blob: 5438aeadad76de8d2e7abc62f8255b5ab2355b88 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * @ubi: UBI device description object
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
20 */
21
22/*
23 * UBI wear-leveling sub-system.
24 *
25 * This sub-system is responsible for wear-leveling. It works in terms of
26 * physical eraseblocks and erase counters and knows nothing about logical
27 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
28 * eraseblocks are of two types - used and free. Used physical eraseblocks are
29 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
30 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
31 *
32 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
33 * header. The rest of the physical eraseblock contains only %0xFF bytes.
34 *
35 * When physical eraseblocks are returned to the WL sub-system by means of the
36 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
37 * done asynchronously in context of the per-UBI device background thread,
38 * which is also managed by the WL sub-system.
39 *
40 * The wear-leveling is ensured by means of moving the contents of used
41 * physical eraseblocks with low erase counter to free physical eraseblocks
42 * with high erase counter.
43 *
44 * The 'ubi_wl_get_peb()' function accepts data type hints which help to pick
45 * an "optimal" physical eraseblock. For example, when it is known that the
46 * physical eraseblock will be "put" soon because it contains short-term data,
47 * the WL sub-system may pick a free physical eraseblock with low erase
48 * counter, and so forth.
49 *
50 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
51 * bad.
52 *
53 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
54 * in a physical eraseblock, it has to be moved. Technically this is the same
55 * as moving it for wear-leveling reasons.
56 *
57 * As it was said, for the UBI sub-system all physical eraseblocks are either
58 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
59 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
60 * RB-trees, as well as (temporarily) in the @wl->pq queue.
61 *
62 * When the WL sub-system returns a physical eraseblock, the physical
63 * eraseblock is protected from being moved for some "time". For this reason,
64 * the physical eraseblock is not directly moved from the @wl->free tree to the
65 * @wl->used tree. There is a protection queue in between where this
66 * physical eraseblock is temporarily stored (@wl->pq).
67 *
68 * All this protection stuff is needed because:
69 * o we don't want to move physical eraseblocks just after we have given them
70 * to the user; instead, we first want to let users fill them up with data;
71 *
72 * o there is a chance that the user will put the physical eraseblock very
73 * soon, so it makes sense not to move it for some time, but wait; this is
74 * especially important in case of "short term" physical eraseblocks.
75 *
76 * Physical eraseblocks stay protected only for limited time. But the "time" is
77 * measured in erase cycles in this case. This is implemented with help of the
78 * protection queue. Eraseblocks are put to the tail of this queue when they
79 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
80 * head of the queue on each erase operation (for any eraseblock). So the
81 * length of the queue defines how may (global) erase cycles PEBs are protected.
82 *
83 * To put it differently, each physical eraseblock has 2 main states: free and
84 * used. The former state corresponds to the @wl->free tree. The latter state
85 * is split up on several sub-states:
86 * o the WL movement is allowed (@wl->used tree);
87 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
88 * erroneous - e.g., there was a read error;
89 * o the WL movement is temporarily prohibited (@wl->pq queue);
90 * o scrubbing is needed (@wl->scrub tree).
91 *
92 * Depending on the sub-state, wear-leveling entries of the used physical
93 * eraseblocks may be kept in one of those structures.
94 *
95 * Note, in this implementation, we keep a small in-RAM object for each physical
96 * eraseblock. This is surely not a scalable solution. But it appears to be good
97 * enough for moderately large flashes and it is simple. In future, one may
98 * re-work this sub-system and make it more scalable.
99 *
100 * At the moment this sub-system does not utilize the sequence number, which
101 * was introduced relatively recently. But it would be wise to do this because
102 * the sequence number of a logical eraseblock characterizes how old is it. For
103 * example, when we move a PEB with low erase counter, and we need to pick the
104 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
105 * pick target PEB with an average EC if our PEB is not very "old". This is a
106 * room for future re-works of the WL sub-system.
107 */
108
109#include <linux/slab.h>
110#include <linux/crc32.h>
111#include <linux/freezer.h>
112#include <linux/kthread.h>
113#include "ubi.h"
114
115/* Number of physical eraseblocks reserved for wear-leveling purposes */
116#define WL_RESERVED_PEBS 1
117
118/*
119 * Maximum difference between two erase counters. If this threshold is
120 * exceeded, the WL sub-system starts moving data from used physical
121 * eraseblocks with low erase counter to free physical eraseblocks with high
122 * erase counter.
123 */
124#define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
125
126/*
127 * When a physical eraseblock is moved, the WL sub-system has to pick the target
128 * physical eraseblock to move to. The simplest way would be just to pick the
129 * one with the highest erase counter. But in certain workloads this could lead
130 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
131 * situation when the picked physical eraseblock is constantly erased after the
132 * data is written to it. So, we have a constant which limits the highest erase
133 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
134 * does not pick eraseblocks with erase counter greater than the lowest erase
135 * counter plus %WL_FREE_MAX_DIFF.
136 */
137#define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
138
139/*
140 * Maximum number of consecutive background thread failures which is enough to
141 * switch to read-only mode.
142 */
143#define WL_MAX_FAILURES 32
144
145/**
146 * struct ubi_work - UBI work description data structure.
147 * @list: a link in the list of pending works
148 * @func: worker function
149 * @e: physical eraseblock to erase
150 * @torture: if the physical eraseblock has to be tortured
151 *
152 * The @func pointer points to the worker function. If the @cancel argument is
153 * not zero, the worker has to free the resources and exit immediately. The
154 * worker has to return zero in case of success and a negative error code in
155 * case of failure.
156 */
157struct ubi_work {
158 struct list_head list;
159 int (*func)(struct ubi_device *ubi, struct ubi_work *wrk, int cancel);
160 /* The below fields are only relevant to erasure works */
161 struct ubi_wl_entry *e;
162 int torture;
163};
164
165#ifdef CONFIG_MTD_UBI_DEBUG
166static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec);
167static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
168 struct ubi_wl_entry *e,
169 struct rb_root *root);
170static int paranoid_check_in_pq(const struct ubi_device *ubi,
171 struct ubi_wl_entry *e);
172#else
173#define paranoid_check_ec(ubi, pnum, ec) 0
174#define paranoid_check_in_wl_tree(ubi, e, root)
175#define paranoid_check_in_pq(ubi, e) 0
176#endif
177
178/**
179 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
180 * @e: the wear-leveling entry to add
181 * @root: the root of the tree
182 *
183 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
184 * the @ubi->used and @ubi->free RB-trees.
