blob: 2cfcfb7efa913d5bd2b1b544d308508a93d1c83c [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * Linux INET6 implementation
3 * Forwarding Information Database
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version
11 * 2 of the License, or (at your option) any later version.
12 */
13
14/*
15 * Changes:
16 * Yuji SEKIYA @USAGI: Support default route on router node;
17 * remove ip6_null_entry from the top of
18 * routing table.
19 * Ville Nuorvala: Fixed routing subtrees.
20 */
21#include <linux/errno.h>
22#include <linux/types.h>
23#include <linux/net.h>
24#include <linux/route.h>
25#include <linux/netdevice.h>
26#include <linux/in6.h>
27#include <linux/init.h>
28#include <linux/list.h>
29#include <linux/slab.h>
30
31#include <net/ipv6.h>
32#include <net/ndisc.h>
33#include <net/addrconf.h>
34
35#include <net/ip6_fib.h>
36#include <net/ip6_route.h>
37
38#define RT6_DEBUG 2
39
40#if RT6_DEBUG >= 3
41#define RT6_TRACE(x...) printk(KERN_DEBUG x)
42#else
43#define RT6_TRACE(x...) do { ; } while (0)
44#endif
45
46static struct kmem_cache * fib6_node_kmem __read_mostly;
47
48enum fib_walk_state_t
49{
50#ifdef CONFIG_IPV6_SUBTREES
51 FWS_S,
52#endif
53 FWS_L,
54 FWS_R,
55 FWS_C,
56 FWS_U
57};
58
59struct fib6_cleaner_t
60{
61 struct fib6_walker_t w;
62 struct net *net;
63 int (*func)(struct rt6_info *, void *arg);
64 void *arg;
65};
66
67static DEFINE_RWLOCK(fib6_walker_lock);
68
69#ifdef CONFIG_IPV6_SUBTREES
70#define FWS_INIT FWS_S
71#else
72#define FWS_INIT FWS_L
73#endif
74
75static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
76 struct rt6_info *rt);
77static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn);
78static struct fib6_node *fib6_repair_tree(struct net *net, struct fib6_node *fn);
79static int fib6_walk(struct fib6_walker_t *w);
80static int fib6_walk_continue(struct fib6_walker_t *w);
81
82/*
83 * A routing update causes an increase of the serial number on the
84 * affected subtree. This allows for cached routes to be asynchronously
85 * tested when modifications are made to the destination cache as a
86 * result of redirects, path MTU changes, etc.
87 */
88
89static __u32 rt_sernum;
90
91static void fib6_gc_timer_cb(unsigned long arg);
92
93static LIST_HEAD(fib6_walkers);
94#define FOR_WALKERS(w) list_for_each_entry(w, &fib6_walkers, lh)
95
96static inline void fib6_walker_link(struct fib6_walker_t *w)
97{
98 write_lock_bh(&fib6_walker_lock);
99 list_add(&w->lh, &fib6_walkers);
100 write_unlock_bh(&fib6_walker_lock);
101}
102
103static inline void fib6_walker_unlink(struct fib6_walker_t *w)
104{
105 write_lock_bh(&fib6_walker_lock);
106 list_del(&w->lh);
107 write_unlock_bh(&fib6_walker_lock);
108}
109static __inline__ u32 fib6_new_sernum(void)
110{
111 u32 n = ++rt_sernum;
112 if ((__s32)n <= 0)
113 rt_sernum = n = 1;
114 return n;
115}
116
117/*
118 * Auxiliary address test functions for the radix tree.
119 *
120 * These assume a 32bit processor (although it will work on
121 * 64bit processors)
122 */
123
124/*
125 * test bit
126 */
127#if defined(__LITTLE_ENDIAN)
128# define BITOP_BE32_SWIZZLE (0x1F & ~7)
129#else
130# define BITOP_BE32_SWIZZLE 0
131#endif
132
133static __inline__ __be32 addr_bit_set(const void *token, int fn_bit)
134{
135 const __be32 *addr = token;
136 /*
137 * Here,
138 * 1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)
139 * is optimized version of
140 * htonl(1 << ((~fn_bit)&0x1F))
141 * See include/asm-generic/bitops/le.h.
142 */
143 return (__force __be32)(1 << ((~fn_bit ^ BITOP_BE32_SWIZZLE) & 0x1f)) &
144 addr[fn_bit >> 5];
145}
146
147static __inline__ struct fib6_node * node_alloc(void)
148{
149 struct fib6_node *fn;
150
151 fn = kmem_cache_zalloc(fib6_node_kmem, GFP_ATOMIC);
152
153 return fn;
154}
155
156static __inline__ void node_free(struct fib6_node * fn)
157{
158 kmem_cache_free(fib6_node_kmem, fn);
159}
160
161static __inline__ void rt6_release(struct rt6_info *rt)
162{
163 if (atomic_dec_and_test(&rt->rt6i_ref))
164 dst_free(&rt->dst);
165}
166
167static void fib6_link_table(struct net *net, struct fib6_table *tb)
168{
169 unsigned int h;
170
171 /*
172 * Initialize table lock at a single place to give lockdep a key,
173 * tables aren't visible prior to being linked to the list.
174 */
175 rwlock_init(&tb->tb6_lock);
176
177 h = tb->tb6_id & (FIB6_TABLE_HASHSZ - 1);
178
179 /*
180 * No protection necessary, this is the only list mutatation
181 * operation, tables never disappear once they exist.
