yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2006-2016 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | /* |
| 11 | * Implementation of RFC 3779 section 2.2. |
| 12 | */ |
| 13 | |
| 14 | #include <stdio.h> |
| 15 | #include <stdlib.h> |
| 16 | |
| 17 | #include "internal/cryptlib.h" |
| 18 | #include <openssl/conf.h> |
| 19 | #include <openssl/asn1.h> |
| 20 | #include <openssl/asn1t.h> |
| 21 | #include <openssl/buffer.h> |
| 22 | #include <openssl/x509v3.h> |
| 23 | #include "crypto/x509.h" |
| 24 | #include "ext_dat.h" |
| 25 | |
| 26 | #ifndef OPENSSL_NO_RFC3779 |
| 27 | |
| 28 | /* |
| 29 | * OpenSSL ASN.1 template translation of RFC 3779 2.2.3. |
| 30 | */ |
| 31 | |
| 32 | ASN1_SEQUENCE(IPAddressRange) = { |
| 33 | ASN1_SIMPLE(IPAddressRange, min, ASN1_BIT_STRING), |
| 34 | ASN1_SIMPLE(IPAddressRange, max, ASN1_BIT_STRING) |
| 35 | } ASN1_SEQUENCE_END(IPAddressRange) |
| 36 | |
| 37 | ASN1_CHOICE(IPAddressOrRange) = { |
| 38 | ASN1_SIMPLE(IPAddressOrRange, u.addressPrefix, ASN1_BIT_STRING), |
| 39 | ASN1_SIMPLE(IPAddressOrRange, u.addressRange, IPAddressRange) |
| 40 | } ASN1_CHOICE_END(IPAddressOrRange) |
| 41 | |
| 42 | ASN1_CHOICE(IPAddressChoice) = { |
| 43 | ASN1_SIMPLE(IPAddressChoice, u.inherit, ASN1_NULL), |
| 44 | ASN1_SEQUENCE_OF(IPAddressChoice, u.addressesOrRanges, IPAddressOrRange) |
| 45 | } ASN1_CHOICE_END(IPAddressChoice) |
| 46 | |
| 47 | ASN1_SEQUENCE(IPAddressFamily) = { |
| 48 | ASN1_SIMPLE(IPAddressFamily, addressFamily, ASN1_OCTET_STRING), |
| 49 | ASN1_SIMPLE(IPAddressFamily, ipAddressChoice, IPAddressChoice) |
| 50 | } ASN1_SEQUENCE_END(IPAddressFamily) |
| 51 | |
| 52 | ASN1_ITEM_TEMPLATE(IPAddrBlocks) = |
| 53 | ASN1_EX_TEMPLATE_TYPE(ASN1_TFLG_SEQUENCE_OF, 0, |
| 54 | IPAddrBlocks, IPAddressFamily) |
| 55 | static_ASN1_ITEM_TEMPLATE_END(IPAddrBlocks) |
| 56 | |
| 57 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressRange) |
| 58 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressOrRange) |
| 59 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressChoice) |
| 60 | IMPLEMENT_ASN1_FUNCTIONS(IPAddressFamily) |
| 61 | |
| 62 | /* |
| 63 | * How much buffer space do we need for a raw address? |
| 64 | */ |
| 65 | #define ADDR_RAW_BUF_LEN 16 |
| 66 | |
| 67 | /* |
| 68 | * What's the address length associated with this AFI? |
| 69 | */ |
| 70 | static int length_from_afi(const unsigned afi) |
| 71 | { |
| 72 | switch (afi) { |
| 73 | case IANA_AFI_IPV4: |
| 74 | return 4; |
| 75 | case IANA_AFI_IPV6: |
| 76 | return 16; |
| 77 | default: |
| 78 | return 0; |
| 79 | } |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | * Extract the AFI from an IPAddressFamily. |
| 84 | */ |
| 85 | unsigned int X509v3_addr_get_afi(const IPAddressFamily *f) |
| 86 | { |
| 87 | if (f == NULL |
| 88 | || f->addressFamily == NULL |
| 89 | || f->addressFamily->data == NULL |
| 90 | || f->addressFamily->length < 2) |
| 91 | return 0; |
| 92 | return (f->addressFamily->data[0] << 8) | f->addressFamily->data[1]; |
| 93 | } |
| 94 | |
| 95 | /* |
| 96 | * Expand the bitstring form of an address into a raw byte array. |
| 97 | * At the moment this is coded for simplicity, not speed. |
| 98 | */ |
| 99 | static int addr_expand(unsigned char *addr, |
| 100 | const ASN1_BIT_STRING *bs, |
| 101 | const int length, const unsigned char fill) |
