1688
1689 NS_DBG("do_state_action: copy %d bytes from int buf to (%#x, %#x), raw off = %d\n",
1690 num, ns->regs.row, ns->regs.column, NS_RAW_OFFSET(ns) + ns->regs.off);
1691 NS_LOG("programm page %d\n", ns->regs.row);
1692
1693 NS_UDELAY(programm_delay);
1694 NS_UDELAY(output_cycle * ns->geom.pgsz / 1000 / busdiv);
1695
1696 if (write_error(page_no)) {
1697 NS_WARN("simulating write failure in page %u\n", page_no);
1698 return -1;
1699 }
1700
1701 break;
1702
1703 case ACTION_ZEROOFF:
1704 NS_DBG("do_state_action: set internal offset to 0\n");
1705 ns->regs.off = 0;
1706 break;
1707
1708 case ACTION_HALFOFF:
1709 if (!(ns->options & OPT_PAGE512_8BIT)) {
1710 NS_ERR("do_state_action: BUG! can't skip half of page for non-512"
1711 "byte page size 8x chips\n");
1712 return -1;
1713 }
1714 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz/2);
1715 ns->regs.off = ns->geom.pgsz/2;
1716 break;
1717
1718 case ACTION_OOBOFF:
1719 NS_DBG("do_state_action: set internal offset to %d\n", ns->geom.pgsz);
1720 ns->regs.off = ns->geom.pgsz;
1721 break;
1722
1723 default:
1724 NS_DBG("do_state_action: BUG! unknown action\n");
1725 }
1726
1727 return 0;
1728}
1729
1730/*
1731 * Switch simulator's state.
1732 */
1733static void switch_state(struct nandsim *ns)
1734{
1735 if (ns->op) {
1736 /*
1737 * The current operation have already been identified.
1738 * Just follow the states chain.
1739 */
1740
1741 ns->stateidx += 1;
1742 ns->state = ns->nxstate;
1743 ns->nxstate = ns->op[ns->stateidx + 1];
1744
1745 NS_DBG("switch_state: operation is known, switch to the next state, "
1746 "state: %s, nxstate: %s\n",
1747 get_state_name(ns->state), get_state_name(ns->nxstate));
1748
1749 /* See, whether we need to do some action */
1750 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1751 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1752 return;
1753 }
1754
1755 } else {
1756 /*
1757 * We don't yet know which operation we perform.
1758 * Try to identify it.
1759 */
1760
1761 /*
1762 * The only event causing the switch_state function to
1763 * be called with yet unknown operation is new command.
1764 */
1765 ns->state = get_state_by_command(ns->regs.command);
1766
1767 NS_DBG("switch_state: operation is unknown, try to find it\n");
1768
1769 if (find_operation(ns, 0) != 0)
1770 return;
1771
1772 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
1773 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
1774 return;
1775 }
1776 }
1777
1778 /* For 16x devices column means the page offset in words */
1779 if ((ns->nxstate & STATE_ADDR_MASK) && ns->busw == 16) {
1780 NS_DBG("switch_state: double the column number for 16x device\n");
1781 ns->regs.column <<= 1;
1782 }
1783
1784 if (NS_STATE(ns->nxstate) == STATE_READY) {
1785 /*
1786 * The current state is the last. Return to STATE_READY
1787 */
1788
1789 u_char status = NS_STATUS_OK(ns);
1790
1791 /* In case of data states, see if all bytes were input/output */
1792 if ((ns->state & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK))
1793 && ns->regs.count != ns->regs.num) {
1794 NS_WARN("switch_state: not all bytes were processed, %d left\n",
1795 ns->regs.num - ns->regs.count);
1796 status = NS_STATUS_FAILED(ns);
1797 }
1798
1799 NS_DBG("switch_state: operation complete, switch to STATE_READY state\n");
1800
1801 switch_to_ready_state(ns, status);
1802
1803 return;
1804 } else if (ns->nxstate & (STATE_DATAIN_MASK | STATE_DATAOUT_MASK)) {
1805 /*
1806 * If the next state is data input/output, switch to it now
1807 */
1808
1809 ns->state = ns->nxstate;