182 */
183 hlist_add_head_rcu(&tb->tb6_hlist, &net->ipv6.fib_table_hash[h]);
184}
185
186#ifdef CONFIG_IPV6_MULTIPLE_TABLES
187
188static struct fib6_table *fib6_alloc_table(struct net *net, u32 id)
189{
190 struct fib6_table *table;
191
192 table = kzalloc(sizeof(*table), GFP_ATOMIC);
193 if (table) {
194 table->tb6_id = id;
195 table->tb6_root.leaf = net->ipv6.ip6_null_entry;
196 table->tb6_root.fn_flags = RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
197 }
198
199 return table;
200}
201
202struct fib6_table *fib6_new_table(struct net *net, u32 id)
203{
204 struct fib6_table *tb;
205
206 if (id == 0)
207 id = RT6_TABLE_MAIN;
208 tb = fib6_get_table(net, id);
209 if (tb)
210 return tb;
211
212 tb = fib6_alloc_table(net, id);
213 if (tb)
214 fib6_link_table(net, tb);
215
216 return tb;
217}
218
219struct fib6_table *fib6_get_table(struct net *net, u32 id)
220{
221 struct fib6_table *tb;
222 struct hlist_head *head;
223 struct hlist_node *node;
224 unsigned int h;
225
226 if (id == 0)
227 id = RT6_TABLE_MAIN;
228 h = id & (FIB6_TABLE_HASHSZ - 1);
229 rcu_read_lock();
230 head = &net->ipv6.fib_table_hash[h];
231 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
232 if (tb->tb6_id == id) {
233 rcu_read_unlock();
234 return tb;
235 }
236 }
237 rcu_read_unlock();
238
239 return NULL;
240}
241
242static void __net_init fib6_tables_init(struct net *net)
243{
244 fib6_link_table(net, net->ipv6.fib6_main_tbl);
245 fib6_link_table(net, net->ipv6.fib6_local_tbl);
246}
247#else
248
249struct fib6_table *fib6_new_table(struct net *net, u32 id)
250{
251 return fib6_get_table(net, id);
252}
253
254struct fib6_table *fib6_get_table(struct net *net, u32 id)
255{
256 return net->ipv6.fib6_main_tbl;
257}
258
259struct dst_entry *fib6_rule_lookup(struct net *net, struct flowi6 *fl6,
260 int flags, pol_lookup_t lookup)
261{
262 return (struct dst_entry *) lookup(net, net->ipv6.fib6_main_tbl, fl6, flags);
263}
264
265static void __net_init fib6_tables_init(struct net *net)
266{
267 fib6_link_table(net, net->ipv6.fib6_main_tbl);
268}
269
270#endif
271
272static int fib6_dump_node(struct fib6_walker_t *w)
273{
274 int res;
275 struct rt6_info *rt;
276
277 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
278 res = rt6_dump_route(rt, w->args);
279 if (res < 0) {
280 /* Frame is full, suspend walking */
281 w->leaf = rt;
282 return 1;
283 }
284 WARN_ON(res == 0);
285 }
286 w->leaf = NULL;
287 return 0;
288}
289
290static void fib6_dump_end(struct netlink_callback *cb)
291{
292 struct fib6_walker_t *w = (void*)cb->args[2];
293
294 if (w) {
295 if (cb->args[4]) {
296 cb->args[4] = 0;
297 fib6_walker_unlink(w);
298 }
299 cb->args[2] = 0;
300 kfree(w);
301 }
302 cb->done = (void*)cb->args[3];
303 cb->args[1] = 3;
304}
305
306static int fib6_dump_done(struct netlink_callback *cb)
307{
308 fib6_dump_end(cb);
309 return cb->done ? cb->done(cb) : 0;
310}
311
312static int fib6_dump_table(struct fib6_table *table, struct sk_buff *skb,
313 struct netlink_callback *cb)
314{
315 struct fib6_walker_t *w;
316 int res;
317
318 w = (void *)cb->args[2];
319 w->root = &table->tb6_root;
320
321 if (cb->args[4] == 0) {
322 w->count = 0;
323 w->skip = 0;
324
325 read_lock_bh(&table->tb6_lock);
326 res = fib6_walk(w);
327 read_unlock_bh(&table->tb6_lock);
328 if (res > 0) {
329 cb->args[4] = 1;
330 cb->args[5] = w->root->fn_sernum;
331 }
332 } else {
333 if (cb->args[5] != w->root->fn_sernum) {
334 /* Begin at the root if the tree changed */
335 cb->args[5] = w->root->fn_sernum;
336 w->state = FWS_INIT;
337 w->node = w->root;
338 w->skip = w->count;
339 } else
340 w->skip = 0;
341
342 read_lock_bh(&table->tb6_lock);
343 res = fib6_walk_continue(w);
344 read_unlock_bh(&table->tb6_lock);
345 if (res <= 0) {
346 fib6_walker_unlink(w);
347 cb->args[4] = 0;
348 }
349 }
350
351 return res;
352}
353
354static int inet6_dump_fib(struct sk_buff *skb, struct netlink_callback *cb)
355{
356 struct net *net = sock_net(skb->sk);
357 unsigned int h, s_h;
358 unsigned int e = 0, s_e;
359 struct rt6_rtnl_dump_arg arg;
360 struct fib6_walker_t *w;
361 struct fib6_table *tb;
362 struct hlist_node *node;
363 struct hlist_head *head;
364 int res = 0;
365
366 s_h = cb->args[0];
367 s_e = cb->args[1];
368
369 w = (void *)cb->args[2];
370 if (!w) {
371 /* New dump:
372 *
373 * 1. hook callback destructor.
374 */
375 cb->args[3] = (long)cb->done;
376 cb->done = fib6_dump_done;
377
378 /*
379 * 2. allocate and initialize walker.
380 */
381 w = kzalloc(sizeof(*w), GFP_ATOMIC);
382 if (!w)
383 return -ENOMEM;
384 w->func = fib6_dump_node;
385 cb->args[2] = (long)w;
386 }
387
388 arg.skb = skb;
389 arg.cb = cb;
390 arg.net = net;
391 w->args = &arg;
392
393 rcu_read_lock();
394 for (h = s_h; h < FIB6_TABLE_HASHSZ; h++, s_e = 0) {
395 e = 0;
396 head = &net->ipv6.fib_table_hash[h];
397 hlist_for_each_entry_rcu(tb, node, head, tb6_hlist) {
398 if (e < s_e)
399 goto next;
400 res = fib6_dump_table(tb, skb, cb);
401 if (res != 0)
402 goto out;
403next:
404 e++;
405 }
406 }
407out:
408 rcu_read_unlock();
409 cb->args[1] = e;
410 cb->args[0] = h;
411
412 res = res < 0 ? res : skb->len;
413 if (res <= 0)
414 fib6_dump_end(cb);
415 return res;
416}
417
418/*
419 * Routing Table
420 *
421 * return the appropriate node for a routing tree "add" operation
422 * by either creating and inserting or by returning an existing
423 * node.
424 */
425
426static struct fib6_node * fib6_add_1(struct fib6_node *root, void *addr,
427 int addrlen, int plen,
428 int offset, int allow_create,
429 int replace_required)
430{
431 struct fib6_node *fn, *in, *ln;
432 struct fib6_node *pn = NULL;
433 struct rt6key *key;
434 int bit;
435 __be32 dir = 0;
436 __u32 sernum = fib6_new_sernum();
437
438 RT6_TRACE("fib6_add_1\n");
439
440 /* insert node in tree */
441
442 fn = root;
443
444 do {
445 key = (struct rt6key *)((u8 *)fn->leaf + offset);
446
447 /*
448 * Prefix match
449 */
450 if (plen < fn->fn_bit ||
451 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit)) {
452 if (!allow_create) {
453 if (replace_required) {
454 pr_warn("IPv6: Can't replace route, "
455 "no match found\n");
456 return ERR_PTR(-ENOENT);
457 }
458 pr_warn("IPv6: NLM_F_CREATE should be set "
459 "when creating new route\n");
460 }
461 goto insert_above;
462 }
463
464 /*
465 * Exact match ?