| 102 | { |
| 103 | if (bs->length < 0 || bs->length > length) |
| 104 | return 0; |
| 105 | if (bs->length > 0) { |
| 106 | memcpy(addr, bs->data, bs->length); |
| 107 | if ((bs->flags & 7) != 0) { |
| 108 | unsigned char mask = 0xFF >> (8 - (bs->flags & 7)); |
| 109 | if (fill == 0) |
| 110 | addr[bs->length - 1] &= ~mask; |
| 111 | else |
| 112 | addr[bs->length - 1] |= mask; |
| 113 | } |
| 114 | } |
| 115 | memset(addr + bs->length, fill, length - bs->length); |
| 116 | return 1; |
| 117 | } |
| 118 | |
| 119 | /* |
| 120 | * Extract the prefix length from a bitstring. |
| 121 | */ |
| 122 | #define addr_prefixlen(bs) ((int) ((bs)->length * 8 - ((bs)->flags & 7))) |
| 123 | |
| 124 | /* |
| 125 | * i2r handler for one address bitstring. |
| 126 | */ |
| 127 | static int i2r_address(BIO *out, |
| 128 | const unsigned afi, |
| 129 | const unsigned char fill, const ASN1_BIT_STRING *bs) |
| 130 | { |
| 131 | unsigned char addr[ADDR_RAW_BUF_LEN]; |
| 132 | int i, n; |
| 133 | |
| 134 | if (bs->length < 0) |
| 135 | return 0; |
| 136 | switch (afi) { |
| 137 | case IANA_AFI_IPV4: |
| 138 | if (!addr_expand(addr, bs, 4, fill)) |
| 139 | return 0; |
| 140 | BIO_printf(out, "%d.%d.%d.%d", addr[0], addr[1], addr[2], addr[3]); |
| 141 | break; |
| 142 | case IANA_AFI_IPV6: |
| 143 | if (!addr_expand(addr, bs, 16, fill)) |
| 144 | return 0; |
| 145 | for (n = 16; n > 1 && addr[n - 1] == 0x00 && addr[n - 2] == 0x00; |
| 146 | n -= 2) ; |
| 147 | for (i = 0; i < n; i += 2) |
| 148 | BIO_printf(out, "%x%s", (addr[i] << 8) | addr[i + 1], |
| 149 | (i < 14 ? ":" : "")); |
| 150 | if (i < 16) |
| 151 | BIO_puts(out, ":"); |
| 152 | if (i == 0) |
| 153 | BIO_puts(out, ":"); |
| 154 | break; |
| 155 | default: |
| 156 | for (i = 0; i < bs->length; i++) |
| 157 | BIO_printf(out, "%s%02x", (i > 0 ? ":" : ""), bs->data[i]); |
| 158 | BIO_printf(out, "[%d]", (int)(bs->flags & 7)); |
| 159 | break; |
| 160 | } |
| 161 | return 1; |
| 162 | } |
| 163 | |
| 164 | /* |
| 165 | * i2r handler for a sequence of addresses and ranges. |
| 166 | */ |
| 167 | static int i2r_IPAddressOrRanges(BIO *out, |
| 168 | const int indent, |
| 169 | const IPAddressOrRanges *aors, |
| 170 | const unsigned afi) |
| 171 | { |
| 172 | int i; |
| 173 | for (i = 0; i < sk_IPAddressOrRange_num(aors); i++) { |
| 174 | const IPAddressOrRange *aor = sk_IPAddressOrRange_value(aors, i); |
| 175 | BIO_printf(out, "%*s", indent, ""); |
| 176 | switch (aor->type) { |
| 177 | case IPAddressOrRange_addressPrefix: |
| 178 | if (!i2r_address(out, afi, 0x00, aor->u.addressPrefix)) |
| 179 | return 0; |
| 180 | BIO_printf(out, "/%d\n", addr_prefixlen(aor->u.addressPrefix)); |
| 181 | continue; |
| 182 | case IPAddressOrRange_addressRange: |
| 183 | if (!i2r_address(out, afi, 0x00, aor->u.addressRange->min)) |
| 184 | return 0; |
| 185 | BIO_puts(out, "-"); |
| 186 | if (!i2r_address(out, afi, 0xFF, aor->u.addressRange->max)) |
| 187 | return 0; |
| 188 | BIO_puts(out, "\n"); |
| 189 | continue; |
| 190 | } |
| 191 | } |
| 192 | return 1; |
| 193 | } |
| 194 | |
| 195 | /* |
| 196 | * i2r handler for an IPAddrBlocks extension. |
| 197 | */ |
| 198 | static int i2r_IPAddrBlocks(const X509V3_EXT_METHOD *method, |
| 199 | void *ext, BIO *out, int indent) |
| 200 | { |
| 201 | const IPAddrBlocks *addr = ext; |
| 202 | int i; |
