blob: 5e93425424f6ada1926d96f57f2a60eeded68c79 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * xHCI host controller driver
3 *
4 * Copyright (C) 2008 Intel Corp.
5 *
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23/*
24 * Ring initialization rules:
25 * 1. Each segment is initialized to zero, except for link TRBs.
26 * 2. Ring cycle state = 0. This represents Producer Cycle State (PCS) or
27 * Consumer Cycle State (CCS), depending on ring function.
28 * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment.
29 *
30 * Ring behavior rules:
31 * 1. A ring is empty if enqueue == dequeue. This means there will always be at
32 * least one free TRB in the ring. This is useful if you want to turn that
33 * into a link TRB and expand the ring.
34 * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a
35 * link TRB, then load the pointer with the address in the link TRB. If the
36 * link TRB had its toggle bit set, you may need to update the ring cycle
37 * state (see cycle bit rules). You may have to do this multiple times
38 * until you reach a non-link TRB.
39 * 3. A ring is full if enqueue++ (for the definition of increment above)
40 * equals the dequeue pointer.
41 *
42 * Cycle bit rules:
43 * 1. When a consumer increments a dequeue pointer and encounters a toggle bit
44 * in a link TRB, it must toggle the ring cycle state.
45 * 2. When a producer increments an enqueue pointer and encounters a toggle bit
46 * in a link TRB, it must toggle the ring cycle state.
47 *
48 * Producer rules:
49 * 1. Check if ring is full before you enqueue.
50 * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing.
51 * Update enqueue pointer between each write (which may update the ring
52 * cycle state).
53 * 3. Notify consumer. If SW is producer, it rings the doorbell for command
54 * and endpoint rings. If HC is the producer for the event ring,
55 * and it generates an interrupt according to interrupt modulation rules.
56 *
57 * Consumer rules:
58 * 1. Check if TRB belongs to you. If the cycle bit == your ring cycle state,
59 * the TRB is owned by the consumer.
60 * 2. Update dequeue pointer (which may update the ring cycle state) and
61 * continue processing TRBs until you reach a TRB which is not owned by you.
62 * 3. Notify the producer. SW is the consumer for the event ring, and it
63 * updates event ring dequeue pointer. HC is the consumer for the command and
64 * endpoint rings; it generates events on the event ring for these.
65 */
66
67#include <linux/scatterlist.h>
68#include <linux/slab.h>
69#include "xhci.h"
70
71static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
72 struct xhci_virt_device *virt_dev,
73 struct xhci_event_cmd *event);
74
75/*
76 * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA
77 * address of the TRB.
78 */
79dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg,
80 union xhci_trb *trb)
81{
82 unsigned long segment_offset;
83
84 if (!seg || !trb || trb < seg->trbs)
85 return 0;
86 /* offset in TRBs */
87 segment_offset = trb - seg->trbs;
88 if (segment_offset > TRBS_PER_SEGMENT)
89 return 0;
90 return seg->dma + (segment_offset * sizeof(*trb));
91}
92
93/* Does this link TRB point to the first segment in a ring,
94 * or was the previous TRB the last TRB on the last segment in the ERST?
95 */
96static bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring,
97 struct xhci_segment *seg, union xhci_trb *trb)
98{
99 if (ring == xhci->event_ring)
100 return (trb == &seg->trbs[TRBS_PER_SEGMENT]) &&
101 (seg->next == xhci->event_ring->first_seg);
102 else
103 return le32_to_cpu(trb->link.control) & LINK_TOGGLE;
104}
105
106/* Is this TRB a link TRB or was the last TRB the last TRB in this event ring
107 * segment? I.e. would the updated event TRB pointer step off the end of the
108 * event seg?
109 */
110static int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
111 struct xhci_segment *seg, union xhci_trb *trb)
112{
113 if (ring == xhci->event_ring)
114 return trb == &seg->trbs[TRBS_PER_SEGMENT];
115 else
116 return TRB_TYPE_LINK_LE32(trb->link.control);
117}
118
119static int enqueue_is_link_trb(struct xhci_ring *ring)
120{
121 struct xhci_link_trb *link = &ring->enqueue->link;
122 return TRB_TYPE_LINK_LE32(link->control);
123}
124
125union xhci_trb *xhci_find_next_enqueue(struct xhci_ring *ring)
126{
127 /* Enqueue pointer can be left pointing to the link TRB,
128 * we must handle that
129 */
130 if (TRB_TYPE_LINK_LE32(ring->enqueue->link.control))
131 return ring->enq_seg->next->trbs;
132 return ring->enqueue;
133}
134
135/* Updates trb to point to the next TRB in the ring, and updates seg if the next
136 * TRB is in a new segment. This does not skip over link TRBs, and it does not
137 * effect the ring dequeue or enqueue pointers.
138 */
139static void next_trb(struct xhci_hcd *xhci,
140 struct xhci_ring *ring,
141 struct xhci_segment **seg,
142 union xhci_trb **trb)
143{
144 if (last_trb(xhci, ring, *seg, *trb)) {
145 *seg = (*seg)->next;
146 *trb = ((*seg)->trbs);
147 } else {
148 (*trb)++;
149 }
150}
151
152/*
153 * See Cycle bit rules. SW is the consumer for the event ring only.
154 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
155 */
156static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring)
157{
158 unsigned long long addr;
159
160 ring->deq_updates++;
161
162 /*
163 * If this is not event ring, and the dequeue pointer
164 * is not on a link TRB, there is one more usable TRB
165 */
166 if (ring->type != TYPE_EVENT &&
167 !last_trb(xhci, ring, ring->deq_seg, ring->dequeue))
168 ring->num_trbs_free++;
169
170 do {
171 /*
172 * Update the dequeue pointer further if that was a link TRB or
173 * we're at the end of an event ring segment (which doesn't have
174 * link TRBS)
175 */
176 if (last_trb(xhci, ring, ring->deq_seg, ring->dequeue)) {
177 if (ring->type == TYPE_EVENT &&
178 last_trb_on_last_seg(xhci, ring,
179 ring->deq_seg, ring->dequeue)) {
180 ring->cycle_state = (ring->cycle_state ? 0 : 1);
181 }
182 ring->deq_seg = ring->deq_seg->next;
183 ring->dequeue = ring->deq_seg->trbs;
184 } else {
185 ring->dequeue++;
186 }
187 } while (last_trb(xhci, ring, ring->deq_seg, ring->dequeue));
188
189 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue);
190}
191
192/*
193 * See Cycle bit rules. SW is the consumer for the event ring only.
194 * Don't make a ring full of link TRBs. That would be dumb and this would loop.
195 *
196 * If we've just enqueued a TRB that is in the middle of a TD (meaning the
197 * chain bit is set), then set the chain bit in all the following link TRBs.
198 * If we've enqueued the last TRB in a TD, make sure the following link TRBs
199 * have their chain bit cleared (so that each Link TRB is a separate TD).
200 *
201 * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit
202 * set, but other sections talk about dealing with the chain bit set. This was
203 * fixed in the 0.96 specification errata, but we have to assume that all 0.95
204 * xHCI hardware can't handle the chain bit being cleared on a link TRB.
205 *
206 * @more_trbs_coming: Will you enqueue more TRBs before calling
207 * prepare_transfer()?
208 */
209static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring,
210 bool more_trbs_coming)
211{
212 u32 chain;
213 union xhci_trb *next;
214 unsigned long long addr;
215
216 chain = le32_to_cpu(ring->enqueue->generic.field[3]) & TRB_CHAIN;
217 /* If this is not event ring, there is one less usable TRB */
218 if (ring->type != TYPE_EVENT &&
219 !last_trb(xhci, ring, ring->enq_seg, ring->enqueue))
220 ring->num_trbs_free--;
221 next = ++(ring->enqueue);
222
223 ring->enq_updates++;
224 /* Update the dequeue pointer further if that was a link TRB or we're at
225 * the end of an event ring segment (which doesn't have link TRBS)
226 */
227 while (last_trb(xhci, ring, ring->enq_seg, next)) {
228 if (ring->type != TYPE_EVENT) {
229 /*
230 * If the caller doesn't plan on enqueueing more
231 * TDs before ringing the doorbell, then we
232 * don't want to give the link TRB to the
233 * hardware just yet. We'll give the link TRB
234 * back in prepare_ring() just before we enqueue
235 * the TD at the top of the ring.
236 */
237 if (!chain && !more_trbs_coming)
238 break;
239
240 /* If we're not dealing with 0.95 hardware or
241 * isoc rings on AMD 0.96 host,
242 * carry over the chain bit of the previous TRB
243 * (which may mean the chain bit is cleared).
244 */
245 if (!(ring->type == TYPE_ISOC &&
246 (xhci->quirks & XHCI_AMD_0x96_HOST))
247 && !xhci_link_trb_quirk(xhci)) {
248 next->link.control &=
249 cpu_to_le32(~TRB_CHAIN);
250 next->link.control |=
251 cpu_to_le32(chain);
252 }
253 /* Give this link TRB to the hardware */
254 wmb();
255 next->link.control ^= cpu_to_le32(TRB_CYCLE);
256
257 /* Toggle the cycle bit after the last ring segment. */
258 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
259 ring->cycle_state = (ring->cycle_state ? 0 : 1);
260 }
261 }
262 ring->enq_seg = ring->enq_seg->next;
263 ring->enqueue = ring->enq_seg->trbs;
264 next = ring->enqueue;
265 }
266 addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue);
267}
268
269/*
270 * Check to see if there's room to enqueue num_trbs on the ring and make sure
271 * enqueue pointer will not advance into dequeue segment. See rules above.
272 */
273static inline int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring,
274 unsigned int num_trbs)
275{
276 int num_trbs_in_deq_seg;
277
278 if (ring->num_trbs_free < num_trbs)
279 return 0;
280
281 if (ring->type != TYPE_COMMAND && ring->type != TYPE_EVENT) {
282 num_trbs_in_deq_seg = ring->dequeue - ring->deq_seg->trbs;
283 if (ring->num_trbs_free < num_trbs + num_trbs_in_deq_seg)
284 return 0;
285 }
286
287 return 1;
288}
289
290/* Ring the host controller doorbell after placing a command on the ring */
291void xhci_ring_cmd_db(struct xhci_hcd *xhci)
292{
293 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING))
294 return;
295
296 xhci_dbg(xhci, "// Ding dong!\n");
297 xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]);
298 /* Flush PCI posted writes */
299 xhci_readl(xhci, &xhci->dba->doorbell[0]);
300}
301
302static int xhci_abort_cmd_ring(struct xhci_hcd *xhci)
303{
304 u64 temp_64;
305 int ret;
306
307 xhci_dbg(xhci, "Abort command ring\n");
308
309 if (!(xhci->cmd_ring_state & CMD_RING_STATE_RUNNING)) {
310 xhci_dbg(xhci, "The command ring isn't running, "
311 "Have the command ring been stopped?\n");
312 return 0;
313 }
314
315 temp_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
316 if (!(temp_64 & CMD_RING_RUNNING)) {
317 xhci_dbg(xhci, "Command ring had been stopped\n");
318 return 0;
319 }
320 xhci->cmd_ring_state = CMD_RING_STATE_ABORTED;
321 xhci_write_64(xhci, temp_64 | CMD_RING_ABORT,
322 &xhci->op_regs->cmd_ring);
323
324 /* Section 4.6.1.2 of xHCI 1.0 spec says software should
325 * time the completion od all xHCI commands, including
326 * the Command Abort operation. If software doesn't see
327 * CRR negated in a timely manner (e.g. longer than 5
328 * seconds), then it should assume that the there are
329 * larger problems with the xHC and assert HCRST.
330 */
331 ret = handshake(xhci, &xhci->op_regs->cmd_ring,
332 CMD_RING_RUNNING, 0, 5 * 1000 * 1000);
333 if (ret < 0) {
334 xhci_err(xhci, "Stopped the command ring failed, "
335 "maybe the host is dead\n");
336 xhci->xhc_state |= XHCI_STATE_DYING;
337 xhci_quiesce(xhci);
338 xhci_halt(xhci);
339 return -ESHUTDOWN;
340 }
341
342 return 0;
343}
344
345static int xhci_queue_cd(struct xhci_hcd *xhci,
346 struct xhci_command *command,
347 union xhci_trb *cmd_trb)
348{
349 struct xhci_cd *cd;
350 cd = kzalloc(sizeof(struct xhci_cd), GFP_ATOMIC);
351 if (!cd)
352 return -ENOMEM;
353 INIT_LIST_HEAD(&cd->cancel_cmd_list);
354
355 cd->command = command;
356 cd->cmd_trb = cmd_trb;
357 list_add_tail(&cd->cancel_cmd_list, &xhci->cancel_cmd_list);
358
359 return 0;
360}
361
362/*
363 * Cancel the command which has issue.
364 *
365 * Some commands may hang due to waiting for acknowledgement from
366 * usb device. It is outside of the xHC's ability to control and
367 * will cause the command ring is blocked. When it occurs software
368 * should intervene to recover the command ring.
369 * See Section 4.6.1.1 and 4.6.1.2
370 */
371int xhci_cancel_cmd(struct xhci_hcd *xhci, struct xhci_command *command,
372 union xhci_trb *cmd_trb)
373{
374 int retval = 0;
375 unsigned long flags;
376
377 spin_lock_irqsave(&xhci->lock, flags);
378
379 if (xhci->xhc_state & XHCI_STATE_DYING) {
380 xhci_warn(xhci, "Abort the command ring,"
381 " but the xHCI is dead.\n");
382 retval = -ESHUTDOWN;
383 goto fail;
384 }
385
386 /* queue the cmd desriptor to cancel_cmd_list */
387 retval = xhci_queue_cd(xhci, command, cmd_trb);
388 if (retval) {
389 xhci_warn(xhci, "Queuing command descriptor failed.\n");
390 goto fail;
391 }
392
393 /* abort command ring */
394 retval = xhci_abort_cmd_ring(xhci);
395 if (retval) {
396 xhci_err(xhci, "Abort command ring failed\n");
397 if (unlikely(retval == -ESHUTDOWN)) {
398 spin_unlock_irqrestore(&xhci->lock, flags);
399 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
400 xhci_dbg(xhci, "xHCI host controller is dead.\n");
401 return retval;
402 }
403 }
404
405fail:
406 spin_unlock_irqrestore(&xhci->lock, flags);
407 return retval;
408}
409
410void xhci_ring_ep_doorbell(struct xhci_hcd *xhci,
411 unsigned int slot_id,
412 unsigned int ep_index,
413 unsigned int stream_id)
414{
415 __le32 __iomem *db_addr = &xhci->dba->doorbell[slot_id];
416 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
417 unsigned int ep_state = ep->ep_state;
418
419 /* Don't ring the doorbell for this endpoint if there are pending
420 * cancellations because we don't want to interrupt processing.
421 * We don't want to restart any stream rings if there's a set dequeue
422 * pointer command pending because the device can choose to start any
423 * stream once the endpoint is on the HW schedule.
424 * FIXME - check all the stream rings for pending cancellations.
425 */
426 if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) ||
427 (ep_state & EP_HALTED))
428 return;
429 xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr);
430 /* The CPU has better things to do at this point than wait for a
431 * write-posting flush. It'll get there soon enough.
432 */
433}
434
435/* Ring the doorbell for any rings with pending URBs */
436static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci,
437 unsigned int slot_id,
438 unsigned int ep_index)
439{
440 unsigned int stream_id;
441 struct xhci_virt_ep *ep;
442
443 ep = &xhci->devs[slot_id]->eps[ep_index];
444
445 /* A ring has pending URBs if its TD list is not empty */
446 if (!(ep->ep_state & EP_HAS_STREAMS)) {
447 if (ep->ring && !(list_empty(&ep->ring->td_list)))
448 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0);
449 return;
450 }
451
452 for (stream_id = 1; stream_id < ep->stream_info->num_streams;
453 stream_id++) {
454 struct xhci_stream_info *stream_info = ep->stream_info;
455 if (!list_empty(&stream_info->stream_rings[stream_id]->td_list))
456 xhci_ring_ep_doorbell(xhci, slot_id, ep_index,
457 stream_id);
458 }
459}
460
461/*
462 * Find the segment that trb is in. Start searching in start_seg.
463 * If we must move past a segment that has a link TRB with a toggle cycle state
464 * bit set, then we will toggle the value pointed at by cycle_state.
465 */
466static struct xhci_segment *find_trb_seg(
467 struct xhci_segment *start_seg,
468 union xhci_trb *trb, int *cycle_state)
469{
470 struct xhci_segment *cur_seg = start_seg;
471 struct xhci_generic_trb *generic_trb;
472
473 while (cur_seg->trbs > trb ||
474 &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) {
475 generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic;
476 if (generic_trb->field[3] & cpu_to_le32(LINK_TOGGLE))
477 *cycle_state ^= 0x1;
478 cur_seg = cur_seg->next;
479 if (cur_seg == start_seg)
480 /* Looped over the entire list. Oops! */
481 return NULL;
482 }
483 return cur_seg;
484}
485
486
487static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci,
488 unsigned int slot_id, unsigned int ep_index,
489 unsigned int stream_id)
490{
491 struct xhci_virt_ep *ep;
492
493 ep = &xhci->devs[slot_id]->eps[ep_index];
494 /* Common case: no streams */
495 if (!(ep->ep_state & EP_HAS_STREAMS))
496 return ep->ring;
497
498 if (stream_id == 0) {
499 xhci_warn(xhci,
500 "WARN: Slot ID %u, ep index %u has streams, "
501 "but URB has no stream ID.\n",
502 slot_id, ep_index);
503 return NULL;
504 }
505
506 if (stream_id < ep->stream_info->num_streams)
507 return ep->stream_info->stream_rings[stream_id];
508
509 xhci_warn(xhci,
510 "WARN: Slot ID %u, ep index %u has "
511 "stream IDs 1 to %u allocated, "
512 "but stream ID %u is requested.\n",
513 slot_id, ep_index,
514 ep->stream_info->num_streams - 1,
515 stream_id);
516 return NULL;
517}
518
519/* Get the right ring for the given URB.
520 * If the endpoint supports streams, boundary check the URB's stream ID.
521 * If the endpoint doesn't support streams, return the singular endpoint ring.
522 */
523static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci,
524 struct urb *urb)
525{
526 return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id,
527 xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id);
528}
529
530/*
531 * Move the xHC's endpoint ring dequeue pointer past cur_td.
532 * Record the new state of the xHC's endpoint ring dequeue segment,
533 * dequeue pointer, and new consumer cycle state in state.
534 * Update our internal representation of the ring's dequeue pointer.
535 *
536 * We do this in three jumps:
537 * - First we update our new ring state to be the same as when the xHC stopped.
538 * - Then we traverse the ring to find the segment that contains
539 * the last TRB in the TD. We toggle the xHC's new cycle state when we pass
540 * any link TRBs with the toggle cycle bit set.
