yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved |
| 4 | * |
| 5 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 6 | * this file except in compliance with the License. You can obtain a copy |
| 7 | * in the file LICENSE in the source distribution or at |
| 8 | * https://www.openssl.org/source/license.html |
| 9 | */ |
| 10 | |
| 11 | #include <string.h> |
| 12 | #include <openssl/err.h> |
| 13 | |
| 14 | #include "internal/cryptlib.h" |
| 15 | #include "crypto/bn.h" |
| 16 | #include "ec_local.h" |
| 17 | #include "internal/refcount.h" |
| 18 | |
| 19 | /* |
| 20 | * This file implements the wNAF-based interleaving multi-exponentiation method |
| 21 | * Formerly at: |
| 22 | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#multiexp |
| 23 | * You might now find it here: |
| 24 | * http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13 |
| 25 | * http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf |
| 26 | * For multiplication with precomputation, we use wNAF splitting, formerly at: |
| 27 | * http://www.informatik.tu-darmstadt.de/TI/Mitarbeiter/moeller.html#fastexp |
| 28 | */ |
| 29 | |
| 30 | /* structure for precomputed multiples of the generator */ |
| 31 | struct ec_pre_comp_st { |
| 32 | const EC_GROUP *group; /* parent EC_GROUP object */ |
| 33 | size_t blocksize; /* block size for wNAF splitting */ |
| 34 | size_t numblocks; /* max. number of blocks for which we have |
| 35 | * precomputation */ |
| 36 | size_t w; /* window size */ |
| 37 | EC_POINT **points; /* array with pre-calculated multiples of |
| 38 | * generator: 'num' pointers to EC_POINT |
| 39 | * objects followed by a NULL */ |
| 40 | size_t num; /* numblocks * 2^(w-1) */ |
| 41 | CRYPTO_REF_COUNT references; |
| 42 | CRYPTO_RWLOCK *lock; |
| 43 | }; |
| 44 | |
| 45 | static EC_PRE_COMP *ec_pre_comp_new(const EC_GROUP *group) |
| 46 | { |
| 47 | EC_PRE_COMP *ret = NULL; |
| 48 | |
| 49 | if (!group) |
| 50 | return NULL; |
| 51 | |
| 52 | ret = OPENSSL_zalloc(sizeof(*ret)); |
| 53 | if (ret == NULL) { |
| 54 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 55 | return ret; |
| 56 | } |
| 57 | |
| 58 | ret->group = group; |
| 59 | ret->blocksize = 8; /* default */ |
| 60 | ret->w = 4; /* default */ |
| 61 | ret->references = 1; |
| 62 | |
| 63 | ret->lock = CRYPTO_THREAD_lock_new(); |
| 64 | if (ret->lock == NULL) { |
| 65 | ECerr(EC_F_EC_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 66 | OPENSSL_free(ret); |
| 67 | return NULL; |
| 68 | } |
| 69 | return ret; |
| 70 | } |
| 71 | |
| 72 | EC_PRE_COMP *EC_ec_pre_comp_dup(EC_PRE_COMP *pre) |
| 73 | { |
| 74 | int i; |
| 75 | if (pre != NULL) |
| 76 | CRYPTO_UP_REF(&pre->references, &i, pre->lock); |
| 77 | return pre; |
| 78 | } |
| 79 | |
| 80 | void EC_ec_pre_comp_free(EC_PRE_COMP *pre) |
| 81 | { |
| 82 | int i; |
| 83 | |
| 84 | if (pre == NULL) |
| 85 | return; |
| 86 | |
| 87 | CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); |
| 88 | REF_PRINT_COUNT("EC_ec", pre); |
| 89 | if (i > 0) |
| 90 | return; |
| 91 | REF_ASSERT_ISNT(i < 0); |
| 92 | |
| 93 | if (pre->points != NULL) { |
| 94 | EC_POINT **pts; |
| 95 | |
| 96 | for (pts = pre->points; *pts != NULL; pts++) |
| 97 | EC_POINT_free(*pts); |
| 98 | OPENSSL_free(pre->points); |
| 99 | } |
| 100 | CRYPTO_THREAD_lock_free(pre->lock); |
| 101 | OPENSSL_free(pre); |
| 102 | } |
| 103 | |
| 104 | #define EC_POINT_BN_set_flags(P, flags) do { \ |
| 105 | BN_set_flags((P)->X, (flags)); \ |
| 106 | BN_set_flags((P)->Y, (flags)); \ |
| 107 | BN_set_flags((P)->Z, (flags)); \ |
| 108 | } while(0) |
| 109 | |
| 110 | /*- |
| 111 | * This functions computes a single point multiplication over the EC group, |
| 112 | * using, at a high level, a Montgomery ladder with conditional swaps, with |
| 113 | * various timing attack defenses. |
| 114 | * |
| 115 | * It performs either a fixed point multiplication |
| 116 | * (scalar * generator) |
| 117 | * when point is NULL, or a variable point multiplication |
| 118 | * (scalar * point) |
| 119 | * when point is not NULL. |
| 120 | * |
| 121 | * `scalar` cannot be NULL and should be in the range [0,n) otherwise all |
