yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Kernel-based Virtual Machine driver for Linux |
| 3 | * |
| 4 | * This module enables machines with Intel VT-x extensions to run virtual |
| 5 | * machines without emulation or binary translation. |
| 6 | * |
| 7 | * Copyright (C) 2006 Qumranet, Inc. |
| 8 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
| 9 | * |
| 10 | * Authors: |
| 11 | * Avi Kivity <avi@qumranet.com> |
| 12 | * Yaniv Kamay <yaniv@qumranet.com> |
| 13 | * |
| 14 | * This work is licensed under the terms of the GNU GPL, version 2. See |
| 15 | * the COPYING file in the top-level directory. |
| 16 | * |
| 17 | */ |
| 18 | |
| 19 | #include "iodev.h" |
| 20 | |
| 21 | #include <linux/kvm_host.h> |
| 22 | #include <linux/kvm.h> |
| 23 | #include <linux/module.h> |
| 24 | #include <linux/errno.h> |
| 25 | #include <linux/percpu.h> |
| 26 | #include <linux/mm.h> |
| 27 | #include <linux/miscdevice.h> |
| 28 | #include <linux/vmalloc.h> |
| 29 | #include <linux/reboot.h> |
| 30 | #include <linux/debugfs.h> |
| 31 | #include <linux/highmem.h> |
| 32 | #include <linux/file.h> |
| 33 | #include <linux/syscore_ops.h> |
| 34 | #include <linux/cpu.h> |
| 35 | #include <linux/sched.h> |
| 36 | #include <linux/cpumask.h> |
| 37 | #include <linux/smp.h> |
| 38 | #include <linux/anon_inodes.h> |
| 39 | #include <linux/profile.h> |
| 40 | #include <linux/kvm_para.h> |
| 41 | #include <linux/pagemap.h> |
| 42 | #include <linux/mman.h> |
| 43 | #include <linux/swap.h> |
| 44 | #include <linux/bitops.h> |
| 45 | #include <linux/spinlock.h> |
| 46 | #include <linux/compat.h> |
| 47 | #include <linux/srcu.h> |
| 48 | #include <linux/hugetlb.h> |
| 49 | #include <linux/slab.h> |
| 50 | #include <linux/sort.h> |
| 51 | #include <linux/bsearch.h> |
| 52 | |
| 53 | #include <asm/processor.h> |
| 54 | #include <asm/io.h> |
| 55 | #include <asm/ioctl.h> |
| 56 | #include <asm/uaccess.h> |
| 57 | #include <asm/pgtable.h> |
| 58 | |
| 59 | #include "coalesced_mmio.h" |
| 60 | #include "async_pf.h" |
| 61 | |
| 62 | #define CREATE_TRACE_POINTS |
| 63 | #include <trace/events/kvm.h> |
| 64 | |
| 65 | MODULE_AUTHOR("Qumranet"); |
| 66 | MODULE_LICENSE("GPL"); |
| 67 | |
| 68 | /* |
| 69 | * Ordering of locks: |
| 70 | * |
| 71 | * kvm->lock --> kvm->slots_lock --> kvm->irq_lock |
| 72 | */ |
| 73 | |
| 74 | DEFINE_RAW_SPINLOCK(kvm_lock); |
| 75 | LIST_HEAD(vm_list); |
| 76 | |
| 77 | static cpumask_var_t cpus_hardware_enabled; |
| 78 | static int kvm_usage_count = 0; |
| 79 | static atomic_t hardware_enable_failed; |
| 80 | |
| 81 | struct kmem_cache *kvm_vcpu_cache; |
| 82 | EXPORT_SYMBOL_GPL(kvm_vcpu_cache); |
| 83 | |
| 84 | static __read_mostly struct preempt_ops kvm_preempt_ops; |
| 85 | |
| 86 | struct dentry *kvm_debugfs_dir; |
| 87 | |
| 88 | static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl, |
| 89 | unsigned long arg); |
| 90 | #ifdef CONFIG_COMPAT |
| 91 | static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl, |
| 92 | unsigned long arg); |
| 93 | #endif |
| 94 | static int hardware_enable_all(void); |
| 95 | static void hardware_disable_all(void); |
| 96 | |
| 97 | static void kvm_io_bus_destroy(struct kvm_io_bus *bus); |
| 98 | |
| 99 | bool kvm_rebooting; |
| 100 | EXPORT_SYMBOL_GPL(kvm_rebooting); |
| 101 | |
| 102 | static bool largepages_enabled = true; |
| 103 | |
| 104 | static struct page *hwpoison_page; |
| 105 | static pfn_t hwpoison_pfn; |
| 106 | |
| 107 | struct page *fault_page; |
| 108 | pfn_t fault_pfn; |
| 109 | |
| 110 | inline int kvm_is_mmio_pfn(pfn_t pfn) |
| 111 | { |
| 112 | if (pfn_valid(pfn)) { |
| 113 | int reserved; |
| 114 | struct page *tail = pfn_to_page(pfn); |
| 115 | struct page *head = compound_trans_head(tail); |
| 116 | reserved = PageReserved(head); |
| 117 | if (head != tail) { |
| 118 | /* |
| 119 | * "head" is not a dangling pointer |
| 120 | * (compound_trans_head takes care of that) |
| 121 | * but the hugepage may have been splitted |
| 122 | * from under us (and we may not hold a |
| 123 | * reference count on the head page so it can |
| 124 | * be reused before we run PageReferenced), so |
| 125 | * we've to check PageTail before returning |
| 126 | * what we just read. |
| 127 | */ |
| 128 | smp_rmb(); |
| 129 | if (PageTail(tail)) |
| 130 | return reserved; |
| 131 | } |
| 132 | return PageReserved(tail); |
| 133 | } |
| 134 | |
| 135 | return true; |
| 136 | } |
| 137 | |
| 138 | /* |
| 139 | * Switches to specified vcpu, until a matching vcpu_put() |
| 140 | */ |
| 141 | void vcpu_load(struct kvm_vcpu *vcpu) |
| 142 | { |
| 143 | int cpu; |
| 144 | |
| 145 | mutex_lock(&vcpu->mutex); |
| 146 | if (unlikely(vcpu->pid != current->pids[PIDTYPE_PID].pid)) { |
| 147 | /* The thread running this VCPU changed. */ |
| 148 | struct pid *oldpid = vcpu->pid; |
| 149 | struct pid *newpid = get_task_pid(current, PIDTYPE_PID); |
| 150 | rcu_assign_pointer(vcpu->pid, newpid); |
| 151 | synchronize_rcu(); |
| 152 | put_pid(oldpid); |
| 153 | } |
| 154 | cpu = get_cpu(); |
| 155 | preempt_notifier_register(&vcpu->preempt_notifier); |
| 156 | kvm_arch_vcpu_load(vcpu, cpu); |
| 157 | put_cpu(); |
| 158 | } |
| 159 | |
| 160 | void vcpu_put(struct kvm_vcpu *vcpu) |
| 161 | { |
| 162 | preempt_disable(); |
| 163 | kvm_arch_vcpu_put(vcpu); |
| 164 | preempt_notifier_unregister(&vcpu->preempt_notifier); |
| 165 | preempt_enable(); |
| 166 | mutex_unlock(&vcpu->mutex); |
| 167 | } |
| 168 | |
| 169 | static void ack_flush(void *_completed) |
| 170 | { |
| 171 | } |
| 172 | |
| 173 | static bool make_all_cpus_request(struct kvm *kvm, unsigned int req) |
| 174 | { |
| 175 | int i, cpu, me; |
| 176 | cpumask_var_t cpus; |
| 177 | bool called = true; |
| 178 | struct kvm_vcpu *vcpu; |
| 179 | |
| 180 | zalloc_cpumask_var(&cpus, GFP_ATOMIC); |
| 181 | |
| 182 | me = get_cpu(); |
| 183 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 184 | kvm_make_request(req, vcpu); |
| 185 | cpu = vcpu->cpu; |
| 186 | |
| 187 | /* Set ->requests bit before we read ->mode */ |
| 188 | smp_mb(); |
| 189 | |
| 190 | if (cpus != NULL && cpu != -1 && cpu != me && |
| 191 | kvm_vcpu_exiting_guest_mode(vcpu) != OUTSIDE_GUEST_MODE) |
| 192 | cpumask_set_cpu(cpu, cpus); |
| 193 | } |
| 194 | if (unlikely(cpus == NULL)) |
| 195 | smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1); |
| 196 | else if (!cpumask_empty(cpus)) |
| 197 | smp_call_function_many(cpus, ack_flush, NULL, 1); |
| 198 | else |
| 199 | called = false; |
| 200 | put_cpu(); |
| 201 | free_cpumask_var(cpus); |
| 202 | return called; |
| 203 | } |
| 204 | |
| 205 | void kvm_flush_remote_tlbs(struct kvm *kvm) |
| 206 | { |
| 207 | long dirty_count = kvm->tlbs_dirty; |
| 208 | |
| 209 | smp_mb(); |
| 210 | if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH)) |
| 211 | ++kvm->stat.remote_tlb_flush; |
| 212 | cmpxchg(&kvm->tlbs_dirty, dirty_count, 0); |
| 213 | } |
| 214 | |
| 215 | void kvm_reload_remote_mmus(struct kvm *kvm) |
| 216 | { |
| 217 | make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD); |
| 218 | } |
| 219 | |
| 220 | int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id) |
| 221 | { |
| 222 | struct page *page; |
| 223 | int r; |
| 224 | |
| 225 | mutex_init(&vcpu->mutex); |
| 226 | vcpu->cpu = -1; |
| 227 | vcpu->kvm = kvm; |
| 228 | vcpu->vcpu_id = id; |
| 229 | vcpu->pid = NULL; |
| 230 | init_waitqueue_head(&vcpu->wq); |
| 231 | kvm_async_pf_vcpu_init(vcpu); |
| 232 | |
| 233 | page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| 234 | if (!page) { |
| 235 | r = -ENOMEM; |
| 236 | goto fail; |
| 237 | } |
| 238 | vcpu->run = page_address(page); |
| 239 | |
| 240 | r = kvm_arch_vcpu_init(vcpu); |
| 241 | if (r < 0) |
| 242 | goto fail_free_run; |
| 243 | return 0; |
| 244 | |
| 245 | fail_free_run: |
| 246 | free_page((unsigned long)vcpu->run); |
| 247 | fail: |
| 248 | return r; |
| 249 | } |
| 250 | EXPORT_SYMBOL_GPL(kvm_vcpu_init); |
| 251 | |
| 252 | void kvm_vcpu_uninit(struct kvm_vcpu *vcpu) |
| 253 | { |
| 254 | put_pid(vcpu->pid); |
| 255 | kvm_arch_vcpu_uninit(vcpu); |
| 256 | free_page((unsigned long)vcpu->run); |
| 257 | } |
| 258 | EXPORT_SYMBOL_GPL(kvm_vcpu_uninit); |
| 259 | |
| 260 | #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) |
| 261 | static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn) |
| 262 | { |
| 263 | return container_of(mn, struct kvm, mmu_notifier); |
| 264 | } |
| 265 | |
| 266 | static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn, |
| 267 | struct mm_struct *mm, |
| 268 | unsigned long address) |
| 269 | { |
| 270 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| 271 | int need_tlb_flush, idx; |
| 272 | |
| 273 | /* |
| 274 | * When ->invalidate_page runs, the linux pte has been zapped |
| 275 | * already but the page is still allocated until |
| 276 | * ->invalidate_page returns. So if we increase the sequence |
| 277 | * here the kvm page fault will notice if the spte can't be |
| 278 | * established because the page is going to be freed. If |
| 279 | * instead the kvm page fault establishes the spte before |
| 280 | * ->invalidate_page runs, kvm_unmap_hva will release it |
| 281 | * before returning. |
| 282 | * |
| 283 | * The sequence increase only need to be seen at spin_unlock |
| 284 | * time, and not at spin_lock time. |
| 285 | * |
| 286 | * Increasing the sequence after the spin_unlock would be |
| 287 | * unsafe because the kvm page fault could then establish the |
| 288 | * pte after kvm_unmap_hva returned, without noticing the page |
| 289 | * is going to be freed. |
| 290 | */ |
| 291 | idx = srcu_read_lock(&kvm->srcu); |
| 292 | spin_lock(&kvm->mmu_lock); |
| 293 | |
| 294 | kvm->mmu_notifier_seq++; |
| 295 | need_tlb_flush = kvm_unmap_hva(kvm, address) | kvm->tlbs_dirty; |
| 296 | /* we've to flush the tlb before the pages can be freed */ |
| 297 | if (need_tlb_flush) |
| 298 | kvm_flush_remote_tlbs(kvm); |
| 299 | |
| 300 | spin_unlock(&kvm->mmu_lock); |
| 301 | srcu_read_unlock(&kvm->srcu, idx); |
| 302 | } |
| 303 | |
| 304 | static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn, |
| 305 | struct mm_struct *mm, |
| 306 | unsigned long address, |
| 307 | pte_t pte) |
| 308 | { |
| 309 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| 310 | int idx; |
| 311 | |
| 312 | idx = srcu_read_lock(&kvm->srcu); |
| 313 | spin_lock(&kvm->mmu_lock); |
| 314 | kvm->mmu_notifier_seq++; |
| 315 | kvm_set_spte_hva(kvm, address, pte); |
| 316 | spin_unlock(&kvm->mmu_lock); |
| 317 | srcu_read_unlock(&kvm->srcu, idx); |
| 318 | } |
| 319 | |
| 320 | static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn, |
| 321 | struct mm_struct *mm, |
| 322 | unsigned long start, |
| 323 | unsigned long end) |
| 324 | { |
| 325 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| 326 | int need_tlb_flush = 0, idx; |
| 327 | |
| 328 | idx = srcu_read_lock(&kvm->srcu); |
| 329 | spin_lock(&kvm->mmu_lock); |
| 330 | /* |
| 331 | * The count increase must become visible at unlock time as no |
| 332 | * spte can be established without taking the mmu_lock and |
| 333 | * count is also read inside the mmu_lock critical section. |
| 334 | */ |
| 335 | kvm->mmu_notifier_count++; |
| 336 | for (; start < end; start += PAGE_SIZE) |