185 */
186static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
187{
188 struct rb_node **p, *parent = NULL;
189
190 p = &root->rb_node;
191 while (*p) {
192 struct ubi_wl_entry *e1;
193
194 parent = *p;
195 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
196
197 if (e->ec < e1->ec)
198 p = &(*p)->rb_left;
199 else if (e->ec > e1->ec)
200 p = &(*p)->rb_right;
201 else {
202 ubi_assert(e->pnum != e1->pnum);
203 if (e->pnum < e1->pnum)
204 p = &(*p)->rb_left;
205 else
206 p = &(*p)->rb_right;
207 }
208 }
209
210 rb_link_node(&e->u.rb, parent, p);
211 rb_insert_color(&e->u.rb, root);
212}
213
214/**
215 * do_work - do one pending work.
216 * @ubi: UBI device description object
217 *
218 * This function returns zero in case of success and a negative error code in
219 * case of failure.
220 */
221static int do_work(struct ubi_device *ubi)
222{
223 int err;
224 struct ubi_work *wrk;
225
226 cond_resched();
227
228 /*
229 * @ubi->work_sem is used to synchronize with the workers. Workers take
230 * it in read mode, so many of them may be doing works at a time. But
231 * the queue flush code has to be sure the whole queue of works is
232 * done, and it takes the mutex in write mode.
233 */
234 down_read(&ubi->work_sem);
235 spin_lock(&ubi->wl_lock);
236 if (list_empty(&ubi->works)) {
237 spin_unlock(&ubi->wl_lock);
238 up_read(&ubi->work_sem);
239 return 0;
240 }
241
242 wrk = list_entry(ubi->works.next, struct ubi_work, list);
243 list_del(&wrk->list);
244 ubi->works_count -= 1;
245 ubi_assert(ubi->works_count >= 0);
246 spin_unlock(&ubi->wl_lock);
247
248 /*
249 * Call the worker function. Do not touch the work structure
250 * after this call as it will have been freed or reused by that
251 * time by the worker function.
252 */
253 err = wrk->func(ubi, wrk, 0);
254 if (err)
255 ubi_err("work failed with error code %d", err);
256 up_read(&ubi->work_sem);
257
258 return err;
259}
260
261/**
262 * produce_free_peb - produce a free physical eraseblock.
263 * @ubi: UBI device description object
264 *
265 * This function tries to make a free PEB by means of synchronous execution of
266 * pending works. This may be needed if, for example the background thread is
267 * disabled. Returns zero in case of success and a negative error code in case
268 * of failure.
269 */
270static int produce_free_peb(struct ubi_device *ubi)
271{
272 int err;
273
274 spin_lock(&ubi->wl_lock);
275 while (!ubi->free.rb_node) {
276 spin_unlock(&ubi->wl_lock);
277
278 dbg_wl("do one work synchronously");
279 err = do_work(ubi);
280 if (err)
281 return err;
282
283 spin_lock(&ubi->wl_lock);
284 }
285 spin_unlock(&ubi->wl_lock);
286
287 return 0;
288}
289
290/**
291 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
292 * @e: the wear-leveling entry to check
293 * @root: the root of the tree
294 *
295 * This function returns non-zero if @e is in the @root RB-tree and zero if it
296 * is not.
297 */
298static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
299{
300 struct rb_node *p;
301
302 p = root->rb_node;
303 while (p) {
304 struct ubi_wl_entry *e1;
305
306 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
307
308 if (e->pnum == e1->pnum) {
309 ubi_assert(e == e1);
310 return 1;
311 }
312
313 if (e->ec < e1->ec)
314 p = p->rb_left;
315 else if (e->ec > e1->ec)
316 p = p->rb_right;
317 else {
318 ubi_assert(e->pnum != e1->pnum);
319 if (e->pnum < e1->pnum)
320 p = p->rb_left;
321 else
322 p = p->rb_right;
323 }
324 }
325
326 return 0;
327}
328
329/**
330 * prot_queue_add - add physical eraseblock to the protection queue.
331 * @ubi: UBI device description object
332 * @e: the physical eraseblock to add
333 *
334 * This function adds @e to the tail of the protection queue @ubi->pq, where
335 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
336 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
337 * be locked.
338 */
339static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
340{
341 int pq_tail = ubi->pq_head - 1;
342
343 if (pq_tail < 0)
344 pq_tail = UBI_PROT_QUEUE_LEN - 1;
345 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
346 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
347 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
348}
349
350/**
351 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
352 * @root: the RB-tree where to look for
353 * @diff: maximum possible difference from the smallest erase counter
354 *
355 * This function looks for a wear leveling entry with erase counter closest to
356 * min + @diff, where min is the smallest erase counter.
357 */
358static struct ubi_wl_entry *find_wl_entry(struct rb_root *root, int diff)
359{
360 struct rb_node *p;
361 struct ubi_wl_entry *e;
362 int max;
363
364 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
365 if(e == NULL)
366 {
367 return NULL;
368 }
369 max = e->ec + diff;
370
371 p = root->rb_node;
372 while (p) {
373 struct ubi_wl_entry *e1;
374
375 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
376 if (e1->ec >= max)
377 p = p->rb_left;
378 else {
379 p = p->rb_right;
380 e = e1;
381 }
382 }
383
384 return e;
385}
386
387/**
388 * ubi_wl_get_peb - get a physical eraseblock.
389 * @ubi: UBI device description object
390 * @dtype: type of data which will be stored in this physical eraseblock
391 *
392 * This function returns a physical eraseblock in case of success and a
393 * negative error code in case of failure. Might sleep.
394 */
395int ubi_wl_get_peb(struct ubi_device *ubi, int dtype)
396{
397 int err;
398 struct ubi_wl_entry *e, *first, *last;
399
400 ubi_assert(dtype == UBI_LONGTERM || dtype == UBI_SHORTTERM ||
401 dtype == UBI_UNKNOWN);
402
403retry:
404 spin_lock(&ubi->wl_lock);
405 if (!ubi->free.rb_node) {
406 if (ubi->works_count == 0) {
407 ubi_assert(list_empty(&ubi->works));
408 ubi_err("no free eraseblocks");
409 spin_unlock(&ubi->wl_lock);
410 return -ENOSPC;
411 }
412 spin_unlock(&ubi->wl_lock);
413
414 err = produce_free_peb(ubi);
415 if (err < 0)
416 return err;
417 goto retry;
418 }
419
420 switch (dtype) {
421 case UBI_LONGTERM:
422 /*
423 * For long term data we pick a physical eraseblock with high
424 * erase counter. But the highest erase counter we can pick is
425 * bounded by the the lowest erase counter plus
426 * %WL_FREE_MAX_DIFF.
427 */
428 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
429 break;
430 case UBI_UNKNOWN:
431 /*
432 * For unknown data we pick a physical eraseblock with medium
433 * erase counter. But we by no means can pick a physical
434 * eraseblock with erase counter greater or equivalent than the
435 * lowest erase counter plus %WL_FREE_MAX_DIFF/2.
