yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2011-2020 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /* Copyright 2011 Google Inc. |
| 11 | * |
| 12 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 13 | * |
| 14 | * you may not use this file except in compliance with the License. |
| 15 | * You may obtain a copy of the License at |
| 16 | * |
| 17 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 18 | * |
| 19 | * Unless required by applicable law or agreed to in writing, software |
| 20 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 21 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 22 | * See the License for the specific language governing permissions and |
| 23 | * limitations under the License. |
| 24 | */ |
| 25 | |
| 26 | /* |
| 27 | * A 64-bit implementation of the NIST P-256 elliptic curve point multiplication |
| 28 | * |
| 29 | * OpenSSL integration was taken from Emilia Kasper's work in ecp_nistp224.c. |
| 30 | * Otherwise based on Emilia's P224 work, which was inspired by my curve25519 |
| 31 | * work which got its smarts from Daniel J. Bernstein's work on the same. |
| 32 | */ |
| 33 | |
| 34 | #include <openssl/opensslconf.h> |
| 35 | #ifdef OPENSSL_NO_EC_NISTP_64_GCC_128 |
| 36 | NON_EMPTY_TRANSLATION_UNIT |
| 37 | #else |
| 38 | |
| 39 | # include <stdint.h> |
| 40 | # include <string.h> |
| 41 | # include <openssl/err.h> |
| 42 | # include "ec_local.h" |
| 43 | |
| 44 | # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 |
| 45 | /* even with gcc, the typedef won't work for 32-bit platforms */ |
| 46 | typedef __uint128_t uint128_t; /* nonstandard; implemented by gcc on 64-bit |
| 47 | * platforms */ |
| 48 | typedef __int128_t int128_t; |
| 49 | # else |
| 50 | # error "Your compiler doesn't appear to support 128-bit integer types" |
| 51 | # endif |
| 52 | |
| 53 | typedef uint8_t u8; |
| 54 | typedef uint32_t u32; |
| 55 | typedef uint64_t u64; |
| 56 | |
| 57 | /* |
| 58 | * The underlying field. P256 operates over GF(2^256-2^224+2^192+2^96-1). We |
| 59 | * can serialise an element of this field into 32 bytes. We call this an |
| 60 | * felem_bytearray. |
| 61 | */ |
| 62 | |
| 63 | typedef u8 felem_bytearray[32]; |
| 64 | |
| 65 | /* |
| 66 | * These are the parameters of P256, taken from FIPS 186-3, page 86. These |
| 67 | * values are big-endian. |
| 68 | */ |
| 69 | static const felem_bytearray nistp256_curve_params[5] = { |
| 70 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* p */ |
| 71 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 72 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, |
| 73 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff}, |
| 74 | {0xff, 0xff, 0xff, 0xff, 0x00, 0x00, 0x00, 0x01, /* a = -3 */ |
| 75 | 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, |
| 76 | 0x00, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, |
| 77 | 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfc}, |
| 78 | {0x5a, 0xc6, 0x35, 0xd8, 0xaa, 0x3a, 0x93, 0xe7, /* b */ |
| 79 | 0xb3, 0xeb, 0xbd, 0x55, 0x76, 0x98, 0x86, 0xbc, |
| 80 | 0x65, 0x1d, 0x06, 0xb0, 0xcc, 0x53, 0xb0, 0xf6, |
| 81 | 0x3b, 0xce, 0x3c, 0x3e, 0x27, 0xd2, 0x60, 0x4b}, |
| 82 | {0x6b, 0x17, 0xd1, 0xf2, 0xe1, 0x2c, 0x42, 0x47, /* x */ |
| 83 | 0xf8, 0xbc, 0xe6, 0xe5, 0x63, 0xa4, 0x40, 0xf2, |
| 84 | 0x77, 0x03, 0x7d, 0x81, 0x2d, 0xeb, 0x33, 0xa0, |
| 85 | 0xf4, 0xa1, 0x39, 0x45, 0xd8, 0x98, 0xc2, 0x96}, |
| 86 | {0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, /* y */ |
| 87 | 0x8e, 0xe7, 0xeb, 0x4a, 0x7c, 0x0f, 0x9e, 0x16, |
| 88 | 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce, |
| 89 | 0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5} |
| 90 | }; |
| 91 | |
| 92 | /*- |
| 93 | * The representation of field elements. |
| 94 | * ------------------------------------ |
| 95 | * |
| 96 | * We represent field elements with either four 128-bit values, eight 128-bit |
| 97 | * values, or four 64-bit values. The field element represented is: |
| 98 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + v[3]*2^192 (mod p) |
| 99 | * or: |
| 100 | * v[0]*2^0 + v[1]*2^64 + v[2]*2^128 + ... + v[8]*2^512 (mod p) |
| 101 | * |
| 102 | * 128-bit values are called 'limbs'. Since the limbs are spaced only 64 bits |
| 103 | * apart, but are 128-bits wide, the most significant bits of each limb overlap |
| 104 | * with the least significant bits of the next. |
| 105 | * |
| 106 | * A field element with four limbs is an 'felem'. One with eight limbs is a |
| 107 | * 'longfelem' |
| 108 | * |
| 109 | * A field element with four, 64-bit values is called a 'smallfelem'. Small |
| 110 | * values are used as intermediate values before multiplication. |
| 111 | */ |
| 112 | |
| 113 | # define NLIMBS 4 |
| 114 | |
| 115 | typedef uint128_t limb; |
| 116 | typedef limb felem[NLIMBS]; |
| 117 | typedef limb longfelem[NLIMBS * 2]; |
| 118 | typedef u64 smallfelem[NLIMBS]; |
| 119 | |
| 120 | /* This is the value of the prime as four 64-bit words, little-endian. */ |
| 121 | static const u64 kPrime[4] = |
| 122 | { 0xfffffffffffffffful, 0xffffffff, 0, 0xffffffff00000001ul }; |
| 123 | static const u64 bottom63bits = 0x7ffffffffffffffful; |
| 124 | |
| 125 | /* |
| 126 | * bin32_to_felem takes a little-endian byte array and converts it into felem |
| 127 | * form. This assumes that the CPU is little-endian. |
| 128 | */ |
| 129 | static void bin32_to_felem(felem out, const u8 in[32]) |
| 130 | { |
| 131 | out[0] = *((u64 *)&in[0]); |
| 132 | out[1] = *((u64 *)&in[8]); |
| 133 | out[2] = *((u64 *)&in[16]); |
| 134 | out[3] = *((u64 *)&in[24]); |
| 135 | } |
| 136 | |
| 137 | /* |
| 138 | * smallfelem_to_bin32 takes a smallfelem and serialises into a little |
| 139 | * endian, 32 byte array. This assumes that the CPU is little-endian. |
| 140 | */ |
| 141 | static void smallfelem_to_bin32(u8 out[32], const smallfelem in) |
| 142 | { |
| 143 | *((u64 *)&out[0]) = in[0]; |
| 144 | *((u64 *)&out[8]) = in[1]; |
| 145 | *((u64 *)&out[16]) = in[2]; |
| 146 | *((u64 *)&out[24]) = in[3]; |
| 147 | } |
| 148 | |
| 149 | /* BN_to_felem converts an OpenSSL BIGNUM into an felem */ |
| 150 | static int BN_to_felem(felem out, const BIGNUM *bn) |
| 151 | { |
| 152 | felem_bytearray b_out; |
| 153 | int num_bytes; |
| 154 | |
| 155 | if (BN_is_negative(bn)) { |
| 156 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
| 157 | return 0; |
| 158 | } |
| 159 | num_bytes = BN_bn2lebinpad(bn, b_out, sizeof(b_out)); |
| 160 | if (num_bytes < 0) { |
| 161 | ECerr(EC_F_BN_TO_FELEM, EC_R_BIGNUM_OUT_OF_RANGE); |
| 162 | return 0; |
| 163 | } |
| 164 | bin32_to_felem(out, b_out); |
| 165 | return 1; |
| 166 | } |
| 167 | |
| 168 | /* felem_to_BN converts an felem into an OpenSSL BIGNUM */ |
| 169 | static BIGNUM *smallfelem_to_BN(BIGNUM *out, const smallfelem in) |
| 170 | { |
| 171 | felem_bytearray b_out; |
| 172 | smallfelem_to_bin32(b_out, in); |
| 173 | return BN_lebin2bn(b_out, sizeof(b_out), out); |
| 174 | } |
| 175 | |
| 176 | /*- |
| 177 | * Field operations |
| 178 | * ---------------- |
| 179 | */ |
| 180 | |
| 181 | static void smallfelem_one(smallfelem out) |
| 182 | { |
| 183 | out[0] = 1; |
| 184 | out[1] = 0; |
| 185 | out[2] = 0; |
| 186 | out[3] = 0; |
| 187 | } |
| 188 | |
| 189 | static void smallfelem_assign(smallfelem out, const smallfelem in) |
| 190 | { |
| 191 | out[0] = in[0]; |
| 192 | out[1] = in[1]; |
| 193 | out[2] = in[2]; |
| 194 | out[3] = in[3]; |
| 195 | } |
| 196 | |
| 197 | static void felem_assign(felem out, const felem in) |
| 198 | { |
| 199 | out[0] = in[0]; |
| 200 | out[1] = in[1]; |
| 201 | out[2] = in[2]; |
| 202 | out[3] = in[3]; |
| 203 | } |
| 204 | |
| 205 | /* felem_sum sets out = out + in. */ |
| 206 | static void felem_sum(felem out, const felem in) |
| 207 | { |
| 208 | out[0] += in[0]; |
| 209 | out[1] += in[1]; |
| 210 | out[2] += in[2]; |
| 211 | out[3] += in[3]; |
| 212 | } |
| 213 | |
| 214 | /* felem_small_sum sets out = out + in. */ |
| 215 | static void felem_small_sum(felem out, const smallfelem in) |
| 216 | { |
| 217 | out[0] += in[0]; |
| 218 | out[1] += in[1]; |
| 219 | out[2] += in[2]; |
| 220 | out[3] += in[3]; |
| 221 | } |
| 222 | |
| 223 | /* felem_scalar sets out = out * scalar */ |
| 224 | static void felem_scalar(felem out, const u64 scalar) |
| 225 | { |
| 226 | out[0] *= scalar; |
| 227 | out[1] *= scalar; |
| 228 | out[2] *= scalar; |
| 229 | out[3] *= scalar; |
| 230 | } |
| 231 | |
| 232 | /* longfelem_scalar sets out = out * scalar */ |
| 233 | static void longfelem_scalar(longfelem out, const u64 scalar) |
| 234 | { |
| 235 | out[0] *= scalar; |
| 236 | out[1] *= scalar; |
| 237 | out[2] *= scalar; |
| 238 | out[3] *= scalar; |
| 239 | out[4] *= scalar; |
| 240 | out[5] *= scalar; |
| 241 | out[6] *= scalar; |
| 242 | out[7] *= scalar; |
| 243 | } |
| 244 | |
| 245 | # define two105m41m9 (((limb)1) << 105) - (((limb)1) << 41) - (((limb)1) << 9) |
| 246 | # define two105 (((limb)1) << 105) |
| 247 | # define two105m41p9 (((limb)1) << 105) - (((limb)1) << 41) + (((limb)1) << 9) |
| 248 | |
| 249 | /* zero105 is 0 mod p */ |
| 250 | static const felem zero105 = |
| 251 | { two105m41m9, two105, two105m41p9, two105m41p9 }; |
| 252 | |
| 253 | /*- |
| 254 | * smallfelem_neg sets |out| to |-small| |
| 255 | * On exit: |
| 256 | * out[i] < out[i] + 2^105 |
| 257 | */ |
| 258 | static void smallfelem_neg(felem out, const smallfelem small) |
| 259 | { |
| 260 | /* In order to prevent underflow, we subtract from 0 mod p. */ |
| 261 | out[0] = zero105[0] - small[0]; |
| 262 | out[1] = zero105[1] - small[1]; |
| 263 | out[2] = zero105[2] - small[2]; |
| 264 | out[3] = zero105[3] - small[3]; |
| 265 | } |
| 266 | |
| 267 | /*- |
| 268 | * felem_diff subtracts |in| from |out| |
| 269 | * On entry: |
| 270 | * in[i] < 2^104 |
| 271 | * On exit: |
| 272 | * out[i] < out[i] + 2^105 |
| 273 | */ |
| 274 | static void felem_diff(felem out, const felem in) |
| 275 | { |
| 276 | /* |
| 277 | * In order to prevent underflow, we add 0 mod p before subtracting. |
| 278 | */ |
| 279 | out[0] += zero105[0]; |
| 280 | out[1] += zero105[1]; |
| 281 | out[2] += zero105[2]; |
| 282 | out[3] += zero105[3]; |
| 283 | |
| 284 | out[0] -= in[0]; |
| 285 | out[1] -= in[1]; |
| 286 | out[2] -= in[2]; |
| 287 | out[3] -= in[3]; |
| 288 | } |
| 289 | |
| 290 | # define two107m43m11 (((limb)1) << 107) - (((limb)1) << 43) - (((limb)1) << 11) |
| 291 | # define two107 (((limb)1) << 107) |
| 292 | # define two107m43p11 (((limb)1) << 107) - (((limb)1) << 43) + (((limb)1) << 11) |
| 293 | |
| 294 | /* zero107 is 0 mod p */ |
| 295 | static const felem zero107 = |
| 296 | { two107m43m11, two107, two107m43p11, two107m43p11 }; |
| 297 | |
| 298 | /*- |
| 299 | * An alternative felem_diff for larger inputs |in| |
