yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * Details about Montgomery multiplication algorithms can be found at |
| 12 | * http://security.ece.orst.edu/publications.html, e.g. |
| 13 | * http://security.ece.orst.edu/koc/papers/j37acmon.pdf and |
| 14 | * sections 3.8 and 4.2 in http://security.ece.orst.edu/koc/papers/r01rsasw.pdf |
| 15 | */ |
| 16 | |
| 17 | #include "internal/cryptlib.h" |
| 18 | #include "bn_local.h" |
| 19 | |
| 20 | #define MONT_WORD /* use the faster word-based algorithm */ |
| 21 | |
| 22 | #ifdef MONT_WORD |
| 23 | static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont); |
| 24 | #endif |
| 25 | |
| 26 | int BN_mod_mul_montgomery(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 27 | BN_MONT_CTX *mont, BN_CTX *ctx) |
| 28 | { |
| 29 | int ret = bn_mul_mont_fixed_top(r, a, b, mont, ctx); |
| 30 | |
| 31 | bn_correct_top(r); |
| 32 | bn_check_top(r); |
| 33 | |
| 34 | return ret; |
| 35 | } |
| 36 | |
| 37 | int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM *b, |
| 38 | BN_MONT_CTX *mont, BN_CTX *ctx) |
| 39 | { |
| 40 | BIGNUM *tmp; |
| 41 | int ret = 0; |
| 42 | int num = mont->N.top; |
| 43 | |
| 44 | #if defined(OPENSSL_BN_ASM_MONT) && defined(MONT_WORD) |
| 45 | if (num > 1 && a->top == num && b->top == num) { |
| 46 | if (bn_wexpand(r, num) == NULL) |
| 47 | return 0; |
| 48 | if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)) { |
| 49 | r->neg = a->neg ^ b->neg; |
| 50 | r->top = num; |
| 51 | r->flags |= BN_FLG_FIXED_TOP; |
| 52 | return 1; |
| 53 | } |
| 54 | } |
| 55 | #endif |
| 56 | |
| 57 | if ((a->top + b->top) > 2 * num) |
| 58 | return 0; |
| 59 | |
| 60 | BN_CTX_start(ctx); |
| 61 | tmp = BN_CTX_get(ctx); |
| 62 | if (tmp == NULL) |
| 63 | goto err; |
| 64 | |
| 65 | bn_check_top(tmp); |
| 66 | if (a == b) { |
| 67 | if (!bn_sqr_fixed_top(tmp, a, ctx)) |
| 68 | goto err; |
| 69 | } else { |
| 70 | if (!bn_mul_fixed_top(tmp, a, b, ctx)) |
| 71 | goto err; |
| 72 | } |
| 73 | /* reduce from aRR to aR */ |
| 74 | #ifdef MONT_WORD |
| 75 | if (!bn_from_montgomery_word(r, tmp, mont)) |
| 76 | goto err; |
| 77 | #else |
| 78 | if (!BN_from_montgomery(r, tmp, mont, ctx)) |
| 79 | goto err; |
| 80 | #endif |
| 81 | ret = 1; |
| 82 | err: |
| 83 | BN_CTX_end(ctx); |
| 84 | return ret; |
| 85 | } |
| 86 | |
| 87 | #ifdef MONT_WORD |
| 88 | static int bn_from_montgomery_word(BIGNUM *ret, BIGNUM *r, BN_MONT_CTX *mont) |
| 89 | { |
| 90 | BIGNUM *n; |
| 91 | BN_ULONG *ap, *np, *rp, n0, v, carry; |
| 92 | int nl, max, i; |
| 93 | unsigned int rtop; |
| 94 | |
| 95 | n = &(mont->N); |
| 96 | nl = n->top; |
| 97 | if (nl == 0) { |
| 98 | ret->top = 0; |
| 99 | return 1; |
| 100 | } |
| 101 | |
| 102 | max = (2 * nl); /* carry is stored separately */ |
| 103 | if (bn_wexpand(r, max) == NULL) |