| 337 | need_tlb_flush |= kvm_unmap_hva(kvm, start); |
| 338 | need_tlb_flush |= kvm->tlbs_dirty; |
| 339 | /* we've to flush the tlb before the pages can be freed */ |
| 340 | if (need_tlb_flush) |
| 341 | kvm_flush_remote_tlbs(kvm); |
| 342 | |
| 343 | spin_unlock(&kvm->mmu_lock); |
| 344 | srcu_read_unlock(&kvm->srcu, idx); |
| 345 | } |
| 346 | |
| 347 | static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn, |
| 348 | struct mm_struct *mm, |
| 349 | unsigned long start, |
| 350 | unsigned long end) |
| 351 | { |
| 352 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| 353 | |
| 354 | spin_lock(&kvm->mmu_lock); |
| 355 | /* |
| 356 | * This sequence increase will notify the kvm page fault that |
| 357 | * the page that is going to be mapped in the spte could have |
| 358 | * been freed. |
| 359 | */ |
| 360 | kvm->mmu_notifier_seq++; |
| 361 | smp_wmb(); |
| 362 | /* |
| 363 | * The above sequence increase must be visible before the |
| 364 | * below count decrease, which is ensured by the smp_wmb above |
| 365 | * in conjunction with the smp_rmb in mmu_notifier_retry(). |
| 366 | */ |
| 367 | kvm->mmu_notifier_count--; |
| 368 | spin_unlock(&kvm->mmu_lock); |
| 369 | |
| 370 | BUG_ON(kvm->mmu_notifier_count < 0); |
| 371 | } |
| 372 | |
| 373 | static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn, |
| 374 | struct mm_struct *mm, |
| 375 | unsigned long address) |
| 376 | { |
| 377 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| 378 | int young, idx; |
| 379 | |
| 380 | idx = srcu_read_lock(&kvm->srcu); |
| 381 | spin_lock(&kvm->mmu_lock); |
| 382 | |
| 383 | young = kvm_age_hva(kvm, address); |
| 384 | if (young) |
| 385 | kvm_flush_remote_tlbs(kvm); |
| 386 | |
| 387 | spin_unlock(&kvm->mmu_lock); |
| 388 | srcu_read_unlock(&kvm->srcu, idx); |
| 389 | |
| 390 | return young; |
| 391 | } |
| 392 | |
| 393 | static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn, |
| 394 | struct mm_struct *mm, |
| 395 | unsigned long address) |
| 396 | { |
| 397 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| 398 | int young, idx; |
| 399 | |
| 400 | idx = srcu_read_lock(&kvm->srcu); |
| 401 | spin_lock(&kvm->mmu_lock); |
| 402 | young = kvm_test_age_hva(kvm, address); |
| 403 | spin_unlock(&kvm->mmu_lock); |
| 404 | srcu_read_unlock(&kvm->srcu, idx); |
| 405 | |
| 406 | return young; |
| 407 | } |
| 408 | |
| 409 | static void kvm_mmu_notifier_release(struct mmu_notifier *mn, |
| 410 | struct mm_struct *mm) |
| 411 | { |
| 412 | struct kvm *kvm = mmu_notifier_to_kvm(mn); |
| 413 | int idx; |
| 414 | |
| 415 | idx = srcu_read_lock(&kvm->srcu); |
| 416 | kvm_arch_flush_shadow(kvm); |
| 417 | srcu_read_unlock(&kvm->srcu, idx); |
| 418 | } |
| 419 | |
| 420 | static const struct mmu_notifier_ops kvm_mmu_notifier_ops = { |
| 421 | .invalidate_page = kvm_mmu_notifier_invalidate_page, |
| 422 | .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start, |
| 423 | .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end, |
| 424 | .clear_flush_young = kvm_mmu_notifier_clear_flush_young, |
| 425 | .test_young = kvm_mmu_notifier_test_young, |
| 426 | .change_pte = kvm_mmu_notifier_change_pte, |
| 427 | .release = kvm_mmu_notifier_release, |
| 428 | }; |
| 429 | |
| 430 | static int kvm_init_mmu_notifier(struct kvm *kvm) |
| 431 | { |
| 432 | kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops; |
| 433 | return mmu_notifier_register(&kvm->mmu_notifier, current->mm); |
| 434 | } |
| 435 | |
| 436 | #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */ |
| 437 | |
| 438 | static int kvm_init_mmu_notifier(struct kvm *kvm) |
| 439 | { |
| 440 | return 0; |
| 441 | } |
| 442 | |
| 443 | #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */ |
| 444 | |
| 445 | static void kvm_init_memslots_id(struct kvm *kvm) |
| 446 | { |
| 447 | int i; |
| 448 | struct kvm_memslots *slots = kvm->memslots; |
| 449 | |
| 450 | for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) |
| 451 | slots->id_to_index[i] = slots->memslots[i].id = i; |
| 452 | } |
| 453 | |
| 454 | static struct kvm *kvm_create_vm(unsigned long type) |
| 455 | { |
| 456 | int r, i; |
| 457 | struct kvm *kvm = kvm_arch_alloc_vm(); |
| 458 | |
| 459 | if (!kvm) |
| 460 | return ERR_PTR(-ENOMEM); |
| 461 | |
| 462 | r = kvm_arch_init_vm(kvm, type); |
| 463 | if (r) |
| 464 | goto out_err_nodisable; |
| 465 | |
| 466 | r = hardware_enable_all(); |
| 467 | if (r) |
| 468 | goto out_err_nodisable; |
| 469 | |
| 470 | #ifdef CONFIG_HAVE_KVM_IRQCHIP |
| 471 | INIT_HLIST_HEAD(&kvm->mask_notifier_list); |
| 472 | INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list); |
| 473 | #endif |
| 474 | |
| 475 | r = -ENOMEM; |
| 476 | kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL); |
| 477 | if (!kvm->memslots) |
| 478 | goto out_err_nosrcu; |
| 479 | kvm_init_memslots_id(kvm); |
| 480 | if (init_srcu_struct(&kvm->srcu)) |
| 481 | goto out_err_nosrcu; |
| 482 | for (i = 0; i < KVM_NR_BUSES; i++) { |
| 483 | kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus), |
| 484 | GFP_KERNEL); |
| 485 | if (!kvm->buses[i]) |
| 486 | goto out_err; |
| 487 | } |
| 488 | |
| 489 | spin_lock_init(&kvm->mmu_lock); |
| 490 | kvm->mm = current->mm; |
| 491 | atomic_inc(&kvm->mm->mm_count); |
| 492 | kvm_eventfd_init(kvm); |
| 493 | mutex_init(&kvm->lock); |
| 494 | mutex_init(&kvm->irq_lock); |
| 495 | mutex_init(&kvm->slots_lock); |
| 496 | atomic_set(&kvm->users_count, 1); |
| 497 | |
| 498 | r = kvm_init_mmu_notifier(kvm); |
| 499 | if (r) |
| 500 | goto out_err; |
| 501 | |
| 502 | raw_spin_lock(&kvm_lock); |
| 503 | list_add(&kvm->vm_list, &vm_list); |
| 504 | raw_spin_unlock(&kvm_lock); |
| 505 | |
| 506 | return kvm; |
| 507 | |
| 508 | out_err: |
| 509 | cleanup_srcu_struct(&kvm->srcu); |
| 510 | out_err_nosrcu: |
| 511 | hardware_disable_all(); |
| 512 | out_err_nodisable: |
| 513 | for (i = 0; i < KVM_NR_BUSES; i++) |
| 514 | kfree(kvm->buses[i]); |
| 515 | kfree(kvm->memslots); |
| 516 | kvm_arch_free_vm(kvm); |
| 517 | return ERR_PTR(r); |
| 518 | } |
| 519 | |
| 520 | static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot) |
| 521 | { |
| 522 | if (!memslot->dirty_bitmap) |
| 523 | return; |
| 524 | |
| 525 | if (2 * kvm_dirty_bitmap_bytes(memslot) > PAGE_SIZE) |
| 526 | vfree(memslot->dirty_bitmap_head); |
| 527 | else |
| 528 | kfree(memslot->dirty_bitmap_head); |
| 529 | |
| 530 | memslot->dirty_bitmap = NULL; |
| 531 | memslot->dirty_bitmap_head = NULL; |
| 532 | } |
| 533 | |
| 534 | /* |
| 535 | * Free any memory in @free but not in @dont. |
| 536 | */ |
| 537 | static void kvm_free_physmem_slot(struct kvm_memory_slot *free, |
| 538 | struct kvm_memory_slot *dont) |
| 539 | { |
| 540 | if (!dont || free->rmap != dont->rmap) |
| 541 | vfree(free->rmap); |
| 542 | |
| 543 | if (!dont || free->dirty_bitmap != dont->dirty_bitmap) |
| 544 | kvm_destroy_dirty_bitmap(free); |
| 545 | |
| 546 | kvm_arch_free_memslot(free, dont); |
| 547 | |
| 548 | free->npages = 0; |
| 549 | free->rmap = NULL; |
| 550 | } |
| 551 | |
| 552 | void kvm_free_physmem(struct kvm *kvm) |
| 553 | { |
| 554 | struct kvm_memslots *slots = kvm->memslots; |
| 555 | struct kvm_memory_slot *memslot; |
| 556 | |
| 557 | kvm_for_each_memslot(memslot, slots) |
| 558 | kvm_free_physmem_slot(memslot, NULL); |
| 559 | |
| 560 | kfree(kvm->memslots); |
| 561 | } |
| 562 | |
| 563 | static void kvm_destroy_vm(struct kvm *kvm) |
| 564 | { |
| 565 | int i; |
| 566 | struct mm_struct *mm = kvm->mm; |
| 567 | |
| 568 | kvm_arch_sync_events(kvm); |
| 569 | raw_spin_lock(&kvm_lock); |
| 570 | list_del(&kvm->vm_list); |
| 571 | raw_spin_unlock(&kvm_lock); |
| 572 | kvm_free_irq_routing(kvm); |
| 573 | for (i = 0; i < KVM_NR_BUSES; i++) |
| 574 | kvm_io_bus_destroy(kvm->buses[i]); |
| 575 | kvm_coalesced_mmio_free(kvm); |
| 576 | #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER) |
| 577 | mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm); |
| 578 | #else |
| 579 | kvm_arch_flush_shadow(kvm); |
| 580 | #endif |
| 581 | kvm_arch_destroy_vm(kvm); |
| 582 | kvm_free_physmem(kvm); |
| 583 | cleanup_srcu_struct(&kvm->srcu); |
| 584 | kvm_arch_free_vm(kvm); |
| 585 | hardware_disable_all(); |
| 586 | mmdrop(mm); |
| 587 | } |
| 588 | |
| 589 | void kvm_get_kvm(struct kvm *kvm) |
| 590 | { |
| 591 | atomic_inc(&kvm->users_count); |
| 592 | } |
| 593 | EXPORT_SYMBOL_GPL(kvm_get_kvm); |
| 594 | |
| 595 | void kvm_put_kvm(struct kvm *kvm) |
| 596 | { |
| 597 | if (atomic_dec_and_test(&kvm->users_count)) |
| 598 | kvm_destroy_vm(kvm); |
| 599 | } |
| 600 | EXPORT_SYMBOL_GPL(kvm_put_kvm); |
| 601 | |
| 602 | |
| 603 | static int kvm_vm_release(struct inode *inode, struct file *filp) |
| 604 | { |
| 605 | struct kvm *kvm = filp->private_data; |
| 606 | |
| 607 | kvm_irqfd_release(kvm); |
| 608 | |
| 609 | kvm_put_kvm(kvm); |
| 610 | return 0; |
| 611 | } |
| 612 | |
| 613 | /* |
| 614 | * Allocation size is twice as large as the actual dirty bitmap size. |
| 615 | * This makes it possible to do double buffering: see x86's |
| 616 | * kvm_vm_ioctl_get_dirty_log(). |
| 617 | */ |
| 618 | static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot) |
| 619 | { |
| 620 | #ifndef CONFIG_S390 |
| 621 | unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot); |
| 622 | |
| 623 | if (dirty_bytes > PAGE_SIZE) |
| 624 | memslot->dirty_bitmap = vzalloc(dirty_bytes); |
| 625 | else |
| 626 | memslot->dirty_bitmap = kzalloc(dirty_bytes, GFP_KERNEL); |
| 627 | |
| 628 | if (!memslot->dirty_bitmap) |
| 629 | return -ENOMEM; |
| 630 | |
| 631 | memslot->dirty_bitmap_head = memslot->dirty_bitmap; |
| 632 | memslot->nr_dirty_pages = 0; |
| 633 | #endif /* !CONFIG_S390 */ |
| 634 | return 0; |
| 635 | } |
| 636 | |
| 637 | static int cmp_memslot(const void *slot1, const void *slot2) |
| 638 | { |
| 639 | struct kvm_memory_slot *s1, *s2; |
| 640 | |
| 641 | s1 = (struct kvm_memory_slot *)slot1; |
| 642 | s2 = (struct kvm_memory_slot *)slot2; |
| 643 | |
| 644 | if (s1->npages < s2->npages) |
| 645 | return 1; |
| 646 | if (s1->npages > s2->npages) |
| 647 | return -1; |
| 648 | |
| 649 | return 0; |
| 650 | } |
| 651 | |
| 652 | /* |
| 653 | * Sort the memslots base on its size, so the larger slots |
| 654 | * will get better fit. |
| 655 | */ |
| 656 | static void sort_memslots(struct kvm_memslots *slots) |
| 657 | { |
| 658 | int i; |
| 659 | |
| 660 | sort(slots->memslots, KVM_MEM_SLOTS_NUM, |
| 661 | sizeof(struct kvm_memory_slot), cmp_memslot, NULL); |
| 662 | |
| 663 | for (i = 0; i < KVM_MEM_SLOTS_NUM; i++) |
| 664 | slots->id_to_index[slots->memslots[i].id] = i; |
| 665 | } |
| 666 | |
| 667 | void update_memslots(struct kvm_memslots *slots, struct kvm_memory_slot *new) |
| 668 | { |
| 669 | if (new) { |
| 670 | int id = new->id; |
| 671 | struct kvm_memory_slot *old = id_to_memslot(slots, id); |
| 672 | unsigned long npages = old->npages; |
| 673 | |
| 674 | *old = *new; |
| 675 | if (new->npages != npages) |
| 676 | sort_memslots(slots); |
| 677 | } |
| 678 | |
| 679 | slots->generation++; |
| 680 | } |
| 681 | |
| 682 | /* |
| 683 | * Allocate some memory and give it an address in the guest physical address |
| 684 | * space. |
| 685 | * |
| 686 | * Discontiguous memory is allowed, mostly for framebuffers. |