| 300 | * felem_diff_zero107 subtracts |in| from |out| |
| 301 | * On entry: |
| 302 | * in[i] < 2^106 |
| 303 | * On exit: |
| 304 | * out[i] < out[i] + 2^107 |
| 305 | */ |
| 306 | static void felem_diff_zero107(felem out, const felem in) |
| 307 | { |
| 308 | /* |
| 309 | * In order to prevent underflow, we add 0 mod p before subtracting. |
| 310 | */ |
| 311 | out[0] += zero107[0]; |
| 312 | out[1] += zero107[1]; |
| 313 | out[2] += zero107[2]; |
| 314 | out[3] += zero107[3]; |
| 315 | |
| 316 | out[0] -= in[0]; |
| 317 | out[1] -= in[1]; |
| 318 | out[2] -= in[2]; |
| 319 | out[3] -= in[3]; |
| 320 | } |
| 321 | |
| 322 | /*- |
| 323 | * longfelem_diff subtracts |in| from |out| |
| 324 | * On entry: |
| 325 | * in[i] < 7*2^67 |
| 326 | * On exit: |
| 327 | * out[i] < out[i] + 2^70 + 2^40 |
| 328 | */ |
| 329 | static void longfelem_diff(longfelem out, const longfelem in) |
| 330 | { |
| 331 | static const limb two70m8p6 = |
| 332 | (((limb) 1) << 70) - (((limb) 1) << 8) + (((limb) 1) << 6); |
| 333 | static const limb two70p40 = (((limb) 1) << 70) + (((limb) 1) << 40); |
| 334 | static const limb two70 = (((limb) 1) << 70); |
| 335 | static const limb two70m40m38p6 = |
| 336 | (((limb) 1) << 70) - (((limb) 1) << 40) - (((limb) 1) << 38) + |
| 337 | (((limb) 1) << 6); |
| 338 | static const limb two70m6 = (((limb) 1) << 70) - (((limb) 1) << 6); |
| 339 | |
| 340 | /* add 0 mod p to avoid underflow */ |
| 341 | out[0] += two70m8p6; |
| 342 | out[1] += two70p40; |
| 343 | out[2] += two70; |
| 344 | out[3] += two70m40m38p6; |
| 345 | out[4] += two70m6; |
| 346 | out[5] += two70m6; |
| 347 | out[6] += two70m6; |
| 348 | out[7] += two70m6; |
| 349 | |
| 350 | /* in[i] < 7*2^67 < 2^70 - 2^40 - 2^38 + 2^6 */ |
| 351 | out[0] -= in[0]; |
| 352 | out[1] -= in[1]; |
| 353 | out[2] -= in[2]; |
| 354 | out[3] -= in[3]; |
| 355 | out[4] -= in[4]; |
| 356 | out[5] -= in[5]; |
| 357 | out[6] -= in[6]; |
| 358 | out[7] -= in[7]; |
| 359 | } |
| 360 | |
| 361 | # define two64m0 (((limb)1) << 64) - 1 |
| 362 | # define two110p32m0 (((limb)1) << 110) + (((limb)1) << 32) - 1 |
| 363 | # define two64m46 (((limb)1) << 64) - (((limb)1) << 46) |
| 364 | # define two64m32 (((limb)1) << 64) - (((limb)1) << 32) |
| 365 | |
| 366 | /* zero110 is 0 mod p */ |
| 367 | static const felem zero110 = { two64m0, two110p32m0, two64m46, two64m32 }; |
| 368 | |
| 369 | /*- |
| 370 | * felem_shrink converts an felem into a smallfelem. The result isn't quite |
| 371 | * minimal as the value may be greater than p. |
| 372 | * |
| 373 | * On entry: |
| 374 | * in[i] < 2^109 |
| 375 | * On exit: |
| 376 | * out[i] < 2^64 |
| 377 | */ |
| 378 | static void felem_shrink(smallfelem out, const felem in) |
| 379 | { |
| 380 | felem tmp; |
| 381 | u64 a, b, mask; |
| 382 | u64 high, low; |
| 383 | static const u64 kPrime3Test = 0x7fffffff00000001ul; /* 2^63 - 2^32 + 1 */ |
| 384 | |
| 385 | /* Carry 2->3 */ |
| 386 | tmp[3] = zero110[3] + in[3] + ((u64)(in[2] >> 64)); |
| 387 | /* tmp[3] < 2^110 */ |
| 388 | |
| 389 | tmp[2] = zero110[2] + (u64)in[2]; |
| 390 | tmp[0] = zero110[0] + in[0]; |
| 391 | tmp[1] = zero110[1] + in[1]; |
| 392 | /* tmp[0] < 2**110, tmp[1] < 2^111, tmp[2] < 2**65 */ |
| 393 | |
| 394 | /* |
| 395 | * We perform two partial reductions where we eliminate the high-word of |
| 396 | * tmp[3]. We don't update the other words till the end. |
| 397 | */ |
| 398 | a = tmp[3] >> 64; /* a < 2^46 */ |
| 399 | tmp[3] = (u64)tmp[3]; |
| 400 | tmp[3] -= a; |
| 401 | tmp[3] += ((limb) a) << 32; |
| 402 | /* tmp[3] < 2^79 */ |
| 403 | |
| 404 | b = a; |
| 405 | a = tmp[3] >> 64; /* a < 2^15 */ |
| 406 | b += a; /* b < 2^46 + 2^15 < 2^47 */ |
| 407 | tmp[3] = (u64)tmp[3]; |
| 408 | tmp[3] -= a; |
| 409 | tmp[3] += ((limb) a) << 32; |
| 410 | /* tmp[3] < 2^64 + 2^47 */ |
| 411 | |
| 412 | /* |
| 413 | * This adjusts the other two words to complete the two partial |
| 414 | * reductions. |
| 415 | */ |
| 416 | tmp[0] += b; |
| 417 | tmp[1] -= (((limb) b) << 32); |
| 418 | |
| 419 | /* |
| 420 | * In order to make space in tmp[3] for the carry from 2 -> 3, we |
| 421 | * conditionally subtract kPrime if tmp[3] is large enough. |
| 422 | */ |
| 423 | high = (u64)(tmp[3] >> 64); |
| 424 | /* As tmp[3] < 2^65, high is either 1 or 0 */ |
| 425 | high = 0 - high; |
| 426 | /*- |
| 427 | * high is: |
| 428 | * all ones if the high word of tmp[3] is 1 |
| 429 | * all zeros if the high word of tmp[3] if 0 |
| 430 | */ |
| 431 | low = (u64)tmp[3]; |
| 432 | mask = 0 - (low >> 63); |
| 433 | /*- |
| 434 | * mask is: |
| 435 | * all ones if the MSB of low is 1 |
| 436 | * all zeros if the MSB of low if 0 |
| 437 | */ |
| 438 | low &= bottom63bits; |
| 439 | low -= kPrime3Test; |
| 440 | /* if low was greater than kPrime3Test then the MSB is zero */ |
| 441 | low = ~low; |
| 442 | low = 0 - (low >> 63); |
| 443 | /*- |
| 444 | * low is: |
| 445 | * all ones if low was > kPrime3Test |
| 446 | * all zeros if low was <= kPrime3Test |
| 447 | */ |
| 448 | mask = (mask & low) | high; |
| 449 | tmp[0] -= mask & kPrime[0]; |
| 450 | tmp[1] -= mask & kPrime[1]; |
| 451 | /* kPrime[2] is zero, so omitted */ |
| 452 | tmp[3] -= mask & kPrime[3]; |
| 453 | /* tmp[3] < 2**64 - 2**32 + 1 */ |
| 454 | |
| 455 | tmp[1] += ((u64)(tmp[0] >> 64)); |
| 456 | tmp[0] = (u64)tmp[0]; |
| 457 | tmp[2] += ((u64)(tmp[1] >> 64)); |
| 458 | tmp[1] = (u64)tmp[1]; |
| 459 | tmp[3] += ((u64)(tmp[2] >> 64)); |
| 460 | tmp[2] = (u64)tmp[2]; |
| 461 | /* tmp[i] < 2^64 */ |
| 462 | |
| 463 | out[0] = tmp[0]; |
| 464 | out[1] = tmp[1]; |
| 465 | out[2] = tmp[2]; |
| 466 | out[3] = tmp[3]; |
| 467 | } |
| 468 | |
| 469 | /* smallfelem_expand converts a smallfelem to an felem */ |
| 470 | static void smallfelem_expand(felem out, const smallfelem in) |
| 471 | { |
| 472 | out[0] = in[0]; |
| 473 | out[1] = in[1]; |
| 474 | out[2] = in[2]; |
| 475 | out[3] = in[3]; |
| 476 | } |
| 477 | |
| 478 | /*- |
| 479 | * smallfelem_square sets |out| = |small|^2 |
| 480 | * On entry: |
| 481 | * small[i] < 2^64 |
| 482 | * On exit: |
| 483 | * out[i] < 7 * 2^64 < 2^67 |
| 484 | */ |
| 485 | static void smallfelem_square(longfelem out, const smallfelem small) |
| 486 | { |
| 487 | limb a; |
| 488 | u64 high, low; |
| 489 | |
| 490 | a = ((uint128_t) small[0]) * small[0]; |
| 491 | low = a; |
| 492 | high = a >> 64; |
| 493 | out[0] = low; |
| 494 | out[1] = high; |
| 495 | |
| 496 | a = ((uint128_t) small[0]) * small[1]; |
| 497 | low = a; |
| 498 | high = a >> 64; |
| 499 | out[1] += low; |
| 500 | out[1] += low; |
| 501 | out[2] = high; |
| 502 | |
| 503 | a = ((uint128_t) small[0]) * small[2]; |
| 504 | low = a; |
| 505 | high = a >> 64; |
| 506 | out[2] += low; |
| 507 | out[2] *= 2; |
| 508 | out[3] = high; |
| 509 | |
| 510 | a = ((uint128_t) small[0]) * small[3]; |
| 511 | low = a; |
| 512 | high = a >> 64; |
| 513 | out[3] += low; |
| 514 | out[4] = high; |
| 515 | |
| 516 | a = ((uint128_t) small[1]) * small[2]; |
| 517 | low = a; |
| 518 | high = a >> 64; |
| 519 | out[3] += low; |
| 520 | out[3] *= 2; |
| 521 | out[4] += high; |
| 522 | |
| 523 | a = ((uint128_t) small[1]) * small[1]; |
| 524 | low = a; |
| 525 | high = a >> 64; |
| 526 | out[2] += low; |
| 527 | out[3] += high; |
| 528 | |
| 529 | a = ((uint128_t) small[1]) * small[3]; |
| 530 | low = a; |
| 531 | high = a >> 64; |
| 532 | out[4] += low; |
| 533 | out[4] *= 2; |
| 534 | out[5] = high; |
| 535 | |
| 536 | a = ((uint128_t) small[2]) * small[3]; |
| 537 | low = a; |
| 538 | high = a >> 64; |
| 539 | out[5] += low; |
| 540 | out[5] *= 2; |
| 541 | out[6] = high; |
| 542 | out[6] += high; |
| 543 | |
| 544 | a = ((uint128_t) small[2]) * small[2]; |
| 545 | low = a; |
| 546 | high = a >> 64; |
| 547 | out[4] += low; |
| 548 | out[5] += high; |
| 549 | |
| 550 | a = ((uint128_t) small[3]) * small[3]; |
| 551 | low = a; |
| 552 | high = a >> 64; |
| 553 | out[6] += low; |
| 554 | out[7] = high; |
| 555 | } |
| 556 | |
| 557 | /*- |
| 558 | * felem_square sets |out| = |in|^2 |
| 559 | * On entry: |
| 560 | * in[i] < 2^109 |
| 561 | * On exit: |
| 562 | * out[i] < 7 * 2^64 < 2^67 |
| 563 | */ |
| 564 | static void felem_square(longfelem out, const felem in) |
| 565 | { |
| 566 | u64 small[4]; |
| 567 | felem_shrink(small, in); |
| 568 | smallfelem_square(out, small); |
| 569 | } |
| 570 | |
| 571 | /*- |
| 572 | * smallfelem_mul sets |out| = |small1| * |small2| |
| 573 | * On entry: |
| 574 | * small1[i] < 2^64 |
| 575 | * small2[i] < 2^64 |
| 576 | * On exit: |
| 577 | * out[i] < 7 * 2^64 < 2^67 |
| 578 | */ |
| 579 | static void smallfelem_mul(longfelem out, const smallfelem small1, |
| 580 | const smallfelem small2) |
| 581 | { |
| 582 | limb a; |
| 583 | u64 high, low; |
| 584 | |
| 585 | a = ((uint128_t) small1[0]) * small2[0]; |
| 586 | low = a; |
| 587 | high = a >> 64; |
| 588 | out[0] = low; |
| 589 | out[1] = high; |
| 590 | |
| 591 | a = ((uint128_t) small1[0]) * small2[1]; |
| 592 | low = a; |
| 593 | high = a >> 64; |
| 594 | out[1] += low; |
| 595 | out[2] = high; |
| 596 | |
| 597 | a = ((uint128_t) small1[1]) * small2[0]; |
| 598 | low = a; |
| 599 | high = a >> 64; |
| 600 | out[1] += low; |
| 601 | out[2] += high; |
| 602 | |
| 603 | a = ((uint128_t) small1[0]) * small2[2]; |
| 604 | low = a; |
| 605 | high = a >> 64; |
| 606 | out[2] += low; |
| 607 | out[3] = high; |
| 608 | |
| 609 | a = ((uint128_t) small1[1]) * small2[1]; |
| 610 | low = a; |
| 611 | high = a >> 64; |
| 612 | out[2] += low; |
| 613 | out[3] += high; |
| 614 | |
| 615 | a = ((uint128_t) small1[2]) * small2[0]; |
| 616 | low = a; |
| 617 | high = a >> 64; |
| 618 | out[2] += low; |
| 619 | out[3] += high; |
| 620 | |
| 621 | a = ((uint128_t) small1[0]) * small2[3]; |
| 622 | low = a; |
| 623 | high = a >> 64; |
| 624 | out[3] += low; |
| 625 | out[4] = high; |
| 626 | |
| 627 | a = ((uint128_t) small1[1]) * small2[2]; |
| 628 | low = a; |
| 629 | high = a >> 64; |
| 630 | out[3] += low; |
| 631 | out[4] += high; |
| 632 | |
| 633 | a = ((uint128_t) small1[2]) * small2[1]; |
| 634 | low = a; |
| 635 | high = a >> 64; |
| 636 | out[3] += low; |
| 637 | out[4] += high; |
| 638 | |
| 639 | a = ((uint128_t) small1[3]) * small2[0]; |
| 640 | low = a; |
| 641 | high = a >> 64; |
| 642 | out[3] += low; |
| 643 | out[4] += high; |
| 644 | |
| 645 | a = ((uint128_t) small1[1]) * small2[3]; |
| 646 | low = a; |
| 647 | high = a >> 64; |
| 648 | out[4] += low; |
| 649 | out[5] = high; |
| 650 | |
| 651 | a = ((uint128_t) small1[2]) * small2[2]; |
| 652 | low = a; |
| 653 | high = a >> 64; |
| 654 | out[4] += low; |
| 655 | out[5] += high; |
| 656 | |
| 657 | a = ((uint128_t) small1[3]) * small2[1]; |
| 658 | low = a; |
| 659 | high = a >> 64; |
| 660 | out[4] += low; |
| 661 | out[5] += high; |
| 662 | |
| 663 | a = ((uint128_t) small1[2]) * small2[3]; |