541 * - Finally we move the dequeue state one TRB further, toggling the cycle bit
542 * if we've moved it past a link TRB with the toggle cycle bit set.
543 *
544 * Some of the uses of xhci_generic_trb are grotty, but if they're done
545 * with correct __le32 accesses they should work fine. Only users of this are
546 * in here.
547 */
548void xhci_find_new_dequeue_state(struct xhci_hcd *xhci,
549 unsigned int slot_id, unsigned int ep_index,
550 unsigned int stream_id, struct xhci_td *cur_td,
551 struct xhci_dequeue_state *state)
552{
553 struct xhci_virt_device *dev = xhci->devs[slot_id];
554 struct xhci_ring *ep_ring;
555 struct xhci_generic_trb *trb;
556 struct xhci_ep_ctx *ep_ctx;
557 dma_addr_t addr;
558
559 ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id,
560 ep_index, stream_id);
561 if (!ep_ring) {
562 xhci_warn(xhci, "WARN can't find new dequeue state "
563 "for invalid stream ID %u.\n",
564 stream_id);
565 return;
566 }
567 state->new_cycle_state = 0;
568 xhci_dbg(xhci, "Finding segment containing stopped TRB.\n");
569 state->new_deq_seg = find_trb_seg(cur_td->start_seg,
570 dev->eps[ep_index].stopped_trb,
571 &state->new_cycle_state);
572 if (!state->new_deq_seg) {
573 WARN_ON(1);
574 return;
575 }
576
577 /* Dig out the cycle state saved by the xHC during the stop ep cmd */
578 xhci_dbg(xhci, "Finding endpoint context\n");
579 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
580 state->new_cycle_state = 0x1 & le64_to_cpu(ep_ctx->deq);
581
582 state->new_deq_ptr = cur_td->last_trb;
583 xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n");
584 state->new_deq_seg = find_trb_seg(state->new_deq_seg,
585 state->new_deq_ptr,
586 &state->new_cycle_state);
587 if (!state->new_deq_seg) {
588 WARN_ON(1);
589 return;
590 }
591
592 trb = &state->new_deq_ptr->generic;
593 if (TRB_TYPE_LINK_LE32(trb->field[3]) &&
594 (trb->field[3] & cpu_to_le32(LINK_TOGGLE)))
595 state->new_cycle_state ^= 0x1;
596 next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr);
597
598 /*
599 * If there is only one segment in a ring, find_trb_seg()'s while loop
600 * will not run, and it will return before it has a chance to see if it
601 * needs to toggle the cycle bit. It can't tell if the stalled transfer
602 * ended just before the link TRB on a one-segment ring, or if the TD
603 * wrapped around the top of the ring, because it doesn't have the TD in
604 * question. Look for the one-segment case where stalled TRB's address
605 * is greater than the new dequeue pointer address.
606 */
607 if (ep_ring->first_seg == ep_ring->first_seg->next &&
608 state->new_deq_ptr < dev->eps[ep_index].stopped_trb)
609 state->new_cycle_state ^= 0x1;
610 xhci_dbg(xhci, "Cycle state = 0x%x\n", state->new_cycle_state);
611
612 /* Don't update the ring cycle state for the producer (us). */
613 xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n",
614 state->new_deq_seg);
615 addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr);
616 xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n",
617 (unsigned long long) addr);
618}
619
620/* flip_cycle means flip the cycle bit of all but the first and last TRB.
621 * (The last TRB actually points to the ring enqueue pointer, which is not part
622 * of this TD.) This is used to remove partially enqueued isoc TDs from a ring.
623 */
624static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
625 struct xhci_td *cur_td, bool flip_cycle)
626{
627 struct xhci_segment *cur_seg;
628 union xhci_trb *cur_trb;
629
630 for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb;
631 true;
632 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
633 if (TRB_TYPE_LINK_LE32(cur_trb->generic.field[3])) {
634 /* Unchain any chained Link TRBs, but
635 * leave the pointers intact.
636 */
637 cur_trb->generic.field[3] &= cpu_to_le32(~TRB_CHAIN);
638 /* Flip the cycle bit (link TRBs can't be the first
639 * or last TRB).
640 */
641 if (flip_cycle)
642 cur_trb->generic.field[3] ^=
643 cpu_to_le32(TRB_CYCLE);
644 xhci_dbg(xhci, "Cancel (unchain) link TRB\n");
645 xhci_dbg(xhci, "Address = %p (0x%llx dma); "
646 "in seg %p (0x%llx dma)\n",
647 cur_trb,
648 (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb),
649 cur_seg,
650 (unsigned long long)cur_seg->dma);
651 } else {
652 cur_trb->generic.field[0] = 0;
653 cur_trb->generic.field[1] = 0;
654 cur_trb->generic.field[2] = 0;
655 /* Preserve only the cycle bit of this TRB */
656 cur_trb->generic.field[3] &= cpu_to_le32(TRB_CYCLE);
657 /* Flip the cycle bit except on the first or last TRB */
658 if (flip_cycle && cur_trb != cur_td->first_trb &&
659 cur_trb != cur_td->last_trb)
660 cur_trb->generic.field[3] ^=
661 cpu_to_le32(TRB_CYCLE);
662 cur_trb->generic.field[3] |= cpu_to_le32(
663 TRB_TYPE(TRB_TR_NOOP));
664 xhci_dbg(xhci, "TRB to noop at offset 0x%llx\n",
665 (unsigned long long)
666 xhci_trb_virt_to_dma(cur_seg, cur_trb));
667 }
668 if (cur_trb == cur_td->last_trb)
669 break;
670 }
671}
672
673static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
674 unsigned int ep_index, unsigned int stream_id,
675 struct xhci_segment *deq_seg,
676 union xhci_trb *deq_ptr, u32 cycle_state);
677
678void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci,
679 unsigned int slot_id, unsigned int ep_index,
680 unsigned int stream_id,
681 struct xhci_dequeue_state *deq_state)
682{
683 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
684
685 xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), "
686 "new deq ptr = %p (0x%llx dma), new cycle = %u\n",
687 deq_state->new_deq_seg,
688 (unsigned long long)deq_state->new_deq_seg->dma,
689 deq_state->new_deq_ptr,
690 (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr),
691 deq_state->new_cycle_state);
692 queue_set_tr_deq(xhci, slot_id, ep_index, stream_id,
693 deq_state->new_deq_seg,
694 deq_state->new_deq_ptr,
695 (u32) deq_state->new_cycle_state);
696 /* Stop the TD queueing code from ringing the doorbell until
697 * this command completes. The HC won't set the dequeue pointer
698 * if the ring is running, and ringing the doorbell starts the
699 * ring running.
700 */
701 ep->ep_state |= SET_DEQ_PENDING;
702}
703
704static void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci,
705 struct xhci_virt_ep *ep)
706{
707 ep->ep_state &= ~EP_HALT_PENDING;
708 /* Can't del_timer_sync in interrupt, so we attempt to cancel. If the
709 * timer is running on another CPU, we don't decrement stop_cmds_pending
710 * (since we didn't successfully stop the watchdog timer).
711 */
712 if (del_timer(&ep->stop_cmd_timer))
713 ep->stop_cmds_pending--;
714}
715
716/* Must be called with xhci->lock held in interrupt context */
717static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci,
718 struct xhci_td *cur_td, int status, char *adjective)
719{
720 struct usb_hcd *hcd;
721 struct urb *urb;
722 struct urb_priv *urb_priv;
723
724 urb = cur_td->urb;
725 urb_priv = urb->hcpriv;
726 urb_priv->td_cnt++;
727 hcd = bus_to_hcd(urb->dev->bus);
728
729 /* Only giveback urb when this is the last td in urb */
730 if (urb_priv->td_cnt == urb_priv->length) {
731 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
732 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
733 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
734 if (xhci->quirks & XHCI_AMD_PLL_FIX)
735 usb_amd_quirk_pll_enable();
736 }
737 }
738 usb_hcd_unlink_urb_from_ep(hcd, urb);
739
740 spin_unlock(&xhci->lock);
741 usb_hcd_giveback_urb(hcd, urb, status);
742 xhci_urb_free_priv(xhci, urb_priv);
743 spin_lock(&xhci->lock);
744 }
745}
746
747/*
748 * When we get a command completion for a Stop Endpoint Command, we need to
749 * unlink any cancelled TDs from the ring. There are two ways to do that:
750 *
751 * 1. If the HW was in the middle of processing the TD that needs to be
752 * cancelled, then we must move the ring's dequeue pointer past the last TRB
753 * in the TD with a Set Dequeue Pointer Command.
754 * 2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain
755 * bit cleared) so that the HW will skip over them.
756 */
757static void handle_stopped_endpoint(struct xhci_hcd *xhci,
758 union xhci_trb *trb, struct xhci_event_cmd *event)
759{
760 unsigned int slot_id;
761 unsigned int ep_index;
762 struct xhci_virt_device *virt_dev;
763 struct xhci_ring *ep_ring;
764 struct xhci_virt_ep *ep;
765 struct list_head *entry;
766 struct xhci_td *cur_td = NULL;
767 struct xhci_td *last_unlinked_td;
768
769 struct xhci_dequeue_state deq_state;
770
771 if (unlikely(TRB_TO_SUSPEND_PORT(
772 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])))) {
773 slot_id = TRB_TO_SLOT_ID(
774 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
775 virt_dev = xhci->devs[slot_id];
776 if (virt_dev)
777 handle_cmd_in_cmd_wait_list(xhci, virt_dev,
778 event);
779 else
780 xhci_warn(xhci, "Stop endpoint command "
781 "completion for disabled slot %u\n",
782 slot_id);
783 return;
784 }
785
786 memset(&deq_state, 0, sizeof(deq_state));
787 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
788 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
789 ep = &xhci->devs[slot_id]->eps[ep_index];
790
791 if (list_empty(&ep->cancelled_td_list)) {
792 xhci_stop_watchdog_timer_in_irq(xhci, ep);
793 ep->stopped_td = NULL;
794 ep->stopped_trb = NULL;
795 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
796 return;
797 }
798
799 /* Fix up the ep ring first, so HW stops executing cancelled TDs.
800 * We have the xHCI lock, so nothing can modify this list until we drop
801 * it. We're also in the event handler, so we can't get re-interrupted
802 * if another Stop Endpoint command completes
803 */
804 list_for_each(entry, &ep->cancelled_td_list) {
805 cur_td = list_entry(entry, struct xhci_td, cancelled_td_list);
806 xhci_dbg(xhci, "Removing canceled TD starting at 0x%llx (dma).\n",
807 (unsigned long long)xhci_trb_virt_to_dma(
808 cur_td->start_seg, cur_td->first_trb));
809 ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb);
810 if (!ep_ring) {
811 /* This shouldn't happen unless a driver is mucking
812 * with the stream ID after submission. This will
813 * leave the TD on the hardware ring, and the hardware
814 * will try to execute it, and may access a buffer
815 * that has already been freed. In the best case, the
816 * hardware will execute it, and the event handler will
817 * ignore the completion event for that TD, since it was
818 * removed from the td_list for that endpoint. In
819 * short, don't muck with the stream ID after
820 * submission.
821 */
822 xhci_warn(xhci, "WARN Cancelled URB %p "
823 "has invalid stream ID %u.\n",
824 cur_td->urb,
825 cur_td->urb->stream_id);
826 goto remove_finished_td;
827 }
828 /*
829 * If we stopped on the TD we need to cancel, then we have to
830 * move the xHC endpoint ring dequeue pointer past this TD.
831 */
832 if (cur_td == ep->stopped_td)
833 xhci_find_new_dequeue_state(xhci, slot_id, ep_index,
834 cur_td->urb->stream_id,
835 cur_td, &deq_state);
836 else
837 td_to_noop(xhci, ep_ring, cur_td, false);
838remove_finished_td:
839 /*
840 * The event handler won't see a completion for this TD anymore,
841 * so remove it from the endpoint ring's TD list. Keep it in
842 * the cancelled TD list for URB completion later.
843 */
844 list_del_init(&cur_td->td_list);
845 }
846 last_unlinked_td = cur_td;
847 xhci_stop_watchdog_timer_in_irq(xhci, ep);
848
849 /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */
850 if (deq_state.new_deq_ptr && deq_state.new_deq_seg) {
851 xhci_queue_new_dequeue_state(xhci,
852 slot_id, ep_index,
853 ep->stopped_td->urb->stream_id,
854 &deq_state);
855 xhci_ring_cmd_db(xhci);
856 } else {
857 /* Otherwise ring the doorbell(s) to restart queued transfers */
858 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
859 }
860
861 /* Clear stopped_td and stopped_trb if endpoint is not halted */
862 if (!(ep->ep_state & EP_HALTED)) {
863 ep->stopped_td = NULL;
864 ep->stopped_trb = NULL;
865 }
866
867 /*
868 * Drop the lock and complete the URBs in the cancelled TD list.
869 * New TDs to be cancelled might be added to the end of the list before
870 * we can complete all the URBs for the TDs we already unlinked.
871 * So stop when we've completed the URB for the last TD we unlinked.
872 */
873 do {
874 cur_td = list_entry(ep->cancelled_td_list.next,
875 struct xhci_td, cancelled_td_list);
876 list_del_init(&cur_td->cancelled_td_list);
877
878 /* Clean up the cancelled URB */
879 /* Doesn't matter what we pass for status, since the core will
880 * just overwrite it (because the URB has been unlinked).
881 */
882 xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled");
883
884 /* Stop processing the cancelled list if the watchdog timer is
885 * running.
886 */
887 if (xhci->xhc_state & XHCI_STATE_DYING)
888 return;
889 } while (cur_td != last_unlinked_td);
890
891 /* Return to the event handler with xhci->lock re-acquired */
892}
893
894/* Watchdog timer function for when a stop endpoint command fails to complete.
895 * In this case, we assume the host controller is broken or dying or dead. The
896 * host may still be completing some other events, so we have to be careful to
897 * let the event ring handler and the URB dequeueing/enqueueing functions know
898 * through xhci->state.
899 *
900 * The timer may also fire if the host takes a very long time to respond to the
901 * command, and the stop endpoint command completion handler cannot delete the
902 * timer before the timer function is called. Another endpoint cancellation may
903 * sneak in before the timer function can grab the lock, and that may queue
904 * another stop endpoint command and add the timer back. So we cannot use a
905 * simple flag to say whether there is a pending stop endpoint command for a
906 * particular endpoint.
907 *
908 * Instead we use a combination of that flag and a counter for the number of
909 * pending stop endpoint commands. If the timer is the tail end of the last
910 * stop endpoint command, and the endpoint's command is still pending, we assume
911 * the host is dying.
912 */
913void xhci_stop_endpoint_command_watchdog(unsigned long arg)
914{
915 struct xhci_hcd *xhci;
916 struct xhci_virt_ep *ep;
917 struct xhci_virt_ep *temp_ep;
918 struct xhci_ring *ring;
919 struct xhci_td *cur_td;
920 int ret, i, j;
921 unsigned long flags;
922
923 ep = (struct xhci_virt_ep *) arg;
924 xhci = ep->xhci;
925
926 spin_lock_irqsave(&xhci->lock, flags);
927
928 ep->stop_cmds_pending--;
929 if (xhci->xhc_state & XHCI_STATE_DYING) {
930 xhci_dbg(xhci, "Stop EP timer ran, but another timer marked "
931 "xHCI as DYING, exiting.\n");
932 spin_unlock_irqrestore(&xhci->lock, flags);
933 return;
934 }
935 if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) {
936 xhci_dbg(xhci, "Stop EP timer ran, but no command pending, "
937 "exiting.\n");
938 spin_unlock_irqrestore(&xhci->lock, flags);
939 return;
940 }
941
942 xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n");
943 xhci_warn(xhci, "Assuming host is dying, halting host.\n");
944 /* Oops, HC is dead or dying or at least not responding to the stop
945 * endpoint command.
946 */
947 xhci->xhc_state |= XHCI_STATE_DYING;
948 /* Disable interrupts from the host controller and start halting it */
949 xhci_quiesce(xhci);
950 spin_unlock_irqrestore(&xhci->lock, flags);
951
952 ret = xhci_halt(xhci);
953
954 spin_lock_irqsave(&xhci->lock, flags);
955 if (ret < 0) {
956 /* This is bad; the host is not responding to commands and it's
957 * not allowing itself to be halted. At least interrupts are
958 * disabled. If we call usb_hc_died(), it will attempt to
959 * disconnect all device drivers under this host. Those
960 * disconnect() methods will wait for all URBs to be unlinked,
961 * so we must complete them.
962 */
963 xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n");
964 xhci_warn(xhci, "Completing active URBs anyway.\n");
965 /* We could turn all TDs on the rings to no-ops. This won't
966 * help if the host has cached part of the ring, and is slow if
967 * we want to preserve the cycle bit. Skip it and hope the host
968 * doesn't touch the memory.
969 */
970 }
971 for (i = 0; i < MAX_HC_SLOTS; i++) {
972 if (!xhci->devs[i])
973 continue;
974 for (j = 0; j < 31; j++) {
975 temp_ep = &xhci->devs[i]->eps[j];
976 ring = temp_ep->ring;
977 if (!ring)
978 continue;
979 xhci_dbg(xhci, "Killing URBs for slot ID %u, "
980 "ep index %u\n", i, j);
981 while (!list_empty(&ring->td_list)) {
982 cur_td = list_first_entry(&ring->td_list,
983 struct xhci_td,
984 td_list);
985 list_del_init(&cur_td->td_list);
986 if (!list_empty(&cur_td->cancelled_td_list))
987 list_del_init(&cur_td->cancelled_td_list);
988 xhci_giveback_urb_in_irq(xhci, cur_td,
989 -ESHUTDOWN, "killed");
990 }
991 while (!list_empty(&temp_ep->cancelled_td_list)) {
992 cur_td = list_first_entry(
993 &temp_ep->cancelled_td_list,
994 struct xhci_td,
995 cancelled_td_list);
996 list_del_init(&cur_td->cancelled_td_list);
997 xhci_giveback_urb_in_irq(xhci, cur_td,
998 -ESHUTDOWN, "killed");
999 }
1000 }
1001 }
1002 spin_unlock_irqrestore(&xhci->lock, flags);
1003 xhci_dbg(xhci, "Calling usb_hc_died()\n");
1004 usb_hc_died(xhci_to_hcd(xhci)->primary_hcd);
1005 xhci_dbg(xhci, "xHCI host controller is dead.\n");
1006}
1007
1008
1009static void update_ring_for_set_deq_completion(struct xhci_hcd *xhci,
1010 struct xhci_virt_device *dev,
1011 struct xhci_ring *ep_ring,
1012 unsigned int ep_index)
1013{
1014 union xhci_trb *dequeue_temp;
1015 int num_trbs_free_temp;
1016 bool revert = false;
1017
1018 num_trbs_free_temp = ep_ring->num_trbs_free;
1019 dequeue_temp = ep_ring->dequeue;
1020
1021 /* If we get two back-to-back stalls, and the first stalled transfer
1022 * ends just before a link TRB, the dequeue pointer will be left on
1023 * the link TRB by the code in the while loop. So we have to update
1024 * the dequeue pointer one segment further, or we'll jump off
1025 * the segment into la-la-land.