| 687 | * |
| 688 | * Must be called holding mmap_sem for write. |
| 689 | */ |
| 690 | int __kvm_set_memory_region(struct kvm *kvm, |
| 691 | struct kvm_userspace_memory_region *mem, |
| 692 | int user_alloc) |
| 693 | { |
| 694 | int r; |
| 695 | gfn_t base_gfn; |
| 696 | unsigned long npages; |
| 697 | struct kvm_memory_slot *memslot, *slot; |
| 698 | struct kvm_memory_slot old, new; |
| 699 | struct kvm_memslots *slots, *old_memslots; |
| 700 | |
| 701 | r = -EINVAL; |
| 702 | /* General sanity checks */ |
| 703 | if (mem->memory_size & (PAGE_SIZE - 1)) |
| 704 | goto out; |
| 705 | if (mem->guest_phys_addr & (PAGE_SIZE - 1)) |
| 706 | goto out; |
| 707 | /* We can read the guest memory with __xxx_user() later on. */ |
| 708 | if (user_alloc && |
| 709 | ((mem->userspace_addr & (PAGE_SIZE - 1)) || |
| 710 | !access_ok(VERIFY_WRITE, |
| 711 | (void __user *)(unsigned long)mem->userspace_addr, |
| 712 | mem->memory_size))) |
| 713 | goto out; |
| 714 | if (mem->slot >= KVM_MEM_SLOTS_NUM) |
| 715 | goto out; |
| 716 | if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr) |
| 717 | goto out; |
| 718 | |
| 719 | memslot = id_to_memslot(kvm->memslots, mem->slot); |
| 720 | base_gfn = mem->guest_phys_addr >> PAGE_SHIFT; |
| 721 | npages = mem->memory_size >> PAGE_SHIFT; |
| 722 | |
| 723 | r = -EINVAL; |
| 724 | if (npages > KVM_MEM_MAX_NR_PAGES) |
| 725 | goto out; |
| 726 | |
| 727 | if (!npages) |
| 728 | mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES; |
| 729 | |
| 730 | new = old = *memslot; |
| 731 | |
| 732 | new.id = mem->slot; |
| 733 | new.base_gfn = base_gfn; |
| 734 | new.npages = npages; |
| 735 | new.flags = mem->flags; |
| 736 | |
| 737 | /* Disallow changing a memory slot's size. */ |
| 738 | r = -EINVAL; |
| 739 | if (npages && old.npages && npages != old.npages) |
| 740 | goto out_free; |
| 741 | |
| 742 | /* Check for overlaps */ |
| 743 | r = -EEXIST; |
| 744 | kvm_for_each_memslot(slot, kvm->memslots) { |
| 745 | if (slot->id >= KVM_MEMORY_SLOTS || slot == memslot) |
| 746 | continue; |
| 747 | if (!((base_gfn + npages <= slot->base_gfn) || |
| 748 | (base_gfn >= slot->base_gfn + slot->npages))) |
| 749 | goto out_free; |
| 750 | } |
| 751 | |
| 752 | /* Free page dirty bitmap if unneeded */ |
| 753 | if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES)) |
| 754 | new.dirty_bitmap = NULL; |
| 755 | |
| 756 | r = -ENOMEM; |
| 757 | |
| 758 | /* Allocate if a slot is being created */ |
| 759 | if (npages && !old.npages) { |
| 760 | new.user_alloc = user_alloc; |
| 761 | new.userspace_addr = mem->userspace_addr; |
| 762 | #ifndef CONFIG_S390 |
| 763 | new.rmap = vzalloc(npages * sizeof(*new.rmap)); |
| 764 | if (!new.rmap) |
| 765 | goto out_free; |
| 766 | #endif /* not defined CONFIG_S390 */ |
| 767 | if (kvm_arch_create_memslot(&new, npages)) |
| 768 | goto out_free; |
| 769 | } |
| 770 | |
| 771 | /* Allocate page dirty bitmap if needed */ |
| 772 | if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) { |
| 773 | if (kvm_create_dirty_bitmap(&new) < 0) |
| 774 | goto out_free; |
| 775 | /* destroy any largepage mappings for dirty tracking */ |
| 776 | } |
| 777 | |
| 778 | if (!npages || base_gfn != old.base_gfn) { |
| 779 | struct kvm_memory_slot *slot; |
| 780 | |
| 781 | r = -ENOMEM; |
| 782 | slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), |
| 783 | GFP_KERNEL); |
| 784 | if (!slots) |
| 785 | goto out_free; |
| 786 | slot = id_to_memslot(slots, mem->slot); |
| 787 | slot->flags |= KVM_MEMSLOT_INVALID; |
| 788 | |
| 789 | update_memslots(slots, NULL); |
| 790 | |
| 791 | old_memslots = kvm->memslots; |
| 792 | rcu_assign_pointer(kvm->memslots, slots); |
| 793 | synchronize_srcu_expedited(&kvm->srcu); |
| 794 | /* slot was deleted or moved, clear iommu mapping */ |
| 795 | kvm_iommu_unmap_pages(kvm, &old); |
| 796 | /* From this point no new shadow pages pointing to a deleted, |
| 797 | * or moved, memslot will be created. |
| 798 | * |
| 799 | * validation of sp->gfn happens in: |
| 800 | * - gfn_to_hva (kvm_read_guest, gfn_to_pfn) |
| 801 | * - kvm_is_visible_gfn (mmu_check_roots) |
| 802 | */ |
| 803 | kvm_arch_flush_shadow(kvm); |
| 804 | kfree(old_memslots); |
| 805 | } |
| 806 | |
| 807 | r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc); |
| 808 | if (r) |
| 809 | goto out_free; |
| 810 | |
| 811 | r = -ENOMEM; |
| 812 | slots = kmemdup(kvm->memslots, sizeof(struct kvm_memslots), |
| 813 | GFP_KERNEL); |
| 814 | if (!slots) |
| 815 | goto out_free; |
| 816 | |
| 817 | /* map new memory slot into the iommu */ |
| 818 | if (npages) { |
| 819 | r = kvm_iommu_map_pages(kvm, &new); |
| 820 | if (r) |
| 821 | goto out_slots; |
| 822 | } |
| 823 | |
| 824 | /* actual memory is freed via old in kvm_free_physmem_slot below */ |
| 825 | if (!npages) { |
| 826 | new.rmap = NULL; |
| 827 | new.dirty_bitmap = NULL; |
| 828 | memset(&new.arch, 0, sizeof(new.arch)); |
| 829 | } |
| 830 | |
| 831 | update_memslots(slots, &new); |
| 832 | old_memslots = kvm->memslots; |
| 833 | rcu_assign_pointer(kvm->memslots, slots); |
| 834 | synchronize_srcu_expedited(&kvm->srcu); |
| 835 | |
| 836 | kvm_arch_commit_memory_region(kvm, mem, old, user_alloc); |
| 837 | |
| 838 | /* |
| 839 | * If the new memory slot is created, we need to clear all |
| 840 | * mmio sptes. |
| 841 | */ |
| 842 | if (npages && old.base_gfn != mem->guest_phys_addr >> PAGE_SHIFT) |
| 843 | kvm_arch_flush_shadow(kvm); |
| 844 | |
| 845 | kvm_free_physmem_slot(&old, &new); |
| 846 | kfree(old_memslots); |
| 847 | |
| 848 | return 0; |
| 849 | |
| 850 | out_slots: |
| 851 | kfree(slots); |
| 852 | out_free: |
| 853 | kvm_free_physmem_slot(&new, &old); |
| 854 | out: |
| 855 | return r; |
| 856 | |
| 857 | } |
| 858 | EXPORT_SYMBOL_GPL(__kvm_set_memory_region); |
| 859 | |
| 860 | int kvm_set_memory_region(struct kvm *kvm, |
| 861 | struct kvm_userspace_memory_region *mem, |
| 862 | int user_alloc) |
| 863 | { |
| 864 | int r; |
| 865 | |
| 866 | mutex_lock(&kvm->slots_lock); |
| 867 | r = __kvm_set_memory_region(kvm, mem, user_alloc); |
| 868 | mutex_unlock(&kvm->slots_lock); |
| 869 | return r; |
| 870 | } |
| 871 | EXPORT_SYMBOL_GPL(kvm_set_memory_region); |
| 872 | |
| 873 | int kvm_vm_ioctl_set_memory_region(struct kvm *kvm, |
| 874 | struct |
| 875 | kvm_userspace_memory_region *mem, |
| 876 | int user_alloc) |
| 877 | { |
| 878 | if (mem->slot >= KVM_MEMORY_SLOTS) |
| 879 | return -EINVAL; |
| 880 | return kvm_set_memory_region(kvm, mem, user_alloc); |
| 881 | } |
| 882 | |
| 883 | int kvm_get_dirty_log(struct kvm *kvm, |
| 884 | struct kvm_dirty_log *log, int *is_dirty) |
| 885 | { |
| 886 | struct kvm_memory_slot *memslot; |
| 887 | int r, i; |
| 888 | unsigned long n; |
| 889 | unsigned long any = 0; |
| 890 | |
| 891 | r = -EINVAL; |
| 892 | if (log->slot >= KVM_MEMORY_SLOTS) |
| 893 | goto out; |
| 894 | |
| 895 | memslot = id_to_memslot(kvm->memslots, log->slot); |
| 896 | r = -ENOENT; |
| 897 | if (!memslot->dirty_bitmap) |
| 898 | goto out; |
| 899 | |
| 900 | n = kvm_dirty_bitmap_bytes(memslot); |
| 901 | |
| 902 | for (i = 0; !any && i < n/sizeof(long); ++i) |
| 903 | any = memslot->dirty_bitmap[i]; |
| 904 | |
| 905 | r = -EFAULT; |
| 906 | if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n)) |
| 907 | goto out; |
| 908 | |
| 909 | if (any) |
| 910 | *is_dirty = 1; |
| 911 | |
| 912 | r = 0; |
| 913 | out: |
| 914 | return r; |
| 915 | } |
| 916 | |
| 917 | bool kvm_largepages_enabled(void) |
| 918 | { |
| 919 | return largepages_enabled; |
| 920 | } |
| 921 | |
| 922 | void kvm_disable_largepages(void) |
| 923 | { |
| 924 | largepages_enabled = false; |
| 925 | } |
| 926 | EXPORT_SYMBOL_GPL(kvm_disable_largepages); |
| 927 | |
| 928 | int is_error_page(struct page *page) |
| 929 | { |
| 930 | return page == bad_page || page == hwpoison_page || page == fault_page; |
| 931 | } |
| 932 | EXPORT_SYMBOL_GPL(is_error_page); |
| 933 | |
| 934 | int is_error_pfn(pfn_t pfn) |
| 935 | { |
| 936 | return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn; |
| 937 | } |
| 938 | EXPORT_SYMBOL_GPL(is_error_pfn); |
| 939 | |
| 940 | int is_hwpoison_pfn(pfn_t pfn) |
| 941 | { |
| 942 | return pfn == hwpoison_pfn; |
| 943 | } |
| 944 | EXPORT_SYMBOL_GPL(is_hwpoison_pfn); |
| 945 | |
| 946 | int is_fault_pfn(pfn_t pfn) |
| 947 | { |
| 948 | return pfn == fault_pfn; |
| 949 | } |
| 950 | EXPORT_SYMBOL_GPL(is_fault_pfn); |
| 951 | |
| 952 | int is_noslot_pfn(pfn_t pfn) |
| 953 | { |
| 954 | return pfn == bad_pfn; |
| 955 | } |
| 956 | EXPORT_SYMBOL_GPL(is_noslot_pfn); |
| 957 | |
| 958 | int is_invalid_pfn(pfn_t pfn) |
| 959 | { |
| 960 | return pfn == hwpoison_pfn || pfn == fault_pfn; |
| 961 | } |
| 962 | EXPORT_SYMBOL_GPL(is_invalid_pfn); |
| 963 | |
| 964 | static inline unsigned long bad_hva(void) |
| 965 | { |
| 966 | return PAGE_OFFSET; |
| 967 | } |
| 968 | |
| 969 | int kvm_is_error_hva(unsigned long addr) |
| 970 | { |
| 971 | return addr == bad_hva(); |
| 972 | } |
| 973 | EXPORT_SYMBOL_GPL(kvm_is_error_hva); |
| 974 | |
| 975 | struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn) |
| 976 | { |
| 977 | return __gfn_to_memslot(kvm_memslots(kvm), gfn); |
| 978 | } |
| 979 | EXPORT_SYMBOL_GPL(gfn_to_memslot); |
| 980 | |
| 981 | int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn) |
| 982 | { |
| 983 | struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn); |
| 984 | |
| 985 | if (!memslot || memslot->id >= KVM_MEMORY_SLOTS || |
| 986 | memslot->flags & KVM_MEMSLOT_INVALID) |
| 987 | return 0; |
| 988 | |
| 989 | return 1; |
| 990 | } |
| 991 | EXPORT_SYMBOL_GPL(kvm_is_visible_gfn); |
| 992 | |
| 993 | unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn) |
| 994 | { |
| 995 | struct vm_area_struct *vma; |
| 996 | unsigned long addr, size; |
| 997 | |
| 998 | size = PAGE_SIZE; |
| 999 | |
| 1000 | addr = gfn_to_hva(kvm, gfn); |
| 1001 | if (kvm_is_error_hva(addr)) |
| 1002 | return PAGE_SIZE; |
| 1003 | |
| 1004 | down_read(¤t->mm->mmap_sem); |
| 1005 | vma = find_vma(current->mm, addr); |
| 1006 | if (!vma) |
| 1007 | goto out; |
| 1008 | |
| 1009 | size = vma_kernel_pagesize(vma); |
| 1010 | |
| 1011 | out: |
| 1012 | up_read(¤t->mm->mmap_sem); |
| 1013 | |
| 1014 | return size; |
| 1015 | } |
| 1016 | |
| 1017 | static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn, |
| 1018 | gfn_t *nr_pages) |
| 1019 | { |
| 1020 | if (!slot || slot->flags & KVM_MEMSLOT_INVALID) |
| 1021 | return bad_hva(); |
| 1022 | |
| 1023 | if (nr_pages) |
| 1024 | *nr_pages = slot->npages - (gfn - slot->base_gfn); |
| 1025 | |
| 1026 | return gfn_to_hva_memslot(slot, gfn); |
| 1027 | } |
| 1028 | |
| 1029 | unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn) |
| 1030 | { |
| 1031 | return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL); |
| 1032 | } |
| 1033 | EXPORT_SYMBOL_GPL(gfn_to_hva); |
| 1034 | |
| 1035 | static pfn_t get_fault_pfn(void) |
| 1036 | { |
| 1037 | get_page(fault_page); |
| 1038 | return fault_pfn; |
| 1039 | } |
| 1040 | |
| 1041 | int get_user_page_nowait(struct task_struct *tsk, struct mm_struct *mm, |
| 1042 | unsigned long start, int write, struct page **page) |
| 1043 | { |
| 1044 | int flags = FOLL_TOUCH | FOLL_NOWAIT | FOLL_HWPOISON | FOLL_GET; |
| 1045 | |
