yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #include <string.h> |
| 12 | |
| 13 | #include <openssl/err.h> |
| 14 | #include <openssl/opensslv.h> |
| 15 | |
| 16 | #include "ec_local.h" |
| 17 | |
| 18 | /* functions for EC_GROUP objects */ |
| 19 | |
| 20 | EC_GROUP *EC_GROUP_new(const EC_METHOD *meth) |
| 21 | { |
| 22 | EC_GROUP *ret; |
| 23 | |
| 24 | if (meth == NULL) { |
| 25 | ECerr(EC_F_EC_GROUP_NEW, EC_R_SLOT_FULL); |
| 26 | return NULL; |
| 27 | } |
| 28 | if (meth->group_init == 0) { |
| 29 | ECerr(EC_F_EC_GROUP_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 30 | return NULL; |
| 31 | } |
| 32 | |
| 33 | ret = OPENSSL_zalloc(sizeof(*ret)); |
| 34 | if (ret == NULL) { |
| 35 | ECerr(EC_F_EC_GROUP_NEW, ERR_R_MALLOC_FAILURE); |
| 36 | return NULL; |
| 37 | } |
| 38 | |
| 39 | ret->meth = meth; |
| 40 | if ((ret->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) { |
| 41 | ret->order = BN_new(); |
| 42 | if (ret->order == NULL) |
| 43 | goto err; |
| 44 | ret->cofactor = BN_new(); |
| 45 | if (ret->cofactor == NULL) |
| 46 | goto err; |
| 47 | } |
| 48 | ret->asn1_flag = OPENSSL_EC_NAMED_CURVE; |
| 49 | ret->asn1_form = POINT_CONVERSION_UNCOMPRESSED; |
| 50 | if (!meth->group_init(ret)) |
| 51 | goto err; |
| 52 | return ret; |
| 53 | |
| 54 | err: |
| 55 | BN_free(ret->order); |
| 56 | BN_free(ret->cofactor); |
| 57 | OPENSSL_free(ret); |
| 58 | return NULL; |
| 59 | } |
| 60 | |
| 61 | void EC_pre_comp_free(EC_GROUP *group) |
| 62 | { |
| 63 | switch (group->pre_comp_type) { |
| 64 | case PCT_none: |
| 65 | break; |
| 66 | case PCT_nistz256: |
| 67 | #ifdef ECP_NISTZ256_ASM |
| 68 | EC_nistz256_pre_comp_free(group->pre_comp.nistz256); |
| 69 | #endif |
| 70 | break; |
| 71 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 |
| 72 | case PCT_nistp224: |
| 73 | EC_nistp224_pre_comp_free(group->pre_comp.nistp224); |
| 74 | break; |
| 75 | case PCT_nistp256: |
| 76 | EC_nistp256_pre_comp_free(group->pre_comp.nistp256); |
| 77 | break; |
| 78 | case PCT_nistp521: |
| 79 | EC_nistp521_pre_comp_free(group->pre_comp.nistp521); |
| 80 | break; |
| 81 | #else |
| 82 | case PCT_nistp224: |
| 83 | case PCT_nistp256: |
| 84 | case PCT_nistp521: |
| 85 | break; |
| 86 | #endif |
| 87 | case PCT_ec: |
| 88 | EC_ec_pre_comp_free(group->pre_comp.ec); |
| 89 | break; |
| 90 | } |
| 91 | group->pre_comp.ec = NULL; |
| 92 | } |
| 93 | |
| 94 | void EC_GROUP_free(EC_GROUP *group) |
| 95 | { |
| 96 | if (!group) |
| 97 | return; |
| 98 | |
| 99 | if (group->meth->group_finish != 0) |
| 100 | group->meth->group_finish(group); |
| 101 | |
| 102 | EC_pre_comp_free(group); |
| 103 | BN_MONT_CTX_free(group->mont_data); |
| 104 | EC_POINT_free(group->generator); |
| 105 | BN_free(group->order); |
| 106 | BN_free(group->cofactor); |
| 107 | OPENSSL_free(group->seed); |
| 108 | OPENSSL_free(group); |
| 109 | } |
| 110 | |
| 111 | void EC_GROUP_clear_free(EC_GROUP *group) |
| 112 | { |
| 113 | if (!group) |
| 114 | return; |
| 115 | |
| 116 | if (group->meth->group_clear_finish != 0) |
| 117 | group->meth->group_clear_finish(group); |
| 118 | else if (group->meth->group_finish != 0) |
| 119 | group->meth->group_finish(group); |
| 120 | |
| 121 | EC_pre_comp_free(group); |
| 122 | BN_MONT_CTX_free(group->mont_data); |
| 123 | EC_POINT_clear_free(group->generator); |
| 124 | BN_clear_free(group->order); |
| 125 | BN_clear_free(group->cofactor); |
| 126 | OPENSSL_clear_free(group->seed, group->seed_len); |
| 127 | OPENSSL_clear_free(group, sizeof(*group)); |
| 128 | } |
| 129 | |
| 130 | int EC_GROUP_copy(EC_GROUP *dest, const EC_GROUP *src) |
| 131 | { |
| 132 | if (dest->meth->group_copy == 0) { |
| 133 | ECerr(EC_F_EC_GROUP_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 134 | return 0; |
| 135 | } |
| 136 | if (dest->meth != src->meth) { |
| 137 | ECerr(EC_F_EC_GROUP_COPY, EC_R_INCOMPATIBLE_OBJECTS); |
| 138 | return 0; |
| 139 | } |
| 140 | if (dest == src) |
| 141 | return 1; |
| 142 | |
| 143 | dest->curve_name = src->curve_name; |
| 144 | |
| 145 | /* Copy precomputed */ |
| 146 | dest->pre_comp_type = src->pre_comp_type; |
| 147 | switch (src->pre_comp_type) { |
| 148 | case PCT_none: |
| 149 | dest->pre_comp.ec = NULL; |
| 150 | break; |
| 151 | case PCT_nistz256: |
| 152 | #ifdef ECP_NISTZ256_ASM |
| 153 | dest->pre_comp.nistz256 = EC_nistz256_pre_comp_dup(src->pre_comp.nistz256); |
| 154 | #endif |
| 155 | break; |
| 156 | #ifndef OPENSSL_NO_EC_NISTP_64_GCC_128 |
| 157 | case PCT_nistp224: |
| 158 | dest->pre_comp.nistp224 = EC_nistp224_pre_comp_dup(src->pre_comp.nistp224); |
| 159 | break; |
| 160 | case PCT_nistp256: |
| 161 | dest->pre_comp.nistp256 = EC_nistp256_pre_comp_dup(src->pre_comp.nistp256); |
| 162 | break; |
| 163 | case PCT_nistp521: |
| 164 | dest->pre_comp.nistp521 = EC_nistp521_pre_comp_dup(src->pre_comp.nistp521); |
| 165 | break; |
| 166 | #else |
| 167 | case PCT_nistp224: |
| 168 | case PCT_nistp256: |
| 169 | case PCT_nistp521: |
| 170 | break; |
| 171 | #endif |
