yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2002-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #include <openssl/err.h> |
| 12 | |
| 13 | #include "crypto/bn.h" |
| 14 | #include "ec_local.h" |
| 15 | |
| 16 | #ifndef OPENSSL_NO_EC2M |
| 17 | |
| 18 | /* |
| 19 | * Initialize a GF(2^m)-based EC_GROUP structure. Note that all other members |
| 20 | * are handled by EC_GROUP_new. |
| 21 | */ |
| 22 | int ec_GF2m_simple_group_init(EC_GROUP *group) |
| 23 | { |
| 24 | group->field = BN_new(); |
| 25 | group->a = BN_new(); |
| 26 | group->b = BN_new(); |
| 27 | |
| 28 | if (group->field == NULL || group->a == NULL || group->b == NULL) { |
| 29 | BN_free(group->field); |
| 30 | BN_free(group->a); |
| 31 | BN_free(group->b); |
| 32 | return 0; |
| 33 | } |
| 34 | return 1; |
| 35 | } |
| 36 | |
| 37 | /* |
| 38 | * Free a GF(2^m)-based EC_GROUP structure. Note that all other members are |
| 39 | * handled by EC_GROUP_free. |
| 40 | */ |
| 41 | void ec_GF2m_simple_group_finish(EC_GROUP *group) |
| 42 | { |
| 43 | BN_free(group->field); |
| 44 | BN_free(group->a); |
| 45 | BN_free(group->b); |
| 46 | } |
| 47 | |
| 48 | /* |
| 49 | * Clear and free a GF(2^m)-based EC_GROUP structure. Note that all other |
| 50 | * members are handled by EC_GROUP_clear_free. |
| 51 | */ |
| 52 | void ec_GF2m_simple_group_clear_finish(EC_GROUP *group) |
| 53 | { |
| 54 | BN_clear_free(group->field); |
| 55 | BN_clear_free(group->a); |
| 56 | BN_clear_free(group->b); |
| 57 | group->poly[0] = 0; |
| 58 | group->poly[1] = 0; |
| 59 | group->poly[2] = 0; |
| 60 | group->poly[3] = 0; |
| 61 | group->poly[4] = 0; |
| 62 | group->poly[5] = -1; |
| 63 | } |
| 64 | |
| 65 | /* |
| 66 | * Copy a GF(2^m)-based EC_GROUP structure. Note that all other members are |
| 67 | * handled by EC_GROUP_copy. |
| 68 | */ |
| 69 | int ec_GF2m_simple_group_copy(EC_GROUP *dest, const EC_GROUP *src) |
| 70 | { |
| 71 | if (!BN_copy(dest->field, src->field)) |
| 72 | return 0; |
| 73 | if (!BN_copy(dest->a, src->a)) |
| 74 | return 0; |
| 75 | if (!BN_copy(dest->b, src->b)) |
| 76 | return 0; |
| 77 | dest->poly[0] = src->poly[0]; |
| 78 | dest->poly[1] = src->poly[1]; |
| 79 | dest->poly[2] = src->poly[2]; |
| 80 | dest->poly[3] = src->poly[3]; |
| 81 | dest->poly[4] = src->poly[4]; |
| 82 | dest->poly[5] = src->poly[5]; |
| 83 | if (bn_wexpand(dest->a, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == |
| 84 | NULL) |
| 85 | return 0; |
| 86 | if (bn_wexpand(dest->b, (int)(dest->poly[0] + BN_BITS2 - 1) / BN_BITS2) == |
| 87 | NULL) |
| 88 | return 0; |
| 89 | bn_set_all_zero(dest->a); |
| 90 | bn_set_all_zero(dest->b); |
| 91 | return 1; |
| 92 | } |
| 93 | |
| 94 | /* Set the curve parameters of an EC_GROUP structure. */ |
| 95 | int ec_GF2m_simple_group_set_curve(EC_GROUP *group, |
| 96 | const BIGNUM *p, const BIGNUM *a, |
| 97 | const BIGNUM *b, BN_CTX *ctx) |
| 98 | { |
| 99 | int ret = 0, i; |
| 100 | |
| 101 | /* group->field */ |
| 102 | if (!BN_copy(group->field, p)) |
| 103 | goto err; |
| 104 | i = BN_GF2m_poly2arr(group->field, group->poly, 6) - 1; |
| 105 | if ((i != 5) && (i != 3)) { |
| 106 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_SET_CURVE, EC_R_UNSUPPORTED_FIELD); |
| 107 | goto err; |
| 108 | } |
| 109 | |
| 110 | /* group->a */ |
| 111 | if (!BN_GF2m_mod_arr(group->a, a, group->poly)) |
| 112 | goto err; |
| 113 | if (bn_wexpand(group->a, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
| 114 | == NULL) |
| 115 | goto err; |
| 116 | bn_set_all_zero(group->a); |
| 117 | |
| 118 | /* group->b */ |
| 119 | if (!BN_GF2m_mod_arr(group->b, b, group->poly)) |
| 120 | goto err; |
| 121 | if (bn_wexpand(group->b, (int)(group->poly[0] + BN_BITS2 - 1) / BN_BITS2) |
| 122 | == NULL) |
| 123 | goto err; |
| 124 | bn_set_all_zero(group->b); |
| 125 | |
| 126 | ret = 1; |
| 127 | err: |
| 128 | return ret; |
| 129 | } |
| 130 | |
| 131 | /* |