| 1046 | if (write) |
| 1047 | flags |= FOLL_WRITE; |
| 1048 | |
| 1049 | return __get_user_pages(tsk, mm, start, 1, flags, page, NULL, NULL); |
| 1050 | } |
| 1051 | |
| 1052 | static inline int check_user_page_hwpoison(unsigned long addr) |
| 1053 | { |
| 1054 | int rc, flags = FOLL_TOUCH | FOLL_HWPOISON | FOLL_WRITE; |
| 1055 | |
| 1056 | rc = __get_user_pages(current, current->mm, addr, 1, |
| 1057 | flags, NULL, NULL, NULL); |
| 1058 | return rc == -EHWPOISON; |
| 1059 | } |
| 1060 | |
| 1061 | static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic, |
| 1062 | bool *async, bool write_fault, bool *writable) |
| 1063 | { |
| 1064 | struct page *page[1]; |
| 1065 | int npages = 0; |
| 1066 | pfn_t pfn; |
| 1067 | |
| 1068 | /* we can do it either atomically or asynchronously, not both */ |
| 1069 | BUG_ON(atomic && async); |
| 1070 | |
| 1071 | BUG_ON(!write_fault && !writable); |
| 1072 | |
| 1073 | if (writable) |
| 1074 | *writable = true; |
| 1075 | |
| 1076 | if (atomic || async) |
| 1077 | npages = __get_user_pages_fast(addr, 1, 1, page); |
| 1078 | |
| 1079 | if (unlikely(npages != 1) && !atomic) { |
| 1080 | might_sleep(); |
| 1081 | |
| 1082 | if (writable) |
| 1083 | *writable = write_fault; |
| 1084 | |
| 1085 | if (async) { |
| 1086 | down_read(¤t->mm->mmap_sem); |
| 1087 | npages = get_user_page_nowait(current, current->mm, |
| 1088 | addr, write_fault, page); |
| 1089 | up_read(¤t->mm->mmap_sem); |
| 1090 | } else |
| 1091 | npages = get_user_pages_fast(addr, 1, write_fault, |
| 1092 | page); |
| 1093 | |
| 1094 | /* map read fault as writable if possible */ |
| 1095 | if (unlikely(!write_fault) && npages == 1) { |
| 1096 | struct page *wpage[1]; |
| 1097 | |
| 1098 | npages = __get_user_pages_fast(addr, 1, 1, wpage); |
| 1099 | if (npages == 1) { |
| 1100 | *writable = true; |
| 1101 | put_page(page[0]); |
| 1102 | page[0] = wpage[0]; |
| 1103 | } |
| 1104 | npages = 1; |
| 1105 | } |
| 1106 | } |
| 1107 | |
| 1108 | if (unlikely(npages != 1)) { |
| 1109 | struct vm_area_struct *vma; |
| 1110 | |
| 1111 | if (atomic) |
| 1112 | return get_fault_pfn(); |
| 1113 | |
| 1114 | down_read(¤t->mm->mmap_sem); |
| 1115 | if (npages == -EHWPOISON || |
| 1116 | (!async && check_user_page_hwpoison(addr))) { |
| 1117 | up_read(¤t->mm->mmap_sem); |
| 1118 | get_page(hwpoison_page); |
| 1119 | return page_to_pfn(hwpoison_page); |
| 1120 | } |
| 1121 | |
| 1122 | vma = find_vma_intersection(current->mm, addr, addr+1); |
| 1123 | |
| 1124 | if (vma == NULL) |
| 1125 | pfn = get_fault_pfn(); |
| 1126 | else if ((vma->vm_flags & VM_PFNMAP)) { |
| 1127 | pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + |
| 1128 | vma->vm_pgoff; |
| 1129 | BUG_ON(!kvm_is_mmio_pfn(pfn)); |
| 1130 | } else { |
| 1131 | if (async && (vma->vm_flags & VM_WRITE)) |
| 1132 | *async = true; |
| 1133 | pfn = get_fault_pfn(); |
| 1134 | } |
| 1135 | up_read(¤t->mm->mmap_sem); |
| 1136 | } else |
| 1137 | pfn = page_to_pfn(page[0]); |
| 1138 | |
| 1139 | return pfn; |
| 1140 | } |
| 1141 | |
| 1142 | pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr) |
| 1143 | { |
| 1144 | return hva_to_pfn(kvm, addr, true, NULL, true, NULL); |
| 1145 | } |
| 1146 | EXPORT_SYMBOL_GPL(hva_to_pfn_atomic); |
| 1147 | |
| 1148 | static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic, bool *async, |
| 1149 | bool write_fault, bool *writable) |
| 1150 | { |
| 1151 | unsigned long addr; |
| 1152 | |
| 1153 | if (async) |
| 1154 | *async = false; |
| 1155 | |
| 1156 | addr = gfn_to_hva(kvm, gfn); |
| 1157 | if (kvm_is_error_hva(addr)) { |
| 1158 | get_page(bad_page); |
| 1159 | return page_to_pfn(bad_page); |
| 1160 | } |
| 1161 | |
| 1162 | return hva_to_pfn(kvm, addr, atomic, async, write_fault, writable); |
| 1163 | } |
| 1164 | |
| 1165 | pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn) |
| 1166 | { |
| 1167 | return __gfn_to_pfn(kvm, gfn, true, NULL, true, NULL); |
| 1168 | } |
| 1169 | EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic); |
| 1170 | |
| 1171 | pfn_t gfn_to_pfn_async(struct kvm *kvm, gfn_t gfn, bool *async, |
| 1172 | bool write_fault, bool *writable) |
| 1173 | { |
| 1174 | return __gfn_to_pfn(kvm, gfn, false, async, write_fault, writable); |
| 1175 | } |
| 1176 | EXPORT_SYMBOL_GPL(gfn_to_pfn_async); |
| 1177 | |
| 1178 | pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn) |
| 1179 | { |
| 1180 | return __gfn_to_pfn(kvm, gfn, false, NULL, true, NULL); |
| 1181 | } |
| 1182 | EXPORT_SYMBOL_GPL(gfn_to_pfn); |
| 1183 | |
| 1184 | pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault, |
| 1185 | bool *writable) |
| 1186 | { |
| 1187 | return __gfn_to_pfn(kvm, gfn, false, NULL, write_fault, writable); |
| 1188 | } |
| 1189 | EXPORT_SYMBOL_GPL(gfn_to_pfn_prot); |
| 1190 | |
| 1191 | pfn_t gfn_to_pfn_memslot(struct kvm *kvm, |
| 1192 | struct kvm_memory_slot *slot, gfn_t gfn) |
| 1193 | { |
| 1194 | unsigned long addr = gfn_to_hva_memslot(slot, gfn); |
| 1195 | return hva_to_pfn(kvm, addr, false, NULL, true, NULL); |
| 1196 | } |
| 1197 | |
| 1198 | int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages, |
| 1199 | int nr_pages) |
| 1200 | { |
| 1201 | unsigned long addr; |
| 1202 | gfn_t entry; |
| 1203 | |
| 1204 | addr = gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, &entry); |
| 1205 | if (kvm_is_error_hva(addr)) |
| 1206 | return -1; |
| 1207 | |
| 1208 | if (entry < nr_pages) |
| 1209 | return 0; |
| 1210 | |
| 1211 | return __get_user_pages_fast(addr, nr_pages, 1, pages); |
| 1212 | } |
| 1213 | EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic); |
| 1214 | |
| 1215 | struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn) |
| 1216 | { |
| 1217 | pfn_t pfn; |
| 1218 | |
| 1219 | pfn = gfn_to_pfn(kvm, gfn); |
| 1220 | if (!kvm_is_mmio_pfn(pfn)) |
| 1221 | return pfn_to_page(pfn); |
| 1222 | |
| 1223 | WARN_ON(kvm_is_mmio_pfn(pfn)); |
| 1224 | |
| 1225 | get_page(bad_page); |
| 1226 | return bad_page; |
| 1227 | } |
| 1228 | |
| 1229 | EXPORT_SYMBOL_GPL(gfn_to_page); |
| 1230 | |
| 1231 | void kvm_release_page_clean(struct page *page) |
| 1232 | { |
| 1233 | kvm_release_pfn_clean(page_to_pfn(page)); |
| 1234 | } |
| 1235 | EXPORT_SYMBOL_GPL(kvm_release_page_clean); |
| 1236 | |
| 1237 | void kvm_release_pfn_clean(pfn_t pfn) |
| 1238 | { |
| 1239 | if (!kvm_is_mmio_pfn(pfn)) |
| 1240 | put_page(pfn_to_page(pfn)); |
| 1241 | } |
| 1242 | EXPORT_SYMBOL_GPL(kvm_release_pfn_clean); |
| 1243 | |
| 1244 | void kvm_release_page_dirty(struct page *page) |
| 1245 | { |
| 1246 | kvm_release_pfn_dirty(page_to_pfn(page)); |
| 1247 | } |
| 1248 | EXPORT_SYMBOL_GPL(kvm_release_page_dirty); |
| 1249 | |
| 1250 | void kvm_release_pfn_dirty(pfn_t pfn) |
| 1251 | { |
| 1252 | kvm_set_pfn_dirty(pfn); |
| 1253 | kvm_release_pfn_clean(pfn); |
| 1254 | } |
| 1255 | EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty); |
| 1256 | |
| 1257 | void kvm_set_page_dirty(struct page *page) |
| 1258 | { |
| 1259 | kvm_set_pfn_dirty(page_to_pfn(page)); |
| 1260 | } |
| 1261 | EXPORT_SYMBOL_GPL(kvm_set_page_dirty); |
| 1262 | |
| 1263 | void kvm_set_pfn_dirty(pfn_t pfn) |
| 1264 | { |
| 1265 | if (!kvm_is_mmio_pfn(pfn)) { |
| 1266 | struct page *page = pfn_to_page(pfn); |
| 1267 | if (!PageReserved(page)) |
| 1268 | SetPageDirty(page); |
| 1269 | } |
| 1270 | } |
| 1271 | EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty); |
| 1272 | |
| 1273 | void kvm_set_pfn_accessed(pfn_t pfn) |
| 1274 | { |
| 1275 | if (!kvm_is_mmio_pfn(pfn)) |
| 1276 | mark_page_accessed(pfn_to_page(pfn)); |
| 1277 | } |
| 1278 | EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed); |
| 1279 | |
| 1280 | void kvm_get_pfn(pfn_t pfn) |
| 1281 | { |
| 1282 | if (!kvm_is_mmio_pfn(pfn)) |
| 1283 | get_page(pfn_to_page(pfn)); |
| 1284 | } |
| 1285 | EXPORT_SYMBOL_GPL(kvm_get_pfn); |
| 1286 | |
| 1287 | static int next_segment(unsigned long len, int offset) |
| 1288 | { |
| 1289 | if (len > PAGE_SIZE - offset) |
| 1290 | return PAGE_SIZE - offset; |
| 1291 | else |
| 1292 | return len; |
| 1293 | } |
| 1294 | |
| 1295 | int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset, |
| 1296 | int len) |
| 1297 | { |
| 1298 | int r; |
| 1299 | unsigned long addr; |
| 1300 | |
| 1301 | addr = gfn_to_hva(kvm, gfn); |
| 1302 | if (kvm_is_error_hva(addr)) |
| 1303 | return -EFAULT; |
| 1304 | r = __copy_from_user(data, (void __user *)addr + offset, len); |
| 1305 | if (r) |
| 1306 | return -EFAULT; |
| 1307 | return 0; |
| 1308 | } |
| 1309 | EXPORT_SYMBOL_GPL(kvm_read_guest_page); |
| 1310 | |
| 1311 | int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len) |
| 1312 | { |
| 1313 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 1314 | int seg; |
| 1315 | int offset = offset_in_page(gpa); |
| 1316 | int ret; |
| 1317 | |
| 1318 | while ((seg = next_segment(len, offset)) != 0) { |
| 1319 | ret = kvm_read_guest_page(kvm, gfn, data, offset, seg); |
| 1320 | if (ret < 0) |
| 1321 | return ret; |
| 1322 | offset = 0; |
| 1323 | len -= seg; |
| 1324 | data += seg; |
| 1325 | ++gfn; |
| 1326 | } |
| 1327 | return 0; |
| 1328 | } |
| 1329 | EXPORT_SYMBOL_GPL(kvm_read_guest); |
| 1330 | |
| 1331 | int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data, |
| 1332 | unsigned long len) |
| 1333 | { |
| 1334 | int r; |
| 1335 | unsigned long addr; |
| 1336 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 1337 | int offset = offset_in_page(gpa); |
| 1338 | |
| 1339 | addr = gfn_to_hva(kvm, gfn); |
| 1340 | if (kvm_is_error_hva(addr)) |
| 1341 | return -EFAULT; |
| 1342 | pagefault_disable(); |
| 1343 | r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len); |
| 1344 | pagefault_enable(); |
| 1345 | if (r) |
| 1346 | return -EFAULT; |
| 1347 | return 0; |
| 1348 | } |
| 1349 | EXPORT_SYMBOL(kvm_read_guest_atomic); |
| 1350 | |
| 1351 | int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data, |
| 1352 | int offset, int len) |
| 1353 | { |
| 1354 | int r; |
| 1355 | unsigned long addr; |
| 1356 | |
| 1357 | addr = gfn_to_hva(kvm, gfn); |
| 1358 | if (kvm_is_error_hva(addr)) |
| 1359 | return -EFAULT; |
| 1360 | r = __copy_to_user((void __user *)addr + offset, data, len); |
| 1361 | if (r) |
| 1362 | return -EFAULT; |
| 1363 | mark_page_dirty(kvm, gfn); |
| 1364 | return 0; |
| 1365 | } |
| 1366 | EXPORT_SYMBOL_GPL(kvm_write_guest_page); |
| 1367 | |
| 1368 | int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data, |
| 1369 | unsigned long len) |
| 1370 | { |
| 1371 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 1372 | int seg; |
| 1373 | int offset = offset_in_page(gpa); |
| 1374 | int ret; |
| 1375 | |
| 1376 | while ((seg = next_segment(len, offset)) != 0) { |
| 1377 | ret = kvm_write_guest_page(kvm, gfn, data, offset, seg); |
| 1378 | if (ret < 0) |
| 1379 | return ret; |
| 1380 | offset = 0; |
| 1381 | len -= seg; |
| 1382 | data += seg; |
| 1383 | ++gfn; |
| 1384 | } |
| 1385 | return 0; |
| 1386 | } |
| 1387 | |
| 1388 | int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| 1389 | gpa_t gpa, unsigned long len) |
| 1390 | { |
| 1391 | struct kvm_memslots *slots = kvm_memslots(kvm); |
| 1392 | int offset = offset_in_page(gpa); |
| 1393 | gfn_t start_gfn = gpa >> PAGE_SHIFT; |
| 1394 | gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT; |