1810 ns->nxstate = ns->op[++ns->stateidx + 1];
1811 ns->regs.num = ns->regs.count = 0;
1812
1813 NS_DBG("switch_state: the next state is data I/O, switch, "
1814 "state: %s, nxstate: %s\n",
1815 get_state_name(ns->state), get_state_name(ns->nxstate));
1816
1817 /*
1818 * Set the internal register to the count of bytes which
1819 * are expected to be input or output
1820 */
1821 switch (NS_STATE(ns->state)) {
1822 case STATE_DATAIN:
1823 case STATE_DATAOUT:
1824 ns->regs.num = ns->geom.pgszoob - ns->regs.off - ns->regs.column;
1825 break;
1826
1827 case STATE_DATAOUT_ID:
1828 ns->regs.num = ns->geom.idbytes;
1829 break;
1830
1831 case STATE_DATAOUT_STATUS:
1832 case STATE_DATAOUT_STATUS_M:
1833 ns->regs.count = ns->regs.num = 0;
1834 break;
1835
1836 default:
1837 NS_ERR("switch_state: BUG! unknown data state\n");
1838 }
1839
1840 } else if (ns->nxstate & STATE_ADDR_MASK) {
1841 /*
1842 * If the next state is address input, set the internal
1843 * register to the number of expected address bytes
1844 */
1845
1846 ns->regs.count = 0;
1847
1848 switch (NS_STATE(ns->nxstate)) {
1849 case STATE_ADDR_PAGE:
1850 ns->regs.num = ns->geom.pgaddrbytes;
1851
1852 break;
1853 case STATE_ADDR_SEC:
1854 ns->regs.num = ns->geom.secaddrbytes;
1855 break;
1856
1857 case STATE_ADDR_ZERO:
1858 ns->regs.num = 1;
1859 break;
1860
1861 case STATE_ADDR_COLUMN:
1862 /* Column address is always 2 bytes */
1863 ns->regs.num = ns->geom.pgaddrbytes - ns->geom.secaddrbytes;
1864 break;
1865
1866 default:
1867 NS_ERR("switch_state: BUG! unknown address state\n");
1868 }
1869 } else {
1870 /*
1871 * Just reset internal counters.
1872 */
1873
1874 ns->regs.num = 0;
1875 ns->regs.count = 0;
1876 }
1877}
1878
1879static u_char ns_nand_read_byte(struct mtd_info *mtd)
1880{
1881 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1882 u_char outb = 0x00;
1883
1884 /* Sanity and correctness checks */
1885 if (!ns->lines.ce) {
1886 NS_ERR("read_byte: chip is disabled, return %#x\n", (uint)outb);
1887 return outb;
1888 }
1889 if (ns->lines.ale || ns->lines.cle) {
1890 NS_ERR("read_byte: ALE or CLE pin is high, return %#x\n", (uint)outb);
1891 return outb;
1892 }
1893 if (!(ns->state & STATE_DATAOUT_MASK)) {
1894 NS_WARN("read_byte: unexpected data output cycle, state is %s "
1895 "return %#x\n", get_state_name(ns->state), (uint)outb);
1896 return outb;
1897 }
1898
1899 /* Status register may be read as many times as it is wanted */
1900 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS) {
1901 NS_DBG("read_byte: return %#x status\n", ns->regs.status);
1902 return ns->regs.status;
1903 }
1904
1905 /* Check if there is any data in the internal buffer which may be read */
1906 if (ns->regs.count == ns->regs.num) {
1907 NS_WARN("read_byte: no more data to output, return %#x\n", (uint)outb);
1908 return outb;
1909 }
1910
1911 switch (NS_STATE(ns->state)) {
1912 case STATE_DATAOUT:
1913 if (ns->busw == 8) {
1914 outb = ns->buf.byte[ns->regs.count];
1915 ns->regs.count += 1;
1916 } else {
1917 outb = (u_char)cpu_to_le16(ns->buf.word[ns->regs.count >> 1]);
1918 ns->regs.count += 2;
1919 }
1920 break;
1921 case STATE_DATAOUT_ID:
1922 NS_DBG("read_byte: read ID byte %d, total = %d\n", ns->regs.count, ns->regs.num);
1923 outb = ns->ids[ns->regs.count];
1924 ns->regs.count += 1;
1925 break;
1926 default:
1927 BUG();
1928 }
1929
1930 if (ns->regs.count == ns->regs.num) {
1931 NS_DBG("read_byte: all bytes were read\n");
1932
1933 /*
1934 * The OPT_AUTOINCR allows to read next consecutive pages without
1935 * new read operation cycle.
