yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1999-2016 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <stdlib.h> |
| 12 | #include "internal/cryptlib.h" |
| 13 | # include <openssl/x509.h> |
| 14 | # include <openssl/evp.h> |
| 15 | # include <openssl/hmac.h> |
| 16 | # include "evp_local.h" |
| 17 | |
| 18 | /* set this to print out info about the keygen algorithm */ |
| 19 | /* #define OPENSSL_DEBUG_PKCS5V2 */ |
| 20 | |
| 21 | # ifdef OPENSSL_DEBUG_PKCS5V2 |
| 22 | static void h__dump(const unsigned char *p, int len); |
| 23 | # endif |
| 24 | |
| 25 | /* |
| 26 | * This is an implementation of PKCS#5 v2.0 password based encryption key |
| 27 | * derivation function PBKDF2. SHA1 version verified against test vectors |
| 28 | * posted by Peter Gutmann to the PKCS-TNG mailing list. |
| 29 | */ |
| 30 | |
| 31 | int PKCS5_PBKDF2_HMAC(const char *pass, int passlen, |
| 32 | const unsigned char *salt, int saltlen, int iter, |
| 33 | const EVP_MD *digest, int keylen, unsigned char *out) |
| 34 | { |
| 35 | const char *empty = ""; |
| 36 | unsigned char digtmp[EVP_MAX_MD_SIZE], *p, itmp[4]; |
| 37 | int cplen, j, k, tkeylen, mdlen; |
| 38 | unsigned long i = 1; |
| 39 | HMAC_CTX *hctx_tpl = NULL, *hctx = NULL; |
| 40 | |
| 41 | mdlen = EVP_MD_size(digest); |
| 42 | if (mdlen < 0) |
| 43 | return 0; |
| 44 | |
| 45 | hctx_tpl = HMAC_CTX_new(); |
| 46 | if (hctx_tpl == NULL) |
| 47 | return 0; |
| 48 | p = out; |
| 49 | tkeylen = keylen; |
| 50 | if (pass == NULL) { |
| 51 | pass = empty; |
| 52 | passlen = 0; |
| 53 | } else if (passlen == -1) { |
| 54 | passlen = strlen(pass); |
| 55 | } |
| 56 | if (!HMAC_Init_ex(hctx_tpl, pass, passlen, digest, NULL)) { |
| 57 | HMAC_CTX_free(hctx_tpl); |
| 58 | return 0; |
| 59 | } |
| 60 | hctx = HMAC_CTX_new(); |
| 61 | if (hctx == NULL) { |
| 62 | HMAC_CTX_free(hctx_tpl); |
| 63 | return 0; |
| 64 | } |
| 65 | while (tkeylen) { |
| 66 | if (tkeylen > mdlen) |
| 67 | cplen = mdlen; |
| 68 | else |
| 69 | cplen = tkeylen; |
| 70 | /* |
| 71 | * We are unlikely to ever use more than 256 blocks (5120 bits!) but |
| 72 | * just in case... |
| 73 | */ |
| 74 | itmp[0] = (unsigned char)((i >> 24) & 0xff); |
| 75 | itmp[1] = (unsigned char)((i >> 16) & 0xff); |
| 76 | itmp[2] = (unsigned char)((i >> 8) & 0xff); |
| 77 | itmp[3] = (unsigned char)(i & 0xff); |
| 78 | if (!HMAC_CTX_copy(hctx, hctx_tpl)) { |
| 79 | HMAC_CTX_free(hctx); |
| 80 | HMAC_CTX_free(hctx_tpl); |
| 81 | return 0; |
| 82 | } |
| 83 | if (!HMAC_Update(hctx, salt, saltlen) |
| 84 | || !HMAC_Update(hctx, itmp, 4) |
| 85 | || !HMAC_Final(hctx, digtmp, NULL)) { |
| 86 | HMAC_CTX_free(hctx); |
| 87 | HMAC_CTX_free(hctx_tpl); |
| 88 | return 0; |
| 89 | } |
| 90 | memcpy(p, digtmp, cplen); |
| 91 | for (j = 1; j < iter; j++) { |
| 92 | if (!HMAC_CTX_copy(hctx, hctx_tpl)) { |
| 93 | HMAC_CTX_free(hctx); |
| 94 | HMAC_CTX_free(hctx_tpl); |
| 95 | return 0; |
| 96 | } |