| 122 | * constant time bets are off (where n is the cardinality of the EC group). |
| 123 | * |
| 124 | * This function expects `group->order` and `group->cardinality` to be well |
| 125 | * defined and non-zero: it fails with an error code otherwise. |
| 126 | * |
| 127 | * NB: This says nothing about the constant-timeness of the ladder step |
| 128 | * implementation (i.e., the default implementation is based on EC_POINT_add and |
| 129 | * EC_POINT_dbl, which of course are not constant time themselves) or the |
| 130 | * underlying multiprecision arithmetic. |
| 131 | * |
| 132 | * The product is stored in `r`. |
| 133 | * |
| 134 | * This is an internal function: callers are in charge of ensuring that the |
| 135 | * input parameters `group`, `r`, `scalar` and `ctx` are not NULL. |
| 136 | * |
| 137 | * Returns 1 on success, 0 otherwise. |
| 138 | */ |
| 139 | int ec_scalar_mul_ladder(const EC_GROUP *group, EC_POINT *r, |
| 140 | const BIGNUM *scalar, const EC_POINT *point, |
| 141 | BN_CTX *ctx) |
| 142 | { |
| 143 | int i, cardinality_bits, group_top, kbit, pbit, Z_is_one; |
| 144 | EC_POINT *p = NULL; |
| 145 | EC_POINT *s = NULL; |
| 146 | BIGNUM *k = NULL; |
| 147 | BIGNUM *lambda = NULL; |
| 148 | BIGNUM *cardinality = NULL; |
| 149 | int ret = 0; |
| 150 | |
| 151 | /* early exit if the input point is the point at infinity */ |
| 152 | if (point != NULL && EC_POINT_is_at_infinity(group, point)) |
| 153 | return EC_POINT_set_to_infinity(group, r); |
| 154 | |
| 155 | if (BN_is_zero(group->order)) { |
| 156 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_ORDER); |
| 157 | return 0; |
| 158 | } |
| 159 | if (BN_is_zero(group->cofactor)) { |
| 160 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_UNKNOWN_COFACTOR); |
| 161 | return 0; |
| 162 | } |
| 163 | |
| 164 | BN_CTX_start(ctx); |
| 165 | |
| 166 | if (((p = EC_POINT_new(group)) == NULL) |
| 167 | || ((s = EC_POINT_new(group)) == NULL)) { |
| 168 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE); |
| 169 | goto err; |
| 170 | } |
| 171 | |
| 172 | if (point == NULL) { |
| 173 | if (!EC_POINT_copy(p, group->generator)) { |
| 174 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); |
| 175 | goto err; |
| 176 | } |
| 177 | } else { |
| 178 | if (!EC_POINT_copy(p, point)) { |
| 179 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); |
| 180 | goto err; |
| 181 | } |
| 182 | } |
| 183 | |
| 184 | EC_POINT_BN_set_flags(p, BN_FLG_CONSTTIME); |
| 185 | EC_POINT_BN_set_flags(r, BN_FLG_CONSTTIME); |
| 186 | EC_POINT_BN_set_flags(s, BN_FLG_CONSTTIME); |
| 187 | |
| 188 | cardinality = BN_CTX_get(ctx); |
| 189 | lambda = BN_CTX_get(ctx); |
| 190 | k = BN_CTX_get(ctx); |
| 191 | if (k == NULL) { |
| 192 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_MALLOC_FAILURE); |
| 193 | goto err; |
| 194 | } |
| 195 | |
| 196 | if (!BN_mul(cardinality, group->order, group->cofactor, ctx)) { |
| 197 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
| 198 | goto err; |
| 199 | } |
| 200 | |
| 201 | /* |
| 202 | * Group cardinalities are often on a word boundary. |
| 203 | * So when we pad the scalar, some timing diff might |
| 204 | * pop if it needs to be expanded due to carries. |
| 205 | * So expand ahead of time. |
| 206 | */ |
| 207 | cardinality_bits = BN_num_bits(cardinality); |
| 208 | group_top = bn_get_top(cardinality); |
| 209 | if ((bn_wexpand(k, group_top + 2) == NULL) |
| 210 | || (bn_wexpand(lambda, group_top + 2) == NULL)) { |
| 211 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
| 212 | goto err; |
| 213 | } |
| 214 | |
| 215 | if (!BN_copy(k, scalar)) { |
| 216 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
| 217 | goto err; |
| 218 | } |
| 219 | |
| 220 | BN_set_flags(k, BN_FLG_CONSTTIME); |
| 221 | |
| 222 | if ((BN_num_bits(k) > cardinality_bits) || (BN_is_negative(k))) { |
| 223 | /*- |
| 224 | * this is an unusual input, and we don't guarantee |
| 225 | * constant-timeness |
| 226 | */ |
| 227 | if (!BN_nnmod(k, k, cardinality, ctx)) { |
| 228 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
| 229 | goto err; |
| 230 | } |
| 231 | } |
| 232 | |
| 233 | if (!BN_add(lambda, k, cardinality)) { |