| 203 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| 204 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
| 205 | const unsigned int afi = X509v3_addr_get_afi(f); |
| 206 | switch (afi) { |
| 207 | case IANA_AFI_IPV4: |
| 208 | BIO_printf(out, "%*sIPv4", indent, ""); |
| 209 | break; |
| 210 | case IANA_AFI_IPV6: |
| 211 | BIO_printf(out, "%*sIPv6", indent, ""); |
| 212 | break; |
| 213 | default: |
| 214 | BIO_printf(out, "%*sUnknown AFI %u", indent, "", afi); |
| 215 | break; |
| 216 | } |
| 217 | if (f->addressFamily->length > 2) { |
| 218 | switch (f->addressFamily->data[2]) { |
| 219 | case 1: |
| 220 | BIO_puts(out, " (Unicast)"); |
| 221 | break; |
| 222 | case 2: |
| 223 | BIO_puts(out, " (Multicast)"); |
| 224 | break; |
| 225 | case 3: |
| 226 | BIO_puts(out, " (Unicast/Multicast)"); |
| 227 | break; |
| 228 | case 4: |
| 229 | BIO_puts(out, " (MPLS)"); |
| 230 | break; |
| 231 | case 64: |
| 232 | BIO_puts(out, " (Tunnel)"); |
| 233 | break; |
| 234 | case 65: |
| 235 | BIO_puts(out, " (VPLS)"); |
| 236 | break; |
| 237 | case 66: |
| 238 | BIO_puts(out, " (BGP MDT)"); |
| 239 | break; |
| 240 | case 128: |
| 241 | BIO_puts(out, " (MPLS-labeled VPN)"); |
| 242 | break; |
| 243 | default: |
| 244 | BIO_printf(out, " (Unknown SAFI %u)", |
| 245 | (unsigned)f->addressFamily->data[2]); |
| 246 | break; |
| 247 | } |
| 248 | } |
| 249 | switch (f->ipAddressChoice->type) { |
| 250 | case IPAddressChoice_inherit: |
| 251 | BIO_puts(out, ": inherit\n"); |
| 252 | break; |
| 253 | case IPAddressChoice_addressesOrRanges: |
| 254 | BIO_puts(out, ":\n"); |
| 255 | if (!i2r_IPAddressOrRanges(out, |
| 256 | indent + 2, |
| 257 | f->ipAddressChoice-> |
| 258 | u.addressesOrRanges, afi)) |
| 259 | return 0; |
| 260 | break; |
| 261 | } |
| 262 | } |
| 263 | return 1; |
| 264 | } |
| 265 | |
| 266 | /* |
| 267 | * Sort comparison function for a sequence of IPAddressOrRange |
| 268 | * elements. |
| 269 | * |
| 270 | * There's no sane answer we can give if addr_expand() fails, and an |
| 271 | * assertion failure on externally supplied data is seriously uncool, |
| 272 | * so we just arbitrarily declare that if given invalid inputs this |
| 273 | * function returns -1. If this messes up your preferred sort order |
| 274 | * for garbage input, tough noogies. |
| 275 | */ |
| 276 | static int IPAddressOrRange_cmp(const IPAddressOrRange *a, |
| 277 | const IPAddressOrRange *b, const int length) |
| 278 | { |
| 279 | unsigned char addr_a[ADDR_RAW_BUF_LEN], addr_b[ADDR_RAW_BUF_LEN]; |
| 280 | int prefixlen_a = 0, prefixlen_b = 0; |
| 281 | int r; |
| 282 | |
| 283 | switch (a->type) { |
| 284 | case IPAddressOrRange_addressPrefix: |
| 285 | if (!addr_expand(addr_a, a->u.addressPrefix, length, 0x00)) |
| 286 | return -1; |
| 287 | prefixlen_a = addr_prefixlen(a->u.addressPrefix); |
| 288 | break; |
| 289 | case IPAddressOrRange_addressRange: |
| 290 | if (!addr_expand(addr_a, a->u.addressRange->min, length, 0x00)) |
| 291 | return -1; |
| 292 | prefixlen_a = length * 8; |
| 293 | break; |
| 294 | } |
| 295 | |
| 296 | switch (b->type) { |
| 297 | case IPAddressOrRange_addressPrefix: |
| 298 | if (!addr_expand(addr_b, b->u.addressPrefix, length, 0x00)) |
| 299 | return -1; |
| 300 | prefixlen_b = addr_prefixlen(b->u.addressPrefix); |
| 301 | break; |
| 302 | case IPAddressOrRange_addressRange: |