| 664 | low = a; |
| 665 | high = a >> 64; |
| 666 | out[5] += low; |
| 667 | out[6] = high; |
| 668 | |
| 669 | a = ((uint128_t) small1[3]) * small2[2]; |
| 670 | low = a; |
| 671 | high = a >> 64; |
| 672 | out[5] += low; |
| 673 | out[6] += high; |
| 674 | |
| 675 | a = ((uint128_t) small1[3]) * small2[3]; |
| 676 | low = a; |
| 677 | high = a >> 64; |
| 678 | out[6] += low; |
| 679 | out[7] = high; |
| 680 | } |
| 681 | |
| 682 | /*- |
| 683 | * felem_mul sets |out| = |in1| * |in2| |
| 684 | * On entry: |
| 685 | * in1[i] < 2^109 |
| 686 | * in2[i] < 2^109 |
| 687 | * On exit: |
| 688 | * out[i] < 7 * 2^64 < 2^67 |
| 689 | */ |
| 690 | static void felem_mul(longfelem out, const felem in1, const felem in2) |
| 691 | { |
| 692 | smallfelem small1, small2; |
| 693 | felem_shrink(small1, in1); |
| 694 | felem_shrink(small2, in2); |
| 695 | smallfelem_mul(out, small1, small2); |
| 696 | } |
| 697 | |
| 698 | /*- |
| 699 | * felem_small_mul sets |out| = |small1| * |in2| |
| 700 | * On entry: |
| 701 | * small1[i] < 2^64 |
| 702 | * in2[i] < 2^109 |
| 703 | * On exit: |
| 704 | * out[i] < 7 * 2^64 < 2^67 |
| 705 | */ |
| 706 | static void felem_small_mul(longfelem out, const smallfelem small1, |
| 707 | const felem in2) |
| 708 | { |
| 709 | smallfelem small2; |
| 710 | felem_shrink(small2, in2); |
| 711 | smallfelem_mul(out, small1, small2); |
| 712 | } |
| 713 | |
| 714 | # define two100m36m4 (((limb)1) << 100) - (((limb)1) << 36) - (((limb)1) << 4) |
| 715 | # define two100 (((limb)1) << 100) |
| 716 | # define two100m36p4 (((limb)1) << 100) - (((limb)1) << 36) + (((limb)1) << 4) |
| 717 | /* zero100 is 0 mod p */ |
| 718 | static const felem zero100 = |
| 719 | { two100m36m4, two100, two100m36p4, two100m36p4 }; |
| 720 | |
| 721 | /*- |
| 722 | * Internal function for the different flavours of felem_reduce. |
| 723 | * felem_reduce_ reduces the higher coefficients in[4]-in[7]. |
| 724 | * On entry: |
| 725 | * out[0] >= in[6] + 2^32*in[6] + in[7] + 2^32*in[7] |
| 726 | * out[1] >= in[7] + 2^32*in[4] |
| 727 | * out[2] >= in[5] + 2^32*in[5] |
| 728 | * out[3] >= in[4] + 2^32*in[5] + 2^32*in[6] |
| 729 | * On exit: |
| 730 | * out[0] <= out[0] + in[4] + 2^32*in[5] |
| 731 | * out[1] <= out[1] + in[5] + 2^33*in[6] |
| 732 | * out[2] <= out[2] + in[7] + 2*in[6] + 2^33*in[7] |
| 733 | * out[3] <= out[3] + 2^32*in[4] + 3*in[7] |
| 734 | */ |
| 735 | static void felem_reduce_(felem out, const longfelem in) |
| 736 | { |
| 737 | int128_t c; |
| 738 | /* combine common terms from below */ |
| 739 | c = in[4] + (in[5] << 32); |
| 740 | out[0] += c; |
| 741 | out[3] -= c; |
| 742 | |
| 743 | c = in[5] - in[7]; |
| 744 | out[1] += c; |
| 745 | out[2] -= c; |
| 746 | |
| 747 | /* the remaining terms */ |
| 748 | /* 256: [(0,1),(96,-1),(192,-1),(224,1)] */ |
| 749 | out[1] -= (in[4] << 32); |
| 750 | out[3] += (in[4] << 32); |
| 751 | |
| 752 | /* 320: [(32,1),(64,1),(128,-1),(160,-1),(224,-1)] */ |
| 753 | out[2] -= (in[5] << 32); |
| 754 | |
| 755 | /* 384: [(0,-1),(32,-1),(96,2),(128,2),(224,-1)] */ |
| 756 | out[0] -= in[6]; |
| 757 | out[0] -= (in[6] << 32); |
| 758 | out[1] += (in[6] << 33); |
| 759 | out[2] += (in[6] * 2); |
| 760 | out[3] -= (in[6] << 32); |
| 761 | |
| 762 | /* 448: [(0,-1),(32,-1),(64,-1),(128,1),(160,2),(192,3)] */ |
| 763 | out[0] -= in[7]; |
| 764 | out[0] -= (in[7] << 32); |
| 765 | out[2] += (in[7] << 33); |
| 766 | out[3] += (in[7] * 3); |
| 767 | } |
| 768 | |
| 769 | /*- |
| 770 | * felem_reduce converts a longfelem into an felem. |
| 771 | * To be called directly after felem_square or felem_mul. |
| 772 | * On entry: |
| 773 | * in[0] < 2^64, in[1] < 3*2^64, in[2] < 5*2^64, in[3] < 7*2^64 |
| 774 | * in[4] < 7*2^64, in[5] < 5*2^64, in[6] < 3*2^64, in[7] < 2*64 |
| 775 | * On exit: |
| 776 | * out[i] < 2^101 |
| 777 | */ |
| 778 | static void felem_reduce(felem out, const longfelem in) |
| 779 | { |
| 780 | out[0] = zero100[0] + in[0]; |
| 781 | out[1] = zero100[1] + in[1]; |
| 782 | out[2] = zero100[2] + in[2]; |
| 783 | out[3] = zero100[3] + in[3]; |
| 784 | |
| 785 | felem_reduce_(out, in); |
| 786 | |
| 787 | /*- |
| 788 | * out[0] > 2^100 - 2^36 - 2^4 - 3*2^64 - 3*2^96 - 2^64 - 2^96 > 0 |
| 789 | * out[1] > 2^100 - 2^64 - 7*2^96 > 0 |
| 790 | * out[2] > 2^100 - 2^36 + 2^4 - 5*2^64 - 5*2^96 > 0 |
| 791 | * out[3] > 2^100 - 2^36 + 2^4 - 7*2^64 - 5*2^96 - 3*2^96 > 0 |
| 792 | * |
| 793 | * out[0] < 2^100 + 2^64 + 7*2^64 + 5*2^96 < 2^101 |
| 794 | * out[1] < 2^100 + 3*2^64 + 5*2^64 + 3*2^97 < 2^101 |
| 795 | * out[2] < 2^100 + 5*2^64 + 2^64 + 3*2^65 + 2^97 < 2^101 |
| 796 | * out[3] < 2^100 + 7*2^64 + 7*2^96 + 3*2^64 < 2^101 |
| 797 | */ |
| 798 | } |
| 799 | |
| 800 | /*- |
| 801 | * felem_reduce_zero105 converts a larger longfelem into an felem. |
| 802 | * On entry: |
| 803 | * in[0] < 2^71 |
| 804 | * On exit: |
| 805 | * out[i] < 2^106 |
| 806 | */ |
| 807 | static void felem_reduce_zero105(felem out, const longfelem in) |
| 808 | { |
| 809 | out[0] = zero105[0] + in[0]; |
| 810 | out[1] = zero105[1] + in[1]; |
| 811 | out[2] = zero105[2] + in[2]; |
| 812 | out[3] = zero105[3] + in[3]; |
| 813 | |
| 814 | felem_reduce_(out, in); |
| 815 | |
| 816 | /*- |
| 817 | * out[0] > 2^105 - 2^41 - 2^9 - 2^71 - 2^103 - 2^71 - 2^103 > 0 |
| 818 | * out[1] > 2^105 - 2^71 - 2^103 > 0 |
| 819 | * out[2] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 > 0 |
| 820 | * out[3] > 2^105 - 2^41 + 2^9 - 2^71 - 2^103 - 2^103 > 0 |
| 821 | * |
| 822 | * out[0] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 |
| 823 | * out[1] < 2^105 + 2^71 + 2^71 + 2^103 < 2^106 |
| 824 | * out[2] < 2^105 + 2^71 + 2^71 + 2^71 + 2^103 < 2^106 |
| 825 | * out[3] < 2^105 + 2^71 + 2^103 + 2^71 < 2^106 |
| 826 | */ |
| 827 | } |
| 828 | |
| 829 | /* |
| 830 | * subtract_u64 sets *result = *result - v and *carry to one if the |
| 831 | * subtraction underflowed. |
| 832 | */ |
| 833 | static void subtract_u64(u64 *result, u64 *carry, u64 v) |
| 834 | { |
| 835 | uint128_t r = *result; |
| 836 | r -= v; |
| 837 | *carry = (r >> 64) & 1; |
| 838 | *result = (u64)r; |
| 839 | } |
| 840 | |
| 841 | /* |
| 842 | * felem_contract converts |in| to its unique, minimal representation. On |
| 843 | * entry: in[i] < 2^109 |
| 844 | */ |
| 845 | static void felem_contract(smallfelem out, const felem in) |
| 846 | { |
| 847 | unsigned i; |
| 848 | u64 all_equal_so_far = 0, result = 0, carry; |
| 849 | |
| 850 | felem_shrink(out, in); |
| 851 | /* small is minimal except that the value might be > p */ |
| 852 | |
| 853 | all_equal_so_far--; |
| 854 | /* |
| 855 | * We are doing a constant time test if out >= kPrime. We need to compare |
| 856 | * each u64, from most-significant to least significant. For each one, if |
| 857 | * all words so far have been equal (m is all ones) then a non-equal |
| 858 | * result is the answer. Otherwise we continue. |
| 859 | */ |
| 860 | for (i = 3; i < 4; i--) { |
| 861 | u64 equal; |
| 862 | uint128_t a = ((uint128_t) kPrime[i]) - out[i]; |
| 863 | /* |
| 864 | * if out[i] > kPrime[i] then a will underflow and the high 64-bits |
| 865 | * will all be set. |
| 866 | */ |
| 867 | result |= all_equal_so_far & ((u64)(a >> 64)); |
| 868 | |
| 869 | /* |
| 870 | * if kPrime[i] == out[i] then |equal| will be all zeros and the |
| 871 | * decrement will make it all ones. |
| 872 | */ |
| 873 | equal = kPrime[i] ^ out[i]; |
| 874 | equal--; |
| 875 | equal &= equal << 32; |
| 876 | equal &= equal << 16; |
| 877 | equal &= equal << 8; |
| 878 | equal &= equal << 4; |
| 879 | equal &= equal << 2; |
| 880 | equal &= equal << 1; |
| 881 | equal = 0 - (equal >> 63); |
| 882 | |
| 883 | all_equal_so_far &= equal; |
| 884 | } |
| 885 | |
| 886 | /* |
| 887 | * if all_equal_so_far is still all ones then the two values are equal |
| 888 | * and so out >= kPrime is true. |
| 889 | */ |
| 890 | result |= all_equal_so_far; |
| 891 | |
| 892 | /* if out >= kPrime then we subtract kPrime. */ |
| 893 | subtract_u64(&out[0], &carry, result & kPrime[0]); |
| 894 | subtract_u64(&out[1], &carry, carry); |
| 895 | subtract_u64(&out[2], &carry, carry); |
| 896 | subtract_u64(&out[3], &carry, carry); |
| 897 | |
| 898 | subtract_u64(&out[1], &carry, result & kPrime[1]); |
| 899 | subtract_u64(&out[2], &carry, carry); |
| 900 | subtract_u64(&out[3], &carry, carry); |
| 901 | |
| 902 | subtract_u64(&out[2], &carry, result & kPrime[2]); |
| 903 | subtract_u64(&out[3], &carry, carry); |
| 904 | |
| 905 | subtract_u64(&out[3], &carry, result & kPrime[3]); |
| 906 | } |
| 907 | |
| 908 | static void smallfelem_square_contract(smallfelem out, const smallfelem in) |
| 909 | { |
| 910 | longfelem longtmp; |
| 911 | felem tmp; |
| 912 | |
| 913 | smallfelem_square(longtmp, in); |
| 914 | felem_reduce(tmp, longtmp); |
| 915 | felem_contract(out, tmp); |
| 916 | } |
| 917 | |
| 918 | static void smallfelem_mul_contract(smallfelem out, const smallfelem in1, |
| 919 | const smallfelem in2) |
| 920 | { |
| 921 | longfelem longtmp; |
| 922 | felem tmp; |
| 923 | |
| 924 | smallfelem_mul(longtmp, in1, in2); |
| 925 | felem_reduce(tmp, longtmp); |
| 926 | felem_contract(out, tmp); |
| 927 | } |
| 928 | |
| 929 | /*- |
| 930 | * felem_is_zero returns a limb with all bits set if |in| == 0 (mod p) and 0 |
| 931 | * otherwise. |
| 932 | * On entry: |
| 933 | * small[i] < 2^64 |
| 934 | */ |
| 935 | static limb smallfelem_is_zero(const smallfelem small) |
| 936 | { |
| 937 | limb result; |
| 938 | u64 is_p; |
| 939 | |
| 940 | u64 is_zero = small[0] | small[1] | small[2] | small[3]; |
| 941 | is_zero--; |
| 942 | is_zero &= is_zero << 32; |
| 943 | is_zero &= is_zero << 16; |
| 944 | is_zero &= is_zero << 8; |
| 945 | is_zero &= is_zero << 4; |
| 946 | is_zero &= is_zero << 2; |
| 947 | is_zero &= is_zero << 1; |
| 948 | is_zero = 0 - (is_zero >> 63); |
| 949 | |
| 950 | is_p = (small[0] ^ kPrime[0]) | |
| 951 | (small[1] ^ kPrime[1]) | |
| 952 | (small[2] ^ kPrime[2]) | (small[3] ^ kPrime[3]); |
| 953 | is_p--; |
| 954 | is_p &= is_p << 32; |
| 955 | is_p &= is_p << 16; |
| 956 | is_p &= is_p << 8; |
| 957 | is_p &= is_p << 4; |
| 958 | is_p &= is_p << 2; |
| 959 | is_p &= is_p << 1; |
| 960 | is_p = 0 - (is_p >> 63); |
| 961 | |
| 962 | is_zero |= is_p; |
| 963 | |
| 964 | result = is_zero; |
| 965 | result |= ((limb) is_zero) << 64; |
| 966 | return result; |
| 967 | } |
| 968 | |
| 969 | static int smallfelem_is_zero_int(const void *small) |
| 970 | { |
| 971 | return (int)(smallfelem_is_zero(small) & ((limb) 1)); |
| 972 | } |
| 973 | |
| 974 | /*- |
| 975 | * felem_inv calculates |out| = |in|^{-1} |
| 976 | * |
| 977 | * Based on Fermat's Little Theorem: |
| 978 | * a^p = a (mod p) |
| 979 | * a^{p-1} = 1 (mod p) |
| 980 | * a^{p-2} = a^{-1} (mod p) |
| 981 | */ |
| 982 | static void felem_inv(felem out, const felem in) |
| 983 | { |