436 */
437 first = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry,
438 u.rb);
439 last = rb_entry(rb_last(&ubi->free), struct ubi_wl_entry, u.rb);
440
441 if (last->ec - first->ec < WL_FREE_MAX_DIFF)
442 e = rb_entry(ubi->free.rb_node,
443 struct ubi_wl_entry, u.rb);
444 else
445 e = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF/2);
446 break;
447 case UBI_SHORTTERM:
448 /*
449 * For short term data we pick a physical eraseblock with the
450 * lowest erase counter as we expect it will be erased soon.
451 */
452 e = rb_entry(rb_first(&ubi->free), struct ubi_wl_entry, u.rb);
453 break;
454 default:
455 BUG();
456 }
457
458 paranoid_check_in_wl_tree(ubi, e, &ubi->free);
459
460 /*
461 * Move the physical eraseblock to the protection queue where it will
462 * be protected from being moved for some time.
463 */
464 rb_erase(&e->u.rb, &ubi->free);
465 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
466 prot_queue_add(ubi, e);
467 spin_unlock(&ubi->wl_lock);
468
469 err = ubi_dbg_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
470 ubi->peb_size - ubi->vid_hdr_aloffset);
471 if (err) {
472 ubi_err("new PEB %d does not contain all 0xFF bytes", e->pnum);
473 return err;
474 }
475
476 return e->pnum;
477}
478
479/**
480 * prot_queue_del - remove a physical eraseblock from the protection queue.
481 * @ubi: UBI device description object
482 * @pnum: the physical eraseblock to remove
483 *
484 * This function deletes PEB @pnum from the protection queue and returns zero
485 * in case of success and %-ENODEV if the PEB was not found.
486 */
487static int prot_queue_del(struct ubi_device *ubi, int pnum)
488{
489 struct ubi_wl_entry *e;
490
491 e = ubi->lookuptbl[pnum];
492 if (!e)
493 return -ENODEV;
494
495 if (paranoid_check_in_pq(ubi, e))
496 return -ENODEV;
497
498 list_del(&e->u.list);
499 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
500 return 0;
501}
502
503/**
504 * sync_erase - synchronously erase a physical eraseblock.
505 * @ubi: UBI device description object
506 * @e: the the physical eraseblock to erase
507 * @torture: if the physical eraseblock has to be tortured
508 *
509 * This function returns zero in case of success and a negative error code in
510 * case of failure.
511 */
512static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
513 int torture)
514{
515 int err;
516 struct ubi_ec_hdr *ec_hdr;
517 unsigned long long ec = e->ec;
518
519 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
520
521 err = paranoid_check_ec(ubi, e->pnum, e->ec);
522 if (err)
523 return -EINVAL;
524
525 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
526 if (!ec_hdr)
527 return -ENOMEM;
528
529 err = ubi_io_sync_erase(ubi, e->pnum, torture);
530 if (err < 0)
531 goto out_free;
532
533 ec += err;
534 if (ec > UBI_MAX_ERASECOUNTER) {
535 /*
536 * Erase counter overflow. Upgrade UBI and use 64-bit
537 * erase counters internally.
538 */
539 ubi_err("erase counter overflow at PEB %d, EC %llu",
540 e->pnum, ec);
541 err = -EINVAL;
542 goto out_free;
543 }
544
545 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
546
547 ec_hdr->ec = cpu_to_be64(ec);
548
549 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
550 if (err)
551 goto out_free;
552
553 e->ec = ec;
554 spin_lock(&ubi->wl_lock);
555 if (e->ec > ubi->max_ec)
556 ubi->max_ec = e->ec;
557 spin_unlock(&ubi->wl_lock);
558
559out_free:
560 kfree(ec_hdr);
561 return err;
562}
563
564/**
565 * serve_prot_queue - check if it is time to stop protecting PEBs.
566 * @ubi: UBI device description object
567 *
568 * This function is called after each erase operation and removes PEBs from the
569 * tail of the protection queue. These PEBs have been protected for long enough
570 * and should be moved to the used tree.
571 */
572static void serve_prot_queue(struct ubi_device *ubi)
573{
574 struct ubi_wl_entry *e, *tmp;
575 int count;
576
577 /*
578 * There may be several protected physical eraseblock to remove,
579 * process them all.
580 */
581repeat:
582 count = 0;
583 spin_lock(&ubi->wl_lock);
584 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
585 dbg_wl("PEB %d EC %d protection over, move to used tree",
586 e->pnum, e->ec);
587
588 list_del(&e->u.list);
589 wl_tree_add(e, &ubi->used);
590 if (count++ > 32) {
591 /*
592 * Let's be nice and avoid holding the spinlock for
593 * too long.
594 */
595 spin_unlock(&ubi->wl_lock);
596 cond_resched();
597 goto repeat;
598 }
599 }
600
601 ubi->pq_head += 1;
602 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
603 ubi->pq_head = 0;
604 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
605 spin_unlock(&ubi->wl_lock);
606}
607
608/**
609 * schedule_ubi_work - schedule a work.
610 * @ubi: UBI device description object
611 * @wrk: the work to schedule
612 *
613 * This function adds a work defined by @wrk to the tail of the pending works
614 * list.
615 */
616static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
617{
618 spin_lock(&ubi->wl_lock);
619 list_add_tail(&wrk->list, &ubi->works);
620 ubi_assert(ubi->works_count >= 0);
621 ubi->works_count += 1;
622 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
623 wake_up_process(ubi->bgt_thread);
624 spin_unlock(&ubi->wl_lock);
625}
626
627static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
628 int cancel);
629
630/**
631 * schedule_erase - schedule an erase work.
632 * @ubi: UBI device description object
633 * @e: the WL entry of the physical eraseblock to erase
634 * @torture: if the physical eraseblock has to be tortured
635 *
636 * This function returns zero in case of success and a %-ENOMEM in case of
637 * failure.
638 */
639static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
640 int torture)
641{
642 struct ubi_work *wl_wrk;
643
644 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
645 e->pnum, e->ec, torture);
646
647 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
648 if (!wl_wrk)
649 return -ENOMEM;
650
651 wl_wrk->func = &erase_worker;
652 wl_wrk->e = e;
653 wl_wrk->torture = torture;
654
655 schedule_ubi_work(ubi, wl_wrk);
656 return 0;
657}
658
659/**
660 * wear_leveling_worker - wear-leveling worker function.
661 * @ubi: UBI device description object
662 * @wrk: the work object
663 * @cancel: non-zero if the worker has to free memory and exit
664 *
665 * This function copies a more worn out physical eraseblock to a less worn out
666 * one. Returns zero in case of success and a negative error code in case of
667 * failure.
