yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1999-2019 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /* EME-OAEP as defined in RFC 2437 (PKCS #1 v2.0) */ |
| 11 | |
| 12 | /* |
| 13 | * See Victor Shoup, "OAEP reconsidered," Nov. 2000, <URL: |
| 14 | * http://www.shoup.net/papers/oaep.ps.Z> for problems with the security |
| 15 | * proof for the original OAEP scheme, which EME-OAEP is based on. A new |
| 16 | * proof can be found in E. Fujisaki, T. Okamoto, D. Pointcheval, J. Stern, |
| 17 | * "RSA-OEAP is Still Alive!", Dec. 2000, <URL: |
| 18 | * http://eprint.iacr.org/2000/061/>. The new proof has stronger requirements |
| 19 | * for the underlying permutation: "partial-one-wayness" instead of |
| 20 | * one-wayness. For the RSA function, this is an equivalent notion. |
| 21 | */ |
| 22 | |
| 23 | #include "internal/constant_time.h" |
| 24 | |
| 25 | #include <stdio.h> |
| 26 | #include "internal/cryptlib.h" |
| 27 | #include <openssl/bn.h> |
| 28 | #include <openssl/evp.h> |
| 29 | #include <openssl/rand.h> |
| 30 | #include <openssl/sha.h> |
| 31 | #include "rsa_local.h" |
| 32 | |
| 33 | int RSA_padding_add_PKCS1_OAEP(unsigned char *to, int tlen, |
| 34 | const unsigned char *from, int flen, |
| 35 | const unsigned char *param, int plen) |
| 36 | { |
| 37 | return RSA_padding_add_PKCS1_OAEP_mgf1(to, tlen, from, flen, |
| 38 | param, plen, NULL, NULL); |
| 39 | } |
| 40 | |
| 41 | int RSA_padding_add_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
| 42 | const unsigned char *from, int flen, |
| 43 | const unsigned char *param, int plen, |
| 44 | const EVP_MD *md, const EVP_MD *mgf1md) |
| 45 | { |
| 46 | int rv = 0; |
| 47 | int i, emlen = tlen - 1; |
| 48 | unsigned char *db, *seed; |
| 49 | unsigned char *dbmask = NULL; |
| 50 | unsigned char seedmask[EVP_MAX_MD_SIZE]; |
| 51 | int mdlen, dbmask_len = 0; |
| 52 | |
| 53 | if (md == NULL) |
| 54 | md = EVP_sha1(); |
| 55 | if (mgf1md == NULL) |
| 56 | mgf1md = md; |
| 57 | |
| 58 | mdlen = EVP_MD_size(md); |
| 59 | |
| 60 | if (flen > emlen - 2 * mdlen - 1) { |
| 61 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, |
| 62 | RSA_R_DATA_TOO_LARGE_FOR_KEY_SIZE); |
| 63 | return 0; |
| 64 | } |
| 65 | |
| 66 | if (emlen < 2 * mdlen + 1) { |
| 67 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, |
| 68 | RSA_R_KEY_SIZE_TOO_SMALL); |
| 69 | return 0; |
| 70 | } |
| 71 | |
| 72 | to[0] = 0; |
| 73 | seed = to + 1; |
| 74 | db = to + mdlen + 1; |
| 75 | |
| 76 | if (!EVP_Digest((void *)param, plen, db, NULL, md, NULL)) |
| 77 | goto err; |
| 78 | memset(db + mdlen, 0, emlen - flen - 2 * mdlen - 1); |
| 79 | db[emlen - flen - mdlen - 1] = 0x01; |
| 80 | memcpy(db + emlen - flen - mdlen, from, (unsigned int)flen); |
| 81 | if (RAND_bytes(seed, mdlen) <= 0) |
| 82 | goto err; |
| 83 | |
| 84 | dbmask_len = emlen - mdlen; |