| 234 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
| 235 | goto err; |
| 236 | } |
| 237 | BN_set_flags(lambda, BN_FLG_CONSTTIME); |
| 238 | if (!BN_add(k, lambda, cardinality)) { |
| 239 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
| 240 | goto err; |
| 241 | } |
| 242 | /* |
| 243 | * lambda := scalar + cardinality |
| 244 | * k := scalar + 2*cardinality |
| 245 | */ |
| 246 | kbit = BN_is_bit_set(lambda, cardinality_bits); |
| 247 | BN_consttime_swap(kbit, k, lambda, group_top + 2); |
| 248 | |
| 249 | group_top = bn_get_top(group->field); |
| 250 | if ((bn_wexpand(s->X, group_top) == NULL) |
| 251 | || (bn_wexpand(s->Y, group_top) == NULL) |
| 252 | || (bn_wexpand(s->Z, group_top) == NULL) |
| 253 | || (bn_wexpand(r->X, group_top) == NULL) |
| 254 | || (bn_wexpand(r->Y, group_top) == NULL) |
| 255 | || (bn_wexpand(r->Z, group_top) == NULL) |
| 256 | || (bn_wexpand(p->X, group_top) == NULL) |
| 257 | || (bn_wexpand(p->Y, group_top) == NULL) |
| 258 | || (bn_wexpand(p->Z, group_top) == NULL)) { |
| 259 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_BN_LIB); |
| 260 | goto err; |
| 261 | } |
| 262 | |
| 263 | /* ensure input point is in affine coords for ladder step efficiency */ |
| 264 | if (!p->Z_is_one && !EC_POINT_make_affine(group, p, ctx)) { |
| 265 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, ERR_R_EC_LIB); |
| 266 | goto err; |
| 267 | } |
| 268 | |
| 269 | /* Initialize the Montgomery ladder */ |
| 270 | if (!ec_point_ladder_pre(group, r, s, p, ctx)) { |
| 271 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_PRE_FAILURE); |
| 272 | goto err; |
| 273 | } |
| 274 | |
| 275 | /* top bit is a 1, in a fixed pos */ |
| 276 | pbit = 1; |
| 277 | |
| 278 | #define EC_POINT_CSWAP(c, a, b, w, t) do { \ |
| 279 | BN_consttime_swap(c, (a)->X, (b)->X, w); \ |
| 280 | BN_consttime_swap(c, (a)->Y, (b)->Y, w); \ |
| 281 | BN_consttime_swap(c, (a)->Z, (b)->Z, w); \ |
| 282 | t = ((a)->Z_is_one ^ (b)->Z_is_one) & (c); \ |
| 283 | (a)->Z_is_one ^= (t); \ |
| 284 | (b)->Z_is_one ^= (t); \ |
| 285 | } while(0) |
| 286 | |
| 287 | /*- |
| 288 | * The ladder step, with branches, is |
| 289 | * |
| 290 | * k[i] == 0: S = add(R, S), R = dbl(R) |
| 291 | * k[i] == 1: R = add(S, R), S = dbl(S) |
| 292 | * |
| 293 | * Swapping R, S conditionally on k[i] leaves you with state |
| 294 | * |
| 295 | * k[i] == 0: T, U = R, S |
| 296 | * k[i] == 1: T, U = S, R |
| 297 | * |
| 298 | * Then perform the ECC ops. |
| 299 | * |
| 300 | * U = add(T, U) |
| 301 | * T = dbl(T) |
| 302 | * |
| 303 | * Which leaves you with state |
| 304 | * |
| 305 | * k[i] == 0: U = add(R, S), T = dbl(R) |
| 306 | * k[i] == 1: U = add(S, R), T = dbl(S) |
| 307 | * |
| 308 | * Swapping T, U conditionally on k[i] leaves you with state |
| 309 | * |
| 310 | * k[i] == 0: R, S = T, U |
| 311 | * k[i] == 1: R, S = U, T |
| 312 | * |
| 313 | * Which leaves you with state |
| 314 | * |
| 315 | * k[i] == 0: S = add(R, S), R = dbl(R) |
| 316 | * k[i] == 1: R = add(S, R), S = dbl(S) |
| 317 | * |
| 318 | * So we get the same logic, but instead of a branch it's a |
| 319 | * conditional swap, followed by ECC ops, then another conditional swap. |
| 320 | * |
| 321 | * Optimization: The end of iteration i and start of i-1 looks like |
| 322 | * |
| 323 | * ... |
| 324 | * CSWAP(k[i], R, S) |
| 325 | * ECC |
| 326 | * CSWAP(k[i], R, S) |
| 327 | * (next iteration) |
| 328 | * CSWAP(k[i-1], R, S) |
| 329 | * ECC |
| 330 | * CSWAP(k[i-1], R, S) |
| 331 | * ... |
| 332 | * |
| 333 | * So instead of two contiguous swaps, you can merge the condition |
| 334 | * bits and do a single swap. |
| 335 | * |
| 336 | * k[i] k[i-1] Outcome |
| 337 | * 0 0 No Swap |
| 338 | * 0 1 Swap |
| 339 | * 1 0 Swap |
| 340 | * 1 1 No Swap |
| 341 | * |
| 342 | * This is XOR. pbit tracks the previous bit of k. |
| 343 | */ |
| 344 | |
| 345 | for (i = cardinality_bits - 1; i >= 0; i--) { |
| 346 | kbit = BN_is_bit_set(k, i) ^ pbit; |
| 347 | EC_POINT_CSWAP(kbit, r, s, group_top, Z_is_one); |
| 348 | |
| 349 | /* Perform a single step of the Montgomery ladder */ |
| 350 | if (!ec_point_ladder_step(group, r, s, p, ctx)) { |