668 */
669static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
670 int cancel)
671{
672 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
673 int vol_id = -1, lnum = -1;
674 struct ubi_wl_entry *e1, *e2;
675 struct ubi_vid_hdr *vid_hdr;
676
677 kfree(wrk);
678 if (cancel)
679 return 0;
680
681 vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
682 if (!vid_hdr)
683 return -ENOMEM;
684
685 mutex_lock(&ubi->move_mutex);
686 spin_lock(&ubi->wl_lock);
687 ubi_assert(!ubi->move_from && !ubi->move_to);
688 ubi_assert(!ubi->move_to_put);
689
690 if (!ubi->free.rb_node ||
691 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
692 /*
693 * No free physical eraseblocks? Well, they must be waiting in
694 * the queue to be erased. Cancel movement - it will be
695 * triggered again when a free physical eraseblock appears.
696 *
697 * No used physical eraseblocks? They must be temporarily
698 * protected from being moved. They will be moved to the
699 * @ubi->used tree later and the wear-leveling will be
700 * triggered again.
701 */
702 dbg_wl("cancel WL, a list is empty: free %d, used %d",
703 !ubi->free.rb_node, !ubi->used.rb_node);
704 goto out_cancel;
705 }
706
707 if (!ubi->scrub.rb_node) {
708 /*
709 * Now pick the least worn-out used physical eraseblock and a
710 * highly worn-out free physical eraseblock. If the erase
711 * counters differ much enough, start wear-leveling.
712 */
713 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
714 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
715
716 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
717 dbg_wl("no WL needed: min used EC %d, max free EC %d",
718 e1->ec, e2->ec);
719 goto out_cancel;
720 }
721 paranoid_check_in_wl_tree(ubi, e1, &ubi->used);
722 rb_erase(&e1->u.rb, &ubi->used);
723 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
724 e1->pnum, e1->ec, e2->pnum, e2->ec);
725 } else {
726 /* Perform scrubbing */
727 scrubbing = 1;
728 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
729 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
730 paranoid_check_in_wl_tree(ubi, e1, &ubi->scrub);
731 rb_erase(&e1->u.rb, &ubi->scrub);
732 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
733 }
734
735 paranoid_check_in_wl_tree(ubi, e2, &ubi->free);
736 rb_erase(&e2->u.rb, &ubi->free);
737 ubi->move_from = e1;
738 ubi->move_to = e2;
739 spin_unlock(&ubi->wl_lock);
740
741 /*
742 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
743 * We so far do not know which logical eraseblock our physical
744 * eraseblock (@e1) belongs to. We have to read the volume identifier
745 * header first.
746 *
747 * Note, we are protected from this PEB being unmapped and erased. The
748 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
749 * which is being moved was unmapped.
750 */
751
752 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vid_hdr, 0);
753 if (err && err != UBI_IO_BITFLIPS) {
754 if (err == UBI_IO_FF) {
755 /*
756 * We are trying to move PEB without a VID header. UBI
757 * always write VID headers shortly after the PEB was
758 * given, so we have a situation when it has not yet
759 * had a chance to write it, because it was preempted.
760 * So add this PEB to the protection queue so far,
761 * because presumably more data will be written there
762 * (including the missing VID header), and then we'll
763 * move it.
764 */
765 dbg_wl("PEB %d has no VID header", e1->pnum);
766 protect = 1;
767 goto out_not_moved;
768 } else if (err == UBI_IO_FF_BITFLIPS) {
769 /*
770 * The same situation as %UBI_IO_FF, but bit-flips were
771 * detected. It is better to schedule this PEB for
772 * scrubbing.
773 */
774 dbg_wl("PEB %d has no VID header but has bit-flips",
775 e1->pnum);
776 scrubbing = 1;
777 goto out_not_moved;
778 }
779
780 ubi_err("error %d while reading VID header from PEB %d",
781 err, e1->pnum);
782 goto out_error;
783 }
784
785 vol_id = be32_to_cpu(vid_hdr->vol_id);
786 lnum = be32_to_cpu(vid_hdr->lnum);
787
788 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vid_hdr);
789 if (err) {
790 if (err == MOVE_CANCEL_RACE) {
791 /*
792 * The LEB has not been moved because the volume is
793 * being deleted or the PEB has been put meanwhile. We
794 * should prevent this PEB from being selected for
795 * wear-leveling movement again, so put it to the
796 * protection queue.
797 */
798 protect = 1;
799 goto out_not_moved;
800 }
801 if (err == MOVE_RETRY) {
802 scrubbing = 1;
803 goto out_not_moved;
804 }
805 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
806 err == MOVE_TARGET_RD_ERR) {
807 /*
808 * Target PEB had bit-flips or write error - torture it.
809 */
810 torture = 1;
811 goto out_not_moved;
812 }
813
814 if (err == MOVE_SOURCE_RD_ERR) {
815 /*
816 * An error happened while reading the source PEB. Do
817 * not switch to R/O mode in this case, and give the
818 * upper layers a possibility to recover from this,
819 * e.g. by unmapping corresponding LEB. Instead, just
820 * put this PEB to the @ubi->erroneous list to prevent
821 * UBI from trying to move it over and over again.
822 */
823 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
824 ubi_err("too many erroneous eraseblocks (%d)",
825 ubi->erroneous_peb_count);
826 goto out_error;
827 }
828 erroneous = 1;
829 goto out_not_moved;
830 }
831
832 if (err < 0)
833 goto out_error;
834
835 ubi_assert(0);
836 }
837
838 /* The PEB has been successfully moved */
839 if (scrubbing)
840 ubi_msg("scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
841 e1->pnum, vol_id, lnum, e2->pnum);
842 ubi_free_vid_hdr(ubi, vid_hdr);
843
844 spin_lock(&ubi->wl_lock);
845 if (!ubi->move_to_put) {
846 wl_tree_add(e2, &ubi->used);
847 e2 = NULL;
848 }
849 ubi->move_from = ubi->move_to = NULL;
850 ubi->move_to_put = ubi->wl_scheduled = 0;
851 spin_unlock(&ubi->wl_lock);
852
853 err = schedule_erase(ubi, e1, 0);
854 if (err) {
855 kmem_cache_free(ubi_wl_entry_slab, e1);
856 if (e2)
857 kmem_cache_free(ubi_wl_entry_slab, e2);
858 goto out_ro;
859 }
860
861 if (e2) {
862 /*
863 * Well, the target PEB was put meanwhile, schedule it for
864 * erasure.
865 */
866 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
867 e2->pnum, vol_id, lnum);
868 err = schedule_erase(ubi, e2, 0);
869 if (err) {
870 kmem_cache_free(ubi_wl_entry_slab, e2);
871 goto out_ro;
872 }
873 }
874
875 dbg_wl("done");
876 mutex_unlock(&ubi->move_mutex);
877 return 0;
878
879 /*
880 * For some reasons the LEB was not moved, might be an error, might be
881 * something else. @e1 was not changed, so return it back. @e2 might
882 * have been changed, schedule it for erasure.