| 984 | felem ftmp, ftmp2; |
| 985 | /* each e_I will hold |in|^{2^I - 1} */ |
| 986 | felem e2, e4, e8, e16, e32, e64; |
| 987 | longfelem tmp; |
| 988 | unsigned i; |
| 989 | |
| 990 | felem_square(tmp, in); |
| 991 | felem_reduce(ftmp, tmp); /* 2^1 */ |
| 992 | felem_mul(tmp, in, ftmp); |
| 993 | felem_reduce(ftmp, tmp); /* 2^2 - 2^0 */ |
| 994 | felem_assign(e2, ftmp); |
| 995 | felem_square(tmp, ftmp); |
| 996 | felem_reduce(ftmp, tmp); /* 2^3 - 2^1 */ |
| 997 | felem_square(tmp, ftmp); |
| 998 | felem_reduce(ftmp, tmp); /* 2^4 - 2^2 */ |
| 999 | felem_mul(tmp, ftmp, e2); |
| 1000 | felem_reduce(ftmp, tmp); /* 2^4 - 2^0 */ |
| 1001 | felem_assign(e4, ftmp); |
| 1002 | felem_square(tmp, ftmp); |
| 1003 | felem_reduce(ftmp, tmp); /* 2^5 - 2^1 */ |
| 1004 | felem_square(tmp, ftmp); |
| 1005 | felem_reduce(ftmp, tmp); /* 2^6 - 2^2 */ |
| 1006 | felem_square(tmp, ftmp); |
| 1007 | felem_reduce(ftmp, tmp); /* 2^7 - 2^3 */ |
| 1008 | felem_square(tmp, ftmp); |
| 1009 | felem_reduce(ftmp, tmp); /* 2^8 - 2^4 */ |
| 1010 | felem_mul(tmp, ftmp, e4); |
| 1011 | felem_reduce(ftmp, tmp); /* 2^8 - 2^0 */ |
| 1012 | felem_assign(e8, ftmp); |
| 1013 | for (i = 0; i < 8; i++) { |
| 1014 | felem_square(tmp, ftmp); |
| 1015 | felem_reduce(ftmp, tmp); |
| 1016 | } /* 2^16 - 2^8 */ |
| 1017 | felem_mul(tmp, ftmp, e8); |
| 1018 | felem_reduce(ftmp, tmp); /* 2^16 - 2^0 */ |
| 1019 | felem_assign(e16, ftmp); |
| 1020 | for (i = 0; i < 16; i++) { |
| 1021 | felem_square(tmp, ftmp); |
| 1022 | felem_reduce(ftmp, tmp); |
| 1023 | } /* 2^32 - 2^16 */ |
| 1024 | felem_mul(tmp, ftmp, e16); |
| 1025 | felem_reduce(ftmp, tmp); /* 2^32 - 2^0 */ |
| 1026 | felem_assign(e32, ftmp); |
| 1027 | for (i = 0; i < 32; i++) { |
| 1028 | felem_square(tmp, ftmp); |
| 1029 | felem_reduce(ftmp, tmp); |
| 1030 | } /* 2^64 - 2^32 */ |
| 1031 | felem_assign(e64, ftmp); |
| 1032 | felem_mul(tmp, ftmp, in); |
| 1033 | felem_reduce(ftmp, tmp); /* 2^64 - 2^32 + 2^0 */ |
| 1034 | for (i = 0; i < 192; i++) { |
| 1035 | felem_square(tmp, ftmp); |
| 1036 | felem_reduce(ftmp, tmp); |
| 1037 | } /* 2^256 - 2^224 + 2^192 */ |
| 1038 | |
| 1039 | felem_mul(tmp, e64, e32); |
| 1040 | felem_reduce(ftmp2, tmp); /* 2^64 - 2^0 */ |
| 1041 | for (i = 0; i < 16; i++) { |
| 1042 | felem_square(tmp, ftmp2); |
| 1043 | felem_reduce(ftmp2, tmp); |
| 1044 | } /* 2^80 - 2^16 */ |
| 1045 | felem_mul(tmp, ftmp2, e16); |
| 1046 | felem_reduce(ftmp2, tmp); /* 2^80 - 2^0 */ |
| 1047 | for (i = 0; i < 8; i++) { |
| 1048 | felem_square(tmp, ftmp2); |
| 1049 | felem_reduce(ftmp2, tmp); |
| 1050 | } /* 2^88 - 2^8 */ |
| 1051 | felem_mul(tmp, ftmp2, e8); |
| 1052 | felem_reduce(ftmp2, tmp); /* 2^88 - 2^0 */ |
| 1053 | for (i = 0; i < 4; i++) { |
| 1054 | felem_square(tmp, ftmp2); |
| 1055 | felem_reduce(ftmp2, tmp); |
| 1056 | } /* 2^92 - 2^4 */ |
| 1057 | felem_mul(tmp, ftmp2, e4); |
| 1058 | felem_reduce(ftmp2, tmp); /* 2^92 - 2^0 */ |
| 1059 | felem_square(tmp, ftmp2); |
| 1060 | felem_reduce(ftmp2, tmp); /* 2^93 - 2^1 */ |
| 1061 | felem_square(tmp, ftmp2); |
| 1062 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^2 */ |
| 1063 | felem_mul(tmp, ftmp2, e2); |
| 1064 | felem_reduce(ftmp2, tmp); /* 2^94 - 2^0 */ |
| 1065 | felem_square(tmp, ftmp2); |
| 1066 | felem_reduce(ftmp2, tmp); /* 2^95 - 2^1 */ |
| 1067 | felem_square(tmp, ftmp2); |
| 1068 | felem_reduce(ftmp2, tmp); /* 2^96 - 2^2 */ |
| 1069 | felem_mul(tmp, ftmp2, in); |
| 1070 | felem_reduce(ftmp2, tmp); /* 2^96 - 3 */ |
| 1071 | |
| 1072 | felem_mul(tmp, ftmp2, ftmp); |
| 1073 | felem_reduce(out, tmp); /* 2^256 - 2^224 + 2^192 + 2^96 - 3 */ |
| 1074 | } |
| 1075 | |
| 1076 | static void smallfelem_inv_contract(smallfelem out, const smallfelem in) |
| 1077 | { |
| 1078 | felem tmp; |
| 1079 | |
| 1080 | smallfelem_expand(tmp, in); |
| 1081 | felem_inv(tmp, tmp); |
| 1082 | felem_contract(out, tmp); |
| 1083 | } |
| 1084 | |
| 1085 | /*- |
| 1086 | * Group operations |
| 1087 | * ---------------- |
| 1088 | * |
| 1089 | * Building on top of the field operations we have the operations on the |
| 1090 | * elliptic curve group itself. Points on the curve are represented in Jacobian |
| 1091 | * coordinates |
| 1092 | */ |
| 1093 | |
| 1094 | /*- |
| 1095 | * point_double calculates 2*(x_in, y_in, z_in) |
| 1096 | * |
| 1097 | * The method is taken from: |
| 1098 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2001-b |
| 1099 | * |
| 1100 | * Outputs can equal corresponding inputs, i.e., x_out == x_in is allowed. |
| 1101 | * while x_out == y_in is not (maybe this works, but it's not tested). |
| 1102 | */ |
| 1103 | static void |
| 1104 | point_double(felem x_out, felem y_out, felem z_out, |
| 1105 | const felem x_in, const felem y_in, const felem z_in) |
| 1106 | { |
| 1107 | longfelem tmp, tmp2; |
| 1108 | felem delta, gamma, beta, alpha, ftmp, ftmp2; |
| 1109 | smallfelem small1, small2; |
| 1110 | |
| 1111 | felem_assign(ftmp, x_in); |
| 1112 | /* ftmp[i] < 2^106 */ |
| 1113 | felem_assign(ftmp2, x_in); |
| 1114 | /* ftmp2[i] < 2^106 */ |
| 1115 | |
| 1116 | /* delta = z^2 */ |
| 1117 | felem_square(tmp, z_in); |
| 1118 | felem_reduce(delta, tmp); |
| 1119 | /* delta[i] < 2^101 */ |
| 1120 | |
| 1121 | /* gamma = y^2 */ |
| 1122 | felem_square(tmp, y_in); |
| 1123 | felem_reduce(gamma, tmp); |
| 1124 | /* gamma[i] < 2^101 */ |
| 1125 | felem_shrink(small1, gamma); |
| 1126 | |
| 1127 | /* beta = x*gamma */ |
| 1128 | felem_small_mul(tmp, small1, x_in); |
| 1129 | felem_reduce(beta, tmp); |
| 1130 | /* beta[i] < 2^101 */ |
| 1131 | |
| 1132 | /* alpha = 3*(x-delta)*(x+delta) */ |
| 1133 | felem_diff(ftmp, delta); |
| 1134 | /* ftmp[i] < 2^105 + 2^106 < 2^107 */ |
| 1135 | felem_sum(ftmp2, delta); |
| 1136 | /* ftmp2[i] < 2^105 + 2^106 < 2^107 */ |
| 1137 | felem_scalar(ftmp2, 3); |
| 1138 | /* ftmp2[i] < 3 * 2^107 < 2^109 */ |
| 1139 | felem_mul(tmp, ftmp, ftmp2); |
| 1140 | felem_reduce(alpha, tmp); |
| 1141 | /* alpha[i] < 2^101 */ |
| 1142 | felem_shrink(small2, alpha); |
| 1143 | |
| 1144 | /* x' = alpha^2 - 8*beta */ |
| 1145 | smallfelem_square(tmp, small2); |
| 1146 | felem_reduce(x_out, tmp); |
| 1147 | felem_assign(ftmp, beta); |
| 1148 | felem_scalar(ftmp, 8); |
| 1149 | /* ftmp[i] < 8 * 2^101 = 2^104 */ |
| 1150 | felem_diff(x_out, ftmp); |
| 1151 | /* x_out[i] < 2^105 + 2^101 < 2^106 */ |
| 1152 | |
| 1153 | /* z' = (y + z)^2 - gamma - delta */ |
| 1154 | felem_sum(delta, gamma); |
| 1155 | /* delta[i] < 2^101 + 2^101 = 2^102 */ |
| 1156 | felem_assign(ftmp, y_in); |
| 1157 | felem_sum(ftmp, z_in); |
| 1158 | /* ftmp[i] < 2^106 + 2^106 = 2^107 */ |
| 1159 | felem_square(tmp, ftmp); |
| 1160 | felem_reduce(z_out, tmp); |
| 1161 | felem_diff(z_out, delta); |
| 1162 | /* z_out[i] < 2^105 + 2^101 < 2^106 */ |
| 1163 | |
| 1164 | /* y' = alpha*(4*beta - x') - 8*gamma^2 */ |
| 1165 | felem_scalar(beta, 4); |
| 1166 | /* beta[i] < 4 * 2^101 = 2^103 */ |
| 1167 | felem_diff_zero107(beta, x_out); |
| 1168 | /* beta[i] < 2^107 + 2^103 < 2^108 */ |
| 1169 | felem_small_mul(tmp, small2, beta); |
| 1170 | /* tmp[i] < 7 * 2^64 < 2^67 */ |
| 1171 | smallfelem_square(tmp2, small1); |
| 1172 | /* tmp2[i] < 7 * 2^64 */ |
| 1173 | longfelem_scalar(tmp2, 8); |
| 1174 | /* tmp2[i] < 8 * 7 * 2^64 = 7 * 2^67 */ |
| 1175 | longfelem_diff(tmp, tmp2); |
| 1176 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ |
| 1177 | felem_reduce_zero105(y_out, tmp); |
| 1178 | /* y_out[i] < 2^106 */ |
| 1179 | } |
| 1180 | |
| 1181 | /* |
| 1182 | * point_double_small is the same as point_double, except that it operates on |
| 1183 | * smallfelems |
| 1184 | */ |
| 1185 | static void |
| 1186 | point_double_small(smallfelem x_out, smallfelem y_out, smallfelem z_out, |
| 1187 | const smallfelem x_in, const smallfelem y_in, |
| 1188 | const smallfelem z_in) |
| 1189 | { |
| 1190 | felem felem_x_out, felem_y_out, felem_z_out; |
| 1191 | felem felem_x_in, felem_y_in, felem_z_in; |
| 1192 | |
| 1193 | smallfelem_expand(felem_x_in, x_in); |
| 1194 | smallfelem_expand(felem_y_in, y_in); |
| 1195 | smallfelem_expand(felem_z_in, z_in); |
| 1196 | point_double(felem_x_out, felem_y_out, felem_z_out, |
| 1197 | felem_x_in, felem_y_in, felem_z_in); |
| 1198 | felem_shrink(x_out, felem_x_out); |
| 1199 | felem_shrink(y_out, felem_y_out); |
| 1200 | felem_shrink(z_out, felem_z_out); |
| 1201 | } |
| 1202 | |
| 1203 | /* copy_conditional copies in to out iff mask is all ones. */ |
| 1204 | static void copy_conditional(felem out, const felem in, limb mask) |
| 1205 | { |
| 1206 | unsigned i; |
| 1207 | for (i = 0; i < NLIMBS; ++i) { |
| 1208 | const limb tmp = mask & (in[i] ^ out[i]); |
| 1209 | out[i] ^= tmp; |
| 1210 | } |
| 1211 | } |
| 1212 | |
| 1213 | /* copy_small_conditional copies in to out iff mask is all ones. */ |
| 1214 | static void copy_small_conditional(felem out, const smallfelem in, limb mask) |
| 1215 | { |
| 1216 | unsigned i; |
| 1217 | const u64 mask64 = mask; |
| 1218 | for (i = 0; i < NLIMBS; ++i) { |
| 1219 | out[i] = ((limb) (in[i] & mask64)) | (out[i] & ~mask); |
| 1220 | } |
| 1221 | } |
| 1222 | |
| 1223 | /*- |
| 1224 | * point_add calculates (x1, y1, z1) + (x2, y2, z2) |
| 1225 | * |
| 1226 | * The method is taken from: |
| 1227 | * http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl, |
| 1228 | * adapted for mixed addition (z2 = 1, or z2 = 0 for the point at infinity). |
| 1229 | * |
| 1230 | * This function includes a branch for checking whether the two input points |
| 1231 | * are equal, (while not equal to the point at infinity). This case never |
| 1232 | * happens during single point multiplication, so there is no timing leak for |
| 1233 | * ECDH or ECDSA signing. |
| 1234 | */ |
| 1235 | static void point_add(felem x3, felem y3, felem z3, |
| 1236 | const felem x1, const felem y1, const felem z1, |
| 1237 | const int mixed, const smallfelem x2, |
| 1238 | const smallfelem y2, const smallfelem z2) |
| 1239 | { |
| 1240 | felem ftmp, ftmp2, ftmp3, ftmp4, ftmp5, ftmp6, x_out, y_out, z_out; |
| 1241 | longfelem tmp, tmp2; |
| 1242 | smallfelem small1, small2, small3, small4, small5; |
| 1243 | limb x_equal, y_equal, z1_is_zero, z2_is_zero; |
| 1244 | limb points_equal; |
| 1245 | |
| 1246 | felem_shrink(small3, z1); |
| 1247 | |
| 1248 | z1_is_zero = smallfelem_is_zero(small3); |
| 1249 | z2_is_zero = smallfelem_is_zero(z2); |
| 1250 | |
| 1251 | /* ftmp = z1z1 = z1**2 */ |
| 1252 | smallfelem_square(tmp, small3); |
| 1253 | felem_reduce(ftmp, tmp); |
| 1254 | /* ftmp[i] < 2^101 */ |
| 1255 | felem_shrink(small1, ftmp); |
| 1256 | |
| 1257 | if (!mixed) { |
| 1258 | /* ftmp2 = z2z2 = z2**2 */ |
| 1259 | smallfelem_square(tmp, z2); |
| 1260 | felem_reduce(ftmp2, tmp); |
| 1261 | /* ftmp2[i] < 2^101 */ |
| 1262 | felem_shrink(small2, ftmp2); |
| 1263 | |
| 1264 | felem_shrink(small5, x1); |
| 1265 | |