| 1395 | gfn_t nr_pages_needed = end_gfn - start_gfn + 1; |
| 1396 | gfn_t nr_pages_avail; |
| 1397 | |
| 1398 | ghc->gpa = gpa; |
| 1399 | ghc->generation = slots->generation; |
| 1400 | ghc->len = len; |
| 1401 | ghc->memslot = gfn_to_memslot(kvm, start_gfn); |
| 1402 | ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, &nr_pages_avail); |
| 1403 | if (!kvm_is_error_hva(ghc->hva) && nr_pages_avail >= nr_pages_needed) { |
| 1404 | ghc->hva += offset; |
| 1405 | } else { |
| 1406 | /* |
| 1407 | * If the requested region crosses two memslots, we still |
| 1408 | * verify that the entire region is valid here. |
| 1409 | */ |
| 1410 | while (start_gfn <= end_gfn) { |
| 1411 | ghc->memslot = gfn_to_memslot(kvm, start_gfn); |
| 1412 | ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, |
| 1413 | &nr_pages_avail); |
| 1414 | if (kvm_is_error_hva(ghc->hva)) |
| 1415 | return -EFAULT; |
| 1416 | start_gfn += nr_pages_avail; |
| 1417 | } |
| 1418 | /* Use the slow path for cross page reads and writes. */ |
| 1419 | ghc->memslot = NULL; |
| 1420 | } |
| 1421 | return 0; |
| 1422 | } |
| 1423 | EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init); |
| 1424 | |
| 1425 | int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| 1426 | void *data, unsigned long len) |
| 1427 | { |
| 1428 | struct kvm_memslots *slots = kvm_memslots(kvm); |
| 1429 | int r; |
| 1430 | |
| 1431 | BUG_ON(len > ghc->len); |
| 1432 | |
| 1433 | if (slots->generation != ghc->generation) |
| 1434 | kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); |
| 1435 | |
| 1436 | if (unlikely(!ghc->memslot)) |
| 1437 | return kvm_write_guest(kvm, ghc->gpa, data, len); |
| 1438 | |
| 1439 | if (kvm_is_error_hva(ghc->hva)) |
| 1440 | return -EFAULT; |
| 1441 | |
| 1442 | r = __copy_to_user((void __user *)ghc->hva, data, len); |
| 1443 | if (r) |
| 1444 | return -EFAULT; |
| 1445 | mark_page_dirty_in_slot(kvm, ghc->memslot, ghc->gpa >> PAGE_SHIFT); |
| 1446 | |
| 1447 | return 0; |
| 1448 | } |
| 1449 | EXPORT_SYMBOL_GPL(kvm_write_guest_cached); |
| 1450 | |
| 1451 | int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc, |
| 1452 | void *data, unsigned long len) |
| 1453 | { |
| 1454 | struct kvm_memslots *slots = kvm_memslots(kvm); |
| 1455 | int r; |
| 1456 | |
| 1457 | BUG_ON(len > ghc->len); |
| 1458 | |
| 1459 | if (slots->generation != ghc->generation) |
| 1460 | kvm_gfn_to_hva_cache_init(kvm, ghc, ghc->gpa, ghc->len); |
| 1461 | |
| 1462 | if (unlikely(!ghc->memslot)) |
| 1463 | return kvm_read_guest(kvm, ghc->gpa, data, len); |
| 1464 | |
| 1465 | if (kvm_is_error_hva(ghc->hva)) |
| 1466 | return -EFAULT; |
| 1467 | |
| 1468 | r = __copy_from_user(data, (void __user *)ghc->hva, len); |
| 1469 | if (r) |
| 1470 | return -EFAULT; |
| 1471 | |
| 1472 | return 0; |
| 1473 | } |
| 1474 | EXPORT_SYMBOL_GPL(kvm_read_guest_cached); |
| 1475 | |
| 1476 | int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len) |
| 1477 | { |
| 1478 | return kvm_write_guest_page(kvm, gfn, (const void *) empty_zero_page, |
| 1479 | offset, len); |
| 1480 | } |
| 1481 | EXPORT_SYMBOL_GPL(kvm_clear_guest_page); |
| 1482 | |
| 1483 | int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len) |
| 1484 | { |
| 1485 | gfn_t gfn = gpa >> PAGE_SHIFT; |
| 1486 | int seg; |
| 1487 | int offset = offset_in_page(gpa); |
| 1488 | int ret; |
| 1489 | |
| 1490 | while ((seg = next_segment(len, offset)) != 0) { |
| 1491 | ret = kvm_clear_guest_page(kvm, gfn, offset, seg); |
| 1492 | if (ret < 0) |
| 1493 | return ret; |
| 1494 | offset = 0; |
| 1495 | len -= seg; |
| 1496 | ++gfn; |
| 1497 | } |
| 1498 | return 0; |
| 1499 | } |
| 1500 | EXPORT_SYMBOL_GPL(kvm_clear_guest); |
| 1501 | |
| 1502 | void mark_page_dirty_in_slot(struct kvm *kvm, struct kvm_memory_slot *memslot, |
| 1503 | gfn_t gfn) |
| 1504 | { |
| 1505 | if (memslot && memslot->dirty_bitmap) { |
| 1506 | unsigned long rel_gfn = gfn - memslot->base_gfn; |
| 1507 | |
| 1508 | if (!test_and_set_bit_le(rel_gfn, memslot->dirty_bitmap)) |
| 1509 | memslot->nr_dirty_pages++; |
| 1510 | } |
| 1511 | } |
| 1512 | |
| 1513 | void mark_page_dirty(struct kvm *kvm, gfn_t gfn) |
| 1514 | { |
| 1515 | struct kvm_memory_slot *memslot; |
| 1516 | |
| 1517 | memslot = gfn_to_memslot(kvm, gfn); |
| 1518 | mark_page_dirty_in_slot(kvm, memslot, gfn); |
| 1519 | } |
| 1520 | |
| 1521 | /* |
| 1522 | * The vCPU has executed a HLT instruction with in-kernel mode enabled. |
| 1523 | */ |
| 1524 | void kvm_vcpu_block(struct kvm_vcpu *vcpu) |
| 1525 | { |
| 1526 | DEFINE_WAIT(wait); |
| 1527 | |
| 1528 | for (;;) { |
| 1529 | prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE); |
| 1530 | |
| 1531 | if (kvm_arch_vcpu_runnable(vcpu)) { |
| 1532 | kvm_make_request(KVM_REQ_UNHALT, vcpu); |
| 1533 | break; |
| 1534 | } |
| 1535 | if (kvm_cpu_has_pending_timer(vcpu)) |
| 1536 | break; |
| 1537 | if (signal_pending(current)) |
| 1538 | break; |
| 1539 | |
| 1540 | schedule(); |
| 1541 | } |
| 1542 | |
| 1543 | finish_wait(&vcpu->wq, &wait); |
| 1544 | } |
| 1545 | |
| 1546 | void kvm_resched(struct kvm_vcpu *vcpu) |
| 1547 | { |
| 1548 | if (!need_resched()) |
| 1549 | return; |
| 1550 | cond_resched(); |
| 1551 | } |
| 1552 | EXPORT_SYMBOL_GPL(kvm_resched); |
| 1553 | |
| 1554 | void kvm_vcpu_on_spin(struct kvm_vcpu *me) |
| 1555 | { |
| 1556 | struct kvm *kvm = me->kvm; |
| 1557 | struct kvm_vcpu *vcpu; |
| 1558 | int last_boosted_vcpu = me->kvm->last_boosted_vcpu; |
| 1559 | int yielded = 0; |
| 1560 | int pass; |
| 1561 | int i; |
| 1562 | |
| 1563 | /* |
| 1564 | * We boost the priority of a VCPU that is runnable but not |
| 1565 | * currently running, because it got preempted by something |
| 1566 | * else and called schedule in __vcpu_run. Hopefully that |
| 1567 | * VCPU is holding the lock that we need and will release it. |
| 1568 | * We approximate round-robin by starting at the last boosted VCPU. |
| 1569 | */ |
| 1570 | for (pass = 0; pass < 2 && !yielded; pass++) { |
| 1571 | kvm_for_each_vcpu(i, vcpu, kvm) { |
| 1572 | struct task_struct *task = NULL; |
| 1573 | struct pid *pid; |
| 1574 | if (!pass && i < last_boosted_vcpu) { |
| 1575 | i = last_boosted_vcpu; |
| 1576 | continue; |
| 1577 | } else if (pass && i > last_boosted_vcpu) |
| 1578 | break; |
| 1579 | if (vcpu == me) |
| 1580 | continue; |
| 1581 | if (waitqueue_active(&vcpu->wq)) |
| 1582 | continue; |
| 1583 | rcu_read_lock(); |
| 1584 | pid = rcu_dereference(vcpu->pid); |
| 1585 | if (pid) |
| 1586 | task = get_pid_task(vcpu->pid, PIDTYPE_PID); |
| 1587 | rcu_read_unlock(); |
| 1588 | if (!task) |
| 1589 | continue; |
| 1590 | if (task->flags & PF_VCPU) { |
| 1591 | put_task_struct(task); |
| 1592 | continue; |
| 1593 | } |
| 1594 | if (yield_to(task, 1)) { |
| 1595 | put_task_struct(task); |
| 1596 | kvm->last_boosted_vcpu = i; |
| 1597 | yielded = 1; |
| 1598 | break; |
| 1599 | } |
| 1600 | put_task_struct(task); |
| 1601 | } |
| 1602 | } |
| 1603 | } |
| 1604 | EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin); |
| 1605 | |
| 1606 | static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| 1607 | { |
| 1608 | struct kvm_vcpu *vcpu = vma->vm_file->private_data; |
| 1609 | struct page *page; |
| 1610 | |
| 1611 | if (vmf->pgoff == 0) |
| 1612 | page = virt_to_page(vcpu->run); |
| 1613 | #ifdef CONFIG_X86 |
| 1614 | else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET) |
| 1615 | page = virt_to_page(vcpu->arch.pio_data); |
| 1616 | #endif |
| 1617 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
| 1618 | else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET) |
| 1619 | page = virt_to_page(vcpu->kvm->coalesced_mmio_ring); |
| 1620 | #endif |
| 1621 | else |
| 1622 | return kvm_arch_vcpu_fault(vcpu, vmf); |
| 1623 | get_page(page); |
| 1624 | vmf->page = page; |
| 1625 | return 0; |
| 1626 | } |
| 1627 | |
| 1628 | static const struct vm_operations_struct kvm_vcpu_vm_ops = { |
| 1629 | .fault = kvm_vcpu_fault, |
| 1630 | }; |
| 1631 | |
| 1632 | static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma) |
| 1633 | { |
| 1634 | vma->vm_ops = &kvm_vcpu_vm_ops; |
| 1635 | return 0; |
| 1636 | } |
| 1637 | |
| 1638 | static int kvm_vcpu_release(struct inode *inode, struct file *filp) |
| 1639 | { |
| 1640 | struct kvm_vcpu *vcpu = filp->private_data; |
| 1641 | |
| 1642 | kvm_put_kvm(vcpu->kvm); |
| 1643 | return 0; |
| 1644 | } |
| 1645 | |
| 1646 | static struct file_operations kvm_vcpu_fops = { |
| 1647 | .release = kvm_vcpu_release, |
| 1648 | .unlocked_ioctl = kvm_vcpu_ioctl, |
| 1649 | #ifdef CONFIG_COMPAT |
| 1650 | .compat_ioctl = kvm_vcpu_compat_ioctl, |
| 1651 | #endif |
| 1652 | .mmap = kvm_vcpu_mmap, |
| 1653 | .llseek = noop_llseek, |
| 1654 | }; |
| 1655 | |
| 1656 | /* |
| 1657 | * Allocates an inode for the vcpu. |
| 1658 | */ |
| 1659 | static int create_vcpu_fd(struct kvm_vcpu *vcpu) |
| 1660 | { |
| 1661 | return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR); |
| 1662 | } |
| 1663 | |
| 1664 | /* |
| 1665 | * Creates some virtual cpus. Good luck creating more than one. |
| 1666 | */ |
| 1667 | static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id) |
| 1668 | { |
| 1669 | int r; |
| 1670 | struct kvm_vcpu *vcpu, *v; |
| 1671 | |
| 1672 | if (id >= KVM_MAX_VCPUS) |
| 1673 | return -EINVAL; |
| 1674 | |
| 1675 | vcpu = kvm_arch_vcpu_create(kvm, id); |
| 1676 | if (IS_ERR(vcpu)) |
| 1677 | return PTR_ERR(vcpu); |
| 1678 | |
| 1679 | preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops); |
| 1680 | |
| 1681 | r = kvm_arch_vcpu_setup(vcpu); |
| 1682 | if (r) |
| 1683 | goto vcpu_destroy; |
| 1684 | |
| 1685 | mutex_lock(&kvm->lock); |
| 1686 | if (!kvm_vcpu_compatible(vcpu)) { |
| 1687 | r = -EINVAL; |
| 1688 | goto unlock_vcpu_destroy; |
| 1689 | } |
| 1690 | if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) { |
| 1691 | r = -EINVAL; |
| 1692 | goto unlock_vcpu_destroy; |
| 1693 | } |
| 1694 | |
| 1695 | kvm_for_each_vcpu(r, v, kvm) |
| 1696 | if (v->vcpu_id == id) { |
| 1697 | r = -EEXIST; |
| 1698 | goto unlock_vcpu_destroy; |
| 1699 | } |
| 1700 | |
| 1701 | BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]); |
| 1702 | |
| 1703 | /* Now it's all set up, let userspace reach it */ |
| 1704 | kvm_get_kvm(kvm); |
| 1705 | r = create_vcpu_fd(vcpu); |
| 1706 | if (r < 0) { |
| 1707 | kvm_put_kvm(kvm); |
| 1708 | goto unlock_vcpu_destroy; |
| 1709 | } |
| 1710 | |
| 1711 | kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu; |
| 1712 | smp_wmb(); |
| 1713 | atomic_inc(&kvm->online_vcpus); |
| 1714 | |
| 1715 | mutex_unlock(&kvm->lock); |
| 1716 | return r; |
| 1717 | |
| 1718 | unlock_vcpu_destroy: |
| 1719 | mutex_unlock(&kvm->lock); |
| 1720 | vcpu_destroy: |
| 1721 | kvm_arch_vcpu_destroy(vcpu); |
| 1722 | return r; |
| 1723 | } |
| 1724 | |
| 1725 | static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset) |
| 1726 | { |
| 1727 | if (sigset) { |
| 1728 | sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP)); |
| 1729 | vcpu->sigset_active = 1; |
| 1730 | vcpu->sigset = *sigset; |
| 1731 | } else |
| 1732 | vcpu->sigset_active = 0; |
| 1733 | return 0; |
| 1734 | } |
| 1735 | |
| 1736 | static long kvm_vcpu_ioctl(struct file *filp, |
| 1737 | unsigned int ioctl, unsigned long arg) |