1936 */
1937 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
1938 ns->regs.count = 0;
1939 if (ns->regs.row + 1 < ns->geom.pgnum)
1940 ns->regs.row += 1;
1941 NS_DBG("read_byte: switch to the next page (%#x)\n", ns->regs.row);
1942 do_state_action(ns, ACTION_CPY);
1943 }
1944 else if (NS_STATE(ns->nxstate) == STATE_READY)
1945 switch_state(ns);
1946
1947 }
1948
1949 return outb;
1950}
1951
1952static void ns_nand_write_byte(struct mtd_info *mtd, u_char byte)
1953{
1954 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
1955
1956 /* Sanity and correctness checks */
1957 if (!ns->lines.ce) {
1958 NS_ERR("write_byte: chip is disabled, ignore write\n");
1959 return;
1960 }
1961 if (ns->lines.ale && ns->lines.cle) {
1962 NS_ERR("write_byte: ALE and CLE pins are high simultaneously, ignore write\n");
1963 return;
1964 }
1965
1966 if (ns->lines.cle == 1) {
1967 /*
1968 * The byte written is a command.
1969 */
1970
1971 if (byte == NAND_CMD_RESET) {
1972 NS_LOG("reset chip\n");
1973 switch_to_ready_state(ns, NS_STATUS_OK(ns));
1974 return;
1975 }
1976
1977 /* Check that the command byte is correct */
1978 if (check_command(byte)) {
1979 NS_ERR("write_byte: unknown command %#x\n", (uint)byte);
1980 return;
1981 }
1982
1983 if (NS_STATE(ns->state) == STATE_DATAOUT_STATUS
1984 || NS_STATE(ns->state) == STATE_DATAOUT_STATUS_M
1985 || NS_STATE(ns->state) == STATE_DATAOUT) {
1986 int row = ns->regs.row;
1987
1988 switch_state(ns);
1989 if (byte == NAND_CMD_RNDOUT)
1990 ns->regs.row = row;
1991 }
1992
1993 /* Check if chip is expecting command */
1994 if (NS_STATE(ns->nxstate) != STATE_UNKNOWN && !(ns->nxstate & STATE_CMD_MASK)) {
1995 /* Do not warn if only 2 id bytes are read */
1996 if (!(ns->regs.command == NAND_CMD_READID &&
1997 NS_STATE(ns->state) == STATE_DATAOUT_ID && ns->regs.count == 2)) {
1998 /*
1999 * We are in situation when something else (not command)
2000 * was expected but command was input. In this case ignore
2001 * previous command(s)/state(s) and accept the last one.
2002 */
2003 NS_WARN("write_byte: command (%#x) wasn't expected, expected state is %s, "
2004 "ignore previous states\n", (uint)byte, get_state_name(ns->nxstate));
2005 }
2006 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2007 }
2008
2009 NS_DBG("command byte corresponding to %s state accepted\n",
2010 get_state_name(get_state_by_command(byte)));
2011 ns->regs.command = byte;
2012 switch_state(ns);
2013
2014 } else if (ns->lines.ale == 1) {
2015 /*
2016 * The byte written is an address.
2017 */
2018
2019 if (NS_STATE(ns->nxstate) == STATE_UNKNOWN) {
2020
2021 NS_DBG("write_byte: operation isn't known yet, identify it\n");
2022
2023 if (find_operation(ns, 1) < 0)
2024 return;
2025
2026 if ((ns->state & ACTION_MASK) && do_state_action(ns, ns->state) < 0) {
2027 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2028 return;
2029 }
2030
2031 ns->regs.count = 0;
2032 switch (NS_STATE(ns->nxstate)) {
2033 case STATE_ADDR_PAGE:
2034 ns->regs.num = ns->geom.pgaddrbytes;
2035 break;
2036 case STATE_ADDR_SEC:
2037 ns->regs.num = ns->geom.secaddrbytes;
2038 break;
2039 case STATE_ADDR_ZERO:
2040 ns->regs.num = 1;
2041 break;
2042 default:
2043 BUG();
2044 }
2045 }
2046
2047 /* Check that chip is expecting address */
2048 if (!(ns->nxstate & STATE_ADDR_MASK)) {
2049 NS_ERR("write_byte: address (%#x) isn't expected, expected state is %s, "
2050 "switch to STATE_READY\n", (uint)byte, get_state_name(ns->nxstate));
2051 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2052 return;
2053 }
2054
2055 /* Check if this is expected byte */
2056 if (ns->regs.count == ns->regs.num) {
2057 NS_ERR("write_byte: no more address bytes expected\n");
2058 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2059 return;
2060 }
2061
2062 accept_addr_byte(ns, byte);
2063
2064 ns->regs.count += 1;
2065
2066 NS_DBG("write_byte: address byte %#x was accepted (%d bytes input, %d expected)\n",
2067 (uint)byte, ns->regs.count, ns->regs.num);
2068
2069 if (ns->regs.count == ns->regs.num) {
2070 NS_DBG("address (%#x, %#x) is accepted\n", ns->regs.row, ns->regs.column);
2071 switch_state(ns);
2072 }
2073
2074 } else {
2075 /*
2076 * The byte written is an input data.