466 */
467
468 if (plen == fn->fn_bit) {
469 /* clean up an intermediate node */
470 if (!(fn->fn_flags & RTN_RTINFO)) {
471 rt6_release(fn->leaf);
472 fn->leaf = NULL;
473 }
474
475 fn->fn_sernum = sernum;
476
477 return fn;
478 }
479
480 /*
481 * We have more bits to go
482 */
483
484 /* Try to walk down on tree. */
485 fn->fn_sernum = sernum;
486 dir = addr_bit_set(addr, fn->fn_bit);
487 pn = fn;
488 fn = dir ? fn->right: fn->left;
489 } while (fn);
490
491 if (!allow_create) {
492 /* We should not create new node because
493 * NLM_F_REPLACE was specified without NLM_F_CREATE
494 * I assume it is safe to require NLM_F_CREATE when
495 * REPLACE flag is used! Later we may want to remove the
496 * check for replace_required, because according
497 * to netlink specification, NLM_F_CREATE
498 * MUST be specified if new route is created.
499 * That would keep IPv6 consistent with IPv4
500 */
501 if (replace_required) {
502 pr_warn("IPv6: Can't replace route, no match found\n");
503 return ERR_PTR(-ENOENT);
504 }
505 pr_warn("IPv6: NLM_F_CREATE should be set "
506 "when creating new route\n");
507 }
508 /*
509 * We walked to the bottom of tree.
510 * Create new leaf node without children.
511 */
512
513 ln = node_alloc();
514
515 if (!ln)
516 return NULL;
517 ln->fn_bit = plen;
518
519 ln->parent = pn;
520 ln->fn_sernum = sernum;
521
522 if (dir)
523 pn->right = ln;
524 else
525 pn->left = ln;
526
527 return ln;
528
529
530insert_above:
531 /*
532 * split since we don't have a common prefix anymore or
533 * we have a less significant route.
534 * we've to insert an intermediate node on the list
535 * this new node will point to the one we need to create
536 * and the current
537 */
538
539 pn = fn->parent;
540
541 /* find 1st bit in difference between the 2 addrs.
542
543 See comment in __ipv6_addr_diff: bit may be an invalid value,
544 but if it is >= plen, the value is ignored in any case.
545 */
546
547 bit = __ipv6_addr_diff(addr, &key->addr, addrlen);
548
549 /*
550 * (intermediate)[in]
551 * / \
552 * (new leaf node)[ln] (old node)[fn]
553 */
554 if (plen > bit) {
555 in = node_alloc();
556 ln = node_alloc();
557
558 if (!in || !ln) {
559 if (in)
560 node_free(in);
561 if (ln)
562 node_free(ln);
563 return NULL;
564 }
565
566 /*
567 * new intermediate node.
568 * RTN_RTINFO will
569 * be off since that an address that chooses one of
570 * the branches would not match less specific routes
571 * in the other branch
572 */
573
574 in->fn_bit = bit;
575
576 in->parent = pn;
577 in->leaf = fn->leaf;
578 atomic_inc(&in->leaf->rt6i_ref);
579
580 in->fn_sernum = sernum;
581
582 /* update parent pointer */
583 if (dir)
584 pn->right = in;
585 else
586 pn->left = in;
587
588 ln->fn_bit = plen;
589
590 ln->parent = in;
591 fn->parent = in;
592
593 ln->fn_sernum = sernum;
594
595 if (addr_bit_set(addr, bit)) {
596 in->right = ln;
597 in->left = fn;
598 } else {
599 in->left = ln;
600 in->right = fn;
601 }
602 } else { /* plen <= bit */
603
604 /*
605 * (new leaf node)[ln]
606 * / \
607 * (old node)[fn] NULL
608 */
609
610 ln = node_alloc();
611
612 if (!ln)
613 return NULL;
614
615 ln->fn_bit = plen;
616
617 ln->parent = pn;
618
619 ln->fn_sernum = sernum;
620
621 if (dir)
622 pn->right = ln;
623 else
624 pn->left = ln;
625
626 if (addr_bit_set(&key->addr, plen))
627 ln->right = fn;
628 else
629 ln->left = fn;
630
631 fn->parent = ln;
632 }
633 return ln;
634}
635
636static void fib6_purge_rt(struct rt6_info *rt, struct fib6_node *fn,
637 struct net *net)
638{
639 if (atomic_read(&rt->rt6i_ref) != 1) {
640 /* This route is used as dummy address holder in some split
641 * nodes. It is not leaked, but it still holds other resources,
642 * which must be released in time. So, scan ascendant nodes
643 * and replace dummy references to this route with references
644 * to still alive ones.
645 */
646 while (fn) {
647 if (!(fn->fn_flags & RTN_RTINFO) && fn->leaf == rt) {
648 fn->leaf = fib6_find_prefix(net, fn);
649 atomic_inc(&fn->leaf->rt6i_ref);
650 rt6_release(rt);
651 }
652 fn = fn->parent;
653 }
654 /* No more references are possible at this point. */
655 BUG_ON(atomic_read(&rt->rt6i_ref) != 1);
656 }
657}
658
659/*
660 * Insert routing information in a node.