| 132 | * Get the curve parameters of an EC_GROUP structure. If p, a, or b are NULL |
| 133 | * then there values will not be set but the method will return with success. |
| 134 | */ |
| 135 | int ec_GF2m_simple_group_get_curve(const EC_GROUP *group, BIGNUM *p, |
| 136 | BIGNUM *a, BIGNUM *b, BN_CTX *ctx) |
| 137 | { |
| 138 | int ret = 0; |
| 139 | |
| 140 | if (p != NULL) { |
| 141 | if (!BN_copy(p, group->field)) |
| 142 | return 0; |
| 143 | } |
| 144 | |
| 145 | if (a != NULL) { |
| 146 | if (!BN_copy(a, group->a)) |
| 147 | goto err; |
| 148 | } |
| 149 | |
| 150 | if (b != NULL) { |
| 151 | if (!BN_copy(b, group->b)) |
| 152 | goto err; |
| 153 | } |
| 154 | |
| 155 | ret = 1; |
| 156 | |
| 157 | err: |
| 158 | return ret; |
| 159 | } |
| 160 | |
| 161 | /* |
| 162 | * Gets the degree of the field. For a curve over GF(2^m) this is the value |
| 163 | * m. |
| 164 | */ |
| 165 | int ec_GF2m_simple_group_get_degree(const EC_GROUP *group) |
| 166 | { |
| 167 | return BN_num_bits(group->field) - 1; |
| 168 | } |
| 169 | |
| 170 | /* |
| 171 | * Checks the discriminant of the curve. y^2 + x*y = x^3 + a*x^2 + b is an |
| 172 | * elliptic curve <=> b != 0 (mod p) |
| 173 | */ |
| 174 | int ec_GF2m_simple_group_check_discriminant(const EC_GROUP *group, |
| 175 | BN_CTX *ctx) |
| 176 | { |
| 177 | int ret = 0; |
| 178 | BIGNUM *b; |
| 179 | BN_CTX *new_ctx = NULL; |
| 180 | |
| 181 | if (ctx == NULL) { |
| 182 | ctx = new_ctx = BN_CTX_new(); |
| 183 | if (ctx == NULL) { |
| 184 | ECerr(EC_F_EC_GF2M_SIMPLE_GROUP_CHECK_DISCRIMINANT, |
| 185 | ERR_R_MALLOC_FAILURE); |
| 186 | goto err; |
| 187 | } |
| 188 | } |
| 189 | BN_CTX_start(ctx); |
| 190 | b = BN_CTX_get(ctx); |
| 191 | if (b == NULL) |
| 192 | goto err; |
| 193 | |
| 194 | if (!BN_GF2m_mod_arr(b, group->b, group->poly)) |
| 195 | goto err; |
| 196 | |
| 197 | /* |
| 198 | * check the discriminant: y^2 + x*y = x^3 + a*x^2 + b is an elliptic |
| 199 | * curve <=> b != 0 (mod p) |
| 200 | */ |
| 201 | if (BN_is_zero(b)) |
| 202 | goto err; |
| 203 | |
| 204 | ret = 1; |
| 205 | |
| 206 | err: |
| 207 | BN_CTX_end(ctx); |
| 208 | BN_CTX_free(new_ctx); |
| 209 | return ret; |
| 210 | } |
| 211 | |
| 212 | /* Initializes an EC_POINT. */ |
| 213 | int ec_GF2m_simple_point_init(EC_POINT *point) |
| 214 | { |
| 215 | point->X = BN_new(); |
| 216 | point->Y = BN_new(); |
| 217 | point->Z = BN_new(); |
| 218 | |
| 219 | if (point->X == NULL || point->Y == NULL || point->Z == NULL) { |
| 220 | BN_free(point->X); |
| 221 | BN_free(point->Y); |
| 222 | BN_free(point->Z); |
| 223 | return 0; |
| 224 | } |
| 225 | return 1; |
| 226 | } |
| 227 | |
| 228 | /* Frees an EC_POINT. */ |
| 229 | void ec_GF2m_simple_point_finish(EC_POINT *point) |
| 230 | { |
| 231 | BN_free(point->X); |
| 232 | BN_free(point->Y); |
| 233 | BN_free(point->Z); |
| 234 | } |
| 235 | |
| 236 | /* Clears and frees an EC_POINT. */ |
| 237 | void ec_GF2m_simple_point_clear_finish(EC_POINT *point) |
| 238 | { |
| 239 | BN_clear_free(point->X); |
| 240 | BN_clear_free(point->Y); |
| 241 | BN_clear_free(point->Z); |
| 242 | point->Z_is_one = 0; |
| 243 | } |
| 244 | |
| 245 | /* |
| 246 | * Copy the contents of one EC_POINT into another. Assumes dest is |
| 247 | * initialized. |
| 248 | */ |
| 249 | int ec_GF2m_simple_point_copy(EC_POINT *dest, const EC_POINT *src) |
| 250 | { |
| 251 | if (!BN_copy(dest->X, src->X)) |
| 252 | return 0; |
| 253 | if (!BN_copy(dest->Y, src->Y)) |
| 254 | return 0; |
| 255 | if (!BN_copy(dest->Z, src->Z)) |
| 256 | return 0; |
| 257 | dest->Z_is_one = src->Z_is_one; |
| 258 | dest->curve_name = src->curve_name; |
| 259 | |
| 260 | return 1; |
| 261 | } |
| 262 | |
| 263 | /* |
| 264 | * Set an EC_POINT to the point at infinity. A point at infinity is |
| 265 | * represented by having Z=0. |
| 266 | */ |
| 267 | int ec_GF2m_simple_point_set_to_infinity(const EC_GROUP *group, |
| 268 | EC_POINT *point) |
| 269 | { |
| 270 | point->Z_is_one = 0; |