| 351 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_STEP_FAILURE); |
| 352 | goto err; |
| 353 | } |
| 354 | /* |
| 355 | * pbit logic merges this cswap with that of the |
| 356 | * next iteration |
| 357 | */ |
| 358 | pbit ^= kbit; |
| 359 | } |
| 360 | /* one final cswap to move the right value into r */ |
| 361 | EC_POINT_CSWAP(pbit, r, s, group_top, Z_is_one); |
| 362 | #undef EC_POINT_CSWAP |
| 363 | |
| 364 | /* Finalize ladder (and recover full point coordinates) */ |
| 365 | if (!ec_point_ladder_post(group, r, s, p, ctx)) { |
| 366 | ECerr(EC_F_EC_SCALAR_MUL_LADDER, EC_R_LADDER_POST_FAILURE); |
| 367 | goto err; |
| 368 | } |
| 369 | |
| 370 | ret = 1; |
| 371 | |
| 372 | err: |
| 373 | EC_POINT_free(p); |
| 374 | EC_POINT_clear_free(s); |
| 375 | BN_CTX_end(ctx); |
| 376 | |
| 377 | return ret; |
| 378 | } |
| 379 | |
| 380 | #undef EC_POINT_BN_set_flags |
| 381 | |
| 382 | /* |
| 383 | * TODO: table should be optimised for the wNAF-based implementation, |
| 384 | * sometimes smaller windows will give better performance (thus the |
| 385 | * boundaries should be increased) |
| 386 | */ |
| 387 | #define EC_window_bits_for_scalar_size(b) \ |
| 388 | ((size_t) \ |
| 389 | ((b) >= 2000 ? 6 : \ |
| 390 | (b) >= 800 ? 5 : \ |
| 391 | (b) >= 300 ? 4 : \ |
| 392 | (b) >= 70 ? 3 : \ |
| 393 | (b) >= 20 ? 2 : \ |
| 394 | 1)) |
| 395 | |
| 396 | /*- |
| 397 | * Compute |
| 398 | * \sum scalars[i]*points[i], |
| 399 | * also including |
| 400 | * scalar*generator |
| 401 | * in the addition if scalar != NULL |
| 402 | */ |
| 403 | int ec_wNAF_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *scalar, |
| 404 | size_t num, const EC_POINT *points[], const BIGNUM *scalars[], |
| 405 | BN_CTX *ctx) |
| 406 | { |
| 407 | const EC_POINT *generator = NULL; |
| 408 | EC_POINT *tmp = NULL; |
| 409 | size_t totalnum; |
| 410 | size_t blocksize = 0, numblocks = 0; /* for wNAF splitting */ |
| 411 | size_t pre_points_per_block = 0; |
| 412 | size_t i, j; |
| 413 | int k; |
| 414 | int r_is_inverted = 0; |
| 415 | int r_is_at_infinity = 1; |
| 416 | size_t *wsize = NULL; /* individual window sizes */ |
| 417 | signed char **wNAF = NULL; /* individual wNAFs */ |
| 418 | size_t *wNAF_len = NULL; |
| 419 | size_t max_len = 0; |
| 420 | size_t num_val; |
| 421 | EC_POINT **val = NULL; /* precomputation */ |
| 422 | EC_POINT **v; |
| 423 | EC_POINT ***val_sub = NULL; /* pointers to sub-arrays of 'val' or |
| 424 | * 'pre_comp->points' */ |
| 425 | const EC_PRE_COMP *pre_comp = NULL; |
| 426 | int num_scalar = 0; /* flag: will be set to 1 if 'scalar' must be |
| 427 | * treated like other scalars, i.e. |
| 428 | * precomputation is not available */ |
| 429 | int ret = 0; |
| 430 | |
| 431 | if (!BN_is_zero(group->order) && !BN_is_zero(group->cofactor)) { |
| 432 | /*- |
| 433 | * Handle the common cases where the scalar is secret, enforcing a |
| 434 | * scalar multiplication implementation based on a Montgomery ladder, |
| 435 | * with various timing attack defenses. |
| 436 | */ |
| 437 | if ((scalar != group->order) && (scalar != NULL) && (num == 0)) { |
| 438 | /*- |
| 439 | * In this case we want to compute scalar * GeneratorPoint: this |
| 440 | * codepath is reached most prominently by (ephemeral) key |
| 441 | * generation of EC cryptosystems (i.e. ECDSA keygen and sign setup, |
| 442 | * ECDH keygen/first half), where the scalar is always secret. This |
| 443 | * is why we ignore if BN_FLG_CONSTTIME is actually set and we |
| 444 | * always call the ladder version. |
| 445 | */ |
| 446 | return ec_scalar_mul_ladder(group, r, scalar, NULL, ctx); |
| 447 | } |
| 448 | if ((scalar == NULL) && (num == 1) && (scalars[0] != group->order)) { |
| 449 | /*- |
| 450 | * In this case we want to compute scalar * VariablePoint: this |
| 451 | * codepath is reached most prominently by the second half of ECDH, |
| 452 | * where the secret scalar is multiplied by the peer's public point. |
| 453 | * To protect the secret scalar, we ignore if BN_FLG_CONSTTIME is |
| 454 | * actually set and we always call the ladder version. |
| 455 | */ |
| 456 | return ec_scalar_mul_ladder(group, r, scalars[0], points[0], ctx); |