661 */
662
663static int fib6_add_rt2node(struct fib6_node *fn, struct rt6_info *rt,
664 struct nl_info *info)
665{
666 struct rt6_info *iter = NULL;
667 struct rt6_info **ins;
668 int replace = (info->nlh &&
669 (info->nlh->nlmsg_flags & NLM_F_REPLACE));
670 int add = (!info->nlh ||
671 (info->nlh->nlmsg_flags & NLM_F_CREATE));
672 int found = 0;
673
674 ins = &fn->leaf;
675
676 for (iter = fn->leaf; iter; iter = iter->dst.rt6_next) {
677 /*
678 * Search for duplicates
679 */
680
681 if (iter->rt6i_metric == rt->rt6i_metric) {
682 /*
683 * Same priority level
684 */
685 if (info->nlh &&
686 (info->nlh->nlmsg_flags & NLM_F_EXCL))
687 return -EEXIST;
688 if (replace) {
689 found++;
690 break;
691 }
692
693 if (iter->dst.dev == rt->dst.dev &&
694 iter->rt6i_idev == rt->rt6i_idev &&
695 ipv6_addr_equal(&iter->rt6i_gateway,
696 &rt->rt6i_gateway)) {
697 if (!(iter->rt6i_flags & RTF_EXPIRES))
698 return -EEXIST;
699 if (!(rt->rt6i_flags & RTF_EXPIRES))
700 rt6_clean_expires(iter);
701 else
702 rt6_set_expires(iter, rt->dst.expires);
703 return -EEXIST;
704 }
705 }
706
707 if (iter->rt6i_metric > rt->rt6i_metric)
708 break;
709
710 ins = &iter->dst.rt6_next;
711 }
712
713 /* Reset round-robin state, if necessary */
714 if (ins == &fn->leaf)
715 fn->rr_ptr = NULL;
716
717 /*
718 * insert node
719 */
720 if (!replace) {
721 if (!add)
722 pr_warn("IPv6: NLM_F_CREATE should be set when creating new route\n");
723
724add:
725 rt->dst.rt6_next = iter;
726 *ins = rt;
727 rt->rt6i_node = fn;
728 atomic_inc(&rt->rt6i_ref);
729 inet6_rt_notify(RTM_NEWROUTE, rt, info);
730 info->nl_net->ipv6.rt6_stats->fib_rt_entries++;
731
732 if (!(fn->fn_flags & RTN_RTINFO)) {
733 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
734 fn->fn_flags |= RTN_RTINFO;
735 }
736
737 } else {
738 if (!found) {
739 if (add)
740 goto add;
741 pr_warn("IPv6: NLM_F_REPLACE set, but no existing node found!\n");
742 return -ENOENT;
743 }
744 *ins = rt;
745 rt->rt6i_node = fn;
746 rt->dst.rt6_next = iter->dst.rt6_next;
747 atomic_inc(&rt->rt6i_ref);
748 inet6_rt_notify(RTM_NEWROUTE, rt, info);
749 if (!(fn->fn_flags & RTN_RTINFO)) {
750 info->nl_net->ipv6.rt6_stats->fib_route_nodes++;
751 fn->fn_flags |= RTN_RTINFO;
752 }
753 fib6_purge_rt(iter, fn, info->nl_net);
754 rt6_release(iter);
755 }
756
757 return 0;
758}
759
760static __inline__ void fib6_start_gc(struct net *net, struct rt6_info *rt)
761{
762 if (!timer_pending(&net->ipv6.ip6_fib_timer) &&
763 (rt->rt6i_flags & (RTF_EXPIRES | RTF_CACHE)))
764 mod_timer(&net->ipv6.ip6_fib_timer,
765 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
766}
767
768void fib6_force_start_gc(struct net *net)
769{
770 if (!timer_pending(&net->ipv6.ip6_fib_timer))
771 mod_timer(&net->ipv6.ip6_fib_timer,
772 jiffies + net->ipv6.sysctl.ip6_rt_gc_interval);
773}
774
775/*
776 * Add routing information to the routing tree.
777 * <destination addr>/<source addr>
778 * with source addr info in sub-trees
779 */
780
781int fib6_add(struct fib6_node *root, struct rt6_info *rt, struct nl_info *info)
782{
783 struct fib6_node *fn, *pn = NULL;
784 int err = -ENOMEM;
785 int allow_create = 1;
786 int replace_required = 0;
787
788 if (info->nlh) {
789 if (!(info->nlh->nlmsg_flags & NLM_F_CREATE))
790 allow_create = 0;
791 if (info->nlh->nlmsg_flags & NLM_F_REPLACE)
792 replace_required = 1;
793 }
794 if (!allow_create && !replace_required)
795 pr_warn("IPv6: RTM_NEWROUTE with no NLM_F_CREATE or NLM_F_REPLACE\n");
796
797 fn = fib6_add_1(root, &rt->rt6i_dst.addr, sizeof(struct in6_addr),
798 rt->rt6i_dst.plen, offsetof(struct rt6_info, rt6i_dst),
799 allow_create, replace_required);
800
801 if (IS_ERR(fn)) {
802 err = PTR_ERR(fn);
803 fn = NULL;
804 }
805
806 if (!fn)
807 goto out;
808
809 pn = fn;
810
811#ifdef CONFIG_IPV6_SUBTREES
812 if (rt->rt6i_src.plen) {
813 struct fib6_node *sn;
814
815 if (!fn->subtree) {
816 struct fib6_node *sfn;
817
818 /*
819 * Create subtree.
820 *
821 * fn[main tree]
822 * |
823 * sfn[subtree root]
824 * \
825 * sn[new leaf node]
826 */
827
828 /* Create subtree root node */
829 sfn = node_alloc();
830 if (!sfn)
831 goto st_failure;
832
833 sfn->leaf = info->nl_net->ipv6.ip6_null_entry;
834 atomic_inc(&info->nl_net->ipv6.ip6_null_entry->rt6i_ref);
835 sfn->fn_flags = RTN_ROOT;
836 sfn->fn_sernum = fib6_new_sernum();
837
838 /* Now add the first leaf node to new subtree */
839
840 sn = fib6_add_1(sfn, &rt->rt6i_src.addr,
841 sizeof(struct in6_addr), rt->rt6i_src.plen,
842 offsetof(struct rt6_info, rt6i_src),
843 allow_create, replace_required);
844
845 if (IS_ERR(sn)) {
846 err = PTR_ERR(sn);
847 sn = NULL;
848 }
849 if (!sn) {
850 /* If it is failed, discard just allocated
851 root, and then (in st_failure) stale node
852 in main tree.
853 */
854 node_free(sfn);
855 goto st_failure;
856 }
857
858 /* Now link new subtree to main tree */
859 sfn->parent = fn;
860 fn->subtree = sfn;
861 } else {
862 sn = fib6_add_1(fn->subtree, &rt->rt6i_src.addr,
863 sizeof(struct in6_addr), rt->rt6i_src.plen,
864 offsetof(struct rt6_info, rt6i_src),
865 allow_create, replace_required);
866
867 if (IS_ERR(sn)) {
868 err = PTR_ERR(sn);
869 sn = NULL;
870 }
871 if (!sn)
872 goto st_failure;
873 }
874
875 if (!fn->leaf) {
876 fn->leaf = rt;
877 atomic_inc(&rt->rt6i_ref);
878 }
879 fn = sn;
880 }
881#endif
882
883 err = fib6_add_rt2node(fn, rt, info);
884 if (!err) {
885 fib6_start_gc(info->nl_net, rt);
886 if (!(rt->rt6i_flags & RTF_CACHE))
887 fib6_prune_clones(info->nl_net, pn, rt);
888 }
889
890out:
891 if (err) {
892#ifdef CONFIG_IPV6_SUBTREES
893 /*
894 * If fib6_add_1 has cleared the old leaf pointer in the
895 * super-tree leaf node we have to find a new one for it.
896 */
897 if (pn != fn && pn->leaf == rt) {
898 pn->leaf = NULL;
899 atomic_dec(&rt->rt6i_ref);
900 }
901 if (pn != fn && !pn->leaf && !(pn->fn_flags & RTN_RTINFO)) {
902 pn->leaf = fib6_find_prefix(info->nl_net, pn);
903#if RT6_DEBUG >= 2
904 if (!pn->leaf) {
905 WARN_ON(pn->leaf == NULL);
906 pn->leaf = info->nl_net->ipv6.ip6_null_entry;
907 }
908#endif
909 atomic_inc(&pn->leaf->rt6i_ref);
910 }
911#endif
912 dst_free(&rt->dst);
913 }
914 return err;
915
916#ifdef CONFIG_IPV6_SUBTREES
917 /* Subtree creation failed, probably main tree node
918 is orphan. If it is, shoot it.