| 303 | if (!addr_expand(addr_b, b->u.addressRange->min, length, 0x00)) |
| 304 | return -1; |
| 305 | prefixlen_b = length * 8; |
| 306 | break; |
| 307 | } |
| 308 | |
| 309 | if ((r = memcmp(addr_a, addr_b, length)) != 0) |
| 310 | return r; |
| 311 | else |
| 312 | return prefixlen_a - prefixlen_b; |
| 313 | } |
| 314 | |
| 315 | /* |
| 316 | * IPv4-specific closure over IPAddressOrRange_cmp, since sk_sort() |
| 317 | * comparison routines are only allowed two arguments. |
| 318 | */ |
| 319 | static int v4IPAddressOrRange_cmp(const IPAddressOrRange *const *a, |
| 320 | const IPAddressOrRange *const *b) |
| 321 | { |
| 322 | return IPAddressOrRange_cmp(*a, *b, 4); |
| 323 | } |
| 324 | |
| 325 | /* |
| 326 | * IPv6-specific closure over IPAddressOrRange_cmp, since sk_sort() |
| 327 | * comparison routines are only allowed two arguments. |
| 328 | */ |
| 329 | static int v6IPAddressOrRange_cmp(const IPAddressOrRange *const *a, |
| 330 | const IPAddressOrRange *const *b) |
| 331 | { |
| 332 | return IPAddressOrRange_cmp(*a, *b, 16); |
| 333 | } |
| 334 | |
| 335 | /* |
| 336 | * Calculate whether a range collapses to a prefix. |
| 337 | * See last paragraph of RFC 3779 2.2.3.7. |
| 338 | */ |
| 339 | static int range_should_be_prefix(const unsigned char *min, |
| 340 | const unsigned char *max, const int length) |
| 341 | { |
| 342 | unsigned char mask; |
| 343 | int i, j; |
| 344 | |
| 345 | if (memcmp(min, max, length) <= 0) |
| 346 | return -1; |
| 347 | for (i = 0; i < length && min[i] == max[i]; i++) ; |
| 348 | for (j = length - 1; j >= 0 && min[j] == 0x00 && max[j] == 0xFF; j--) ; |
| 349 | if (i < j) |
| 350 | return -1; |
| 351 | if (i > j) |
| 352 | return i * 8; |
| 353 | mask = min[i] ^ max[i]; |
| 354 | switch (mask) { |
| 355 | case 0x01: |
| 356 | j = 7; |
| 357 | break; |
| 358 | case 0x03: |
| 359 | j = 6; |
| 360 | break; |
| 361 | case 0x07: |
| 362 | j = 5; |
| 363 | break; |
| 364 | case 0x0F: |
| 365 | j = 4; |
| 366 | break; |
| 367 | case 0x1F: |
| 368 | j = 3; |
| 369 | break; |
| 370 | case 0x3F: |
| 371 | j = 2; |
| 372 | break; |
| 373 | case 0x7F: |
| 374 | j = 1; |
| 375 | break; |
| 376 | default: |
| 377 | return -1; |
| 378 | } |
| 379 | if ((min[i] & mask) != 0 || (max[i] & mask) != mask) |
| 380 | return -1; |
| 381 | else |
| 382 | return i * 8 + j; |
| 383 | } |
| 384 | |
| 385 | /* |
| 386 | * Construct a prefix. |
| 387 | */ |
| 388 | static int make_addressPrefix(IPAddressOrRange **result, |
| 389 | unsigned char *addr, const int prefixlen) |
| 390 | { |
| 391 | int bytelen = (prefixlen + 7) / 8, bitlen = prefixlen % 8; |
| 392 | IPAddressOrRange *aor = IPAddressOrRange_new(); |
| 393 | |
| 394 | if (aor == NULL) |
| 395 | return 0; |
| 396 | aor->type = IPAddressOrRange_addressPrefix; |
| 397 | if (aor->u.addressPrefix == NULL && |
| 398 | (aor->u.addressPrefix = ASN1_BIT_STRING_new()) == NULL) |
| 399 | goto err; |
| 400 | if (!ASN1_BIT_STRING_set(aor->u.addressPrefix, addr, bytelen)) |
| 401 | goto err; |
| 402 | aor->u.addressPrefix->flags &= ~7; |
| 403 | aor->u.addressPrefix->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
| 404 | if (bitlen > 0) { |
| 405 | aor->u.addressPrefix->data[bytelen - 1] &= ~(0xFF >> bitlen); |
| 406 | aor->u.addressPrefix->flags |= 8 - bitlen; |
| 407 | } |
| 408 | |
| 409 | *result = aor; |