| 1266 | /* u1 = ftmp3 = x1*z2z2 */ |
| 1267 | smallfelem_mul(tmp, small5, small2); |
| 1268 | felem_reduce(ftmp3, tmp); |
| 1269 | /* ftmp3[i] < 2^101 */ |
| 1270 | |
| 1271 | /* ftmp5 = z1 + z2 */ |
| 1272 | felem_assign(ftmp5, z1); |
| 1273 | felem_small_sum(ftmp5, z2); |
| 1274 | /* ftmp5[i] < 2^107 */ |
| 1275 | |
| 1276 | /* ftmp5 = (z1 + z2)**2 - (z1z1 + z2z2) = 2z1z2 */ |
| 1277 | felem_square(tmp, ftmp5); |
| 1278 | felem_reduce(ftmp5, tmp); |
| 1279 | /* ftmp2 = z2z2 + z1z1 */ |
| 1280 | felem_sum(ftmp2, ftmp); |
| 1281 | /* ftmp2[i] < 2^101 + 2^101 = 2^102 */ |
| 1282 | felem_diff(ftmp5, ftmp2); |
| 1283 | /* ftmp5[i] < 2^105 + 2^101 < 2^106 */ |
| 1284 | |
| 1285 | /* ftmp2 = z2 * z2z2 */ |
| 1286 | smallfelem_mul(tmp, small2, z2); |
| 1287 | felem_reduce(ftmp2, tmp); |
| 1288 | |
| 1289 | /* s1 = ftmp2 = y1 * z2**3 */ |
| 1290 | felem_mul(tmp, y1, ftmp2); |
| 1291 | felem_reduce(ftmp6, tmp); |
| 1292 | /* ftmp6[i] < 2^101 */ |
| 1293 | } else { |
| 1294 | /* |
| 1295 | * We'll assume z2 = 1 (special case z2 = 0 is handled later) |
| 1296 | */ |
| 1297 | |
| 1298 | /* u1 = ftmp3 = x1*z2z2 */ |
| 1299 | felem_assign(ftmp3, x1); |
| 1300 | /* ftmp3[i] < 2^106 */ |
| 1301 | |
| 1302 | /* ftmp5 = 2z1z2 */ |
| 1303 | felem_assign(ftmp5, z1); |
| 1304 | felem_scalar(ftmp5, 2); |
| 1305 | /* ftmp5[i] < 2*2^106 = 2^107 */ |
| 1306 | |
| 1307 | /* s1 = ftmp2 = y1 * z2**3 */ |
| 1308 | felem_assign(ftmp6, y1); |
| 1309 | /* ftmp6[i] < 2^106 */ |
| 1310 | } |
| 1311 | |
| 1312 | /* u2 = x2*z1z1 */ |
| 1313 | smallfelem_mul(tmp, x2, small1); |
| 1314 | felem_reduce(ftmp4, tmp); |
| 1315 | |
| 1316 | /* h = ftmp4 = u2 - u1 */ |
| 1317 | felem_diff_zero107(ftmp4, ftmp3); |
| 1318 | /* ftmp4[i] < 2^107 + 2^101 < 2^108 */ |
| 1319 | felem_shrink(small4, ftmp4); |
| 1320 | |
| 1321 | x_equal = smallfelem_is_zero(small4); |
| 1322 | |
| 1323 | /* z_out = ftmp5 * h */ |
| 1324 | felem_small_mul(tmp, small4, ftmp5); |
| 1325 | felem_reduce(z_out, tmp); |
| 1326 | /* z_out[i] < 2^101 */ |
| 1327 | |
| 1328 | /* ftmp = z1 * z1z1 */ |
| 1329 | smallfelem_mul(tmp, small1, small3); |
| 1330 | felem_reduce(ftmp, tmp); |
| 1331 | |
| 1332 | /* s2 = tmp = y2 * z1**3 */ |
| 1333 | felem_small_mul(tmp, y2, ftmp); |
| 1334 | felem_reduce(ftmp5, tmp); |
| 1335 | |
| 1336 | /* r = ftmp5 = (s2 - s1)*2 */ |
| 1337 | felem_diff_zero107(ftmp5, ftmp6); |
| 1338 | /* ftmp5[i] < 2^107 + 2^107 = 2^108 */ |
| 1339 | felem_scalar(ftmp5, 2); |
| 1340 | /* ftmp5[i] < 2^109 */ |
| 1341 | felem_shrink(small1, ftmp5); |
| 1342 | y_equal = smallfelem_is_zero(small1); |
| 1343 | |
| 1344 | /* |
| 1345 | * The formulae are incorrect if the points are equal, in affine coordinates |
| 1346 | * (X_1, Y_1) == (X_2, Y_2), so we check for this and do doubling if this |
| 1347 | * happens. |
| 1348 | * |
| 1349 | * We use bitwise operations to avoid potential side-channels introduced by |
| 1350 | * the short-circuiting behaviour of boolean operators. |
| 1351 | * |
| 1352 | * The special case of either point being the point at infinity (z1 and/or |
| 1353 | * z2 are zero), is handled separately later on in this function, so we |
| 1354 | * avoid jumping to point_double here in those special cases. |
| 1355 | */ |
| 1356 | points_equal = (x_equal & y_equal & (~z1_is_zero) & (~z2_is_zero)); |
| 1357 | |
| 1358 | if (points_equal) { |
| 1359 | /* |
| 1360 | * This is obviously not constant-time but, as mentioned before, this |
| 1361 | * case never happens during single point multiplication, so there is no |
| 1362 | * timing leak for ECDH or ECDSA signing. |
| 1363 | */ |
| 1364 | point_double(x3, y3, z3, x1, y1, z1); |
| 1365 | return; |
| 1366 | } |
| 1367 | |
| 1368 | /* I = ftmp = (2h)**2 */ |
| 1369 | felem_assign(ftmp, ftmp4); |
| 1370 | felem_scalar(ftmp, 2); |
| 1371 | /* ftmp[i] < 2*2^108 = 2^109 */ |
| 1372 | felem_square(tmp, ftmp); |
| 1373 | felem_reduce(ftmp, tmp); |
| 1374 | |
| 1375 | /* J = ftmp2 = h * I */ |
| 1376 | felem_mul(tmp, ftmp4, ftmp); |
| 1377 | felem_reduce(ftmp2, tmp); |
| 1378 | |
| 1379 | /* V = ftmp4 = U1 * I */ |
| 1380 | felem_mul(tmp, ftmp3, ftmp); |
| 1381 | felem_reduce(ftmp4, tmp); |
| 1382 | |
| 1383 | /* x_out = r**2 - J - 2V */ |
| 1384 | smallfelem_square(tmp, small1); |
| 1385 | felem_reduce(x_out, tmp); |
| 1386 | felem_assign(ftmp3, ftmp4); |
| 1387 | felem_scalar(ftmp4, 2); |
| 1388 | felem_sum(ftmp4, ftmp2); |
| 1389 | /* ftmp4[i] < 2*2^101 + 2^101 < 2^103 */ |
| 1390 | felem_diff(x_out, ftmp4); |
| 1391 | /* x_out[i] < 2^105 + 2^101 */ |
| 1392 | |
| 1393 | /* y_out = r(V-x_out) - 2 * s1 * J */ |
| 1394 | felem_diff_zero107(ftmp3, x_out); |
| 1395 | /* ftmp3[i] < 2^107 + 2^101 < 2^108 */ |
| 1396 | felem_small_mul(tmp, small1, ftmp3); |
| 1397 | felem_mul(tmp2, ftmp6, ftmp2); |
| 1398 | longfelem_scalar(tmp2, 2); |
| 1399 | /* tmp2[i] < 2*2^67 = 2^68 */ |
| 1400 | longfelem_diff(tmp, tmp2); |
| 1401 | /* tmp[i] < 2^67 + 2^70 + 2^40 < 2^71 */ |
| 1402 | felem_reduce_zero105(y_out, tmp); |
| 1403 | /* y_out[i] < 2^106 */ |
| 1404 | |
| 1405 | copy_small_conditional(x_out, x2, z1_is_zero); |
| 1406 | copy_conditional(x_out, x1, z2_is_zero); |
| 1407 | copy_small_conditional(y_out, y2, z1_is_zero); |
| 1408 | copy_conditional(y_out, y1, z2_is_zero); |
| 1409 | copy_small_conditional(z_out, z2, z1_is_zero); |
| 1410 | copy_conditional(z_out, z1, z2_is_zero); |
| 1411 | felem_assign(x3, x_out); |
| 1412 | felem_assign(y3, y_out); |
| 1413 | felem_assign(z3, z_out); |
| 1414 | } |
| 1415 | |
| 1416 | /* |
| 1417 | * point_add_small is the same as point_add, except that it operates on |
| 1418 | * smallfelems |
| 1419 | */ |
| 1420 | static void point_add_small(smallfelem x3, smallfelem y3, smallfelem z3, |
| 1421 | smallfelem x1, smallfelem y1, smallfelem z1, |
| 1422 | smallfelem x2, smallfelem y2, smallfelem z2) |
| 1423 | { |
| 1424 | felem felem_x3, felem_y3, felem_z3; |
| 1425 | felem felem_x1, felem_y1, felem_z1; |
| 1426 | smallfelem_expand(felem_x1, x1); |
| 1427 | smallfelem_expand(felem_y1, y1); |
| 1428 | smallfelem_expand(felem_z1, z1); |
| 1429 | point_add(felem_x3, felem_y3, felem_z3, felem_x1, felem_y1, felem_z1, 0, |
| 1430 | x2, y2, z2); |
| 1431 | felem_shrink(x3, felem_x3); |
| 1432 | felem_shrink(y3, felem_y3); |
| 1433 | felem_shrink(z3, felem_z3); |
| 1434 | } |
| 1435 | |
| 1436 | /*- |
| 1437 | * Base point pre computation |
| 1438 | * -------------------------- |
| 1439 | * |
| 1440 | * Two different sorts of precomputed tables are used in the following code. |
| 1441 | * Each contain various points on the curve, where each point is three field |
| 1442 | * elements (x, y, z). |
| 1443 | * |
| 1444 | * For the base point table, z is usually 1 (0 for the point at infinity). |
| 1445 | * This table has 2 * 16 elements, starting with the following: |
| 1446 | * index | bits | point |
| 1447 | * ------+---------+------------------------------ |
| 1448 | * 0 | 0 0 0 0 | 0G |
| 1449 | * 1 | 0 0 0 1 | 1G |
| 1450 | * 2 | 0 0 1 0 | 2^64G |
| 1451 | * 3 | 0 0 1 1 | (2^64 + 1)G |
| 1452 | * 4 | 0 1 0 0 | 2^128G |
| 1453 | * 5 | 0 1 0 1 | (2^128 + 1)G |
| 1454 | * 6 | 0 1 1 0 | (2^128 + 2^64)G |
| 1455 | * 7 | 0 1 1 1 | (2^128 + 2^64 + 1)G |
| 1456 | * 8 | 1 0 0 0 | 2^192G |
| 1457 | * 9 | 1 0 0 1 | (2^192 + 1)G |
| 1458 | * 10 | 1 0 1 0 | (2^192 + 2^64)G |
| 1459 | * 11 | 1 0 1 1 | (2^192 + 2^64 + 1)G |
| 1460 | * 12 | 1 1 0 0 | (2^192 + 2^128)G |
| 1461 | * 13 | 1 1 0 1 | (2^192 + 2^128 + 1)G |
| 1462 | * 14 | 1 1 1 0 | (2^192 + 2^128 + 2^64)G |
| 1463 | * 15 | 1 1 1 1 | (2^192 + 2^128 + 2^64 + 1)G |
| 1464 | * followed by a copy of this with each element multiplied by 2^32. |
| 1465 | * |
| 1466 | * The reason for this is so that we can clock bits into four different |
| 1467 | * locations when doing simple scalar multiplies against the base point, |
| 1468 | * and then another four locations using the second 16 elements. |
| 1469 | * |
| 1470 | * Tables for other points have table[i] = iG for i in 0 .. 16. */ |
| 1471 | |
| 1472 | /* gmul is the table of precomputed base points */ |
| 1473 | static const smallfelem gmul[2][16][3] = { |
| 1474 | {{{0, 0, 0, 0}, |
| 1475 | {0, 0, 0, 0}, |
| 1476 | {0, 0, 0, 0}}, |
| 1477 | {{0xf4a13945d898c296, 0x77037d812deb33a0, 0xf8bce6e563a440f2, |
| 1478 | 0x6b17d1f2e12c4247}, |
| 1479 | {0xcbb6406837bf51f5, 0x2bce33576b315ece, 0x8ee7eb4a7c0f9e16, |
| 1480 | 0x4fe342e2fe1a7f9b}, |
| 1481 | {1, 0, 0, 0}}, |
| 1482 | {{0x90e75cb48e14db63, 0x29493baaad651f7e, 0x8492592e326e25de, |
| 1483 | 0x0fa822bc2811aaa5}, |
| 1484 | {0xe41124545f462ee7, 0x34b1a65050fe82f5, 0x6f4ad4bcb3df188b, |
| 1485 | 0xbff44ae8f5dba80d}, |
| 1486 | {1, 0, 0, 0}}, |
| 1487 | {{0x93391ce2097992af, 0xe96c98fd0d35f1fa, 0xb257c0de95e02789, |
| 1488 | 0x300a4bbc89d6726f}, |
| 1489 | {0xaa54a291c08127a0, 0x5bb1eeada9d806a5, 0x7f1ddb25ff1e3c6f, |
| 1490 | 0x72aac7e0d09b4644}, |
| 1491 | {1, 0, 0, 0}}, |
| 1492 | {{0x57c84fc9d789bd85, 0xfc35ff7dc297eac3, 0xfb982fd588c6766e, |
| 1493 | 0x447d739beedb5e67}, |
| 1494 | {0x0c7e33c972e25b32, 0x3d349b95a7fae500, 0xe12e9d953a4aaff7, |
| 1495 | 0x2d4825ab834131ee}, |
| 1496 | {1, 0, 0, 0}}, |
| 1497 | {{0x13949c932a1d367f, 0xef7fbd2b1a0a11b7, 0xddc6068bb91dfc60, |
| 1498 | 0xef9519328a9c72ff}, |
| 1499 | {0x196035a77376d8a8, 0x23183b0895ca1740, 0xc1ee9807022c219c, |
| 1500 | 0x611e9fc37dbb2c9b}, |
| 1501 | {1, 0, 0, 0}}, |
| 1502 | {{0xcae2b1920b57f4bc, 0x2936df5ec6c9bc36, 0x7dea6482e11238bf, |
| 1503 | 0x550663797b51f5d8}, |
| 1504 | {0x44ffe216348a964c, 0x9fb3d576dbdefbe1, 0x0afa40018d9d50e5, |
| 1505 | 0x157164848aecb851}, |
| 1506 | {1, 0, 0, 0}}, |
| 1507 | {{0xe48ecafffc5cde01, 0x7ccd84e70d715f26, 0xa2e8f483f43e4391, |
| 1508 | 0xeb5d7745b21141ea}, |
| 1509 | {0xcac917e2731a3479, 0x85f22cfe2844b645, 0x0990e6a158006cee, |
| 1510 | 0xeafd72ebdbecc17b}, |
| 1511 | {1, 0, 0, 0}}, |
| 1512 | {{0x6cf20ffb313728be, 0x96439591a3c6b94a, 0x2736ff8344315fc5, |
| 1513 | 0xa6d39677a7849276}, |
| 1514 | {0xf2bab833c357f5f4, 0x824a920c2284059b, 0x66b8babd2d27ecdf, |
| 1515 | 0x674f84749b0b8816}, |
| 1516 | {1, 0, 0, 0}}, |
| 1517 | {{0x2df48c04677c8a3e, 0x74e02f080203a56b, 0x31855f7db8c7fedb, |
| 1518 | 0x4e769e7672c9ddad}, |
| 1519 | {0xa4c36165b824bbb0, 0xfb9ae16f3b9122a5, 0x1ec0057206947281, |
| 1520 | 0x42b99082de830663}, |
| 1521 | {1, 0, 0, 0}}, |
| 1522 | {{0x6ef95150dda868b9, 0xd1f89e799c0ce131, 0x7fdc1ca008a1c478, |
| 1523 | 0x78878ef61c6ce04d}, |
| 1524 | {0x9c62b9121fe0d976, 0x6ace570ebde08d4f, 0xde53142c12309def, |
| 1525 | 0xb6cb3f5d7b72c321}, |
| 1526 | {1, 0, 0, 0}}, |
| 1527 | {{0x7f991ed2c31a3573, 0x5b82dd5bd54fb496, 0x595c5220812ffcae, |
| 1528 | 0x0c88bc4d716b1287}, |
| 1529 | {0x3a57bf635f48aca8, 0x7c8181f4df2564f3, 0x18d1b5b39c04e6aa, |
| 1530 | 0xdd5ddea3f3901dc6}, |
| 1531 | {1, 0, 0, 0}}, |