1026 */
1027 if (last_trb(xhci, ep_ring, ep_ring->deq_seg, ep_ring->dequeue)) {
1028 ep_ring->deq_seg = ep_ring->deq_seg->next;
1029 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1030 }
1031
1032 while (ep_ring->dequeue != dev->eps[ep_index].queued_deq_ptr) {
1033 /* We have more usable TRBs */
1034 ep_ring->num_trbs_free++;
1035 ep_ring->dequeue++;
1036 if (last_trb(xhci, ep_ring, ep_ring->deq_seg,
1037 ep_ring->dequeue)) {
1038 if (ep_ring->dequeue ==
1039 dev->eps[ep_index].queued_deq_ptr)
1040 break;
1041 ep_ring->deq_seg = ep_ring->deq_seg->next;
1042 ep_ring->dequeue = ep_ring->deq_seg->trbs;
1043 }
1044 if (ep_ring->dequeue == dequeue_temp) {
1045 revert = true;
1046 break;
1047 }
1048 }
1049
1050 if (revert) {
1051 xhci_dbg(xhci, "Unable to find new dequeue pointer\n");
1052 ep_ring->num_trbs_free = num_trbs_free_temp;
1053 }
1054}
1055
1056/*
1057 * When we get a completion for a Set Transfer Ring Dequeue Pointer command,
1058 * we need to clear the set deq pending flag in the endpoint ring state, so that
1059 * the TD queueing code can ring the doorbell again. We also need to ring the
1060 * endpoint doorbell to restart the ring, but only if there aren't more
1061 * cancellations pending.
1062 */
1063static void handle_set_deq_completion(struct xhci_hcd *xhci,
1064 struct xhci_event_cmd *event,
1065 union xhci_trb *trb)
1066{
1067 unsigned int slot_id;
1068 unsigned int ep_index;
1069 unsigned int stream_id;
1070 struct xhci_ring *ep_ring;
1071 struct xhci_virt_device *dev;
1072 struct xhci_ep_ctx *ep_ctx;
1073 struct xhci_slot_ctx *slot_ctx;
1074
1075 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1076 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1077 stream_id = TRB_TO_STREAM_ID(le32_to_cpu(trb->generic.field[2]));
1078 dev = xhci->devs[slot_id];
1079
1080 ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id);
1081 if (!ep_ring) {
1082 xhci_warn(xhci, "WARN Set TR deq ptr command for "
1083 "freed stream ID %u\n",
1084 stream_id);
1085 /* XXX: Harmless??? */
1086 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1087 return;
1088 }
1089
1090 ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index);
1091 slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx);
1092
1093 if (GET_COMP_CODE(le32_to_cpu(event->status)) != COMP_SUCCESS) {
1094 unsigned int ep_state;
1095 unsigned int slot_state;
1096
1097 switch (GET_COMP_CODE(le32_to_cpu(event->status))) {
1098 case COMP_TRB_ERR:
1099 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because "
1100 "of stream ID configuration\n");
1101 break;
1102 case COMP_CTX_STATE:
1103 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due "
1104 "to incorrect slot or ep state.\n");
1105 ep_state = le32_to_cpu(ep_ctx->ep_info);
1106 ep_state &= EP_STATE_MASK;
1107 slot_state = le32_to_cpu(slot_ctx->dev_state);
1108 slot_state = GET_SLOT_STATE(slot_state);
1109 xhci_dbg(xhci, "Slot state = %u, EP state = %u\n",
1110 slot_state, ep_state);
1111 break;
1112 case COMP_EBADSLT:
1113 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because "
1114 "slot %u was not enabled.\n", slot_id);
1115 break;
1116 default:
1117 xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown "
1118 "completion code of %u.\n",
1119 GET_COMP_CODE(le32_to_cpu(event->status)));
1120 break;
1121 }
1122 /* OK what do we do now? The endpoint state is hosed, and we
1123 * should never get to this point if the synchronization between
1124 * queueing, and endpoint state are correct. This might happen
1125 * if the device gets disconnected after we've finished
1126 * cancelling URBs, which might not be an error...
1127 */
1128 } else {
1129 xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n",
1130 le64_to_cpu(ep_ctx->deq));
1131 if (xhci_trb_virt_to_dma(dev->eps[ep_index].queued_deq_seg,
1132 dev->eps[ep_index].queued_deq_ptr) ==
1133 (le64_to_cpu(ep_ctx->deq) & ~(EP_CTX_CYCLE_MASK))) {
1134 /* Update the ring's dequeue segment and dequeue pointer
1135 * to reflect the new position.
1136 */
1137 update_ring_for_set_deq_completion(xhci, dev,
1138 ep_ring, ep_index);
1139 } else {
1140 xhci_warn(xhci, "Mismatch between completed Set TR Deq "
1141 "Ptr command & xHCI internal state.\n");
1142 xhci_warn(xhci, "ep deq seg = %p, deq ptr = %p\n",
1143 dev->eps[ep_index].queued_deq_seg,
1144 dev->eps[ep_index].queued_deq_ptr);
1145 }
1146 }
1147
1148 dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING;
1149 dev->eps[ep_index].queued_deq_seg = NULL;
1150 dev->eps[ep_index].queued_deq_ptr = NULL;
1151 /* Restart any rings with pending URBs */
1152 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1153}
1154
1155static void handle_reset_ep_completion(struct xhci_hcd *xhci,
1156 struct xhci_event_cmd *event,
1157 union xhci_trb *trb)
1158{
1159 int slot_id;
1160 unsigned int ep_index;
1161
1162 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(trb->generic.field[3]));
1163 ep_index = TRB_TO_EP_INDEX(le32_to_cpu(trb->generic.field[3]));
1164 /* This command will only fail if the endpoint wasn't halted,
1165 * but we don't care.
1166 */
1167 xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n",
1168 GET_COMP_CODE(le32_to_cpu(event->status)));
1169
1170 /* HW with the reset endpoint quirk needs to have a configure endpoint
1171 * command complete before the endpoint can be used. Queue that here
1172 * because the HW can't handle two commands being queued in a row.
1173 */
1174 if (xhci->quirks & XHCI_RESET_EP_QUIRK) {
1175 xhci_dbg(xhci, "Queueing configure endpoint command\n");
1176 xhci_queue_configure_endpoint(xhci,
1177 xhci->devs[slot_id]->in_ctx->dma, slot_id,
1178 false);
1179 xhci_ring_cmd_db(xhci);
1180 } else {
1181 /* Clear our internal halted state */
1182 xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED;
1183 }
1184}
1185
1186/* Complete the command and detele it from the devcie's command queue.
1187 */
1188static void xhci_complete_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1189 struct xhci_command *command, u32 status)
1190{
1191 command->status = status;
1192 list_del(&command->cmd_list);
1193 if (command->completion)
1194 complete(command->completion);
1195 else
1196 xhci_free_command(xhci, command);
1197}
1198
1199
1200/* Check to see if a command in the device's command queue matches this one.
1201 * Signal the completion or free the command, and return 1. Return 0 if the
1202 * completed command isn't at the head of the command list.
1203 */
1204static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci,
1205 struct xhci_virt_device *virt_dev,
1206 struct xhci_event_cmd *event)
1207{
1208 struct xhci_command *command;
1209
1210 if (list_empty(&virt_dev->cmd_list))
1211 return 0;
1212
1213 command = list_entry(virt_dev->cmd_list.next,
1214 struct xhci_command, cmd_list);
1215 if (xhci->cmd_ring->dequeue != command->command_trb)
1216 return 0;
1217
1218 xhci_complete_cmd_in_cmd_wait_list(xhci, command,
1219 GET_COMP_CODE(le32_to_cpu(event->status)));
1220 return 1;
1221}
1222
1223/*
1224 * Finding the command trb need to be cancelled and modifying it to
1225 * NO OP command. And if the command is in device's command wait
1226 * list, finishing and freeing it.
1227 *
1228 * If we can't find the command trb, we think it had already been
1229 * executed.
1230 */
1231static void xhci_cmd_to_noop(struct xhci_hcd *xhci, struct xhci_cd *cur_cd)
1232{
1233 struct xhci_segment *cur_seg;
1234 union xhci_trb *cmd_trb;
1235 u32 cycle_state;
1236
1237 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1238 return;
1239
1240 /* find the current segment of command ring */
1241 cur_seg = find_trb_seg(xhci->cmd_ring->first_seg,
1242 xhci->cmd_ring->dequeue, &cycle_state);
1243
1244 if (!cur_seg) {
1245 xhci_warn(xhci, "Command ring mismatch, dequeue = %p %llx (dma)\n",
1246 xhci->cmd_ring->dequeue,
1247 (unsigned long long)
1248 xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1249 xhci->cmd_ring->dequeue));
1250 xhci_debug_ring(xhci, xhci->cmd_ring);
1251 xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
1252 return;
1253 }
1254
1255 /* find the command trb matched by cd from command ring */
1256 for (cmd_trb = xhci->cmd_ring->dequeue;
1257 cmd_trb != xhci->cmd_ring->enqueue;
1258 next_trb(xhci, xhci->cmd_ring, &cur_seg, &cmd_trb)) {
1259 /* If the trb is link trb, continue */
1260 if (TRB_TYPE_LINK_LE32(cmd_trb->generic.field[3]))
1261 continue;
1262
1263 if (cur_cd->cmd_trb == cmd_trb) {
1264
1265 /* If the command in device's command list, we should
1266 * finish it and free the command structure.
1267 */
1268 if (cur_cd->command)
1269 xhci_complete_cmd_in_cmd_wait_list(xhci,
1270 cur_cd->command, COMP_CMD_STOP);
1271
1272 /* get cycle state from the origin command trb */
1273 cycle_state = le32_to_cpu(cmd_trb->generic.field[3])
1274 & TRB_CYCLE;
1275
1276 /* modify the command trb to NO OP command */
1277 cmd_trb->generic.field[0] = 0;
1278 cmd_trb->generic.field[1] = 0;
1279 cmd_trb->generic.field[2] = 0;
1280 cmd_trb->generic.field[3] = cpu_to_le32(
1281 TRB_TYPE(TRB_CMD_NOOP) | cycle_state);
1282 break;
1283 }
1284 }
1285}
1286
1287static void xhci_cancel_cmd_in_cd_list(struct xhci_hcd *xhci)
1288{
1289 struct xhci_cd *cur_cd, *next_cd;
1290
1291 if (list_empty(&xhci->cancel_cmd_list))
1292 return;
1293
1294 list_for_each_entry_safe(cur_cd, next_cd,
1295 &xhci->cancel_cmd_list, cancel_cmd_list) {
1296 xhci_cmd_to_noop(xhci, cur_cd);
1297 list_del(&cur_cd->cancel_cmd_list);
1298 kfree(cur_cd);
1299 }
1300}
1301
1302/*
1303 * traversing the cancel_cmd_list. If the command descriptor according
1304 * to cmd_trb is found, the function free it and return 1, otherwise
1305 * return 0.
1306 */
1307static int xhci_search_cmd_trb_in_cd_list(struct xhci_hcd *xhci,
1308 union xhci_trb *cmd_trb)
1309{
1310 struct xhci_cd *cur_cd, *next_cd;
1311
1312 if (list_empty(&xhci->cancel_cmd_list))
1313 return 0;
1314
1315 list_for_each_entry_safe(cur_cd, next_cd,
1316 &xhci->cancel_cmd_list, cancel_cmd_list) {
1317 if (cur_cd->cmd_trb == cmd_trb) {
1318 if (cur_cd->command)
1319 xhci_complete_cmd_in_cmd_wait_list(xhci,
1320 cur_cd->command, COMP_CMD_STOP);
1321 list_del(&cur_cd->cancel_cmd_list);
1322 kfree(cur_cd);
1323 return 1;
1324 }
1325 }
1326
1327 return 0;
1328}
1329
1330/*
1331 * If the cmd_trb_comp_code is COMP_CMD_ABORT, we just check whether the
1332 * trb pointed by the command ring dequeue pointer is the trb we want to
1333 * cancel or not. And if the cmd_trb_comp_code is COMP_CMD_STOP, we will
1334 * traverse the cancel_cmd_list to trun the all of the commands according
1335 * to command descriptor to NO-OP trb.
1336 */
1337static int handle_stopped_cmd_ring(struct xhci_hcd *xhci,
1338 int cmd_trb_comp_code)
1339{
1340 int cur_trb_is_good = 0;
1341
1342 /* Searching the cmd trb pointed by the command ring dequeue
1343 * pointer in command descriptor list. If it is found, free it.
1344 */
1345 cur_trb_is_good = xhci_search_cmd_trb_in_cd_list(xhci,
1346 xhci->cmd_ring->dequeue);
1347
1348 if (cmd_trb_comp_code == COMP_CMD_ABORT)
1349 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
1350 else if (cmd_trb_comp_code == COMP_CMD_STOP) {
1351 /* traversing the cancel_cmd_list and canceling
1352 * the command according to command descriptor
1353 */
1354 xhci_cancel_cmd_in_cd_list(xhci);
1355
1356 xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
1357 /*
1358 * ring command ring doorbell again to restart the
1359 * command ring
1360 */
1361 if (xhci->cmd_ring->dequeue != xhci->cmd_ring->enqueue)
1362 xhci_ring_cmd_db(xhci);
1363 }
1364 return cur_trb_is_good;
1365}
1366
1367static void handle_cmd_completion(struct xhci_hcd *xhci,
1368 struct xhci_event_cmd *event)
1369{
1370 int slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1371 u64 cmd_dma;
1372 dma_addr_t cmd_dequeue_dma;
1373 struct xhci_input_control_ctx *ctrl_ctx;
1374 struct xhci_virt_device *virt_dev;
1375 unsigned int ep_index;
1376 struct xhci_ring *ep_ring;
1377 unsigned int ep_state;
1378
1379 cmd_dma = le64_to_cpu(event->cmd_trb);
1380 cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
1381 xhci->cmd_ring->dequeue);
1382 /* Is the command ring deq ptr out of sync with the deq seg ptr? */
1383 if (cmd_dequeue_dma == 0) {
1384 xhci->error_bitmask |= 1 << 4;
1385 return;
1386 }
1387 /* Does the DMA address match our internal dequeue pointer address? */
1388 if (cmd_dma != (u64) cmd_dequeue_dma) {
1389 xhci->error_bitmask |= 1 << 5;
1390 return;
1391 }
1392
1393 if ((GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_ABORT) ||
1394 (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_CMD_STOP)) {
1395 /* If the return value is 0, we think the trb pointed by
1396 * command ring dequeue pointer is a good trb. The good
1397 * trb means we don't want to cancel the trb, but it have
1398 * been stopped by host. So we should handle it normally.
1399 * Otherwise, driver should invoke inc_deq() and return.
1400 */
1401 if (handle_stopped_cmd_ring(xhci,
1402 GET_COMP_CODE(le32_to_cpu(event->status)))) {
1403 inc_deq(xhci, xhci->cmd_ring);
1404 return;
1405 }
1406 /* There is no command to handle if we get a stop event when the
1407 * command ring is empty, event->cmd_trb points to the next
1408 * unset command
1409 */
1410 if (xhci->cmd_ring->dequeue == xhci->cmd_ring->enqueue)
1411 return;
1412 }
1413
1414 switch (le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3])
1415 & TRB_TYPE_BITMASK) {
1416 case TRB_TYPE(TRB_ENABLE_SLOT):
1417 if (GET_COMP_CODE(le32_to_cpu(event->status)) == COMP_SUCCESS)
1418 xhci->slot_id = slot_id;
1419 else
1420 xhci->slot_id = 0;
1421 complete(&xhci->addr_dev);
1422 break;
1423 case TRB_TYPE(TRB_DISABLE_SLOT):
1424 if (xhci->devs[slot_id]) {
1425 if (xhci->quirks & XHCI_EP_LIMIT_QUIRK)
1426 /* Delete default control endpoint resources */
1427 xhci_free_device_endpoint_resources(xhci,
1428 xhci->devs[slot_id], true);
1429 xhci_free_virt_device(xhci, slot_id);
1430 }
1431 break;
1432 case TRB_TYPE(TRB_CONFIG_EP):
1433 virt_dev = xhci->devs[slot_id];
1434 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1435 break;
1436 /*
1437 * Configure endpoint commands can come from the USB core
1438 * configuration or alt setting changes, or because the HW
1439 * needed an extra configure endpoint command after a reset
1440 * endpoint command or streams were being configured.
1441 * If the command was for a halted endpoint, the xHCI driver
1442 * is not waiting on the configure endpoint command.
1443 */
1444 ctrl_ctx = xhci_get_input_control_ctx(xhci,
1445 virt_dev->in_ctx);
1446 /* Input ctx add_flags are the endpoint index plus one */
1447 ep_index = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags)) - 1;
1448 /* A usb_set_interface() call directly after clearing a halted
1449 * condition may race on this quirky hardware. Not worth
1450 * worrying about, since this is prototype hardware. Not sure
1451 * if this will work for streams, but streams support was
1452 * untested on this prototype.