| 457 | } |
| 458 | } |
| 459 | |
| 460 | if (scalar != NULL) { |
| 461 | generator = EC_GROUP_get0_generator(group); |
| 462 | if (generator == NULL) { |
| 463 | ECerr(EC_F_EC_WNAF_MUL, EC_R_UNDEFINED_GENERATOR); |
| 464 | goto err; |
| 465 | } |
| 466 | |
| 467 | /* look if we can use precomputed multiples of generator */ |
| 468 | |
| 469 | pre_comp = group->pre_comp.ec; |
| 470 | if (pre_comp && pre_comp->numblocks |
| 471 | && (EC_POINT_cmp(group, generator, pre_comp->points[0], ctx) == |
| 472 | 0)) { |
| 473 | blocksize = pre_comp->blocksize; |
| 474 | |
| 475 | /* |
| 476 | * determine maximum number of blocks that wNAF splitting may |
| 477 | * yield (NB: maximum wNAF length is bit length plus one) |
| 478 | */ |
| 479 | numblocks = (BN_num_bits(scalar) / blocksize) + 1; |
| 480 | |
| 481 | /* |
| 482 | * we cannot use more blocks than we have precomputation for |
| 483 | */ |
| 484 | if (numblocks > pre_comp->numblocks) |
| 485 | numblocks = pre_comp->numblocks; |
| 486 | |
| 487 | pre_points_per_block = (size_t)1 << (pre_comp->w - 1); |
| 488 | |
| 489 | /* check that pre_comp looks sane */ |
| 490 | if (pre_comp->num != (pre_comp->numblocks * pre_points_per_block)) { |
| 491 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
| 492 | goto err; |
| 493 | } |
| 494 | } else { |
| 495 | /* can't use precomputation */ |
| 496 | pre_comp = NULL; |
| 497 | numblocks = 1; |
| 498 | num_scalar = 1; /* treat 'scalar' like 'num'-th element of |
| 499 | * 'scalars' */ |
| 500 | } |
| 501 | } |
| 502 | |
| 503 | totalnum = num + numblocks; |
| 504 | |
| 505 | wsize = OPENSSL_malloc(totalnum * sizeof(wsize[0])); |
| 506 | wNAF_len = OPENSSL_malloc(totalnum * sizeof(wNAF_len[0])); |
| 507 | /* include space for pivot */ |
| 508 | wNAF = OPENSSL_malloc((totalnum + 1) * sizeof(wNAF[0])); |
| 509 | val_sub = OPENSSL_malloc(totalnum * sizeof(val_sub[0])); |
| 510 | |
| 511 | /* Ensure wNAF is initialised in case we end up going to err */ |
| 512 | if (wNAF != NULL) |
| 513 | wNAF[0] = NULL; /* preliminary pivot */ |
| 514 | |
| 515 | if (wsize == NULL || wNAF_len == NULL || wNAF == NULL || val_sub == NULL) { |
| 516 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); |
| 517 | goto err; |
| 518 | } |
| 519 | |
| 520 | /* |
| 521 | * num_val will be the total number of temporarily precomputed points |
| 522 | */ |
| 523 | num_val = 0; |
| 524 | |
| 525 | for (i = 0; i < num + num_scalar; i++) { |
| 526 | size_t bits; |
| 527 | |
| 528 | bits = i < num ? BN_num_bits(scalars[i]) : BN_num_bits(scalar); |
| 529 | wsize[i] = EC_window_bits_for_scalar_size(bits); |
| 530 | num_val += (size_t)1 << (wsize[i] - 1); |
| 531 | wNAF[i + 1] = NULL; /* make sure we always have a pivot */ |
| 532 | wNAF[i] = |
| 533 | bn_compute_wNAF((i < num ? scalars[i] : scalar), wsize[i], |
| 534 | &wNAF_len[i]); |
| 535 | if (wNAF[i] == NULL) |
| 536 | goto err; |
| 537 | if (wNAF_len[i] > max_len) |
| 538 | max_len = wNAF_len[i]; |
| 539 | } |
| 540 | |
| 541 | if (numblocks) { |
| 542 | /* we go here iff scalar != NULL */ |
| 543 | |
| 544 | if (pre_comp == NULL) { |
| 545 | if (num_scalar != 1) { |
| 546 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
| 547 | goto err; |
| 548 | } |
| 549 | /* we have already generated a wNAF for 'scalar' */ |
| 550 | } else { |
| 551 | signed char *tmp_wNAF = NULL; |
| 552 | size_t tmp_len = 0; |
| 553 | |
| 554 | if (num_scalar != 0) { |
| 555 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
| 556 | goto err; |
| 557 | } |
| 558 | |
| 559 | /* |
| 560 | * use the window size for which we have precomputation |
| 561 | */ |
| 562 | wsize[num] = pre_comp->w; |
| 563 | tmp_wNAF = bn_compute_wNAF(scalar, wsize[num], &tmp_len); |
| 564 | if (!tmp_wNAF) |
| 565 | goto err; |
| 566 | |
| 567 | if (tmp_len <= max_len) { |
| 568 | /* |
| 569 | * One of the other wNAFs is at least as long as the wNAF |
| 570 | * belonging to the generator, so wNAF splitting will not buy |
| 571 | * us anything. |
| 572 | */ |
| 573 | |
| 574 | numblocks = 1; |
| 575 | totalnum = num + 1; /* don't use wNAF splitting */ |
| 576 | wNAF[num] = tmp_wNAF; |
| 577 | wNAF[num + 1] = NULL; |
