yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2015-2018 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stddef.h> |
| 11 | #include <stdio.h> |
| 12 | #include <string.h> |
| 13 | #include <openssl/evp.h> |
| 14 | #include <openssl/err.h> |
| 15 | #include "internal/numbers.h" |
| 16 | |
| 17 | #ifndef OPENSSL_NO_SCRYPT |
| 18 | |
| 19 | #define R(a,b) (((a) << (b)) | ((a) >> (32 - (b)))) |
| 20 | static void salsa208_word_specification(uint32_t inout[16]) |
| 21 | { |
| 22 | int i; |
| 23 | uint32_t x[16]; |
| 24 | memcpy(x, inout, sizeof(x)); |
| 25 | for (i = 8; i > 0; i -= 2) { |
| 26 | x[4] ^= R(x[0] + x[12], 7); |
| 27 | x[8] ^= R(x[4] + x[0], 9); |
| 28 | x[12] ^= R(x[8] + x[4], 13); |
| 29 | x[0] ^= R(x[12] + x[8], 18); |
| 30 | x[9] ^= R(x[5] + x[1], 7); |
| 31 | x[13] ^= R(x[9] + x[5], 9); |
| 32 | x[1] ^= R(x[13] + x[9], 13); |
| 33 | x[5] ^= R(x[1] + x[13], 18); |
| 34 | x[14] ^= R(x[10] + x[6], 7); |
| 35 | x[2] ^= R(x[14] + x[10], 9); |
| 36 | x[6] ^= R(x[2] + x[14], 13); |
| 37 | x[10] ^= R(x[6] + x[2], 18); |
| 38 | x[3] ^= R(x[15] + x[11], 7); |
| 39 | x[7] ^= R(x[3] + x[15], 9); |
| 40 | x[11] ^= R(x[7] + x[3], 13); |
| 41 | x[15] ^= R(x[11] + x[7], 18); |
| 42 | x[1] ^= R(x[0] + x[3], 7); |
| 43 | x[2] ^= R(x[1] + x[0], 9); |
| 44 | x[3] ^= R(x[2] + x[1], 13); |
| 45 | x[0] ^= R(x[3] + x[2], 18); |
| 46 | x[6] ^= R(x[5] + x[4], 7); |
| 47 | x[7] ^= R(x[6] + x[5], 9); |
| 48 | x[4] ^= R(x[7] + x[6], 13); |
| 49 | x[5] ^= R(x[4] + x[7], 18); |
| 50 | x[11] ^= R(x[10] + x[9], 7); |
| 51 | x[8] ^= R(x[11] + x[10], 9); |
| 52 | x[9] ^= R(x[8] + x[11], 13); |
| 53 | x[10] ^= R(x[9] + x[8], 18); |
| 54 | x[12] ^= R(x[15] + x[14], 7); |
| 55 | x[13] ^= R(x[12] + x[15], 9); |
| 56 | x[14] ^= R(x[13] + x[12], 13); |
| 57 | x[15] ^= R(x[14] + x[13], 18); |
| 58 | } |
| 59 | for (i = 0; i < 16; ++i) |
| 60 | inout[i] += x[i]; |
| 61 | OPENSSL_cleanse(x, sizeof(x)); |
| 62 | } |
| 63 | |
| 64 | static void scryptBlockMix(uint32_t *B_, uint32_t *B, uint64_t r) |
| 65 | { |
| 66 | uint64_t i, j; |
| 67 | uint32_t X[16], *pB; |
| 68 | |
| 69 | memcpy(X, B + (r * 2 - 1) * 16, sizeof(X)); |
| 70 | pB = B; |
| 71 | for (i = 0; i < r * 2; i++) { |
| 72 | for (j = 0; j < 16; j++) |
| 73 | X[j] ^= *pB++; |
| 74 | salsa208_word_specification(X); |
| 75 | memcpy(B_ + (i / 2 + (i & 1) * r) * 16, X, sizeof(X)); |
| 76 | } |
| 77 | OPENSSL_cleanse(X, sizeof(X)); |
| 78 | } |
| 79 | |
| 80 | static void scryptROMix(unsigned char *B, uint64_t r, uint64_t N, |
| 81 | uint32_t *X, uint32_t *T, uint32_t *V) |
| 82 | { |
| 83 | unsigned char *pB; |
| 84 | uint32_t *pV; |
| 85 | uint64_t i, k; |
| 86 | |
| 87 | /* Convert from little endian input */ |
| 88 | for (pV = V, i = 0, pB = B; i < 32 * r; i++, pV++) { |
| 89 | *pV = *pB++; |
| 90 | *pV |= *pB++ << 8; |
| 91 | *pV |= *pB++ << 16; |