| 410 | return 1; |
| 411 | |
| 412 | err: |
| 413 | IPAddressOrRange_free(aor); |
| 414 | return 0; |
| 415 | } |
| 416 | |
| 417 | /* |
| 418 | * Construct a range. If it can be expressed as a prefix, |
| 419 | * return a prefix instead. Doing this here simplifies |
| 420 | * the rest of the code considerably. |
| 421 | */ |
| 422 | static int make_addressRange(IPAddressOrRange **result, |
| 423 | unsigned char *min, |
| 424 | unsigned char *max, const int length) |
| 425 | { |
| 426 | IPAddressOrRange *aor; |
| 427 | int i, prefixlen; |
| 428 | |
| 429 | if ((prefixlen = range_should_be_prefix(min, max, length)) >= 0) |
| 430 | return make_addressPrefix(result, min, prefixlen); |
| 431 | |
| 432 | if ((aor = IPAddressOrRange_new()) == NULL) |
| 433 | return 0; |
| 434 | aor->type = IPAddressOrRange_addressRange; |
| 435 | if ((aor->u.addressRange = IPAddressRange_new()) == NULL) |
| 436 | goto err; |
| 437 | if (aor->u.addressRange->min == NULL && |
| 438 | (aor->u.addressRange->min = ASN1_BIT_STRING_new()) == NULL) |
| 439 | goto err; |
| 440 | if (aor->u.addressRange->max == NULL && |
| 441 | (aor->u.addressRange->max = ASN1_BIT_STRING_new()) == NULL) |
| 442 | goto err; |
| 443 | |
| 444 | for (i = length; i > 0 && min[i - 1] == 0x00; --i) ; |
| 445 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->min, min, i)) |
| 446 | goto err; |
| 447 | aor->u.addressRange->min->flags &= ~7; |
| 448 | aor->u.addressRange->min->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
| 449 | if (i > 0) { |
| 450 | unsigned char b = min[i - 1]; |
| 451 | int j = 1; |
| 452 | while ((b & (0xFFU >> j)) != 0) |
| 453 | ++j; |
| 454 | aor->u.addressRange->min->flags |= 8 - j; |
| 455 | } |
| 456 | |
| 457 | for (i = length; i > 0 && max[i - 1] == 0xFF; --i) ; |
| 458 | if (!ASN1_BIT_STRING_set(aor->u.addressRange->max, max, i)) |
| 459 | goto err; |
| 460 | aor->u.addressRange->max->flags &= ~7; |
| 461 | aor->u.addressRange->max->flags |= ASN1_STRING_FLAG_BITS_LEFT; |
| 462 | if (i > 0) { |
| 463 | unsigned char b = max[i - 1]; |
| 464 | int j = 1; |
| 465 | while ((b & (0xFFU >> j)) != (0xFFU >> j)) |
| 466 | ++j; |
| 467 | aor->u.addressRange->max->flags |= 8 - j; |
| 468 | } |
| 469 | |
| 470 | *result = aor; |
| 471 | return 1; |
| 472 | |
| 473 | err: |
| 474 | IPAddressOrRange_free(aor); |
| 475 | return 0; |
| 476 | } |
| 477 | |
| 478 | /* |
| 479 | * Construct a new address family or find an existing one. |
| 480 | */ |
| 481 | static IPAddressFamily *make_IPAddressFamily(IPAddrBlocks *addr, |
| 482 | const unsigned afi, |
| 483 | const unsigned *safi) |
| 484 | { |
| 485 | IPAddressFamily *f; |
| 486 | unsigned char key[3]; |
| 487 | int keylen; |
| 488 | int i; |
| 489 | |
| 490 | key[0] = (afi >> 8) & 0xFF; |
| 491 | key[1] = afi & 0xFF; |
| 492 | if (safi != NULL) { |
| 493 | key[2] = *safi & 0xFF; |
| 494 | keylen = 3; |
| 495 | } else { |
| 496 | keylen = 2; |
| 497 | } |
| 498 | |
| 499 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| 500 | f = sk_IPAddressFamily_value(addr, i); |
| 501 | if (f->addressFamily->length == keylen && |
| 502 | !memcmp(f->addressFamily->data, key, keylen)) |
| 503 | return f; |
| 504 | } |
| 505 | |
| 506 | if ((f = IPAddressFamily_new()) == NULL) |
| 507 | goto err; |
| 508 | if (f->ipAddressChoice == NULL && |