919 */
920st_failure:
921 if (fn && !(fn->fn_flags & (RTN_RTINFO|RTN_ROOT)))
922 fib6_repair_tree(info->nl_net, fn);
923 dst_free(&rt->dst);
924 return err;
925#endif
926}
927
928/*
929 * Routing tree lookup
930 *
931 */
932
933struct lookup_args {
934 int offset; /* key offset on rt6_info */
935 const struct in6_addr *addr; /* search key */
936};
937
938static struct fib6_node * fib6_lookup_1(struct fib6_node *root,
939 struct lookup_args *args)
940{
941 struct fib6_node *fn;
942 __be32 dir;
943
944 if (unlikely(args->offset == 0))
945 return NULL;
946
947 /*
948 * Descend on a tree
949 */
950
951 fn = root;
952
953 for (;;) {
954 struct fib6_node *next;
955
956 dir = addr_bit_set(args->addr, fn->fn_bit);
957
958 next = dir ? fn->right : fn->left;
959
960 if (next) {
961 fn = next;
962 continue;
963 }
964 break;
965 }
966
967 while (fn) {
968 if (FIB6_SUBTREE(fn) || fn->fn_flags & RTN_RTINFO) {
969 struct rt6key *key;
970
971 key = (struct rt6key *) ((u8 *) fn->leaf +
972 args->offset);
973
974 if (ipv6_prefix_equal(&key->addr, args->addr, key->plen)) {
975#ifdef CONFIG_IPV6_SUBTREES
976 if (fn->subtree) {
977 struct fib6_node *sfn;
978 sfn = fib6_lookup_1(fn->subtree,
979 args + 1);
980 if (!sfn)
981 goto backtrack;
982 fn = sfn;
983 }
984#endif
985 if (fn->fn_flags & RTN_RTINFO)
986 return fn;
987 }
988 }
989#ifdef CONFIG_IPV6_SUBTREES
990backtrack:
991#endif
992 if (fn->fn_flags & RTN_ROOT)
993 break;
994
995 fn = fn->parent;
996 }
997
998 return NULL;
999}
1000
1001struct fib6_node * fib6_lookup(struct fib6_node *root, const struct in6_addr *daddr,
1002 const struct in6_addr *saddr)
1003{
1004 struct fib6_node *fn;
1005 struct lookup_args args[] = {
1006 {
1007 .offset = offsetof(struct rt6_info, rt6i_dst),
1008 .addr = daddr,
1009 },
1010#ifdef CONFIG_IPV6_SUBTREES
1011 {
1012 .offset = offsetof(struct rt6_info, rt6i_src),
1013 .addr = saddr,
1014 },
1015#endif
1016 {
1017 .offset = 0, /* sentinel */
1018 }
1019 };
1020
1021 fn = fib6_lookup_1(root, daddr ? args : args + 1);
1022 if (!fn || fn->fn_flags & RTN_TL_ROOT)
1023 fn = root;
1024
1025 return fn;
1026}
1027
1028/*
1029 * Get node with specified destination prefix (and source prefix,
1030 * if subtrees are used)
1031 */
1032
1033
1034static struct fib6_node * fib6_locate_1(struct fib6_node *root,
1035 const struct in6_addr *addr,
1036 int plen, int offset)
1037{
1038 struct fib6_node *fn;
1039
1040 for (fn = root; fn ; ) {
1041 struct rt6key *key = (struct rt6key *)((u8 *)fn->leaf + offset);
1042
1043 /*
1044 * Prefix match
1045 */
1046 if (plen < fn->fn_bit ||
1047 !ipv6_prefix_equal(&key->addr, addr, fn->fn_bit))
1048 return NULL;
1049
1050 if (plen == fn->fn_bit)
1051 return fn;
1052
1053 /*
1054 * We have more bits to go
1055 */
1056 if (addr_bit_set(addr, fn->fn_bit))
1057 fn = fn->right;
1058 else
1059 fn = fn->left;
1060 }
1061 return NULL;
1062}
1063
1064struct fib6_node * fib6_locate(struct fib6_node *root,
1065 const struct in6_addr *daddr, int dst_len,
1066 const struct in6_addr *saddr, int src_len)
1067{
1068 struct fib6_node *fn;
1069
1070 fn = fib6_locate_1(root, daddr, dst_len,
1071 offsetof(struct rt6_info, rt6i_dst));
1072
1073#ifdef CONFIG_IPV6_SUBTREES
1074 if (src_len) {
1075 WARN_ON(saddr == NULL);
1076 if (fn && fn->subtree)
1077 fn = fib6_locate_1(fn->subtree, saddr, src_len,
1078 offsetof(struct rt6_info, rt6i_src));
1079 }
1080#endif
1081
1082 if (fn && fn->fn_flags & RTN_RTINFO)
1083 return fn;
1084
1085 return NULL;
1086}
1087
1088
1089/*
1090 * Deletion
1091 *
1092 */
1093
1094static struct rt6_info *fib6_find_prefix(struct net *net, struct fib6_node *fn)
1095{
1096 if (fn->fn_flags & RTN_ROOT)
1097 return net->ipv6.ip6_null_entry;
1098
1099 while (fn) {
1100 if (fn->left)
1101 return fn->left->leaf;
1102 if (fn->right)
1103 return fn->right->leaf;
1104
1105 fn = FIB6_SUBTREE(fn);
1106 }
1107 return NULL;
1108}
1109
1110/*
1111 * Called to trim the tree of intermediate nodes when possible. "fn"
1112 * is the node we want to try and remove.