| 85 | dbmask = OPENSSL_malloc(dbmask_len); |
| 86 | if (dbmask == NULL) { |
| 87 | RSAerr(RSA_F_RSA_PADDING_ADD_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); |
| 88 | goto err; |
| 89 | } |
| 90 | |
| 91 | if (PKCS1_MGF1(dbmask, dbmask_len, seed, mdlen, mgf1md) < 0) |
| 92 | goto err; |
| 93 | for (i = 0; i < dbmask_len; i++) |
| 94 | db[i] ^= dbmask[i]; |
| 95 | |
| 96 | if (PKCS1_MGF1(seedmask, mdlen, db, dbmask_len, mgf1md) < 0) |
| 97 | goto err; |
| 98 | for (i = 0; i < mdlen; i++) |
| 99 | seed[i] ^= seedmask[i]; |
| 100 | rv = 1; |
| 101 | |
| 102 | err: |
| 103 | OPENSSL_cleanse(seedmask, sizeof(seedmask)); |
| 104 | OPENSSL_clear_free(dbmask, dbmask_len); |
| 105 | return rv; |
| 106 | } |
| 107 | |
| 108 | int RSA_padding_check_PKCS1_OAEP(unsigned char *to, int tlen, |
| 109 | const unsigned char *from, int flen, int num, |
| 110 | const unsigned char *param, int plen) |
| 111 | { |
| 112 | return RSA_padding_check_PKCS1_OAEP_mgf1(to, tlen, from, flen, num, |
| 113 | param, plen, NULL, NULL); |
| 114 | } |
| 115 | |
| 116 | int RSA_padding_check_PKCS1_OAEP_mgf1(unsigned char *to, int tlen, |
| 117 | const unsigned char *from, int flen, |
| 118 | int num, const unsigned char *param, |
| 119 | int plen, const EVP_MD *md, |
| 120 | const EVP_MD *mgf1md) |
| 121 | { |
| 122 | int i, dblen = 0, mlen = -1, one_index = 0, msg_index; |
| 123 | unsigned int good = 0, found_one_byte, mask; |
| 124 | const unsigned char *maskedseed, *maskeddb; |
| 125 | /* |
| 126 | * |em| is the encoded message, zero-padded to exactly |num| bytes: em = |
| 127 | * Y || maskedSeed || maskedDB |
| 128 | */ |
| 129 | unsigned char *db = NULL, *em = NULL, seed[EVP_MAX_MD_SIZE], |
| 130 | phash[EVP_MAX_MD_SIZE]; |
| 131 | int mdlen; |
| 132 | |
| 133 | if (md == NULL) |
| 134 | md = EVP_sha1(); |
| 135 | if (mgf1md == NULL) |
| 136 | mgf1md = md; |
| 137 | |
| 138 | mdlen = EVP_MD_size(md); |
| 139 | |
| 140 | if (tlen <= 0 || flen <= 0) |
| 141 | return -1; |
| 142 | /* |
| 143 | * |num| is the length of the modulus; |flen| is the length of the |
| 144 | * encoded message. Therefore, for any |from| that was obtained by |
| 145 | * decrypting a ciphertext, we must have |flen| <= |num|. Similarly, |
| 146 | * |num| >= 2 * |mdlen| + 2 must hold for the modulus irrespective of |
| 147 | * the ciphertext, see PKCS #1 v2.2, section 7.1.2. |
| 148 | * This does not leak any side-channel information. |
| 149 | */ |
| 150 | if (num < flen || num < 2 * mdlen + 2) { |
| 151 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, |
| 152 | RSA_R_OAEP_DECODING_ERROR); |
| 153 | return -1; |
| 154 | } |
| 155 | |
| 156 | dblen = num - mdlen - 1; |
| 157 | db = OPENSSL_malloc(dblen); |
| 158 | if (db == NULL) { |
| 159 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, ERR_R_MALLOC_FAILURE); |
| 160 | goto cleanup; |
| 161 | } |
| 162 | |