| 172 | case PCT_ec: |
| 173 | dest->pre_comp.ec = EC_ec_pre_comp_dup(src->pre_comp.ec); |
| 174 | break; |
| 175 | } |
| 176 | |
| 177 | if (src->mont_data != NULL) { |
| 178 | if (dest->mont_data == NULL) { |
| 179 | dest->mont_data = BN_MONT_CTX_new(); |
| 180 | if (dest->mont_data == NULL) |
| 181 | return 0; |
| 182 | } |
| 183 | if (!BN_MONT_CTX_copy(dest->mont_data, src->mont_data)) |
| 184 | return 0; |
| 185 | } else { |
| 186 | /* src->generator == NULL */ |
| 187 | BN_MONT_CTX_free(dest->mont_data); |
| 188 | dest->mont_data = NULL; |
| 189 | } |
| 190 | |
| 191 | if (src->generator != NULL) { |
| 192 | if (dest->generator == NULL) { |
| 193 | dest->generator = EC_POINT_new(dest); |
| 194 | if (dest->generator == NULL) |
| 195 | return 0; |
| 196 | } |
| 197 | if (!EC_POINT_copy(dest->generator, src->generator)) |
| 198 | return 0; |
| 199 | } else { |
| 200 | /* src->generator == NULL */ |
| 201 | EC_POINT_clear_free(dest->generator); |
| 202 | dest->generator = NULL; |
| 203 | } |
| 204 | |
| 205 | if ((src->meth->flags & EC_FLAGS_CUSTOM_CURVE) == 0) { |
| 206 | if (!BN_copy(dest->order, src->order)) |
| 207 | return 0; |
| 208 | if (!BN_copy(dest->cofactor, src->cofactor)) |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | dest->asn1_flag = src->asn1_flag; |
| 213 | dest->asn1_form = src->asn1_form; |
| 214 | dest->decoded_from_explicit_params = src->decoded_from_explicit_params; |
| 215 | |
| 216 | if (src->seed) { |
| 217 | OPENSSL_free(dest->seed); |
| 218 | if ((dest->seed = OPENSSL_malloc(src->seed_len)) == NULL) { |
| 219 | ECerr(EC_F_EC_GROUP_COPY, ERR_R_MALLOC_FAILURE); |
| 220 | return 0; |
| 221 | } |
| 222 | if (!memcpy(dest->seed, src->seed, src->seed_len)) |
| 223 | return 0; |
| 224 | dest->seed_len = src->seed_len; |
| 225 | } else { |
| 226 | OPENSSL_free(dest->seed); |
| 227 | dest->seed = NULL; |
| 228 | dest->seed_len = 0; |
| 229 | } |
| 230 | |
| 231 | return dest->meth->group_copy(dest, src); |
| 232 | } |
| 233 | |
| 234 | EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) |
| 235 | { |
| 236 | EC_GROUP *t = NULL; |
| 237 | int ok = 0; |
| 238 | |
| 239 | if (a == NULL) |
| 240 | return NULL; |
| 241 | |
| 242 | if ((t = EC_GROUP_new(a->meth)) == NULL) |
| 243 | return NULL; |
| 244 | if (!EC_GROUP_copy(t, a)) |
| 245 | goto err; |
| 246 | |
| 247 | ok = 1; |
| 248 | |
| 249 | err: |
| 250 | if (!ok) { |
| 251 | EC_GROUP_free(t); |
| 252 | return NULL; |
| 253 | } |
| 254 | return t; |
| 255 | } |
| 256 | |
| 257 | const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) |
| 258 | { |
| 259 | return group->meth; |
| 260 | } |
| 261 | |
| 262 | int EC_METHOD_get_field_type(const EC_METHOD *meth) |
| 263 | { |
| 264 | return meth->field_type; |
| 265 | } |
| 266 | |
| 267 | static int ec_precompute_mont_data(EC_GROUP *); |
| 268 | |
| 269 | /*- |
| 270 | * Try computing cofactor from the generator order (n) and field cardinality (q). |
| 271 | * This works for all curves of cryptographic interest. |
| 272 | * |
| 273 | * Hasse thm: q + 1 - 2*sqrt(q) <= n*h <= q + 1 + 2*sqrt(q) |
| 274 | * h_min = (q + 1 - 2*sqrt(q))/n |
| 275 | * h_max = (q + 1 + 2*sqrt(q))/n |
| 276 | * h_max - h_min = 4*sqrt(q)/n |
| 277 | * So if n > 4*sqrt(q) holds, there is only one possible value for h: |
| 278 | * h = \lfloor (h_min + h_max)/2 \rceil = \lfloor (q + 1)/n \rceil |
| 279 | * |
| 280 | * Otherwise, zero cofactor and return success. |
| 281 | */ |
| 282 | static int ec_guess_cofactor(EC_GROUP *group) { |
| 283 | int ret = 0; |
| 284 | BN_CTX *ctx = NULL; |
| 285 | BIGNUM *q = NULL; |
| 286 | |
| 287 | /*- |
| 288 | * If the cofactor is too large, we cannot guess it. |
| 289 | * The RHS of below is a strict overestimate of lg(4 * sqrt(q)) |
| 290 | */ |
| 291 | if (BN_num_bits(group->order) <= (BN_num_bits(group->field) + 1) / 2 + 3) { |
| 292 | /* default to 0 */ |
| 293 | BN_zero(group->cofactor); |
| 294 | /* return success */ |
| 295 | return 1; |
| 296 | } |
| 297 | |
| 298 | if ((ctx = BN_CTX_new()) == NULL) |
| 299 | return 0; |
| 300 | |
| 301 | BN_CTX_start(ctx); |
| 302 | if ((q = BN_CTX_get(ctx)) == NULL) |
| 303 | goto err; |
| 304 | |
| 305 | /* set q = 2**m for binary fields; q = p otherwise */ |
| 306 | if (group->meth->field_type == NID_X9_62_characteristic_two_field) { |
| 307 | BN_zero(q); |
| 308 | if (!BN_set_bit(q, BN_num_bits(group->field) - 1)) |
| 309 | goto err; |
| 310 | } else { |
| 311 | if (!BN_copy(q, group->field)) |
| 312 | goto err; |
| 313 | } |
| 314 | |
| 315 | /* compute h = \lfloor (q + 1)/n \rceil = \lfloor (q + 1 + n/2)/n \rfloor */ |
| 316 | if (!BN_rshift1(group->cofactor, group->order) /* n/2 */ |
| 317 | || !BN_add(group->cofactor, group->cofactor, q) /* q + n/2 */ |
| 318 | /* q + 1 + n/2 */ |
| 319 | || !BN_add(group->cofactor, group->cofactor, BN_value_one()) |
| 320 | /* (q + 1 + n/2)/n */ |
| 321 | || !BN_div(group->cofactor, NULL, group->cofactor, group->order, ctx)) |
| 322 | goto err; |
| 323 | ret = 1; |
| 324 | err: |