| 509 | (f->ipAddressChoice = IPAddressChoice_new()) == NULL) |
| 510 | goto err; |
| 511 | if (f->addressFamily == NULL && |
| 512 | (f->addressFamily = ASN1_OCTET_STRING_new()) == NULL) |
| 513 | goto err; |
| 514 | if (!ASN1_OCTET_STRING_set(f->addressFamily, key, keylen)) |
| 515 | goto err; |
| 516 | if (!sk_IPAddressFamily_push(addr, f)) |
| 517 | goto err; |
| 518 | |
| 519 | return f; |
| 520 | |
| 521 | err: |
| 522 | IPAddressFamily_free(f); |
| 523 | return NULL; |
| 524 | } |
| 525 | |
| 526 | /* |
| 527 | * Add an inheritance element. |
| 528 | */ |
| 529 | int X509v3_addr_add_inherit(IPAddrBlocks *addr, |
| 530 | const unsigned afi, const unsigned *safi) |
| 531 | { |
| 532 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); |
| 533 | if (f == NULL || |
| 534 | f->ipAddressChoice == NULL || |
| 535 | (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && |
| 536 | f->ipAddressChoice->u.addressesOrRanges != NULL)) |
| 537 | return 0; |
| 538 | if (f->ipAddressChoice->type == IPAddressChoice_inherit && |
| 539 | f->ipAddressChoice->u.inherit != NULL) |
| 540 | return 1; |
| 541 | if (f->ipAddressChoice->u.inherit == NULL && |
| 542 | (f->ipAddressChoice->u.inherit = ASN1_NULL_new()) == NULL) |
| 543 | return 0; |
| 544 | f->ipAddressChoice->type = IPAddressChoice_inherit; |
| 545 | return 1; |
| 546 | } |
| 547 | |
| 548 | /* |
| 549 | * Construct an IPAddressOrRange sequence, or return an existing one. |
| 550 | */ |
| 551 | static IPAddressOrRanges *make_prefix_or_range(IPAddrBlocks *addr, |
| 552 | const unsigned afi, |
| 553 | const unsigned *safi) |
| 554 | { |
| 555 | IPAddressFamily *f = make_IPAddressFamily(addr, afi, safi); |
| 556 | IPAddressOrRanges *aors = NULL; |
| 557 | |
| 558 | if (f == NULL || |
| 559 | f->ipAddressChoice == NULL || |
| 560 | (f->ipAddressChoice->type == IPAddressChoice_inherit && |
| 561 | f->ipAddressChoice->u.inherit != NULL)) |
| 562 | return NULL; |
| 563 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges) |
| 564 | aors = f->ipAddressChoice->u.addressesOrRanges; |
| 565 | if (aors != NULL) |
| 566 | return aors; |
| 567 | if ((aors = sk_IPAddressOrRange_new_null()) == NULL) |
| 568 | return NULL; |
| 569 | switch (afi) { |
| 570 | case IANA_AFI_IPV4: |
| 571 | (void)sk_IPAddressOrRange_set_cmp_func(aors, v4IPAddressOrRange_cmp); |
| 572 | break; |
| 573 | case IANA_AFI_IPV6: |
| 574 | (void)sk_IPAddressOrRange_set_cmp_func(aors, v6IPAddressOrRange_cmp); |
| 575 | break; |
| 576 | } |
| 577 | f->ipAddressChoice->type = IPAddressChoice_addressesOrRanges; |
| 578 | f->ipAddressChoice->u.addressesOrRanges = aors; |
| 579 | return aors; |
| 580 | } |
| 581 | |
| 582 | /* |
| 583 | * Add a prefix. |
| 584 | */ |
| 585 | int X509v3_addr_add_prefix(IPAddrBlocks *addr, |
| 586 | const unsigned afi, |
| 587 | const unsigned *safi, |
| 588 | unsigned char *a, const int prefixlen) |
| 589 | { |
| 590 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); |
| 591 | IPAddressOrRange *aor; |
| 592 | if (aors == NULL || !make_addressPrefix(&aor, a, prefixlen)) |
| 593 | return 0; |
| 594 | if (sk_IPAddressOrRange_push(aors, aor)) |
| 595 | return 1; |
| 596 | IPAddressOrRange_free(aor); |
| 597 | return 0; |
| 598 | } |
| 599 | |
| 600 | /* |
| 601 | * Add a range. |
| 602 | */ |
| 603 | int X509v3_addr_add_range(IPAddrBlocks *addr, |
| 604 | const unsigned afi, |