883 */
884out_not_moved:
885 if (vol_id != -1)
886 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
887 e1->pnum, vol_id, lnum, e2->pnum, err);
888 else
889 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
890 e1->pnum, e2->pnum, err);
891 spin_lock(&ubi->wl_lock);
892 if (protect)
893 prot_queue_add(ubi, e1);
894 else if (erroneous) {
895 wl_tree_add(e1, &ubi->erroneous);
896 ubi->erroneous_peb_count += 1;
897 } else if (scrubbing)
898 wl_tree_add(e1, &ubi->scrub);
899 else
900 wl_tree_add(e1, &ubi->used);
901 ubi_assert(!ubi->move_to_put);
902 ubi->move_from = ubi->move_to = NULL;
903 ubi->wl_scheduled = 0;
904 spin_unlock(&ubi->wl_lock);
905
906 ubi_free_vid_hdr(ubi, vid_hdr);
907 err = schedule_erase(ubi, e2, torture);
908 if (err) {
909 kmem_cache_free(ubi_wl_entry_slab, e2);
910 goto out_ro;
911 }
912 mutex_unlock(&ubi->move_mutex);
913 return 0;
914
915out_error:
916 if (vol_id != -1)
917 ubi_err("error %d while moving PEB %d to PEB %d",
918 err, e1->pnum, e2->pnum);
919 else
920 ubi_err("error %d while moving PEB %d (LEB %d:%d) to PEB %d",
921 err, e1->pnum, vol_id, lnum, e2->pnum);
922 spin_lock(&ubi->wl_lock);
923 ubi->move_from = ubi->move_to = NULL;
924 ubi->move_to_put = ubi->wl_scheduled = 0;
925 spin_unlock(&ubi->wl_lock);
926
927 ubi_free_vid_hdr(ubi, vid_hdr);
928 kmem_cache_free(ubi_wl_entry_slab, e1);
929 kmem_cache_free(ubi_wl_entry_slab, e2);
930
931out_ro:
932 ubi_ro_mode(ubi);
933 mutex_unlock(&ubi->move_mutex);
934 ubi_assert(err != 0);
935 return err < 0 ? err : -EIO;
936
937out_cancel:
938 ubi->wl_scheduled = 0;
939 spin_unlock(&ubi->wl_lock);
940 mutex_unlock(&ubi->move_mutex);
941 ubi_free_vid_hdr(ubi, vid_hdr);
942 return 0;
943}
944
945/**
946 * ensure_wear_leveling - schedule wear-leveling if it is needed.
947 * @ubi: UBI device description object
948 *
949 * This function checks if it is time to start wear-leveling and schedules it
950 * if yes. This function returns zero in case of success and a negative error
951 * code in case of failure.
952 */
953static int ensure_wear_leveling(struct ubi_device *ubi)
954{
955 int err = 0;
956 struct ubi_wl_entry *e1;
957 struct ubi_wl_entry *e2;
958 struct ubi_work *wrk;
959
960 spin_lock(&ubi->wl_lock);
961 if (ubi->wl_scheduled)
962 /* Wear-leveling is already in the work queue */
963 goto out_unlock;
964
965 /*
966 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
967 * the WL worker has to be scheduled anyway.
968 */
969 if (!ubi->scrub.rb_node) {
970 if (!ubi->used.rb_node || !ubi->free.rb_node)
971 /* No physical eraseblocks - no deal */
972 goto out_unlock;
973
974 /*
975 * We schedule wear-leveling only if the difference between the
976 * lowest erase counter of used physical eraseblocks and a high
977 * erase counter of free physical eraseblocks is greater than
978 * %UBI_WL_THRESHOLD.
979 */
980 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
981 e2 = find_wl_entry(&ubi->free, WL_FREE_MAX_DIFF);
982
983 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
984 goto out_unlock;
985 dbg_wl("schedule wear-leveling");
986 } else
987 dbg_wl("schedule scrubbing");
988
989 ubi->wl_scheduled = 1;
990 spin_unlock(&ubi->wl_lock);
991
992 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
993 if (!wrk) {
994 err = -ENOMEM;
995 goto out_cancel;
996 }
997
998 wrk->func = &wear_leveling_worker;
999 schedule_ubi_work(ubi, wrk);
1000 return err;
1001
1002out_cancel:
1003 spin_lock(&ubi->wl_lock);
1004 ubi->wl_scheduled = 0;
1005out_unlock:
1006 spin_unlock(&ubi->wl_lock);
1007 return err;
1008}
1009
1010/**
1011 * erase_worker - physical eraseblock erase worker function.
1012 * @ubi: UBI device description object
1013 * @wl_wrk: the work object
1014 * @cancel: non-zero if the worker has to free memory and exit
1015 *
1016 * This function erases a physical eraseblock and perform torture testing if
1017 * needed. It also takes care about marking the physical eraseblock bad if
1018 * needed. Returns zero in case of success and a negative error code in case of
1019 * failure.
1020 */
1021static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1022 int cancel)
1023{
1024 struct ubi_wl_entry *e = wl_wrk->e;
1025 int pnum = e->pnum, err, need;
1026
1027 if (cancel) {
1028 dbg_wl("cancel erasure of PEB %d EC %d", pnum, e->ec);
1029 kfree(wl_wrk);
1030 kmem_cache_free(ubi_wl_entry_slab, e);
1031 return 0;
1032 }
1033
1034 dbg_wl("erase PEB %d EC %d", pnum, e->ec);
1035
1036 err = sync_erase(ubi, e, wl_wrk->torture);
1037 if (!err) {
1038 /* Fine, we've erased it successfully */
1039 kfree(wl_wrk);
1040
1041 spin_lock(&ubi->wl_lock);
1042 wl_tree_add(e, &ubi->free);
1043 spin_unlock(&ubi->wl_lock);
1044
1045 /*
1046 * One more erase operation has happened, take care about
1047 * protected physical eraseblocks.
1048 */
1049 serve_prot_queue(ubi);
1050
1051 /* And take care about wear-leveling */
1052 err = ensure_wear_leveling(ubi);
1053 return err;
1054 }
1055
1056 ubi_err("failed to erase PEB %d, error %d", pnum, err);
1057 kfree(wl_wrk);
1058
1059 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1060 err == -EBUSY) {
1061 int err1;
1062
1063 /* Re-schedule the LEB for erasure */
1064 err1 = schedule_erase(ubi, e, 0);
1065 if (err1) {
1066 err = err1;
1067 goto out_ro;
1068 }
1069 return err;
1070 }
1071
1072 kmem_cache_free(ubi_wl_entry_slab, e);
1073 if (err != -EIO)
1074 /*
1075 * If this is not %-EIO, we have no idea what to do. Scheduling
1076 * this physical eraseblock for erasure again would cause
1077 * errors again and again. Well, lets switch to R/O mode.