| 325 | BN_CTX_end(ctx); |
| 326 | BN_CTX_free(ctx); |
| 327 | return ret; |
| 328 | } |
| 329 | |
| 330 | int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator, |
| 331 | const BIGNUM *order, const BIGNUM *cofactor) |
| 332 | { |
| 333 | if (generator == NULL) { |
| 334 | ECerr(EC_F_EC_GROUP_SET_GENERATOR, ERR_R_PASSED_NULL_PARAMETER); |
| 335 | return 0; |
| 336 | } |
| 337 | |
| 338 | /* require group->field >= 1 */ |
| 339 | if (group->field == NULL || BN_is_zero(group->field) |
| 340 | || BN_is_negative(group->field)) { |
| 341 | ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_FIELD); |
| 342 | return 0; |
| 343 | } |
| 344 | |
| 345 | /*- |
| 346 | * - require order >= 1 |
| 347 | * - enforce upper bound due to Hasse thm: order can be no more than one bit |
| 348 | * longer than field cardinality |
| 349 | */ |
| 350 | if (order == NULL || BN_is_zero(order) || BN_is_negative(order) |
| 351 | || BN_num_bits(order) > BN_num_bits(group->field) + 1) { |
| 352 | ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_INVALID_GROUP_ORDER); |
| 353 | return 0; |
| 354 | } |
| 355 | |
| 356 | /*- |
| 357 | * Unfortunately the cofactor is an optional field in many standards. |
| 358 | * Internally, the lib uses 0 cofactor as a marker for "unknown cofactor". |
| 359 | * So accept cofactor == NULL or cofactor >= 0. |
| 360 | */ |
| 361 | if (cofactor != NULL && BN_is_negative(cofactor)) { |
| 362 | ECerr(EC_F_EC_GROUP_SET_GENERATOR, EC_R_UNKNOWN_COFACTOR); |
| 363 | return 0; |
| 364 | } |
| 365 | |
| 366 | if (group->generator == NULL) { |
| 367 | group->generator = EC_POINT_new(group); |
| 368 | if (group->generator == NULL) |
| 369 | return 0; |
| 370 | } |
| 371 | if (!EC_POINT_copy(group->generator, generator)) |
| 372 | return 0; |
| 373 | |
| 374 | if (!BN_copy(group->order, order)) |
| 375 | return 0; |
| 376 | |
| 377 | /* Either take the provided positive cofactor, or try to compute it */ |
| 378 | if (cofactor != NULL && !BN_is_zero(cofactor)) { |
| 379 | if (!BN_copy(group->cofactor, cofactor)) |
| 380 | return 0; |
| 381 | } else if (!ec_guess_cofactor(group)) { |
| 382 | BN_zero(group->cofactor); |
| 383 | return 0; |
| 384 | } |
| 385 | |
| 386 | /* |
| 387 | * Some groups have an order with |
| 388 | * factors of two, which makes the Montgomery setup fail. |
| 389 | * |group->mont_data| will be NULL in this case. |
| 390 | */ |
| 391 | if (BN_is_odd(group->order)) { |
| 392 | return ec_precompute_mont_data(group); |
| 393 | } |
| 394 | |
| 395 | BN_MONT_CTX_free(group->mont_data); |
| 396 | group->mont_data = NULL; |
| 397 | return 1; |
| 398 | } |
| 399 | |
| 400 | const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) |
| 401 | { |
| 402 | return group->generator; |
| 403 | } |
| 404 | |
| 405 | BN_MONT_CTX *EC_GROUP_get_mont_data(const EC_GROUP *group) |
| 406 | { |
| 407 | return group->mont_data; |
| 408 | } |
| 409 | |
| 410 | int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) |
| 411 | { |
| 412 | if (group->order == NULL) |
| 413 | return 0; |
| 414 | if (!BN_copy(order, group->order)) |
| 415 | return 0; |
| 416 | |
| 417 | return !BN_is_zero(order); |
| 418 | } |
| 419 | |
| 420 | const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) |
| 421 | { |
| 422 | return group->order; |
| 423 | } |
| 424 | |
| 425 | int EC_GROUP_order_bits(const EC_GROUP *group) |
| 426 | { |
| 427 | return group->meth->group_order_bits(group); |
| 428 | } |
| 429 | |
| 430 | int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor, |
| 431 | BN_CTX *ctx) |
| 432 | { |
| 433 | |
| 434 | if (group->cofactor == NULL) |
| 435 | return 0; |
| 436 | if (!BN_copy(cofactor, group->cofactor)) |
| 437 | return 0; |
| 438 | |
| 439 | return !BN_is_zero(group->cofactor); |
| 440 | } |
| 441 | |
| 442 | const BIGNUM *EC_GROUP_get0_cofactor(const EC_GROUP *group) |
| 443 | { |
| 444 | return group->cofactor; |
| 445 | } |
| 446 | |
| 447 | void EC_GROUP_set_curve_name(EC_GROUP *group, int nid) |
| 448 | { |
| 449 | group->curve_name = nid; |
| 450 | } |
| 451 | |
| 452 | int EC_GROUP_get_curve_name(const EC_GROUP *group) |
| 453 | { |
| 454 | return group->curve_name; |
| 455 | } |
| 456 | |
| 457 | void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) |
| 458 | { |
| 459 | group->asn1_flag = flag; |
| 460 | } |
| 461 | |
| 462 | int EC_GROUP_get_asn1_flag(const EC_GROUP *group) |
| 463 | { |
| 464 | return group->asn1_flag; |
| 465 | } |
| 466 | |
| 467 | void EC_GROUP_set_point_conversion_form(EC_GROUP *group, |
| 468 | point_conversion_form_t form) |
| 469 | { |
| 470 | group->asn1_form = form; |
| 471 | } |
| 472 | |
| 473 | point_conversion_form_t EC_GROUP_get_point_conversion_form(const EC_GROUP |
| 474 | *group) |
| 475 | { |
| 476 | return group->asn1_form; |
| 477 | } |
| 478 | |
| 479 | size_t EC_GROUP_set_seed(EC_GROUP *group, const unsigned char *p, size_t len) |
| 480 | { |
| 481 | OPENSSL_free(group->seed); |
| 482 | group->seed = NULL; |
| 483 | group->seed_len = 0; |
| 484 | |