1453 */
1454 if (xhci->quirks & XHCI_RESET_EP_QUIRK &&
1455 ep_index != (unsigned int) -1 &&
1456 le32_to_cpu(ctrl_ctx->add_flags) - SLOT_FLAG ==
1457 le32_to_cpu(ctrl_ctx->drop_flags)) {
1458 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
1459 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
1460 if (!(ep_state & EP_HALTED))
1461 goto bandwidth_change;
1462 xhci_dbg(xhci, "Completed config ep cmd - "
1463 "last ep index = %d, state = %d\n",
1464 ep_index, ep_state);
1465 /* Clear internal halted state and restart ring(s) */
1466 xhci->devs[slot_id]->eps[ep_index].ep_state &=
1467 ~EP_HALTED;
1468 ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
1469 break;
1470 }
1471bandwidth_change:
1472 xhci_dbg(xhci, "Completed config ep cmd\n");
1473 xhci->devs[slot_id]->cmd_status =
1474 GET_COMP_CODE(le32_to_cpu(event->status));
1475 complete(&xhci->devs[slot_id]->cmd_completion);
1476 break;
1477 case TRB_TYPE(TRB_EVAL_CONTEXT):
1478 virt_dev = xhci->devs[slot_id];
1479 if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event))
1480 break;
1481 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1482 complete(&xhci->devs[slot_id]->cmd_completion);
1483 break;
1484 case TRB_TYPE(TRB_ADDR_DEV):
1485 xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(le32_to_cpu(event->status));
1486 complete(&xhci->addr_dev);
1487 break;
1488 case TRB_TYPE(TRB_STOP_RING):
1489 handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event);
1490 break;
1491 case TRB_TYPE(TRB_SET_DEQ):
1492 handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue);
1493 break;
1494 case TRB_TYPE(TRB_CMD_NOOP):
1495 break;
1496 case TRB_TYPE(TRB_RESET_EP):
1497 handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue);
1498 break;
1499 case TRB_TYPE(TRB_RESET_DEV):
1500 xhci_dbg(xhci, "Completed reset device command.\n");
1501 slot_id = TRB_TO_SLOT_ID(
1502 le32_to_cpu(xhci->cmd_ring->dequeue->generic.field[3]));
1503 virt_dev = xhci->devs[slot_id];
1504 if (virt_dev)
1505 handle_cmd_in_cmd_wait_list(xhci, virt_dev, event);
1506 else
1507 xhci_warn(xhci, "Reset device command completion "
1508 "for disabled slot %u\n", slot_id);
1509 break;
1510 case TRB_TYPE(TRB_NEC_GET_FW):
1511 if (!(xhci->quirks & XHCI_NEC_HOST)) {
1512 xhci->error_bitmask |= 1 << 6;
1513 break;
1514 }
1515 xhci_dbg(xhci, "NEC firmware version %2x.%02x\n",
1516 NEC_FW_MAJOR(le32_to_cpu(event->status)),
1517 NEC_FW_MINOR(le32_to_cpu(event->status)));
1518 break;
1519 default:
1520 /* Skip over unknown commands on the event ring */
1521 xhci->error_bitmask |= 1 << 6;
1522 break;
1523 }
1524 inc_deq(xhci, xhci->cmd_ring);
1525}
1526
1527static void handle_vendor_event(struct xhci_hcd *xhci,
1528 union xhci_trb *event)
1529{
1530 u32 trb_type;
1531
1532 trb_type = TRB_FIELD_TO_TYPE(le32_to_cpu(event->generic.field[3]));
1533 xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type);
1534 if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST))
1535 handle_cmd_completion(xhci, &event->event_cmd);
1536}
1537
1538/* @port_id: the one-based port ID from the hardware (indexed from array of all
1539 * port registers -- USB 3.0 and USB 2.0).
1540 *
1541 * Returns a zero-based port number, which is suitable for indexing into each of
1542 * the split roothubs' port arrays and bus state arrays.
1543 * Add one to it in order to call xhci_find_slot_id_by_port.
1544 */
1545static unsigned int find_faked_portnum_from_hw_portnum(struct usb_hcd *hcd,
1546 struct xhci_hcd *xhci, u32 port_id)
1547{
1548 unsigned int i;
1549 unsigned int num_similar_speed_ports = 0;
1550
1551 /* port_id from the hardware is 1-based, but port_array[], usb3_ports[],
1552 * and usb2_ports are 0-based indexes. Count the number of similar
1553 * speed ports, up to 1 port before this port.
1554 */
1555 for (i = 0; i < (port_id - 1); i++) {
1556 u8 port_speed = xhci->port_array[i];
1557
1558 /*
1559 * Skip ports that don't have known speeds, or have duplicate
1560 * Extended Capabilities port speed entries.
1561 */
1562 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
1563 continue;
1564
1565 /*
1566 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
1567 * 1.1 ports are under the USB 2.0 hub. If the port speed
1568 * matches the device speed, it's a similar speed port.
1569 */
1570 if ((port_speed == 0x03) == (hcd->speed == HCD_USB3))
1571 num_similar_speed_ports++;
1572 }
1573 return num_similar_speed_ports;
1574}
1575
1576static void handle_device_notification(struct xhci_hcd *xhci,
1577 union xhci_trb *event)
1578{
1579 u32 slot_id;
1580 struct usb_device *udev;
1581
1582 slot_id = TRB_TO_SLOT_ID(event->generic.field[3]);
1583 if (!xhci->devs[slot_id]) {
1584 xhci_warn(xhci, "Device Notification event for "
1585 "unused slot %u\n", slot_id);
1586 return;
1587 }
1588
1589 xhci_dbg(xhci, "Device Wake Notification event for slot ID %u\n",
1590 slot_id);
1591 udev = xhci->devs[slot_id]->udev;
1592 if (udev && udev->parent)
1593 usb_wakeup_notification(udev->parent, udev->portnum);
1594}
1595
1596static void handle_port_status(struct xhci_hcd *xhci,
1597 union xhci_trb *event)
1598{
1599 struct usb_hcd *hcd;
1600 u32 port_id;
1601 u32 temp, temp1;
1602 int max_ports;
1603 int slot_id;
1604 unsigned int faked_port_index;
1605 u8 major_revision;
1606 struct xhci_bus_state *bus_state;
1607 __le32 __iomem **port_array;
1608 bool bogus_port_status = false;
1609
1610 /* Port status change events always have a successful completion code */
1611 if (GET_COMP_CODE(le32_to_cpu(event->generic.field[2])) != COMP_SUCCESS) {
1612 xhci_warn(xhci, "WARN: xHC returned failed port status event\n");
1613 xhci->error_bitmask |= 1 << 8;
1614 }
1615 port_id = GET_PORT_ID(le32_to_cpu(event->generic.field[0]));
1616 xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id);
1617
1618 max_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1619 if ((port_id <= 0) || (port_id > max_ports)) {
1620 xhci_warn(xhci, "Invalid port id %d\n", port_id);
1621 bogus_port_status = true;
1622 goto cleanup;
1623 }
1624
1625 /* Figure out which usb_hcd this port is attached to:
1626 * is it a USB 3.0 port or a USB 2.0/1.1 port?
1627 */
1628 major_revision = xhci->port_array[port_id - 1];
1629 if (major_revision == 0) {
1630 xhci_warn(xhci, "Event for port %u not in "
1631 "Extended Capabilities, ignoring.\n",
1632 port_id);
1633 bogus_port_status = true;
1634 goto cleanup;
1635 }
1636 if (major_revision == DUPLICATE_ENTRY) {
1637 xhci_warn(xhci, "Event for port %u duplicated in"
1638 "Extended Capabilities, ignoring.\n",
1639 port_id);
1640 bogus_port_status = true;
1641 goto cleanup;
1642 }
1643
1644 /*
1645 * Hardware port IDs reported by a Port Status Change Event include USB
1646 * 3.0 and USB 2.0 ports. We want to check if the port has reported a
1647 * resume event, but we first need to translate the hardware port ID
1648 * into the index into the ports on the correct split roothub, and the
1649 * correct bus_state structure.
1650 */
1651 /* Find the right roothub. */
1652 hcd = xhci_to_hcd(xhci);
1653 if ((major_revision == 0x03) != (hcd->speed == HCD_USB3))
1654 hcd = xhci->shared_hcd;
1655 bus_state = &xhci->bus_state[hcd_index(hcd)];
1656 if (hcd->speed == HCD_USB3)
1657 port_array = xhci->usb3_ports;
1658 else
1659 port_array = xhci->usb2_ports;
1660 /* Find the faked port hub number */
1661 faked_port_index = find_faked_portnum_from_hw_portnum(hcd, xhci,
1662 port_id);
1663
1664 temp = xhci_readl(xhci, port_array[faked_port_index]);
1665 if (hcd->state == HC_STATE_SUSPENDED) {
1666 xhci_dbg(xhci, "resume root hub\n");
1667 usb_hcd_resume_root_hub(hcd);
1668 }
1669
1670 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) {
1671 xhci_dbg(xhci, "port resume event for port %d\n", port_id);
1672
1673 temp1 = xhci_readl(xhci, &xhci->op_regs->command);
1674 if (!(temp1 & CMD_RUN)) {
1675 xhci_warn(xhci, "xHC is not running.\n");
1676 goto cleanup;
1677 }
1678
1679 if (DEV_SUPERSPEED(temp)) {
1680 xhci_dbg(xhci, "remote wake SS port %d\n", port_id);
1681 /* Set a flag to say the port signaled remote wakeup,
1682 * so we can tell the difference between the end of
1683 * device and host initiated resume.
1684 */
1685 bus_state->port_remote_wakeup |= 1 << faked_port_index;
1686 xhci_test_and_clear_bit(xhci, port_array,
1687 faked_port_index, PORT_PLC);
1688 xhci_set_link_state(xhci, port_array, faked_port_index,
1689 XDEV_U0);
1690 /* Need to wait until the next link state change
1691 * indicates the device is actually in U0.
1692 */
1693 bogus_port_status = true;
1694 goto cleanup;
1695 } else {
1696 xhci_dbg(xhci, "resume HS port %d\n", port_id);
1697 bus_state->resume_done[faked_port_index] = jiffies +
1698 msecs_to_jiffies(20);
1699 set_bit(faked_port_index, &bus_state->resuming_ports);
1700 mod_timer(&hcd->rh_timer,
1701 bus_state->resume_done[faked_port_index]);
1702 /* Do the rest in GetPortStatus */
1703 }
1704 }
1705
1706 if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_U0 &&
1707 DEV_SUPERSPEED(temp)) {
1708 xhci_dbg(xhci, "resume SS port %d finished\n", port_id);
1709 /* We've just brought the device into U0 through either the
1710 * Resume state after a device remote wakeup, or through the
1711 * U3Exit state after a host-initiated resume. If it's a device
1712 * initiated remote wake, don't pass up the link state change,
1713 * so the roothub behavior is consistent with external
1714 * USB 3.0 hub behavior.
1715 */
1716 slot_id = xhci_find_slot_id_by_port(hcd, xhci,
1717 faked_port_index + 1);
1718 if (slot_id && xhci->devs[slot_id])
1719 xhci_ring_device(xhci, slot_id);
1720 if (bus_state->port_remote_wakeup & (1 << faked_port_index)) {
1721 bus_state->port_remote_wakeup &=
1722 ~(1 << faked_port_index);
1723 xhci_test_and_clear_bit(xhci, port_array,
1724 faked_port_index, PORT_PLC);
1725 usb_wakeup_notification(hcd->self.root_hub,
1726 faked_port_index + 1);
1727 bogus_port_status = true;
1728 goto cleanup;
1729 }
1730 }
1731
1732 if (hcd->speed != HCD_USB3)
1733 xhci_test_and_clear_bit(xhci, port_array, faked_port_index,
1734 PORT_PLC);
1735
1736cleanup:
1737 /* Update event ring dequeue pointer before dropping the lock */
1738 inc_deq(xhci, xhci->event_ring);
1739
1740 /* Don't make the USB core poll the roothub if we got a bad port status
1741 * change event. Besides, at that point we can't tell which roothub
1742 * (USB 2.0 or USB 3.0) to kick.
1743 */
1744 if (bogus_port_status)
1745 return;
1746
1747 /*
1748 * xHCI port-status-change events occur when the "or" of all the
1749 * status-change bits in the portsc register changes from 0 to 1.
1750 * New status changes won't cause an event if any other change
1751 * bits are still set. When an event occurs, switch over to
1752 * polling to avoid losing status changes.
1753 */
1754 xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1755 set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1756 spin_unlock(&xhci->lock);
1757 /* Pass this up to the core */
1758 usb_hcd_poll_rh_status(hcd);
1759 spin_lock(&xhci->lock);
1760}
1761
1762/*
1763 * This TD is defined by the TRBs starting at start_trb in start_seg and ending
1764 * at end_trb, which may be in another segment. If the suspect DMA address is a
1765 * TRB in this TD, this function returns that TRB's segment. Otherwise it
1766 * returns 0.
1767 */
1768struct xhci_segment *trb_in_td(struct xhci_segment *start_seg,
1769 union xhci_trb *start_trb,
1770 union xhci_trb *end_trb,
1771 dma_addr_t suspect_dma)
1772{
1773 dma_addr_t start_dma;
1774 dma_addr_t end_seg_dma;
1775 dma_addr_t end_trb_dma;
1776 struct xhci_segment *cur_seg;
1777
1778 start_dma = xhci_trb_virt_to_dma(start_seg, start_trb);
1779 cur_seg = start_seg;
1780
1781 do {
1782 if (start_dma == 0)
1783 return NULL;
1784 /* We may get an event for a Link TRB in the middle of a TD */
1785 end_seg_dma = xhci_trb_virt_to_dma(cur_seg,
1786 &cur_seg->trbs[TRBS_PER_SEGMENT - 1]);
1787 /* If the end TRB isn't in this segment, this is set to 0 */
1788 end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb);
1789
1790 if (end_trb_dma > 0) {
1791 /* The end TRB is in this segment, so suspect should be here */
1792 if (start_dma <= end_trb_dma) {
1793 if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma)
1794 return cur_seg;
1795 } else {
1796 /* Case for one segment with
1797 * a TD wrapped around to the top
1798 */
1799 if ((suspect_dma >= start_dma &&
1800 suspect_dma <= end_seg_dma) ||
1801 (suspect_dma >= cur_seg->dma &&
1802 suspect_dma <= end_trb_dma))
1803 return cur_seg;
1804 }
1805 return NULL;
1806 } else {
1807 /* Might still be somewhere in this segment */
1808 if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma)
1809 return cur_seg;
1810 }
1811 cur_seg = cur_seg->next;
1812 start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]);
1813 } while (cur_seg != start_seg);
1814
1815 return NULL;
1816}
1817
1818static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci,
1819 unsigned int slot_id, unsigned int ep_index,
1820 unsigned int stream_id,
1821 struct xhci_td *td, union xhci_trb *event_trb)
1822{
1823 struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index];
1824 ep->ep_state |= EP_HALTED;
1825 ep->stopped_td = td;
1826 ep->stopped_trb = event_trb;
1827 ep->stopped_stream = stream_id;
1828
1829 xhci_queue_reset_ep(xhci, slot_id, ep_index);
1830 xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index);
1831
1832 ep->stopped_td = NULL;
1833 ep->stopped_trb = NULL;
1834 ep->stopped_stream = 0;
1835
1836 xhci_ring_cmd_db(xhci);
1837}
1838
1839/* Check if an error has halted the endpoint ring. The class driver will
1840 * cleanup the halt for a non-default control endpoint if we indicate a stall.
1841 * However, a babble and other errors also halt the endpoint ring, and the class
1842 * driver won't clear the halt in that case, so we need to issue a Set Transfer
1843 * Ring Dequeue Pointer command manually.
1844 */
1845static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci,
1846 struct xhci_ep_ctx *ep_ctx,
1847 unsigned int trb_comp_code)
1848{
1849 /* TRB completion codes that may require a manual halt cleanup */
1850 if (trb_comp_code == COMP_TX_ERR ||
1851 trb_comp_code == COMP_BABBLE ||
1852 trb_comp_code == COMP_SPLIT_ERR)
1853 /* The 0.96 spec says a babbling control endpoint
1854 * is not halted. The 0.96 spec says it is. Some HW
1855 * claims to be 0.95 compliant, but it halts the control
1856 * endpoint anyway. Check if a babble halted the
1857 * endpoint.
1858 */
1859 if ((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1860 cpu_to_le32(EP_STATE_HALTED))
1861 return 1;
1862
1863 return 0;
1864}
1865
1866int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code)
1867{
1868 if (trb_comp_code >= 224 && trb_comp_code <= 255) {
1869 /* Vendor defined "informational" completion code,
1870 * treat as not-an-error.
1871 */
1872 xhci_dbg(xhci, "Vendor defined info completion code %u\n",
1873 trb_comp_code);
1874 xhci_dbg(xhci, "Treating code as success.\n");
1875 return 1;
1876 }
1877 return 0;
1878}
1879
1880/*
1881 * Finish the td processing, remove the td from td list;
1882 * Return 1 if the urb can be given back.
1883 */
1884static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td,
1885 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1886 struct xhci_virt_ep *ep, int *status, bool skip)
1887{
1888 struct xhci_virt_device *xdev;
1889 struct xhci_ring *ep_ring;
1890 unsigned int slot_id;
1891 int ep_index;
1892 struct urb *urb = NULL;
1893 struct xhci_ep_ctx *ep_ctx;
1894 int ret = 0;
1895 struct urb_priv *urb_priv;
1896 u32 trb_comp_code;
1897
1898 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1899 xdev = xhci->devs[slot_id];
1900 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1901 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1902 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
1903 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
1904
1905 if (skip)
1906 goto td_cleanup;
1907
1908 if (trb_comp_code == COMP_STOP_INVAL ||
1909 trb_comp_code == COMP_STOP) {
1910 /* The Endpoint Stop Command completion will take care of any
1911 * stopped TDs. A stopped TD may be restarted, so don't update
1912 * the ring dequeue pointer or take this TD off any lists yet.
1913 */
1914 ep->stopped_td = td;
1915 ep->stopped_trb = event_trb;
1916 return 0;
1917 } else {
1918 if (trb_comp_code == COMP_STALL ||
1919 xhci_requires_manual_halt_cleanup(xhci, ep_ctx,
1920 trb_comp_code)) {
1921 /* Issue a reset endpoint command to clear the host side * halt, followed by a set dequeue command to move the
1922 * dequeue pointer past the TD.
1923 * The class driver clears the device side halt later.
1924 */
1925 xhci_cleanup_halted_endpoint(xhci,
1926 slot_id, ep_index, ep_ring->stream_id,
1927 td, event_trb);
1928 } else {
1929 /* Update ring dequeue pointer */
1930 while (ep_ring->dequeue != td->last_trb)
1931 inc_deq(xhci, ep_ring);
1932 inc_deq(xhci, ep_ring);
1933 }
1934
1935td_cleanup:
1936 /* Clean up the endpoint's TD list */
1937 urb = td->urb;
1938 urb_priv = urb->hcpriv;
1939
1940 /* Do one last check of the actual transfer length.
1941 * If the host controller said we transferred more data than
1942 * the buffer length, urb->actual_length will be a very big
1943 * number (since it's unsigned). Play it safe and say we didn't
1944 * transfer anything.
1945 */
1946 if (urb->actual_length > urb->transfer_buffer_length) {
1947 xhci_warn(xhci, "URB transfer length is wrong, "
1948 "xHC issue? req. len = %u, "
1949 "act. len = %u\n",
1950 urb->transfer_buffer_length,
1951 urb->actual_length);
1952 urb->actual_length = 0;
1953 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
1954 *status = -EREMOTEIO;
1955 else
1956 *status = 0;
1957 }
1958 list_del_init(&td->td_list);
1959 /* Was this TD slated to be cancelled but completed anyway? */
1960 if (!list_empty(&td->cancelled_td_list))
1961 list_del_init(&td->cancelled_td_list);
1962
1963 urb_priv->td_cnt++;
1964 /* Giveback the urb when all the tds are completed */
1965 if (urb_priv->td_cnt == urb_priv->length) {
1966 ret = 1;
1967 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
1968 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs--;
1969 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs
1970 == 0) {
1971 if (xhci->quirks & XHCI_AMD_PLL_FIX)
1972 usb_amd_quirk_pll_enable();
1973 }
1974 }
1975 }
1976 }
1977
1978 return ret;
1979}
1980
1981/*
1982 * Process control tds, update urb status and actual_length.