| 92 | *pV |= (uint32_t)*pB++ << 24; |
| 93 | } |
| 94 | |
| 95 | for (i = 1; i < N; i++, pV += 32 * r) |
| 96 | scryptBlockMix(pV, pV - 32 * r, r); |
| 97 | |
| 98 | scryptBlockMix(X, V + (N - 1) * 32 * r, r); |
| 99 | |
| 100 | for (i = 0; i < N; i++) { |
| 101 | uint32_t j; |
| 102 | j = X[16 * (2 * r - 1)] % N; |
| 103 | pV = V + 32 * r * j; |
| 104 | for (k = 0; k < 32 * r; k++) |
| 105 | T[k] = X[k] ^ *pV++; |
| 106 | scryptBlockMix(X, T, r); |
| 107 | } |
| 108 | /* Convert output to little endian */ |
| 109 | for (i = 0, pB = B; i < 32 * r; i++) { |
| 110 | uint32_t xtmp = X[i]; |
| 111 | *pB++ = xtmp & 0xff; |
| 112 | *pB++ = (xtmp >> 8) & 0xff; |
| 113 | *pB++ = (xtmp >> 16) & 0xff; |
| 114 | *pB++ = (xtmp >> 24) & 0xff; |
| 115 | } |
| 116 | } |
| 117 | |
| 118 | #ifndef SIZE_MAX |
| 119 | # define SIZE_MAX ((size_t)-1) |
| 120 | #endif |
| 121 | |
| 122 | /* |
| 123 | * Maximum power of two that will fit in uint64_t: this should work on |
| 124 | * most (all?) platforms. |
| 125 | */ |
| 126 | |
| 127 | #define LOG2_UINT64_MAX (sizeof(uint64_t) * 8 - 1) |
| 128 | |
| 129 | /* |
| 130 | * Maximum value of p * r: |
| 131 | * p <= ((2^32-1) * hLen) / MFLen => |
| 132 | * p <= ((2^32-1) * 32) / (128 * r) => |
| 133 | * p * r <= (2^30-1) |
| 134 | * |
| 135 | */ |
| 136 | |
| 137 | #define SCRYPT_PR_MAX ((1 << 30) - 1) |
| 138 | |
| 139 | /* |
| 140 | * Maximum permitted memory allow this to be overridden with Configuration |
| 141 | * option: e.g. -DSCRYPT_MAX_MEM=0 for maximum possible. |
| 142 | */ |
| 143 | |
| 144 | #ifdef SCRYPT_MAX_MEM |
| 145 | # if SCRYPT_MAX_MEM == 0 |
| 146 | # undef SCRYPT_MAX_MEM |
| 147 | /* |
| 148 | * Although we could theoretically allocate SIZE_MAX memory that would leave |
| 149 | * no memory available for anything else so set limit as half that. |
| 150 | */ |
| 151 | # define SCRYPT_MAX_MEM (SIZE_MAX/2) |
| 152 | # endif |
| 153 | #else |
| 154 | /* Default memory limit: 32 MB */ |
| 155 | # define SCRYPT_MAX_MEM (1024 * 1024 * 32) |
| 156 | #endif |
| 157 | |
| 158 | int EVP_PBE_scrypt(const char *pass, size_t passlen, |
| 159 | const unsigned char *salt, size_t saltlen, |
| 160 | uint64_t N, uint64_t r, uint64_t p, uint64_t maxmem, |
| 161 | unsigned char *key, size_t keylen) |
| 162 | { |
| 163 | int rv = 0; |
| 164 | unsigned char *B; |
| 165 | uint32_t *X, *V, *T; |
| 166 | uint64_t i, Blen, Vlen; |
| 167 | |
| 168 | /* Sanity check parameters */ |
| 169 | /* initial check, r,p must be non zero, N >= 2 and a power of 2 */ |
| 170 | if (r == 0 || p == 0 || N < 2 || (N & (N - 1))) |
| 171 | return 0; |
| 172 | /* Check p * r < SCRYPT_PR_MAX avoiding overflow */ |
| 173 | if (p > SCRYPT_PR_MAX / r) { |
| 174 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 175 | return 0; |
| 176 | } |
| 177 | |
| 178 | /* |
| 179 | * Need to check N: if 2^(128 * r / 8) overflows limit this is |