| 485 | if (!len || !p) |
| 486 | return 1; |
| 487 | |
| 488 | if ((group->seed = OPENSSL_malloc(len)) == NULL) { |
| 489 | ECerr(EC_F_EC_GROUP_SET_SEED, ERR_R_MALLOC_FAILURE); |
| 490 | return 0; |
| 491 | } |
| 492 | memcpy(group->seed, p, len); |
| 493 | group->seed_len = len; |
| 494 | |
| 495 | return len; |
| 496 | } |
| 497 | |
| 498 | unsigned char *EC_GROUP_get0_seed(const EC_GROUP *group) |
| 499 | { |
| 500 | return group->seed; |
| 501 | } |
| 502 | |
| 503 | size_t EC_GROUP_get_seed_len(const EC_GROUP *group) |
| 504 | { |
| 505 | return group->seed_len; |
| 506 | } |
| 507 | |
| 508 | int EC_GROUP_set_curve(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, |
| 509 | const BIGNUM *b, BN_CTX *ctx) |
| 510 | { |
| 511 | if (group->meth->group_set_curve == 0) { |
| 512 | ECerr(EC_F_EC_GROUP_SET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 513 | return 0; |
| 514 | } |
| 515 | return group->meth->group_set_curve(group, p, a, b, ctx); |
| 516 | } |
| 517 | |
| 518 | int EC_GROUP_get_curve(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, BIGNUM *b, |
| 519 | BN_CTX *ctx) |
| 520 | { |
| 521 | if (group->meth->group_get_curve == NULL) { |
| 522 | ECerr(EC_F_EC_GROUP_GET_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 523 | return 0; |
| 524 | } |
| 525 | return group->meth->group_get_curve(group, p, a, b, ctx); |
| 526 | } |
| 527 | |
| 528 | #if OPENSSL_API_COMPAT < 0x10200000L |
| 529 | int EC_GROUP_set_curve_GFp(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, |
| 530 | const BIGNUM *b, BN_CTX *ctx) |
| 531 | { |
| 532 | return EC_GROUP_set_curve(group, p, a, b, ctx); |
| 533 | } |
| 534 | |
| 535 | int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
| 536 | BIGNUM *b, BN_CTX *ctx) |
| 537 | { |
| 538 | return EC_GROUP_get_curve(group, p, a, b, ctx); |
| 539 | } |
| 540 | |
| 541 | # ifndef OPENSSL_NO_EC2M |
| 542 | int EC_GROUP_set_curve_GF2m(EC_GROUP *group, const BIGNUM *p, const BIGNUM *a, |
| 543 | const BIGNUM *b, BN_CTX *ctx) |
| 544 | { |
| 545 | return EC_GROUP_set_curve(group, p, a, b, ctx); |
| 546 | } |
| 547 | |
| 548 | int EC_GROUP_get_curve_GF2m(const EC_GROUP *group, BIGNUM *p, BIGNUM *a, |
| 549 | BIGNUM *b, BN_CTX *ctx) |
| 550 | { |
| 551 | return EC_GROUP_get_curve(group, p, a, b, ctx); |
| 552 | } |
| 553 | # endif |
| 554 | #endif |
| 555 | |
| 556 | int EC_GROUP_get_degree(const EC_GROUP *group) |
| 557 | { |
| 558 | if (group->meth->group_get_degree == 0) { |
| 559 | ECerr(EC_F_EC_GROUP_GET_DEGREE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 560 | return 0; |
| 561 | } |
| 562 | return group->meth->group_get_degree(group); |
| 563 | } |
| 564 | |
| 565 | int EC_GROUP_check_discriminant(const EC_GROUP *group, BN_CTX *ctx) |
| 566 | { |
| 567 | if (group->meth->group_check_discriminant == 0) { |
| 568 | ECerr(EC_F_EC_GROUP_CHECK_DISCRIMINANT, |
| 569 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 570 | return 0; |
| 571 | } |
| 572 | return group->meth->group_check_discriminant(group, ctx); |
| 573 | } |
| 574 | |
| 575 | int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ctx) |
| 576 | { |
| 577 | int r = 0; |
| 578 | BIGNUM *a1, *a2, *a3, *b1, *b2, *b3; |
| 579 | BN_CTX *ctx_new = NULL; |
| 580 | |
| 581 | /* compare the field types */ |
| 582 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(a)) != |
| 583 | EC_METHOD_get_field_type(EC_GROUP_method_of(b))) |
| 584 | return 1; |
| 585 | /* compare the curve name (if present in both) */ |
| 586 | if (EC_GROUP_get_curve_name(a) && EC_GROUP_get_curve_name(b) && |
| 587 | EC_GROUP_get_curve_name(a) != EC_GROUP_get_curve_name(b)) |
| 588 | return 1; |
| 589 | if (a->meth->flags & EC_FLAGS_CUSTOM_CURVE) |
| 590 | return 0; |
| 591 | |
| 592 | if (ctx == NULL) |
| 593 | ctx_new = ctx = BN_CTX_new(); |
| 594 | if (ctx == NULL) |
| 595 | return -1; |
| 596 | |
| 597 | BN_CTX_start(ctx); |
| 598 | a1 = BN_CTX_get(ctx); |
| 599 | a2 = BN_CTX_get(ctx); |
| 600 | a3 = BN_CTX_get(ctx); |
| 601 | b1 = BN_CTX_get(ctx); |
| 602 | b2 = BN_CTX_get(ctx); |
| 603 | b3 = BN_CTX_get(ctx); |
| 604 | if (b3 == NULL) { |
| 605 | BN_CTX_end(ctx); |
| 606 | BN_CTX_free(ctx_new); |
| 607 | return -1; |
| 608 | } |
| 609 | |
| 610 | /* |
| 611 | * XXX This approach assumes that the external representation of curves |
| 612 | * over the same field type is the same. |
| 613 | */ |
| 614 | if (!a->meth->group_get_curve(a, a1, a2, a3, ctx) || |
| 615 | !b->meth->group_get_curve(b, b1, b2, b3, ctx)) |
| 616 | r = 1; |
| 617 | |
| 618 | if (r || BN_cmp(a1, b1) || BN_cmp(a2, b2) || BN_cmp(a3, b3)) |
| 619 | r = 1; |
| 620 | |
| 621 | /* XXX EC_POINT_cmp() assumes that the methods are equal */ |
| 622 | if (r || EC_POINT_cmp(a, EC_GROUP_get0_generator(a), |
| 623 | EC_GROUP_get0_generator(b), ctx)) |
| 624 | r = 1; |
| 625 | |
| 626 | if (!r) { |
| 627 | const BIGNUM *ao, *bo, *ac, *bc; |
| 628 | /* compare the order and cofactor */ |
| 629 | ao = EC_GROUP_get0_order(a); |
| 630 | bo = EC_GROUP_get0_order(b); |