| 271 | BN_zero(point->Z); |
| 272 | return 1; |
| 273 | } |
| 274 | |
| 275 | /* |
| 276 | * Set the coordinates of an EC_POINT using affine coordinates. Note that |
| 277 | * the simple implementation only uses affine coordinates. |
| 278 | */ |
| 279 | int ec_GF2m_simple_point_set_affine_coordinates(const EC_GROUP *group, |
| 280 | EC_POINT *point, |
| 281 | const BIGNUM *x, |
| 282 | const BIGNUM *y, BN_CTX *ctx) |
| 283 | { |
| 284 | int ret = 0; |
| 285 | if (x == NULL || y == NULL) { |
| 286 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_SET_AFFINE_COORDINATES, |
| 287 | ERR_R_PASSED_NULL_PARAMETER); |
| 288 | return 0; |
| 289 | } |
| 290 | |
| 291 | if (!BN_copy(point->X, x)) |
| 292 | goto err; |
| 293 | BN_set_negative(point->X, 0); |
| 294 | if (!BN_copy(point->Y, y)) |
| 295 | goto err; |
| 296 | BN_set_negative(point->Y, 0); |
| 297 | if (!BN_copy(point->Z, BN_value_one())) |
| 298 | goto err; |
| 299 | BN_set_negative(point->Z, 0); |
| 300 | point->Z_is_one = 1; |
| 301 | ret = 1; |
| 302 | |
| 303 | err: |
| 304 | return ret; |
| 305 | } |
| 306 | |
| 307 | /* |
| 308 | * Gets the affine coordinates of an EC_POINT. Note that the simple |
| 309 | * implementation only uses affine coordinates. |
| 310 | */ |
| 311 | int ec_GF2m_simple_point_get_affine_coordinates(const EC_GROUP *group, |
| 312 | const EC_POINT *point, |
| 313 | BIGNUM *x, BIGNUM *y, |
| 314 | BN_CTX *ctx) |
| 315 | { |
| 316 | int ret = 0; |
| 317 | |
| 318 | if (EC_POINT_is_at_infinity(group, point)) { |
| 319 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
| 320 | EC_R_POINT_AT_INFINITY); |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | if (BN_cmp(point->Z, BN_value_one())) { |
| 325 | ECerr(EC_F_EC_GF2M_SIMPLE_POINT_GET_AFFINE_COORDINATES, |
| 326 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 327 | return 0; |
| 328 | } |
| 329 | if (x != NULL) { |
| 330 | if (!BN_copy(x, point->X)) |
| 331 | goto err; |
| 332 | BN_set_negative(x, 0); |
| 333 | } |
| 334 | if (y != NULL) { |
| 335 | if (!BN_copy(y, point->Y)) |
| 336 | goto err; |
| 337 | BN_set_negative(y, 0); |
| 338 | } |
| 339 | ret = 1; |
| 340 | |
| 341 | err: |
| 342 | return ret; |
| 343 | } |
| 344 | |
| 345 | /* |
| 346 | * Computes a + b and stores the result in r. r could be a or b, a could be |
| 347 | * b. Uses algorithm A.10.2 of IEEE P1363. |
| 348 | */ |
| 349 | int ec_GF2m_simple_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| 350 | const EC_POINT *b, BN_CTX *ctx) |
| 351 | { |
| 352 | BN_CTX *new_ctx = NULL; |
| 353 | BIGNUM *x0, *y0, *x1, *y1, *x2, *y2, *s, *t; |
| 354 | int ret = 0; |
| 355 | |
| 356 | if (EC_POINT_is_at_infinity(group, a)) { |
| 357 | if (!EC_POINT_copy(r, b)) |
| 358 | return 0; |
| 359 | return 1; |
| 360 | } |
| 361 | |
| 362 | if (EC_POINT_is_at_infinity(group, b)) { |
| 363 | if (!EC_POINT_copy(r, a)) |
| 364 | return 0; |
| 365 | return 1; |
| 366 | } |
| 367 | |
| 368 | if (ctx == NULL) { |
| 369 | ctx = new_ctx = BN_CTX_new(); |
| 370 | if (ctx == NULL) |
| 371 | return 0; |
| 372 | } |
| 373 | |
| 374 | BN_CTX_start(ctx); |
| 375 | x0 = BN_CTX_get(ctx); |
| 376 | y0 = BN_CTX_get(ctx); |
| 377 | x1 = BN_CTX_get(ctx); |
| 378 | y1 = BN_CTX_get(ctx); |
| 379 | x2 = BN_CTX_get(ctx); |
| 380 | y2 = BN_CTX_get(ctx); |
| 381 | s = BN_CTX_get(ctx); |
| 382 | t = BN_CTX_get(ctx); |
| 383 | if (t == NULL) |
| 384 | goto err; |
| 385 | |
| 386 | if (a->Z_is_one) { |
| 387 | if (!BN_copy(x0, a->X)) |
| 388 | goto err; |
| 389 | if (!BN_copy(y0, a->Y)) |
| 390 | goto err; |
| 391 | } else { |
| 392 | if (!EC_POINT_get_affine_coordinates(group, a, x0, y0, ctx)) |
| 393 | goto err; |
| 394 | } |
| 395 | if (b->Z_is_one) { |
| 396 | if (!BN_copy(x1, b->X)) |
| 397 | goto err; |
| 398 | if (!BN_copy(y1, b->Y)) |
| 399 | goto err; |
| 400 | } else { |
| 401 | if (!EC_POINT_get_affine_coordinates(group, b, x1, y1, ctx)) |
| 402 | goto err; |
| 403 | } |
