yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2014-2022 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * Copyright (c) 2014, Intel Corporation. All Rights Reserved. |
| 4 | * Copyright (c) 2015, CloudFlare, Inc. |
| 5 | * |
| 6 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 7 | * this file except in compliance with the License. You can obtain a copy |
| 8 | * in the file LICENSE in the source distribution or at |
| 9 | * https://www.openssl.org/source/license.html |
| 10 | * |
| 11 | * Originally written by Shay Gueron (1, 2), and Vlad Krasnov (1, 3) |
| 12 | * (1) Intel Corporation, Israel Development Center, Haifa, Israel |
| 13 | * (2) University of Haifa, Israel |
| 14 | * (3) CloudFlare, Inc. |
| 15 | * |
| 16 | * Reference: |
| 17 | * S.Gueron and V.Krasnov, "Fast Prime Field Elliptic Curve Cryptography with |
| 18 | * 256 Bit Primes" |
| 19 | */ |
| 20 | |
| 21 | #include <string.h> |
| 22 | |
| 23 | #include "internal/cryptlib.h" |
| 24 | #include "crypto/bn.h" |
| 25 | #include "ec_local.h" |
| 26 | #include "internal/refcount.h" |
| 27 | |
| 28 | #if BN_BITS2 != 64 |
| 29 | # define TOBN(hi,lo) lo,hi |
| 30 | #else |
| 31 | # define TOBN(hi,lo) ((BN_ULONG)hi<<32|lo) |
| 32 | #endif |
| 33 | |
| 34 | #if defined(__GNUC__) |
| 35 | # define ALIGN32 __attribute((aligned(32))) |
| 36 | #elif defined(_MSC_VER) |
| 37 | # define ALIGN32 __declspec(align(32)) |
| 38 | #else |
| 39 | # define ALIGN32 |
| 40 | #endif |
| 41 | |
| 42 | #define ALIGNPTR(p,N) ((unsigned char *)p+N-(size_t)p%N) |
| 43 | #define P256_LIMBS (256/BN_BITS2) |
| 44 | |
| 45 | typedef unsigned short u16; |
| 46 | |
| 47 | typedef struct { |
| 48 | BN_ULONG X[P256_LIMBS]; |
| 49 | BN_ULONG Y[P256_LIMBS]; |
| 50 | BN_ULONG Z[P256_LIMBS]; |
| 51 | } P256_POINT; |
| 52 | |
| 53 | typedef struct { |
| 54 | BN_ULONG X[P256_LIMBS]; |
| 55 | BN_ULONG Y[P256_LIMBS]; |
| 56 | } P256_POINT_AFFINE; |
| 57 | |
| 58 | typedef P256_POINT_AFFINE PRECOMP256_ROW[64]; |
| 59 | |
| 60 | /* structure for precomputed multiples of the generator */ |
| 61 | struct nistz256_pre_comp_st { |
| 62 | const EC_GROUP *group; /* Parent EC_GROUP object */ |
| 63 | size_t w; /* Window size */ |
| 64 | /* |
| 65 | * Constant time access to the X and Y coordinates of the pre-computed, |
| 66 | * generator multiplies, in the Montgomery domain. Pre-calculated |
| 67 | * multiplies are stored in affine form. |
| 68 | */ |
| 69 | PRECOMP256_ROW *precomp; |
| 70 | void *precomp_storage; |
| 71 | CRYPTO_REF_COUNT references; |
| 72 | CRYPTO_RWLOCK *lock; |
| 73 | }; |
| 74 | |
| 75 | /* Functions implemented in assembly */ |
| 76 | /* |
| 77 | * Most of below mentioned functions *preserve* the property of inputs |
| 78 | * being fully reduced, i.e. being in [0, modulus) range. Simply put if |
| 79 | * inputs are fully reduced, then output is too. Note that reverse is |
| 80 | * not true, in sense that given partially reduced inputs output can be |
| 81 | * either, not unlikely reduced. And "most" in first sentence refers to |
| 82 | * the fact that given the calculations flow one can tolerate that |
| 83 | * addition, 1st function below, produces partially reduced result *if* |
| 84 | * multiplications by 2 and 3, which customarily use addition, fully |
| 85 | * reduce it. This effectively gives two options: a) addition produces |
| 86 | * fully reduced result [as long as inputs are, just like remaining |
| 87 | * functions]; b) addition is allowed to produce partially reduced |
| 88 | * result, but multiplications by 2 and 3 perform additional reduction |
| 89 | * step. Choice between the two can be platform-specific, but it was a) |
| 90 | * in all cases so far... |
| 91 | */ |
| 92 | /* Modular add: res = a+b mod P */ |
| 93 | void ecp_nistz256_add(BN_ULONG res[P256_LIMBS], |
| 94 | const BN_ULONG a[P256_LIMBS], |
| 95 | const BN_ULONG b[P256_LIMBS]); |
| 96 | /* Modular mul by 2: res = 2*a mod P */ |
| 97 | void ecp_nistz256_mul_by_2(BN_ULONG res[P256_LIMBS], |
| 98 | const BN_ULONG a[P256_LIMBS]); |
| 99 | /* Modular mul by 3: res = 3*a mod P */ |
| 100 | void ecp_nistz256_mul_by_3(BN_ULONG res[P256_LIMBS], |
| 101 | const BN_ULONG a[P256_LIMBS]); |
| 102 | |
| 103 | /* Modular div by 2: res = a/2 mod P */ |
| 104 | void ecp_nistz256_div_by_2(BN_ULONG res[P256_LIMBS], |
| 105 | const BN_ULONG a[P256_LIMBS]); |
| 106 | /* Modular sub: res = a-b mod P */ |
| 107 | void ecp_nistz256_sub(BN_ULONG res[P256_LIMBS], |
| 108 | const BN_ULONG a[P256_LIMBS], |
| 109 | const BN_ULONG b[P256_LIMBS]); |
| 110 | /* Modular neg: res = -a mod P */ |
| 111 | void ecp_nistz256_neg(BN_ULONG res[P256_LIMBS], const BN_ULONG a[P256_LIMBS]); |
| 112 | /* Montgomery mul: res = a*b*2^-256 mod P */ |
| 113 | void ecp_nistz256_mul_mont(BN_ULONG res[P256_LIMBS], |
| 114 | const BN_ULONG a[P256_LIMBS], |
| 115 | const BN_ULONG b[P256_LIMBS]); |
| 116 | /* Montgomery sqr: res = a*a*2^-256 mod P */ |
| 117 | void ecp_nistz256_sqr_mont(BN_ULONG res[P256_LIMBS], |
| 118 | const BN_ULONG a[P256_LIMBS]); |
| 119 | /* Convert a number from Montgomery domain, by multiplying with 1 */ |
| 120 | void ecp_nistz256_from_mont(BN_ULONG res[P256_LIMBS], |
| 121 | const BN_ULONG in[P256_LIMBS]); |
| 122 | /* Convert a number to Montgomery domain, by multiplying with 2^512 mod P*/ |
| 123 | void ecp_nistz256_to_mont(BN_ULONG res[P256_LIMBS], |
| 124 | const BN_ULONG in[P256_LIMBS]); |
| 125 | /* Functions that perform constant time access to the precomputed tables */ |
| 126 | void ecp_nistz256_scatter_w5(P256_POINT *val, |
| 127 | const P256_POINT *in_t, int idx); |
| 128 | void ecp_nistz256_gather_w5(P256_POINT *val, |
| 129 | const P256_POINT *in_t, int idx); |
| 130 | void ecp_nistz256_scatter_w7(P256_POINT_AFFINE *val, |
| 131 | const P256_POINT_AFFINE *in_t, int idx); |
| 132 | void ecp_nistz256_gather_w7(P256_POINT_AFFINE *val, |
| 133 | const P256_POINT_AFFINE *in_t, int idx); |
| 134 | |
| 135 | /* One converted into the Montgomery domain */ |
| 136 | static const BN_ULONG ONE[P256_LIMBS] = { |
| 137 | TOBN(0x00000000, 0x00000001), TOBN(0xffffffff, 0x00000000), |
| 138 | TOBN(0xffffffff, 0xffffffff), TOBN(0x00000000, 0xfffffffe) |
| 139 | }; |
| 140 | |
| 141 | static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group); |
| 142 | |
| 143 | /* Precomputed tables for the default generator */ |
| 144 | extern const PRECOMP256_ROW ecp_nistz256_precomputed[37]; |
| 145 | |
| 146 | /* Recode window to a signed digit, see ecp_nistputil.c for details */ |
| 147 | static unsigned int _booth_recode_w5(unsigned int in) |
| 148 | { |
| 149 | unsigned int s, d; |
| 150 | |
| 151 | s = ~((in >> 5) - 1); |
| 152 | d = (1 << 6) - in - 1; |
| 153 | d = (d & s) | (in & ~s); |
| 154 | d = (d >> 1) + (d & 1); |
| 155 | |
| 156 | return (d << 1) + (s & 1); |
| 157 | } |
| 158 | |
| 159 | static unsigned int _booth_recode_w7(unsigned int in) |
| 160 | { |
| 161 | unsigned int s, d; |
| 162 | |
| 163 | s = ~((in >> 7) - 1); |
| 164 | d = (1 << 8) - in - 1; |
| 165 | d = (d & s) | (in & ~s); |
| 166 | d = (d >> 1) + (d & 1); |
| 167 | |
| 168 | return (d << 1) + (s & 1); |
| 169 | } |
| 170 | |
| 171 | static void copy_conditional(BN_ULONG dst[P256_LIMBS], |