| 631 | ac = EC_GROUP_get0_cofactor(a); |
| 632 | bc = EC_GROUP_get0_cofactor(b); |
| 633 | if (ao == NULL || bo == NULL) { |
| 634 | BN_CTX_end(ctx); |
| 635 | BN_CTX_free(ctx_new); |
| 636 | return -1; |
| 637 | } |
| 638 | if (BN_cmp(ao, bo) || BN_cmp(ac, bc)) |
| 639 | r = 1; |
| 640 | } |
| 641 | |
| 642 | BN_CTX_end(ctx); |
| 643 | BN_CTX_free(ctx_new); |
| 644 | |
| 645 | return r; |
| 646 | } |
| 647 | |
| 648 | /* functions for EC_POINT objects */ |
| 649 | |
| 650 | EC_POINT *EC_POINT_new(const EC_GROUP *group) |
| 651 | { |
| 652 | EC_POINT *ret; |
| 653 | |
| 654 | if (group == NULL) { |
| 655 | ECerr(EC_F_EC_POINT_NEW, ERR_R_PASSED_NULL_PARAMETER); |
| 656 | return NULL; |
| 657 | } |
| 658 | if (group->meth->point_init == NULL) { |
| 659 | ECerr(EC_F_EC_POINT_NEW, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 660 | return NULL; |
| 661 | } |
| 662 | |
| 663 | ret = OPENSSL_zalloc(sizeof(*ret)); |
| 664 | if (ret == NULL) { |
| 665 | ECerr(EC_F_EC_POINT_NEW, ERR_R_MALLOC_FAILURE); |
| 666 | return NULL; |
| 667 | } |
| 668 | |
| 669 | ret->meth = group->meth; |
| 670 | ret->curve_name = group->curve_name; |
| 671 | |
| 672 | if (!ret->meth->point_init(ret)) { |
| 673 | OPENSSL_free(ret); |
| 674 | return NULL; |
| 675 | } |
| 676 | |
| 677 | return ret; |
| 678 | } |
| 679 | |
| 680 | void EC_POINT_free(EC_POINT *point) |
| 681 | { |
| 682 | if (!point) |
| 683 | return; |
| 684 | |
| 685 | if (point->meth->point_finish != 0) |
| 686 | point->meth->point_finish(point); |
| 687 | OPENSSL_free(point); |
| 688 | } |
| 689 | |
| 690 | void EC_POINT_clear_free(EC_POINT *point) |
| 691 | { |
| 692 | if (!point) |
| 693 | return; |
| 694 | |
| 695 | if (point->meth->point_clear_finish != 0) |
| 696 | point->meth->point_clear_finish(point); |
| 697 | else if (point->meth->point_finish != 0) |
| 698 | point->meth->point_finish(point); |
| 699 | OPENSSL_clear_free(point, sizeof(*point)); |
| 700 | } |
| 701 | |
| 702 | int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) |
| 703 | { |
| 704 | if (dest->meth->point_copy == 0) { |
| 705 | ECerr(EC_F_EC_POINT_COPY, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 706 | return 0; |
| 707 | } |
| 708 | if (dest->meth != src->meth |
| 709 | || (dest->curve_name != src->curve_name |
| 710 | && dest->curve_name != 0 |
| 711 | && src->curve_name != 0)) { |
| 712 | ECerr(EC_F_EC_POINT_COPY, EC_R_INCOMPATIBLE_OBJECTS); |
| 713 | return 0; |
| 714 | } |
| 715 | if (dest == src) |
| 716 | return 1; |
| 717 | return dest->meth->point_copy(dest, src); |
| 718 | } |
| 719 | |
| 720 | EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) |
| 721 | { |
| 722 | EC_POINT *t; |
| 723 | int r; |
| 724 | |
| 725 | if (a == NULL) |
| 726 | return NULL; |
| 727 | |
| 728 | t = EC_POINT_new(group); |
| 729 | if (t == NULL) |
| 730 | return NULL; |
| 731 | r = EC_POINT_copy(t, a); |
| 732 | if (!r) { |
| 733 | EC_POINT_free(t); |
| 734 | return NULL; |
| 735 | } |
| 736 | return t; |
| 737 | } |
| 738 | |
| 739 | const EC_METHOD *EC_POINT_method_of(const EC_POINT *point) |
| 740 | { |
| 741 | return point->meth; |
| 742 | } |
| 743 | |
| 744 | int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) |
| 745 | { |
| 746 | if (group->meth->point_set_to_infinity == 0) { |
| 747 | ECerr(EC_F_EC_POINT_SET_TO_INFINITY, |
| 748 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 749 | return 0; |
| 750 | } |
| 751 | if (group->meth != point->meth) { |
| 752 | ECerr(EC_F_EC_POINT_SET_TO_INFINITY, EC_R_INCOMPATIBLE_OBJECTS); |
| 753 | return 0; |
| 754 | } |
| 755 | return group->meth->point_set_to_infinity(group, point); |
| 756 | } |
| 757 | |
| 758 | int EC_POINT_set_Jprojective_coordinates_GFp(const EC_GROUP *group, |
| 759 | EC_POINT *point, const BIGNUM *x, |
| 760 | const BIGNUM *y, const BIGNUM *z, |
| 761 | BN_CTX *ctx) |
| 762 | { |
| 763 | if (group->meth->point_set_Jprojective_coordinates_GFp == 0) { |
| 764 | ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP, |
| 765 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 766 | return 0; |
| 767 | } |
| 768 | if (!ec_point_is_compat(point, group)) { |
| 769 | ECerr(EC_F_EC_POINT_SET_JPROJECTIVE_COORDINATES_GFP, |
| 770 | EC_R_INCOMPATIBLE_OBJECTS); |
| 771 | return 0; |
| 772 | } |
| 773 | return group->meth->point_set_Jprojective_coordinates_GFp(group, point, x, |
| 774 | y, z, ctx); |
| 775 | } |
| 776 | |
| 777 | int EC_POINT_get_Jprojective_coordinates_GFp(const EC_GROUP *group, |
| 778 | const EC_POINT *point, BIGNUM *x, |
| 779 | BIGNUM *y, BIGNUM *z, |
| 780 | BN_CTX *ctx) |
| 781 | { |
| 782 | if (group->meth->point_get_Jprojective_coordinates_GFp == 0) { |
| 783 | ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP, |
| 784 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 785 | return 0; |
| 786 | } |
| 787 | if (!ec_point_is_compat(point, group)) { |
| 788 | ECerr(EC_F_EC_POINT_GET_JPROJECTIVE_COORDINATES_GFP, |
| 789 | EC_R_INCOMPATIBLE_OBJECTS); |
| 790 | return 0; |
| 791 | } |