1113 */
1114
1115static struct fib6_node *fib6_repair_tree(struct net *net,
1116 struct fib6_node *fn)
1117{
1118 int children;
1119 int nstate;
1120 struct fib6_node *child, *pn;
1121 struct fib6_walker_t *w;
1122 int iter = 0;
1123
1124 for (;;) {
1125 RT6_TRACE("fixing tree: plen=%d iter=%d\n", fn->fn_bit, iter);
1126 iter++;
1127
1128 WARN_ON(fn->fn_flags & RTN_RTINFO);
1129 WARN_ON(fn->fn_flags & RTN_TL_ROOT);
1130 WARN_ON(fn->leaf != NULL);
1131
1132 children = 0;
1133 child = NULL;
1134 if (fn->right) child = fn->right, children |= 1;
1135 if (fn->left) child = fn->left, children |= 2;
1136
1137 if (children == 3 || FIB6_SUBTREE(fn)
1138#ifdef CONFIG_IPV6_SUBTREES
1139 /* Subtree root (i.e. fn) may have one child */
1140 || (children && fn->fn_flags & RTN_ROOT)
1141#endif
1142 ) {
1143 fn->leaf = fib6_find_prefix(net, fn);
1144#if RT6_DEBUG >= 2
1145 if (!fn->leaf) {
1146 WARN_ON(!fn->leaf);
1147 fn->leaf = net->ipv6.ip6_null_entry;
1148 }
1149#endif
1150 atomic_inc(&fn->leaf->rt6i_ref);
1151 return fn->parent;
1152 }
1153
1154 pn = fn->parent;
1155#ifdef CONFIG_IPV6_SUBTREES
1156 if (FIB6_SUBTREE(pn) == fn) {
1157 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1158 FIB6_SUBTREE(pn) = NULL;
1159 nstate = FWS_L;
1160 } else {
1161 WARN_ON(fn->fn_flags & RTN_ROOT);
1162#endif
1163 if (pn->right == fn) pn->right = child;
1164 else if (pn->left == fn) pn->left = child;
1165#if RT6_DEBUG >= 2
1166 else
1167 WARN_ON(1);
1168#endif
1169 if (child)
1170 child->parent = pn;
1171 nstate = FWS_R;
1172#ifdef CONFIG_IPV6_SUBTREES
1173 }
1174#endif
1175
1176 read_lock(&fib6_walker_lock);
1177 FOR_WALKERS(w) {
1178 if (!child) {
1179 if (w->root == fn) {
1180 w->root = w->node = NULL;
1181 RT6_TRACE("W %p adjusted by delroot 1\n", w);
1182 } else if (w->node == fn) {
1183 RT6_TRACE("W %p adjusted by delnode 1, s=%d/%d\n", w, w->state, nstate);
1184 w->node = pn;
1185 w->state = nstate;
1186 }
1187 } else {
1188 if (w->root == fn) {
1189 w->root = child;
1190 RT6_TRACE("W %p adjusted by delroot 2\n", w);
1191 }
1192 if (w->node == fn) {
1193 w->node = child;
1194 if (children&2) {
1195 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1196 w->state = w->state>=FWS_R ? FWS_U : FWS_INIT;
1197 } else {
1198 RT6_TRACE("W %p adjusted by delnode 2, s=%d\n", w, w->state);
1199 w->state = w->state>=FWS_C ? FWS_U : FWS_INIT;
1200 }
1201 }
1202 }
1203 }
1204 read_unlock(&fib6_walker_lock);
1205
1206 node_free(fn);
1207 if (pn->fn_flags & RTN_RTINFO || FIB6_SUBTREE(pn))
1208 return pn;
1209
1210 rt6_release(pn->leaf);
1211 pn->leaf = NULL;
1212 fn = pn;
1213 }
1214}
1215
1216static void fib6_del_route(struct fib6_node *fn, struct rt6_info **rtp,
1217 struct nl_info *info)
1218{
1219 struct fib6_walker_t *w;
1220 struct rt6_info *rt = *rtp;
1221 struct net *net = info->nl_net;
1222
1223 RT6_TRACE("fib6_del_route\n");
1224
1225 /* Unlink it */
1226 *rtp = rt->dst.rt6_next;
1227 rt->rt6i_node = NULL;
1228 net->ipv6.rt6_stats->fib_rt_entries--;
1229 net->ipv6.rt6_stats->fib_discarded_routes++;
1230
1231 /* Reset round-robin state, if necessary */
1232 if (fn->rr_ptr == rt)
1233 fn->rr_ptr = NULL;
1234
1235 /* Adjust walkers */
1236 read_lock(&fib6_walker_lock);
1237 FOR_WALKERS(w) {
1238 if (w->state == FWS_C && w->leaf == rt) {
1239 RT6_TRACE("walker %p adjusted by delroute\n", w);
1240 w->leaf = rt->dst.rt6_next;
1241 if (!w->leaf)
1242 w->state = FWS_U;
1243 }
1244 }
1245 read_unlock(&fib6_walker_lock);
1246
1247 rt->dst.rt6_next = NULL;
1248
1249 /* If it was last route, expunge its radix tree node */
1250 if (!fn->leaf) {
1251 fn->fn_flags &= ~RTN_RTINFO;
1252 net->ipv6.rt6_stats->fib_route_nodes--;
1253 fn = fib6_repair_tree(net, fn);
1254 }
1255
1256 fib6_purge_rt(rt, fn, net);
1257
1258 inet6_rt_notify(RTM_DELROUTE, rt, info);
1259 rt6_release(rt);
1260}
1261
1262int fib6_del(struct rt6_info *rt, struct nl_info *info)
1263{
1264 struct net *net = info->nl_net;
1265 struct fib6_node *fn = rt->rt6i_node;
1266 struct rt6_info **rtp;
1267
1268#if RT6_DEBUG >= 2
1269 if (rt->dst.obsolete>0) {
1270 WARN_ON(fn != NULL);
1271 return -ENOENT;
1272 }
1273#endif
1274 if (!fn || rt == net->ipv6.ip6_null_entry)
1275 return -ENOENT;
1276
1277 WARN_ON(!(fn->fn_flags & RTN_RTINFO));
1278
1279 if (!(rt->rt6i_flags & RTF_CACHE)) {
1280 struct fib6_node *pn = fn;
1281#ifdef CONFIG_IPV6_SUBTREES
1282 /* clones of this route might be in another subtree */
1283 if (rt->rt6i_src.plen) {
1284 while (!(pn->fn_flags & RTN_ROOT))
1285 pn = pn->parent;
1286 pn = pn->parent;
1287 }
1288#endif
1289 fib6_prune_clones(info->nl_net, pn, rt);
1290 }
1291
1292 /*
1293 * Walk the leaf entries looking for ourself
1294 */
1295
1296 for (rtp = &fn->leaf; *rtp; rtp = &(*rtp)->dst.rt6_next) {
1297 if (*rtp == rt) {
1298 fib6_del_route(fn, rtp, info);
1299 return 0;
1300 }
1301 }
1302 return -ENOENT;
1303}
1304
1305/*
1306 * Tree traversal function.
1307 *
1308 * Certainly, it is not interrupt safe.
1309 * However, it is internally reenterable wrt itself and fib6_add/fib6_del.
1310 * It means, that we can modify tree during walking
1311 * and use this function for garbage collection, clone pruning,
1312 * cleaning tree when a device goes down etc. etc.
1313 *
1314 * It guarantees that every node will be traversed,
1315 * and that it will be traversed only once.
1316 *
1317 * Callback function w->func may return:
1318 * 0 -> continue walking.
1319 * positive value -> walking is suspended (used by tree dumps,
1320 * and probably by gc, if it will be split to several slices)
1321 * negative value -> terminate walking.
1322 *
1323 * The function itself returns:
1324 * 0 -> walk is complete.
1325 * >0 -> walk is incomplete (i.e. suspended)
1326 * <0 -> walk is terminated by an error.