| 172 | const BN_ULONG src[P256_LIMBS], BN_ULONG move) |
| 173 | { |
| 174 | BN_ULONG mask1 = 0-move; |
| 175 | BN_ULONG mask2 = ~mask1; |
| 176 | |
| 177 | dst[0] = (src[0] & mask1) ^ (dst[0] & mask2); |
| 178 | dst[1] = (src[1] & mask1) ^ (dst[1] & mask2); |
| 179 | dst[2] = (src[2] & mask1) ^ (dst[2] & mask2); |
| 180 | dst[3] = (src[3] & mask1) ^ (dst[3] & mask2); |
| 181 | if (P256_LIMBS == 8) { |
| 182 | dst[4] = (src[4] & mask1) ^ (dst[4] & mask2); |
| 183 | dst[5] = (src[5] & mask1) ^ (dst[5] & mask2); |
| 184 | dst[6] = (src[6] & mask1) ^ (dst[6] & mask2); |
| 185 | dst[7] = (src[7] & mask1) ^ (dst[7] & mask2); |
| 186 | } |
| 187 | } |
| 188 | |
| 189 | static BN_ULONG is_zero(BN_ULONG in) |
| 190 | { |
| 191 | in |= (0 - in); |
| 192 | in = ~in; |
| 193 | in >>= BN_BITS2 - 1; |
| 194 | return in; |
| 195 | } |
| 196 | |
| 197 | static BN_ULONG is_equal(const BN_ULONG a[P256_LIMBS], |
| 198 | const BN_ULONG b[P256_LIMBS]) |
| 199 | { |
| 200 | BN_ULONG res; |
| 201 | |
| 202 | res = a[0] ^ b[0]; |
| 203 | res |= a[1] ^ b[1]; |
| 204 | res |= a[2] ^ b[2]; |
| 205 | res |= a[3] ^ b[3]; |
| 206 | if (P256_LIMBS == 8) { |
| 207 | res |= a[4] ^ b[4]; |
| 208 | res |= a[5] ^ b[5]; |
| 209 | res |= a[6] ^ b[6]; |
| 210 | res |= a[7] ^ b[7]; |
| 211 | } |
| 212 | |
| 213 | return is_zero(res); |
| 214 | } |
| 215 | |
| 216 | static BN_ULONG is_one(const BIGNUM *z) |
| 217 | { |
| 218 | BN_ULONG res = 0; |
| 219 | BN_ULONG *a = bn_get_words(z); |
| 220 | |
| 221 | if (bn_get_top(z) == (P256_LIMBS - P256_LIMBS / 8)) { |
| 222 | res = a[0] ^ ONE[0]; |
| 223 | res |= a[1] ^ ONE[1]; |
| 224 | res |= a[2] ^ ONE[2]; |
| 225 | res |= a[3] ^ ONE[3]; |
| 226 | if (P256_LIMBS == 8) { |
| 227 | res |= a[4] ^ ONE[4]; |
| 228 | res |= a[5] ^ ONE[5]; |
| 229 | res |= a[6] ^ ONE[6]; |
| 230 | /* |
| 231 | * no check for a[7] (being zero) on 32-bit platforms, |
| 232 | * because value of "one" takes only 7 limbs. |
| 233 | */ |
| 234 | } |
| 235 | res = is_zero(res); |
| 236 | } |
| 237 | |
| 238 | return res; |
| 239 | } |
| 240 | |
| 241 | /* |
| 242 | * For reference, this macro is used only when new ecp_nistz256 assembly |
| 243 | * module is being developed. For example, configure with |
| 244 | * -DECP_NISTZ256_REFERENCE_IMPLEMENTATION and implement only functions |
| 245 | * performing simplest arithmetic operations on 256-bit vectors. Then |
| 246 | * work on implementation of higher-level functions performing point |
| 247 | * operations. Then remove ECP_NISTZ256_REFERENCE_IMPLEMENTATION |
| 248 | * and never define it again. (The correct macro denoting presence of |
| 249 | * ecp_nistz256 module is ECP_NISTZ256_ASM.) |
| 250 | */ |
| 251 | #ifndef ECP_NISTZ256_REFERENCE_IMPLEMENTATION |
| 252 | void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a); |
| 253 | void ecp_nistz256_point_add(P256_POINT *r, |
| 254 | const P256_POINT *a, const P256_POINT *b); |
| 255 | void ecp_nistz256_point_add_affine(P256_POINT *r, |
| 256 | const P256_POINT *a, |
| 257 | const P256_POINT_AFFINE *b); |
| 258 | #else |
| 259 | /* Point double: r = 2*a */ |
| 260 | static void ecp_nistz256_point_double(P256_POINT *r, const P256_POINT *a) |
| 261 | { |
| 262 | BN_ULONG S[P256_LIMBS]; |
| 263 | BN_ULONG M[P256_LIMBS]; |
| 264 | BN_ULONG Zsqr[P256_LIMBS]; |
| 265 | BN_ULONG tmp0[P256_LIMBS]; |
| 266 | |
| 267 | const BN_ULONG *in_x = a->X; |
| 268 | const BN_ULONG *in_y = a->Y; |
| 269 | const BN_ULONG *in_z = a->Z; |
| 270 | |
| 271 | BN_ULONG *res_x = r->X; |
| 272 | BN_ULONG *res_y = r->Y; |
| 273 | BN_ULONG *res_z = r->Z; |
| 274 | |
| 275 | ecp_nistz256_mul_by_2(S, in_y); |
| 276 | |
| 277 | ecp_nistz256_sqr_mont(Zsqr, in_z); |
| 278 | |
| 279 | ecp_nistz256_sqr_mont(S, S); |
| 280 | |
| 281 | ecp_nistz256_mul_mont(res_z, in_z, in_y); |
| 282 | ecp_nistz256_mul_by_2(res_z, res_z); |
| 283 | |
| 284 | ecp_nistz256_add(M, in_x, Zsqr); |
| 285 | ecp_nistz256_sub(Zsqr, in_x, Zsqr); |
| 286 | |
| 287 | ecp_nistz256_sqr_mont(res_y, S); |
| 288 | ecp_nistz256_div_by_2(res_y, res_y); |
| 289 | |
| 290 | ecp_nistz256_mul_mont(M, M, Zsqr); |
| 291 | ecp_nistz256_mul_by_3(M, M); |
| 292 | |
| 293 | ecp_nistz256_mul_mont(S, S, in_x); |
| 294 | ecp_nistz256_mul_by_2(tmp0, S); |
| 295 | |
| 296 | ecp_nistz256_sqr_mont(res_x, M); |
| 297 | |
| 298 | ecp_nistz256_sub(res_x, res_x, tmp0); |
| 299 | ecp_nistz256_sub(S, S, res_x); |
| 300 | |
| 301 | ecp_nistz256_mul_mont(S, S, M); |
| 302 | ecp_nistz256_sub(res_y, S, res_y); |
| 303 | } |
| 304 | |
| 305 | /* Point addition: r = a+b */ |
| 306 | static void ecp_nistz256_point_add(P256_POINT *r, |
| 307 | const P256_POINT *a, const P256_POINT *b) |
| 308 | { |
| 309 | BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; |
| 310 | BN_ULONG U1[P256_LIMBS], S1[P256_LIMBS]; |
| 311 | BN_ULONG Z1sqr[P256_LIMBS]; |
| 312 | BN_ULONG Z2sqr[P256_LIMBS]; |
| 313 | BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; |
| 314 | BN_ULONG Hsqr[P256_LIMBS]; |
| 315 | BN_ULONG Rsqr[P256_LIMBS]; |
| 316 | BN_ULONG Hcub[P256_LIMBS]; |
| 317 | |
| 318 | BN_ULONG res_x[P256_LIMBS]; |
| 319 | BN_ULONG res_y[P256_LIMBS]; |
| 320 | BN_ULONG res_z[P256_LIMBS]; |
| 321 | |
| 322 | BN_ULONG in1infty, in2infty; |
| 323 | |
| 324 | const BN_ULONG *in1_x = a->X; |
| 325 | const BN_ULONG *in1_y = a->Y; |
| 326 | const BN_ULONG *in1_z = a->Z; |
| 327 | |
| 328 | const BN_ULONG *in2_x = b->X; |
| 329 | const BN_ULONG *in2_y = b->Y; |
| 330 | const BN_ULONG *in2_z = b->Z; |
| 331 | |
| 332 | /* |
| 333 | * Infinity in encoded as (,,0) |
| 334 | */ |
| 335 | in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); |
| 336 | if (P256_LIMBS == 8) |
| 337 | in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); |
| 338 | |
| 339 | in2infty = (in2_z[0] | in2_z[1] | in2_z[2] | in2_z[3]); |
| 340 | if (P256_LIMBS == 8) |
| 341 | in2infty |= (in2_z[4] | in2_z[5] | in2_z[6] | in2_z[7]); |
| 342 | |
| 343 | in1infty = is_zero(in1infty); |
| 344 | in2infty = is_zero(in2infty); |
| 345 | |
| 346 | ecp_nistz256_sqr_mont(Z2sqr, in2_z); /* Z2^2 */ |
| 347 | ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */ |
| 348 | |
| 349 | ecp_nistz256_mul_mont(S1, Z2sqr, in2_z); /* S1 = Z2^3 */ |
| 350 | ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */ |
| 351 | |
| 352 | ecp_nistz256_mul_mont(S1, S1, in1_y); /* S1 = Y1*Z2^3 */ |
| 353 | ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */ |
| 354 | ecp_nistz256_sub(R, S2, S1); /* R = S2 - S1 */ |
| 355 | |
| 356 | ecp_nistz256_mul_mont(U1, in1_x, Z2sqr); /* U1 = X1*Z2^2 */ |
| 357 | ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */ |
| 358 | ecp_nistz256_sub(H, U2, U1); /* H = U2 - U1 */ |
| 359 | |
| 360 | /* |
| 361 | * The formulae are incorrect if the points are equal so we check for |
| 362 | * this and do doubling if this happens. |
| 363 | * |
| 364 | * Points here are in Jacobian projective coordinates (Xi, Yi, Zi) |
| 365 | * that are bound to the affine coordinates (xi, yi) by the following |
| 366 | * equations: |
| 367 | * - xi = Xi / (Zi)^2 |
| 368 | * - y1 = Yi / (Zi)^3 |
| 369 | * |
| 370 | * For the sake of optimization, the algorithm operates over |
| 371 | * intermediate variables U1, U2 and S1, S2 that are derived from |
| 372 | * the projective coordinates: |