| 404 | |
| 405 | if (BN_GF2m_cmp(x0, x1)) { |
| 406 | if (!BN_GF2m_add(t, x0, x1)) |
| 407 | goto err; |
| 408 | if (!BN_GF2m_add(s, y0, y1)) |
| 409 | goto err; |
| 410 | if (!group->meth->field_div(group, s, s, t, ctx)) |
| 411 | goto err; |
| 412 | if (!group->meth->field_sqr(group, x2, s, ctx)) |
| 413 | goto err; |
| 414 | if (!BN_GF2m_add(x2, x2, group->a)) |
| 415 | goto err; |
| 416 | if (!BN_GF2m_add(x2, x2, s)) |
| 417 | goto err; |
| 418 | if (!BN_GF2m_add(x2, x2, t)) |
| 419 | goto err; |
| 420 | } else { |
| 421 | if (BN_GF2m_cmp(y0, y1) || BN_is_zero(x1)) { |
| 422 | if (!EC_POINT_set_to_infinity(group, r)) |
| 423 | goto err; |
| 424 | ret = 1; |
| 425 | goto err; |
| 426 | } |
| 427 | if (!group->meth->field_div(group, s, y1, x1, ctx)) |
| 428 | goto err; |
| 429 | if (!BN_GF2m_add(s, s, x1)) |
| 430 | goto err; |
| 431 | |
| 432 | if (!group->meth->field_sqr(group, x2, s, ctx)) |
| 433 | goto err; |
| 434 | if (!BN_GF2m_add(x2, x2, s)) |
| 435 | goto err; |
| 436 | if (!BN_GF2m_add(x2, x2, group->a)) |
| 437 | goto err; |
| 438 | } |
| 439 | |
| 440 | if (!BN_GF2m_add(y2, x1, x2)) |
| 441 | goto err; |
| 442 | if (!group->meth->field_mul(group, y2, y2, s, ctx)) |
| 443 | goto err; |
| 444 | if (!BN_GF2m_add(y2, y2, x2)) |
| 445 | goto err; |
| 446 | if (!BN_GF2m_add(y2, y2, y1)) |
| 447 | goto err; |
| 448 | |
| 449 | if (!EC_POINT_set_affine_coordinates(group, r, x2, y2, ctx)) |
| 450 | goto err; |
| 451 | |
| 452 | ret = 1; |
| 453 | |
| 454 | err: |
| 455 | BN_CTX_end(ctx); |
| 456 | BN_CTX_free(new_ctx); |
| 457 | return ret; |
| 458 | } |
| 459 | |
| 460 | /* |
| 461 | * Computes 2 * a and stores the result in r. r could be a. Uses algorithm |
| 462 | * A.10.2 of IEEE P1363. |
| 463 | */ |
| 464 | int ec_GF2m_simple_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| 465 | BN_CTX *ctx) |
| 466 | { |
| 467 | return ec_GF2m_simple_add(group, r, a, a, ctx); |
| 468 | } |
| 469 | |
| 470 | int ec_GF2m_simple_invert(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) |
| 471 | { |
| 472 | if (EC_POINT_is_at_infinity(group, point) || BN_is_zero(point->Y)) |
| 473 | /* point is its own inverse */ |
| 474 | return 1; |
| 475 | |
| 476 | if (!EC_POINT_make_affine(group, point, ctx)) |
| 477 | return 0; |
| 478 | return BN_GF2m_add(point->Y, point->X, point->Y); |
| 479 | } |
| 480 | |
| 481 | /* Indicates whether the given point is the point at infinity. */ |
| 482 | int ec_GF2m_simple_is_at_infinity(const EC_GROUP *group, |
| 483 | const EC_POINT *point) |
| 484 | { |
| 485 | return BN_is_zero(point->Z); |
| 486 | } |
| 487 | |
| 488 | /*- |
| 489 | * Determines whether the given EC_POINT is an actual point on the curve defined |
| 490 | * in the EC_GROUP. A point is valid if it satisfies the Weierstrass equation: |
| 491 | * y^2 + x*y = x^3 + a*x^2 + b. |
| 492 | */ |
| 493 | int ec_GF2m_simple_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
| 494 | BN_CTX *ctx) |
| 495 | { |
| 496 | int ret = -1; |
| 497 | BN_CTX *new_ctx = NULL; |
| 498 | BIGNUM *lh, *y2; |
| 499 | int (*field_mul) (const EC_GROUP *, BIGNUM *, const BIGNUM *, |
| 500 | const BIGNUM *, BN_CTX *); |
| 501 | int (*field_sqr) (const EC_GROUP *, BIGNUM *, const BIGNUM *, BN_CTX *); |
| 502 | |
| 503 | if (EC_POINT_is_at_infinity(group, point)) |
| 504 | return 1; |
| 505 | |
| 506 | field_mul = group->meth->field_mul; |
| 507 | field_sqr = group->meth->field_sqr; |
| 508 | |
| 509 | /* only support affine coordinates */ |
| 510 | if (!point->Z_is_one) |
| 511 | return -1; |
| 512 | |
| 513 | if (ctx == NULL) { |
| 514 | ctx = new_ctx = BN_CTX_new(); |
| 515 | if (ctx == NULL) |
| 516 | return -1; |
| 517 | } |
| 518 | |
| 519 | BN_CTX_start(ctx); |
| 520 | y2 = BN_CTX_get(ctx); |
| 521 | lh = BN_CTX_get(ctx); |
| 522 | if (lh == NULL) |
| 523 | goto err; |
| 524 | |
| 525 | /*- |
| 526 | * We have a curve defined by a Weierstrass equation |