| 104 | return 0; |
| 105 | |
| 106 | r->neg ^= n->neg; |
| 107 | np = n->d; |
| 108 | rp = r->d; |
| 109 | |
| 110 | /* clear the top words of T */ |
| 111 | for (rtop = r->top, i = 0; i < max; i++) { |
| 112 | v = (BN_ULONG)0 - ((i - rtop) >> (8 * sizeof(rtop) - 1)); |
| 113 | rp[i] &= v; |
| 114 | } |
| 115 | |
| 116 | r->top = max; |
| 117 | r->flags |= BN_FLG_FIXED_TOP; |
| 118 | n0 = mont->n0[0]; |
| 119 | |
| 120 | /* |
| 121 | * Add multiples of |n| to |r| until R = 2^(nl * BN_BITS2) divides it. On |
| 122 | * input, we had |r| < |n| * R, so now |r| < 2 * |n| * R. Note that |r| |
| 123 | * includes |carry| which is stored separately. |
| 124 | */ |
| 125 | for (carry = 0, i = 0; i < nl; i++, rp++) { |
| 126 | v = bn_mul_add_words(rp, np, nl, (rp[0] * n0) & BN_MASK2); |
| 127 | v = (v + carry + rp[nl]) & BN_MASK2; |
| 128 | carry |= (v != rp[nl]); |
| 129 | carry &= (v <= rp[nl]); |
| 130 | rp[nl] = v; |
| 131 | } |
| 132 | |
| 133 | if (bn_wexpand(ret, nl) == NULL) |
| 134 | return 0; |
| 135 | ret->top = nl; |
| 136 | ret->flags |= BN_FLG_FIXED_TOP; |
| 137 | ret->neg = r->neg; |
| 138 | |
| 139 | rp = ret->d; |
| 140 | |
| 141 | /* |
| 142 | * Shift |nl| words to divide by R. We have |ap| < 2 * |n|. Note that |ap| |
| 143 | * includes |carry| which is stored separately. |
| 144 | */ |
| 145 | ap = &(r->d[nl]); |
| 146 | |
| 147 | carry -= bn_sub_words(rp, ap, np, nl); |
| 148 | /* |
| 149 | * |carry| is -1 if |ap| - |np| underflowed or zero if it did not. Note |
| 150 | * |carry| cannot be 1. That would imply the subtraction did not fit in |
| 151 | * |nl| words, and we know at most one subtraction is needed. |
| 152 | */ |
| 153 | for (i = 0; i < nl; i++) { |
| 154 | rp[i] = (carry & ap[i]) | (~carry & rp[i]); |
| 155 | ap[i] = 0; |
| 156 | } |
| 157 | |
| 158 | return 1; |
| 159 | } |
| 160 | #endif /* MONT_WORD */ |
| 161 | |
| 162 | int BN_from_montgomery(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont, |
| 163 | BN_CTX *ctx) |
| 164 | { |
| 165 | int retn; |
| 166 | |
| 167 | retn = bn_from_mont_fixed_top(ret, a, mont, ctx); |
| 168 | bn_correct_top(ret); |
| 169 | bn_check_top(ret); |
| 170 | |
| 171 | return retn; |
| 172 | } |
| 173 | |
| 174 | int bn_from_mont_fixed_top(BIGNUM *ret, const BIGNUM *a, BN_MONT_CTX *mont, |
| 175 | BN_CTX *ctx) |
| 176 | { |
| 177 | int retn = 0; |
| 178 | #ifdef MONT_WORD |
| 179 | BIGNUM *t; |
| 180 | |
| 181 | BN_CTX_start(ctx); |
| 182 | if ((t = BN_CTX_get(ctx)) && BN_copy(t, a)) { |
| 183 | retn = bn_from_montgomery_word(ret, t, mont); |
| 184 | } |
| 185 | BN_CTX_end(ctx); |
| 186 | #else /* !MONT_WORD */ |
| 187 | BIGNUM *t1, *t2; |
| 188 | |
| 189 | BN_CTX_start(ctx); |
| 190 | t1 = BN_CTX_get(ctx); |
| 191 | t2 = BN_CTX_get(ctx); |
| 192 | if (t2 == NULL) |
| 193 | goto err; |
| 194 | |