| 373 | * - U1 = X1 * (Z2)^2 ; U2 = X2 * (Z1)^2 |
| 374 | * - S1 = Y1 * (Z2)^3 ; S2 = Y2 * (Z1)^3 |
| 375 | * |
| 376 | * It is easy to prove that is_equal(U1, U2) implies that the affine |
| 377 | * x-coordinates are equal, or either point is at infinity. |
| 378 | * Likewise is_equal(S1, S2) implies that the affine y-coordinates are |
| 379 | * equal, or either point is at infinity. |
| 380 | * |
| 381 | * The special case of either point being the point at infinity (Z1 or Z2 |
| 382 | * is zero), is handled separately later on in this function, so we avoid |
| 383 | * jumping to point_double here in those special cases. |
| 384 | * |
| 385 | * When both points are inverse of each other, we know that the affine |
| 386 | * x-coordinates are equal, and the y-coordinates have different sign. |
| 387 | * Therefore since U1 = U2, we know H = 0, and therefore Z3 = H*Z1*Z2 |
| 388 | * will equal 0, thus the result is infinity, if we simply let this |
| 389 | * function continue normally. |
| 390 | * |
| 391 | * We use bitwise operations to avoid potential side-channels introduced by |
| 392 | * the short-circuiting behaviour of boolean operators. |
| 393 | */ |
| 394 | if (is_equal(U1, U2) & ~in1infty & ~in2infty & is_equal(S1, S2)) { |
| 395 | /* |
| 396 | * This is obviously not constant-time but it should never happen during |
| 397 | * single point multiplication, so there is no timing leak for ECDH or |
| 398 | * ECDSA signing. |
| 399 | */ |
| 400 | ecp_nistz256_point_double(r, a); |
| 401 | return; |
| 402 | } |
| 403 | |
| 404 | ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */ |
| 405 | ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */ |
| 406 | ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */ |
| 407 | ecp_nistz256_mul_mont(res_z, res_z, in2_z); /* Z3 = H*Z1*Z2 */ |
| 408 | ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */ |
| 409 | |
| 410 | ecp_nistz256_mul_mont(U2, U1, Hsqr); /* U1*H^2 */ |
| 411 | ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */ |
| 412 | |
| 413 | ecp_nistz256_sub(res_x, Rsqr, Hsqr); |
| 414 | ecp_nistz256_sub(res_x, res_x, Hcub); |
| 415 | |
| 416 | ecp_nistz256_sub(res_y, U2, res_x); |
| 417 | |
| 418 | ecp_nistz256_mul_mont(S2, S1, Hcub); |
| 419 | ecp_nistz256_mul_mont(res_y, R, res_y); |
| 420 | ecp_nistz256_sub(res_y, res_y, S2); |
| 421 | |
| 422 | copy_conditional(res_x, in2_x, in1infty); |
| 423 | copy_conditional(res_y, in2_y, in1infty); |
| 424 | copy_conditional(res_z, in2_z, in1infty); |
| 425 | |
| 426 | copy_conditional(res_x, in1_x, in2infty); |
| 427 | copy_conditional(res_y, in1_y, in2infty); |
| 428 | copy_conditional(res_z, in1_z, in2infty); |
| 429 | |
| 430 | memcpy(r->X, res_x, sizeof(res_x)); |
| 431 | memcpy(r->Y, res_y, sizeof(res_y)); |
| 432 | memcpy(r->Z, res_z, sizeof(res_z)); |
| 433 | } |
| 434 | |
| 435 | /* Point addition when b is known to be affine: r = a+b */ |
| 436 | static void ecp_nistz256_point_add_affine(P256_POINT *r, |
| 437 | const P256_POINT *a, |
| 438 | const P256_POINT_AFFINE *b) |
| 439 | { |
| 440 | BN_ULONG U2[P256_LIMBS], S2[P256_LIMBS]; |
| 441 | BN_ULONG Z1sqr[P256_LIMBS]; |
| 442 | BN_ULONG H[P256_LIMBS], R[P256_LIMBS]; |
| 443 | BN_ULONG Hsqr[P256_LIMBS]; |
| 444 | BN_ULONG Rsqr[P256_LIMBS]; |
| 445 | BN_ULONG Hcub[P256_LIMBS]; |
| 446 | |
| 447 | BN_ULONG res_x[P256_LIMBS]; |
| 448 | BN_ULONG res_y[P256_LIMBS]; |
| 449 | BN_ULONG res_z[P256_LIMBS]; |
| 450 | |
| 451 | BN_ULONG in1infty, in2infty; |
| 452 | |
| 453 | const BN_ULONG *in1_x = a->X; |
| 454 | const BN_ULONG *in1_y = a->Y; |
| 455 | const BN_ULONG *in1_z = a->Z; |
| 456 | |
| 457 | const BN_ULONG *in2_x = b->X; |
| 458 | const BN_ULONG *in2_y = b->Y; |
| 459 | |
| 460 | /* |
| 461 | * Infinity in encoded as (,,0) |
| 462 | */ |
| 463 | in1infty = (in1_z[0] | in1_z[1] | in1_z[2] | in1_z[3]); |
| 464 | if (P256_LIMBS == 8) |
| 465 | in1infty |= (in1_z[4] | in1_z[5] | in1_z[6] | in1_z[7]); |
| 466 | |
| 467 | /* |
| 468 | * In affine representation we encode infinity as (0,0), which is |
| 469 | * not on the curve, so it is OK |
| 470 | */ |
| 471 | in2infty = (in2_x[0] | in2_x[1] | in2_x[2] | in2_x[3] | |
| 472 | in2_y[0] | in2_y[1] | in2_y[2] | in2_y[3]); |
| 473 | if (P256_LIMBS == 8) |
| 474 | in2infty |= (in2_x[4] | in2_x[5] | in2_x[6] | in2_x[7] | |
| 475 | in2_y[4] | in2_y[5] | in2_y[6] | in2_y[7]); |
| 476 | |
| 477 | in1infty = is_zero(in1infty); |
| 478 | in2infty = is_zero(in2infty); |
| 479 | |
| 480 | ecp_nistz256_sqr_mont(Z1sqr, in1_z); /* Z1^2 */ |
| 481 | |
| 482 | ecp_nistz256_mul_mont(U2, in2_x, Z1sqr); /* U2 = X2*Z1^2 */ |
| 483 | ecp_nistz256_sub(H, U2, in1_x); /* H = U2 - U1 */ |
| 484 | |
| 485 | ecp_nistz256_mul_mont(S2, Z1sqr, in1_z); /* S2 = Z1^3 */ |
| 486 | |
| 487 | ecp_nistz256_mul_mont(res_z, H, in1_z); /* Z3 = H*Z1*Z2 */ |
| 488 | |
| 489 | ecp_nistz256_mul_mont(S2, S2, in2_y); /* S2 = Y2*Z1^3 */ |
| 490 | ecp_nistz256_sub(R, S2, in1_y); /* R = S2 - S1 */ |
| 491 | |
| 492 | ecp_nistz256_sqr_mont(Hsqr, H); /* H^2 */ |
| 493 | ecp_nistz256_sqr_mont(Rsqr, R); /* R^2 */ |
| 494 | ecp_nistz256_mul_mont(Hcub, Hsqr, H); /* H^3 */ |
| 495 | |
| 496 | ecp_nistz256_mul_mont(U2, in1_x, Hsqr); /* U1*H^2 */ |
| 497 | ecp_nistz256_mul_by_2(Hsqr, U2); /* 2*U1*H^2 */ |
| 498 | |
| 499 | ecp_nistz256_sub(res_x, Rsqr, Hsqr); |
| 500 | ecp_nistz256_sub(res_x, res_x, Hcub); |
| 501 | ecp_nistz256_sub(H, U2, res_x); |
| 502 | |
| 503 | ecp_nistz256_mul_mont(S2, in1_y, Hcub); |
| 504 | ecp_nistz256_mul_mont(H, H, R); |
| 505 | ecp_nistz256_sub(res_y, H, S2); |
| 506 | |
| 507 | copy_conditional(res_x, in2_x, in1infty); |
| 508 | copy_conditional(res_x, in1_x, in2infty); |
| 509 | |
| 510 | copy_conditional(res_y, in2_y, in1infty); |
| 511 | copy_conditional(res_y, in1_y, in2infty); |
| 512 | |
| 513 | copy_conditional(res_z, ONE, in1infty); |
| 514 | copy_conditional(res_z, in1_z, in2infty); |
| 515 | |
| 516 | memcpy(r->X, res_x, sizeof(res_x)); |
| 517 | memcpy(r->Y, res_y, sizeof(res_y)); |
| 518 | memcpy(r->Z, res_z, sizeof(res_z)); |
| 519 | } |
| 520 | #endif |
| 521 | |
| 522 | /* r = in^-1 mod p */ |
| 523 | static void ecp_nistz256_mod_inverse(BN_ULONG r[P256_LIMBS], |
| 524 | const BN_ULONG in[P256_LIMBS]) |
| 525 | { |
| 526 | /* |
| 527 | * The poly is ffffffff 00000001 00000000 00000000 00000000 ffffffff |
| 528 | * ffffffff ffffffff We use FLT and used poly-2 as exponent |
| 529 | */ |
| 530 | BN_ULONG p2[P256_LIMBS]; |
| 531 | BN_ULONG p4[P256_LIMBS]; |
| 532 | BN_ULONG p8[P256_LIMBS]; |
| 533 | BN_ULONG p16[P256_LIMBS]; |
| 534 | BN_ULONG p32[P256_LIMBS]; |
| 535 | BN_ULONG res[P256_LIMBS]; |
| 536 | int i; |
| 537 | |
| 538 | ecp_nistz256_sqr_mont(res, in); |
| 539 | ecp_nistz256_mul_mont(p2, res, in); /* 3*p */ |
| 540 | |
| 541 | ecp_nistz256_sqr_mont(res, p2); |
| 542 | ecp_nistz256_sqr_mont(res, res); |
| 543 | ecp_nistz256_mul_mont(p4, res, p2); /* f*p */ |
| 544 | |
| 545 | ecp_nistz256_sqr_mont(res, p4); |
| 546 | ecp_nistz256_sqr_mont(res, res); |
| 547 | ecp_nistz256_sqr_mont(res, res); |
| 548 | ecp_nistz256_sqr_mont(res, res); |
| 549 | ecp_nistz256_mul_mont(p8, res, p4); /* ff*p */ |
| 550 | |
| 551 | ecp_nistz256_sqr_mont(res, p8); |
| 552 | for (i = 0; i < 7; i++) |