| 527 | * y^2 + x*y = x^3 + a*x^2 + b. |
| 528 | * <=> x^3 + a*x^2 + x*y + b + y^2 = 0 |
| 529 | * <=> ((x + a) * x + y ) * x + b + y^2 = 0 |
| 530 | */ |
| 531 | if (!BN_GF2m_add(lh, point->X, group->a)) |
| 532 | goto err; |
| 533 | if (!field_mul(group, lh, lh, point->X, ctx)) |
| 534 | goto err; |
| 535 | if (!BN_GF2m_add(lh, lh, point->Y)) |
| 536 | goto err; |
| 537 | if (!field_mul(group, lh, lh, point->X, ctx)) |
| 538 | goto err; |
| 539 | if (!BN_GF2m_add(lh, lh, group->b)) |
| 540 | goto err; |
| 541 | if (!field_sqr(group, y2, point->Y, ctx)) |
| 542 | goto err; |
| 543 | if (!BN_GF2m_add(lh, lh, y2)) |
| 544 | goto err; |
| 545 | ret = BN_is_zero(lh); |
| 546 | |
| 547 | err: |
| 548 | BN_CTX_end(ctx); |
| 549 | BN_CTX_free(new_ctx); |
| 550 | return ret; |
| 551 | } |
| 552 | |
| 553 | /*- |
| 554 | * Indicates whether two points are equal. |
| 555 | * Return values: |
| 556 | * -1 error |
| 557 | * 0 equal (in affine coordinates) |
| 558 | * 1 not equal |
| 559 | */ |
| 560 | int ec_GF2m_simple_cmp(const EC_GROUP *group, const EC_POINT *a, |
| 561 | const EC_POINT *b, BN_CTX *ctx) |
| 562 | { |
| 563 | BIGNUM *aX, *aY, *bX, *bY; |
| 564 | BN_CTX *new_ctx = NULL; |
| 565 | int ret = -1; |
| 566 | |
| 567 | if (EC_POINT_is_at_infinity(group, a)) { |
| 568 | return EC_POINT_is_at_infinity(group, b) ? 0 : 1; |
| 569 | } |
| 570 | |
| 571 | if (EC_POINT_is_at_infinity(group, b)) |
| 572 | return 1; |
| 573 | |
| 574 | if (a->Z_is_one && b->Z_is_one) { |
| 575 | return ((BN_cmp(a->X, b->X) == 0) && BN_cmp(a->Y, b->Y) == 0) ? 0 : 1; |
| 576 | } |
| 577 | |
| 578 | if (ctx == NULL) { |
| 579 | ctx = new_ctx = BN_CTX_new(); |
| 580 | if (ctx == NULL) |
| 581 | return -1; |
| 582 | } |
| 583 | |
| 584 | BN_CTX_start(ctx); |
| 585 | aX = BN_CTX_get(ctx); |
| 586 | aY = BN_CTX_get(ctx); |
| 587 | bX = BN_CTX_get(ctx); |
| 588 | bY = BN_CTX_get(ctx); |
| 589 | if (bY == NULL) |
| 590 | goto err; |
| 591 | |
| 592 | if (!EC_POINT_get_affine_coordinates(group, a, aX, aY, ctx)) |
| 593 | goto err; |
| 594 | if (!EC_POINT_get_affine_coordinates(group, b, bX, bY, ctx)) |
| 595 | goto err; |
| 596 | ret = ((BN_cmp(aX, bX) == 0) && BN_cmp(aY, bY) == 0) ? 0 : 1; |
| 597 | |
| 598 | err: |
| 599 | BN_CTX_end(ctx); |
| 600 | BN_CTX_free(new_ctx); |
| 601 | return ret; |
| 602 | } |
| 603 | |
| 604 | /* Forces the given EC_POINT to internally use affine coordinates. */ |
| 605 | int ec_GF2m_simple_make_affine(const EC_GROUP *group, EC_POINT *point, |
| 606 | BN_CTX *ctx) |
| 607 | { |
| 608 | BN_CTX *new_ctx = NULL; |
| 609 | BIGNUM *x, *y; |
| 610 | int ret = 0; |
| 611 | |
| 612 | if (point->Z_is_one || EC_POINT_is_at_infinity(group, point)) |
| 613 | return 1; |
| 614 | |
| 615 | if (ctx == NULL) { |
| 616 | ctx = new_ctx = BN_CTX_new(); |
| 617 | if (ctx == NULL) |
| 618 | return 0; |
| 619 | } |
| 620 | |
| 621 | BN_CTX_start(ctx); |
| 622 | x = BN_CTX_get(ctx); |
| 623 | y = BN_CTX_get(ctx); |
| 624 | if (y == NULL) |
| 625 | goto err; |
| 626 | |
| 627 | if (!EC_POINT_get_affine_coordinates(group, point, x, y, ctx)) |
| 628 | goto err; |
| 629 | if (!BN_copy(point->X, x)) |
| 630 | goto err; |
| 631 | if (!BN_copy(point->Y, y)) |
| 632 | goto err; |
| 633 | if (!BN_one(point->Z)) |
| 634 | goto err; |
| 635 | point->Z_is_one = 1; |
| 636 | |
| 637 | ret = 1; |
| 638 | |
| 639 | err: |
| 640 | BN_CTX_end(ctx); |
| 641 | BN_CTX_free(new_ctx); |
| 642 | return ret; |
| 643 | } |
| 644 | |
| 645 | /* |
| 646 | * Forces each of the EC_POINTs in the given array to use affine coordinates. |
| 647 | */ |
| 648 | int ec_GF2m_simple_points_make_affine(const EC_GROUP *group, size_t num, |
| 649 | EC_POINT *points[], BN_CTX *ctx) |
| 650 | { |
| 651 | size_t i; |
| 652 | |
| 653 | for (i = 0; i < num; i++) { |
| 654 | if (!group->meth->make_affine(group, points[i], ctx)) |
| 655 | return 0; |
| 656 | } |
| 657 | |
| 658 | return 1; |
| 659 | } |
| 660 | |