| 195 | if (!BN_copy(t1, a)) |
| 196 | goto err; |
| 197 | BN_mask_bits(t1, mont->ri); |
| 198 | |
| 199 | if (!BN_mul(t2, t1, &mont->Ni, ctx)) |
| 200 | goto err; |
| 201 | BN_mask_bits(t2, mont->ri); |
| 202 | |
| 203 | if (!BN_mul(t1, t2, &mont->N, ctx)) |
| 204 | goto err; |
| 205 | if (!BN_add(t2, a, t1)) |
| 206 | goto err; |
| 207 | if (!BN_rshift(ret, t2, mont->ri)) |
| 208 | goto err; |
| 209 | |
| 210 | if (BN_ucmp(ret, &(mont->N)) >= 0) { |
| 211 | if (!BN_usub(ret, ret, &(mont->N))) |
| 212 | goto err; |
| 213 | } |
| 214 | retn = 1; |
| 215 | bn_check_top(ret); |
| 216 | err: |
| 217 | BN_CTX_end(ctx); |
| 218 | #endif /* MONT_WORD */ |
| 219 | return retn; |
| 220 | } |
| 221 | |
| 222 | int bn_to_mont_fixed_top(BIGNUM *r, const BIGNUM *a, BN_MONT_CTX *mont, |
| 223 | BN_CTX *ctx) |
| 224 | { |
| 225 | return bn_mul_mont_fixed_top(r, a, &(mont->RR), mont, ctx); |
| 226 | } |
| 227 | |
| 228 | BN_MONT_CTX *BN_MONT_CTX_new(void) |
| 229 | { |
| 230 | BN_MONT_CTX *ret; |
| 231 | |
| 232 | if ((ret = OPENSSL_malloc(sizeof(*ret))) == NULL) { |
| 233 | BNerr(BN_F_BN_MONT_CTX_NEW, ERR_R_MALLOC_FAILURE); |
| 234 | return NULL; |
| 235 | } |
| 236 | |
| 237 | BN_MONT_CTX_init(ret); |
| 238 | ret->flags = BN_FLG_MALLOCED; |
| 239 | return ret; |
| 240 | } |
| 241 | |
| 242 | void BN_MONT_CTX_init(BN_MONT_CTX *ctx) |
| 243 | { |
| 244 | ctx->ri = 0; |
| 245 | bn_init(&ctx->RR); |
| 246 | bn_init(&ctx->N); |
| 247 | bn_init(&ctx->Ni); |
| 248 | ctx->n0[0] = ctx->n0[1] = 0; |
| 249 | ctx->flags = 0; |
| 250 | } |
| 251 | |
| 252 | void BN_MONT_CTX_free(BN_MONT_CTX *mont) |
| 253 | { |
| 254 | if (mont == NULL) |
| 255 | return; |
| 256 | BN_clear_free(&mont->RR); |
| 257 | BN_clear_free(&mont->N); |
| 258 | BN_clear_free(&mont->Ni); |
| 259 | if (mont->flags & BN_FLG_MALLOCED) |
| 260 | OPENSSL_free(mont); |
| 261 | } |
| 262 | |
| 263 | int BN_MONT_CTX_set(BN_MONT_CTX *mont, const BIGNUM *mod, BN_CTX *ctx) |
| 264 | { |
| 265 | int i, ret = 0; |
| 266 | BIGNUM *Ri, *R; |
| 267 | |
| 268 | if (BN_is_zero(mod)) |
| 269 | return 0; |
| 270 | |
| 271 | BN_CTX_start(ctx); |
| 272 | if ((Ri = BN_CTX_get(ctx)) == NULL) |
| 273 | goto err; |
| 274 | R = &(mont->RR); /* grab RR as a temp */ |
| 275 | if (!BN_copy(&(mont->N), mod)) |
| 276 | goto err; /* Set N */ |
| 277 | if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0) |
| 278 | BN_set_flags(&(mont->N), BN_FLG_CONSTTIME); |
| 279 | mont->N.neg = 0; |
| 280 | |
| 281 | #ifdef MONT_WORD |
| 282 | { |
| 283 | BIGNUM tmod; |
| 284 | BN_ULONG buf[2]; |
| 285 | |
| 286 | bn_init(&tmod); |
| 287 | tmod.d = buf; |
| 288 | tmod.dmax = 2; |
| 289 | tmod.neg = 0; |
| 290 | |
| 291 | if (BN_get_flags(mod, BN_FLG_CONSTTIME) != 0) |
| 292 | BN_set_flags(&tmod, BN_FLG_CONSTTIME); |
| 293 | |