| 1738 | { |
| 1739 | struct kvm_vcpu *vcpu = filp->private_data; |
| 1740 | void __user *argp = (void __user *)arg; |
| 1741 | int r; |
| 1742 | struct kvm_fpu *fpu = NULL; |
| 1743 | struct kvm_sregs *kvm_sregs = NULL; |
| 1744 | |
| 1745 | if (vcpu->kvm->mm != current->mm) |
| 1746 | return -EIO; |
| 1747 | |
| 1748 | if (unlikely(_IOC_TYPE(ioctl) != KVMIO)) |
| 1749 | return -EINVAL; |
| 1750 | |
| 1751 | #if defined(CONFIG_S390) || defined(CONFIG_PPC) |
| 1752 | /* |
| 1753 | * Special cases: vcpu ioctls that are asynchronous to vcpu execution, |
| 1754 | * so vcpu_load() would break it. |
| 1755 | */ |
| 1756 | if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT) |
| 1757 | return kvm_arch_vcpu_ioctl(filp, ioctl, arg); |
| 1758 | #endif |
| 1759 | |
| 1760 | |
| 1761 | vcpu_load(vcpu); |
| 1762 | switch (ioctl) { |
| 1763 | case KVM_RUN: |
| 1764 | r = -EINVAL; |
| 1765 | if (arg) |
| 1766 | goto out; |
| 1767 | r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run); |
| 1768 | trace_kvm_userspace_exit(vcpu->run->exit_reason, r); |
| 1769 | break; |
| 1770 | case KVM_GET_REGS: { |
| 1771 | struct kvm_regs *kvm_regs; |
| 1772 | |
| 1773 | r = -ENOMEM; |
| 1774 | kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL); |
| 1775 | if (!kvm_regs) |
| 1776 | goto out; |
| 1777 | r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs); |
| 1778 | if (r) |
| 1779 | goto out_free1; |
| 1780 | r = -EFAULT; |
| 1781 | if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs))) |
| 1782 | goto out_free1; |
| 1783 | r = 0; |
| 1784 | out_free1: |
| 1785 | kfree(kvm_regs); |
| 1786 | break; |
| 1787 | } |
| 1788 | case KVM_SET_REGS: { |
| 1789 | struct kvm_regs *kvm_regs; |
| 1790 | |
| 1791 | r = -ENOMEM; |
| 1792 | kvm_regs = memdup_user(argp, sizeof(*kvm_regs)); |
| 1793 | if (IS_ERR(kvm_regs)) { |
| 1794 | r = PTR_ERR(kvm_regs); |
| 1795 | goto out; |
| 1796 | } |
| 1797 | r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs); |
| 1798 | if (r) |
| 1799 | goto out_free2; |
| 1800 | r = 0; |
| 1801 | out_free2: |
| 1802 | kfree(kvm_regs); |
| 1803 | break; |
| 1804 | } |
| 1805 | case KVM_GET_SREGS: { |
| 1806 | kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL); |
| 1807 | r = -ENOMEM; |
| 1808 | if (!kvm_sregs) |
| 1809 | goto out; |
| 1810 | r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs); |
| 1811 | if (r) |
| 1812 | goto out; |
| 1813 | r = -EFAULT; |
| 1814 | if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs))) |
| 1815 | goto out; |
| 1816 | r = 0; |
| 1817 | break; |
| 1818 | } |
| 1819 | case KVM_SET_SREGS: { |
| 1820 | kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs)); |
| 1821 | if (IS_ERR(kvm_sregs)) { |
| 1822 | r = PTR_ERR(kvm_sregs); |
| 1823 | goto out; |
| 1824 | } |
| 1825 | r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs); |
| 1826 | if (r) |
| 1827 | goto out; |
| 1828 | r = 0; |
| 1829 | break; |
| 1830 | } |
| 1831 | case KVM_GET_MP_STATE: { |
| 1832 | struct kvm_mp_state mp_state; |
| 1833 | |
| 1834 | r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state); |
| 1835 | if (r) |
| 1836 | goto out; |
| 1837 | r = -EFAULT; |
| 1838 | if (copy_to_user(argp, &mp_state, sizeof mp_state)) |
| 1839 | goto out; |
| 1840 | r = 0; |
| 1841 | break; |
| 1842 | } |
| 1843 | case KVM_SET_MP_STATE: { |
| 1844 | struct kvm_mp_state mp_state; |
| 1845 | |
| 1846 | r = -EFAULT; |
| 1847 | if (copy_from_user(&mp_state, argp, sizeof mp_state)) |
| 1848 | goto out; |
| 1849 | r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state); |
| 1850 | if (r) |
| 1851 | goto out; |
| 1852 | r = 0; |
| 1853 | break; |
| 1854 | } |
| 1855 | case KVM_TRANSLATE: { |
| 1856 | struct kvm_translation tr; |
| 1857 | |
| 1858 | r = -EFAULT; |
| 1859 | if (copy_from_user(&tr, argp, sizeof tr)) |
| 1860 | goto out; |
| 1861 | r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr); |
| 1862 | if (r) |
| 1863 | goto out; |
| 1864 | r = -EFAULT; |
| 1865 | if (copy_to_user(argp, &tr, sizeof tr)) |
| 1866 | goto out; |
| 1867 | r = 0; |
| 1868 | break; |
| 1869 | } |
| 1870 | case KVM_SET_GUEST_DEBUG: { |
| 1871 | struct kvm_guest_debug dbg; |
| 1872 | |
| 1873 | r = -EFAULT; |
| 1874 | if (copy_from_user(&dbg, argp, sizeof dbg)) |
| 1875 | goto out; |
| 1876 | r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg); |
| 1877 | if (r) |
| 1878 | goto out; |
| 1879 | r = 0; |
| 1880 | break; |
| 1881 | } |
| 1882 | case KVM_SET_SIGNAL_MASK: { |
| 1883 | struct kvm_signal_mask __user *sigmask_arg = argp; |
| 1884 | struct kvm_signal_mask kvm_sigmask; |
| 1885 | sigset_t sigset, *p; |
| 1886 | |
| 1887 | p = NULL; |
| 1888 | if (argp) { |
| 1889 | r = -EFAULT; |
| 1890 | if (copy_from_user(&kvm_sigmask, argp, |
| 1891 | sizeof kvm_sigmask)) |
| 1892 | goto out; |
| 1893 | r = -EINVAL; |
| 1894 | if (kvm_sigmask.len != sizeof sigset) |
| 1895 | goto out; |
| 1896 | r = -EFAULT; |
| 1897 | if (copy_from_user(&sigset, sigmask_arg->sigset, |
| 1898 | sizeof sigset)) |
| 1899 | goto out; |
| 1900 | p = &sigset; |
| 1901 | } |
| 1902 | r = kvm_vcpu_ioctl_set_sigmask(vcpu, p); |
| 1903 | break; |
| 1904 | } |
| 1905 | case KVM_GET_FPU: { |
| 1906 | fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL); |
| 1907 | r = -ENOMEM; |
| 1908 | if (!fpu) |
| 1909 | goto out; |
| 1910 | r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu); |
| 1911 | if (r) |
| 1912 | goto out; |
| 1913 | r = -EFAULT; |
| 1914 | if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu))) |
| 1915 | goto out; |
| 1916 | r = 0; |
| 1917 | break; |
| 1918 | } |
| 1919 | case KVM_SET_FPU: { |
| 1920 | fpu = memdup_user(argp, sizeof(*fpu)); |
| 1921 | if (IS_ERR(fpu)) { |
| 1922 | r = PTR_ERR(fpu); |
| 1923 | goto out; |
| 1924 | } |
| 1925 | r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu); |
| 1926 | if (r) |
| 1927 | goto out; |
| 1928 | r = 0; |
| 1929 | break; |
| 1930 | } |
| 1931 | default: |
| 1932 | r = kvm_arch_vcpu_ioctl(filp, ioctl, arg); |
| 1933 | } |
| 1934 | out: |
| 1935 | vcpu_put(vcpu); |
| 1936 | kfree(fpu); |
| 1937 | kfree(kvm_sregs); |
| 1938 | return r; |
| 1939 | } |
| 1940 | |
| 1941 | #ifdef CONFIG_COMPAT |
| 1942 | static long kvm_vcpu_compat_ioctl(struct file *filp, |
| 1943 | unsigned int ioctl, unsigned long arg) |
| 1944 | { |
| 1945 | struct kvm_vcpu *vcpu = filp->private_data; |
| 1946 | void __user *argp = compat_ptr(arg); |
| 1947 | int r; |
| 1948 | |
| 1949 | if (vcpu->kvm->mm != current->mm) |
| 1950 | return -EIO; |
| 1951 | |
| 1952 | switch (ioctl) { |
| 1953 | case KVM_SET_SIGNAL_MASK: { |
| 1954 | struct kvm_signal_mask __user *sigmask_arg = argp; |
| 1955 | struct kvm_signal_mask kvm_sigmask; |
| 1956 | compat_sigset_t csigset; |
| 1957 | sigset_t sigset; |
| 1958 | |
| 1959 | if (argp) { |
| 1960 | r = -EFAULT; |
| 1961 | if (copy_from_user(&kvm_sigmask, argp, |
| 1962 | sizeof kvm_sigmask)) |
| 1963 | goto out; |
| 1964 | r = -EINVAL; |
| 1965 | if (kvm_sigmask.len != sizeof csigset) |
| 1966 | goto out; |
| 1967 | r = -EFAULT; |
| 1968 | if (copy_from_user(&csigset, sigmask_arg->sigset, |
| 1969 | sizeof csigset)) |
| 1970 | goto out; |
| 1971 | } |
| 1972 | sigset_from_compat(&sigset, &csigset); |
| 1973 | r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset); |
| 1974 | break; |
| 1975 | } |
| 1976 | default: |
| 1977 | r = kvm_vcpu_ioctl(filp, ioctl, arg); |
| 1978 | } |
| 1979 | |
| 1980 | out: |
| 1981 | return r; |
| 1982 | } |
| 1983 | #endif |
| 1984 | |
| 1985 | static long kvm_vm_ioctl(struct file *filp, |
| 1986 | unsigned int ioctl, unsigned long arg) |
| 1987 | { |
| 1988 | struct kvm *kvm = filp->private_data; |
| 1989 | void __user *argp = (void __user *)arg; |
| 1990 | int r; |
| 1991 | |
| 1992 | if (kvm->mm != current->mm) |
| 1993 | return -EIO; |
| 1994 | switch (ioctl) { |
| 1995 | case KVM_CREATE_VCPU: |
| 1996 | r = kvm_vm_ioctl_create_vcpu(kvm, arg); |
| 1997 | if (r < 0) |
| 1998 | goto out; |
| 1999 | break; |
| 2000 | case KVM_SET_USER_MEMORY_REGION: { |
| 2001 | struct kvm_userspace_memory_region kvm_userspace_mem; |
| 2002 | |
| 2003 | r = -EFAULT; |
| 2004 | if (copy_from_user(&kvm_userspace_mem, argp, |
| 2005 | sizeof kvm_userspace_mem)) |
| 2006 | goto out; |
| 2007 | |
| 2008 | r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1); |
| 2009 | if (r) |
| 2010 | goto out; |
| 2011 | break; |
| 2012 | } |
| 2013 | case KVM_GET_DIRTY_LOG: { |
| 2014 | struct kvm_dirty_log log; |
| 2015 | |
| 2016 | r = -EFAULT; |
| 2017 | if (copy_from_user(&log, argp, sizeof log)) |
| 2018 | goto out; |
| 2019 | r = kvm_vm_ioctl_get_dirty_log(kvm, &log); |
| 2020 | if (r) |
| 2021 | goto out; |
| 2022 | break; |
| 2023 | } |
| 2024 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
| 2025 | case KVM_REGISTER_COALESCED_MMIO: { |
| 2026 | struct kvm_coalesced_mmio_zone zone; |
| 2027 | r = -EFAULT; |
| 2028 | if (copy_from_user(&zone, argp, sizeof zone)) |
| 2029 | goto out; |
| 2030 | r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone); |
| 2031 | if (r) |
| 2032 | goto out; |
| 2033 | r = 0; |
| 2034 | break; |
| 2035 | } |
| 2036 | case KVM_UNREGISTER_COALESCED_MMIO: { |
| 2037 | struct kvm_coalesced_mmio_zone zone; |
| 2038 | r = -EFAULT; |
| 2039 | if (copy_from_user(&zone, argp, sizeof zone)) |
| 2040 | goto out; |
| 2041 | r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone); |
| 2042 | if (r) |
| 2043 | goto out; |
| 2044 | r = 0; |
| 2045 | break; |
| 2046 | } |
| 2047 | #endif |
| 2048 | case KVM_IRQFD: { |
| 2049 | struct kvm_irqfd data; |
| 2050 | |
| 2051 | r = -EFAULT; |
| 2052 | if (copy_from_user(&data, argp, sizeof data)) |
| 2053 | goto out; |
| 2054 | r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags); |
| 2055 | break; |
| 2056 | } |
| 2057 | case KVM_IOEVENTFD: { |
| 2058 | struct kvm_ioeventfd data; |
| 2059 | |
| 2060 | r = -EFAULT; |
| 2061 | if (copy_from_user(&data, argp, sizeof data)) |
| 2062 | goto out; |
| 2063 | r = kvm_ioeventfd(kvm, &data); |
| 2064 | break; |
| 2065 | } |
| 2066 | #ifdef CONFIG_KVM_APIC_ARCHITECTURE |
| 2067 | case KVM_SET_BOOT_CPU_ID: |
| 2068 | r = 0; |
| 2069 | mutex_lock(&kvm->lock); |
| 2070 | if (atomic_read(&kvm->online_vcpus) != 0) |
| 2071 | r = -EBUSY; |
| 2072 | else |
| 2073 | kvm->bsp_vcpu_id = arg; |
| 2074 | mutex_unlock(&kvm->lock); |
| 2075 | break; |
| 2076 | #endif |
| 2077 | default: |
| 2078 | r = kvm_arch_vm_ioctl(filp, ioctl, arg); |
| 2079 | if (r == -ENOTTY) |
| 2080 | r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg); |
| 2081 | } |
| 2082 | out: |
| 2083 | return r; |
| 2084 | } |
| 2085 | |
| 2086 | #ifdef CONFIG_COMPAT |
| 2087 | struct compat_kvm_dirty_log { |
| 2088 | __u32 slot; |
| 2089 | __u32 padding1; |
| 2090 | union { |
| 2091 | compat_uptr_t dirty_bitmap; /* one bit per page */ |
| 2092 | __u64 padding2; |
| 2093 | }; |
| 2094 | }; |
| 2095 | |
| 2096 | static long kvm_vm_compat_ioctl(struct file *filp, |
| 2097 | unsigned int ioctl, unsigned long arg) |
| 2098 | { |
| 2099 | struct kvm *kvm = filp->private_data; |
| 2100 | int r; |
| 2101 | |
| 2102 | if (kvm->mm != current->mm) |
| 2103 | return -EIO; |
| 2104 | switch (ioctl) { |
| 2105 | case KVM_GET_DIRTY_LOG: { |
| 2106 | struct compat_kvm_dirty_log compat_log; |