1327 */
1328
1329static int fib6_walk_continue(struct fib6_walker_t *w)
1330{
1331 struct fib6_node *fn, *pn;
1332
1333 for (;;) {
1334 fn = w->node;
1335 if (!fn)
1336 return 0;
1337
1338 if (w->prune && fn != w->root &&
1339 fn->fn_flags & RTN_RTINFO && w->state < FWS_C) {
1340 w->state = FWS_C;
1341 w->leaf = fn->leaf;
1342 }
1343 switch (w->state) {
1344#ifdef CONFIG_IPV6_SUBTREES
1345 case FWS_S:
1346 if (FIB6_SUBTREE(fn)) {
1347 w->node = FIB6_SUBTREE(fn);
1348 continue;
1349 }
1350 w->state = FWS_L;
1351#endif
1352 case FWS_L:
1353 if (fn->left) {
1354 w->node = fn->left;
1355 w->state = FWS_INIT;
1356 continue;
1357 }
1358 w->state = FWS_R;
1359 case FWS_R:
1360 if (fn->right) {
1361 w->node = fn->right;
1362 w->state = FWS_INIT;
1363 continue;
1364 }
1365 w->state = FWS_C;
1366 w->leaf = fn->leaf;
1367 case FWS_C:
1368 if (w->leaf && fn->fn_flags & RTN_RTINFO) {
1369 int err;
1370
1371 if (w->count < w->skip) {
1372 w->count++;
1373 continue;
1374 }
1375
1376 err = w->func(w);
1377 if (err)
1378 return err;
1379
1380 w->count++;
1381 continue;
1382 }
1383 w->state = FWS_U;
1384 case FWS_U:
1385 if (fn == w->root)
1386 return 0;
1387 pn = fn->parent;
1388 w->node = pn;
1389#ifdef CONFIG_IPV6_SUBTREES
1390 if (FIB6_SUBTREE(pn) == fn) {
1391 WARN_ON(!(fn->fn_flags & RTN_ROOT));
1392 w->state = FWS_L;
1393 continue;
1394 }
1395#endif
1396 if (pn->left == fn) {
1397 w->state = FWS_R;
1398 continue;
1399 }
1400 if (pn->right == fn) {
1401 w->state = FWS_C;
1402 w->leaf = w->node->leaf;
1403 continue;
1404 }
1405#if RT6_DEBUG >= 2
1406 WARN_ON(1);
1407#endif
1408 }
1409 }
1410}
1411
1412static int fib6_walk(struct fib6_walker_t *w)
1413{
1414 int res;
1415
1416 w->state = FWS_INIT;
1417 w->node = w->root;
1418
1419 fib6_walker_link(w);
1420 res = fib6_walk_continue(w);
1421 if (res <= 0)
1422 fib6_walker_unlink(w);
1423 return res;
1424}
1425
1426static int fib6_clean_node(struct fib6_walker_t *w)
1427{
1428 int res;
1429 struct rt6_info *rt;
1430 struct fib6_cleaner_t *c = container_of(w, struct fib6_cleaner_t, w);
1431 struct nl_info info = {
1432 .nl_net = c->net,
1433 };
1434
1435 for (rt = w->leaf; rt; rt = rt->dst.rt6_next) {
1436 res = c->func(rt, c->arg);
1437 if (res < 0) {
1438 w->leaf = rt;
1439 res = fib6_del(rt, &info);
1440 if (res) {
1441#if RT6_DEBUG >= 2
1442 printk(KERN_DEBUG "fib6_clean_node: del failed: rt=%p@%p err=%d\n", rt, rt->rt6i_node, res);
1443#endif
1444 continue;
1445 }
1446 return 0;
1447 }
1448 WARN_ON(res != 0);
1449 }
1450 w->leaf = rt;
1451 return 0;
1452}
1453
1454/*
1455 * Convenient frontend to tree walker.
1456 *
1457 * func is called on each route.
1458 * It may return -1 -> delete this route.
1459 * 0 -> continue walking
1460 *
1461 * prune==1 -> only immediate children of node (certainly,
1462 * ignoring pure split nodes) will be scanned.
1463 */
1464
1465static void fib6_clean_tree(struct net *net, struct fib6_node *root,
1466 int (*func)(struct rt6_info *, void *arg),
1467 int prune, void *arg)
1468{
1469 struct fib6_cleaner_t c;
1470
1471 c.w.root = root;
1472 c.w.func = fib6_clean_node;
1473 c.w.prune = prune;
1474 c.w.count = 0;
1475 c.w.skip = 0;
1476 c.func = func;
1477 c.arg = arg;
1478 c.net = net;
1479
1480 fib6_walk(&c.w);
1481}
1482
1483void fib6_clean_all_ro(struct net *net, int (*func)(struct rt6_info *, void *arg),
1484 int prune, void *arg)
1485{
1486 struct fib6_table *table;
1487 struct hlist_node *node;
1488 struct hlist_head *head;
1489 unsigned int h;
1490
1491 rcu_read_lock();
1492 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1493 head = &net->ipv6.fib_table_hash[h];
1494 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1495 read_lock_bh(&table->tb6_lock);
1496 fib6_clean_tree(net, &table->tb6_root,
1497 func, prune, arg);
1498 read_unlock_bh(&table->tb6_lock);
1499 }
1500 }
1501 rcu_read_unlock();
1502}
1503void fib6_clean_all(struct net *net, int (*func)(struct rt6_info *, void *arg),
1504 int prune, void *arg)
1505{
1506 struct fib6_table *table;
1507 struct hlist_node *node;
1508 struct hlist_head *head;
1509 unsigned int h;
1510
1511 rcu_read_lock();
1512 for (h = 0; h < FIB6_TABLE_HASHSZ; h++) {
1513 head = &net->ipv6.fib_table_hash[h];
1514 hlist_for_each_entry_rcu(table, node, head, tb6_hlist) {
1515 write_lock_bh(&table->tb6_lock);
1516 fib6_clean_tree(net, &table->tb6_root,
1517 func, prune, arg);
1518 write_unlock_bh(&table->tb6_lock);
1519 }
1520 }
1521 rcu_read_unlock();
1522}
1523
1524static int fib6_prune_clone(struct rt6_info *rt, void *arg)
1525{
1526 if (rt->rt6i_flags & RTF_CACHE) {
1527 RT6_TRACE("pruning clone %p\n", rt);
1528 return -1;
1529 }
1530
1531 return 0;
1532}
1533
1534static void fib6_prune_clones(struct net *net, struct fib6_node *fn,
1535 struct rt6_info *rt)
1536{
1537 fib6_clean_tree(net, fn, fib6_prune_clone, 1, rt);
1538}
1539
1540/*
1541 * Garbage collection
1542 */
1543
1544static struct fib6_gc_args
1545{
1546 int timeout;
1547 int more;
1548} gc_args;
1549
1550static int fib6_age(struct rt6_info *rt, void *arg)
1551{
1552 unsigned long now = jiffies;
1553
1554 /*
1555 * check addrconf expiration here.
1556 * Routes are expired even if they are in use.
1557 *
1558 * Also age clones. Note, that clones are aged out
1559 * only if they are not in use now.