| 1532 | {{0xe96a79fb3e72ad0c, 0x43a0a28c42ba792f, 0xefe0a423083e49f3, |
| 1533 | 0x68f344af6b317466}, |
| 1534 | {0xcdfe17db3fb24d4a, 0x668bfc2271f5c626, 0x604ed93c24d67ff3, |
| 1535 | 0x31b9c405f8540a20}, |
| 1536 | {1, 0, 0, 0}}, |
| 1537 | {{0xd36b4789a2582e7f, 0x0d1a10144ec39c28, 0x663c62c3edbad7a0, |
| 1538 | 0x4052bf4b6f461db9}, |
| 1539 | {0x235a27c3188d25eb, 0xe724f33999bfcc5b, 0x862be6bd71d70cc8, |
| 1540 | 0xfecf4d5190b0fc61}, |
| 1541 | {1, 0, 0, 0}}, |
| 1542 | {{0x74346c10a1d4cfac, 0xafdf5cc08526a7a4, 0x123202a8f62bff7a, |
| 1543 | 0x1eddbae2c802e41a}, |
| 1544 | {0x8fa0af2dd603f844, 0x36e06b7e4c701917, 0x0c45f45273db33a0, |
| 1545 | 0x43104d86560ebcfc}, |
| 1546 | {1, 0, 0, 0}}, |
| 1547 | {{0x9615b5110d1d78e5, 0x66b0de3225c4744b, 0x0a4a46fb6aaf363a, |
| 1548 | 0xb48e26b484f7a21c}, |
| 1549 | {0x06ebb0f621a01b2d, 0xc004e4048b7b0f98, 0x64131bcdfed6f668, |
| 1550 | 0xfac015404d4d3dab}, |
| 1551 | {1, 0, 0, 0}}}, |
| 1552 | {{{0, 0, 0, 0}, |
| 1553 | {0, 0, 0, 0}, |
| 1554 | {0, 0, 0, 0}}, |
| 1555 | {{0x3a5a9e22185a5943, 0x1ab919365c65dfb6, 0x21656b32262c71da, |
| 1556 | 0x7fe36b40af22af89}, |
| 1557 | {0xd50d152c699ca101, 0x74b3d5867b8af212, 0x9f09f40407dca6f1, |
| 1558 | 0xe697d45825b63624}, |
| 1559 | {1, 0, 0, 0}}, |
| 1560 | {{0xa84aa9397512218e, 0xe9a521b074ca0141, 0x57880b3a18a2e902, |
| 1561 | 0x4a5b506612a677a6}, |
| 1562 | {0x0beada7a4c4f3840, 0x626db15419e26d9d, 0xc42604fbe1627d40, |
| 1563 | 0xeb13461ceac089f1}, |
| 1564 | {1, 0, 0, 0}}, |
| 1565 | {{0xf9faed0927a43281, 0x5e52c4144103ecbc, 0xc342967aa815c857, |
| 1566 | 0x0781b8291c6a220a}, |
| 1567 | {0x5a8343ceeac55f80, 0x88f80eeee54a05e3, 0x97b2a14f12916434, |
| 1568 | 0x690cde8df0151593}, |
| 1569 | {1, 0, 0, 0}}, |
| 1570 | {{0xaee9c75df7f82f2a, 0x9e4c35874afdf43a, 0xf5622df437371326, |
| 1571 | 0x8a535f566ec73617}, |
| 1572 | {0xc5f9a0ac223094b7, 0xcde533864c8c7669, 0x37e02819085a92bf, |
| 1573 | 0x0455c08468b08bd7}, |
| 1574 | {1, 0, 0, 0}}, |
| 1575 | {{0x0c0a6e2c9477b5d9, 0xf9a4bf62876dc444, 0x5050a949b6cdc279, |
| 1576 | 0x06bada7ab77f8276}, |
| 1577 | {0xc8b4aed1ea48dac9, 0xdebd8a4b7ea1070f, 0x427d49101366eb70, |
| 1578 | 0x5b476dfd0e6cb18a}, |
| 1579 | {1, 0, 0, 0}}, |
| 1580 | {{0x7c5c3e44278c340a, 0x4d54606812d66f3b, 0x29a751b1ae23c5d8, |
| 1581 | 0x3e29864e8a2ec908}, |
| 1582 | {0x142d2a6626dbb850, 0xad1744c4765bd780, 0x1f150e68e322d1ed, |
| 1583 | 0x239b90ea3dc31e7e}, |
| 1584 | {1, 0, 0, 0}}, |
| 1585 | {{0x78c416527a53322a, 0x305dde6709776f8e, 0xdbcab759f8862ed4, |
| 1586 | 0x820f4dd949f72ff7}, |
| 1587 | {0x6cc544a62b5debd4, 0x75be5d937b4e8cc4, 0x1b481b1b215c14d3, |
| 1588 | 0x140406ec783a05ec}, |
| 1589 | {1, 0, 0, 0}}, |
| 1590 | {{0x6a703f10e895df07, 0xfd75f3fa01876bd8, 0xeb5b06e70ce08ffe, |
| 1591 | 0x68f6b8542783dfee}, |
| 1592 | {0x90c76f8a78712655, 0xcf5293d2f310bf7f, 0xfbc8044dfda45028, |
| 1593 | 0xcbe1feba92e40ce6}, |
| 1594 | {1, 0, 0, 0}}, |
| 1595 | {{0xe998ceea4396e4c1, 0xfc82ef0b6acea274, 0x230f729f2250e927, |
| 1596 | 0xd0b2f94d2f420109}, |
| 1597 | {0x4305adddb38d4966, 0x10b838f8624c3b45, 0x7db2636658954e7a, |
| 1598 | 0x971459828b0719e5}, |
| 1599 | {1, 0, 0, 0}}, |
| 1600 | {{0x4bd6b72623369fc9, 0x57f2929e53d0b876, 0xc2d5cba4f2340687, |
| 1601 | 0x961610004a866aba}, |
| 1602 | {0x49997bcd2e407a5e, 0x69ab197d92ddcb24, 0x2cf1f2438fe5131c, |
| 1603 | 0x7acb9fadcee75e44}, |
| 1604 | {1, 0, 0, 0}}, |
| 1605 | {{0x254e839423d2d4c0, 0xf57f0c917aea685b, 0xa60d880f6f75aaea, |
| 1606 | 0x24eb9acca333bf5b}, |
| 1607 | {0xe3de4ccb1cda5dea, 0xfeef9341c51a6b4f, 0x743125f88bac4c4d, |
| 1608 | 0x69f891c5acd079cc}, |
| 1609 | {1, 0, 0, 0}}, |
| 1610 | {{0xeee44b35702476b5, 0x7ed031a0e45c2258, 0xb422d1e7bd6f8514, |
| 1611 | 0xe51f547c5972a107}, |
| 1612 | {0xa25bcd6fc9cf343d, 0x8ca922ee097c184e, 0xa62f98b3a9fe9a06, |
| 1613 | 0x1c309a2b25bb1387}, |
| 1614 | {1, 0, 0, 0}}, |
| 1615 | {{0x9295dbeb1967c459, 0xb00148833472c98e, 0xc504977708011828, |
| 1616 | 0x20b87b8aa2c4e503}, |
| 1617 | {0x3063175de057c277, 0x1bd539338fe582dd, 0x0d11adef5f69a044, |
| 1618 | 0xf5c6fa49919776be}, |
| 1619 | {1, 0, 0, 0}}, |
| 1620 | {{0x8c944e760fd59e11, 0x3876cba1102fad5f, 0xa454c3fad83faa56, |
| 1621 | 0x1ed7d1b9332010b9}, |
| 1622 | {0xa1011a270024b889, 0x05e4d0dcac0cd344, 0x52b520f0eb6a2a24, |
| 1623 | 0x3a2b03f03217257a}, |
| 1624 | {1, 0, 0, 0}}, |
| 1625 | {{0xf20fc2afdf1d043d, 0xf330240db58d5a62, 0xfc7d229ca0058c3b, |
| 1626 | 0x15fee545c78dd9f6}, |
| 1627 | {0x501e82885bc98cda, 0x41ef80e5d046ac04, 0x557d9f49461210fb, |
| 1628 | 0x4ab5b6b2b8753f81}, |
| 1629 | {1, 0, 0, 0}}} |
| 1630 | }; |
| 1631 | |
| 1632 | /* |
| 1633 | * select_point selects the |idx|th point from a precomputation table and |
| 1634 | * copies it to out. |
| 1635 | */ |
| 1636 | static void select_point(const u64 idx, unsigned int size, |
| 1637 | const smallfelem pre_comp[16][3], smallfelem out[3]) |
| 1638 | { |
| 1639 | unsigned i, j; |
| 1640 | u64 *outlimbs = &out[0][0]; |
| 1641 | |
| 1642 | memset(out, 0, sizeof(*out) * 3); |
| 1643 | |
| 1644 | for (i = 0; i < size; i++) { |
| 1645 | const u64 *inlimbs = (u64 *)&pre_comp[i][0][0]; |
| 1646 | u64 mask = i ^ idx; |
| 1647 | mask |= mask >> 4; |
| 1648 | mask |= mask >> 2; |
| 1649 | mask |= mask >> 1; |
| 1650 | mask &= 1; |
| 1651 | mask--; |
| 1652 | for (j = 0; j < NLIMBS * 3; j++) |
| 1653 | outlimbs[j] |= inlimbs[j] & mask; |
| 1654 | } |
| 1655 | } |
| 1656 | |
| 1657 | /* get_bit returns the |i|th bit in |in| */ |
| 1658 | static char get_bit(const felem_bytearray in, int i) |
| 1659 | { |
| 1660 | if ((i < 0) || (i >= 256)) |
| 1661 | return 0; |
| 1662 | return (in[i >> 3] >> (i & 7)) & 1; |
| 1663 | } |
| 1664 | |
| 1665 | /* |
| 1666 | * Interleaved point multiplication using precomputed point multiples: The |
| 1667 | * small point multiples 0*P, 1*P, ..., 17*P are in pre_comp[], the scalars |
| 1668 | * in scalars[]. If g_scalar is non-NULL, we also add this multiple of the |
| 1669 | * generator, using certain (large) precomputed multiples in g_pre_comp. |
| 1670 | * Output point (X, Y, Z) is stored in x_out, y_out, z_out |
| 1671 | */ |
| 1672 | static void batch_mul(felem x_out, felem y_out, felem z_out, |
| 1673 | const felem_bytearray scalars[], |
| 1674 | const unsigned num_points, const u8 *g_scalar, |
| 1675 | const int mixed, const smallfelem pre_comp[][17][3], |
| 1676 | const smallfelem g_pre_comp[2][16][3]) |
| 1677 | { |
| 1678 | int i, skip; |
| 1679 | unsigned num, gen_mul = (g_scalar != NULL); |
| 1680 | felem nq[3], ftmp; |
| 1681 | smallfelem tmp[3]; |
| 1682 | u64 bits; |
| 1683 | u8 sign, digit; |
| 1684 | |
| 1685 | /* set nq to the point at infinity */ |
| 1686 | memset(nq, 0, sizeof(nq)); |
| 1687 | |
| 1688 | /* |
| 1689 | * Loop over all scalars msb-to-lsb, interleaving additions of multiples |
| 1690 | * of the generator (two in each of the last 32 rounds) and additions of |
| 1691 | * other points multiples (every 5th round). |
| 1692 | */ |
| 1693 | skip = 1; /* save two point operations in the first |
| 1694 | * round */ |
| 1695 | for (i = (num_points ? 255 : 31); i >= 0; --i) { |
| 1696 | /* double */ |
| 1697 | if (!skip) |
| 1698 | point_double(nq[0], nq[1], nq[2], nq[0], nq[1], nq[2]); |
| 1699 | |
| 1700 | /* add multiples of the generator */ |
| 1701 | if (gen_mul && (i <= 31)) { |
| 1702 | /* first, look 32 bits upwards */ |
| 1703 | bits = get_bit(g_scalar, i + 224) << 3; |
| 1704 | bits |= get_bit(g_scalar, i + 160) << 2; |
| 1705 | bits |= get_bit(g_scalar, i + 96) << 1; |
| 1706 | bits |= get_bit(g_scalar, i + 32); |
| 1707 | /* select the point to add, in constant time */ |
| 1708 | select_point(bits, 16, g_pre_comp[1], tmp); |
| 1709 | |
| 1710 | if (!skip) { |
| 1711 | /* Arg 1 below is for "mixed" */ |
| 1712 | point_add(nq[0], nq[1], nq[2], |
| 1713 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); |
| 1714 | } else { |
| 1715 | smallfelem_expand(nq[0], tmp[0]); |
| 1716 | smallfelem_expand(nq[1], tmp[1]); |
| 1717 | smallfelem_expand(nq[2], tmp[2]); |
| 1718 | skip = 0; |
| 1719 | } |
| 1720 | |
| 1721 | /* second, look at the current position */ |
| 1722 | bits = get_bit(g_scalar, i + 192) << 3; |
| 1723 | bits |= get_bit(g_scalar, i + 128) << 2; |
| 1724 | bits |= get_bit(g_scalar, i + 64) << 1; |
| 1725 | bits |= get_bit(g_scalar, i); |
| 1726 | /* select the point to add, in constant time */ |
| 1727 | select_point(bits, 16, g_pre_comp[0], tmp); |
| 1728 | /* Arg 1 below is for "mixed" */ |
| 1729 | point_add(nq[0], nq[1], nq[2], |
| 1730 | nq[0], nq[1], nq[2], 1, tmp[0], tmp[1], tmp[2]); |
| 1731 | } |
| 1732 | |
| 1733 | /* do other additions every 5 doublings */ |
| 1734 | if (num_points && (i % 5 == 0)) { |
| 1735 | /* loop over all scalars */ |
| 1736 | for (num = 0; num < num_points; ++num) { |
| 1737 | bits = get_bit(scalars[num], i + 4) << 5; |
| 1738 | bits |= get_bit(scalars[num], i + 3) << 4; |
| 1739 | bits |= get_bit(scalars[num], i + 2) << 3; |
| 1740 | bits |= get_bit(scalars[num], i + 1) << 2; |
| 1741 | bits |= get_bit(scalars[num], i) << 1; |
| 1742 | bits |= get_bit(scalars[num], i - 1); |
| 1743 | ec_GFp_nistp_recode_scalar_bits(&sign, &digit, bits); |
| 1744 | |
| 1745 | /* |
| 1746 | * select the point to add or subtract, in constant time |
| 1747 | */ |
| 1748 | select_point(digit, 17, pre_comp[num], tmp); |
| 1749 | smallfelem_neg(ftmp, tmp[1]); /* (X, -Y, Z) is the negative |
| 1750 | * point */ |
| 1751 | copy_small_conditional(ftmp, tmp[1], (((limb) sign) - 1)); |
| 1752 | felem_contract(tmp[1], ftmp); |
| 1753 | |
| 1754 | if (!skip) { |
| 1755 | point_add(nq[0], nq[1], nq[2], |
| 1756 | nq[0], nq[1], nq[2], |
| 1757 | mixed, tmp[0], tmp[1], tmp[2]); |
| 1758 | } else { |
| 1759 | smallfelem_expand(nq[0], tmp[0]); |
| 1760 | smallfelem_expand(nq[1], tmp[1]); |
| 1761 | smallfelem_expand(nq[2], tmp[2]); |
| 1762 | skip = 0; |
| 1763 | } |
| 1764 | } |
| 1765 | } |
| 1766 | } |
| 1767 | felem_assign(x_out, nq[0]); |
| 1768 | felem_assign(y_out, nq[1]); |
| 1769 | felem_assign(z_out, nq[2]); |
| 1770 | } |
| 1771 | |
| 1772 | /* Precomputation for the group generator. */ |
| 1773 | struct nistp256_pre_comp_st { |
| 1774 | smallfelem g_pre_comp[2][16][3]; |
| 1775 | CRYPTO_REF_COUNT references; |
| 1776 | CRYPTO_RWLOCK *lock; |
| 1777 | }; |
| 1778 | |
| 1779 | const EC_METHOD *EC_GFp_nistp256_method(void) |
| 1780 | { |
| 1781 | static const EC_METHOD ret = { |
| 1782 | EC_FLAGS_DEFAULT_OCT, |
| 1783 | NID_X9_62_prime_field, |
| 1784 | ec_GFp_nistp256_group_init, |
| 1785 | ec_GFp_simple_group_finish, |
| 1786 | ec_GFp_simple_group_clear_finish, |
| 1787 | ec_GFp_nist_group_copy, |
| 1788 | ec_GFp_nistp256_group_set_curve, |
| 1789 | ec_GFp_simple_group_get_curve, |
| 1790 | ec_GFp_simple_group_get_degree, |
| 1791 | ec_group_simple_order_bits, |
| 1792 | ec_GFp_simple_group_check_discriminant, |
| 1793 | ec_GFp_simple_point_init, |