1983 */
1984static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td,
1985 union xhci_trb *event_trb, struct xhci_transfer_event *event,
1986 struct xhci_virt_ep *ep, int *status)
1987{
1988 struct xhci_virt_device *xdev;
1989 struct xhci_ring *ep_ring;
1990 unsigned int slot_id;
1991 int ep_index;
1992 struct xhci_ep_ctx *ep_ctx;
1993 u32 trb_comp_code;
1994
1995 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
1996 xdev = xhci->devs[slot_id];
1997 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
1998 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
1999 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2000 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2001
2002 switch (trb_comp_code) {
2003 case COMP_SUCCESS:
2004 if (event_trb == ep_ring->dequeue) {
2005 xhci_warn(xhci, "WARN: Success on ctrl setup TRB "
2006 "without IOC set??\n");
2007 *status = -ESHUTDOWN;
2008 } else if (event_trb != td->last_trb) {
2009 xhci_warn(xhci, "WARN: Success on ctrl data TRB "
2010 "without IOC set??\n");
2011 *status = -ESHUTDOWN;
2012 } else {
2013 *status = 0;
2014 }
2015 break;
2016 case COMP_SHORT_TX:
2017 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2018 *status = -EREMOTEIO;
2019 else
2020 *status = 0;
2021 break;
2022 case COMP_STOP_INVAL:
2023 case COMP_STOP:
2024 return finish_td(xhci, td, event_trb, event, ep, status, false);
2025 default:
2026 if (!xhci_requires_manual_halt_cleanup(xhci,
2027 ep_ctx, trb_comp_code))
2028 break;
2029 xhci_dbg(xhci, "TRB error code %u, "
2030 "halted endpoint index = %u\n",
2031 trb_comp_code, ep_index);
2032 /* else fall through */
2033 case COMP_STALL:
2034 /* Did we transfer part of the data (middle) phase? */
2035 if (event_trb != ep_ring->dequeue &&
2036 event_trb != td->last_trb)
2037 td->urb->actual_length =
2038 td->urb->transfer_buffer_length -
2039 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2040 else
2041 td->urb->actual_length = 0;
2042
2043 return finish_td(xhci, td, event_trb, event, ep, status, false);
2044 }
2045 /*
2046 * Did we transfer any data, despite the errors that might have
2047 * happened? I.e. did we get past the setup stage?
2048 */
2049 if (event_trb != ep_ring->dequeue) {
2050 /* The event was for the status stage */
2051 if (event_trb == td->last_trb) {
2052 if (td->urb_length_set) {
2053 /* Don't overwrite a previously set error code
2054 */
2055 if ((*status == -EINPROGRESS || *status == 0) &&
2056 (td->urb->transfer_flags
2057 & URB_SHORT_NOT_OK))
2058 /* Did we already see a short data
2059 * stage? */
2060 *status = -EREMOTEIO;
2061 } else {
2062 td->urb->actual_length =
2063 td->urb->transfer_buffer_length;
2064 }
2065 } else {
2066 /*
2067 * Maybe the event was for the data stage? If so, update
2068 * already the actual_length of the URB and flag it as
2069 * set, so that it is not overwritten in the event for
2070 * the last TRB.
2071 */
2072 td->urb_length_set = true;
2073 td->urb->actual_length =
2074 td->urb->transfer_buffer_length -
2075 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2076 xhci_dbg(xhci, "Waiting for status "
2077 "stage event\n");
2078 return 0;
2079 }
2080 }
2081
2082 return finish_td(xhci, td, event_trb, event, ep, status, false);
2083}
2084
2085/*
2086 * Process isochronous tds, update urb packet status and actual_length.
2087 */
2088static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2089 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2090 struct xhci_virt_ep *ep, int *status)
2091{
2092 struct xhci_ring *ep_ring;
2093 struct urb_priv *urb_priv;
2094 int idx;
2095 int len = 0;
2096 union xhci_trb *cur_trb;
2097 struct xhci_segment *cur_seg;
2098 struct usb_iso_packet_descriptor *frame;
2099 u32 trb_comp_code;
2100 bool skip_td = false;
2101
2102 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2103 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2104 urb_priv = td->urb->hcpriv;
2105 idx = urb_priv->td_cnt;
2106 frame = &td->urb->iso_frame_desc[idx];
2107
2108 /* handle completion code */
2109 switch (trb_comp_code) {
2110 case COMP_SUCCESS:
2111 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0) {
2112 frame->status = 0;
2113 break;
2114 }
2115 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2116 trb_comp_code = COMP_SHORT_TX;
2117 case COMP_SHORT_TX:
2118 frame->status = td->urb->transfer_flags & URB_SHORT_NOT_OK ?
2119 -EREMOTEIO : 0;
2120 break;
2121 case COMP_BW_OVER:
2122 frame->status = -ECOMM;
2123 skip_td = true;
2124 break;
2125 case COMP_BUFF_OVER:
2126 case COMP_BABBLE:
2127 frame->status = -EOVERFLOW;
2128 skip_td = true;
2129 break;
2130 case COMP_DEV_ERR:
2131 case COMP_STALL:
2132 frame->status = -EPROTO;
2133 skip_td = true;
2134 break;
2135 case COMP_TX_ERR:
2136 frame->status = -EPROTO;
2137 if (event_trb != td->last_trb)
2138 return 0;
2139 skip_td = true;
2140 break;
2141 case COMP_STOP:
2142 case COMP_STOP_INVAL:
2143 break;
2144 default:
2145 frame->status = -1;
2146 break;
2147 }
2148
2149 if (trb_comp_code == COMP_SUCCESS || skip_td) {
2150 frame->actual_length = frame->length;
2151 td->urb->actual_length += frame->length;
2152 } else {
2153 for (cur_trb = ep_ring->dequeue,
2154 cur_seg = ep_ring->deq_seg; cur_trb != event_trb;
2155 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2156 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2157 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2158 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2159 }
2160 len += TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2161 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2162
2163 if (trb_comp_code != COMP_STOP_INVAL) {
2164 frame->actual_length = len;
2165 td->urb->actual_length += len;
2166 }
2167 }
2168
2169 return finish_td(xhci, td, event_trb, event, ep, status, false);
2170}
2171
2172static int skip_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td,
2173 struct xhci_transfer_event *event,
2174 struct xhci_virt_ep *ep, int *status)
2175{
2176 struct xhci_ring *ep_ring;
2177 struct urb_priv *urb_priv;
2178 struct usb_iso_packet_descriptor *frame;
2179 int idx;
2180
2181 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2182 urb_priv = td->urb->hcpriv;
2183 idx = urb_priv->td_cnt;
2184 frame = &td->urb->iso_frame_desc[idx];
2185
2186 /* The transfer is partly done. */
2187 frame->status = -EXDEV;
2188
2189 /* calc actual length */
2190 frame->actual_length = 0;
2191
2192 /* Update ring dequeue pointer */
2193 while (ep_ring->dequeue != td->last_trb)
2194 inc_deq(xhci, ep_ring);
2195 inc_deq(xhci, ep_ring);
2196
2197 return finish_td(xhci, td, NULL, event, ep, status, true);
2198}
2199
2200/*
2201 * Process bulk and interrupt tds, update urb status and actual_length.
2202 */
2203static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td,
2204 union xhci_trb *event_trb, struct xhci_transfer_event *event,
2205 struct xhci_virt_ep *ep, int *status)
2206{
2207 struct xhci_ring *ep_ring;
2208 union xhci_trb *cur_trb;
2209 struct xhci_segment *cur_seg;
2210 u32 trb_comp_code;
2211
2212 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2213 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2214
2215 switch (trb_comp_code) {
2216 case COMP_SUCCESS:
2217 /* Double check that the HW transferred everything. */
2218 if (event_trb != td->last_trb ||
2219 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2220 xhci_warn(xhci, "WARN Successful completion "
2221 "on short TX\n");
2222 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2223 *status = -EREMOTEIO;
2224 else
2225 *status = 0;
2226 if ((xhci->quirks & XHCI_TRUST_TX_LENGTH))
2227 trb_comp_code = COMP_SHORT_TX;
2228 } else {
2229 *status = 0;
2230 }
2231 break;
2232 case COMP_SHORT_TX:
2233 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2234 *status = -EREMOTEIO;
2235 else
2236 *status = 0;
2237 break;
2238 default:
2239 /* Others already handled above */
2240 break;
2241 }
2242 if (trb_comp_code == COMP_SHORT_TX)
2243 xhci_dbg(xhci, "ep %#x - asked for %d bytes, "
2244 "%d bytes untransferred\n",
2245 td->urb->ep->desc.bEndpointAddress,
2246 td->urb->transfer_buffer_length,
2247 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2248 /* Fast path - was this the last TRB in the TD for this URB? */
2249 if (event_trb == td->last_trb) {
2250 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) != 0) {
2251 td->urb->actual_length =
2252 td->urb->transfer_buffer_length -
2253 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2254 if (td->urb->transfer_buffer_length <
2255 td->urb->actual_length) {
2256 xhci_warn(xhci, "HC gave bad length "
2257 "of %d bytes left\n",
2258 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)));
2259 td->urb->actual_length = 0;
2260 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2261 *status = -EREMOTEIO;
2262 else
2263 *status = 0;
2264 }
2265 /* Don't overwrite a previously set error code */
2266 if (*status == -EINPROGRESS) {
2267 if (td->urb->transfer_flags & URB_SHORT_NOT_OK)
2268 *status = -EREMOTEIO;
2269 else
2270 *status = 0;
2271 }
2272 } else {
2273 td->urb->actual_length =
2274 td->urb->transfer_buffer_length;
2275 /* Ignore a short packet completion if the
2276 * untransferred length was zero.
2277 */
2278 if (*status == -EREMOTEIO)
2279 *status = 0;
2280 }
2281 } else {
2282 /* Slow path - walk the list, starting from the dequeue
2283 * pointer, to get the actual length transferred.
2284 */
2285 td->urb->actual_length = 0;
2286 for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg;
2287 cur_trb != event_trb;
2288 next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) {
2289 if (!TRB_TYPE_NOOP_LE32(cur_trb->generic.field[3]) &&
2290 !TRB_TYPE_LINK_LE32(cur_trb->generic.field[3]))
2291 td->urb->actual_length +=
2292 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2]));
2293 }
2294 /* If the ring didn't stop on a Link or No-op TRB, add
2295 * in the actual bytes transferred from the Normal TRB
2296 */
2297 if (trb_comp_code != COMP_STOP_INVAL)
2298 td->urb->actual_length +=
2299 TRB_LEN(le32_to_cpu(cur_trb->generic.field[2])) -
2300 EVENT_TRB_LEN(le32_to_cpu(event->transfer_len));
2301 }
2302
2303 return finish_td(xhci, td, event_trb, event, ep, status, false);
2304}
2305
2306/*
2307 * If this function returns an error condition, it means it got a Transfer
2308 * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address.
2309 * At this point, the host controller is probably hosed and should be reset.
2310 */
2311static int handle_tx_event(struct xhci_hcd *xhci,
2312 struct xhci_transfer_event *event)
2313{
2314 struct xhci_virt_device *xdev;
2315 struct xhci_virt_ep *ep;
2316 struct xhci_ring *ep_ring;
2317 unsigned int slot_id;
2318 int ep_index;
2319 struct xhci_td *td = NULL;
2320 dma_addr_t event_dma;
2321 struct xhci_segment *event_seg;
2322 union xhci_trb *event_trb;
2323 struct urb *urb = NULL;
2324 int status = -EINPROGRESS;
2325 struct urb_priv *urb_priv;
2326 struct xhci_ep_ctx *ep_ctx;
2327 struct list_head *tmp;
2328 u32 trb_comp_code;
2329 int ret = 0;
2330 int td_num = 0;
2331
2332 slot_id = TRB_TO_SLOT_ID(le32_to_cpu(event->flags));
2333 xdev = xhci->devs[slot_id];
2334 if (!xdev) {
2335 xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n");
2336 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2337 (unsigned long long) xhci_trb_virt_to_dma(
2338 xhci->event_ring->deq_seg,
2339 xhci->event_ring->dequeue),
2340 lower_32_bits(le64_to_cpu(event->buffer)),
2341 upper_32_bits(le64_to_cpu(event->buffer)),
2342 le32_to_cpu(event->transfer_len),
2343 le32_to_cpu(event->flags));
2344 xhci_dbg(xhci, "Event ring:\n");
2345 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2346 return -ENODEV;
2347 }
2348
2349 /* Endpoint ID is 1 based, our index is zero based */
2350 ep_index = TRB_TO_EP_ID(le32_to_cpu(event->flags)) - 1;
2351 ep = &xdev->eps[ep_index];
2352 ep_ring = xhci_dma_to_transfer_ring(ep, le64_to_cpu(event->buffer));
2353 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2354 if (!ep_ring ||
2355 (le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
2356 EP_STATE_DISABLED) {
2357 xhci_err(xhci, "ERROR Transfer event for disabled endpoint "
2358 "or incorrect stream ring\n");
2359 xhci_err(xhci, "@%016llx %08x %08x %08x %08x\n",
2360 (unsigned long long) xhci_trb_virt_to_dma(
2361 xhci->event_ring->deq_seg,
2362 xhci->event_ring->dequeue),
2363 lower_32_bits(le64_to_cpu(event->buffer)),
2364 upper_32_bits(le64_to_cpu(event->buffer)),
2365 le32_to_cpu(event->transfer_len),
2366 le32_to_cpu(event->flags));
2367 xhci_dbg(xhci, "Event ring:\n");
2368 xhci_debug_segment(xhci, xhci->event_ring->deq_seg);
2369 return -ENODEV;
2370 }
2371
2372 /* Count current td numbers if ep->skip is set */
2373 if (ep->skip) {
2374 list_for_each(tmp, &ep_ring->td_list)
2375 td_num++;
2376 }
2377
2378 event_dma = le64_to_cpu(event->buffer);
2379 trb_comp_code = GET_COMP_CODE(le32_to_cpu(event->transfer_len));
2380 /* Look for common error cases */
2381 switch (trb_comp_code) {
2382 /* Skip codes that require special handling depending on
2383 * transfer type
2384 */
2385 case COMP_SUCCESS:
2386 if (EVENT_TRB_LEN(le32_to_cpu(event->transfer_len)) == 0)
2387 break;
2388 if (xhci->quirks & XHCI_TRUST_TX_LENGTH)
2389 trb_comp_code = COMP_SHORT_TX;
2390 else
2391 xhci_warn(xhci, "WARN Successful completion on short TX: "
2392 "needs XHCI_TRUST_TX_LENGTH quirk?\n");
2393 case COMP_SHORT_TX:
2394 break;
2395 case COMP_STOP:
2396 xhci_dbg(xhci, "Stopped on Transfer TRB\n");
2397 break;
2398 case COMP_STOP_INVAL:
2399 xhci_dbg(xhci, "Stopped on No-op or Link TRB\n");
2400 break;
2401 case COMP_STALL:
2402 xhci_dbg(xhci, "Stalled endpoint\n");
2403 ep->ep_state |= EP_HALTED;
2404 status = -EPIPE;
2405 break;
2406 case COMP_TRB_ERR:
2407 xhci_warn(xhci, "WARN: TRB error on endpoint\n");
2408 status = -EILSEQ;
2409 break;
2410 case COMP_SPLIT_ERR:
2411 case COMP_TX_ERR:
2412 xhci_dbg(xhci, "Transfer error on endpoint\n");
2413 status = -EPROTO;
2414 break;
2415 case COMP_BABBLE:
2416 xhci_dbg(xhci, "Babble error on endpoint\n");
2417 status = -EOVERFLOW;
2418 break;
2419 case COMP_DB_ERR:
2420 xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n");
2421 status = -ENOSR;
2422 break;
2423 case COMP_BW_OVER:
2424 xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n");
2425 break;
2426 case COMP_BUFF_OVER:
2427 xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n");
2428 break;
2429 case COMP_UNDERRUN:
2430 /*
2431 * When the Isoch ring is empty, the xHC will generate
2432 * a Ring Overrun Event for IN Isoch endpoint or Ring
2433 * Underrun Event for OUT Isoch endpoint.
2434 */
2435 xhci_dbg(xhci, "underrun event on endpoint\n");
2436 if (!list_empty(&ep_ring->td_list))
2437 xhci_dbg(xhci, "Underrun Event for slot %d ep %d "
2438 "still with TDs queued?\n",
2439 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2440 ep_index);
2441 goto cleanup;
2442 case COMP_OVERRUN:
2443 xhci_dbg(xhci, "overrun event on endpoint\n");
2444 if (!list_empty(&ep_ring->td_list))
2445 xhci_dbg(xhci, "Overrun Event for slot %d ep %d "
2446 "still with TDs queued?\n",
2447 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2448 ep_index);
2449 goto cleanup;
2450 case COMP_DEV_ERR:
2451 xhci_warn(xhci, "WARN: detect an incompatible device");
2452 status = -EPROTO;
2453 break;
2454 case COMP_MISSED_INT:
2455 /*
2456 * When encounter missed service error, one or more isoc tds
2457 * may be missed by xHC.
2458 * Set skip flag of the ep_ring; Complete the missed tds as
2459 * short transfer when process the ep_ring next time.
2460 */
2461 ep->skip = true;
2462 xhci_dbg(xhci, "Miss service interval error, set skip flag\n");
2463 goto cleanup;
2464 default:
2465 if (xhci_is_vendor_info_code(xhci, trb_comp_code)) {
2466 status = 0;
2467 break;
2468 }
2469 xhci_warn(xhci, "ERROR Unknown event condition, HC probably "
2470 "busted\n");
2471 goto cleanup;
2472 }
2473
2474 do {
2475 /* This TRB should be in the TD at the head of this ring's
2476 * TD list.
2477 */
2478 if (list_empty(&ep_ring->td_list)) {
2479 /*
2480 * A stopped endpoint may generate an extra completion
2481 * event if the device was suspended. Don't print
2482 * warnings.