| 605 | const unsigned *safi, |
| 606 | unsigned char *min, unsigned char *max) |
| 607 | { |
| 608 | IPAddressOrRanges *aors = make_prefix_or_range(addr, afi, safi); |
| 609 | IPAddressOrRange *aor; |
| 610 | int length = length_from_afi(afi); |
| 611 | if (aors == NULL) |
| 612 | return 0; |
| 613 | if (!make_addressRange(&aor, min, max, length)) |
| 614 | return 0; |
| 615 | if (sk_IPAddressOrRange_push(aors, aor)) |
| 616 | return 1; |
| 617 | IPAddressOrRange_free(aor); |
| 618 | return 0; |
| 619 | } |
| 620 | |
| 621 | /* |
| 622 | * Extract min and max values from an IPAddressOrRange. |
| 623 | */ |
| 624 | static int extract_min_max(IPAddressOrRange *aor, |
| 625 | unsigned char *min, unsigned char *max, int length) |
| 626 | { |
| 627 | if (aor == NULL || min == NULL || max == NULL) |
| 628 | return 0; |
| 629 | switch (aor->type) { |
| 630 | case IPAddressOrRange_addressPrefix: |
| 631 | return (addr_expand(min, aor->u.addressPrefix, length, 0x00) && |
| 632 | addr_expand(max, aor->u.addressPrefix, length, 0xFF)); |
| 633 | case IPAddressOrRange_addressRange: |
| 634 | return (addr_expand(min, aor->u.addressRange->min, length, 0x00) && |
| 635 | addr_expand(max, aor->u.addressRange->max, length, 0xFF)); |
| 636 | } |
| 637 | return 0; |
| 638 | } |
| 639 | |
| 640 | /* |
| 641 | * Public wrapper for extract_min_max(). |
| 642 | */ |
| 643 | int X509v3_addr_get_range(IPAddressOrRange *aor, |
| 644 | const unsigned afi, |
| 645 | unsigned char *min, |
| 646 | unsigned char *max, const int length) |
| 647 | { |
| 648 | int afi_length = length_from_afi(afi); |
| 649 | if (aor == NULL || min == NULL || max == NULL || |
| 650 | afi_length == 0 || length < afi_length || |
| 651 | (aor->type != IPAddressOrRange_addressPrefix && |
| 652 | aor->type != IPAddressOrRange_addressRange) || |
| 653 | !extract_min_max(aor, min, max, afi_length)) |
| 654 | return 0; |
| 655 | |
| 656 | return afi_length; |
| 657 | } |
| 658 | |
| 659 | /* |
| 660 | * Sort comparison function for a sequence of IPAddressFamily. |
| 661 | * |
| 662 | * The last paragraph of RFC 3779 2.2.3.3 is slightly ambiguous about |
| 663 | * the ordering: I can read it as meaning that IPv6 without a SAFI |
| 664 | * comes before IPv4 with a SAFI, which seems pretty weird. The |
| 665 | * examples in appendix B suggest that the author intended the |
| 666 | * null-SAFI rule to apply only within a single AFI, which is what I |
| 667 | * would have expected and is what the following code implements. |
| 668 | */ |
| 669 | static int IPAddressFamily_cmp(const IPAddressFamily *const *a_, |
| 670 | const IPAddressFamily *const *b_) |
| 671 | { |
| 672 | const ASN1_OCTET_STRING *a = (*a_)->addressFamily; |
| 673 | const ASN1_OCTET_STRING *b = (*b_)->addressFamily; |
| 674 | int len = ((a->length <= b->length) ? a->length : b->length); |
| 675 | int cmp = memcmp(a->data, b->data, len); |
| 676 | return cmp ? cmp : a->length - b->length; |
| 677 | } |
| 678 | |
| 679 | /* |
| 680 | * Check whether an IPAddrBLocks is in canonical form. |
| 681 | */ |
| 682 | int X509v3_addr_is_canonical(IPAddrBlocks *addr) |
| 683 | { |
| 684 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
| 685 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; |
| 686 | IPAddressOrRanges *aors; |
| 687 | int i, j, k; |
| 688 | |
| 689 | /* |