| 1794 | ec_GFp_simple_point_finish, |
| 1795 | ec_GFp_simple_point_clear_finish, |
| 1796 | ec_GFp_simple_point_copy, |
| 1797 | ec_GFp_simple_point_set_to_infinity, |
| 1798 | ec_GFp_simple_set_Jprojective_coordinates_GFp, |
| 1799 | ec_GFp_simple_get_Jprojective_coordinates_GFp, |
| 1800 | ec_GFp_simple_point_set_affine_coordinates, |
| 1801 | ec_GFp_nistp256_point_get_affine_coordinates, |
| 1802 | 0 /* point_set_compressed_coordinates */ , |
| 1803 | 0 /* point2oct */ , |
| 1804 | 0 /* oct2point */ , |
| 1805 | ec_GFp_simple_add, |
| 1806 | ec_GFp_simple_dbl, |
| 1807 | ec_GFp_simple_invert, |
| 1808 | ec_GFp_simple_is_at_infinity, |
| 1809 | ec_GFp_simple_is_on_curve, |
| 1810 | ec_GFp_simple_cmp, |
| 1811 | ec_GFp_simple_make_affine, |
| 1812 | ec_GFp_simple_points_make_affine, |
| 1813 | ec_GFp_nistp256_points_mul, |
| 1814 | ec_GFp_nistp256_precompute_mult, |
| 1815 | ec_GFp_nistp256_have_precompute_mult, |
| 1816 | ec_GFp_nist_field_mul, |
| 1817 | ec_GFp_nist_field_sqr, |
| 1818 | 0 /* field_div */ , |
| 1819 | ec_GFp_simple_field_inv, |
| 1820 | 0 /* field_encode */ , |
| 1821 | 0 /* field_decode */ , |
| 1822 | 0, /* field_set_to_one */ |
| 1823 | ec_key_simple_priv2oct, |
| 1824 | ec_key_simple_oct2priv, |
| 1825 | 0, /* set private */ |
| 1826 | ec_key_simple_generate_key, |
| 1827 | ec_key_simple_check_key, |
| 1828 | ec_key_simple_generate_public_key, |
| 1829 | 0, /* keycopy */ |
| 1830 | 0, /* keyfinish */ |
| 1831 | ecdh_simple_compute_key, |
| 1832 | 0, /* field_inverse_mod_ord */ |
| 1833 | 0, /* blind_coordinates */ |
| 1834 | 0, /* ladder_pre */ |
| 1835 | 0, /* ladder_step */ |
| 1836 | 0 /* ladder_post */ |
| 1837 | }; |
| 1838 | |
| 1839 | return &ret; |
| 1840 | } |
| 1841 | |
| 1842 | /******************************************************************************/ |
| 1843 | /* |
| 1844 | * FUNCTIONS TO MANAGE PRECOMPUTATION |
| 1845 | */ |
| 1846 | |
| 1847 | static NISTP256_PRE_COMP *nistp256_pre_comp_new(void) |
| 1848 | { |
| 1849 | NISTP256_PRE_COMP *ret = OPENSSL_zalloc(sizeof(*ret)); |
| 1850 | |
| 1851 | if (ret == NULL) { |
| 1852 | ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 1853 | return ret; |
| 1854 | } |
| 1855 | |
| 1856 | ret->references = 1; |
| 1857 | |
| 1858 | ret->lock = CRYPTO_THREAD_lock_new(); |
| 1859 | if (ret->lock == NULL) { |
| 1860 | ECerr(EC_F_NISTP256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 1861 | OPENSSL_free(ret); |
| 1862 | return NULL; |
| 1863 | } |
| 1864 | return ret; |
| 1865 | } |
| 1866 | |
| 1867 | NISTP256_PRE_COMP *EC_nistp256_pre_comp_dup(NISTP256_PRE_COMP *p) |
| 1868 | { |
| 1869 | int i; |
| 1870 | if (p != NULL) |
| 1871 | CRYPTO_UP_REF(&p->references, &i, p->lock); |
| 1872 | return p; |
| 1873 | } |
| 1874 | |
| 1875 | void EC_nistp256_pre_comp_free(NISTP256_PRE_COMP *pre) |
| 1876 | { |
| 1877 | int i; |
| 1878 | |
| 1879 | if (pre == NULL) |
| 1880 | return; |
| 1881 | |
| 1882 | CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); |
| 1883 | REF_PRINT_COUNT("EC_nistp256", x); |
| 1884 | if (i > 0) |
| 1885 | return; |
| 1886 | REF_ASSERT_ISNT(i < 0); |
| 1887 | |
| 1888 | CRYPTO_THREAD_lock_free(pre->lock); |
| 1889 | OPENSSL_free(pre); |
| 1890 | } |
| 1891 | |
| 1892 | /******************************************************************************/ |
| 1893 | /* |
| 1894 | * OPENSSL EC_METHOD FUNCTIONS |
| 1895 | */ |
| 1896 | |
| 1897 | int ec_GFp_nistp256_group_init(EC_GROUP *group) |
| 1898 | { |
| 1899 | int ret; |
| 1900 | ret = ec_GFp_simple_group_init(group); |
| 1901 | group->a_is_minus3 = 1; |
| 1902 | return ret; |
| 1903 | } |
| 1904 | |
| 1905 | int ec_GFp_nistp256_group_set_curve(EC_GROUP *group, const BIGNUM *p, |
| 1906 | const BIGNUM *a, const BIGNUM *b, |
| 1907 | BN_CTX *ctx) |
| 1908 | { |
| 1909 | int ret = 0; |
| 1910 | BN_CTX *new_ctx = NULL; |
| 1911 | BIGNUM *curve_p, *curve_a, *curve_b; |
| 1912 | |
| 1913 | if (ctx == NULL) |
| 1914 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) |
| 1915 | return 0; |
| 1916 | BN_CTX_start(ctx); |
| 1917 | curve_p = BN_CTX_get(ctx); |
| 1918 | curve_a = BN_CTX_get(ctx); |
| 1919 | curve_b = BN_CTX_get(ctx); |
| 1920 | if (curve_b == NULL) |
| 1921 | goto err; |
| 1922 | BN_bin2bn(nistp256_curve_params[0], sizeof(felem_bytearray), curve_p); |
| 1923 | BN_bin2bn(nistp256_curve_params[1], sizeof(felem_bytearray), curve_a); |
| 1924 | BN_bin2bn(nistp256_curve_params[2], sizeof(felem_bytearray), curve_b); |
| 1925 | if ((BN_cmp(curve_p, p)) || (BN_cmp(curve_a, a)) || (BN_cmp(curve_b, b))) { |
| 1926 | ECerr(EC_F_EC_GFP_NISTP256_GROUP_SET_CURVE, |
| 1927 | EC_R_WRONG_CURVE_PARAMETERS); |
| 1928 | goto err; |
| 1929 | } |
| 1930 | group->field_mod_func = BN_nist_mod_256; |
| 1931 | ret = ec_GFp_simple_group_set_curve(group, p, a, b, ctx); |
| 1932 | err: |
| 1933 | BN_CTX_end(ctx); |
| 1934 | BN_CTX_free(new_ctx); |
| 1935 | return ret; |
| 1936 | } |
| 1937 | |
| 1938 | /* |
| 1939 | * Takes the Jacobian coordinates (X, Y, Z) of a point and returns (X', Y') = |
| 1940 | * (X/Z^2, Y/Z^3) |
| 1941 | */ |
| 1942 | int ec_GFp_nistp256_point_get_affine_coordinates(const EC_GROUP *group, |
| 1943 | const EC_POINT *point, |
| 1944 | BIGNUM *x, BIGNUM *y, |
| 1945 | BN_CTX *ctx) |
| 1946 | { |
| 1947 | felem z1, z2, x_in, y_in; |
| 1948 | smallfelem x_out, y_out; |
| 1949 | longfelem tmp; |
| 1950 | |
| 1951 | if (EC_POINT_is_at_infinity(group, point)) { |
| 1952 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, |
| 1953 | EC_R_POINT_AT_INFINITY); |
| 1954 | return 0; |
| 1955 | } |
| 1956 | if ((!BN_to_felem(x_in, point->X)) || (!BN_to_felem(y_in, point->Y)) || |
| 1957 | (!BN_to_felem(z1, point->Z))) |
| 1958 | return 0; |
| 1959 | felem_inv(z2, z1); |
| 1960 | felem_square(tmp, z2); |
| 1961 | felem_reduce(z1, tmp); |
| 1962 | felem_mul(tmp, x_in, z1); |
| 1963 | felem_reduce(x_in, tmp); |
| 1964 | felem_contract(x_out, x_in); |
| 1965 | if (x != NULL) { |
| 1966 | if (!smallfelem_to_BN(x, x_out)) { |
| 1967 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, |
| 1968 | ERR_R_BN_LIB); |
| 1969 | return 0; |
| 1970 | } |
| 1971 | } |
| 1972 | felem_mul(tmp, z1, z2); |
| 1973 | felem_reduce(z1, tmp); |
| 1974 | felem_mul(tmp, y_in, z1); |
| 1975 | felem_reduce(y_in, tmp); |
| 1976 | felem_contract(y_out, y_in); |
| 1977 | if (y != NULL) { |
| 1978 | if (!smallfelem_to_BN(y, y_out)) { |
| 1979 | ECerr(EC_F_EC_GFP_NISTP256_POINT_GET_AFFINE_COORDINATES, |
| 1980 | ERR_R_BN_LIB); |
| 1981 | return 0; |
| 1982 | } |
| 1983 | } |
| 1984 | return 1; |
| 1985 | } |
| 1986 | |
| 1987 | /* points below is of size |num|, and tmp_smallfelems is of size |num+1| */ |
| 1988 | static void make_points_affine(size_t num, smallfelem points[][3], |
| 1989 | smallfelem tmp_smallfelems[]) |
| 1990 | { |
| 1991 | /* |
| 1992 | * Runs in constant time, unless an input is the point at infinity (which |
| 1993 | * normally shouldn't happen). |
| 1994 | */ |
| 1995 | ec_GFp_nistp_points_make_affine_internal(num, |
| 1996 | points, |
| 1997 | sizeof(smallfelem), |
| 1998 | tmp_smallfelems, |
| 1999 | (void (*)(void *))smallfelem_one, |
| 2000 | smallfelem_is_zero_int, |
| 2001 | (void (*)(void *, const void *)) |
| 2002 | smallfelem_assign, |
| 2003 | (void (*)(void *, const void *)) |
| 2004 | smallfelem_square_contract, |
| 2005 | (void (*) |
| 2006 | (void *, const void *, |
| 2007 | const void *)) |
| 2008 | smallfelem_mul_contract, |
| 2009 | (void (*)(void *, const void *)) |
| 2010 | smallfelem_inv_contract, |
| 2011 | /* nothing to contract */ |
| 2012 | (void (*)(void *, const void *)) |
| 2013 | smallfelem_assign); |
| 2014 | } |
| 2015 | |
| 2016 | /* |
| 2017 | * Computes scalar*generator + \sum scalars[i]*points[i], ignoring NULL |
| 2018 | * values Result is stored in r (r can equal one of the inputs). |
| 2019 | */ |
| 2020 | int ec_GFp_nistp256_points_mul(const EC_GROUP *group, EC_POINT *r, |
| 2021 | const BIGNUM *scalar, size_t num, |
| 2022 | const EC_POINT *points[], |
| 2023 | const BIGNUM *scalars[], BN_CTX *ctx) |
| 2024 | { |
| 2025 | int ret = 0; |
| 2026 | int j; |
| 2027 | int mixed = 0; |
| 2028 | BIGNUM *x, *y, *z, *tmp_scalar; |
| 2029 | felem_bytearray g_secret; |
| 2030 | felem_bytearray *secrets = NULL; |
| 2031 | smallfelem (*pre_comp)[17][3] = NULL; |
| 2032 | smallfelem *tmp_smallfelems = NULL; |
| 2033 | unsigned i; |
| 2034 | int num_bytes; |
| 2035 | int have_pre_comp = 0; |
| 2036 | size_t num_points = num; |
| 2037 | smallfelem x_in, y_in, z_in; |
| 2038 | felem x_out, y_out, z_out; |
| 2039 | NISTP256_PRE_COMP *pre = NULL; |
| 2040 | const smallfelem(*g_pre_comp)[16][3] = NULL; |
| 2041 | EC_POINT *generator = NULL; |
| 2042 | const EC_POINT *p = NULL; |
| 2043 | const BIGNUM *p_scalar = NULL; |
| 2044 | |
| 2045 | BN_CTX_start(ctx); |
| 2046 | x = BN_CTX_get(ctx); |
| 2047 | y = BN_CTX_get(ctx); |
| 2048 | z = BN_CTX_get(ctx); |
| 2049 | tmp_scalar = BN_CTX_get(ctx); |
| 2050 | if (tmp_scalar == NULL) |
| 2051 | goto err; |
| 2052 | |
| 2053 | if (scalar != NULL) { |
| 2054 | pre = group->pre_comp.nistp256; |
| 2055 | if (pre) |
| 2056 | /* we have precomputation, try to use it */ |
| 2057 | g_pre_comp = (const smallfelem(*)[16][3])pre->g_pre_comp; |
| 2058 | else |
| 2059 | /* try to use the standard precomputation */ |
| 2060 | g_pre_comp = &gmul[0]; |
| 2061 | generator = EC_POINT_new(group); |
| 2062 | if (generator == NULL) |
| 2063 | goto err; |
| 2064 | /* get the generator from precomputation */ |
| 2065 | if (!smallfelem_to_BN(x, g_pre_comp[0][1][0]) || |
| 2066 | !smallfelem_to_BN(y, g_pre_comp[0][1][1]) || |
| 2067 | !smallfelem_to_BN(z, g_pre_comp[0][1][2])) { |
| 2068 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); |
| 2069 | goto err; |
| 2070 | } |
| 2071 | if (!EC_POINT_set_Jprojective_coordinates_GFp(group, |
| 2072 | generator, x, y, z, |
| 2073 | ctx)) |
| 2074 | goto err; |
| 2075 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) |
| 2076 | /* precomputation matches generator */ |
| 2077 | have_pre_comp = 1; |
| 2078 | else |
| 2079 | /* |
| 2080 | * we don't have valid precomputation: treat the generator as a |
| 2081 | * random point |
| 2082 | */ |
| 2083 | num_points++; |
| 2084 | } |
| 2085 | if (num_points > 0) { |
| 2086 | if (num_points >= 3) { |
| 2087 | /* |
| 2088 | * unless we precompute multiples for just one or two points, |
| 2089 | * converting those into affine form is time well spent |
| 2090 | */ |
| 2091 | mixed = 1; |
| 2092 | } |
| 2093 | secrets = OPENSSL_malloc(sizeof(*secrets) * num_points); |
| 2094 | pre_comp = OPENSSL_malloc(sizeof(*pre_comp) * num_points); |
| 2095 | if (mixed) |
| 2096 | tmp_smallfelems = |
| 2097 | OPENSSL_malloc(sizeof(*tmp_smallfelems) * (num_points * 17 + 1)); |
| 2098 | if ((secrets == NULL) || (pre_comp == NULL) |