| 553 | ecp_nistz256_sqr_mont(res, res); |
| 554 | ecp_nistz256_mul_mont(p16, res, p8); /* ffff*p */ |
| 555 | |
| 556 | ecp_nistz256_sqr_mont(res, p16); |
| 557 | for (i = 0; i < 15; i++) |
| 558 | ecp_nistz256_sqr_mont(res, res); |
| 559 | ecp_nistz256_mul_mont(p32, res, p16); /* ffffffff*p */ |
| 560 | |
| 561 | ecp_nistz256_sqr_mont(res, p32); |
| 562 | for (i = 0; i < 31; i++) |
| 563 | ecp_nistz256_sqr_mont(res, res); |
| 564 | ecp_nistz256_mul_mont(res, res, in); |
| 565 | |
| 566 | for (i = 0; i < 32 * 4; i++) |
| 567 | ecp_nistz256_sqr_mont(res, res); |
| 568 | ecp_nistz256_mul_mont(res, res, p32); |
| 569 | |
| 570 | for (i = 0; i < 32; i++) |
| 571 | ecp_nistz256_sqr_mont(res, res); |
| 572 | ecp_nistz256_mul_mont(res, res, p32); |
| 573 | |
| 574 | for (i = 0; i < 16; i++) |
| 575 | ecp_nistz256_sqr_mont(res, res); |
| 576 | ecp_nistz256_mul_mont(res, res, p16); |
| 577 | |
| 578 | for (i = 0; i < 8; i++) |
| 579 | ecp_nistz256_sqr_mont(res, res); |
| 580 | ecp_nistz256_mul_mont(res, res, p8); |
| 581 | |
| 582 | ecp_nistz256_sqr_mont(res, res); |
| 583 | ecp_nistz256_sqr_mont(res, res); |
| 584 | ecp_nistz256_sqr_mont(res, res); |
| 585 | ecp_nistz256_sqr_mont(res, res); |
| 586 | ecp_nistz256_mul_mont(res, res, p4); |
| 587 | |
| 588 | ecp_nistz256_sqr_mont(res, res); |
| 589 | ecp_nistz256_sqr_mont(res, res); |
| 590 | ecp_nistz256_mul_mont(res, res, p2); |
| 591 | |
| 592 | ecp_nistz256_sqr_mont(res, res); |
| 593 | ecp_nistz256_sqr_mont(res, res); |
| 594 | ecp_nistz256_mul_mont(res, res, in); |
| 595 | |
| 596 | memcpy(r, res, sizeof(res)); |
| 597 | } |
| 598 | |
| 599 | /* |
| 600 | * ecp_nistz256_bignum_to_field_elem copies the contents of |in| to |out| and |
| 601 | * returns one if it fits. Otherwise it returns zero. |
| 602 | */ |
| 603 | __owur static int ecp_nistz256_bignum_to_field_elem(BN_ULONG out[P256_LIMBS], |
| 604 | const BIGNUM *in) |
| 605 | { |
| 606 | return bn_copy_words(out, in, P256_LIMBS); |
| 607 | } |
| 608 | |
| 609 | /* r = sum(scalar[i]*point[i]) */ |
| 610 | __owur static int ecp_nistz256_windowed_mul(const EC_GROUP *group, |
| 611 | P256_POINT *r, |
| 612 | const BIGNUM **scalar, |
| 613 | const EC_POINT **point, |
| 614 | size_t num, BN_CTX *ctx) |
| 615 | { |
| 616 | size_t i; |
| 617 | int j, ret = 0; |
| 618 | unsigned int idx; |
| 619 | unsigned char (*p_str)[33] = NULL; |
| 620 | const unsigned int window_size = 5; |
| 621 | const unsigned int mask = (1 << (window_size + 1)) - 1; |
| 622 | unsigned int wvalue; |
| 623 | P256_POINT *temp; /* place for 5 temporary points */ |
| 624 | const BIGNUM **scalars = NULL; |
| 625 | P256_POINT (*table)[16] = NULL; |
| 626 | void *table_storage = NULL; |
| 627 | |
| 628 | if ((num * 16 + 6) > OPENSSL_MALLOC_MAX_NELEMS(P256_POINT) |
| 629 | || (table_storage = |
| 630 | OPENSSL_malloc((num * 16 + 5) * sizeof(P256_POINT) + 64)) == NULL |
| 631 | || (p_str = |
| 632 | OPENSSL_malloc(num * 33 * sizeof(unsigned char))) == NULL |
| 633 | || (scalars = OPENSSL_malloc(num * sizeof(BIGNUM *))) == NULL) { |
| 634 | ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_MALLOC_FAILURE); |
| 635 | goto err; |
| 636 | } |
| 637 | |
| 638 | table = (void *)ALIGNPTR(table_storage, 64); |
| 639 | temp = (P256_POINT *)(table + num); |
| 640 | |
| 641 | for (i = 0; i < num; i++) { |
| 642 | P256_POINT *row = table[i]; |
| 643 | |
| 644 | /* This is an unusual input, we don't guarantee constant-timeness. */ |
| 645 | if ((BN_num_bits(scalar[i]) > 256) || BN_is_negative(scalar[i])) { |
| 646 | BIGNUM *mod; |
| 647 | |
| 648 | if ((mod = BN_CTX_get(ctx)) == NULL) |
| 649 | goto err; |
| 650 | if (!BN_nnmod(mod, scalar[i], group->order, ctx)) { |
| 651 | ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, ERR_R_BN_LIB); |
| 652 | goto err; |
| 653 | } |
| 654 | scalars[i] = mod; |
| 655 | } else |
| 656 | scalars[i] = scalar[i]; |
| 657 | |
| 658 | for (j = 0; j < bn_get_top(scalars[i]) * BN_BYTES; j += BN_BYTES) { |
| 659 | BN_ULONG d = bn_get_words(scalars[i])[j / BN_BYTES]; |
| 660 | |
| 661 | p_str[i][j + 0] = (unsigned char)d; |
| 662 | p_str[i][j + 1] = (unsigned char)(d >> 8); |
| 663 | p_str[i][j + 2] = (unsigned char)(d >> 16); |
| 664 | p_str[i][j + 3] = (unsigned char)(d >>= 24); |
| 665 | if (BN_BYTES == 8) { |
| 666 | d >>= 8; |
| 667 | p_str[i][j + 4] = (unsigned char)d; |
| 668 | p_str[i][j + 5] = (unsigned char)(d >> 8); |
| 669 | p_str[i][j + 6] = (unsigned char)(d >> 16); |
| 670 | p_str[i][j + 7] = (unsigned char)(d >> 24); |
| 671 | } |
| 672 | } |
| 673 | for (; j < 33; j++) |
| 674 | p_str[i][j] = 0; |
| 675 | |
| 676 | if (!ecp_nistz256_bignum_to_field_elem(temp[0].X, point[i]->X) |
| 677 | || !ecp_nistz256_bignum_to_field_elem(temp[0].Y, point[i]->Y) |
| 678 | || !ecp_nistz256_bignum_to_field_elem(temp[0].Z, point[i]->Z)) { |
| 679 | ECerr(EC_F_ECP_NISTZ256_WINDOWED_MUL, |
| 680 | EC_R_COORDINATES_OUT_OF_RANGE); |
| 681 | goto err; |
| 682 | } |
| 683 | |
| 684 | /* |
| 685 | * row[0] is implicitly (0,0,0) (the point at infinity), therefore it |
| 686 | * is not stored. All other values are actually stored with an offset |
| 687 | * of -1 in table. |
| 688 | */ |
| 689 | |
| 690 | ecp_nistz256_scatter_w5 (row, &temp[0], 1); |
| 691 | ecp_nistz256_point_double(&temp[1], &temp[0]); /*1+1=2 */ |
| 692 | ecp_nistz256_scatter_w5 (row, &temp[1], 2); |
| 693 | ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*2+1=3 */ |
| 694 | ecp_nistz256_scatter_w5 (row, &temp[2], 3); |
| 695 | ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*2=4 */ |
| 696 | ecp_nistz256_scatter_w5 (row, &temp[1], 4); |
| 697 | ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*3=6 */ |
| 698 | ecp_nistz256_scatter_w5 (row, &temp[2], 6); |
| 699 | ecp_nistz256_point_add (&temp[3], &temp[1], &temp[0]); /*4+1=5 */ |
| 700 | ecp_nistz256_scatter_w5 (row, &temp[3], 5); |
| 701 | ecp_nistz256_point_add (&temp[4], &temp[2], &temp[0]); /*6+1=7 */ |
| 702 | ecp_nistz256_scatter_w5 (row, &temp[4], 7); |
| 703 | ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*4=8 */ |
| 704 | ecp_nistz256_scatter_w5 (row, &temp[1], 8); |
| 705 | ecp_nistz256_point_double(&temp[2], &temp[2]); /*2*6=12 */ |
| 706 | ecp_nistz256_scatter_w5 (row, &temp[2], 12); |
| 707 | ecp_nistz256_point_double(&temp[3], &temp[3]); /*2*5=10 */ |
| 708 | ecp_nistz256_scatter_w5 (row, &temp[3], 10); |
| 709 | ecp_nistz256_point_double(&temp[4], &temp[4]); /*2*7=14 */ |
| 710 | ecp_nistz256_scatter_w5 (row, &temp[4], 14); |
| 711 | ecp_nistz256_point_add (&temp[2], &temp[2], &temp[0]); /*12+1=13*/ |
| 712 | ecp_nistz256_scatter_w5 (row, &temp[2], 13); |
| 713 | ecp_nistz256_point_add (&temp[3], &temp[3], &temp[0]); /*10+1=11*/ |
| 714 | ecp_nistz256_scatter_w5 (row, &temp[3], 11); |
| 715 | ecp_nistz256_point_add (&temp[4], &temp[4], &temp[0]); /*14+1=15*/ |
| 716 | ecp_nistz256_scatter_w5 (row, &temp[4], 15); |
| 717 | ecp_nistz256_point_add (&temp[2], &temp[1], &temp[0]); /*8+1=9 */ |
| 718 | ecp_nistz256_scatter_w5 (row, &temp[2], 9); |
| 719 | ecp_nistz256_point_double(&temp[1], &temp[1]); /*2*8=16 */ |
| 720 | ecp_nistz256_scatter_w5 (row, &temp[1], 16); |
| 721 | } |
| 722 | |
| 723 | idx = 255; |
| 724 | |
| 725 | wvalue = p_str[0][(idx - 1) / 8]; |