2077 */
2078
2079 /* Check that chip is expecting data input */
2080 if (!(ns->state & STATE_DATAIN_MASK)) {
2081 NS_ERR("write_byte: data input (%#x) isn't expected, state is %s, "
2082 "switch to %s\n", (uint)byte,
2083 get_state_name(ns->state), get_state_name(STATE_READY));
2084 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2085 return;
2086 }
2087
2088 /* Check if this is expected byte */
2089 if (ns->regs.count == ns->regs.num) {
2090 NS_WARN("write_byte: %u input bytes has already been accepted, ignore write\n",
2091 ns->regs.num);
2092 return;
2093 }
2094
2095 if (ns->busw == 8) {
2096 ns->buf.byte[ns->regs.count] = byte;
2097 ns->regs.count += 1;
2098 } else {
2099 ns->buf.word[ns->regs.count >> 1] = cpu_to_le16((uint16_t)byte);
2100 ns->regs.count += 2;
2101 }
2102 }
2103
2104 return;
2105}
2106
2107static void ns_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int bitmask)
2108{
2109 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2110
2111 ns->lines.cle = bitmask & NAND_CLE ? 1 : 0;
2112 ns->lines.ale = bitmask & NAND_ALE ? 1 : 0;
2113 ns->lines.ce = bitmask & NAND_NCE ? 1 : 0;
2114
2115 if (cmd != NAND_CMD_NONE)
2116 ns_nand_write_byte(mtd, cmd);
2117}
2118
2119static int ns_device_ready(struct mtd_info *mtd)
2120{
2121 NS_DBG("device_ready\n");
2122 return 1;
2123}
2124
2125static uint16_t ns_nand_read_word(struct mtd_info *mtd)
2126{
2127 struct nand_chip *chip = (struct nand_chip *)mtd->priv;
2128
2129 NS_DBG("read_word\n");
2130
2131 return chip->read_byte(mtd) | (chip->read_byte(mtd) << 8);
2132}
2133
2134static void ns_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
2135{
2136 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2137
2138 /* Check that chip is expecting data input */
2139 if (!(ns->state & STATE_DATAIN_MASK)) {
2140 NS_ERR("write_buf: data input isn't expected, state is %s, "
2141 "switch to STATE_READY\n", get_state_name(ns->state));
2142 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2143 return;
2144 }
2145
2146 /* Check if these are expected bytes */
2147 if (ns->regs.count + len > ns->regs.num) {
2148 NS_ERR("write_buf: too many input bytes\n");
2149 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2150 return;
2151 }
2152
2153 memcpy(ns->buf.byte + ns->regs.count, buf, len);
2154 ns->regs.count += len;
2155
2156 if (ns->regs.count == ns->regs.num) {
2157 NS_DBG("write_buf: %d bytes were written\n", ns->regs.count);
2158 }
2159}
2160
2161static void ns_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
2162{
2163 struct nandsim *ns = ((struct nand_chip *)mtd->priv)->priv;
2164
2165 /* Sanity and correctness checks */
2166 if (!ns->lines.ce) {
2167 NS_ERR("read_buf: chip is disabled\n");
2168 return;
2169 }
2170 if (ns->lines.ale || ns->lines.cle) {
2171 NS_ERR("read_buf: ALE or CLE pin is high\n");
2172 return;
2173 }
2174 if (!(ns->state & STATE_DATAOUT_MASK)) {
2175 NS_WARN("read_buf: unexpected data output cycle, current state is %s\n",
2176 get_state_name(ns->state));
2177 return;
2178 }
2179
2180 if (NS_STATE(ns->state) != STATE_DATAOUT) {
2181 int i;
2182
2183 for (i = 0; i < len; i++)
2184 buf[i] = ((struct nand_chip *)mtd->priv)->read_byte(mtd);
2185
2186 return;
2187 }
2188
2189 /* Check if these are expected bytes */
2190 if (ns->regs.count + len > ns->regs.num) {