| 578 | wNAF_len[num] = tmp_len; |
| 579 | /* |
| 580 | * pre_comp->points starts with the points that we need here: |
| 581 | */ |
| 582 | val_sub[num] = pre_comp->points; |
| 583 | } else { |
| 584 | /* |
| 585 | * don't include tmp_wNAF directly into wNAF array - use wNAF |
| 586 | * splitting and include the blocks |
| 587 | */ |
| 588 | |
| 589 | signed char *pp; |
| 590 | EC_POINT **tmp_points; |
| 591 | |
| 592 | if (tmp_len < numblocks * blocksize) { |
| 593 | /* |
| 594 | * possibly we can do with fewer blocks than estimated |
| 595 | */ |
| 596 | numblocks = (tmp_len + blocksize - 1) / blocksize; |
| 597 | if (numblocks > pre_comp->numblocks) { |
| 598 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
| 599 | OPENSSL_free(tmp_wNAF); |
| 600 | goto err; |
| 601 | } |
| 602 | totalnum = num + numblocks; |
| 603 | } |
| 604 | |
| 605 | /* split wNAF in 'numblocks' parts */ |
| 606 | pp = tmp_wNAF; |
| 607 | tmp_points = pre_comp->points; |
| 608 | |
| 609 | for (i = num; i < totalnum; i++) { |
| 610 | if (i < totalnum - 1) { |
| 611 | wNAF_len[i] = blocksize; |
| 612 | if (tmp_len < blocksize) { |
| 613 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
| 614 | OPENSSL_free(tmp_wNAF); |
| 615 | goto err; |
| 616 | } |
| 617 | tmp_len -= blocksize; |
| 618 | } else |
| 619 | /* |
| 620 | * last block gets whatever is left (this could be |
| 621 | * more or less than 'blocksize'!) |
| 622 | */ |
| 623 | wNAF_len[i] = tmp_len; |
| 624 | |
| 625 | wNAF[i + 1] = NULL; |
| 626 | wNAF[i] = OPENSSL_malloc(wNAF_len[i]); |
| 627 | if (wNAF[i] == NULL) { |
| 628 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); |
| 629 | OPENSSL_free(tmp_wNAF); |
| 630 | goto err; |
| 631 | } |
| 632 | memcpy(wNAF[i], pp, wNAF_len[i]); |
| 633 | if (wNAF_len[i] > max_len) |
| 634 | max_len = wNAF_len[i]; |
| 635 | |
| 636 | if (*tmp_points == NULL) { |
| 637 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
| 638 | OPENSSL_free(tmp_wNAF); |
| 639 | goto err; |
| 640 | } |
| 641 | val_sub[i] = tmp_points; |
| 642 | tmp_points += pre_points_per_block; |
| 643 | pp += blocksize; |
| 644 | } |
| 645 | OPENSSL_free(tmp_wNAF); |
| 646 | } |
| 647 | } |
| 648 | } |
| 649 | |
| 650 | /* |
| 651 | * All points we precompute now go into a single array 'val'. |
| 652 | * 'val_sub[i]' is a pointer to the subarray for the i-th point, or to a |
| 653 | * subarray of 'pre_comp->points' if we already have precomputation. |
| 654 | */ |
| 655 | val = OPENSSL_malloc((num_val + 1) * sizeof(val[0])); |
| 656 | if (val == NULL) { |
| 657 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_MALLOC_FAILURE); |
| 658 | goto err; |
| 659 | } |
| 660 | val[num_val] = NULL; /* pivot element */ |
| 661 | |
| 662 | /* allocate points for precomputation */ |
| 663 | v = val; |
| 664 | for (i = 0; i < num + num_scalar; i++) { |
| 665 | val_sub[i] = v; |
| 666 | for (j = 0; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
| 667 | *v = EC_POINT_new(group); |
| 668 | if (*v == NULL) |
| 669 | goto err; |
| 670 | v++; |
| 671 | } |
| 672 | } |
| 673 | if (!(v == val + num_val)) { |
| 674 | ECerr(EC_F_EC_WNAF_MUL, ERR_R_INTERNAL_ERROR); |
| 675 | goto err; |
| 676 | } |
| 677 | |
| 678 | if ((tmp = EC_POINT_new(group)) == NULL) |
| 679 | goto err; |
| 680 | |
| 681 | /*- |
| 682 | * prepare precomputed values: |
| 683 | * val_sub[i][0] := points[i] |
| 684 | * val_sub[i][1] := 3 * points[i] |
| 685 | * val_sub[i][2] := 5 * points[i] |
| 686 | * ... |
| 687 | */ |
| 688 | for (i = 0; i < num + num_scalar; i++) { |
| 689 | if (i < num) { |
| 690 | if (!EC_POINT_copy(val_sub[i][0], points[i])) |
| 691 | goto err; |
| 692 | } else { |
| 693 | if (!EC_POINT_copy(val_sub[i][0], generator)) |
| 694 | goto err; |
| 695 | } |
| 696 | |
| 697 | if (wsize[i] > 1) { |
| 698 | if (!EC_POINT_dbl(group, tmp, val_sub[i][0], ctx)) |
| 699 | goto err; |
| 700 | for (j = 1; j < ((size_t)1 << (wsize[i] - 1)); j++) { |
| 701 | if (!EC_POINT_add |
| 702 | (group, val_sub[i][j], val_sub[i][j - 1], tmp, ctx)) |
| 703 | goto err; |
| 704 | } |
| 705 | } |
| 706 | } |
| 707 | |
| 708 | if (!EC_POINTs_make_affine(group, num_val, val, ctx)) |
| 709 | goto err; |
| 710 | |