| 726 | wvalue = (wvalue >> ((idx - 1) % 8)) & mask; |
| 727 | |
| 728 | /* |
| 729 | * We gather to temp[0], because we know it's position relative |
| 730 | * to table |
| 731 | */ |
| 732 | ecp_nistz256_gather_w5(&temp[0], table[0], _booth_recode_w5(wvalue) >> 1); |
| 733 | memcpy(r, &temp[0], sizeof(temp[0])); |
| 734 | |
| 735 | while (idx >= 5) { |
| 736 | for (i = (idx == 255 ? 1 : 0); i < num; i++) { |
| 737 | unsigned int off = (idx - 1) / 8; |
| 738 | |
| 739 | wvalue = p_str[i][off] | p_str[i][off + 1] << 8; |
| 740 | wvalue = (wvalue >> ((idx - 1) % 8)) & mask; |
| 741 | |
| 742 | wvalue = _booth_recode_w5(wvalue); |
| 743 | |
| 744 | ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1); |
| 745 | |
| 746 | ecp_nistz256_neg(temp[1].Y, temp[0].Y); |
| 747 | copy_conditional(temp[0].Y, temp[1].Y, (wvalue & 1)); |
| 748 | |
| 749 | ecp_nistz256_point_add(r, r, &temp[0]); |
| 750 | } |
| 751 | |
| 752 | idx -= window_size; |
| 753 | |
| 754 | ecp_nistz256_point_double(r, r); |
| 755 | ecp_nistz256_point_double(r, r); |
| 756 | ecp_nistz256_point_double(r, r); |
| 757 | ecp_nistz256_point_double(r, r); |
| 758 | ecp_nistz256_point_double(r, r); |
| 759 | } |
| 760 | |
| 761 | /* Final window */ |
| 762 | for (i = 0; i < num; i++) { |
| 763 | wvalue = p_str[i][0]; |
| 764 | wvalue = (wvalue << 1) & mask; |
| 765 | |
| 766 | wvalue = _booth_recode_w5(wvalue); |
| 767 | |
| 768 | ecp_nistz256_gather_w5(&temp[0], table[i], wvalue >> 1); |
| 769 | |
| 770 | ecp_nistz256_neg(temp[1].Y, temp[0].Y); |
| 771 | copy_conditional(temp[0].Y, temp[1].Y, wvalue & 1); |
| 772 | |
| 773 | ecp_nistz256_point_add(r, r, &temp[0]); |
| 774 | } |
| 775 | |
| 776 | ret = 1; |
| 777 | err: |
| 778 | OPENSSL_free(table_storage); |
| 779 | OPENSSL_free(p_str); |
| 780 | OPENSSL_free(scalars); |
| 781 | return ret; |
| 782 | } |
| 783 | |
| 784 | /* Coordinates of G, for which we have precomputed tables */ |
| 785 | static const BN_ULONG def_xG[P256_LIMBS] = { |
| 786 | TOBN(0x79e730d4, 0x18a9143c), TOBN(0x75ba95fc, 0x5fedb601), |
| 787 | TOBN(0x79fb732b, 0x77622510), TOBN(0x18905f76, 0xa53755c6) |
| 788 | }; |
| 789 | |
| 790 | static const BN_ULONG def_yG[P256_LIMBS] = { |
| 791 | TOBN(0xddf25357, 0xce95560a), TOBN(0x8b4ab8e4, 0xba19e45c), |
| 792 | TOBN(0xd2e88688, 0xdd21f325), TOBN(0x8571ff18, 0x25885d85) |
| 793 | }; |
| 794 | |
| 795 | /* |
| 796 | * ecp_nistz256_is_affine_G returns one if |generator| is the standard, P-256 |
| 797 | * generator. |
| 798 | */ |
| 799 | static int ecp_nistz256_is_affine_G(const EC_POINT *generator) |
| 800 | { |
| 801 | return (bn_get_top(generator->X) == P256_LIMBS) && |
| 802 | (bn_get_top(generator->Y) == P256_LIMBS) && |
| 803 | is_equal(bn_get_words(generator->X), def_xG) && |
| 804 | is_equal(bn_get_words(generator->Y), def_yG) && |
| 805 | is_one(generator->Z); |
| 806 | } |
| 807 | |
| 808 | __owur static int ecp_nistz256_mult_precompute(EC_GROUP *group, BN_CTX *ctx) |
| 809 | { |
| 810 | /* |
| 811 | * We precompute a table for a Booth encoded exponent (wNAF) based |
| 812 | * computation. Each table holds 64 values for safe access, with an |
| 813 | * implicit value of infinity at index zero. We use window of size 7, and |
| 814 | * therefore require ceil(256/7) = 37 tables. |
| 815 | */ |
| 816 | const BIGNUM *order; |
| 817 | EC_POINT *P = NULL, *T = NULL; |
| 818 | const EC_POINT *generator; |
| 819 | NISTZ256_PRE_COMP *pre_comp; |
| 820 | BN_CTX *new_ctx = NULL; |
| 821 | int i, j, k, ret = 0; |
| 822 | size_t w; |
| 823 | |
| 824 | PRECOMP256_ROW *preComputedTable = NULL; |
| 825 | unsigned char *precomp_storage = NULL; |
| 826 | |
| 827 | /* if there is an old NISTZ256_PRE_COMP object, throw it away */ |
| 828 | EC_pre_comp_free(group); |
| 829 | generator = EC_GROUP_get0_generator(group); |
| 830 | if (generator == NULL) { |
| 831 | ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNDEFINED_GENERATOR); |
| 832 | return 0; |
| 833 | } |
| 834 | |
| 835 | if (ecp_nistz256_is_affine_G(generator)) { |
| 836 | /* |
| 837 | * No need to calculate tables for the standard generator because we |
| 838 | * have them statically. |
| 839 | */ |
| 840 | return 1; |
| 841 | } |
| 842 | |
| 843 | if ((pre_comp = ecp_nistz256_pre_comp_new(group)) == NULL) |
| 844 | return 0; |
| 845 | |
| 846 | if (ctx == NULL) { |
| 847 | ctx = new_ctx = BN_CTX_new(); |
| 848 | if (ctx == NULL) |
| 849 | goto err; |
| 850 | } |
| 851 | |
| 852 | BN_CTX_start(ctx); |
| 853 | |
| 854 | order = EC_GROUP_get0_order(group); |
| 855 | if (order == NULL) |
| 856 | goto err; |
| 857 | |
| 858 | if (BN_is_zero(order)) { |
| 859 | ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, EC_R_UNKNOWN_ORDER); |
| 860 | goto err; |
| 861 | } |
| 862 | |
| 863 | w = 7; |
| 864 | |
| 865 | if ((precomp_storage = |
| 866 | OPENSSL_malloc(37 * 64 * sizeof(P256_POINT_AFFINE) + 64)) == NULL) { |
| 867 | ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, ERR_R_MALLOC_FAILURE); |
| 868 | goto err; |
| 869 | } |
| 870 | |
| 871 | preComputedTable = (void *)ALIGNPTR(precomp_storage, 64); |
| 872 | |
| 873 | P = EC_POINT_new(group); |
| 874 | T = EC_POINT_new(group); |
| 875 | if (P == NULL || T == NULL) |
| 876 | goto err; |
| 877 | |
| 878 | /* |
| 879 | * The zero entry is implicitly infinity, and we skip it, storing other |
| 880 | * values with -1 offset. |
| 881 | */ |
| 882 | if (!EC_POINT_copy(T, generator)) |
| 883 | goto err; |
| 884 | |
| 885 | for (k = 0; k < 64; k++) { |
| 886 | if (!EC_POINT_copy(P, T)) |
| 887 | goto err; |
| 888 | for (j = 0; j < 37; j++) { |
| 889 | P256_POINT_AFFINE temp; |
| 890 | /* |
| 891 | * It would be faster to use EC_POINTs_make_affine and |
| 892 | * make multiple points affine at the same time. |
| 893 | */ |
| 894 | if (!EC_POINT_make_affine(group, P, ctx)) |
| 895 | goto err; |
| 896 | if (!ecp_nistz256_bignum_to_field_elem(temp.X, P->X) || |
| 897 | !ecp_nistz256_bignum_to_field_elem(temp.Y, P->Y)) { |
| 898 | ECerr(EC_F_ECP_NISTZ256_MULT_PRECOMPUTE, |
| 899 | EC_R_COORDINATES_OUT_OF_RANGE); |
| 900 | goto err; |
| 901 | } |
| 902 | ecp_nistz256_scatter_w7(preComputedTable[j], &temp, k); |
| 903 | for (i = 0; i < 7; i++) { |
| 904 | if (!EC_POINT_dbl(group, P, P, ctx)) |
| 905 | goto err; |
| 906 | } |
| 907 | } |
| 908 | if (!EC_POINT_add(group, T, T, generator, ctx)) |
| 909 | goto err; |
| 910 | } |
| 911 | |
| 912 | pre_comp->group = group; |
| 913 | pre_comp->w = w; |
| 914 | pre_comp->precomp = preComputedTable; |
| 915 | pre_comp->precomp_storage = precomp_storage; |
| 916 | precomp_storage = NULL; |
| 917 | SETPRECOMP(group, nistz256, pre_comp); |
| 918 | pre_comp = NULL; |
| 919 | ret = 1; |
| 920 | |
| 921 | err: |
| 922 | BN_CTX_end(ctx); |
| 923 | BN_CTX_free(new_ctx); |
| 924 | |
| 925 | EC_nistz256_pre_comp_free(pre_comp); |
| 926 | OPENSSL_free(precomp_storage); |
| 927 | EC_POINT_free(P); |
| 928 | EC_POINT_free(T); |
| 929 | return ret; |
| 930 | } |
| 931 | |
| 932 | __owur static int ecp_nistz256_set_from_affine(EC_POINT *out, const EC_GROUP *group, |
| 933 | const P256_POINT_AFFINE *in, |
| 934 | BN_CTX *ctx) |
| 935 | { |
| 936 | int ret = 0; |
| 937 | |
| 938 | if ((ret = bn_set_words(out->X, in->X, P256_LIMBS)) |