| 2107 | struct kvm_dirty_log log; |
| 2108 | |
| 2109 | r = -EFAULT; |
| 2110 | if (copy_from_user(&compat_log, (void __user *)arg, |
| 2111 | sizeof(compat_log))) |
| 2112 | goto out; |
| 2113 | log.slot = compat_log.slot; |
| 2114 | log.padding1 = compat_log.padding1; |
| 2115 | log.padding2 = compat_log.padding2; |
| 2116 | log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap); |
| 2117 | |
| 2118 | r = kvm_vm_ioctl_get_dirty_log(kvm, &log); |
| 2119 | if (r) |
| 2120 | goto out; |
| 2121 | break; |
| 2122 | } |
| 2123 | default: |
| 2124 | r = kvm_vm_ioctl(filp, ioctl, arg); |
| 2125 | } |
| 2126 | |
| 2127 | out: |
| 2128 | return r; |
| 2129 | } |
| 2130 | #endif |
| 2131 | |
| 2132 | static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf) |
| 2133 | { |
| 2134 | struct page *page[1]; |
| 2135 | unsigned long addr; |
| 2136 | int npages; |
| 2137 | gfn_t gfn = vmf->pgoff; |
| 2138 | struct kvm *kvm = vma->vm_file->private_data; |
| 2139 | |
| 2140 | addr = gfn_to_hva(kvm, gfn); |
| 2141 | if (kvm_is_error_hva(addr)) |
| 2142 | return VM_FAULT_SIGBUS; |
| 2143 | |
| 2144 | npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page, |
| 2145 | NULL); |
| 2146 | if (unlikely(npages != 1)) |
| 2147 | return VM_FAULT_SIGBUS; |
| 2148 | |
| 2149 | vmf->page = page[0]; |
| 2150 | return 0; |
| 2151 | } |
| 2152 | |
| 2153 | static const struct vm_operations_struct kvm_vm_vm_ops = { |
| 2154 | .fault = kvm_vm_fault, |
| 2155 | }; |
| 2156 | |
| 2157 | static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma) |
| 2158 | { |
| 2159 | vma->vm_ops = &kvm_vm_vm_ops; |
| 2160 | return 0; |
| 2161 | } |
| 2162 | |
| 2163 | static struct file_operations kvm_vm_fops = { |
| 2164 | .release = kvm_vm_release, |
| 2165 | .unlocked_ioctl = kvm_vm_ioctl, |
| 2166 | #ifdef CONFIG_COMPAT |
| 2167 | .compat_ioctl = kvm_vm_compat_ioctl, |
| 2168 | #endif |
| 2169 | .mmap = kvm_vm_mmap, |
| 2170 | .llseek = noop_llseek, |
| 2171 | }; |
| 2172 | |
| 2173 | static int kvm_dev_ioctl_create_vm(unsigned long type) |
| 2174 | { |
| 2175 | int r; |
| 2176 | struct kvm *kvm; |
| 2177 | |
| 2178 | kvm = kvm_create_vm(type); |
| 2179 | if (IS_ERR(kvm)) |
| 2180 | return PTR_ERR(kvm); |
| 2181 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
| 2182 | r = kvm_coalesced_mmio_init(kvm); |
| 2183 | if (r < 0) { |
| 2184 | kvm_put_kvm(kvm); |
| 2185 | return r; |
| 2186 | } |
| 2187 | #endif |
| 2188 | r = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR); |
| 2189 | if (r < 0) |
| 2190 | kvm_put_kvm(kvm); |
| 2191 | |
| 2192 | return r; |
| 2193 | } |
| 2194 | |
| 2195 | static long kvm_dev_ioctl_check_extension_generic(long arg) |
| 2196 | { |
| 2197 | switch (arg) { |
| 2198 | case KVM_CAP_USER_MEMORY: |
| 2199 | case KVM_CAP_DESTROY_MEMORY_REGION_WORKS: |
| 2200 | case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS: |
| 2201 | #ifdef CONFIG_KVM_APIC_ARCHITECTURE |
| 2202 | case KVM_CAP_SET_BOOT_CPU_ID: |
| 2203 | #endif |
| 2204 | case KVM_CAP_INTERNAL_ERROR_DATA: |
| 2205 | return 1; |
| 2206 | #ifdef CONFIG_HAVE_KVM_IRQCHIP |
| 2207 | case KVM_CAP_IRQ_ROUTING: |
| 2208 | return KVM_MAX_IRQ_ROUTES; |
| 2209 | #endif |
| 2210 | default: |
| 2211 | break; |
| 2212 | } |
| 2213 | return kvm_dev_ioctl_check_extension(arg); |
| 2214 | } |
| 2215 | |
| 2216 | static long kvm_dev_ioctl(struct file *filp, |
| 2217 | unsigned int ioctl, unsigned long arg) |
| 2218 | { |
| 2219 | long r = -EINVAL; |
| 2220 | |
| 2221 | switch (ioctl) { |
| 2222 | case KVM_GET_API_VERSION: |
| 2223 | r = -EINVAL; |
| 2224 | if (arg) |
| 2225 | goto out; |
| 2226 | r = KVM_API_VERSION; |
| 2227 | break; |
| 2228 | case KVM_CREATE_VM: |
| 2229 | r = kvm_dev_ioctl_create_vm(arg); |
| 2230 | break; |
| 2231 | case KVM_CHECK_EXTENSION: |
| 2232 | r = kvm_dev_ioctl_check_extension_generic(arg); |
| 2233 | break; |
| 2234 | case KVM_GET_VCPU_MMAP_SIZE: |
| 2235 | r = -EINVAL; |
| 2236 | if (arg) |
| 2237 | goto out; |
| 2238 | r = PAGE_SIZE; /* struct kvm_run */ |
| 2239 | #ifdef CONFIG_X86 |
| 2240 | r += PAGE_SIZE; /* pio data page */ |
| 2241 | #endif |
| 2242 | #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET |
| 2243 | r += PAGE_SIZE; /* coalesced mmio ring page */ |
| 2244 | #endif |
| 2245 | break; |
| 2246 | case KVM_TRACE_ENABLE: |
| 2247 | case KVM_TRACE_PAUSE: |
| 2248 | case KVM_TRACE_DISABLE: |
| 2249 | r = -EOPNOTSUPP; |
| 2250 | break; |
| 2251 | default: |
| 2252 | return kvm_arch_dev_ioctl(filp, ioctl, arg); |
| 2253 | } |
| 2254 | out: |
| 2255 | return r; |
| 2256 | } |
| 2257 | |
| 2258 | static struct file_operations kvm_chardev_ops = { |
| 2259 | .unlocked_ioctl = kvm_dev_ioctl, |
| 2260 | .compat_ioctl = kvm_dev_ioctl, |
| 2261 | .llseek = noop_llseek, |
| 2262 | }; |
| 2263 | |
| 2264 | static struct miscdevice kvm_dev = { |
| 2265 | KVM_MINOR, |
| 2266 | "kvm", |
| 2267 | &kvm_chardev_ops, |
| 2268 | }; |
| 2269 | |
| 2270 | static void hardware_enable_nolock(void *junk) |
| 2271 | { |
| 2272 | int cpu = raw_smp_processor_id(); |
| 2273 | int r; |
| 2274 | |
| 2275 | if (cpumask_test_cpu(cpu, cpus_hardware_enabled)) |
| 2276 | return; |
| 2277 | |
| 2278 | cpumask_set_cpu(cpu, cpus_hardware_enabled); |
| 2279 | |
| 2280 | r = kvm_arch_hardware_enable(NULL); |
| 2281 | |
| 2282 | if (r) { |
| 2283 | cpumask_clear_cpu(cpu, cpus_hardware_enabled); |
| 2284 | atomic_inc(&hardware_enable_failed); |
| 2285 | printk(KERN_INFO "kvm: enabling virtualization on " |
| 2286 | "CPU%d failed\n", cpu); |
| 2287 | } |
| 2288 | } |
| 2289 | |
| 2290 | static void hardware_enable(void *junk) |
| 2291 | { |
| 2292 | raw_spin_lock(&kvm_lock); |
| 2293 | hardware_enable_nolock(junk); |
| 2294 | raw_spin_unlock(&kvm_lock); |
| 2295 | } |
| 2296 | |
| 2297 | static void hardware_disable_nolock(void *junk) |
| 2298 | { |
| 2299 | int cpu = raw_smp_processor_id(); |
| 2300 | |
| 2301 | if (!cpumask_test_cpu(cpu, cpus_hardware_enabled)) |
| 2302 | return; |
| 2303 | cpumask_clear_cpu(cpu, cpus_hardware_enabled); |
| 2304 | kvm_arch_hardware_disable(NULL); |
| 2305 | } |
| 2306 | |
| 2307 | static void hardware_disable(void *junk) |
| 2308 | { |
| 2309 | raw_spin_lock(&kvm_lock); |
| 2310 | hardware_disable_nolock(junk); |
| 2311 | raw_spin_unlock(&kvm_lock); |
| 2312 | } |
| 2313 | |
| 2314 | static void hardware_disable_all_nolock(void) |
| 2315 | { |
| 2316 | BUG_ON(!kvm_usage_count); |
| 2317 | |
| 2318 | kvm_usage_count--; |
| 2319 | if (!kvm_usage_count) |
| 2320 | on_each_cpu(hardware_disable_nolock, NULL, 1); |
| 2321 | } |
| 2322 | |
| 2323 | static void hardware_disable_all(void) |
| 2324 | { |
| 2325 | raw_spin_lock(&kvm_lock); |
| 2326 | hardware_disable_all_nolock(); |
| 2327 | raw_spin_unlock(&kvm_lock); |
| 2328 | } |
| 2329 | |
| 2330 | static int hardware_enable_all(void) |
| 2331 | { |
| 2332 | int r = 0; |
| 2333 | |
| 2334 | raw_spin_lock(&kvm_lock); |
| 2335 | |
| 2336 | kvm_usage_count++; |
| 2337 | if (kvm_usage_count == 1) { |
| 2338 | atomic_set(&hardware_enable_failed, 0); |
| 2339 | on_each_cpu(hardware_enable_nolock, NULL, 1); |
| 2340 | |
| 2341 | if (atomic_read(&hardware_enable_failed)) { |
| 2342 | hardware_disable_all_nolock(); |
| 2343 | r = -EBUSY; |
| 2344 | } |
| 2345 | } |
| 2346 | |
| 2347 | raw_spin_unlock(&kvm_lock); |
| 2348 | |
| 2349 | return r; |
| 2350 | } |
| 2351 | |
| 2352 | static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val, |
| 2353 | void *v) |
| 2354 | { |
| 2355 | int cpu = (long)v; |
| 2356 | |
| 2357 | if (!kvm_usage_count) |
| 2358 | return NOTIFY_OK; |
| 2359 | |
| 2360 | val &= ~CPU_TASKS_FROZEN; |
| 2361 | switch (val) { |
| 2362 | case CPU_DYING: |
| 2363 | printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n", |
| 2364 | cpu); |
| 2365 | hardware_disable(NULL); |
| 2366 | break; |
| 2367 | case CPU_STARTING: |
| 2368 | printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n", |
| 2369 | cpu); |
| 2370 | hardware_enable(NULL); |
| 2371 | break; |
| 2372 | } |
| 2373 | return NOTIFY_OK; |
| 2374 | } |
| 2375 | |
| 2376 | |
| 2377 | asmlinkage void kvm_spurious_fault(void) |
| 2378 | { |
| 2379 | /* Fault while not rebooting. We want the trace. */ |
| 2380 | BUG(); |
| 2381 | } |
| 2382 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); |
| 2383 | |
| 2384 | static int kvm_reboot(struct notifier_block *notifier, unsigned long val, |
| 2385 | void *v) |
| 2386 | { |
| 2387 | /* |
| 2388 | * Some (well, at least mine) BIOSes hang on reboot if |
| 2389 | * in vmx root mode. |
| 2390 | * |
| 2391 | * And Intel TXT required VMX off for all cpu when system shutdown. |
| 2392 | */ |
| 2393 | printk(KERN_INFO "kvm: exiting hardware virtualization\n"); |
| 2394 | kvm_rebooting = true; |
| 2395 | on_each_cpu(hardware_disable_nolock, NULL, 1); |
| 2396 | return NOTIFY_OK; |
| 2397 | } |
| 2398 | |
| 2399 | static struct notifier_block kvm_reboot_notifier = { |
| 2400 | .notifier_call = kvm_reboot, |
| 2401 | .priority = 0, |
| 2402 | }; |
| 2403 | |
| 2404 | static void kvm_io_bus_destroy(struct kvm_io_bus *bus) |
| 2405 | { |
| 2406 | int i; |
| 2407 | |
| 2408 | for (i = 0; i < bus->dev_count; i++) { |
| 2409 | struct kvm_io_device *pos = bus->range[i].dev; |
| 2410 | |
| 2411 | kvm_iodevice_destructor(pos); |
| 2412 | } |
| 2413 | kfree(bus); |
| 2414 | } |
| 2415 | |
| 2416 | int kvm_io_bus_sort_cmp(const void *p1, const void *p2) |
| 2417 | { |
| 2418 | const struct kvm_io_range *r1 = p1; |
| 2419 | const struct kvm_io_range *r2 = p2; |
| 2420 | |
| 2421 | if (r1->addr < r2->addr) |
| 2422 | return -1; |
| 2423 | if (r1->addr + r1->len > r2->addr + r2->len) |
| 2424 | return 1; |
| 2425 | return 0; |
| 2426 | } |
| 2427 | |
| 2428 | int kvm_io_bus_insert_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev, |
| 2429 | gpa_t addr, int len) |
| 2430 | { |
| 2431 | if (bus->dev_count == NR_IOBUS_DEVS) |
| 2432 | return -ENOSPC; |
| 2433 | |
| 2434 | bus->range[bus->dev_count++] = (struct kvm_io_range) { |
| 2435 | .addr = addr, |
| 2436 | .len = len, |
| 2437 | .dev = dev, |
| 2438 | }; |
| 2439 | |
| 2440 | sort(bus->range, bus->dev_count, sizeof(struct kvm_io_range), |
| 2441 | kvm_io_bus_sort_cmp, NULL); |
| 2442 | |
| 2443 | return 0; |
| 2444 | } |
| 2445 | |
| 2446 | int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus, |
| 2447 | gpa_t addr, int len) |
| 2448 | { |
| 2449 | struct kvm_io_range *range, key; |
| 2450 | int off; |
| 2451 | |
| 2452 | key = (struct kvm_io_range) { |
| 2453 | .addr = addr, |
| 2454 | .len = len, |
| 2455 | }; |
| 2456 | |
| 2457 | range = bsearch(&key, bus->range, bus->dev_count, |
| 2458 | sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp); |
| 2459 | if (range == NULL) |
| 2460 | return -ENOENT; |
| 2461 | |
| 2462 | off = range - bus->range; |
| 2463 | |
| 2464 | while (off > 0 && kvm_io_bus_sort_cmp(&key, &bus->range[off-1]) == 0) |
| 2465 | off--; |
| 2466 | |
| 2467 | return off; |
| 2468 | } |
| 2469 | |
| 2470 | /* kvm_io_bus_write - called under kvm->slots_lock */ |
| 2471 | int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, |
| 2472 | int len, const void *val) |
| 2473 | { |
| 2474 | int idx; |
| 2475 | struct kvm_io_bus *bus; |
| 2476 | struct kvm_io_range range; |
| 2477 | |
| 2478 | range = (struct kvm_io_range) { |
| 2479 | .addr = addr, |