1078 */
1079 goto out_ro;
1080
1081 /* It is %-EIO, the PEB went bad */
1082
1083 if (!ubi->bad_allowed) {
1084 ubi_err("bad physical eraseblock %d detected", pnum);
1085 goto out_ro;
1086 }
1087
1088 spin_lock(&ubi->volumes_lock);
1089 need = ubi->beb_rsvd_level - ubi->beb_rsvd_pebs + 1;
1090 if (need > 0) {
1091 need = ubi->avail_pebs >= need ? need : ubi->avail_pebs;
1092 ubi->avail_pebs -= need;
1093 ubi->rsvd_pebs += need;
1094 ubi->beb_rsvd_pebs += need;
1095 if (need > 0)
1096 ubi_msg("reserve more %d PEBs", need);
1097 }
1098
1099 if (ubi->beb_rsvd_pebs == 0) {
1100 spin_unlock(&ubi->volumes_lock);
1101 ubi_err("no reserved physical eraseblocks");
1102 goto out_ro;
1103 }
1104 spin_unlock(&ubi->volumes_lock);
1105
1106 ubi_msg("mark PEB %d as bad", pnum);
1107 err = ubi_io_mark_bad(ubi, pnum);
1108 if (err)
1109 goto out_ro;
1110
1111 spin_lock(&ubi->volumes_lock);
1112 ubi->beb_rsvd_pebs -= 1;
1113 ubi->bad_peb_count += 1;
1114 ubi->good_peb_count -= 1;
1115 ubi_calculate_reserved(ubi);
1116 if (ubi->beb_rsvd_pebs)
1117 ubi_msg("%d PEBs left in the reserve", ubi->beb_rsvd_pebs);
1118 else
1119 ubi_warn("last PEB from the reserved pool was used");
1120 spin_unlock(&ubi->volumes_lock);
1121
1122 return err;
1123
1124out_ro:
1125 ubi_ro_mode(ubi);
1126 return err;
1127}
1128
1129/**
1130 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1131 * @ubi: UBI device description object
1132 * @pnum: physical eraseblock to return
1133 * @torture: if this physical eraseblock has to be tortured
1134 *
1135 * This function is called to return physical eraseblock @pnum to the pool of
1136 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1137 * occurred to this @pnum and it has to be tested. This function returns zero
1138 * in case of success, and a negative error code in case of failure.
1139 */
1140int ubi_wl_put_peb(struct ubi_device *ubi, int pnum, int torture)
1141{
1142 int err;
1143 struct ubi_wl_entry *e;
1144
1145 dbg_wl("PEB %d", pnum);
1146 ubi_assert(pnum >= 0);
1147 ubi_assert(pnum < ubi->peb_count);
1148
1149retry:
1150 spin_lock(&ubi->wl_lock);
1151 e = ubi->lookuptbl[pnum];
1152 if (e == ubi->move_from) {
1153 /*
1154 * User is putting the physical eraseblock which was selected to
1155 * be moved. It will be scheduled for erasure in the
1156 * wear-leveling worker.
1157 */
1158 dbg_wl("PEB %d is being moved, wait", pnum);
1159 spin_unlock(&ubi->wl_lock);
1160
1161 /* Wait for the WL worker by taking the @ubi->move_mutex */
1162 mutex_lock(&ubi->move_mutex);
1163 mutex_unlock(&ubi->move_mutex);
1164 goto retry;
1165 } else if (e == ubi->move_to) {
1166 /*
1167 * User is putting the physical eraseblock which was selected
1168 * as the target the data is moved to. It may happen if the EBA
1169 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1170 * but the WL sub-system has not put the PEB to the "used" tree
1171 * yet, but it is about to do this. So we just set a flag which
1172 * will tell the WL worker that the PEB is not needed anymore
1173 * and should be scheduled for erasure.
1174 */
1175 dbg_wl("PEB %d is the target of data moving", pnum);
1176 ubi_assert(!ubi->move_to_put);
1177 ubi->move_to_put = 1;
1178 spin_unlock(&ubi->wl_lock);
1179 return 0;
1180 } else {
1181 if (in_wl_tree(e, &ubi->used)) {
1182 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1183 rb_erase(&e->u.rb, &ubi->used);
1184 } else if (in_wl_tree(e, &ubi->scrub)) {
1185 paranoid_check_in_wl_tree(ubi, e, &ubi->scrub);
1186 rb_erase(&e->u.rb, &ubi->scrub);
1187 } else if (in_wl_tree(e, &ubi->erroneous)) {
1188 paranoid_check_in_wl_tree(ubi, e, &ubi->erroneous);
1189 rb_erase(&e->u.rb, &ubi->erroneous);
1190 ubi->erroneous_peb_count -= 1;
1191 ubi_assert(ubi->erroneous_peb_count >= 0);
1192 /* Erroneous PEBs should be tortured */
1193 torture = 1;
1194 } else {
1195 err = prot_queue_del(ubi, e->pnum);
1196 if (err) {
1197 ubi_err("PEB %d not found", pnum);
1198 ubi_ro_mode(ubi);
1199 spin_unlock(&ubi->wl_lock);
1200 return err;
1201 }
1202 }
1203 }
1204 spin_unlock(&ubi->wl_lock);
1205
1206 err = schedule_erase(ubi, e, torture);
1207 if (err) {
1208 spin_lock(&ubi->wl_lock);
1209 wl_tree_add(e, &ubi->used);
1210 spin_unlock(&ubi->wl_lock);
1211 }
1212
1213 return err;
1214}
1215
1216/**
1217 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1218 * @ubi: UBI device description object
1219 * @pnum: the physical eraseblock to schedule
1220 *
1221 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1222 * needs scrubbing. This function schedules a physical eraseblock for
1223 * scrubbing which is done in background. This function returns zero in case of
1224 * success and a negative error code in case of failure.
1225 */
1226int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1227{
1228 struct ubi_wl_entry *e;
1229
1230 dbg_msg("schedule PEB %d for scrubbing", pnum);
1231
1232retry:
1233 spin_lock(&ubi->wl_lock);
1234 e = ubi->lookuptbl[pnum];
1235 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1236 in_wl_tree(e, &ubi->erroneous)) {
1237 spin_unlock(&ubi->wl_lock);
1238 return 0;
1239 }
1240
1241 if (e == ubi->move_to) {
1242 /*
1243 * This physical eraseblock was used to move data to. The data
1244 * was moved but the PEB was not yet inserted to the proper
1245 * tree. We should just wait a little and let the WL worker
1246 * proceed.