| 661 | /* Wrapper to simple binary polynomial field multiplication implementation. */ |
| 662 | int ec_GF2m_simple_field_mul(const EC_GROUP *group, BIGNUM *r, |
| 663 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| 664 | { |
| 665 | return BN_GF2m_mod_mul_arr(r, a, b, group->poly, ctx); |
| 666 | } |
| 667 | |
| 668 | /* Wrapper to simple binary polynomial field squaring implementation. */ |
| 669 | int ec_GF2m_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, |
| 670 | const BIGNUM *a, BN_CTX *ctx) |
| 671 | { |
| 672 | return BN_GF2m_mod_sqr_arr(r, a, group->poly, ctx); |
| 673 | } |
| 674 | |
| 675 | /* Wrapper to simple binary polynomial field division implementation. */ |
| 676 | int ec_GF2m_simple_field_div(const EC_GROUP *group, BIGNUM *r, |
| 677 | const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| 678 | { |
| 679 | return BN_GF2m_mod_div(r, a, b, group->field, ctx); |
| 680 | } |
| 681 | |
| 682 | /*- |
| 683 | * Lopez-Dahab ladder, pre step. |
| 684 | * See e.g. "Guide to ECC" Alg 3.40. |
| 685 | * Modified to blind s and r independently. |
| 686 | * s:= p, r := 2p |
| 687 | */ |
| 688 | static |
| 689 | int ec_GF2m_simple_ladder_pre(const EC_GROUP *group, |
| 690 | EC_POINT *r, EC_POINT *s, |
| 691 | EC_POINT *p, BN_CTX *ctx) |
| 692 | { |
| 693 | /* if p is not affine, something is wrong */ |
| 694 | if (p->Z_is_one == 0) |
| 695 | return 0; |
| 696 | |
| 697 | /* s blinding: make sure lambda (s->Z here) is not zero */ |
| 698 | do { |
| 699 | if (!BN_priv_rand(s->Z, BN_num_bits(group->field) - 1, |
| 700 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) { |
| 701 | ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB); |
| 702 | return 0; |
| 703 | } |
| 704 | } while (BN_is_zero(s->Z)); |
| 705 | |
| 706 | /* if field_encode defined convert between representations */ |
| 707 | if ((group->meth->field_encode != NULL |
| 708 | && !group->meth->field_encode(group, s->Z, s->Z, ctx)) |
| 709 | || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) |
| 710 | return 0; |
| 711 | |
| 712 | /* r blinding: make sure lambda (r->Y here for storage) is not zero */ |
| 713 | do { |
| 714 | if (!BN_priv_rand(r->Y, BN_num_bits(group->field) - 1, |
| 715 | BN_RAND_TOP_ANY, BN_RAND_BOTTOM_ANY)) { |
| 716 | ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_PRE, ERR_R_BN_LIB); |
| 717 | return 0; |
| 718 | } |
| 719 | } while (BN_is_zero(r->Y)); |
| 720 | |
| 721 | if ((group->meth->field_encode != NULL |
| 722 | && !group->meth->field_encode(group, r->Y, r->Y, ctx)) |
| 723 | || !group->meth->field_sqr(group, r->Z, p->X, ctx) |
| 724 | || !group->meth->field_sqr(group, r->X, r->Z, ctx) |
| 725 | || !BN_GF2m_add(r->X, r->X, group->b) |
| 726 | || !group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx) |
| 727 | || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)) |
| 728 | return 0; |
| 729 | |
| 730 | s->Z_is_one = 0; |
| 731 | r->Z_is_one = 0; |
| 732 | |
| 733 | return 1; |
| 734 | } |
| 735 | |
| 736 | /*- |
| 737 | * Ladder step: differential addition-and-doubling, mixed Lopez-Dahab coords. |
| 738 | * http://www.hyperelliptic.org/EFD/g12o/auto-code/shortw/xz/ladder/mladd-2003-s.op3 |
| 739 | * s := r + s, r := 2r |
| 740 | */ |
| 741 | static |
| 742 | int ec_GF2m_simple_ladder_step(const EC_GROUP *group, |
| 743 | EC_POINT *r, EC_POINT *s, |
| 744 | EC_POINT *p, BN_CTX *ctx) |
| 745 | { |
| 746 | if (!group->meth->field_mul(group, r->Y, r->Z, s->X, ctx) |
| 747 | || !group->meth->field_mul(group, s->X, r->X, s->Z, ctx) |
| 748 | || !group->meth->field_sqr(group, s->Y, r->Z, ctx) |
| 749 | || !group->meth->field_sqr(group, r->Z, r->X, ctx) |
| 750 | || !BN_GF2m_add(s->Z, r->Y, s->X) |
| 751 | || !group->meth->field_sqr(group, s->Z, s->Z, ctx) |
| 752 | || !group->meth->field_mul(group, s->X, r->Y, s->X, ctx) |
| 753 | || !group->meth->field_mul(group, r->Y, s->Z, p->X, ctx) |
| 754 | || !BN_GF2m_add(s->X, s->X, r->Y) |