| 711 | r_is_at_infinity = 1; |
| 712 | |
| 713 | for (k = max_len - 1; k >= 0; k--) { |
| 714 | if (!r_is_at_infinity) { |
| 715 | if (!EC_POINT_dbl(group, r, r, ctx)) |
| 716 | goto err; |
| 717 | } |
| 718 | |
| 719 | for (i = 0; i < totalnum; i++) { |
| 720 | if (wNAF_len[i] > (size_t)k) { |
| 721 | int digit = wNAF[i][k]; |
| 722 | int is_neg; |
| 723 | |
| 724 | if (digit) { |
| 725 | is_neg = digit < 0; |
| 726 | |
| 727 | if (is_neg) |
| 728 | digit = -digit; |
| 729 | |
| 730 | if (is_neg != r_is_inverted) { |
| 731 | if (!r_is_at_infinity) { |
| 732 | if (!EC_POINT_invert(group, r, ctx)) |
| 733 | goto err; |
| 734 | } |
| 735 | r_is_inverted = !r_is_inverted; |
| 736 | } |
| 737 | |
| 738 | /* digit > 0 */ |
| 739 | |
| 740 | if (r_is_at_infinity) { |
| 741 | if (!EC_POINT_copy(r, val_sub[i][digit >> 1])) |
| 742 | goto err; |
| 743 | |
| 744 | /*- |
| 745 | * Apply coordinate blinding for EC_POINT. |
| 746 | * |
| 747 | * The underlying EC_METHOD can optionally implement this function: |
| 748 | * ec_point_blind_coordinates() returns 0 in case of errors or 1 on |
| 749 | * success or if coordinate blinding is not implemented for this |
| 750 | * group. |
| 751 | */ |
| 752 | if (!ec_point_blind_coordinates(group, r, ctx)) { |
| 753 | ECerr(EC_F_EC_WNAF_MUL, EC_R_POINT_COORDINATES_BLIND_FAILURE); |
| 754 | goto err; |
| 755 | } |
| 756 | |
| 757 | r_is_at_infinity = 0; |
| 758 | } else { |
| 759 | if (!EC_POINT_add |
| 760 | (group, r, r, val_sub[i][digit >> 1], ctx)) |
| 761 | goto err; |
| 762 | } |
| 763 | } |
| 764 | } |
| 765 | } |
| 766 | } |
| 767 | |
| 768 | if (r_is_at_infinity) { |
| 769 | if (!EC_POINT_set_to_infinity(group, r)) |
| 770 | goto err; |
| 771 | } else { |
| 772 | if (r_is_inverted) |
| 773 | if (!EC_POINT_invert(group, r, ctx)) |
| 774 | goto err; |
| 775 | } |
| 776 | |
| 777 | ret = 1; |
| 778 | |
| 779 | err: |
| 780 | EC_POINT_free(tmp); |
| 781 | OPENSSL_free(wsize); |
| 782 | OPENSSL_free(wNAF_len); |
| 783 | if (wNAF != NULL) { |
| 784 | signed char **w; |
| 785 | |
| 786 | for (w = wNAF; *w != NULL; w++) |
| 787 | OPENSSL_free(*w); |
| 788 | |
| 789 | OPENSSL_free(wNAF); |
| 790 | } |
| 791 | if (val != NULL) { |
| 792 | for (v = val; *v != NULL; v++) |
| 793 | EC_POINT_clear_free(*v); |
| 794 | |
| 795 | OPENSSL_free(val); |
| 796 | } |
| 797 | OPENSSL_free(val_sub); |
| 798 | return ret; |
| 799 | } |
| 800 | |
| 801 | /*- |
| 802 | * ec_wNAF_precompute_mult() |
| 803 | * creates an EC_PRE_COMP object with preprecomputed multiples of the generator |
| 804 | * for use with wNAF splitting as implemented in ec_wNAF_mul(). |
| 805 | * |
| 806 | * 'pre_comp->points' is an array of multiples of the generator |
| 807 | * of the following form: |
| 808 | * points[0] = generator; |
| 809 | * points[1] = 3 * generator; |
| 810 | * ... |
| 811 | * points[2^(w-1)-1] = (2^(w-1)-1) * generator; |
| 812 | * points[2^(w-1)] = 2^blocksize * generator; |
| 813 | * points[2^(w-1)+1] = 3 * 2^blocksize * generator; |
| 814 | * ... |
| 815 | * points[2^(w-1)*(numblocks-1)-1] = (2^(w-1)) * 2^(blocksize*(numblocks-2)) * generator |
| 816 | * points[2^(w-1)*(numblocks-1)] = 2^(blocksize*(numblocks-1)) * generator |
| 817 | * ... |
| 818 | * points[2^(w-1)*numblocks-1] = (2^(w-1)) * 2^(blocksize*(numblocks-1)) * generator |
| 819 | * points[2^(w-1)*numblocks] = NULL |
| 820 | */ |
| 821 | int ec_wNAF_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
| 822 | { |
| 823 | const EC_POINT *generator; |
| 824 | EC_POINT *tmp_point = NULL, *base = NULL, **var; |
| 825 | BN_CTX *new_ctx = NULL; |
| 826 | const BIGNUM *order; |
| 827 | size_t i, bits, w, pre_points_per_block, blocksize, numblocks, num; |
| 828 | EC_POINT **points = NULL; |
| 829 | EC_PRE_COMP *pre_comp; |
| 830 | int ret = 0; |
| 831 | |
| 832 | /* if there is an old EC_PRE_COMP object, throw it away */ |
| 833 | EC_pre_comp_free(group); |
| 834 | if ((pre_comp = ec_pre_comp_new(group)) == NULL) |
| 835 | return 0; |
| 836 | |
| 837 | generator = EC_GROUP_get0_generator(group); |
| 838 | if (generator == NULL) { |
| 839 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNDEFINED_GENERATOR); |