| 792 | return group->meth->point_get_Jprojective_coordinates_GFp(group, point, x, |
| 793 | y, z, ctx); |
| 794 | } |
| 795 | |
| 796 | int EC_POINT_set_affine_coordinates(const EC_GROUP *group, EC_POINT *point, |
| 797 | const BIGNUM *x, const BIGNUM *y, |
| 798 | BN_CTX *ctx) |
| 799 | { |
| 800 | if (group->meth->point_set_affine_coordinates == NULL) { |
| 801 | ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, |
| 802 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 803 | return 0; |
| 804 | } |
| 805 | if (!ec_point_is_compat(point, group)) { |
| 806 | ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS); |
| 807 | return 0; |
| 808 | } |
| 809 | if (!group->meth->point_set_affine_coordinates(group, point, x, y, ctx)) |
| 810 | return 0; |
| 811 | |
| 812 | if (EC_POINT_is_on_curve(group, point, ctx) <= 0) { |
| 813 | ECerr(EC_F_EC_POINT_SET_AFFINE_COORDINATES, EC_R_POINT_IS_NOT_ON_CURVE); |
| 814 | return 0; |
| 815 | } |
| 816 | return 1; |
| 817 | } |
| 818 | |
| 819 | #if OPENSSL_API_COMPAT < 0x10200000L |
| 820 | int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, |
| 821 | EC_POINT *point, const BIGNUM *x, |
| 822 | const BIGNUM *y, BN_CTX *ctx) |
| 823 | { |
| 824 | return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); |
| 825 | } |
| 826 | |
| 827 | # ifndef OPENSSL_NO_EC2M |
| 828 | int EC_POINT_set_affine_coordinates_GF2m(const EC_GROUP *group, |
| 829 | EC_POINT *point, const BIGNUM *x, |
| 830 | const BIGNUM *y, BN_CTX *ctx) |
| 831 | { |
| 832 | return EC_POINT_set_affine_coordinates(group, point, x, y, ctx); |
| 833 | } |
| 834 | # endif |
| 835 | #endif |
| 836 | |
| 837 | int EC_POINT_get_affine_coordinates(const EC_GROUP *group, |
| 838 | const EC_POINT *point, BIGNUM *x, BIGNUM *y, |
| 839 | BN_CTX *ctx) |
| 840 | { |
| 841 | if (group->meth->point_get_affine_coordinates == NULL) { |
| 842 | ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, |
| 843 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 844 | return 0; |
| 845 | } |
| 846 | if (!ec_point_is_compat(point, group)) { |
| 847 | ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_INCOMPATIBLE_OBJECTS); |
| 848 | return 0; |
| 849 | } |
| 850 | if (EC_POINT_is_at_infinity(group, point)) { |
| 851 | ECerr(EC_F_EC_POINT_GET_AFFINE_COORDINATES, EC_R_POINT_AT_INFINITY); |
| 852 | return 0; |
| 853 | } |
| 854 | return group->meth->point_get_affine_coordinates(group, point, x, y, ctx); |
| 855 | } |
| 856 | |
| 857 | #if OPENSSL_API_COMPAT < 0x10200000L |
| 858 | int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group, |
| 859 | const EC_POINT *point, BIGNUM *x, |
| 860 | BIGNUM *y, BN_CTX *ctx) |
| 861 | { |
| 862 | return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); |
| 863 | } |
| 864 | |
| 865 | # ifndef OPENSSL_NO_EC2M |
| 866 | int EC_POINT_get_affine_coordinates_GF2m(const EC_GROUP *group, |
| 867 | const EC_POINT *point, BIGNUM *x, |
| 868 | BIGNUM *y, BN_CTX *ctx) |
| 869 | { |
| 870 | return EC_POINT_get_affine_coordinates(group, point, x, y, ctx); |
| 871 | } |
| 872 | # endif |
| 873 | #endif |
| 874 | |
| 875 | int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| 876 | const EC_POINT *b, BN_CTX *ctx) |
| 877 | { |
| 878 | if (group->meth->add == 0) { |
| 879 | ECerr(EC_F_EC_POINT_ADD, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 880 | return 0; |
| 881 | } |
| 882 | if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group) |
| 883 | || !ec_point_is_compat(b, group)) { |
| 884 | ECerr(EC_F_EC_POINT_ADD, EC_R_INCOMPATIBLE_OBJECTS); |
| 885 | return 0; |
| 886 | } |
| 887 | return group->meth->add(group, r, a, b, ctx); |
| 888 | } |
| 889 | |
| 890 | int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a, |
| 891 | BN_CTX *ctx) |
| 892 | { |
| 893 | if (group->meth->dbl == 0) { |
| 894 | ECerr(EC_F_EC_POINT_DBL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 895 | return 0; |
| 896 | } |
| 897 | if (!ec_point_is_compat(r, group) || !ec_point_is_compat(a, group)) { |
| 898 | ECerr(EC_F_EC_POINT_DBL, EC_R_INCOMPATIBLE_OBJECTS); |
| 899 | return 0; |
| 900 | } |
| 901 | return group->meth->dbl(group, r, a, ctx); |
| 902 | } |
| 903 | |
| 904 | int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) |
| 905 | { |
| 906 | if (group->meth->invert == 0) { |
| 907 | ECerr(EC_F_EC_POINT_INVERT, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 908 | return 0; |
| 909 | } |
| 910 | if (!ec_point_is_compat(a, group)) { |
| 911 | ECerr(EC_F_EC_POINT_INVERT, EC_R_INCOMPATIBLE_OBJECTS); |
| 912 | return 0; |
| 913 | } |
| 914 | return group->meth->invert(group, a, ctx); |
| 915 | } |
| 916 | |
| 917 | int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) |
| 918 | { |
| 919 | if (group->meth->is_at_infinity == 0) { |
| 920 | ECerr(EC_F_EC_POINT_IS_AT_INFINITY, |
| 921 | ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 922 | return 0; |
| 923 | } |
| 924 | if (!ec_point_is_compat(point, group)) { |
| 925 | ECerr(EC_F_EC_POINT_IS_AT_INFINITY, EC_R_INCOMPATIBLE_OBJECTS); |