| 755 | || !group->meth->field_sqr(group, r->Y, r->Z, ctx) |
| 756 | || !group->meth->field_mul(group, r->Z, r->Z, s->Y, ctx) |
| 757 | || !group->meth->field_sqr(group, s->Y, s->Y, ctx) |
| 758 | || !group->meth->field_mul(group, s->Y, s->Y, group->b, ctx) |
| 759 | || !BN_GF2m_add(r->X, r->Y, s->Y)) |
| 760 | return 0; |
| 761 | |
| 762 | return 1; |
| 763 | } |
| 764 | |
| 765 | /*- |
| 766 | * Recover affine (x,y) result from Lopez-Dahab r and s, affine p. |
| 767 | * See e.g. "Fast Multiplication on Elliptic Curves over GF(2**m) |
| 768 | * without Precomputation" (Lopez and Dahab, CHES 1999), |
| 769 | * Appendix Alg Mxy. |
| 770 | */ |
| 771 | static |
| 772 | int ec_GF2m_simple_ladder_post(const EC_GROUP *group, |
| 773 | EC_POINT *r, EC_POINT *s, |
| 774 | EC_POINT *p, BN_CTX *ctx) |
| 775 | { |
| 776 | int ret = 0; |
| 777 | BIGNUM *t0, *t1, *t2 = NULL; |
| 778 | |
| 779 | if (BN_is_zero(r->Z)) |
| 780 | return EC_POINT_set_to_infinity(group, r); |
| 781 | |
| 782 | if (BN_is_zero(s->Z)) { |
| 783 | if (!EC_POINT_copy(r, p) |
| 784 | || !EC_POINT_invert(group, r, ctx)) { |
| 785 | ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_EC_LIB); |
| 786 | return 0; |
| 787 | } |
| 788 | return 1; |
| 789 | } |
| 790 | |
| 791 | BN_CTX_start(ctx); |
| 792 | t0 = BN_CTX_get(ctx); |
| 793 | t1 = BN_CTX_get(ctx); |
| 794 | t2 = BN_CTX_get(ctx); |
| 795 | if (t2 == NULL) { |
| 796 | ECerr(EC_F_EC_GF2M_SIMPLE_LADDER_POST, ERR_R_MALLOC_FAILURE); |
| 797 | goto err; |
| 798 | } |
| 799 | |
| 800 | if (!group->meth->field_mul(group, t0, r->Z, s->Z, ctx) |
| 801 | || !group->meth->field_mul(group, t1, p->X, r->Z, ctx) |
| 802 | || !BN_GF2m_add(t1, r->X, t1) |
| 803 | || !group->meth->field_mul(group, t2, p->X, s->Z, ctx) |
| 804 | || !group->meth->field_mul(group, r->Z, r->X, t2, ctx) |
| 805 | || !BN_GF2m_add(t2, t2, s->X) |
| 806 | || !group->meth->field_mul(group, t1, t1, t2, ctx) |
| 807 | || !group->meth->field_sqr(group, t2, p->X, ctx) |
| 808 | || !BN_GF2m_add(t2, p->Y, t2) |
| 809 | || !group->meth->field_mul(group, t2, t2, t0, ctx) |
| 810 | || !BN_GF2m_add(t1, t2, t1) |
| 811 | || !group->meth->field_mul(group, t2, p->X, t0, ctx) |
| 812 | || !group->meth->field_inv(group, t2, t2, ctx) |
| 813 | || !group->meth->field_mul(group, t1, t1, t2, ctx) |
| 814 | || !group->meth->field_mul(group, r->X, r->Z, t2, ctx) |
| 815 | || !BN_GF2m_add(t2, p->X, r->X) |
| 816 | || !group->meth->field_mul(group, t2, t2, t1, ctx) |
| 817 | || !BN_GF2m_add(r->Y, p->Y, t2) |
| 818 | || !BN_one(r->Z)) |
| 819 | goto err; |
| 820 | |
| 821 | r->Z_is_one = 1; |
| 822 | |
| 823 | /* GF(2^m) field elements should always have BIGNUM::neg = 0 */ |
| 824 | BN_set_negative(r->X, 0); |
| 825 | BN_set_negative(r->Y, 0); |
| 826 | |
| 827 | ret = 1; |
| 828 | |
| 829 | err: |
| 830 | BN_CTX_end(ctx); |
| 831 | return ret; |
| 832 | } |
| 833 | |
| 834 | static |
| 835 | int ec_GF2m_simple_points_mul(const EC_GROUP *group, EC_POINT *r, |
| 836 | const BIGNUM *scalar, size_t num, |
| 837 | const EC_POINT *points[], |
| 838 | const BIGNUM *scalars[], |
| 839 | BN_CTX *ctx) |
| 840 | { |
| 841 | int ret = 0; |
| 842 | EC_POINT *t = NULL; |
| 843 | |
| 844 | /*- |
| 845 | * We limit use of the ladder only to the following cases: |
| 846 | * - r := scalar * G |
| 847 | * Fixed point mul: scalar != NULL && num == 0; |
| 848 | * - r := scalars[0] * points[0] |
| 849 | * Variable point mul: scalar == NULL && num == 1; |
| 850 | * - r := scalar * G + scalars[0] * points[0] |
| 851 | * used, e.g., in ECDSA verification: scalar != NULL && num == 1 |
| 852 | * |
| 853 | * In any other case (num > 1) we use the default wNAF implementation. |
| 854 | * |
| 855 | * We also let the default implementation handle degenerate cases like group |
| 856 | * order or cofactor set to 0. |
| 857 | */ |
| 858 | if (num > 1 || BN_is_zero(group->order) || BN_is_zero(group->cofactor)) |
| 859 | return ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); |