| 2480 | .len = len, |
| 2481 | }; |
| 2482 | |
| 2483 | bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); |
| 2484 | idx = kvm_io_bus_get_first_dev(bus, addr, len); |
| 2485 | if (idx < 0) |
| 2486 | return -EOPNOTSUPP; |
| 2487 | |
| 2488 | while (idx < bus->dev_count && |
| 2489 | kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { |
| 2490 | if (!kvm_iodevice_write(bus->range[idx].dev, addr, len, val)) |
| 2491 | return 0; |
| 2492 | idx++; |
| 2493 | } |
| 2494 | |
| 2495 | return -EOPNOTSUPP; |
| 2496 | } |
| 2497 | |
| 2498 | /* kvm_io_bus_read - called under kvm->slots_lock */ |
| 2499 | int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, |
| 2500 | int len, void *val) |
| 2501 | { |
| 2502 | int idx; |
| 2503 | struct kvm_io_bus *bus; |
| 2504 | struct kvm_io_range range; |
| 2505 | |
| 2506 | range = (struct kvm_io_range) { |
| 2507 | .addr = addr, |
| 2508 | .len = len, |
| 2509 | }; |
| 2510 | |
| 2511 | bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu); |
| 2512 | idx = kvm_io_bus_get_first_dev(bus, addr, len); |
| 2513 | if (idx < 0) |
| 2514 | return -EOPNOTSUPP; |
| 2515 | |
| 2516 | while (idx < bus->dev_count && |
| 2517 | kvm_io_bus_sort_cmp(&range, &bus->range[idx]) == 0) { |
| 2518 | if (!kvm_iodevice_read(bus->range[idx].dev, addr, len, val)) |
| 2519 | return 0; |
| 2520 | idx++; |
| 2521 | } |
| 2522 | |
| 2523 | return -EOPNOTSUPP; |
| 2524 | } |
| 2525 | |
| 2526 | /* Caller must hold slots_lock. */ |
| 2527 | int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr, |
| 2528 | int len, struct kvm_io_device *dev) |
| 2529 | { |
| 2530 | struct kvm_io_bus *new_bus, *bus; |
| 2531 | |
| 2532 | bus = kvm->buses[bus_idx]; |
| 2533 | if (bus->dev_count > NR_IOBUS_DEVS-1) |
| 2534 | return -ENOSPC; |
| 2535 | |
| 2536 | new_bus = kmemdup(bus, sizeof(struct kvm_io_bus), GFP_KERNEL); |
| 2537 | if (!new_bus) |
| 2538 | return -ENOMEM; |
| 2539 | kvm_io_bus_insert_dev(new_bus, dev, addr, len); |
| 2540 | rcu_assign_pointer(kvm->buses[bus_idx], new_bus); |
| 2541 | synchronize_srcu_expedited(&kvm->srcu); |
| 2542 | kfree(bus); |
| 2543 | |
| 2544 | return 0; |
| 2545 | } |
| 2546 | |
| 2547 | /* Caller must hold slots_lock. */ |
| 2548 | int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx, |
| 2549 | struct kvm_io_device *dev) |
| 2550 | { |
| 2551 | int i, r; |
| 2552 | struct kvm_io_bus *new_bus, *bus; |
| 2553 | |
| 2554 | bus = kvm->buses[bus_idx]; |
| 2555 | |
| 2556 | new_bus = kmemdup(bus, sizeof(*bus), GFP_KERNEL); |
| 2557 | if (!new_bus) |
| 2558 | return -ENOMEM; |
| 2559 | |
| 2560 | r = -ENOENT; |
| 2561 | for (i = 0; i < new_bus->dev_count; i++) |
| 2562 | if (new_bus->range[i].dev == dev) { |
| 2563 | r = 0; |
| 2564 | new_bus->dev_count--; |
| 2565 | new_bus->range[i] = new_bus->range[new_bus->dev_count]; |
| 2566 | sort(new_bus->range, new_bus->dev_count, |
| 2567 | sizeof(struct kvm_io_range), |
| 2568 | kvm_io_bus_sort_cmp, NULL); |
| 2569 | break; |
| 2570 | } |
| 2571 | |
| 2572 | if (r) { |
| 2573 | kfree(new_bus); |
| 2574 | return r; |
| 2575 | } |
| 2576 | |
| 2577 | rcu_assign_pointer(kvm->buses[bus_idx], new_bus); |
| 2578 | synchronize_srcu_expedited(&kvm->srcu); |
| 2579 | kfree(bus); |
| 2580 | return r; |
| 2581 | } |
| 2582 | |
| 2583 | static struct notifier_block kvm_cpu_notifier = { |
| 2584 | .notifier_call = kvm_cpu_hotplug, |
| 2585 | }; |
| 2586 | |
| 2587 | static int vm_stat_get(void *_offset, u64 *val) |
| 2588 | { |
| 2589 | unsigned offset = (long)_offset; |
| 2590 | struct kvm *kvm; |
| 2591 | |
| 2592 | *val = 0; |
| 2593 | raw_spin_lock(&kvm_lock); |
| 2594 | list_for_each_entry(kvm, &vm_list, vm_list) |
| 2595 | *val += *(u32 *)((void *)kvm + offset); |
| 2596 | raw_spin_unlock(&kvm_lock); |
| 2597 | return 0; |
| 2598 | } |
| 2599 | |
| 2600 | DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n"); |
| 2601 | |
| 2602 | static int vcpu_stat_get(void *_offset, u64 *val) |
| 2603 | { |
| 2604 | unsigned offset = (long)_offset; |
| 2605 | struct kvm *kvm; |
| 2606 | struct kvm_vcpu *vcpu; |
| 2607 | int i; |
| 2608 | |
| 2609 | *val = 0; |
| 2610 | raw_spin_lock(&kvm_lock); |
| 2611 | list_for_each_entry(kvm, &vm_list, vm_list) |
| 2612 | kvm_for_each_vcpu(i, vcpu, kvm) |
| 2613 | *val += *(u32 *)((void *)vcpu + offset); |
| 2614 | |
| 2615 | raw_spin_unlock(&kvm_lock); |
| 2616 | return 0; |
| 2617 | } |
| 2618 | |
| 2619 | DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n"); |
| 2620 | |
| 2621 | static const struct file_operations *stat_fops[] = { |
| 2622 | [KVM_STAT_VCPU] = &vcpu_stat_fops, |
| 2623 | [KVM_STAT_VM] = &vm_stat_fops, |
| 2624 | }; |
| 2625 | |
| 2626 | static int kvm_init_debug(void) |
| 2627 | { |
| 2628 | int r = -EFAULT; |
| 2629 | struct kvm_stats_debugfs_item *p; |
| 2630 | |
| 2631 | kvm_debugfs_dir = debugfs_create_dir("kvm", NULL); |
| 2632 | if (kvm_debugfs_dir == NULL) |
| 2633 | goto out; |
| 2634 | |
| 2635 | for (p = debugfs_entries; p->name; ++p) { |
| 2636 | p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir, |
| 2637 | (void *)(long)p->offset, |
| 2638 | stat_fops[p->kind]); |
| 2639 | if (p->dentry == NULL) |
| 2640 | goto out_dir; |
| 2641 | } |
| 2642 | |
| 2643 | return 0; |
| 2644 | |
| 2645 | out_dir: |
| 2646 | debugfs_remove_recursive(kvm_debugfs_dir); |
| 2647 | out: |
| 2648 | return r; |
| 2649 | } |
| 2650 | |
| 2651 | static void kvm_exit_debug(void) |
| 2652 | { |
| 2653 | struct kvm_stats_debugfs_item *p; |
| 2654 | |
| 2655 | for (p = debugfs_entries; p->name; ++p) |
| 2656 | debugfs_remove(p->dentry); |
| 2657 | debugfs_remove(kvm_debugfs_dir); |
| 2658 | } |
| 2659 | |
| 2660 | static int kvm_suspend(void) |
| 2661 | { |
| 2662 | if (kvm_usage_count) |
| 2663 | hardware_disable_nolock(NULL); |
| 2664 | return 0; |
| 2665 | } |
| 2666 | |
| 2667 | static void kvm_resume(void) |
| 2668 | { |
| 2669 | if (kvm_usage_count) { |
| 2670 | WARN_ON(raw_spin_is_locked(&kvm_lock)); |
| 2671 | hardware_enable_nolock(NULL); |
| 2672 | } |
| 2673 | } |
| 2674 | |
| 2675 | static struct syscore_ops kvm_syscore_ops = { |
| 2676 | .suspend = kvm_suspend, |
| 2677 | .resume = kvm_resume, |
| 2678 | }; |
| 2679 | |
| 2680 | struct page *bad_page; |
| 2681 | pfn_t bad_pfn; |
| 2682 | |
| 2683 | static inline |
| 2684 | struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn) |
| 2685 | { |
| 2686 | return container_of(pn, struct kvm_vcpu, preempt_notifier); |
| 2687 | } |
| 2688 | |
| 2689 | static void kvm_sched_in(struct preempt_notifier *pn, int cpu) |
| 2690 | { |
| 2691 | struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); |
| 2692 | |
| 2693 | kvm_arch_vcpu_load(vcpu, cpu); |
| 2694 | } |
| 2695 | |
| 2696 | static void kvm_sched_out(struct preempt_notifier *pn, |
| 2697 | struct task_struct *next) |
| 2698 | { |
| 2699 | struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn); |
| 2700 | |
| 2701 | kvm_arch_vcpu_put(vcpu); |
| 2702 | } |
| 2703 | |
| 2704 | int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align, |
| 2705 | struct module *module) |
| 2706 | { |
| 2707 | int r; |
| 2708 | int cpu; |
| 2709 | |
| 2710 | r = kvm_arch_init(opaque); |
| 2711 | if (r) |
| 2712 | goto out_fail; |
| 2713 | |
| 2714 | bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| 2715 | |
| 2716 | if (bad_page == NULL) { |
| 2717 | r = -ENOMEM; |
| 2718 | goto out; |
| 2719 | } |
| 2720 | |
| 2721 | bad_pfn = page_to_pfn(bad_page); |
| 2722 | |
| 2723 | hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| 2724 | |
| 2725 | if (hwpoison_page == NULL) { |
| 2726 | r = -ENOMEM; |
| 2727 | goto out_free_0; |
| 2728 | } |
| 2729 | |
| 2730 | hwpoison_pfn = page_to_pfn(hwpoison_page); |
| 2731 | |
| 2732 | fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO); |
| 2733 | |
| 2734 | if (fault_page == NULL) { |
| 2735 | r = -ENOMEM; |
| 2736 | goto out_free_0; |
| 2737 | } |
| 2738 | |
| 2739 | fault_pfn = page_to_pfn(fault_page); |
| 2740 | |
| 2741 | if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) { |
| 2742 | r = -ENOMEM; |
| 2743 | goto out_free_0; |
| 2744 | } |
| 2745 | |
| 2746 | r = kvm_arch_hardware_setup(); |
| 2747 | if (r < 0) |
| 2748 | goto out_free_0a; |
| 2749 | |
| 2750 | for_each_online_cpu(cpu) { |
| 2751 | smp_call_function_single(cpu, |
| 2752 | kvm_arch_check_processor_compat, |
| 2753 | &r, 1); |
| 2754 | if (r < 0) |
| 2755 | goto out_free_1; |
| 2756 | } |
| 2757 | |
| 2758 | r = register_cpu_notifier(&kvm_cpu_notifier); |
| 2759 | if (r) |
| 2760 | goto out_free_2; |
| 2761 | register_reboot_notifier(&kvm_reboot_notifier); |
| 2762 | |
| 2763 | /* A kmem cache lets us meet the alignment requirements of fx_save. */ |
| 2764 | if (!vcpu_align) |
| 2765 | vcpu_align = __alignof__(struct kvm_vcpu); |
| 2766 | kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align, |
| 2767 | 0, NULL); |
| 2768 | if (!kvm_vcpu_cache) { |
| 2769 | r = -ENOMEM; |
| 2770 | goto out_free_3; |
| 2771 | } |
| 2772 | |
| 2773 | r = kvm_async_pf_init(); |
| 2774 | if (r) |
| 2775 | goto out_free; |
| 2776 | |
| 2777 | kvm_chardev_ops.owner = module; |
| 2778 | kvm_vm_fops.owner = module; |
| 2779 | kvm_vcpu_fops.owner = module; |
| 2780 | |
| 2781 | r = misc_register(&kvm_dev); |
| 2782 | if (r) { |
| 2783 | printk(KERN_ERR "kvm: misc device register failed\n"); |
| 2784 | goto out_unreg; |
| 2785 | } |
| 2786 | |
| 2787 | register_syscore_ops(&kvm_syscore_ops); |
| 2788 | |
| 2789 | kvm_preempt_ops.sched_in = kvm_sched_in; |
| 2790 | kvm_preempt_ops.sched_out = kvm_sched_out; |
| 2791 | |
| 2792 | r = kvm_init_debug(); |
| 2793 | if (r) { |
| 2794 | printk(KERN_ERR "kvm: create debugfs files failed\n"); |
| 2795 | goto out_undebugfs; |
| 2796 | } |
| 2797 | |
| 2798 | return 0; |
| 2799 | |
| 2800 | out_undebugfs: |
| 2801 | unregister_syscore_ops(&kvm_syscore_ops); |
| 2802 | out_unreg: |
| 2803 | kvm_async_pf_deinit(); |
| 2804 | out_free: |
| 2805 | kmem_cache_destroy(kvm_vcpu_cache); |
| 2806 | out_free_3: |
| 2807 | unregister_reboot_notifier(&kvm_reboot_notifier); |
| 2808 | unregister_cpu_notifier(&kvm_cpu_notifier); |
| 2809 | out_free_2: |
| 2810 | out_free_1: |
| 2811 | kvm_arch_hardware_unsetup(); |
| 2812 | out_free_0a: |
| 2813 | free_cpumask_var(cpus_hardware_enabled); |
| 2814 | out_free_0: |
| 2815 | if (fault_page) |
| 2816 | __free_page(fault_page); |
| 2817 | if (hwpoison_page) |
| 2818 | __free_page(hwpoison_page); |
| 2819 | __free_page(bad_page); |
| 2820 | out: |
| 2821 | kvm_arch_exit(); |
| 2822 | out_fail: |
| 2823 | return r; |
| 2824 | } |
| 2825 | EXPORT_SYMBOL_GPL(kvm_init); |
| 2826 | |
| 2827 | void kvm_exit(void) |
| 2828 | { |
| 2829 | kvm_exit_debug(); |
| 2830 | misc_deregister(&kvm_dev); |
| 2831 | kmem_cache_destroy(kvm_vcpu_cache); |
| 2832 | kvm_async_pf_deinit(); |
| 2833 | unregister_syscore_ops(&kvm_syscore_ops); |
| 2834 | unregister_reboot_notifier(&kvm_reboot_notifier); |
| 2835 | unregister_cpu_notifier(&kvm_cpu_notifier); |
| 2836 | on_each_cpu(hardware_disable_nolock, NULL, 1); |
| 2837 | kvm_arch_hardware_unsetup(); |
| 2838 | kvm_arch_exit(); |
| 2839 | free_cpumask_var(cpus_hardware_enabled); |
| 2840 | __free_page(hwpoison_page); |
| 2841 | __free_page(bad_page); |
| 2842 | } |
| 2843 | EXPORT_SYMBOL_GPL(kvm_exit); |