| 926 | return 0; |
| 927 | } |
| 928 | return group->meth->is_at_infinity(group, point); |
| 929 | } |
| 930 | |
| 931 | /* |
| 932 | * Check whether an EC_POINT is on the curve or not. Note that the return |
| 933 | * value for this function should NOT be treated as a boolean. Return values: |
| 934 | * 1: The point is on the curve |
| 935 | * 0: The point is not on the curve |
| 936 | * -1: An error occurred |
| 937 | */ |
| 938 | int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point, |
| 939 | BN_CTX *ctx) |
| 940 | { |
| 941 | if (group->meth->is_on_curve == 0) { |
| 942 | ECerr(EC_F_EC_POINT_IS_ON_CURVE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 943 | return 0; |
| 944 | } |
| 945 | if (!ec_point_is_compat(point, group)) { |
| 946 | ECerr(EC_F_EC_POINT_IS_ON_CURVE, EC_R_INCOMPATIBLE_OBJECTS); |
| 947 | return 0; |
| 948 | } |
| 949 | return group->meth->is_on_curve(group, point, ctx); |
| 950 | } |
| 951 | |
| 952 | int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b, |
| 953 | BN_CTX *ctx) |
| 954 | { |
| 955 | if (group->meth->point_cmp == 0) { |
| 956 | ECerr(EC_F_EC_POINT_CMP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 957 | return -1; |
| 958 | } |
| 959 | if (!ec_point_is_compat(a, group) || !ec_point_is_compat(b, group)) { |
| 960 | ECerr(EC_F_EC_POINT_CMP, EC_R_INCOMPATIBLE_OBJECTS); |
| 961 | return -1; |
| 962 | } |
| 963 | return group->meth->point_cmp(group, a, b, ctx); |
| 964 | } |
| 965 | |
| 966 | int EC_POINT_make_affine(const EC_GROUP *group, EC_POINT *point, BN_CTX *ctx) |
| 967 | { |
| 968 | if (group->meth->make_affine == 0) { |
| 969 | ECerr(EC_F_EC_POINT_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 970 | return 0; |
| 971 | } |
| 972 | if (!ec_point_is_compat(point, group)) { |
| 973 | ECerr(EC_F_EC_POINT_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS); |
| 974 | return 0; |
| 975 | } |
| 976 | return group->meth->make_affine(group, point, ctx); |
| 977 | } |
| 978 | |
| 979 | int EC_POINTs_make_affine(const EC_GROUP *group, size_t num, |
| 980 | EC_POINT *points[], BN_CTX *ctx) |
| 981 | { |
| 982 | size_t i; |
| 983 | |
| 984 | if (group->meth->points_make_affine == 0) { |
| 985 | ECerr(EC_F_EC_POINTS_MAKE_AFFINE, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); |
| 986 | return 0; |
| 987 | } |
| 988 | for (i = 0; i < num; i++) { |
| 989 | if (!ec_point_is_compat(points[i], group)) { |
| 990 | ECerr(EC_F_EC_POINTS_MAKE_AFFINE, EC_R_INCOMPATIBLE_OBJECTS); |
| 991 | return 0; |
| 992 | } |
| 993 | } |
| 994 | return group->meth->points_make_affine(group, num, points, ctx); |
| 995 | } |
| 996 | |
| 997 | /* |
| 998 | * Functions for point multiplication. If group->meth->mul is 0, we use the |
| 999 | * wNAF-based implementations in ec_mult.c; otherwise we dispatch through |
| 1000 | * methods. |
| 1001 | */ |
| 1002 | |
| 1003 | int EC_POINTs_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
| 1004 | size_t num, const EC_POINT *points[], |
| 1005 | const BIGNUM *scalars[], BN_CTX *ctx) |
| 1006 | { |
| 1007 | int ret = 0; |
| 1008 | size_t i = 0; |
| 1009 | BN_CTX *new_ctx = NULL; |
| 1010 | |
| 1011 | if (!ec_point_is_compat(r, group)) { |
| 1012 | ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); |
| 1013 | return 0; |
| 1014 | } |
| 1015 | |
| 1016 | if (scalar == NULL && num == 0) |
| 1017 | return EC_POINT_set_to_infinity(group, r); |
| 1018 | |
| 1019 | for (i = 0; i < num; i++) { |
| 1020 | if (!ec_point_is_compat(points[i], group)) { |
| 1021 | ECerr(EC_F_EC_POINTS_MUL, EC_R_INCOMPATIBLE_OBJECTS); |
| 1022 | return 0; |
| 1023 | } |
| 1024 | } |
| 1025 | |
| 1026 | if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) { |
| 1027 | ECerr(EC_F_EC_POINTS_MUL, ERR_R_INTERNAL_ERROR); |
| 1028 | return 0; |
| 1029 | } |
| 1030 | |
| 1031 | if (group->meth->mul != NULL) |
| 1032 | ret = group->meth->mul(group, r, scalar, num, points, scalars, ctx); |
| 1033 | else |
| 1034 | /* use default */ |
| 1035 | ret = ec_wNAF_mul(group, r, scalar, num, points, scalars, ctx); |
| 1036 | |
| 1037 | BN_CTX_free(new_ctx); |
| 1038 | return ret; |
| 1039 | } |
| 1040 | |
| 1041 | int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar, |
| 1042 | const EC_POINT *point, const BIGNUM *p_scalar, BN_CTX *ctx) |
| 1043 | { |
| 1044 | /* just a convenient interface to EC_POINTs_mul() */ |
| 1045 | |
| 1046 | const EC_POINT *points[1]; |
| 1047 | const BIGNUM *scalars[1]; |
| 1048 | |
| 1049 | points[0] = point; |
| 1050 | scalars[0] = p_scalar; |
| 1051 | |
| 1052 | return EC_POINTs_mul(group, r, g_scalar, |
| 1053 | (point != NULL |
| 1054 | && p_scalar != NULL), points, scalars, ctx); |
| 1055 | } |
| 1056 | |
| 1057 | int EC_GROUP_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
| 1058 | { |
| 1059 | if (group->meth->mul == 0) |
| 1060 | /* use default */ |
| 1061 | return ec_wNAF_precompute_mult(group, ctx); |
| 1062 | |
| 1063 | if (group->meth->precompute_mult != 0) |
| 1064 | return group->meth->precompute_mult(group, ctx); |