| 840 | goto err; |
| 841 | } |
| 842 | |
| 843 | if (ctx == NULL) { |
| 844 | ctx = new_ctx = BN_CTX_new(); |
| 845 | if (ctx == NULL) |
| 846 | goto err; |
| 847 | } |
| 848 | |
| 849 | BN_CTX_start(ctx); |
| 850 | |
| 851 | order = EC_GROUP_get0_order(group); |
| 852 | if (order == NULL) |
| 853 | goto err; |
| 854 | if (BN_is_zero(order)) { |
| 855 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, EC_R_UNKNOWN_ORDER); |
| 856 | goto err; |
| 857 | } |
| 858 | |
| 859 | bits = BN_num_bits(order); |
| 860 | /* |
| 861 | * The following parameters mean we precompute (approximately) one point |
| 862 | * per bit. TBD: The combination 8, 4 is perfect for 160 bits; for other |
| 863 | * bit lengths, other parameter combinations might provide better |
| 864 | * efficiency. |
| 865 | */ |
| 866 | blocksize = 8; |
| 867 | w = 4; |
| 868 | if (EC_window_bits_for_scalar_size(bits) > w) { |
| 869 | /* let's not make the window too small ... */ |
| 870 | w = EC_window_bits_for_scalar_size(bits); |
| 871 | } |
| 872 | |
| 873 | numblocks = (bits + blocksize - 1) / blocksize; /* max. number of blocks |
| 874 | * to use for wNAF |
| 875 | * splitting */ |
| 876 | |
| 877 | pre_points_per_block = (size_t)1 << (w - 1); |
| 878 | num = pre_points_per_block * numblocks; /* number of points to compute |
| 879 | * and store */ |
| 880 | |
| 881 | points = OPENSSL_malloc(sizeof(*points) * (num + 1)); |
| 882 | if (points == NULL) { |
| 883 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); |
| 884 | goto err; |
| 885 | } |
| 886 | |
| 887 | var = points; |
| 888 | var[num] = NULL; /* pivot */ |
| 889 | for (i = 0; i < num; i++) { |
| 890 | if ((var[i] = EC_POINT_new(group)) == NULL) { |
| 891 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); |
| 892 | goto err; |
| 893 | } |
| 894 | } |
| 895 | |
| 896 | if ((tmp_point = EC_POINT_new(group)) == NULL |
| 897 | || (base = EC_POINT_new(group)) == NULL) { |
| 898 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_MALLOC_FAILURE); |
| 899 | goto err; |
| 900 | } |
| 901 | |
| 902 | if (!EC_POINT_copy(base, generator)) |
| 903 | goto err; |
| 904 | |
| 905 | /* do the precomputation */ |
| 906 | for (i = 0; i < numblocks; i++) { |
| 907 | size_t j; |
| 908 | |
| 909 | if (!EC_POINT_dbl(group, tmp_point, base, ctx)) |
| 910 | goto err; |
| 911 | |
| 912 | if (!EC_POINT_copy(*var++, base)) |
| 913 | goto err; |
| 914 | |
| 915 | for (j = 1; j < pre_points_per_block; j++, var++) { |
| 916 | /* |
| 917 | * calculate odd multiples of the current base point |
| 918 | */ |
| 919 | if (!EC_POINT_add(group, *var, tmp_point, *(var - 1), ctx)) |
| 920 | goto err; |
| 921 | } |
| 922 | |
| 923 | if (i < numblocks - 1) { |
| 924 | /* |
| 925 | * get the next base (multiply current one by 2^blocksize) |
| 926 | */ |
| 927 | size_t k; |
| 928 | |
| 929 | if (blocksize <= 2) { |
| 930 | ECerr(EC_F_EC_WNAF_PRECOMPUTE_MULT, ERR_R_INTERNAL_ERROR); |
| 931 | goto err; |
| 932 | } |
| 933 | |
| 934 | if (!EC_POINT_dbl(group, base, tmp_point, ctx)) |
| 935 | goto err; |
| 936 | for (k = 2; k < blocksize; k++) { |
| 937 | if (!EC_POINT_dbl(group, base, base, ctx)) |
| 938 | goto err; |
| 939 | } |
| 940 | } |
| 941 | } |
| 942 | |
| 943 | if (!EC_POINTs_make_affine(group, num, points, ctx)) |
| 944 | goto err; |
| 945 | |
| 946 | pre_comp->group = group; |
| 947 | pre_comp->blocksize = blocksize; |
| 948 | pre_comp->numblocks = numblocks; |
| 949 | pre_comp->w = w; |
| 950 | pre_comp->points = points; |
| 951 | points = NULL; |
| 952 | pre_comp->num = num; |
| 953 | SETPRECOMP(group, ec, pre_comp); |
| 954 | pre_comp = NULL; |
| 955 | ret = 1; |
| 956 | |
| 957 | err: |
| 958 | BN_CTX_end(ctx); |
| 959 | BN_CTX_free(new_ctx); |
| 960 | EC_ec_pre_comp_free(pre_comp); |
| 961 | if (points) { |
| 962 | EC_POINT **p; |
| 963 | |
| 964 | for (p = points; *p != NULL; p++) |
| 965 | EC_POINT_free(*p); |
| 966 | OPENSSL_free(points); |
| 967 | } |
| 968 | EC_POINT_free(tmp_point); |
| 969 | EC_POINT_free(base); |
| 970 | return ret; |
| 971 | } |
| 972 | |
| 973 | int ec_wNAF_have_precompute_mult(const EC_GROUP *group) |
| 974 | { |
| 975 | return HAVEPRECOMP(group, ec); |
| 976 | } |