| 2099 | || (mixed && (tmp_smallfelems == NULL))) { |
| 2100 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
| 2101 | goto err; |
| 2102 | } |
| 2103 | |
| 2104 | /* |
| 2105 | * we treat NULL scalars as 0, and NULL points as points at infinity, |
| 2106 | * i.e., they contribute nothing to the linear combination |
| 2107 | */ |
| 2108 | memset(secrets, 0, sizeof(*secrets) * num_points); |
| 2109 | memset(pre_comp, 0, sizeof(*pre_comp) * num_points); |
| 2110 | for (i = 0; i < num_points; ++i) { |
| 2111 | if (i == num) { |
| 2112 | /* |
| 2113 | * we didn't have a valid precomputation, so we pick the |
| 2114 | * generator |
| 2115 | */ |
| 2116 | p = EC_GROUP_get0_generator(group); |
| 2117 | p_scalar = scalar; |
| 2118 | } else { |
| 2119 | /* the i^th point */ |
| 2120 | p = points[i]; |
| 2121 | p_scalar = scalars[i]; |
| 2122 | } |
| 2123 | if ((p_scalar != NULL) && (p != NULL)) { |
| 2124 | /* reduce scalar to 0 <= scalar < 2^256 */ |
| 2125 | if ((BN_num_bits(p_scalar) > 256) |
| 2126 | || (BN_is_negative(p_scalar))) { |
| 2127 | /* |
| 2128 | * this is an unusual input, and we don't guarantee |
| 2129 | * constant-timeness |
| 2130 | */ |
| 2131 | if (!BN_nnmod(tmp_scalar, p_scalar, group->order, ctx)) { |
| 2132 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); |
| 2133 | goto err; |
| 2134 | } |
| 2135 | num_bytes = BN_bn2lebinpad(tmp_scalar, |
| 2136 | secrets[i], sizeof(secrets[i])); |
| 2137 | } else { |
| 2138 | num_bytes = BN_bn2lebinpad(p_scalar, |
| 2139 | secrets[i], sizeof(secrets[i])); |
| 2140 | } |
| 2141 | if (num_bytes < 0) { |
| 2142 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); |
| 2143 | goto err; |
| 2144 | } |
| 2145 | /* precompute multiples */ |
| 2146 | if ((!BN_to_felem(x_out, p->X)) || |
| 2147 | (!BN_to_felem(y_out, p->Y)) || |
| 2148 | (!BN_to_felem(z_out, p->Z))) |
| 2149 | goto err; |
| 2150 | felem_shrink(pre_comp[i][1][0], x_out); |
| 2151 | felem_shrink(pre_comp[i][1][1], y_out); |
| 2152 | felem_shrink(pre_comp[i][1][2], z_out); |
| 2153 | for (j = 2; j <= 16; ++j) { |
| 2154 | if (j & 1) { |
| 2155 | point_add_small(pre_comp[i][j][0], pre_comp[i][j][1], |
| 2156 | pre_comp[i][j][2], pre_comp[i][1][0], |
| 2157 | pre_comp[i][1][1], pre_comp[i][1][2], |
| 2158 | pre_comp[i][j - 1][0], |
| 2159 | pre_comp[i][j - 1][1], |
| 2160 | pre_comp[i][j - 1][2]); |
| 2161 | } else { |
| 2162 | point_double_small(pre_comp[i][j][0], |
| 2163 | pre_comp[i][j][1], |
| 2164 | pre_comp[i][j][2], |
| 2165 | pre_comp[i][j / 2][0], |
| 2166 | pre_comp[i][j / 2][1], |
| 2167 | pre_comp[i][j / 2][2]); |
| 2168 | } |
| 2169 | } |
| 2170 | } |
| 2171 | } |
| 2172 | if (mixed) |
| 2173 | make_points_affine(num_points * 17, pre_comp[0], tmp_smallfelems); |
| 2174 | } |
| 2175 | |
| 2176 | /* the scalar for the generator */ |
| 2177 | if ((scalar != NULL) && (have_pre_comp)) { |
| 2178 | memset(g_secret, 0, sizeof(g_secret)); |
| 2179 | /* reduce scalar to 0 <= scalar < 2^256 */ |
| 2180 | if ((BN_num_bits(scalar) > 256) || (BN_is_negative(scalar))) { |
| 2181 | /* |
| 2182 | * this is an unusual input, and we don't guarantee |
| 2183 | * constant-timeness |
| 2184 | */ |
| 2185 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { |
| 2186 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); |
| 2187 | goto err; |
| 2188 | } |
| 2189 | num_bytes = BN_bn2lebinpad(tmp_scalar, g_secret, sizeof(g_secret)); |
| 2190 | } else { |
| 2191 | num_bytes = BN_bn2lebinpad(scalar, g_secret, sizeof(g_secret)); |
| 2192 | } |
| 2193 | /* do the multiplication with generator precomputation */ |
| 2194 | batch_mul(x_out, y_out, z_out, |
| 2195 | (const felem_bytearray(*))secrets, num_points, |
| 2196 | g_secret, |
| 2197 | mixed, (const smallfelem(*)[17][3])pre_comp, g_pre_comp); |
| 2198 | } else { |
| 2199 | /* do the multiplication without generator precomputation */ |
| 2200 | batch_mul(x_out, y_out, z_out, |
| 2201 | (const felem_bytearray(*))secrets, num_points, |
| 2202 | NULL, mixed, (const smallfelem(*)[17][3])pre_comp, NULL); |
| 2203 | } |
| 2204 | /* reduce the output to its unique minimal representation */ |
| 2205 | felem_contract(x_in, x_out); |
| 2206 | felem_contract(y_in, y_out); |
| 2207 | felem_contract(z_in, z_out); |
| 2208 | if ((!smallfelem_to_BN(x, x_in)) || (!smallfelem_to_BN(y, y_in)) || |
| 2209 | (!smallfelem_to_BN(z, z_in))) { |
| 2210 | ECerr(EC_F_EC_GFP_NISTP256_POINTS_MUL, ERR_R_BN_LIB); |
| 2211 | goto err; |
| 2212 | } |
| 2213 | ret = EC_POINT_set_Jprojective_coordinates_GFp(group, r, x, y, z, ctx); |
| 2214 | |
| 2215 | err: |
| 2216 | BN_CTX_end(ctx); |
| 2217 | EC_POINT_free(generator); |
| 2218 | OPENSSL_free(secrets); |
| 2219 | OPENSSL_free(pre_comp); |
| 2220 | OPENSSL_free(tmp_smallfelems); |
| 2221 | return ret; |
| 2222 | } |
| 2223 | |
| 2224 | int ec_GFp_nistp256_precompute_mult(EC_GROUP *group, BN_CTX *ctx) |
| 2225 | { |
| 2226 | int ret = 0; |
| 2227 | NISTP256_PRE_COMP *pre = NULL; |
| 2228 | int i, j; |
| 2229 | BN_CTX *new_ctx = NULL; |
| 2230 | BIGNUM *x, *y; |
| 2231 | EC_POINT *generator = NULL; |
| 2232 | smallfelem tmp_smallfelems[32]; |
| 2233 | felem x_tmp, y_tmp, z_tmp; |
| 2234 | |
| 2235 | /* throw away old precomputation */ |
| 2236 | EC_pre_comp_free(group); |
| 2237 | if (ctx == NULL) |
| 2238 | if ((ctx = new_ctx = BN_CTX_new()) == NULL) |
| 2239 | return 0; |
| 2240 | BN_CTX_start(ctx); |
| 2241 | x = BN_CTX_get(ctx); |
| 2242 | y = BN_CTX_get(ctx); |
| 2243 | if (y == NULL) |
| 2244 | goto err; |
| 2245 | /* get the generator */ |
| 2246 | if (group->generator == NULL) |
| 2247 | goto err; |
| 2248 | generator = EC_POINT_new(group); |
| 2249 | if (generator == NULL) |
| 2250 | goto err; |
| 2251 | BN_bin2bn(nistp256_curve_params[3], sizeof(felem_bytearray), x); |
| 2252 | BN_bin2bn(nistp256_curve_params[4], sizeof(felem_bytearray), y); |
| 2253 | if (!EC_POINT_set_affine_coordinates(group, generator, x, y, ctx)) |
| 2254 | goto err; |
| 2255 | if ((pre = nistp256_pre_comp_new()) == NULL) |
| 2256 | goto err; |
| 2257 | /* |
| 2258 | * if the generator is the standard one, use built-in precomputation |
| 2259 | */ |
| 2260 | if (0 == EC_POINT_cmp(group, generator, group->generator, ctx)) { |
| 2261 | memcpy(pre->g_pre_comp, gmul, sizeof(pre->g_pre_comp)); |
| 2262 | goto done; |
| 2263 | } |
| 2264 | if ((!BN_to_felem(x_tmp, group->generator->X)) || |
| 2265 | (!BN_to_felem(y_tmp, group->generator->Y)) || |
| 2266 | (!BN_to_felem(z_tmp, group->generator->Z))) |
| 2267 | goto err; |
| 2268 | felem_shrink(pre->g_pre_comp[0][1][0], x_tmp); |
| 2269 | felem_shrink(pre->g_pre_comp[0][1][1], y_tmp); |
| 2270 | felem_shrink(pre->g_pre_comp[0][1][2], z_tmp); |
| 2271 | /* |
| 2272 | * compute 2^64*G, 2^128*G, 2^192*G for the first table, 2^32*G, 2^96*G, |
| 2273 | * 2^160*G, 2^224*G for the second one |
| 2274 | */ |
| 2275 | for (i = 1; i <= 8; i <<= 1) { |
| 2276 | point_double_small(pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
| 2277 | pre->g_pre_comp[1][i][2], pre->g_pre_comp[0][i][0], |
| 2278 | pre->g_pre_comp[0][i][1], |
| 2279 | pre->g_pre_comp[0][i][2]); |
| 2280 | for (j = 0; j < 31; ++j) { |
| 2281 | point_double_small(pre->g_pre_comp[1][i][0], |
| 2282 | pre->g_pre_comp[1][i][1], |
| 2283 | pre->g_pre_comp[1][i][2], |
| 2284 | pre->g_pre_comp[1][i][0], |
| 2285 | pre->g_pre_comp[1][i][1], |
| 2286 | pre->g_pre_comp[1][i][2]); |
| 2287 | } |
| 2288 | if (i == 8) |
| 2289 | break; |
| 2290 | point_double_small(pre->g_pre_comp[0][2 * i][0], |
| 2291 | pre->g_pre_comp[0][2 * i][1], |
| 2292 | pre->g_pre_comp[0][2 * i][2], |
| 2293 | pre->g_pre_comp[1][i][0], pre->g_pre_comp[1][i][1], |
| 2294 | pre->g_pre_comp[1][i][2]); |
| 2295 | for (j = 0; j < 31; ++j) { |
| 2296 | point_double_small(pre->g_pre_comp[0][2 * i][0], |
| 2297 | pre->g_pre_comp[0][2 * i][1], |
| 2298 | pre->g_pre_comp[0][2 * i][2], |
| 2299 | pre->g_pre_comp[0][2 * i][0], |
| 2300 | pre->g_pre_comp[0][2 * i][1], |
| 2301 | pre->g_pre_comp[0][2 * i][2]); |
| 2302 | } |
| 2303 | } |
| 2304 | for (i = 0; i < 2; i++) { |
| 2305 | /* g_pre_comp[i][0] is the point at infinity */ |
| 2306 | memset(pre->g_pre_comp[i][0], 0, sizeof(pre->g_pre_comp[i][0])); |
| 2307 | /* the remaining multiples */ |
| 2308 | /* 2^64*G + 2^128*G resp. 2^96*G + 2^160*G */ |
| 2309 | point_add_small(pre->g_pre_comp[i][6][0], pre->g_pre_comp[i][6][1], |
| 2310 | pre->g_pre_comp[i][6][2], pre->g_pre_comp[i][4][0], |
| 2311 | pre->g_pre_comp[i][4][1], pre->g_pre_comp[i][4][2], |
| 2312 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
| 2313 | pre->g_pre_comp[i][2][2]); |
| 2314 | /* 2^64*G + 2^192*G resp. 2^96*G + 2^224*G */ |
| 2315 | point_add_small(pre->g_pre_comp[i][10][0], pre->g_pre_comp[i][10][1], |
| 2316 | pre->g_pre_comp[i][10][2], pre->g_pre_comp[i][8][0], |
| 2317 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
| 2318 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
| 2319 | pre->g_pre_comp[i][2][2]); |
| 2320 | /* 2^128*G + 2^192*G resp. 2^160*G + 2^224*G */ |
| 2321 | point_add_small(pre->g_pre_comp[i][12][0], pre->g_pre_comp[i][12][1], |
| 2322 | pre->g_pre_comp[i][12][2], pre->g_pre_comp[i][8][0], |
| 2323 | pre->g_pre_comp[i][8][1], pre->g_pre_comp[i][8][2], |
| 2324 | pre->g_pre_comp[i][4][0], pre->g_pre_comp[i][4][1], |
| 2325 | pre->g_pre_comp[i][4][2]); |
| 2326 | /* |
| 2327 | * 2^64*G + 2^128*G + 2^192*G resp. 2^96*G + 2^160*G + 2^224*G |
| 2328 | */ |
| 2329 | point_add_small(pre->g_pre_comp[i][14][0], pre->g_pre_comp[i][14][1], |
| 2330 | pre->g_pre_comp[i][14][2], pre->g_pre_comp[i][12][0], |
| 2331 | pre->g_pre_comp[i][12][1], pre->g_pre_comp[i][12][2], |
| 2332 | pre->g_pre_comp[i][2][0], pre->g_pre_comp[i][2][1], |
| 2333 | pre->g_pre_comp[i][2][2]); |
| 2334 | for (j = 1; j < 8; ++j) { |
| 2335 | /* odd multiples: add G resp. 2^32*G */ |
| 2336 | point_add_small(pre->g_pre_comp[i][2 * j + 1][0], |
| 2337 | pre->g_pre_comp[i][2 * j + 1][1], |
| 2338 | pre->g_pre_comp[i][2 * j + 1][2], |
| 2339 | pre->g_pre_comp[i][2 * j][0], |
| 2340 | pre->g_pre_comp[i][2 * j][1], |
| 2341 | pre->g_pre_comp[i][2 * j][2], |
| 2342 | pre->g_pre_comp[i][1][0], |
| 2343 | pre->g_pre_comp[i][1][1], |
| 2344 | pre->g_pre_comp[i][1][2]); |
| 2345 | } |
| 2346 | } |
| 2347 | make_points_affine(31, &(pre->g_pre_comp[0][1]), tmp_smallfelems); |
| 2348 | |
| 2349 | done: |
| 2350 | SETPRECOMP(group, nistp256, pre); |
| 2351 | pre = NULL; |
| 2352 | ret = 1; |
| 2353 | |
| 2354 | err: |
| 2355 | BN_CTX_end(ctx); |
| 2356 | EC_POINT_free(generator); |
| 2357 | BN_CTX_free(new_ctx); |
| 2358 | EC_nistp256_pre_comp_free(pre); |
| 2359 | return ret; |
| 2360 | } |
| 2361 | |
| 2362 | int ec_GFp_nistp256_have_precompute_mult(const EC_GROUP *group) |
| 2363 | { |
| 2364 | return HAVEPRECOMP(group, nistp256); |
| 2365 | } |
| 2366 | #endif |