| 939 | && (ret = bn_set_words(out->Y, in->Y, P256_LIMBS)) |
| 940 | && (ret = bn_set_words(out->Z, ONE, P256_LIMBS))) |
| 941 | out->Z_is_one = 1; |
| 942 | |
| 943 | return ret; |
| 944 | } |
| 945 | |
| 946 | /* r = scalar*G + sum(scalars[i]*points[i]) */ |
| 947 | __owur static int ecp_nistz256_points_mul(const EC_GROUP *group, |
| 948 | EC_POINT *r, |
| 949 | const BIGNUM *scalar, |
| 950 | size_t num, |
| 951 | const EC_POINT *points[], |
| 952 | const BIGNUM *scalars[], BN_CTX *ctx) |
| 953 | { |
| 954 | int i = 0, ret = 0, no_precomp_for_generator = 0, p_is_infinity = 0; |
| 955 | unsigned char p_str[33] = { 0 }; |
| 956 | const PRECOMP256_ROW *preComputedTable = NULL; |
| 957 | const NISTZ256_PRE_COMP *pre_comp = NULL; |
| 958 | const EC_POINT *generator = NULL; |
| 959 | const BIGNUM **new_scalars = NULL; |
| 960 | const EC_POINT **new_points = NULL; |
| 961 | unsigned int idx = 0; |
| 962 | const unsigned int window_size = 7; |
| 963 | const unsigned int mask = (1 << (window_size + 1)) - 1; |
| 964 | unsigned int wvalue; |
| 965 | ALIGN32 union { |
| 966 | P256_POINT p; |
| 967 | P256_POINT_AFFINE a; |
| 968 | } t, p; |
| 969 | BIGNUM *tmp_scalar; |
| 970 | |
| 971 | if ((num + 1) == 0 || (num + 1) > OPENSSL_MALLOC_MAX_NELEMS(void *)) { |
| 972 | ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
| 973 | return 0; |
| 974 | } |
| 975 | |
| 976 | memset(&p, 0, sizeof(p)); |
| 977 | BN_CTX_start(ctx); |
| 978 | |
| 979 | if (scalar) { |
| 980 | generator = EC_GROUP_get0_generator(group); |
| 981 | if (generator == NULL) { |
| 982 | ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, EC_R_UNDEFINED_GENERATOR); |
| 983 | goto err; |
| 984 | } |
| 985 | |
| 986 | /* look if we can use precomputed multiples of generator */ |
| 987 | pre_comp = group->pre_comp.nistz256; |
| 988 | |
| 989 | if (pre_comp) { |
| 990 | /* |
| 991 | * If there is a precomputed table for the generator, check that |
| 992 | * it was generated with the same generator. |
| 993 | */ |
| 994 | EC_POINT *pre_comp_generator = EC_POINT_new(group); |
| 995 | if (pre_comp_generator == NULL) |
| 996 | goto err; |
| 997 | |
| 998 | ecp_nistz256_gather_w7(&p.a, pre_comp->precomp[0], 1); |
| 999 | if (!ecp_nistz256_set_from_affine(pre_comp_generator, |
| 1000 | group, &p.a, ctx)) { |
| 1001 | EC_POINT_free(pre_comp_generator); |
| 1002 | goto err; |
| 1003 | } |
| 1004 | |
| 1005 | if (0 == EC_POINT_cmp(group, generator, pre_comp_generator, ctx)) |
| 1006 | preComputedTable = (const PRECOMP256_ROW *)pre_comp->precomp; |
| 1007 | |
| 1008 | EC_POINT_free(pre_comp_generator); |
| 1009 | } |
| 1010 | |
| 1011 | if (preComputedTable == NULL && ecp_nistz256_is_affine_G(generator)) { |
| 1012 | /* |
| 1013 | * If there is no precomputed data, but the generator is the |
| 1014 | * default, a hardcoded table of precomputed data is used. This |
| 1015 | * is because applications, such as Apache, do not use |
| 1016 | * EC_KEY_precompute_mult. |
| 1017 | */ |
| 1018 | preComputedTable = ecp_nistz256_precomputed; |
| 1019 | } |
| 1020 | |
| 1021 | if (preComputedTable) { |
| 1022 | BN_ULONG infty; |
| 1023 | |
| 1024 | if ((BN_num_bits(scalar) > 256) |
| 1025 | || BN_is_negative(scalar)) { |
| 1026 | if ((tmp_scalar = BN_CTX_get(ctx)) == NULL) |
| 1027 | goto err; |
| 1028 | |
| 1029 | if (!BN_nnmod(tmp_scalar, scalar, group->order, ctx)) { |
| 1030 | ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_BN_LIB); |
| 1031 | goto err; |
| 1032 | } |
| 1033 | scalar = tmp_scalar; |
| 1034 | } |
| 1035 | |
| 1036 | for (i = 0; i < bn_get_top(scalar) * BN_BYTES; i += BN_BYTES) { |
| 1037 | BN_ULONG d = bn_get_words(scalar)[i / BN_BYTES]; |
| 1038 | |
| 1039 | p_str[i + 0] = (unsigned char)d; |
| 1040 | p_str[i + 1] = (unsigned char)(d >> 8); |
| 1041 | p_str[i + 2] = (unsigned char)(d >> 16); |
| 1042 | p_str[i + 3] = (unsigned char)(d >>= 24); |
| 1043 | if (BN_BYTES == 8) { |
| 1044 | d >>= 8; |
| 1045 | p_str[i + 4] = (unsigned char)d; |
| 1046 | p_str[i + 5] = (unsigned char)(d >> 8); |
| 1047 | p_str[i + 6] = (unsigned char)(d >> 16); |
| 1048 | p_str[i + 7] = (unsigned char)(d >> 24); |
| 1049 | } |
| 1050 | } |
| 1051 | |
| 1052 | for (; i < 33; i++) |
| 1053 | p_str[i] = 0; |
| 1054 | |
| 1055 | /* First window */ |
| 1056 | wvalue = (p_str[0] << 1) & mask; |
| 1057 | idx += window_size; |
| 1058 | |
| 1059 | wvalue = _booth_recode_w7(wvalue); |
| 1060 | |
| 1061 | ecp_nistz256_gather_w7(&p.a, preComputedTable[0], |
| 1062 | wvalue >> 1); |
| 1063 | |
| 1064 | ecp_nistz256_neg(p.p.Z, p.p.Y); |
| 1065 | copy_conditional(p.p.Y, p.p.Z, wvalue & 1); |
| 1066 | |
| 1067 | /* |
| 1068 | * Since affine infinity is encoded as (0,0) and |
| 1069 | * Jacobian is (,,0), we need to harmonize them |
| 1070 | * by assigning "one" or zero to Z. |
| 1071 | */ |
| 1072 | infty = (p.p.X[0] | p.p.X[1] | p.p.X[2] | p.p.X[3] | |
| 1073 | p.p.Y[0] | p.p.Y[1] | p.p.Y[2] | p.p.Y[3]); |
| 1074 | if (P256_LIMBS == 8) |
| 1075 | infty |= (p.p.X[4] | p.p.X[5] | p.p.X[6] | p.p.X[7] | |
| 1076 | p.p.Y[4] | p.p.Y[5] | p.p.Y[6] | p.p.Y[7]); |
| 1077 | |
| 1078 | infty = 0 - is_zero(infty); |
| 1079 | infty = ~infty; |
| 1080 | |
| 1081 | p.p.Z[0] = ONE[0] & infty; |
| 1082 | p.p.Z[1] = ONE[1] & infty; |
| 1083 | p.p.Z[2] = ONE[2] & infty; |
| 1084 | p.p.Z[3] = ONE[3] & infty; |
| 1085 | if (P256_LIMBS == 8) { |
| 1086 | p.p.Z[4] = ONE[4] & infty; |
| 1087 | p.p.Z[5] = ONE[5] & infty; |
| 1088 | p.p.Z[6] = ONE[6] & infty; |
| 1089 | p.p.Z[7] = ONE[7] & infty; |
| 1090 | } |
| 1091 | |
| 1092 | for (i = 1; i < 37; i++) { |
| 1093 | unsigned int off = (idx - 1) / 8; |
| 1094 | wvalue = p_str[off] | p_str[off + 1] << 8; |
| 1095 | wvalue = (wvalue >> ((idx - 1) % 8)) & mask; |
| 1096 | idx += window_size; |
| 1097 | |
| 1098 | wvalue = _booth_recode_w7(wvalue); |
| 1099 | |
| 1100 | ecp_nistz256_gather_w7(&t.a, |
| 1101 | preComputedTable[i], wvalue >> 1); |
| 1102 | |
| 1103 | ecp_nistz256_neg(t.p.Z, t.a.Y); |
| 1104 | copy_conditional(t.a.Y, t.p.Z, wvalue & 1); |
| 1105 | |
| 1106 | ecp_nistz256_point_add_affine(&p.p, &p.p, &t.a); |
| 1107 | } |
| 1108 | } else { |
| 1109 | p_is_infinity = 1; |
| 1110 | no_precomp_for_generator = 1; |
| 1111 | } |
| 1112 | } else |
| 1113 | p_is_infinity = 1; |
| 1114 | |
| 1115 | if (no_precomp_for_generator) { |
| 1116 | /* |
| 1117 | * Without a precomputed table for the generator, it has to be |
| 1118 | * handled like a normal point. |
| 1119 | */ |
| 1120 | new_scalars = OPENSSL_malloc((num + 1) * sizeof(BIGNUM *)); |
| 1121 | if (new_scalars == NULL) { |
| 1122 | ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
| 1123 | goto err; |
| 1124 | } |
| 1125 | |
| 1126 | new_points = OPENSSL_malloc((num + 1) * sizeof(EC_POINT *)); |
| 1127 | if (new_points == NULL) { |
| 1128 | ECerr(EC_F_ECP_NISTZ256_POINTS_MUL, ERR_R_MALLOC_FAILURE); |
| 1129 | goto err; |
| 1130 | } |
| 1131 | |
| 1132 | memcpy(new_scalars, scalars, num * sizeof(BIGNUM *)); |
| 1133 | new_scalars[num] = scalar; |
| 1134 | memcpy(new_points, points, num * sizeof(EC_POINT *)); |
| 1135 | new_points[num] = generator; |
| 1136 | |
| 1137 | scalars = new_scalars; |
| 1138 | points = new_points; |
| 1139 | num++; |
| 1140 | } |
| 1141 | |