1247 */
1248 spin_unlock(&ubi->wl_lock);
1249 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1250 yield();
1251 goto retry;
1252 }
1253
1254 if (in_wl_tree(e, &ubi->used)) {
1255 paranoid_check_in_wl_tree(ubi, e, &ubi->used);
1256 rb_erase(&e->u.rb, &ubi->used);
1257 } else {
1258 int err;
1259
1260 err = prot_queue_del(ubi, e->pnum);
1261 if (err) {
1262 ubi_err("PEB %d not found", pnum);
1263 ubi_ro_mode(ubi);
1264 spin_unlock(&ubi->wl_lock);
1265 return err;
1266 }
1267 }
1268
1269 wl_tree_add(e, &ubi->scrub);
1270 spin_unlock(&ubi->wl_lock);
1271
1272 /*
1273 * Technically scrubbing is the same as wear-leveling, so it is done
1274 * by the WL worker.
1275 */
1276 return ensure_wear_leveling(ubi);
1277}
1278
1279/**
1280 * ubi_wl_flush - flush all pending works.
1281 * @ubi: UBI device description object
1282 *
1283 * This function returns zero in case of success and a negative error code in
1284 * case of failure.
1285 */
1286int ubi_wl_flush(struct ubi_device *ubi)
1287{
1288 int err;
1289
1290 /*
1291 * Erase while the pending works queue is not empty, but not more than
1292 * the number of currently pending works.
1293 */
1294 dbg_wl("flush (%d pending works)", ubi->works_count);
1295 while (ubi->works_count) {
1296 err = do_work(ubi);
1297 if (err)
1298 return err;
1299 }
1300
1301 /*
1302 * Make sure all the works which have been done in parallel are
1303 * finished.
1304 */
1305 down_write(&ubi->work_sem);
1306 up_write(&ubi->work_sem);
1307
1308 /*
1309 * And in case last was the WL worker and it canceled the LEB
1310 * movement, flush again.
1311 */
1312 while (ubi->works_count) {
1313 dbg_wl("flush more (%d pending works)", ubi->works_count);
1314 err = do_work(ubi);
1315 if (err)
1316 return err;
1317 }
1318
1319 return 0;
1320}
1321
1322/**
1323 * tree_destroy - destroy an RB-tree.
1324 * @root: the root of the tree to destroy
1325 */
1326static void tree_destroy(struct rb_root *root)
1327{
1328 struct rb_node *rb;
1329 struct ubi_wl_entry *e;
1330
1331 rb = root->rb_node;
1332 while (rb) {
1333 if (rb->rb_left)
1334 rb = rb->rb_left;
1335 else if (rb->rb_right)
1336 rb = rb->rb_right;
1337 else {
1338 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1339
1340 rb = rb_parent(rb);
1341 if (rb) {
1342 if (rb->rb_left == &e->u.rb)
1343 rb->rb_left = NULL;
1344 else
1345 rb->rb_right = NULL;
1346 }
1347
1348 kmem_cache_free(ubi_wl_entry_slab, e);
1349 }
1350 }
1351}
1352
1353/**
1354 * ubi_thread - UBI background thread.
1355 * @u: the UBI device description object pointer
1356 */
1357int ubi_thread(void *u)
1358{
1359 int failures = 0;
1360 struct ubi_device *ubi = u;
1361
1362 ubi_msg("background thread \"%s\" started, PID %d",
1363 ubi->bgt_name, task_pid_nr(current));
1364
1365 set_freezable();
1366 for (;;) {
1367 int err;
1368
1369 if (kthread_should_stop())
1370 break;
1371
1372 if (try_to_freeze())
1373 continue;
1374
1375 spin_lock(&ubi->wl_lock);
1376 if (list_empty(&ubi->works) || ubi->ro_mode ||
1377 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1378 set_current_state(TASK_INTERRUPTIBLE);
1379 spin_unlock(&ubi->wl_lock);
1380 schedule();
1381 continue;
1382 }
1383 spin_unlock(&ubi->wl_lock);
1384
1385 err = do_work(ubi);
1386 if (err) {
1387 ubi_err("%s: work failed with error code %d",
1388 ubi->bgt_name, err);
1389 if (failures++ > WL_MAX_FAILURES) {
1390 /*
1391 * Too many failures, disable the thread and
1392 * switch to read-only mode.
1393 */
1394 ubi_msg("%s: %d consecutive failures",
1395 ubi->bgt_name, WL_MAX_FAILURES);
1396 ubi_ro_mode(ubi);
1397 ubi->thread_enabled = 0;
1398 continue;
1399 }
1400 } else
1401 failures = 0;
1402
1403 cond_resched();
1404 }
1405
1406 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1407 return 0;
1408}
1409
1410/**
1411 * cancel_pending - cancel all pending works.
1412 * @ubi: UBI device description object
1413 */
1414static void cancel_pending(struct ubi_device *ubi)
1415{
1416 while (!list_empty(&ubi->works)) {
1417 struct ubi_work *wrk;
1418
1419 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1420 list_del(&wrk->list);
1421 wrk->func(ubi, wrk, 1);
1422 ubi->works_count -= 1;
1423 ubi_assert(ubi->works_count >= 0);
1424 }
1425}
1426
1427/**
1428 * ubi_wl_init_scan - initialize the WL sub-system using scanning information.
1429 * @ubi: UBI device description object
1430 * @si: scanning information
1431 *
1432 * This function returns zero in case of success, and a negative error code in
1433 * case of failure.