| 1065 | else |
| 1066 | return 1; /* nothing to do, so report success */ |
| 1067 | } |
| 1068 | |
| 1069 | int EC_GROUP_have_precompute_mult(const EC_GROUP *group) |
| 1070 | { |
| 1071 | if (group->meth->mul == 0) |
| 1072 | /* use default */ |
| 1073 | return ec_wNAF_have_precompute_mult(group); |
| 1074 | |
| 1075 | if (group->meth->have_precompute_mult != 0) |
| 1076 | return group->meth->have_precompute_mult(group); |
| 1077 | else |
| 1078 | return 0; /* cannot tell whether precomputation has |
| 1079 | * been performed */ |
| 1080 | } |
| 1081 | |
| 1082 | /* |
| 1083 | * ec_precompute_mont_data sets |group->mont_data| from |group->order| and |
| 1084 | * returns one on success. On error it returns zero. |
| 1085 | */ |
| 1086 | static int ec_precompute_mont_data(EC_GROUP *group) |
| 1087 | { |
| 1088 | BN_CTX *ctx = BN_CTX_new(); |
| 1089 | int ret = 0; |
| 1090 | |
| 1091 | BN_MONT_CTX_free(group->mont_data); |
| 1092 | group->mont_data = NULL; |
| 1093 | |
| 1094 | if (ctx == NULL) |
| 1095 | goto err; |
| 1096 | |
| 1097 | group->mont_data = BN_MONT_CTX_new(); |
| 1098 | if (group->mont_data == NULL) |
| 1099 | goto err; |
| 1100 | |
| 1101 | if (!BN_MONT_CTX_set(group->mont_data, group->order, ctx)) { |
| 1102 | BN_MONT_CTX_free(group->mont_data); |
| 1103 | group->mont_data = NULL; |
| 1104 | goto err; |
| 1105 | } |
| 1106 | |
| 1107 | ret = 1; |
| 1108 | |
| 1109 | err: |
| 1110 | |
| 1111 | BN_CTX_free(ctx); |
| 1112 | return ret; |
| 1113 | } |
| 1114 | |
| 1115 | int EC_KEY_set_ex_data(EC_KEY *key, int idx, void *arg) |
| 1116 | { |
| 1117 | return CRYPTO_set_ex_data(&key->ex_data, idx, arg); |
| 1118 | } |
| 1119 | |
| 1120 | void *EC_KEY_get_ex_data(const EC_KEY *key, int idx) |
| 1121 | { |
| 1122 | return CRYPTO_get_ex_data(&key->ex_data, idx); |
| 1123 | } |
| 1124 | |
| 1125 | int ec_group_simple_order_bits(const EC_GROUP *group) |
| 1126 | { |
| 1127 | if (group->order == NULL) |
| 1128 | return 0; |
| 1129 | return BN_num_bits(group->order); |
| 1130 | } |
| 1131 | |
| 1132 | static int ec_field_inverse_mod_ord(const EC_GROUP *group, BIGNUM *r, |
| 1133 | const BIGNUM *x, BN_CTX *ctx) |
| 1134 | { |
| 1135 | BIGNUM *e = NULL; |
| 1136 | BN_CTX *new_ctx = NULL; |
| 1137 | int ret = 0; |
| 1138 | |
| 1139 | if (group->mont_data == NULL) |
| 1140 | return 0; |
| 1141 | |
| 1142 | if (ctx == NULL && (ctx = new_ctx = BN_CTX_secure_new()) == NULL) |
| 1143 | return 0; |
| 1144 | |
| 1145 | BN_CTX_start(ctx); |
| 1146 | if ((e = BN_CTX_get(ctx)) == NULL) |
| 1147 | goto err; |
| 1148 | |
| 1149 | /*- |
| 1150 | * We want inverse in constant time, therefore we utilize the fact |
| 1151 | * order must be prime and use Fermats Little Theorem instead. |
| 1152 | */ |
| 1153 | if (!BN_set_word(e, 2)) |
| 1154 | goto err; |
| 1155 | if (!BN_sub(e, group->order, e)) |
| 1156 | goto err; |
| 1157 | /*- |
| 1158 | * Exponent e is public. |
| 1159 | * No need for scatter-gather or BN_FLG_CONSTTIME. |
| 1160 | */ |
| 1161 | if (!BN_mod_exp_mont(r, x, e, group->order, ctx, group->mont_data)) |
| 1162 | goto err; |
| 1163 | |
| 1164 | ret = 1; |
| 1165 | |
| 1166 | err: |
| 1167 | BN_CTX_end(ctx); |
| 1168 | BN_CTX_free(new_ctx); |
| 1169 | return ret; |
| 1170 | } |
| 1171 | |
| 1172 | /*- |
| 1173 | * Default behavior, if group->meth->field_inverse_mod_ord is NULL: |
| 1174 | * - When group->order is even, this function returns an error. |
| 1175 | * - When group->order is otherwise composite, the correctness |
| 1176 | * of the output is not guaranteed. |
| 1177 | * - When x is outside the range [1, group->order), the correctness |
| 1178 | * of the output is not guaranteed. |
| 1179 | * - Otherwise, this function returns the multiplicative inverse in the |
| 1180 | * range [1, group->order). |
| 1181 | * |
| 1182 | * EC_METHODs must implement their own field_inverse_mod_ord for |
| 1183 | * other functionality. |
| 1184 | */ |
| 1185 | int ec_group_do_inverse_ord(const EC_GROUP *group, BIGNUM *res, |
| 1186 | const BIGNUM *x, BN_CTX *ctx) |
| 1187 | { |
| 1188 | if (group->meth->field_inverse_mod_ord != NULL) |
| 1189 | return group->meth->field_inverse_mod_ord(group, res, x, ctx); |
| 1190 | else |
| 1191 | return ec_field_inverse_mod_ord(group, res, x, ctx); |
| 1192 | } |
| 1193 | |
| 1194 | /*- |
| 1195 | * Coordinate blinding for EC_POINT. |
| 1196 | * |
| 1197 | * The underlying EC_METHOD can optionally implement this function: |
| 1198 | * underlying implementations should return 0 on errors, or 1 on |
| 1199 | * success. |
| 1200 | * |
| 1201 | * This wrapper returns 1 in case the underlying EC_METHOD does not |
| 1202 | * support coordinate blinding. |
| 1203 | */ |
| 1204 | int ec_point_blind_coordinates(const EC_GROUP *group, EC_POINT *p, BN_CTX *ctx) |
| 1205 | { |
| 1206 | if (group->meth->blind_coordinates == NULL) |
| 1207 | return 1; /* ignore if not implemented */ |
| 1208 | |
| 1209 | return group->meth->blind_coordinates(group, p, ctx); |
| 1210 | } |