| 860 | |
| 861 | if (scalar != NULL && num == 0) |
| 862 | /* Fixed point multiplication */ |
| 863 | return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx); |
| 864 | |
| 865 | if (scalar == NULL && num == 1) |
| 866 | /* Variable point multiplication */ |
| 867 | return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx); |
| 868 | |
| 869 | /*- |
| 870 | * Double point multiplication: |
| 871 | * r := scalar * G + scalars[0] * points[0] |
| 872 | */ |
| 873 | |
| 874 | if ((t = EC_POINT_new(group)) == NULL) { |
| 875 | ECerr(EC_F_EC_GF2M_SIMPLE_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
| 876 | return 0; |
| 877 | } |
| 878 | |
| 879 | if (!ec_scalar_mul_ladder(group, t, scalar, NULL, ctx) |
| 880 | || !ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx) |
| 881 | || !EC_POINT_add(group, r, t, r, ctx)) |
| 882 | goto err; |
| 883 | |
| 884 | ret = 1; |
| 885 | |
| 886 | err: |
| 887 | EC_POINT_free(t); |
| 888 | return ret; |
| 889 | } |
| 890 | |
| 891 | /*- |
| 892 | * Computes the multiplicative inverse of a in GF(2^m), storing the result in r. |
| 893 | * If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error. |
| 894 | * SCA hardening is with blinding: BN_GF2m_mod_inv does that. |
| 895 | */ |
| 896 | static int ec_GF2m_simple_field_inv(const EC_GROUP *group, BIGNUM *r, |
| 897 | const BIGNUM *a, BN_CTX *ctx) |
| 898 | { |
| 899 | int ret; |
| 900 | |
| 901 | if (!(ret = BN_GF2m_mod_inv(r, a, group->field, ctx))) |
| 902 | ECerr(EC_F_EC_GF2M_SIMPLE_FIELD_INV, EC_R_CANNOT_INVERT); |
| 903 | return ret; |
| 904 | } |
| 905 | |
| 906 | const EC_METHOD *EC_GF2m_simple_method(void) |
| 907 | { |
| 908 | static const EC_METHOD ret = { |
| 909 | EC_FLAGS_DEFAULT_OCT, |
| 910 | NID_X9_62_characteristic_two_field, |
| 911 | ec_GF2m_simple_group_init, |
| 912 | ec_GF2m_simple_group_finish, |
| 913 | ec_GF2m_simple_group_clear_finish, |
| 914 | ec_GF2m_simple_group_copy, |
| 915 | ec_GF2m_simple_group_set_curve, |
| 916 | ec_GF2m_simple_group_get_curve, |
| 917 | ec_GF2m_simple_group_get_degree, |
| 918 | ec_group_simple_order_bits, |
| 919 | ec_GF2m_simple_group_check_discriminant, |
| 920 | ec_GF2m_simple_point_init, |
| 921 | ec_GF2m_simple_point_finish, |
| 922 | ec_GF2m_simple_point_clear_finish, |
| 923 | ec_GF2m_simple_point_copy, |
| 924 | ec_GF2m_simple_point_set_to_infinity, |
| 925 | 0, /* set_Jprojective_coordinates_GFp */ |
| 926 | 0, /* get_Jprojective_coordinates_GFp */ |
| 927 | ec_GF2m_simple_point_set_affine_coordinates, |
| 928 | ec_GF2m_simple_point_get_affine_coordinates, |
| 929 | 0, /* point_set_compressed_coordinates */ |
| 930 | 0, /* point2oct */ |
| 931 | 0, /* oct2point */ |
| 932 | ec_GF2m_simple_add, |
| 933 | ec_GF2m_simple_dbl, |
| 934 | ec_GF2m_simple_invert, |
| 935 | ec_GF2m_simple_is_at_infinity, |
| 936 | ec_GF2m_simple_is_on_curve, |
| 937 | ec_GF2m_simple_cmp, |
| 938 | ec_GF2m_simple_make_affine, |
| 939 | ec_GF2m_simple_points_make_affine, |
| 940 | ec_GF2m_simple_points_mul, |
| 941 | 0, /* precompute_mult */ |
| 942 | 0, /* have_precompute_mult */ |
| 943 | ec_GF2m_simple_field_mul, |
| 944 | ec_GF2m_simple_field_sqr, |
| 945 | ec_GF2m_simple_field_div, |
| 946 | ec_GF2m_simple_field_inv, |
| 947 | 0, /* field_encode */ |
| 948 | 0, /* field_decode */ |
| 949 | 0, /* field_set_to_one */ |
| 950 | ec_key_simple_priv2oct, |
| 951 | ec_key_simple_oct2priv, |
| 952 | 0, /* set private */ |
| 953 | ec_key_simple_generate_key, |
| 954 | ec_key_simple_check_key, |
| 955 | ec_key_simple_generate_public_key, |
| 956 | 0, /* keycopy */ |
| 957 | 0, /* keyfinish */ |
| 958 | ecdh_simple_compute_key, |
| 959 | 0, /* field_inverse_mod_ord */ |
| 960 | 0, /* blind_coordinates */ |
| 961 | ec_GF2m_simple_ladder_pre, |
| 962 | ec_GF2m_simple_ladder_step, |
| 963 | ec_GF2m_simple_ladder_post |
| 964 | }; |
| 965 | |
| 966 | return &ret; |
| 967 | } |
| 968 | |
| 969 | #endif |