| 180 | * automatically satisfied since N <= UINT64_MAX. |
| 181 | */ |
| 182 | |
| 183 | if (16 * r <= LOG2_UINT64_MAX) { |
| 184 | if (N >= (((uint64_t)1) << (16 * r))) { |
| 185 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 186 | return 0; |
| 187 | } |
| 188 | } |
| 189 | |
| 190 | /* Memory checks: check total allocated buffer size fits in uint64_t */ |
| 191 | |
| 192 | /* |
| 193 | * B size in section 5 step 1.S |
| 194 | * Note: we know p * 128 * r < UINT64_MAX because we already checked |
| 195 | * p * r < SCRYPT_PR_MAX |
| 196 | */ |
| 197 | Blen = p * 128 * r; |
| 198 | /* |
| 199 | * Yet we pass it as integer to PKCS5_PBKDF2_HMAC... [This would |
| 200 | * have to be revised when/if PKCS5_PBKDF2_HMAC accepts size_t.] |
| 201 | */ |
| 202 | if (Blen > INT_MAX) { |
| 203 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 204 | return 0; |
| 205 | } |
| 206 | |
| 207 | /* |
| 208 | * Check 32 * r * (N + 2) * sizeof(uint32_t) fits in uint64_t |
| 209 | * This is combined size V, X and T (section 4) |
| 210 | */ |
| 211 | i = UINT64_MAX / (32 * sizeof(uint32_t)); |
| 212 | if (N + 2 > i / r) { |
| 213 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 214 | return 0; |
| 215 | } |
| 216 | Vlen = 32 * r * (N + 2) * sizeof(uint32_t); |
| 217 | |
| 218 | /* check total allocated size fits in uint64_t */ |
| 219 | if (Blen > UINT64_MAX - Vlen) { |
| 220 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 221 | return 0; |
| 222 | } |
| 223 | |
| 224 | if (maxmem == 0) |
| 225 | maxmem = SCRYPT_MAX_MEM; |
| 226 | |
| 227 | /* Check that the maximum memory doesn't exceed a size_t limits */ |
| 228 | if (maxmem > SIZE_MAX) |
| 229 | maxmem = SIZE_MAX; |
| 230 | |
| 231 | if (Blen + Vlen > maxmem) { |
| 232 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_MEMORY_LIMIT_EXCEEDED); |
| 233 | return 0; |
| 234 | } |
| 235 | |
| 236 | /* If no key return to indicate parameters are OK */ |
| 237 | if (key == NULL) |
| 238 | return 1; |
| 239 | |
| 240 | B = OPENSSL_malloc((size_t)(Blen + Vlen)); |
| 241 | if (B == NULL) { |
| 242 | EVPerr(EVP_F_EVP_PBE_SCRYPT, ERR_R_MALLOC_FAILURE); |
| 243 | return 0; |
| 244 | } |
| 245 | X = (uint32_t *)(B + Blen); |
| 246 | T = X + 32 * r; |
| 247 | V = T + 32 * r; |
| 248 | if (PKCS5_PBKDF2_HMAC(pass, passlen, salt, saltlen, 1, EVP_sha256(), |
| 249 | (int)Blen, B) == 0) |
| 250 | goto err; |
| 251 | |
| 252 | for (i = 0; i < p; i++) |
| 253 | scryptROMix(B + 128 * r * i, r, N, X, T, V); |
| 254 | |
| 255 | if (PKCS5_PBKDF2_HMAC(pass, passlen, B, (int)Blen, 1, EVP_sha256(), |
| 256 | keylen, key) == 0) |
| 257 | goto err; |
| 258 | rv = 1; |
| 259 | err: |
| 260 | if (rv == 0) |
| 261 | EVPerr(EVP_F_EVP_PBE_SCRYPT, EVP_R_PBKDF2_ERROR); |
| 262 | |
| 263 | OPENSSL_clear_free(B, (size_t)(Blen + Vlen)); |
| 264 | return rv; |
| 265 | } |
| 266 | #endif |