| 97 | if (!HMAC_Update(hctx, digtmp, mdlen) |
| 98 | || !HMAC_Final(hctx, digtmp, NULL)) { |
| 99 | HMAC_CTX_free(hctx); |
| 100 | HMAC_CTX_free(hctx_tpl); |
| 101 | return 0; |
| 102 | } |
| 103 | for (k = 0; k < cplen; k++) |
| 104 | p[k] ^= digtmp[k]; |
| 105 | } |
| 106 | tkeylen -= cplen; |
| 107 | i++; |
| 108 | p += cplen; |
| 109 | } |
| 110 | HMAC_CTX_free(hctx); |
| 111 | HMAC_CTX_free(hctx_tpl); |
| 112 | # ifdef OPENSSL_DEBUG_PKCS5V2 |
| 113 | fprintf(stderr, "Password:\n"); |
| 114 | h__dump(pass, passlen); |
| 115 | fprintf(stderr, "Salt:\n"); |
| 116 | h__dump(salt, saltlen); |
| 117 | fprintf(stderr, "Iteration count %d\n", iter); |
| 118 | fprintf(stderr, "Key:\n"); |
| 119 | h__dump(out, keylen); |
| 120 | # endif |
| 121 | return 1; |
| 122 | } |
| 123 | |
| 124 | int PKCS5_PBKDF2_HMAC_SHA1(const char *pass, int passlen, |
| 125 | const unsigned char *salt, int saltlen, int iter, |
| 126 | int keylen, unsigned char *out) |
| 127 | { |
| 128 | return PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, EVP_sha1(), |
| 129 | keylen, out); |
| 130 | } |
| 131 | |
| 132 | /* |
| 133 | * Now the key derivation function itself. This is a bit evil because it has |
| 134 | * to check the ASN1 parameters are valid: and there are quite a few of |
| 135 | * them... |
| 136 | */ |
| 137 | |
| 138 | int PKCS5_v2_PBE_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, int passlen, |
| 139 | ASN1_TYPE *param, const EVP_CIPHER *c, |
| 140 | const EVP_MD *md, int en_de) |
| 141 | { |
| 142 | PBE2PARAM *pbe2 = NULL; |
| 143 | const EVP_CIPHER *cipher; |
| 144 | EVP_PBE_KEYGEN *kdf; |
| 145 | |
| 146 | int rv = 0; |
| 147 | |
| 148 | pbe2 = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBE2PARAM), param); |
| 149 | if (pbe2 == NULL) { |
| 150 | EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_DECODE_ERROR); |
| 151 | goto err; |
| 152 | } |
| 153 | |
| 154 | /* See if we recognise the key derivation function */ |
| 155 | if (!EVP_PBE_find(EVP_PBE_TYPE_KDF, OBJ_obj2nid(pbe2->keyfunc->algorithm), |
| 156 | NULL, NULL, &kdf)) { |
| 157 | EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, |
| 158 | EVP_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION); |
| 159 | goto err; |
| 160 | } |
| 161 | |
| 162 | /* |
| 163 | * lets see if we recognise the encryption algorithm. |
| 164 | */ |
| 165 | |
| 166 | cipher = EVP_get_cipherbyobj(pbe2->encryption->algorithm); |
| 167 | |
| 168 | if (!cipher) { |
| 169 | EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_UNSUPPORTED_CIPHER); |
| 170 | goto err; |
| 171 | } |
| 172 | |
| 173 | /* Fixup cipher based on AlgorithmIdentifier */ |
| 174 | if (!EVP_CipherInit_ex(ctx, cipher, NULL, NULL, NULL, en_de)) |
| 175 | goto err; |
| 176 | if (EVP_CIPHER_asn1_to_param(ctx, pbe2->encryption->parameter) < 0) { |
| 177 | EVPerr(EVP_F_PKCS5_V2_PBE_KEYIVGEN, EVP_R_CIPHER_PARAMETER_ERROR); |
| 178 | goto err; |
| 179 | } |