2483 */
2484 if (!(trb_comp_code == COMP_STOP ||
2485 trb_comp_code == COMP_STOP_INVAL)) {
2486 xhci_warn(xhci, "WARN Event TRB for slot %d ep %d with no TDs queued?\n",
2487 TRB_TO_SLOT_ID(le32_to_cpu(event->flags)),
2488 ep_index);
2489 xhci_dbg(xhci, "Event TRB with TRB type ID %u\n",
2490 (le32_to_cpu(event->flags) &
2491 TRB_TYPE_BITMASK)>>10);
2492 xhci_print_trb_offsets(xhci, (union xhci_trb *) event);
2493 }
2494 if (ep->skip) {
2495 ep->skip = false;
2496 xhci_dbg(xhci, "td_list is empty while skip "
2497 "flag set. Clear skip flag.\n");
2498 }
2499 ret = 0;
2500 goto cleanup;
2501 }
2502
2503 /* We've skipped all the TDs on the ep ring when ep->skip set */
2504 if (ep->skip && td_num == 0) {
2505 ep->skip = false;
2506 xhci_dbg(xhci, "All tds on the ep_ring skipped. "
2507 "Clear skip flag.\n");
2508 ret = 0;
2509 goto cleanup;
2510 }
2511
2512 td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list);
2513 if (ep->skip)
2514 td_num--;
2515
2516 /* Is this a TRB in the currently executing TD? */
2517 event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue,
2518 td->last_trb, event_dma);
2519
2520 /*
2521 * Skip the Force Stopped Event. The event_trb(event_dma) of FSE
2522 * is not in the current TD pointed by ep_ring->dequeue because
2523 * that the hardware dequeue pointer still at the previous TRB
2524 * of the current TD. The previous TRB maybe a Link TD or the
2525 * last TRB of the previous TD. The command completion handle
2526 * will take care the rest.
2527 */
2528 if (!event_seg && (trb_comp_code == COMP_STOP ||
2529 trb_comp_code == COMP_STOP_INVAL)) {
2530 ret = 0;
2531 goto cleanup;
2532 }
2533
2534 if (!event_seg) {
2535 if (!ep->skip ||
2536 !usb_endpoint_xfer_isoc(&td->urb->ep->desc)) {
2537 /* Some host controllers give a spurious
2538 * successful event after a short transfer.
2539 * Ignore it.
2540 */
2541 if ((xhci->quirks & XHCI_SPURIOUS_SUCCESS) &&
2542 ep_ring->last_td_was_short) {
2543 ep_ring->last_td_was_short = false;
2544 ret = 0;
2545 goto cleanup;
2546 }
2547 /* HC is busted, give up! */
2548 xhci_err(xhci,
2549 "ERROR Transfer event TRB DMA ptr not "
2550 "part of current TD\n");
2551 return -ESHUTDOWN;
2552 }
2553
2554 ret = skip_isoc_td(xhci, td, event, ep, &status);
2555 goto cleanup;
2556 }
2557 if (trb_comp_code == COMP_SHORT_TX)
2558 ep_ring->last_td_was_short = true;
2559 else
2560 ep_ring->last_td_was_short = false;
2561
2562 if (ep->skip) {
2563 xhci_dbg(xhci, "Found td. Clear skip flag.\n");
2564 ep->skip = false;
2565 }
2566
2567 event_trb = &event_seg->trbs[(event_dma - event_seg->dma) /
2568 sizeof(*event_trb)];
2569 /*
2570 * No-op TRB should not trigger interrupts.
2571 * If event_trb is a no-op TRB, it means the
2572 * corresponding TD has been cancelled. Just ignore
2573 * the TD.
2574 */
2575 if (TRB_TYPE_NOOP_LE32(event_trb->generic.field[3])) {
2576 xhci_dbg(xhci,
2577 "event_trb is a no-op TRB. Skip it\n");
2578 goto cleanup;
2579 }
2580
2581 /* Now update the urb's actual_length and give back to
2582 * the core
2583 */
2584 if (usb_endpoint_xfer_control(&td->urb->ep->desc))
2585 ret = process_ctrl_td(xhci, td, event_trb, event, ep,
2586 &status);
2587 else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc))
2588 ret = process_isoc_td(xhci, td, event_trb, event, ep,
2589 &status);
2590 else
2591 ret = process_bulk_intr_td(xhci, td, event_trb, event,
2592 ep, &status);
2593
2594cleanup:
2595 /*
2596 * Do not update event ring dequeue pointer if ep->skip is set.
2597 * Will roll back to continue process missed tds.
2598 */
2599 if (trb_comp_code == COMP_MISSED_INT || !ep->skip) {
2600 inc_deq(xhci, xhci->event_ring);
2601 }
2602
2603 if (ret) {
2604 urb = td->urb;
2605 urb_priv = urb->hcpriv;
2606
2607 xhci_urb_free_priv(xhci, urb_priv);
2608
2609 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
2610 if ((urb->actual_length != urb->transfer_buffer_length &&
2611 (urb->transfer_flags &
2612 URB_SHORT_NOT_OK)) ||
2613 (status != 0 &&
2614 !usb_endpoint_xfer_isoc(&urb->ep->desc)))
2615 xhci_dbg(xhci, "Giveback URB %p, len = %d, "
2616 "expected = %x, status = %d\n",
2617 urb, urb->actual_length,
2618 urb->transfer_buffer_length,
2619 status);
2620 spin_unlock(&xhci->lock);
2621 /* EHCI, UHCI, and OHCI always unconditionally set the
2622 * urb->status of an isochronous endpoint to 0.
2623 */
2624 if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
2625 status = 0;
2626 usb_hcd_giveback_urb(bus_to_hcd(urb->dev->bus), urb, status);
2627 spin_lock(&xhci->lock);
2628 }
2629
2630 /*
2631 * If ep->skip is set, it means there are missed tds on the
2632 * endpoint ring need to take care of.
2633 * Process them as short transfer until reach the td pointed by
2634 * the event.
2635 */
2636 } while (ep->skip && trb_comp_code != COMP_MISSED_INT);
2637
2638 return 0;
2639}
2640
2641/*
2642 * This function handles all OS-owned events on the event ring. It may drop
2643 * xhci->lock between event processing (e.g. to pass up port status changes).
2644 * Returns >0 for "possibly more events to process" (caller should call again),
2645 * otherwise 0 if done. In future, <0 returns should indicate error code.
2646 */
2647static int xhci_handle_event(struct xhci_hcd *xhci)
2648{
2649 union xhci_trb *event;
2650 int update_ptrs = 1;
2651 int ret;
2652
2653 if (!xhci->event_ring || !xhci->event_ring->dequeue) {
2654 xhci->error_bitmask |= 1 << 1;
2655 return 0;
2656 }
2657
2658 event = xhci->event_ring->dequeue;
2659 /* Does the HC or OS own the TRB? */
2660 if ((le32_to_cpu(event->event_cmd.flags) & TRB_CYCLE) !=
2661 xhci->event_ring->cycle_state) {
2662 xhci->error_bitmask |= 1 << 2;
2663 return 0;
2664 }
2665
2666 /*
2667 * Barrier between reading the TRB_CYCLE (valid) flag above and any
2668 * speculative reads of the event's flags/data below.
2669 */
2670 rmb();
2671 /* FIXME: Handle more event types. */
2672 switch ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK)) {
2673 case TRB_TYPE(TRB_COMPLETION):
2674 handle_cmd_completion(xhci, &event->event_cmd);
2675 break;
2676 case TRB_TYPE(TRB_PORT_STATUS):
2677 handle_port_status(xhci, event);
2678 update_ptrs = 0;
2679 break;
2680 case TRB_TYPE(TRB_TRANSFER):
2681 ret = handle_tx_event(xhci, &event->trans_event);
2682 if (ret < 0)
2683 xhci->error_bitmask |= 1 << 9;
2684 else
2685 update_ptrs = 0;
2686 break;
2687 case TRB_TYPE(TRB_DEV_NOTE):
2688 handle_device_notification(xhci, event);
2689 break;
2690 default:
2691 if ((le32_to_cpu(event->event_cmd.flags) & TRB_TYPE_BITMASK) >=
2692 TRB_TYPE(48))
2693 handle_vendor_event(xhci, event);
2694 else
2695 xhci->error_bitmask |= 1 << 3;
2696 }
2697 /* Any of the above functions may drop and re-acquire the lock, so check
2698 * to make sure a watchdog timer didn't mark the host as non-responsive.
2699 */
2700 if (xhci->xhc_state & XHCI_STATE_DYING) {
2701 xhci_dbg(xhci, "xHCI host dying, returning from "
2702 "event handler.\n");
2703 return 0;
2704 }
2705
2706 if (update_ptrs)
2707 /* Update SW event ring dequeue pointer */
2708 inc_deq(xhci, xhci->event_ring);
2709
2710 /* Are there more items on the event ring? Caller will call us again to
2711 * check.
2712 */
2713 return 1;
2714}
2715
2716/*
2717 * xHCI spec says we can get an interrupt, and if the HC has an error condition,
2718 * we might get bad data out of the event ring. Section 4.10.2.7 has a list of
2719 * indicators of an event TRB error, but we check the status *first* to be safe.
2720 */
2721irqreturn_t xhci_irq(struct usb_hcd *hcd)
2722{
2723 struct xhci_hcd *xhci = hcd_to_xhci(hcd);
2724 u32 status;
2725 union xhci_trb *trb;
2726 u64 temp_64;
2727 union xhci_trb *event_ring_deq;
2728 dma_addr_t deq;
2729
2730 spin_lock(&xhci->lock);
2731 trb = xhci->event_ring->dequeue;
2732 /* Check if the xHC generated the interrupt, or the irq is shared */
2733 status = xhci_readl(xhci, &xhci->op_regs->status);
2734 if (status == 0xffffffff)
2735 goto hw_died;
2736
2737 if (!(status & STS_EINT)) {
2738 spin_unlock(&xhci->lock);
2739 return IRQ_NONE;
2740 }
2741 if (status & STS_FATAL) {
2742 xhci_warn(xhci, "WARNING: Host System Error\n");
2743 xhci_halt(xhci);
2744hw_died:
2745 spin_unlock(&xhci->lock);
2746 return IRQ_HANDLED;
2747 }
2748
2749 /*
2750 * Clear the op reg interrupt status first,
2751 * so we can receive interrupts from other MSI-X interrupters.
2752 * Write 1 to clear the interrupt status.
2753 */
2754 status |= STS_EINT;
2755 xhci_writel(xhci, status, &xhci->op_regs->status);
2756 /* FIXME when MSI-X is supported and there are multiple vectors */
2757 /* Clear the MSI-X event interrupt status */
2758
2759 if (hcd->irq) {
2760 u32 irq_pending;
2761 /* Acknowledge the PCI interrupt */
2762 irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending);
2763 irq_pending |= IMAN_IP;
2764 xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending);
2765 }
2766
2767 if (xhci->xhc_state & XHCI_STATE_DYING) {
2768 xhci_dbg(xhci, "xHCI dying, ignoring interrupt. "
2769 "Shouldn't IRQs be disabled?\n");
2770 /* Clear the event handler busy flag (RW1C);
2771 * the event ring should be empty.
2772 */
2773 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2774 xhci_write_64(xhci, temp_64 | ERST_EHB,
2775 &xhci->ir_set->erst_dequeue);
2776 spin_unlock(&xhci->lock);
2777
2778 return IRQ_HANDLED;
2779 }
2780
2781 event_ring_deq = xhci->event_ring->dequeue;
2782 /* FIXME this should be a delayed service routine
2783 * that clears the EHB.
2784 */
2785 while (xhci_handle_event(xhci) > 0) {}
2786
2787 temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2788 /* If necessary, update the HW's version of the event ring deq ptr. */
2789 if (event_ring_deq != xhci->event_ring->dequeue) {
2790 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2791 xhci->event_ring->dequeue);
2792 if (deq == 0)
2793 xhci_warn(xhci, "WARN something wrong with SW event "
2794 "ring dequeue ptr.\n");
2795 /* Update HC event ring dequeue pointer */
2796 temp_64 &= ERST_PTR_MASK;
2797 temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK);
2798 }
2799
2800 /* Clear the event handler busy flag (RW1C); event ring is empty. */
2801 temp_64 |= ERST_EHB;
2802 xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue);
2803
2804 spin_unlock(&xhci->lock);
2805
2806 return IRQ_HANDLED;
2807}
2808
2809irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd)
2810{
2811 return xhci_irq(hcd);
2812}
2813
2814/**** Endpoint Ring Operations ****/
2815
2816/*
2817 * Generic function for queueing a TRB on a ring.
2818 * The caller must have checked to make sure there's room on the ring.
2819 *
2820 * @more_trbs_coming: Will you enqueue more TRBs before calling
2821 * prepare_transfer()?
2822 */
2823static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring,
2824 bool more_trbs_coming,
2825 u32 field1, u32 field2, u32 field3, u32 field4)
2826{
2827 struct xhci_generic_trb *trb;
2828
2829 trb = &ring->enqueue->generic;
2830 trb->field[0] = cpu_to_le32(field1);
2831 trb->field[1] = cpu_to_le32(field2);
2832 trb->field[2] = cpu_to_le32(field3);
2833 trb->field[3] = cpu_to_le32(field4);
2834 inc_enq(xhci, ring, more_trbs_coming);
2835}
2836
2837/*
2838 * Does various checks on the endpoint ring, and makes it ready to queue num_trbs.
2839 * FIXME allocate segments if the ring is full.
2840 */
2841static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring,
2842 u32 ep_state, unsigned int num_trbs, gfp_t mem_flags)
2843{
2844 unsigned int num_trbs_needed;
2845
2846 /* Make sure the endpoint has been added to xHC schedule */
2847 switch (ep_state) {
2848 case EP_STATE_DISABLED:
2849 /*
2850 * USB core changed config/interfaces without notifying us,
2851 * or hardware is reporting the wrong state.
2852 */
2853 xhci_warn(xhci, "WARN urb submitted to disabled ep\n");
2854 return -ENOENT;
2855 case EP_STATE_ERROR:
2856 xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n");
2857 /* FIXME event handling code for error needs to clear it */
2858 /* XXX not sure if this should be -ENOENT or not */
2859 return -EINVAL;
2860 case EP_STATE_HALTED:
2861 xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n");
2862 case EP_STATE_STOPPED:
2863 case EP_STATE_RUNNING:
2864 break;
2865 default:
2866 xhci_err(xhci, "ERROR unknown endpoint state for ep\n");
2867 /*
2868 * FIXME issue Configure Endpoint command to try to get the HC
2869 * back into a known state.
2870 */
2871 return -EINVAL;
2872 }
2873
2874 while (1) {
2875 if (room_on_ring(xhci, ep_ring, num_trbs))
2876 break;
2877
2878 if (ep_ring == xhci->cmd_ring) {
2879 xhci_err(xhci, "Do not support expand command ring\n");
2880 return -ENOMEM;
2881 }
2882
2883 xhci_dbg(xhci, "ERROR no room on ep ring, "
2884 "try ring expansion\n");
2885 num_trbs_needed = num_trbs - ep_ring->num_trbs_free;
2886 if (xhci_ring_expansion(xhci, ep_ring, num_trbs_needed,
2887 mem_flags)) {
2888 xhci_err(xhci, "Ring expansion failed\n");
2889 return -ENOMEM;
2890 }
2891 };
2892
2893 if (enqueue_is_link_trb(ep_ring)) {
2894 struct xhci_ring *ring = ep_ring;
2895 union xhci_trb *next;
2896
2897 next = ring->enqueue;
2898
2899 while (last_trb(xhci, ring, ring->enq_seg, next)) {
2900 /* If we're not dealing with 0.95 hardware or isoc rings
2901 * on AMD 0.96 host, clear the chain bit.
2902 */
2903 if (!xhci_link_trb_quirk(xhci) &&
2904 !(ring->type == TYPE_ISOC &&
2905 (xhci->quirks & XHCI_AMD_0x96_HOST)))
2906 next->link.control &= cpu_to_le32(~TRB_CHAIN);
2907 else
2908 next->link.control |= cpu_to_le32(TRB_CHAIN);
2909
2910 wmb();
2911 next->link.control ^= cpu_to_le32(TRB_CYCLE);
2912
2913 /* Toggle the cycle bit after the last ring segment. */
2914 if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) {
2915 ring->cycle_state = (ring->cycle_state ? 0 : 1);
2916 }
2917 ring->enq_seg = ring->enq_seg->next;
2918 ring->enqueue = ring->enq_seg->trbs;
2919 next = ring->enqueue;
2920 }
2921 }
2922
2923 return 0;
2924}
2925
2926static int prepare_transfer(struct xhci_hcd *xhci,
2927 struct xhci_virt_device *xdev,
2928 unsigned int ep_index,
2929 unsigned int stream_id,
2930 unsigned int num_trbs,
2931 struct urb *urb,
2932 unsigned int td_index,
2933 gfp_t mem_flags)
2934{
2935 int ret;
2936 struct urb_priv *urb_priv;
2937 struct xhci_td *td;
2938 struct xhci_ring *ep_ring;
2939 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
2940
2941 ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id);
2942 if (!ep_ring) {
2943 xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n",
2944 stream_id);
2945 return -EINVAL;
2946 }
2947
2948 ret = prepare_ring(xhci, ep_ring,
2949 le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
2950 num_trbs, mem_flags);
2951 if (ret)
2952 return ret;
2953
2954 urb_priv = urb->hcpriv;
2955 td = urb_priv->td[td_index];
2956
2957 INIT_LIST_HEAD(&td->td_list);
2958 INIT_LIST_HEAD(&td->cancelled_td_list);
2959
2960 if (td_index == 0) {
2961 ret = usb_hcd_link_urb_to_ep(bus_to_hcd(urb->dev->bus), urb);
2962 if (unlikely(ret))
2963 return ret;
2964 }
2965
2966 td->urb = urb;
2967 /* Add this TD to the tail of the endpoint ring's TD list */
2968 list_add_tail(&td->td_list, &ep_ring->td_list);
2969 td->start_seg = ep_ring->enq_seg;
2970 td->first_trb = ep_ring->enqueue;
2971
2972 urb_priv->td[td_index] = td;
2973
2974 return 0;
2975}
2976
2977static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb)
2978{
2979 int num_sgs, num_trbs, running_total, temp, i;
2980 struct scatterlist *sg;
2981
2982 sg = NULL;
2983 num_sgs = urb->num_mapped_sgs;
2984 temp = urb->transfer_buffer_length;
2985
2986 num_trbs = 0;
2987 for_each_sg(urb->sg, sg, num_sgs, i) {
2988 unsigned int len = sg_dma_len(sg);
2989
2990 /* Scatter gather list entries may cross 64KB boundaries */
2991 running_total = TRB_MAX_BUFF_SIZE -
2992 (sg_dma_address(sg) & (TRB_MAX_BUFF_SIZE - 1));
2993 running_total &= TRB_MAX_BUFF_SIZE - 1;
2994 if (running_total != 0)
2995 num_trbs++;
2996
2997 /* How many more 64KB chunks to transfer, how many more TRBs? */
2998 while (running_total < sg_dma_len(sg) && running_total < temp) {
2999 num_trbs++;
3000 running_total += TRB_MAX_BUFF_SIZE;
3001 }
3002 len = min_t(int, len, temp);
3003 temp -= len;
3004 if (temp == 0)
3005 break;
3006 }
3007 return num_trbs;
3008}
3009
3010static void check_trb_math(struct urb *urb, int num_trbs, int running_total)
3011{
3012 if (num_trbs != 0)
3013 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated number of "
3014 "TRBs, %d left\n", __func__,
3015 urb->ep->desc.bEndpointAddress, num_trbs);
3016 if (running_total != urb->transfer_buffer_length)
3017 dev_err(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, "
3018 "queued %#x (%d), asked for %#x (%d)\n",
3019 __func__,
3020 urb->ep->desc.bEndpointAddress,
3021 running_total, running_total,
3022 urb->transfer_buffer_length,
3023 urb->transfer_buffer_length);
3024}
3025
3026static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id,
3027 unsigned int ep_index, unsigned int stream_id, int start_cycle,
3028 struct xhci_generic_trb *start_trb)
3029{
3030 /*
3031 * Pass all the TRBs to the hardware at once and make sure this write
3032 * isn't reordered.