| 294 | mont->ri = (BN_num_bits(mod) + (BN_BITS2 - 1)) / BN_BITS2 * BN_BITS2; |
| 295 | |
| 296 | # if defined(OPENSSL_BN_ASM_MONT) && (BN_BITS2<=32) |
| 297 | /* |
| 298 | * Only certain BN_BITS2<=32 platforms actually make use of n0[1], |
| 299 | * and we could use the #else case (with a shorter R value) for the |
| 300 | * others. However, currently only the assembler files do know which |
| 301 | * is which. |
| 302 | */ |
| 303 | |
| 304 | BN_zero(R); |
| 305 | if (!(BN_set_bit(R, 2 * BN_BITS2))) |
| 306 | goto err; |
| 307 | |
| 308 | tmod.top = 0; |
| 309 | if ((buf[0] = mod->d[0])) |
| 310 | tmod.top = 1; |
| 311 | if ((buf[1] = mod->top > 1 ? mod->d[1] : 0)) |
| 312 | tmod.top = 2; |
| 313 | |
| 314 | if (BN_is_one(&tmod)) |
| 315 | BN_zero(Ri); |
| 316 | else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) |
| 317 | goto err; |
| 318 | if (!BN_lshift(Ri, Ri, 2 * BN_BITS2)) |
| 319 | goto err; /* R*Ri */ |
| 320 | if (!BN_is_zero(Ri)) { |
| 321 | if (!BN_sub_word(Ri, 1)) |
| 322 | goto err; |
| 323 | } else { /* if N mod word size == 1 */ |
| 324 | |
| 325 | if (bn_expand(Ri, (int)sizeof(BN_ULONG) * 2) == NULL) |
| 326 | goto err; |
| 327 | /* Ri-- (mod double word size) */ |
| 328 | Ri->neg = 0; |
| 329 | Ri->d[0] = BN_MASK2; |
| 330 | Ri->d[1] = BN_MASK2; |
| 331 | Ri->top = 2; |
| 332 | } |
| 333 | if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) |
| 334 | goto err; |
| 335 | /* |
| 336 | * Ni = (R*Ri-1)/N, keep only couple of least significant words: |
| 337 | */ |
| 338 | mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; |
| 339 | mont->n0[1] = (Ri->top > 1) ? Ri->d[1] : 0; |
| 340 | # else |
| 341 | BN_zero(R); |
| 342 | if (!(BN_set_bit(R, BN_BITS2))) |
| 343 | goto err; /* R */ |
| 344 | |
| 345 | buf[0] = mod->d[0]; /* tmod = N mod word size */ |
| 346 | buf[1] = 0; |
| 347 | tmod.top = buf[0] != 0 ? 1 : 0; |
| 348 | /* Ri = R^-1 mod N */ |
| 349 | if (BN_is_one(&tmod)) |
| 350 | BN_zero(Ri); |
| 351 | else if ((BN_mod_inverse(Ri, R, &tmod, ctx)) == NULL) |
| 352 | goto err; |
| 353 | if (!BN_lshift(Ri, Ri, BN_BITS2)) |
| 354 | goto err; /* R*Ri */ |
| 355 | if (!BN_is_zero(Ri)) { |
| 356 | if (!BN_sub_word(Ri, 1)) |
| 357 | goto err; |
| 358 | } else { /* if N mod word size == 1 */ |
| 359 | |
| 360 | if (!BN_set_word(Ri, BN_MASK2)) |
| 361 | goto err; /* Ri-- (mod word size) */ |
| 362 | } |
| 363 | if (!BN_div(Ri, NULL, Ri, &tmod, ctx)) |
| 364 | goto err; |
| 365 | /* |
| 366 | * Ni = (R*Ri-1)/N, keep only least significant word: |
| 367 | */ |
| 368 | mont->n0[0] = (Ri->top > 0) ? Ri->d[0] : 0; |
| 369 | mont->n0[1] = 0; |
| 370 | # endif |
| 371 | } |
| 372 | #else /* !MONT_WORD */ |
| 373 | { /* bignum version */ |
| 374 | mont->ri = BN_num_bits(&mont->N); |
| 375 | BN_zero(R); |
| 376 | if (!BN_set_bit(R, mont->ri)) |
| 377 | goto err; /* R = 2^ri */ |