2191 NS_ERR("read_buf: too many bytes to read\n");
2192 switch_to_ready_state(ns, NS_STATUS_FAILED(ns));
2193 return;
2194 }
2195
2196 memcpy(buf, ns->buf.byte + ns->regs.count, len);
2197 ns->regs.count += len;
2198
2199 if (ns->regs.count == ns->regs.num) {
2200 if ((ns->options & OPT_AUTOINCR) && NS_STATE(ns->state) == STATE_DATAOUT) {
2201 ns->regs.count = 0;
2202 if (ns->regs.row + 1 < ns->geom.pgnum)
2203 ns->regs.row += 1;
2204 NS_DBG("read_buf: switch to the next page (%#x)\n", ns->regs.row);
2205 do_state_action(ns, ACTION_CPY);
2206 }
2207 else if (NS_STATE(ns->nxstate) == STATE_READY)
2208 switch_state(ns);
2209 }
2210
2211 return;
2212}
2213
2214static int ns_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
2215{
2216 ns_nand_read_buf(mtd, (u_char *)&ns_verify_buf[0], len);
2217
2218 if (!memcmp(buf, &ns_verify_buf[0], len)) {
2219 NS_DBG("verify_buf: the buffer is OK\n");
2220 return 0;
2221 } else {
2222 NS_DBG("verify_buf: the buffer is wrong\n");
2223 return -EFAULT;
2224 }
2225}
2226
2227/*
2228 * Module initialization function
2229 */
2230static int __init ns_init_module(void)
2231{
2232 struct nand_chip *chip;
2233 struct nandsim *nand;
2234 int retval = -ENOMEM, i;
2235
2236 if (bus_width != 8 && bus_width != 16) {
2237 NS_ERR("wrong bus width (%d), use only 8 or 16\n", bus_width);
2238 return -EINVAL;
2239 }
2240
2241 /* Allocate and initialize mtd_info, nand_chip and nandsim structures */
2242 nsmtd = kzalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip)
2243 + sizeof(struct nandsim), GFP_KERNEL);
2244 if (!nsmtd) {
2245 NS_ERR("unable to allocate core structures.\n");
2246 return -ENOMEM;
2247 }
2248 chip = (struct nand_chip *)(nsmtd + 1);
2249 nsmtd->priv = (void *)chip;
2250 nand = (struct nandsim *)(chip + 1);
2251 chip->priv = (void *)nand;
2252
2253 /*
2254 * Register simulator's callbacks.
2255 */
2256 chip->cmd_ctrl = ns_hwcontrol;
2257 chip->read_byte = ns_nand_read_byte;
2258 chip->dev_ready = ns_device_ready;
2259 chip->write_buf = ns_nand_write_buf;
2260 chip->read_buf = ns_nand_read_buf;
2261 chip->verify_buf = ns_nand_verify_buf;
2262 chip->read_word = ns_nand_read_word;
2263 chip->ecc.mode = NAND_ECC_SOFT;
2264 /* The NAND_SKIP_BBTSCAN option is necessary for 'overridesize' */
2265 /* and 'badblocks' parameters to work */
2266 chip->options |= NAND_SKIP_BBTSCAN;
2267
2268 switch (bbt) {
2269 case 2:
2270 chip->bbt_options |= NAND_BBT_NO_OOB;
2271 case 1:
2272 chip->bbt_options |= NAND_BBT_USE_FLASH;
2273 case 0:
2274 break;
2275 default:
2276 NS_ERR("bbt has to be 0..2\n");
2277 retval = -EINVAL;
2278 goto error;
2279 }
2280 /*
2281 * Perform minimum nandsim structure initialization to handle
2282 * the initial ID read command correctly
2283 */
2284 if (third_id_byte != 0xFF || fourth_id_byte != 0xFF)
2285 nand->geom.idbytes = 4;
2286 else
2287 nand->geom.idbytes = 2;
2288 nand->regs.status = NS_STATUS_OK(nand);
2289 nand->nxstate = STATE_UNKNOWN;
2290 nand->options |= OPT_PAGE256; /* temporary value */
2291 nand->ids[0] = first_id_byte;
2292 nand->ids[1] = second_id_byte;
2293 nand->ids[2] = third_id_byte;
2294 nand->ids[3] = fourth_id_byte;
2295 if (bus_width == 16) {
2296 nand->busw = 16;
2297 chip->options |= NAND_BUSWIDTH_16;
2298 }
2299
2300 nsmtd->owner = THIS_MODULE;
2301