3033 */
3034 wmb();
3035 if (start_cycle)
3036 start_trb->field[3] |= cpu_to_le32(start_cycle);
3037 else
3038 start_trb->field[3] &= cpu_to_le32(~TRB_CYCLE);
3039 xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id);
3040}
3041
3042/*
3043 * xHCI uses normal TRBs for both bulk and interrupt. When the interrupt
3044 * endpoint is to be serviced, the xHC will consume (at most) one TD. A TD
3045 * (comprised of sg list entries) can take several service intervals to
3046 * transmit.
3047 */
3048int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3049 struct urb *urb, int slot_id, unsigned int ep_index)
3050{
3051 struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci,
3052 xhci->devs[slot_id]->out_ctx, ep_index);
3053 int xhci_interval;
3054 int ep_interval;
3055
3056 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3057 ep_interval = urb->interval;
3058 /* Convert to microframes */
3059 if (urb->dev->speed == USB_SPEED_LOW ||
3060 urb->dev->speed == USB_SPEED_FULL)
3061 ep_interval *= 8;
3062 /* FIXME change this to a warning and a suggestion to use the new API
3063 * to set the polling interval (once the API is added).
3064 */
3065 if (xhci_interval != ep_interval) {
3066 if (printk_ratelimit())
3067 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3068 " (%d microframe%s) than xHCI "
3069 "(%d microframe%s)\n",
3070 ep_interval,
3071 ep_interval == 1 ? "" : "s",
3072 xhci_interval,
3073 xhci_interval == 1 ? "" : "s");
3074 urb->interval = xhci_interval;
3075 /* Convert back to frames for LS/FS devices */
3076 if (urb->dev->speed == USB_SPEED_LOW ||
3077 urb->dev->speed == USB_SPEED_FULL)
3078 urb->interval /= 8;
3079 }
3080 return xhci_queue_bulk_tx(xhci, mem_flags, urb, slot_id, ep_index);
3081}
3082
3083/*
3084 * The TD size is the number of bytes remaining in the TD (including this TRB),
3085 * right shifted by 10.
3086 * It must fit in bits 21:17, so it can't be bigger than 31.
3087 */
3088static u32 xhci_td_remainder(unsigned int remainder)
3089{
3090 u32 max = (1 << (21 - 17 + 1)) - 1;
3091
3092 if ((remainder >> 10) >= max)
3093 return max << 17;
3094 else
3095 return (remainder >> 10) << 17;
3096}
3097
3098/*
3099 * For xHCI 1.0 host controllers, TD size is the number of max packet sized
3100 * packets remaining in the TD (*not* including this TRB).
3101 *
3102 * Total TD packet count = total_packet_count =
3103 * DIV_ROUND_UP(TD size in bytes / wMaxPacketSize)
3104 *
3105 * Packets transferred up to and including this TRB = packets_transferred =
3106 * rounddown(total bytes transferred including this TRB / wMaxPacketSize)
3107 *
3108 * TD size = total_packet_count - packets_transferred
3109 *
3110 * It must fit in bits 21:17, so it can't be bigger than 31.
3111 * The last TRB in a TD must have the TD size set to zero.
3112 */
3113static u32 xhci_v1_0_td_remainder(int running_total, int trb_buff_len,
3114 unsigned int total_packet_count, struct urb *urb,
3115 unsigned int num_trbs_left)
3116{
3117 int packets_transferred;
3118
3119 /* One TRB with a zero-length data packet. */
3120 if (num_trbs_left == 0 || (running_total == 0 && trb_buff_len == 0))
3121 return 0;
3122
3123 /* All the TRB queueing functions don't count the current TRB in
3124 * running_total.
3125 */
3126 packets_transferred = (running_total + trb_buff_len) /
3127 GET_MAX_PACKET(usb_endpoint_maxp(&urb->ep->desc));
3128
3129 if ((total_packet_count - packets_transferred) > 31)
3130 return 31 << 17;
3131 return (total_packet_count - packets_transferred) << 17;
3132}
3133
3134static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3135 struct urb *urb, int slot_id, unsigned int ep_index)
3136{
3137 struct xhci_ring *ep_ring;
3138 unsigned int num_trbs;
3139 struct urb_priv *urb_priv;
3140 struct xhci_td *td;
3141 struct scatterlist *sg;
3142 int num_sgs;
3143 int trb_buff_len, this_sg_len, running_total;
3144 unsigned int total_packet_count;
3145 bool first_trb;
3146 u64 addr;
3147 bool more_trbs_coming;
3148
3149 struct xhci_generic_trb *start_trb;
3150 int start_cycle;
3151
3152 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3153 if (!ep_ring)
3154 return -EINVAL;
3155
3156 num_trbs = count_sg_trbs_needed(xhci, urb);
3157 num_sgs = urb->num_mapped_sgs;
3158 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3159 usb_endpoint_maxp(&urb->ep->desc));
3160
3161 trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id],
3162 ep_index, urb->stream_id,
3163 num_trbs, urb, 0, mem_flags);
3164 if (trb_buff_len < 0)
3165 return trb_buff_len;
3166
3167 urb_priv = urb->hcpriv;
3168 td = urb_priv->td[0];
3169
3170 /*
3171 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3172 * until we've finished creating all the other TRBs. The ring's cycle
3173 * state may change as we enqueue the other TRBs, so save it too.
3174 */
3175 start_trb = &ep_ring->enqueue->generic;
3176 start_cycle = ep_ring->cycle_state;
3177
3178 running_total = 0;
3179 /*
3180 * How much data is in the first TRB?
3181 *
3182 * There are three forces at work for TRB buffer pointers and lengths:
3183 * 1. We don't want to walk off the end of this sg-list entry buffer.
3184 * 2. The transfer length that the driver requested may be smaller than
3185 * the amount of memory allocated for this scatter-gather list.
3186 * 3. TRBs buffers can't cross 64KB boundaries.
3187 */
3188 sg = urb->sg;
3189 addr = (u64) sg_dma_address(sg);
3190 this_sg_len = sg_dma_len(sg);
3191 trb_buff_len = TRB_MAX_BUFF_SIZE - (addr & (TRB_MAX_BUFF_SIZE - 1));
3192 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3193 if (trb_buff_len > urb->transfer_buffer_length)
3194 trb_buff_len = urb->transfer_buffer_length;
3195
3196 first_trb = true;
3197 /* Queue the first TRB, even if it's zero-length */
3198 do {
3199 u32 field = 0;
3200 u32 length_field = 0;
3201 u32 remainder = 0;
3202
3203 /* Don't change the cycle bit of the first TRB until later */
3204 if (first_trb) {
3205 first_trb = false;
3206 if (start_cycle == 0)
3207 field |= 0x1;
3208 } else
3209 field |= ep_ring->cycle_state;
3210
3211 /* Chain all the TRBs together; clear the chain bit in the last
3212 * TRB to indicate it's the last TRB in the chain.
3213 */
3214 if (num_trbs > 1) {
3215 field |= TRB_CHAIN;
3216 } else {
3217 /* FIXME - add check for ZERO_PACKET flag before this */
3218 td->last_trb = ep_ring->enqueue;
3219 field |= TRB_IOC;
3220 }
3221
3222 /* Only set interrupt on short packet for IN endpoints */
3223 if (usb_urb_dir_in(urb))
3224 field |= TRB_ISP;
3225
3226 if (TRB_MAX_BUFF_SIZE -
3227 (addr & (TRB_MAX_BUFF_SIZE - 1)) < trb_buff_len) {
3228 xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n");
3229 xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n",
3230 (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1),
3231 (unsigned int) addr + trb_buff_len);
3232 }
3233
3234 /* Set the TRB length, TD size, and interrupter fields. */
3235 if (xhci->hci_version < 0x100) {
3236 remainder = xhci_td_remainder(
3237 urb->transfer_buffer_length -
3238 running_total);
3239 } else {
3240 remainder = xhci_v1_0_td_remainder(running_total,
3241 trb_buff_len, total_packet_count, urb,
3242 num_trbs - 1);
3243 }
3244 length_field = TRB_LEN(trb_buff_len) |
3245 remainder |
3246 TRB_INTR_TARGET(0);
3247
3248 if (num_trbs > 1)
3249 more_trbs_coming = true;
3250 else
3251 more_trbs_coming = false;
3252 queue_trb(xhci, ep_ring, more_trbs_coming,
3253 lower_32_bits(addr),
3254 upper_32_bits(addr),
3255 length_field,
3256 field | TRB_TYPE(TRB_NORMAL));
3257 --num_trbs;
3258 running_total += trb_buff_len;
3259
3260 /* Calculate length for next transfer --
3261 * Are we done queueing all the TRBs for this sg entry?
3262 */
3263 this_sg_len -= trb_buff_len;
3264 if (this_sg_len == 0) {
3265 --num_sgs;
3266 if (num_sgs == 0)
3267 break;
3268 sg = sg_next(sg);
3269 addr = (u64) sg_dma_address(sg);
3270 this_sg_len = sg_dma_len(sg);
3271 } else {
3272 addr += trb_buff_len;
3273 }
3274
3275 trb_buff_len = TRB_MAX_BUFF_SIZE -
3276 (addr & (TRB_MAX_BUFF_SIZE - 1));
3277 trb_buff_len = min_t(int, trb_buff_len, this_sg_len);
3278 if (running_total + trb_buff_len > urb->transfer_buffer_length)
3279 trb_buff_len =
3280 urb->transfer_buffer_length - running_total;
3281 } while (running_total < urb->transfer_buffer_length);
3282
3283 check_trb_math(urb, num_trbs, running_total);
3284 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3285 start_cycle, start_trb);
3286 return 0;
3287}
3288
3289/* This is very similar to what ehci-q.c qtd_fill() does */
3290int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3291 struct urb *urb, int slot_id, unsigned int ep_index)
3292{
3293 struct xhci_ring *ep_ring;
3294 struct urb_priv *urb_priv;
3295 struct xhci_td *td;
3296 int num_trbs;
3297 struct xhci_generic_trb *start_trb;
3298 bool first_trb;
3299 bool more_trbs_coming;
3300 int start_cycle;
3301 u32 field, length_field;
3302
3303 int running_total, trb_buff_len, ret;
3304 unsigned int total_packet_count;
3305 u64 addr;
3306
3307 if (urb->num_sgs)
3308 return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index);
3309
3310 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3311 if (!ep_ring)
3312 return -EINVAL;
3313
3314 num_trbs = 0;
3315 /* How much data is (potentially) left before the 64KB boundary? */
3316 running_total = TRB_MAX_BUFF_SIZE -
3317 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3318 running_total &= TRB_MAX_BUFF_SIZE - 1;
3319
3320 /* If there's some data on this 64KB chunk, or we have to send a
3321 * zero-length transfer, we need at least one TRB
3322 */
3323 if (running_total != 0 || urb->transfer_buffer_length == 0)
3324 num_trbs++;
3325 /* How many more 64KB chunks to transfer, how many more TRBs? */
3326 while (running_total < urb->transfer_buffer_length) {
3327 num_trbs++;
3328 running_total += TRB_MAX_BUFF_SIZE;
3329 }
3330 /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */
3331
3332 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3333 ep_index, urb->stream_id,
3334 num_trbs, urb, 0, mem_flags);
3335 if (ret < 0)
3336 return ret;
3337
3338 urb_priv = urb->hcpriv;
3339 td = urb_priv->td[0];
3340
3341 /*
3342 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3343 * until we've finished creating all the other TRBs. The ring's cycle
3344 * state may change as we enqueue the other TRBs, so save it too.
3345 */
3346 start_trb = &ep_ring->enqueue->generic;
3347 start_cycle = ep_ring->cycle_state;
3348
3349 running_total = 0;
3350 total_packet_count = DIV_ROUND_UP(urb->transfer_buffer_length,
3351 usb_endpoint_maxp(&urb->ep->desc));
3352 /* How much data is in the first TRB? */
3353 addr = (u64) urb->transfer_dma;
3354 trb_buff_len = TRB_MAX_BUFF_SIZE -
3355 (urb->transfer_dma & (TRB_MAX_BUFF_SIZE - 1));
3356 if (trb_buff_len > urb->transfer_buffer_length)
3357 trb_buff_len = urb->transfer_buffer_length;
3358
3359 first_trb = true;
3360
3361 /* Queue the first TRB, even if it's zero-length */
3362 do {
3363 u32 remainder = 0;
3364 field = 0;
3365
3366 /* Don't change the cycle bit of the first TRB until later */
3367 if (first_trb) {
3368 first_trb = false;
3369 if (start_cycle == 0)
3370 field |= 0x1;
3371 } else
3372 field |= ep_ring->cycle_state;
3373
3374 /* Chain all the TRBs together; clear the chain bit in the last
3375 * TRB to indicate it's the last TRB in the chain.
3376 */
3377 if (num_trbs > 1) {
3378 field |= TRB_CHAIN;
3379 } else {
3380 /* FIXME - add check for ZERO_PACKET flag before this */
3381 td->last_trb = ep_ring->enqueue;
3382 field |= TRB_IOC;
3383 }
3384
3385 /* Only set interrupt on short packet for IN endpoints */
3386 if (usb_urb_dir_in(urb))
3387 field |= TRB_ISP;
3388
3389 /* Set the TRB length, TD size, and interrupter fields. */
3390 if (xhci->hci_version < 0x100) {
3391 remainder = xhci_td_remainder(
3392 urb->transfer_buffer_length -
3393 running_total);
3394 } else {
3395 remainder = xhci_v1_0_td_remainder(running_total,
3396 trb_buff_len, total_packet_count, urb,
3397 num_trbs - 1);
3398 }
3399 length_field = TRB_LEN(trb_buff_len) |
3400 remainder |
3401 TRB_INTR_TARGET(0);
3402
3403 if (num_trbs > 1)
3404 more_trbs_coming = true;
3405 else
3406 more_trbs_coming = false;
3407 queue_trb(xhci, ep_ring, more_trbs_coming,
3408 lower_32_bits(addr),
3409 upper_32_bits(addr),
3410 length_field,
3411 field | TRB_TYPE(TRB_NORMAL));
3412 --num_trbs;
3413 running_total += trb_buff_len;
3414
3415 /* Calculate length for next transfer */
3416 addr += trb_buff_len;
3417 trb_buff_len = urb->transfer_buffer_length - running_total;
3418 if (trb_buff_len > TRB_MAX_BUFF_SIZE)
3419 trb_buff_len = TRB_MAX_BUFF_SIZE;
3420 } while (running_total < urb->transfer_buffer_length);
3421
3422 check_trb_math(urb, num_trbs, running_total);
3423 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3424 start_cycle, start_trb);
3425 return 0;
3426}
3427
3428/* Caller must have locked xhci->lock */
3429int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3430 struct urb *urb, int slot_id, unsigned int ep_index)
3431{
3432 struct xhci_ring *ep_ring;
3433 int num_trbs;
3434 int ret;
3435 struct usb_ctrlrequest *setup;
3436 struct xhci_generic_trb *start_trb;
3437 int start_cycle;
3438 u32 field, length_field;
3439 struct urb_priv *urb_priv;
3440 struct xhci_td *td;
3441
3442 ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
3443 if (!ep_ring)
3444 return -EINVAL;
3445
3446 /*
3447 * Need to copy setup packet into setup TRB, so we can't use the setup
3448 * DMA address.
3449 */
3450 if (!urb->setup_packet)
3451 return -EINVAL;
3452
3453 /* 1 TRB for setup, 1 for status */
3454 num_trbs = 2;
3455 /*
3456 * Don't need to check if we need additional event data and normal TRBs,
3457 * since data in control transfers will never get bigger than 16MB
3458 * XXX: can we get a buffer that crosses 64KB boundaries?
3459 */
3460 if (urb->transfer_buffer_length > 0)
3461 num_trbs++;
3462 ret = prepare_transfer(xhci, xhci->devs[slot_id],
3463 ep_index, urb->stream_id,
3464 num_trbs, urb, 0, mem_flags);
3465 if (ret < 0)
3466 return ret;
3467
3468 urb_priv = urb->hcpriv;
3469 td = urb_priv->td[0];
3470
3471 /*
3472 * Don't give the first TRB to the hardware (by toggling the cycle bit)
3473 * until we've finished creating all the other TRBs. The ring's cycle
3474 * state may change as we enqueue the other TRBs, so save it too.