| 378 | /* Ri = R^-1 mod N */ |
| 379 | if ((BN_mod_inverse(Ri, R, &mont->N, ctx)) == NULL) |
| 380 | goto err; |
| 381 | if (!BN_lshift(Ri, Ri, mont->ri)) |
| 382 | goto err; /* R*Ri */ |
| 383 | if (!BN_sub_word(Ri, 1)) |
| 384 | goto err; |
| 385 | /* |
| 386 | * Ni = (R*Ri-1) / N |
| 387 | */ |
| 388 | if (!BN_div(&(mont->Ni), NULL, Ri, &mont->N, ctx)) |
| 389 | goto err; |
| 390 | } |
| 391 | #endif |
| 392 | |
| 393 | /* setup RR for conversions */ |
| 394 | BN_zero(&(mont->RR)); |
| 395 | if (!BN_set_bit(&(mont->RR), mont->ri * 2)) |
| 396 | goto err; |
| 397 | if (!BN_mod(&(mont->RR), &(mont->RR), &(mont->N), ctx)) |
| 398 | goto err; |
| 399 | |
| 400 | for (i = mont->RR.top, ret = mont->N.top; i < ret; i++) |
| 401 | mont->RR.d[i] = 0; |
| 402 | mont->RR.top = ret; |
| 403 | mont->RR.flags |= BN_FLG_FIXED_TOP; |
| 404 | |
| 405 | ret = 1; |
| 406 | err: |
| 407 | BN_CTX_end(ctx); |
| 408 | return ret; |
| 409 | } |
| 410 | |
| 411 | BN_MONT_CTX *BN_MONT_CTX_copy(BN_MONT_CTX *to, BN_MONT_CTX *from) |
| 412 | { |
| 413 | if (to == from) |
| 414 | return to; |
| 415 | |
| 416 | if (!BN_copy(&(to->RR), &(from->RR))) |
| 417 | return NULL; |
| 418 | if (!BN_copy(&(to->N), &(from->N))) |
| 419 | return NULL; |
| 420 | if (!BN_copy(&(to->Ni), &(from->Ni))) |
| 421 | return NULL; |
| 422 | to->ri = from->ri; |
| 423 | to->n0[0] = from->n0[0]; |
| 424 | to->n0[1] = from->n0[1]; |
| 425 | return to; |
| 426 | } |
| 427 | |
| 428 | BN_MONT_CTX *BN_MONT_CTX_set_locked(BN_MONT_CTX **pmont, CRYPTO_RWLOCK *lock, |
| 429 | const BIGNUM *mod, BN_CTX *ctx) |
| 430 | { |
| 431 | BN_MONT_CTX *ret; |
| 432 | |
| 433 | CRYPTO_THREAD_read_lock(lock); |
| 434 | ret = *pmont; |
| 435 | CRYPTO_THREAD_unlock(lock); |
| 436 | if (ret) |
| 437 | return ret; |
| 438 | |
| 439 | /* |
| 440 | * We don't want to serialise globally while doing our lazy-init math in |
| 441 | * BN_MONT_CTX_set. That punishes threads that are doing independent |
| 442 | * things. Instead, punish the case where more than one thread tries to |
| 443 | * lazy-init the same 'pmont', by having each do the lazy-init math work |
| 444 | * independently and only use the one from the thread that wins the race |
| 445 | * (the losers throw away the work they've done). |
| 446 | */ |
| 447 | ret = BN_MONT_CTX_new(); |
| 448 | if (ret == NULL) |
| 449 | return NULL; |
| 450 | if (!BN_MONT_CTX_set(ret, mod, ctx)) { |
| 451 | BN_MONT_CTX_free(ret); |
| 452 | return NULL; |
| 453 | } |
| 454 | |
| 455 | /* The locked compare-and-set, after the local work is done. */ |
| 456 | CRYPTO_THREAD_write_lock(lock); |
| 457 | if (*pmont) { |
| 458 | BN_MONT_CTX_free(ret); |
| 459 | ret = *pmont; |
| 460 | } else |
| 461 | *pmont = ret; |
| 462 | CRYPTO_THREAD_unlock(lock); |
| 463 | return ret; |
| 464 | } |