1560 */
1561
1562 if (rt->rt6i_flags & RTF_EXPIRES && rt->dst.expires) {
1563 if (time_after(now, rt->dst.expires)) {
1564 RT6_TRACE("expiring %p\n", rt);
1565 return -1;
1566 }
1567 gc_args.more++;
1568 } else if (rt->rt6i_flags & RTF_CACHE) {
1569 if (atomic_read(&rt->dst.__refcnt) == 0 &&
1570 time_after_eq(now, rt->dst.lastuse + gc_args.timeout)) {
1571 RT6_TRACE("aging clone %p\n", rt);
1572 return -1;
1573 } else if (rt->rt6i_flags & RTF_GATEWAY) {
1574 struct neighbour *neigh;
1575 __u8 neigh_flags = 0;
1576
1577 neigh = dst_neigh_lookup(&rt->dst, &rt->rt6i_gateway);
1578 if (neigh) {
1579 neigh_flags = neigh->flags;
1580 neigh_release(neigh);
1581 }
1582 if (!(neigh_flags & NTF_ROUTER)) {
1583 RT6_TRACE("purging route %p via non-router but gateway\n",
1584 rt);
1585 return -1;
1586 }
1587 }
1588 gc_args.more++;
1589 }
1590
1591 return 0;
1592}
1593
1594static DEFINE_SPINLOCK(fib6_gc_lock);
1595
1596void fib6_run_gc(unsigned long expires, struct net *net)
1597{
1598 if (expires != ~0UL) {
1599 spin_lock_bh(&fib6_gc_lock);
1600 gc_args.timeout = expires ? (int)expires :
1601 net->ipv6.sysctl.ip6_rt_gc_interval;
1602 } else {
1603 if (!spin_trylock_bh(&fib6_gc_lock)) {
1604 mod_timer(&net->ipv6.ip6_fib_timer, jiffies + HZ);
1605 return;
1606 }
1607 gc_args.timeout = net->ipv6.sysctl.ip6_rt_gc_interval;
1608 }
1609
1610 gc_args.more = icmp6_dst_gc();
1611
1612 fib6_clean_all(net, fib6_age, 0, NULL);
1613
1614 if (gc_args.more)
1615 mod_timer(&net->ipv6.ip6_fib_timer,
1616 round_jiffies(jiffies
1617 + net->ipv6.sysctl.ip6_rt_gc_interval));
1618 else
1619 del_timer(&net->ipv6.ip6_fib_timer);
1620 spin_unlock_bh(&fib6_gc_lock);
1621}
1622
1623static void fib6_gc_timer_cb(unsigned long arg)
1624{
1625 fib6_run_gc(0, (struct net *)arg);
1626}
1627
1628static int __net_init fib6_net_init(struct net *net)
1629{
1630 size_t size = sizeof(struct hlist_head) * FIB6_TABLE_HASHSZ;
1631
1632 setup_timer(&net->ipv6.ip6_fib_timer, fib6_gc_timer_cb, (unsigned long)net);
1633
1634 net->ipv6.rt6_stats = kzalloc(sizeof(*net->ipv6.rt6_stats), GFP_KERNEL);
1635 if (!net->ipv6.rt6_stats)
1636 goto out_timer;
1637
1638 /* Avoid false sharing : Use at least a full cache line */
1639 size = max_t(size_t, size, L1_CACHE_BYTES);
1640
1641 net->ipv6.fib_table_hash = kzalloc(size, GFP_KERNEL);
1642 if (!net->ipv6.fib_table_hash)
1643 goto out_rt6_stats;
1644
1645 net->ipv6.fib6_main_tbl = kzalloc(sizeof(*net->ipv6.fib6_main_tbl),
1646 GFP_KERNEL);
1647 if (!net->ipv6.fib6_main_tbl)
1648 goto out_fib_table_hash;
1649
1650 net->ipv6.fib6_main_tbl->tb6_id = RT6_TABLE_MAIN;
1651 net->ipv6.fib6_main_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1652 net->ipv6.fib6_main_tbl->tb6_root.fn_flags =
1653 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1654
1655#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1656 net->ipv6.fib6_local_tbl = kzalloc(sizeof(*net->ipv6.fib6_local_tbl),
1657 GFP_KERNEL);
1658 if (!net->ipv6.fib6_local_tbl)
1659 goto out_fib6_main_tbl;
1660 net->ipv6.fib6_local_tbl->tb6_id = RT6_TABLE_LOCAL;
1661 net->ipv6.fib6_local_tbl->tb6_root.leaf = net->ipv6.ip6_null_entry;
1662 net->ipv6.fib6_local_tbl->tb6_root.fn_flags =
1663 RTN_ROOT | RTN_TL_ROOT | RTN_RTINFO;
1664#endif
1665 fib6_tables_init(net);
1666
1667 return 0;
1668
1669#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1670out_fib6_main_tbl:
1671 kfree(net->ipv6.fib6_main_tbl);
1672#endif
1673out_fib_table_hash:
1674 kfree(net->ipv6.fib_table_hash);
1675out_rt6_stats:
1676 kfree(net->ipv6.rt6_stats);
1677out_timer:
1678 return -ENOMEM;
1679 }
1680
1681static void fib6_net_exit(struct net *net)
1682{
1683 rt6_ifdown(net, NULL);
1684 del_timer_sync(&net->ipv6.ip6_fib_timer);
1685
1686#ifdef CONFIG_IPV6_MULTIPLE_TABLES
1687 kfree(net->ipv6.fib6_local_tbl);
1688#endif
1689 kfree(net->ipv6.fib6_main_tbl);
1690 kfree(net->ipv6.fib_table_hash);
1691 kfree(net->ipv6.rt6_stats);
1692}
1693
1694static struct pernet_operations fib6_net_ops = {
1695 .init = fib6_net_init,
1696 .exit = fib6_net_exit,
1697};
1698
1699int __init fib6_init(void)
1700{
1701 int ret = -ENOMEM;
1702
1703 fib6_node_kmem = kmem_cache_create("fib6_nodes",
1704 sizeof(struct fib6_node),
1705 0, SLAB_HWCACHE_ALIGN,
1706 NULL);
1707 if (!fib6_node_kmem)
1708 goto out;
1709
1710 ret = register_pernet_subsys(&fib6_net_ops);
1711 if (ret)
1712 goto out_kmem_cache_create;
1713
1714 ret = __rtnl_register(PF_INET6, RTM_GETROUTE, NULL, inet6_dump_fib,
1715 NULL);
1716 if (ret)
1717 goto out_unregister_subsys;
1718out:
1719 return ret;
1720
1721out_unregister_subsys:
1722 unregister_pernet_subsys(&fib6_net_ops);
1723out_kmem_cache_create:
1724 kmem_cache_destroy(fib6_node_kmem);
1725 goto out;
1726}
1727
1728void fib6_gc_cleanup(void)
1729{
1730 unregister_pernet_subsys(&fib6_net_ops);
1731 kmem_cache_destroy(fib6_node_kmem);
1732}