| 163 | em = OPENSSL_malloc(num); |
| 164 | if (em == NULL) { |
| 165 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, |
| 166 | ERR_R_MALLOC_FAILURE); |
| 167 | goto cleanup; |
| 168 | } |
| 169 | |
| 170 | /* |
| 171 | * Caller is encouraged to pass zero-padded message created with |
| 172 | * BN_bn2binpad. Trouble is that since we can't read out of |from|'s |
| 173 | * bounds, it's impossible to have an invariant memory access pattern |
| 174 | * in case |from| was not zero-padded in advance. |
| 175 | */ |
| 176 | for (from += flen, em += num, i = 0; i < num; i++) { |
| 177 | mask = ~constant_time_is_zero(flen); |
| 178 | flen -= 1 & mask; |
| 179 | from -= 1 & mask; |
| 180 | *--em = *from & mask; |
| 181 | } |
| 182 | |
| 183 | /* |
| 184 | * The first byte must be zero, however we must not leak if this is |
| 185 | * true. See James H. Manger, "A Chosen Ciphertext Attack on RSA |
| 186 | * Optimal Asymmetric Encryption Padding (OAEP) [...]", CRYPTO 2001). |
| 187 | */ |
| 188 | good = constant_time_is_zero(em[0]); |
| 189 | |
| 190 | maskedseed = em + 1; |
| 191 | maskeddb = em + 1 + mdlen; |
| 192 | |
| 193 | if (PKCS1_MGF1(seed, mdlen, maskeddb, dblen, mgf1md)) |
| 194 | goto cleanup; |
| 195 | for (i = 0; i < mdlen; i++) |
| 196 | seed[i] ^= maskedseed[i]; |
| 197 | |
| 198 | if (PKCS1_MGF1(db, dblen, seed, mdlen, mgf1md)) |
| 199 | goto cleanup; |
| 200 | for (i = 0; i < dblen; i++) |
| 201 | db[i] ^= maskeddb[i]; |
| 202 | |
| 203 | if (!EVP_Digest((void *)param, plen, phash, NULL, md, NULL)) |
| 204 | goto cleanup; |
| 205 | |
| 206 | good &= constant_time_is_zero(CRYPTO_memcmp(db, phash, mdlen)); |
| 207 | |
| 208 | found_one_byte = 0; |
| 209 | for (i = mdlen; i < dblen; i++) { |
| 210 | /* |
| 211 | * Padding consists of a number of 0-bytes, followed by a 1. |
| 212 | */ |
| 213 | unsigned int equals1 = constant_time_eq(db[i], 1); |
| 214 | unsigned int equals0 = constant_time_is_zero(db[i]); |
| 215 | one_index = constant_time_select_int(~found_one_byte & equals1, |
| 216 | i, one_index); |
| 217 | found_one_byte |= equals1; |
| 218 | good &= (found_one_byte | equals0); |
| 219 | } |
| 220 | |
| 221 | good &= found_one_byte; |
| 222 | |
| 223 | /* |
| 224 | * At this point |good| is zero unless the plaintext was valid, |
| 225 | * so plaintext-awareness ensures timing side-channels are no longer a |
| 226 | * concern. |
| 227 | */ |
| 228 | msg_index = one_index + 1; |
| 229 | mlen = dblen - msg_index; |
| 230 | |
| 231 | /* |
| 232 | * For good measure, do this check in constant time as well. |
| 233 | */ |
| 234 | good &= constant_time_ge(tlen, mlen); |
| 235 | |
| 236 | /* |
| 237 | * Move the result in-place by |dblen|-|mdlen|-1-|mlen| bytes to the left. |
| 238 | * Then if |good| move |mlen| bytes from |db|+|mdlen|+1 to |to|. |
| 239 | * Otherwise leave |to| unchanged. |