3475 */
3476 start_trb = &ep_ring->enqueue->generic;
3477 start_cycle = ep_ring->cycle_state;
3478
3479 /* Queue setup TRB - see section 6.4.1.2.1 */
3480 /* FIXME better way to translate setup_packet into two u32 fields? */
3481 setup = (struct usb_ctrlrequest *) urb->setup_packet;
3482 field = 0;
3483 field |= TRB_IDT | TRB_TYPE(TRB_SETUP);
3484 if (start_cycle == 0)
3485 field |= 0x1;
3486
3487 /* xHCI 1.0 6.4.1.2.1: Transfer Type field */
3488 if (xhci->hci_version == 0x100) {
3489 if (urb->transfer_buffer_length > 0) {
3490 if (setup->bRequestType & USB_DIR_IN)
3491 field |= TRB_TX_TYPE(TRB_DATA_IN);
3492 else
3493 field |= TRB_TX_TYPE(TRB_DATA_OUT);
3494 }
3495 }
3496
3497 queue_trb(xhci, ep_ring, true,
3498 setup->bRequestType | setup->bRequest << 8 | le16_to_cpu(setup->wValue) << 16,
3499 le16_to_cpu(setup->wIndex) | le16_to_cpu(setup->wLength) << 16,
3500 TRB_LEN(8) | TRB_INTR_TARGET(0),
3501 /* Immediate data in pointer */
3502 field);
3503
3504 /* If there's data, queue data TRBs */
3505 /* Only set interrupt on short packet for IN endpoints */
3506 if (usb_urb_dir_in(urb))
3507 field = TRB_ISP | TRB_TYPE(TRB_DATA);
3508 else
3509 field = TRB_TYPE(TRB_DATA);
3510
3511 length_field = TRB_LEN(urb->transfer_buffer_length) |
3512 xhci_td_remainder(urb->transfer_buffer_length) |
3513 TRB_INTR_TARGET(0);
3514 if (urb->transfer_buffer_length > 0) {
3515 if (setup->bRequestType & USB_DIR_IN)
3516 field |= TRB_DIR_IN;
3517 queue_trb(xhci, ep_ring, true,
3518 lower_32_bits(urb->transfer_dma),
3519 upper_32_bits(urb->transfer_dma),
3520 length_field,
3521 field | ep_ring->cycle_state);
3522 }
3523
3524 /* Save the DMA address of the last TRB in the TD */
3525 td->last_trb = ep_ring->enqueue;
3526
3527 /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */
3528 /* If the device sent data, the status stage is an OUT transfer */
3529 if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN)
3530 field = 0;
3531 else
3532 field = TRB_DIR_IN;
3533 queue_trb(xhci, ep_ring, false,
3534 0,
3535 0,
3536 TRB_INTR_TARGET(0),
3537 /* Event on completion */
3538 field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state);
3539
3540 giveback_first_trb(xhci, slot_id, ep_index, 0,
3541 start_cycle, start_trb);
3542 return 0;
3543}
3544
3545static int count_isoc_trbs_needed(struct xhci_hcd *xhci,
3546 struct urb *urb, int i)
3547{
3548 int num_trbs = 0;
3549 u64 addr, td_len;
3550
3551 addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset);
3552 td_len = urb->iso_frame_desc[i].length;
3553
3554 num_trbs = DIV_ROUND_UP(td_len + (addr & (TRB_MAX_BUFF_SIZE - 1)),
3555 TRB_MAX_BUFF_SIZE);
3556 if (num_trbs == 0)
3557 num_trbs++;
3558
3559 return num_trbs;
3560}
3561
3562/*
3563 * The transfer burst count field of the isochronous TRB defines the number of
3564 * bursts that are required to move all packets in this TD. Only SuperSpeed
3565 * devices can burst up to bMaxBurst number of packets per service interval.
3566 * This field is zero based, meaning a value of zero in the field means one
3567 * burst. Basically, for everything but SuperSpeed devices, this field will be
3568 * zero. Only xHCI 1.0 host controllers support this field.
3569 */
3570static unsigned int xhci_get_burst_count(struct xhci_hcd *xhci,
3571 struct usb_device *udev,
3572 struct urb *urb, unsigned int total_packet_count)
3573{
3574 unsigned int max_burst;
3575
3576 if (xhci->hci_version < 0x100 || udev->speed != USB_SPEED_SUPER)
3577 return 0;
3578
3579 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3580 return DIV_ROUND_UP(total_packet_count, max_burst + 1) - 1;
3581}
3582
3583/*
3584 * Returns the number of packets in the last "burst" of packets. This field is
3585 * valid for all speeds of devices. USB 2.0 devices can only do one "burst", so
3586 * the last burst packet count is equal to the total number of packets in the
3587 * TD. SuperSpeed endpoints can have up to 3 bursts. All but the last burst
3588 * must contain (bMaxBurst + 1) number of packets, but the last burst can
3589 * contain 1 to (bMaxBurst + 1) packets.
3590 */
3591static unsigned int xhci_get_last_burst_packet_count(struct xhci_hcd *xhci,
3592 struct usb_device *udev,
3593 struct urb *urb, unsigned int total_packet_count)
3594{
3595 unsigned int max_burst;
3596 unsigned int residue;
3597
3598 if (xhci->hci_version < 0x100)
3599 return 0;
3600
3601 switch (udev->speed) {
3602 case USB_SPEED_SUPER:
3603 /* bMaxBurst is zero based: 0 means 1 packet per burst */
3604 max_burst = urb->ep->ss_ep_comp.bMaxBurst;
3605 residue = total_packet_count % (max_burst + 1);
3606 /* If residue is zero, the last burst contains (max_burst + 1)
3607 * number of packets, but the TLBPC field is zero-based.
3608 */
3609 if (residue == 0)
3610 return max_burst;
3611 return residue - 1;
3612 default:
3613 if (total_packet_count == 0)
3614 return 0;
3615 return total_packet_count - 1;
3616 }
3617}
3618
3619/* This is for isoc transfer */
3620static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags,
3621 struct urb *urb, int slot_id, unsigned int ep_index)
3622{
3623 struct xhci_ring *ep_ring;
3624 struct urb_priv *urb_priv;
3625 struct xhci_td *td;
3626 int num_tds, trbs_per_td;
3627 struct xhci_generic_trb *start_trb;
3628 bool first_trb;
3629 int start_cycle;
3630 u32 field, length_field;
3631 int running_total, trb_buff_len, td_len, td_remain_len, ret;
3632 u64 start_addr, addr;
3633 int i, j;
3634 bool more_trbs_coming;
3635
3636 ep_ring = xhci->devs[slot_id]->eps[ep_index].ring;
3637
3638 num_tds = urb->number_of_packets;
3639 if (num_tds < 1) {
3640 xhci_dbg(xhci, "Isoc URB with zero packets?\n");
3641 return -EINVAL;
3642 }
3643
3644 start_addr = (u64) urb->transfer_dma;
3645 start_trb = &ep_ring->enqueue->generic;
3646 start_cycle = ep_ring->cycle_state;
3647
3648 urb_priv = urb->hcpriv;
3649 /* Queue the first TRB, even if it's zero-length */
3650 for (i = 0; i < num_tds; i++) {
3651 unsigned int total_packet_count;
3652 unsigned int burst_count;
3653 unsigned int residue;
3654
3655 first_trb = true;
3656 running_total = 0;
3657 addr = start_addr + urb->iso_frame_desc[i].offset;
3658 td_len = urb->iso_frame_desc[i].length;
3659 td_remain_len = td_len;
3660 total_packet_count = DIV_ROUND_UP(td_len,
3661 GET_MAX_PACKET(
3662 usb_endpoint_maxp(&urb->ep->desc)));
3663 /* A zero-length transfer still involves at least one packet. */
3664 if (total_packet_count == 0)
3665 total_packet_count++;
3666 burst_count = xhci_get_burst_count(xhci, urb->dev, urb,
3667 total_packet_count);
3668 residue = xhci_get_last_burst_packet_count(xhci,
3669 urb->dev, urb, total_packet_count);
3670
3671 trbs_per_td = count_isoc_trbs_needed(xhci, urb, i);
3672
3673 ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index,
3674 urb->stream_id, trbs_per_td, urb, i, mem_flags);
3675 if (ret < 0) {
3676 if (i == 0)
3677 return ret;
3678 goto cleanup;
3679 }
3680
3681 td = urb_priv->td[i];
3682 for (j = 0; j < trbs_per_td; j++) {
3683 u32 remainder = 0;
3684 field = 0;
3685
3686 if (first_trb) {
3687 field = TRB_TBC(burst_count) |
3688 TRB_TLBPC(residue);
3689 /* Queue the isoc TRB */
3690 field |= TRB_TYPE(TRB_ISOC);
3691 /* Assume URB_ISO_ASAP is set */
3692 field |= TRB_SIA;
3693 if (i == 0) {
3694 if (start_cycle == 0)
3695 field |= 0x1;
3696 } else
3697 field |= ep_ring->cycle_state;
3698 first_trb = false;
3699 } else {
3700 /* Queue other normal TRBs */
3701 field |= TRB_TYPE(TRB_NORMAL);
3702 field |= ep_ring->cycle_state;
3703 }
3704
3705 /* Only set interrupt on short packet for IN EPs */
3706 if (usb_urb_dir_in(urb))
3707 field |= TRB_ISP;
3708
3709 /* Chain all the TRBs together; clear the chain bit in
3710 * the last TRB to indicate it's the last TRB in the
3711 * chain.
3712 */
3713 if (j < trbs_per_td - 1) {
3714 field |= TRB_CHAIN;
3715 more_trbs_coming = true;
3716 } else {
3717 td->last_trb = ep_ring->enqueue;
3718 field |= TRB_IOC;
3719 if (xhci->hci_version == 0x100 &&
3720 !(xhci->quirks &
3721 XHCI_AVOID_BEI)) {
3722 /* Set BEI bit except for the last td */
3723 if (i < num_tds - 1)
3724 field |= TRB_BEI;
3725 }
3726 more_trbs_coming = false;
3727 }
3728
3729 /* Calculate TRB length */
3730 trb_buff_len = TRB_MAX_BUFF_SIZE -
3731 (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1));
3732 if (trb_buff_len > td_remain_len)
3733 trb_buff_len = td_remain_len;
3734
3735 /* Set the TRB length, TD size, & interrupter fields. */
3736 if (xhci->hci_version < 0x100) {
3737 remainder = xhci_td_remainder(
3738 td_len - running_total);
3739 } else {
3740 remainder = xhci_v1_0_td_remainder(
3741 running_total, trb_buff_len,
3742 total_packet_count, urb,
3743 (trbs_per_td - j - 1));
3744 }
3745 length_field = TRB_LEN(trb_buff_len) |
3746 remainder |
3747 TRB_INTR_TARGET(0);
3748
3749 queue_trb(xhci, ep_ring, more_trbs_coming,
3750 lower_32_bits(addr),
3751 upper_32_bits(addr),
3752 length_field,
3753 field);
3754 running_total += trb_buff_len;
3755
3756 addr += trb_buff_len;
3757 td_remain_len -= trb_buff_len;
3758 }
3759
3760 /* Check TD length */
3761 if (running_total != td_len) {
3762 xhci_err(xhci, "ISOC TD length unmatch\n");
3763 ret = -EINVAL;
3764 goto cleanup;
3765 }
3766 }
3767
3768 if (xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs == 0) {
3769 if (xhci->quirks & XHCI_AMD_PLL_FIX)
3770 usb_amd_quirk_pll_disable();
3771 }
3772 xhci_to_hcd(xhci)->self.bandwidth_isoc_reqs++;
3773
3774 giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id,
3775 start_cycle, start_trb);
3776 return 0;
3777cleanup:
3778 /* Clean up a partially enqueued isoc transfer. */
3779
3780 for (i--; i >= 0; i--)
3781 list_del_init(&urb_priv->td[i]->td_list);
3782
3783 /* Use the first TD as a temporary variable to turn the TDs we've queued
3784 * into No-ops with a software-owned cycle bit. That way the hardware
3785 * won't accidentally start executing bogus TDs when we partially
3786 * overwrite them. td->first_trb and td->start_seg are already set.
3787 */
3788 urb_priv->td[0]->last_trb = ep_ring->enqueue;
3789 /* Every TRB except the first & last will have its cycle bit flipped. */
3790 td_to_noop(xhci, ep_ring, urb_priv->td[0], true);
3791
3792 /* Reset the ring enqueue back to the first TRB and its cycle bit. */
3793 ep_ring->enqueue = urb_priv->td[0]->first_trb;
3794 ep_ring->enq_seg = urb_priv->td[0]->start_seg;
3795 ep_ring->cycle_state = start_cycle;
3796 ep_ring->num_trbs_free = ep_ring->num_trbs_free_temp;
3797 usb_hcd_unlink_urb_from_ep(bus_to_hcd(urb->dev->bus), urb);
3798 return ret;
3799}
3800
3801/*
3802 * Check transfer ring to guarantee there is enough room for the urb.
3803 * Update ISO URB start_frame and interval.
3804 * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to
3805 * update the urb->start_frame by now.
3806 * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input.
3807 */
3808int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags,
3809 struct urb *urb, int slot_id, unsigned int ep_index)
3810{
3811 struct xhci_virt_device *xdev;
3812 struct xhci_ring *ep_ring;
3813 struct xhci_ep_ctx *ep_ctx;
3814 int start_frame;
3815 int xhci_interval;
3816 int ep_interval;
3817 int num_tds, num_trbs, i;
3818 int ret;
3819
3820 xdev = xhci->devs[slot_id];
3821 ep_ring = xdev->eps[ep_index].ring;
3822 ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index);
3823
3824 num_trbs = 0;
3825 num_tds = urb->number_of_packets;
3826 for (i = 0; i < num_tds; i++)
3827 num_trbs += count_isoc_trbs_needed(xhci, urb, i);
3828
3829 /* Check the ring to guarantee there is enough room for the whole urb.
3830 * Do not insert any td of the urb to the ring if the check failed.
3831 */
3832 ret = prepare_ring(xhci, ep_ring, le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK,
3833 num_trbs, mem_flags);
3834 if (ret)
3835 return ret;
3836
3837 start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index);
3838 start_frame &= 0x3fff;
3839
3840 urb->start_frame = start_frame;
3841 if (urb->dev->speed == USB_SPEED_LOW ||
3842 urb->dev->speed == USB_SPEED_FULL)
3843 urb->start_frame >>= 3;
3844
3845 xhci_interval = EP_INTERVAL_TO_UFRAMES(le32_to_cpu(ep_ctx->ep_info));
3846 ep_interval = urb->interval;
3847 /* Convert to microframes */
3848 if (urb->dev->speed == USB_SPEED_LOW ||
3849 urb->dev->speed == USB_SPEED_FULL)
3850 ep_interval *= 8;
3851 /* FIXME change this to a warning and a suggestion to use the new API
3852 * to set the polling interval (once the API is added).
3853 */
3854 if (xhci_interval != ep_interval) {
3855 if (printk_ratelimit())
3856 dev_dbg(&urb->dev->dev, "Driver uses different interval"
3857 " (%d microframe%s) than xHCI "
3858 "(%d microframe%s)\n",
3859 ep_interval,
3860 ep_interval == 1 ? "" : "s",
3861 xhci_interval,
3862 xhci_interval == 1 ? "" : "s");
3863 urb->interval = xhci_interval;
3864 /* Convert back to frames for LS/FS devices */
3865 if (urb->dev->speed == USB_SPEED_LOW ||
3866 urb->dev->speed == USB_SPEED_FULL)
3867 urb->interval /= 8;
3868 }
3869 ep_ring->num_trbs_free_temp = ep_ring->num_trbs_free;
3870
3871 return xhci_queue_isoc_tx(xhci, mem_flags, urb, slot_id, ep_index);
3872}
3873
3874/**** Command Ring Operations ****/
3875
3876/* Generic function for queueing a command TRB on the command ring.
3877 * Check to make sure there's room on the command ring for one command TRB.
3878 * Also check that there's room reserved for commands that must not fail.
3879 * If this is a command that must not fail, meaning command_must_succeed = TRUE,
3880 * then only check for the number of reserved spots.
3881 * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB
3882 * because the command event handler may want to resubmit a failed command.
3883 */
3884static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2,
3885 u32 field3, u32 field4, bool command_must_succeed)
3886{
3887 int reserved_trbs = xhci->cmd_ring_reserved_trbs;
3888 int ret;
3889
3890 if (!command_must_succeed)
3891 reserved_trbs++;
3892
3893 ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING,
3894 reserved_trbs, GFP_ATOMIC);
3895 if (ret < 0) {
3896 xhci_err(xhci, "ERR: No room for command on command ring\n");
3897 if (command_must_succeed)
3898 xhci_err(xhci, "ERR: Reserved TRB counting for "
3899 "unfailable commands failed.\n");
3900 return ret;
3901 }
3902 queue_trb(xhci, xhci->cmd_ring, false, field1, field2, field3,
3903 field4 | xhci->cmd_ring->cycle_state);
3904 return 0;
3905}
3906
3907/* Queue a slot enable or disable request on the command ring */
3908int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id)
3909{
3910 return queue_command(xhci, 0, 0, 0,
3911 TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false);
3912}
3913
3914/* Queue an address device command TRB */
3915int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3916 u32 slot_id)
3917{
3918 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3919 upper_32_bits(in_ctx_ptr), 0,
3920 TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id),
3921 false);
3922}
3923
3924int xhci_queue_vendor_command(struct xhci_hcd *xhci,
3925 u32 field1, u32 field2, u32 field3, u32 field4)
3926{
3927 return queue_command(xhci, field1, field2, field3, field4, false);
3928}
3929
3930/* Queue a reset device command TRB */
3931int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id)
3932{
3933 return queue_command(xhci, 0, 0, 0,
3934 TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id),
3935 false);
3936}
3937
3938/* Queue a configure endpoint command TRB */
3939int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3940 u32 slot_id, bool command_must_succeed)
3941{
3942 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3943 upper_32_bits(in_ctx_ptr), 0,
3944 TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id),
3945 command_must_succeed);
3946}
3947
3948/* Queue an evaluate context command TRB */
3949int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr,
3950 u32 slot_id)
3951{
3952 return queue_command(xhci, lower_32_bits(in_ctx_ptr),
3953 upper_32_bits(in_ctx_ptr), 0,
3954 TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id),
3955 false);
3956}
3957
3958/*
3959 * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop
3960 * activity on an endpoint that is about to be suspended.
3961 */
3962int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id,
3963 unsigned int ep_index, int suspend)
3964{
3965 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3966 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3967 u32 type = TRB_TYPE(TRB_STOP_RING);
3968 u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend);
3969
3970 return queue_command(xhci, 0, 0, 0,
3971 trb_slot_id | trb_ep_index | type | trb_suspend, false);
3972}
3973
3974/* Set Transfer Ring Dequeue Pointer command.
3975 * This should not be used for endpoints that have streams enabled.
3976 */
3977static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id,
3978 unsigned int ep_index, unsigned int stream_id,
3979 struct xhci_segment *deq_seg,
3980 union xhci_trb *deq_ptr, u32 cycle_state)
3981{
3982 dma_addr_t addr;
3983 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
3984 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
3985 u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id);
3986 u32 type = TRB_TYPE(TRB_SET_DEQ);
3987 struct xhci_virt_ep *ep;
3988
3989 addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr);
3990 if (addr == 0) {
3991 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3992 xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n",
3993 deq_seg, deq_ptr);
3994 return 0;
3995 }
3996 ep = &xhci->devs[slot_id]->eps[ep_index];
3997 if ((ep->ep_state & SET_DEQ_PENDING)) {
3998 xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n");
3999 xhci_warn(xhci, "A Set TR Deq Ptr command is pending.\n");
4000 return 0;
4001 }
4002 ep->queued_deq_seg = deq_seg;
4003 ep->queued_deq_ptr = deq_ptr;
4004 return queue_command(xhci, lower_32_bits(addr) | cycle_state,
4005 upper_32_bits(addr), trb_stream_id,
4006 trb_slot_id | trb_ep_index | type, false);
4007}
4008
4009int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id,
4010 unsigned int ep_index)
4011{
4012 u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id);
4013 u32 trb_ep_index = EP_ID_FOR_TRB(ep_index);
4014 u32 type = TRB_TYPE(TRB_RESET_EP);
4015
4016 return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type,
4017 false);
4018}