2302 if ((retval = parse_weakblocks()) != 0)
2303 goto error;
2304
2305 if ((retval = parse_weakpages()) != 0)
2306 goto error;
2307
2308 if ((retval = parse_gravepages()) != 0)
2309 goto error;
2310
2311 retval = nand_scan_ident(nsmtd, 1, NULL);
2312 if (retval) {
2313 NS_ERR("cannot scan NAND Simulator device\n");
2314 if (retval > 0)
2315 retval = -ENXIO;
2316 goto error;
2317 }
2318
2319 if (bch) {
2320 unsigned int eccsteps, eccbytes;
2321 if (!mtd_nand_has_bch()) {
2322 NS_ERR("BCH ECC support is disabled\n");
2323 retval = -EINVAL;
2324 goto error;
2325 }
2326 /* use 512-byte ecc blocks */
2327 eccsteps = nsmtd->writesize/512;
2328 eccbytes = (bch*13+7)/8;
2329 /* do not bother supporting small page devices */
2330 if ((nsmtd->oobsize < 64) || !eccsteps) {
2331 NS_ERR("bch not available on small page devices\n");
2332 retval = -EINVAL;
2333 goto error;
2334 }
2335 if ((eccbytes*eccsteps+2) > nsmtd->oobsize) {
2336 NS_ERR("invalid bch value %u\n", bch);
2337 retval = -EINVAL;
2338 goto error;
2339 }
2340 chip->ecc.mode = NAND_ECC_SOFT_BCH;
2341 chip->ecc.size = 512;
2342 chip->ecc.bytes = eccbytes;
2343 NS_INFO("using %u-bit/%u bytes BCH ECC\n", bch, chip->ecc.size);
2344 }
2345
2346 retval = nand_scan_tail(nsmtd);
2347 if (retval) {
2348 NS_ERR("can't register NAND Simulator\n");
2349 if (retval > 0)
2350 retval = -ENXIO;
2351 goto error;
2352 }
2353
2354 if (overridesize) {
2355 uint64_t new_size = (uint64_t)nsmtd->erasesize << overridesize;
2356 if (new_size >> overridesize != nsmtd->erasesize) {
2357 NS_ERR("overridesize is too big\n");
2358 retval = -EINVAL;
2359 goto err_exit;
2360 }
2361 /* N.B. This relies on nand_scan not doing anything with the size before we change it */
2362 nsmtd->size = new_size;
2363 chip->chipsize = new_size;
2364 chip->chip_shift = ffs(nsmtd->erasesize) + overridesize - 1;
2365 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2366 }
2367
2368 if ((retval = setup_wear_reporting(nsmtd)) != 0)
2369 goto err_exit;
2370
2371 if ((retval = init_nandsim(nsmtd)) != 0)
2372 goto err_exit;
2373
2374 if ((retval = nand_default_bbt(nsmtd)) != 0)
2375 goto err_exit;
2376
2377 if ((retval = parse_badblocks(nand, nsmtd)) != 0)
2378 goto err_exit;
2379
2380 /* Register NAND partitions */
2381 retval = mtd_device_register(nsmtd, &nand->partitions[0],
2382 nand->nbparts);
2383 if (retval != 0)
2384 goto err_exit;
2385
2386 return 0;
2387
2388err_exit:
2389 free_nandsim(nand);
2390 nand_release(nsmtd);
2391 for (i = 0;i < ARRAY_SIZE(nand->partitions); ++i)
2392 kfree(nand->partitions[i].name);
2393error:
2394 kfree(nsmtd);
2395 free_lists();
2396
2397 return retval;
2398}
2399
2400module_init(ns_init_module);
2401
2402/*
2403 * Module clean-up function
2404 */
2405static void __exit ns_cleanup_module(void)
2406{
2407 struct nandsim *ns = ((struct nand_chip *)nsmtd->priv)->priv;
2408 int i;
2409
2410 free_nandsim(ns); /* Free nandsim private resources */
2411 nand_release(nsmtd); /* Unregister driver */
2412 for (i = 0;i < ARRAY_SIZE(ns->partitions); ++i)
2413 kfree(ns->partitions[i].name);
2414 kfree(nsmtd); /* Free other structures */
2415 free_lists();
2416}
2417
2418module_exit(ns_cleanup_module);
2419
2420MODULE_LICENSE ("GPL");
2421MODULE_AUTHOR ("Artem B. Bityuckiy");
2422MODULE_DESCRIPTION ("The NAND flash simulator");