| 240 | * Copy the memory back in a way that does not reveal the size of |
| 241 | * the data being copied via a timing side channel. This requires copying |
| 242 | * parts of the buffer multiple times based on the bits set in the real |
| 243 | * length. Clear bits do a non-copy with identical access pattern. |
| 244 | * The loop below has overall complexity of O(N*log(N)). |
| 245 | */ |
| 246 | tlen = constant_time_select_int(constant_time_lt(dblen - mdlen - 1, tlen), |
| 247 | dblen - mdlen - 1, tlen); |
| 248 | for (msg_index = 1; msg_index < dblen - mdlen - 1; msg_index <<= 1) { |
| 249 | mask = ~constant_time_eq(msg_index & (dblen - mdlen - 1 - mlen), 0); |
| 250 | for (i = mdlen + 1; i < dblen - msg_index; i++) |
| 251 | db[i] = constant_time_select_8(mask, db[i + msg_index], db[i]); |
| 252 | } |
| 253 | for (i = 0; i < tlen; i++) { |
| 254 | mask = good & constant_time_lt(i, mlen); |
| 255 | to[i] = constant_time_select_8(mask, db[i + mdlen + 1], to[i]); |
| 256 | } |
| 257 | |
| 258 | /* |
| 259 | * To avoid chosen ciphertext attacks, the error message should not |
| 260 | * reveal which kind of decoding error happened. |
| 261 | */ |
| 262 | RSAerr(RSA_F_RSA_PADDING_CHECK_PKCS1_OAEP_MGF1, |
| 263 | RSA_R_OAEP_DECODING_ERROR); |
| 264 | err_clear_last_constant_time(1 & good); |
| 265 | cleanup: |
| 266 | OPENSSL_cleanse(seed, sizeof(seed)); |
| 267 | OPENSSL_clear_free(db, dblen); |
| 268 | OPENSSL_clear_free(em, num); |
| 269 | |
| 270 | return constant_time_select_int(good, mlen, -1); |
| 271 | } |
| 272 | |
| 273 | int PKCS1_MGF1(unsigned char *mask, long len, |
| 274 | const unsigned char *seed, long seedlen, const EVP_MD *dgst) |
| 275 | { |
| 276 | long i, outlen = 0; |
| 277 | unsigned char cnt[4]; |
| 278 | EVP_MD_CTX *c = EVP_MD_CTX_new(); |
| 279 | unsigned char md[EVP_MAX_MD_SIZE]; |
| 280 | int mdlen; |
| 281 | int rv = -1; |
| 282 | |
| 283 | if (c == NULL) |
| 284 | goto err; |
| 285 | mdlen = EVP_MD_size(dgst); |
| 286 | if (mdlen < 0) |
| 287 | goto err; |
| 288 | for (i = 0; outlen < len; i++) { |
| 289 | cnt[0] = (unsigned char)((i >> 24) & 255); |
| 290 | cnt[1] = (unsigned char)((i >> 16) & 255); |
| 291 | cnt[2] = (unsigned char)((i >> 8)) & 255; |
| 292 | cnt[3] = (unsigned char)(i & 255); |
| 293 | if (!EVP_DigestInit_ex(c, dgst, NULL) |
| 294 | || !EVP_DigestUpdate(c, seed, seedlen) |
| 295 | || !EVP_DigestUpdate(c, cnt, 4)) |
| 296 | goto err; |
| 297 | if (outlen + mdlen <= len) { |
| 298 | if (!EVP_DigestFinal_ex(c, mask + outlen, NULL)) |
| 299 | goto err; |
| 300 | outlen += mdlen; |
| 301 | } else { |
| 302 | if (!EVP_DigestFinal_ex(c, md, NULL)) |
| 303 | goto err; |
| 304 | memcpy(mask + outlen, md, len - outlen); |
| 305 | outlen = len; |
| 306 | } |
| 307 | } |
| 308 | rv = 0; |
| 309 | err: |
| 310 | OPENSSL_cleanse(md, sizeof(md)); |
| 311 | EVP_MD_CTX_free(c); |
| 312 | return rv; |
| 313 | } |