| 180 | rv = kdf(ctx, pass, passlen, pbe2->keyfunc->parameter, NULL, NULL, en_de); |
| 181 | err: |
| 182 | PBE2PARAM_free(pbe2); |
| 183 | return rv; |
| 184 | } |
| 185 | |
| 186 | int PKCS5_v2_PBKDF2_keyivgen(EVP_CIPHER_CTX *ctx, const char *pass, |
| 187 | int passlen, ASN1_TYPE *param, |
| 188 | const EVP_CIPHER *c, const EVP_MD *md, int en_de) |
| 189 | { |
| 190 | unsigned char *salt, key[EVP_MAX_KEY_LENGTH]; |
| 191 | int saltlen, iter; |
| 192 | int rv = 0; |
| 193 | unsigned int keylen = 0; |
| 194 | int prf_nid, hmac_md_nid; |
| 195 | PBKDF2PARAM *kdf = NULL; |
| 196 | const EVP_MD *prfmd; |
| 197 | |
| 198 | if (EVP_CIPHER_CTX_cipher(ctx) == NULL) { |
| 199 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_NO_CIPHER_SET); |
| 200 | goto err; |
| 201 | } |
| 202 | keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 203 | OPENSSL_assert(keylen <= sizeof(key)); |
| 204 | |
| 205 | /* Decode parameter */ |
| 206 | |
| 207 | kdf = ASN1_TYPE_unpack_sequence(ASN1_ITEM_rptr(PBKDF2PARAM), param); |
| 208 | |
| 209 | if (kdf == NULL) { |
| 210 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_DECODE_ERROR); |
| 211 | goto err; |
| 212 | } |
| 213 | |
| 214 | keylen = EVP_CIPHER_CTX_key_length(ctx); |
| 215 | |
| 216 | /* Now check the parameters of the kdf */ |
| 217 | |
| 218 | if (kdf->keylength && (ASN1_INTEGER_get(kdf->keylength) != (int)keylen)) { |
| 219 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_KEYLENGTH); |
| 220 | goto err; |
| 221 | } |
| 222 | |
| 223 | if (kdf->prf) |
| 224 | prf_nid = OBJ_obj2nid(kdf->prf->algorithm); |
| 225 | else |
| 226 | prf_nid = NID_hmacWithSHA1; |
| 227 | |
| 228 | if (!EVP_PBE_find(EVP_PBE_TYPE_PRF, prf_nid, NULL, &hmac_md_nid, 0)) { |
| 229 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); |
| 230 | goto err; |
| 231 | } |
| 232 | |
| 233 | prfmd = EVP_get_digestbynid(hmac_md_nid); |
| 234 | if (prfmd == NULL) { |
| 235 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_PRF); |
| 236 | goto err; |
| 237 | } |
| 238 | |
| 239 | if (kdf->salt->type != V_ASN1_OCTET_STRING) { |
| 240 | EVPerr(EVP_F_PKCS5_V2_PBKDF2_KEYIVGEN, EVP_R_UNSUPPORTED_SALT_TYPE); |
| 241 | goto err; |
| 242 | } |
| 243 | |
| 244 | /* it seems that its all OK */ |
| 245 | salt = kdf->salt->value.octet_string->data; |
| 246 | saltlen = kdf->salt->value.octet_string->length; |
| 247 | iter = ASN1_INTEGER_get(kdf->iter); |
| 248 | if (!PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, iter, prfmd, |
| 249 | keylen, key)) |
| 250 | goto err; |
| 251 | rv = EVP_CipherInit_ex(ctx, NULL, NULL, key, NULL, en_de); |
| 252 | err: |
| 253 | OPENSSL_cleanse(key, keylen); |
| 254 | PBKDF2PARAM_free(kdf); |
| 255 | return rv; |
| 256 | } |
| 257 | |
| 258 | # ifdef OPENSSL_DEBUG_PKCS5V2 |
| 259 | static void h__dump(const unsigned char *p, int len) |
| 260 | { |
| 261 | for (; len--; p++) |
| 262 | fprintf(stderr, "%02X ", *p); |
| 263 | fprintf(stderr, "\n"); |
| 264 | } |
| 265 | # endif |