1434 */
1435int ubi_wl_init_scan(struct ubi_device *ubi, struct ubi_scan_info *si)
1436{
1437 int err, i;
1438 struct rb_node *rb1, *rb2;
1439 struct ubi_scan_volume *sv;
1440 struct ubi_scan_leb *seb, *tmp;
1441 struct ubi_wl_entry *e;
1442
1443 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1444 spin_lock_init(&ubi->wl_lock);
1445 mutex_init(&ubi->move_mutex);
1446 init_rwsem(&ubi->work_sem);
1447 ubi->max_ec = si->max_ec;
1448 INIT_LIST_HEAD(&ubi->works);
1449
1450 snprintf(ubi->bgt_name, sizeof(ubi->bgt_name), UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1451
1452 err = -ENOMEM;
1453 ubi->lookuptbl = kzalloc(ubi->peb_count * sizeof(void *), GFP_KERNEL);
1454 if (!ubi->lookuptbl)
1455 return err;
1456
1457 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1458 INIT_LIST_HEAD(&ubi->pq[i]);
1459 ubi->pq_head = 0;
1460
1461 list_for_each_entry_safe(seb, tmp, &si->erase, u.list) {
1462 cond_resched();
1463
1464 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1465 if (!e)
1466 goto out_free;
1467
1468 e->pnum = seb->pnum;
1469 e->ec = seb->ec;
1470 ubi->lookuptbl[e->pnum] = e;
1471 if (schedule_erase(ubi, e, 0)) {
1472 kmem_cache_free(ubi_wl_entry_slab, e);
1473 goto out_free;
1474 }
1475 }
1476
1477 list_for_each_entry(seb, &si->free, u.list) {
1478 cond_resched();
1479
1480 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1481 if (!e)
1482 goto out_free;
1483
1484 e->pnum = seb->pnum;
1485 e->ec = seb->ec;
1486 ubi_assert(e->ec >= 0);
1487 wl_tree_add(e, &ubi->free);
1488 ubi->lookuptbl[e->pnum] = e;
1489 }
1490
1491 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1492 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1493 cond_resched();
1494
1495 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1496 if (!e)
1497 goto out_free;
1498
1499 e->pnum = seb->pnum;
1500 e->ec = seb->ec;
1501 ubi->lookuptbl[e->pnum] = e;
1502 if (!seb->scrub) {
1503 dbg_wl("add PEB %d EC %d to the used tree",
1504 e->pnum, e->ec);
1505 wl_tree_add(e, &ubi->used);
1506 } else {
1507 dbg_wl("add PEB %d EC %d to the scrub tree",
1508 e->pnum, e->ec);
1509 wl_tree_add(e, &ubi->scrub);
1510 }
1511 }
1512 }
1513
1514 if (ubi->avail_pebs < WL_RESERVED_PEBS) {
1515 ubi_err("no enough physical eraseblocks (%d, need %d)",
1516 ubi->avail_pebs, WL_RESERVED_PEBS);
1517 if (ubi->corr_peb_count)
1518 ubi_err("%d PEBs are corrupted and not used",
1519 ubi->corr_peb_count);
1520 err = -ENOSPC;
1521 goto out_free;
1522 }
1523 ubi->avail_pebs -= WL_RESERVED_PEBS;
1524 ubi->rsvd_pebs += WL_RESERVED_PEBS;
1525
1526 /* Schedule wear-leveling if needed */
1527 err = ensure_wear_leveling(ubi);
1528 if (err)
1529 goto out_free;
1530
1531 return 0;
1532
1533out_free:
1534 cancel_pending(ubi);
1535 tree_destroy(&ubi->used);
1536 tree_destroy(&ubi->free);
1537 tree_destroy(&ubi->scrub);
1538 kfree(ubi->lookuptbl);
1539 return err;
1540}
1541
1542/**
1543 * protection_queue_destroy - destroy the protection queue.
1544 * @ubi: UBI device description object
1545 */
1546static void protection_queue_destroy(struct ubi_device *ubi)
1547{
1548 int i;
1549 struct ubi_wl_entry *e, *tmp;
1550
1551 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1552 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1553 list_del(&e->u.list);
1554 kmem_cache_free(ubi_wl_entry_slab, e);
1555 }
1556 }
1557}
1558
1559/**
1560 * ubi_wl_close - close the wear-leveling sub-system.
1561 * @ubi: UBI device description object
1562 */
1563void ubi_wl_close(struct ubi_device *ubi)
1564{
1565 dbg_wl("close the WL sub-system");
1566 cancel_pending(ubi);
1567 protection_queue_destroy(ubi);
1568 tree_destroy(&ubi->used);
1569 tree_destroy(&ubi->erroneous);
1570 tree_destroy(&ubi->free);
1571 tree_destroy(&ubi->scrub);
1572 kfree(ubi->lookuptbl);
1573}
1574
1575#ifdef CONFIG_MTD_UBI_DEBUG
1576
1577/**
1578 * paranoid_check_ec - make sure that the erase counter of a PEB is correct.
1579 * @ubi: UBI device description object
1580 * @pnum: the physical eraseblock number to check
1581 * @ec: the erase counter to check
1582 *
1583 * This function returns zero if the erase counter of physical eraseblock @pnum
1584 * is equivalent to @ec, and a negative error code if not or if an error
1585 * occurred.
1586 */
1587static int paranoid_check_ec(struct ubi_device *ubi, int pnum, int ec)
1588{
1589 int err;
1590 long long read_ec;
1591 struct ubi_ec_hdr *ec_hdr;
1592
1593 if (!ubi->dbg->chk_gen)
1594 return 0;
1595
1596 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1597 if (!ec_hdr)
1598 return -ENOMEM;
1599
1600 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1601 if (err && err != UBI_IO_BITFLIPS) {
1602 /* The header does not have to exist */
1603 err = 0;
1604 goto out_free;
1605 }
1606
1607 read_ec = be64_to_cpu(ec_hdr->ec);
1608 if (ec != read_ec) {
1609 ubi_err("paranoid check failed for PEB %d", pnum);
1610 ubi_err("read EC is %lld, should be %d", read_ec, ec);
1611 ubi_dbg_dump_stack();
1612 err = 1;
1613 } else
1614 err = 0;
1615
1616out_free:
1617 kfree(ec_hdr);
1618 return err;
1619}
1620
1621/**
1622 * paranoid_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1623 * @ubi: UBI device description object
1624 * @e: the wear-leveling entry to check
1625 * @root: the root of the tree
1626 *
1627 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
1628 * is not.
1629 */
1630static int paranoid_check_in_wl_tree(const struct ubi_device *ubi,
1631 struct ubi_wl_entry *e,
1632 struct rb_root *root)
1633{
1634 if (!ubi->dbg->chk_gen)
1635 return 0;
1636
1637 if (in_wl_tree(e, root))
1638 return 0;
1639
1640 ubi_err("paranoid check failed for PEB %d, EC %d, RB-tree %p ",
1641 e->pnum, e->ec, root);
1642 ubi_dbg_dump_stack();
1643 return -EINVAL;
1644}
1645
1646/**
1647 * paranoid_check_in_pq - check if wear-leveling entry is in the protection
1648 * queue.
1649 * @ubi: UBI device description object
1650 * @e: the wear-leveling entry to check
1651 *
1652 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
1653 */
1654static int paranoid_check_in_pq(const struct ubi_device *ubi,
1655 struct ubi_wl_entry *e)
1656{
1657 struct ubi_wl_entry *p;
1658 int i;
1659
1660 if (!ubi->dbg->chk_gen)
1661 return 0;
1662
1663 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
1664 list_for_each_entry(p, &ubi->pq[i], u.list)
1665 if (p == e)
1666 return 0;
1667
1668 ubi_err("paranoid check failed for PEB %d, EC %d, Protect queue",
1669 e->pnum, e->ec);
1670 ubi_dbg_dump_stack();
1671 return -EINVAL;
1672}
1673
1674#endif /* CONFIG_MTD_UBI_DEBUG */