| 1142 | if (num) { |
| 1143 | P256_POINT *out = &t.p; |
| 1144 | if (p_is_infinity) |
| 1145 | out = &p.p; |
| 1146 | |
| 1147 | if (!ecp_nistz256_windowed_mul(group, out, scalars, points, num, ctx)) |
| 1148 | goto err; |
| 1149 | |
| 1150 | if (!p_is_infinity) |
| 1151 | ecp_nistz256_point_add(&p.p, &p.p, out); |
| 1152 | } |
| 1153 | |
| 1154 | /* Not constant-time, but we're only operating on the public output. */ |
| 1155 | if (!bn_set_words(r->X, p.p.X, P256_LIMBS) || |
| 1156 | !bn_set_words(r->Y, p.p.Y, P256_LIMBS) || |
| 1157 | !bn_set_words(r->Z, p.p.Z, P256_LIMBS)) { |
| 1158 | goto err; |
| 1159 | } |
| 1160 | r->Z_is_one = is_one(r->Z) & 1; |
| 1161 | |
| 1162 | ret = 1; |
| 1163 | |
| 1164 | err: |
| 1165 | BN_CTX_end(ctx); |
| 1166 | OPENSSL_free(new_points); |
| 1167 | OPENSSL_free(new_scalars); |
| 1168 | return ret; |
| 1169 | } |
| 1170 | |
| 1171 | __owur static int ecp_nistz256_get_affine(const EC_GROUP *group, |
| 1172 | const EC_POINT *point, |
| 1173 | BIGNUM *x, BIGNUM *y, BN_CTX *ctx) |
| 1174 | { |
| 1175 | BN_ULONG z_inv2[P256_LIMBS]; |
| 1176 | BN_ULONG z_inv3[P256_LIMBS]; |
| 1177 | BN_ULONG x_aff[P256_LIMBS]; |
| 1178 | BN_ULONG y_aff[P256_LIMBS]; |
| 1179 | BN_ULONG point_x[P256_LIMBS], point_y[P256_LIMBS], point_z[P256_LIMBS]; |
| 1180 | BN_ULONG x_ret[P256_LIMBS], y_ret[P256_LIMBS]; |
| 1181 | |
| 1182 | if (EC_POINT_is_at_infinity(group, point)) { |
| 1183 | ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_POINT_AT_INFINITY); |
| 1184 | return 0; |
| 1185 | } |
| 1186 | |
| 1187 | if (!ecp_nistz256_bignum_to_field_elem(point_x, point->X) || |
| 1188 | !ecp_nistz256_bignum_to_field_elem(point_y, point->Y) || |
| 1189 | !ecp_nistz256_bignum_to_field_elem(point_z, point->Z)) { |
| 1190 | ECerr(EC_F_ECP_NISTZ256_GET_AFFINE, EC_R_COORDINATES_OUT_OF_RANGE); |
| 1191 | return 0; |
| 1192 | } |
| 1193 | |
| 1194 | ecp_nistz256_mod_inverse(z_inv3, point_z); |
| 1195 | ecp_nistz256_sqr_mont(z_inv2, z_inv3); |
| 1196 | ecp_nistz256_mul_mont(x_aff, z_inv2, point_x); |
| 1197 | |
| 1198 | if (x != NULL) { |
| 1199 | ecp_nistz256_from_mont(x_ret, x_aff); |
| 1200 | if (!bn_set_words(x, x_ret, P256_LIMBS)) |
| 1201 | return 0; |
| 1202 | } |
| 1203 | |
| 1204 | if (y != NULL) { |
| 1205 | ecp_nistz256_mul_mont(z_inv3, z_inv3, z_inv2); |
| 1206 | ecp_nistz256_mul_mont(y_aff, z_inv3, point_y); |
| 1207 | ecp_nistz256_from_mont(y_ret, y_aff); |
| 1208 | if (!bn_set_words(y, y_ret, P256_LIMBS)) |
| 1209 | return 0; |
| 1210 | } |
| 1211 | |
| 1212 | return 1; |
| 1213 | } |
| 1214 | |
| 1215 | static NISTZ256_PRE_COMP *ecp_nistz256_pre_comp_new(const EC_GROUP *group) |
| 1216 | { |
| 1217 | NISTZ256_PRE_COMP *ret = NULL; |
| 1218 | |
| 1219 | if (!group) |
| 1220 | return NULL; |
| 1221 | |
| 1222 | ret = OPENSSL_zalloc(sizeof(*ret)); |
| 1223 | |
| 1224 | if (ret == NULL) { |
| 1225 | ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 1226 | return ret; |
| 1227 | } |
| 1228 | |
| 1229 | ret->group = group; |
| 1230 | ret->w = 6; /* default */ |
| 1231 | ret->references = 1; |
| 1232 | |
| 1233 | ret->lock = CRYPTO_THREAD_lock_new(); |
| 1234 | if (ret->lock == NULL) { |
| 1235 | ECerr(EC_F_ECP_NISTZ256_PRE_COMP_NEW, ERR_R_MALLOC_FAILURE); |
| 1236 | OPENSSL_free(ret); |
| 1237 | return NULL; |
| 1238 | } |
| 1239 | return ret; |
| 1240 | } |
| 1241 | |
| 1242 | NISTZ256_PRE_COMP *EC_nistz256_pre_comp_dup(NISTZ256_PRE_COMP *p) |
| 1243 | { |
| 1244 | int i; |
| 1245 | if (p != NULL) |
| 1246 | CRYPTO_UP_REF(&p->references, &i, p->lock); |
| 1247 | return p; |
| 1248 | } |
| 1249 | |
| 1250 | void EC_nistz256_pre_comp_free(NISTZ256_PRE_COMP *pre) |
| 1251 | { |
| 1252 | int i; |
| 1253 | |
| 1254 | if (pre == NULL) |
| 1255 | return; |
| 1256 | |
| 1257 | CRYPTO_DOWN_REF(&pre->references, &i, pre->lock); |
| 1258 | REF_PRINT_COUNT("EC_nistz256", x); |
| 1259 | if (i > 0) |
| 1260 | return; |
| 1261 | REF_ASSERT_ISNT(i < 0); |
| 1262 | |
| 1263 | OPENSSL_free(pre->precomp_storage); |
| 1264 | CRYPTO_THREAD_lock_free(pre->lock); |
| 1265 | OPENSSL_free(pre); |
| 1266 | } |
| 1267 | |
| 1268 | |
| 1269 | static int ecp_nistz256_window_have_precompute_mult(const EC_GROUP *group) |
| 1270 | { |
| 1271 | /* There is a hard-coded table for the default generator. */ |
| 1272 | const EC_POINT *generator = EC_GROUP_get0_generator(group); |
| 1273 | |
| 1274 | if (generator != NULL && ecp_nistz256_is_affine_G(generator)) { |
| 1275 | /* There is a hard-coded table for the default generator. */ |
| 1276 | return 1; |
| 1277 | } |
| 1278 | |
| 1279 | return HAVEPRECOMP(group, nistz256); |
| 1280 | } |
| 1281 | |
| 1282 | #if defined(__x86_64) || defined(__x86_64__) || \ |
| 1283 | defined(_M_AMD64) || defined(_M_X64) || \ |
| 1284 | defined(__powerpc64__) || defined(_ARCH_PP64) || \ |
| 1285 | defined(__aarch64__) |
| 1286 | /* |
| 1287 | * Montgomery mul modulo Order(P): res = a*b*2^-256 mod Order(P) |
| 1288 | */ |
| 1289 | void ecp_nistz256_ord_mul_mont(BN_ULONG res[P256_LIMBS], |
| 1290 | const BN_ULONG a[P256_LIMBS], |
| 1291 | const BN_ULONG b[P256_LIMBS]); |
| 1292 | void ecp_nistz256_ord_sqr_mont(BN_ULONG res[P256_LIMBS], |
| 1293 | const BN_ULONG a[P256_LIMBS], |
| 1294 | int rep); |
| 1295 | |
| 1296 | static int ecp_nistz256_inv_mod_ord(const EC_GROUP *group, BIGNUM *r, |
| 1297 | const BIGNUM *x, BN_CTX *ctx) |
| 1298 | { |
| 1299 | /* RR = 2^512 mod ord(p256) */ |
| 1300 | static const BN_ULONG RR[P256_LIMBS] = { |
| 1301 | TOBN(0x83244c95,0xbe79eea2), TOBN(0x4699799c,0x49bd6fa6), |
| 1302 | TOBN(0x2845b239,0x2b6bec59), TOBN(0x66e12d94,0xf3d95620) |
| 1303 | }; |
| 1304 | /* The constant 1 (unlike ONE that is one in Montgomery representation) */ |
| 1305 | static const BN_ULONG one[P256_LIMBS] = { |
| 1306 | TOBN(0,1), TOBN(0,0), TOBN(0,0), TOBN(0,0) |
| 1307 | }; |
| 1308 | /* |
| 1309 | * We don't use entry 0 in the table, so we omit it and address |
| 1310 | * with -1 offset. |
| 1311 | */ |
| 1312 | BN_ULONG table[15][P256_LIMBS]; |
| 1313 | BN_ULONG out[P256_LIMBS], t[P256_LIMBS]; |
| 1314 | int i, ret = 0; |
| 1315 | enum { |
| 1316 | i_1 = 0, i_10, i_11, i_101, i_111, i_1010, i_1111, |
| 1317 | i_10101, i_101010, i_101111, i_x6, i_x8, i_x16, i_x32 |
| 1318 | }; |
| 1319 | |
| 1320 | /* |
| 1321 | * Catch allocation failure early. |
| 1322 | */ |
| 1323 | if (bn_wexpand(r, P256_LIMBS) == NULL) { |
| 1324 | ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB); |
| 1325 | goto err; |
| 1326 | } |
| 1327 | |
| 1328 | if ((BN_num_bits(x) > 256) || BN_is_negative(x)) { |
| 1329 | BIGNUM *tmp; |
| 1330 | |
| 1331 | if ((tmp = BN_CTX_get(ctx)) == NULL |
| 1332 | || !BN_nnmod(tmp, x, group->order, ctx)) { |
| 1333 | ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, ERR_R_BN_LIB); |
| 1334 | goto err; |
| 1335 | } |
| 1336 | x = tmp; |
| 1337 | } |
| 1338 | |
| 1339 | if (!ecp_nistz256_bignum_to_field_elem(t, x)) { |
| 1340 | ECerr(EC_F_ECP_NISTZ256_INV_MOD_ORD, EC_R_COORDINATES_OUT_OF_RANGE); |
| 1341 | goto err; |
| 1342 | } |
| 1343 | |
| 1344 | ecp_nistz256_ord_mul_mont(table[0], t, RR); |
| 1345 | #if 0 |
| 1346 | /* |
| 1347 | * Original sparse-then-fixed-window algorithm, retained for reference. |
| 1348 | */ |
| 1349 | for (i = 2; i < 16; i += 2) { |
| 1350 | ecp_nistz256_ord_sqr_mont(table[i-1], table[i/2-1], 1); |
| 1351 | ecp_nistz256_ord_mul_mont(table[i], table[i-1], table[0]); |
| 1352 | } |
| 1353 | |
| 1354 | /* |
| 1355 | * The top 128bit of the exponent are highly redudndant, so we |
| 1356 | * perform an optimized flow |
| 1357 | */ |
| 1358 | ecp_nistz256_ord_sqr_mont(t, table[15-1], 4); /* f0 */ |
| 1359 | ecp_nistz256_ord_mul_mont(t, t, table[15-1]); /* ff */ |
| 1360 | |
| 1361 | ecp_nistz256_ord_sqr_mont(out, t, 8); /* ff00 */ |
| 1362 | ecp_nistz256_ord_mul_mont(out, out, t); /* ffff */ |
| 1363 | |
| 1364 | ecp_nistz256_ord_sqr_mont(t, out, 16); /* ffff0000 */ |
| 1365 | ecp_nistz256_ord_mul_mont(t, t, out); /* ffffffff */ |
| 1366 | |
| 1367 | ecp_nistz256_ord_sqr_mont(out, t, 64); /* ffffffff0000000000000000 */ |
| 1368 | ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffff */ |
| 1369 | |
| 1370 | ecp_nistz256_ord_sqr_mont(out, out, 32); /* ffffffff00000000ffffffff00000000 */ |
| 1371 | ecp_nistz256_ord_mul_mont(out, out, t); /* ffffffff00000000ffffffffffffffff */ |
| 1372 | |
| 1373 | /* |
| 1374 | * The bottom 128 bit of the exponent are processed with fixed 4-bit window |
| 1375 | */ |
| 1376 | for(i = 0; i < 32; i++) { |
| 1377 | /* expLo - the low 128 bits of the exponent we use (ord(p256) - 2), |
| 1378 | * split into nibbles */ |
| 1379 | static const unsigned char expLo[32] = { |
| 1380 | 0xb,0xc,0xe,0x6,0xf,0xa,0xa,0xd,0xa,0x7,0x1,0x7,0x9,0xe,0x8,0x4, |
| 1381 | 0xf,0x3,0xb,0x9,0xc,0xa,0xc,0x2,0xf,0xc,0x6,0x3,0x2,0x5,0x4,0xf |
| 1382 | }; |
| 1383 | |
| 1384 | ecp_nistz256_ord_sqr_mont(out, out, 4); |
| 1385 | /* The exponent is public, no need in constant-time access */ |
| 1386 | ecp_nistz256_ord_mul_mont(out, out, table[expLo[i]-1]); |
| 1387 | } |
| 1388 | #else |
| 1389 | /* |
| 1390 | * https://briansmith.org/ecc-inversion-addition-chains-01#p256_scalar_inversion |
| 1391 | * |
| 1392 | * Even though this code path spares 12 squarings, 4.5%, and 13 |
| 1393 | * multiplications, 25%, on grand scale sign operation is not that |
| 1394 | * much faster, not more that 2%... |
| 1395 | */ |
| 1396 | |
| 1397 | /* pre-calculate powers */ |
| 1398 | ecp_nistz256_ord_sqr_mont(table[i_10], table[i_1], 1); |
| 1399 | |
| 1400 | ecp_nistz256_ord_mul_mont(table[i_11], table[i_1], table[i_10]); |
| 1401 | |
| 1402 | ecp_nistz256_ord_mul_mont(table[i_101], table[i_11], table[i_10]); |
| 1403 | |
| 1404 | ecp_nistz256_ord_mul_mont(table[i_111], table[i_101], table[i_10]); |
| 1405 | |
| 1406 | ecp_nistz256_ord_sqr_mont(table[i_1010], table[i_101], 1); |
| 1407 | |
| 1408 | ecp_nistz256_ord_mul_mont(table[i_1111], table[i_1010], table[i_101]); |
| 1409 | |
| 1410 | ecp_nistz256_ord_sqr_mont(table[i_10101], table[i_1010], 1); |
| 1411 | ecp_nistz256_ord_mul_mont(table[i_10101], table[i_10101], table[i_1]); |
| 1412 | |
| 1413 | ecp_nistz256_ord_sqr_mont(table[i_101010], table[i_10101], 1); |
| 1414 | |
| 1415 | ecp_nistz256_ord_mul_mont(table[i_101111], table[i_101010], table[i_101]); |
| 1416 | |
| 1417 | ecp_nistz256_ord_mul_mont(table[i_x6], table[i_101010], table[i_10101]); |
| 1418 | |
| 1419 | ecp_nistz256_ord_sqr_mont(table[i_x8], table[i_x6], 2); |
| 1420 | ecp_nistz256_ord_mul_mont(table[i_x8], table[i_x8], table[i_11]); |
| 1421 | |
| 1422 | ecp_nistz256_ord_sqr_mont(table[i_x16], table[i_x8], 8); |
| 1423 | ecp_nistz256_ord_mul_mont(table[i_x16], table[i_x16], table[i_x8]); |
| 1424 | |
| 1425 | ecp_nistz256_ord_sqr_mont(table[i_x32], table[i_x16], 16); |
| 1426 | ecp_nistz256_ord_mul_mont(table[i_x32], table[i_x32], table[i_x16]); |
| 1427 | |
| 1428 | /* calculations */ |
| 1429 | ecp_nistz256_ord_sqr_mont(out, table[i_x32], 64); |
| 1430 | ecp_nistz256_ord_mul_mont(out, out, table[i_x32]); |
| 1431 | |
| 1432 | for (i = 0; i < 27; i++) { |
| 1433 | static const struct { unsigned char p, i; } chain[27] = { |
| 1434 | { 32, i_x32 }, { 6, i_101111 }, { 5, i_111 }, |
| 1435 | { 4, i_11 }, { 5, i_1111 }, { 5, i_10101 }, |
| 1436 | { 4, i_101 }, { 3, i_101 }, { 3, i_101 }, |
| 1437 | { 5, i_111 }, { 9, i_101111 }, { 6, i_1111 }, |
| 1438 | { 2, i_1 }, { 5, i_1 }, { 6, i_1111 }, |
| 1439 | { 5, i_111 }, { 4, i_111 }, { 5, i_111 }, |
| 1440 | { 5, i_101 }, { 3, i_11 }, { 10, i_101111 }, |
| 1441 | { 2, i_11 }, { 5, i_11 }, { 5, i_11 }, |
| 1442 | { 3, i_1 }, { 7, i_10101 }, { 6, i_1111 } |
| 1443 | }; |
| 1444 | |
| 1445 | ecp_nistz256_ord_sqr_mont(out, out, chain[i].p); |
| 1446 | ecp_nistz256_ord_mul_mont(out, out, table[chain[i].i]); |
| 1447 | } |
| 1448 | #endif |
| 1449 | ecp_nistz256_ord_mul_mont(out, out, one); |
| 1450 | |
| 1451 | /* |
| 1452 | * Can't fail, but check return code to be consistent anyway. |
| 1453 | */ |
| 1454 | if (!bn_set_words(r, out, P256_LIMBS)) |
| 1455 | goto err; |
| 1456 | |
| 1457 | ret = 1; |
| 1458 | err: |
| 1459 | return ret; |
| 1460 | } |
| 1461 | #else |
| 1462 | # define ecp_nistz256_inv_mod_ord NULL |
| 1463 | #endif |
| 1464 | |
| 1465 | const EC_METHOD *EC_GFp_nistz256_method(void) |
| 1466 | { |
| 1467 | static const EC_METHOD ret = { |
| 1468 | EC_FLAGS_DEFAULT_OCT, |
| 1469 | NID_X9_62_prime_field, |
| 1470 | ec_GFp_mont_group_init, |
| 1471 | ec_GFp_mont_group_finish, |
| 1472 | ec_GFp_mont_group_clear_finish, |
| 1473 | ec_GFp_mont_group_copy, |
| 1474 | ec_GFp_mont_group_set_curve, |
| 1475 | ec_GFp_simple_group_get_curve, |
| 1476 | ec_GFp_simple_group_get_degree, |
| 1477 | ec_group_simple_order_bits, |
| 1478 | ec_GFp_simple_group_check_discriminant, |
| 1479 | ec_GFp_simple_point_init, |
| 1480 | ec_GFp_simple_point_finish, |
| 1481 | ec_GFp_simple_point_clear_finish, |
| 1482 | ec_GFp_simple_point_copy, |
| 1483 | ec_GFp_simple_point_set_to_infinity, |
| 1484 | ec_GFp_simple_set_Jprojective_coordinates_GFp, |
| 1485 | ec_GFp_simple_get_Jprojective_coordinates_GFp, |
| 1486 | ec_GFp_simple_point_set_affine_coordinates, |
| 1487 | ecp_nistz256_get_affine, |
| 1488 | 0, 0, 0, |
| 1489 | ec_GFp_simple_add, |
| 1490 | ec_GFp_simple_dbl, |
| 1491 | ec_GFp_simple_invert, |
| 1492 | ec_GFp_simple_is_at_infinity, |
| 1493 | ec_GFp_simple_is_on_curve, |
| 1494 | ec_GFp_simple_cmp, |
| 1495 | ec_GFp_simple_make_affine, |
| 1496 | ec_GFp_simple_points_make_affine, |
| 1497 | ecp_nistz256_points_mul, /* mul */ |
| 1498 | ecp_nistz256_mult_precompute, /* precompute_mult */ |
| 1499 | ecp_nistz256_window_have_precompute_mult, /* have_precompute_mult */ |
| 1500 | ec_GFp_mont_field_mul, |
| 1501 | ec_GFp_mont_field_sqr, |
| 1502 | 0, /* field_div */ |
| 1503 | ec_GFp_mont_field_inv, |
| 1504 | ec_GFp_mont_field_encode, |
| 1505 | ec_GFp_mont_field_decode, |
| 1506 | ec_GFp_mont_field_set_to_one, |
| 1507 | ec_key_simple_priv2oct, |
| 1508 | ec_key_simple_oct2priv, |
| 1509 | 0, /* set private */ |
| 1510 | ec_key_simple_generate_key, |
| 1511 | ec_key_simple_check_key, |
| 1512 | ec_key_simple_generate_public_key, |
| 1513 | 0, /* keycopy */ |
| 1514 | 0, /* keyfinish */ |
| 1515 | ecdh_simple_compute_key, |
| 1516 | ecp_nistz256_inv_mod_ord, /* can be #define-d NULL */ |
| 1517 | 0, /* blind_coordinates */ |
| 1518 | 0, /* ladder_pre */ |
| 1519 | 0, /* ladder_step */ |
| 1520 | 0 /* ladder_post */ |
| 1521 | }; |
| 1522 | |
| 1523 | return &ret; |
| 1524 | } |