| 690 | * Empty extension is canonical. |
| 691 | */ |
| 692 | if (addr == NULL) |
| 693 | return 1; |
| 694 | |
| 695 | /* |
| 696 | * Check whether the top-level list is in order. |
| 697 | */ |
| 698 | for (i = 0; i < sk_IPAddressFamily_num(addr) - 1; i++) { |
| 699 | const IPAddressFamily *a = sk_IPAddressFamily_value(addr, i); |
| 700 | const IPAddressFamily *b = sk_IPAddressFamily_value(addr, i + 1); |
| 701 | if (IPAddressFamily_cmp(&a, &b) >= 0) |
| 702 | return 0; |
| 703 | } |
| 704 | |
| 705 | /* |
| 706 | * Top level's ok, now check each address family. |
| 707 | */ |
| 708 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| 709 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
| 710 | int length = length_from_afi(X509v3_addr_get_afi(f)); |
| 711 | |
| 712 | /* |
| 713 | * Inheritance is canonical. Anything other than inheritance or |
| 714 | * a SEQUENCE OF IPAddressOrRange is an ASN.1 error or something. |
| 715 | */ |
| 716 | if (f == NULL || f->ipAddressChoice == NULL) |
| 717 | return 0; |
| 718 | switch (f->ipAddressChoice->type) { |
| 719 | case IPAddressChoice_inherit: |
| 720 | continue; |
| 721 | case IPAddressChoice_addressesOrRanges: |
| 722 | break; |
| 723 | default: |
| 724 | return 0; |
| 725 | } |
| 726 | |
| 727 | /* |
| 728 | * It's an IPAddressOrRanges sequence, check it. |
| 729 | */ |
| 730 | aors = f->ipAddressChoice->u.addressesOrRanges; |
| 731 | if (sk_IPAddressOrRange_num(aors) == 0) |
| 732 | return 0; |
| 733 | for (j = 0; j < sk_IPAddressOrRange_num(aors) - 1; j++) { |
| 734 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
| 735 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, j + 1); |
| 736 | |
| 737 | if (!extract_min_max(a, a_min, a_max, length) || |
| 738 | !extract_min_max(b, b_min, b_max, length)) |
| 739 | return 0; |
| 740 | |
| 741 | /* |
| 742 | * Punt misordered list, overlapping start, or inverted range. |
| 743 | */ |
| 744 | if (memcmp(a_min, b_min, length) >= 0 || |
| 745 | memcmp(a_min, a_max, length) > 0 || |
| 746 | memcmp(b_min, b_max, length) > 0) |
| 747 | return 0; |
| 748 | |
| 749 | /* |
| 750 | * Punt if adjacent or overlapping. Check for adjacency by |
| 751 | * subtracting one from b_min first. |
| 752 | */ |
| 753 | for (k = length - 1; k >= 0 && b_min[k]-- == 0x00; k--) ; |
| 754 | if (memcmp(a_max, b_min, length) >= 0) |
| 755 | return 0; |
| 756 | |
| 757 | /* |
| 758 | * Check for range that should be expressed as a prefix. |
| 759 | */ |
| 760 | if (a->type == IPAddressOrRange_addressRange && |
| 761 | range_should_be_prefix(a_min, a_max, length) >= 0) |
| 762 | return 0; |
| 763 | } |
| 764 | |
| 765 | /* |
| 766 | * Check range to see if it's inverted or should be a |
| 767 | * prefix. |
| 768 | */ |
| 769 | j = sk_IPAddressOrRange_num(aors) - 1; |
| 770 | { |
| 771 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
| 772 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { |
| 773 | if (!extract_min_max(a, a_min, a_max, length)) |
| 774 | return 0; |
| 775 | if (memcmp(a_min, a_max, length) > 0 || |
| 776 | range_should_be_prefix(a_min, a_max, length) >= 0) |
| 777 | return 0; |
| 778 | } |
| 779 | } |
| 780 | } |
| 781 | |
| 782 | /* |
| 783 | * If we made it through all that, we're happy. |
| 784 | */ |
| 785 | return 1; |
| 786 | } |
| 787 | |
| 788 | /* |
| 789 | * Whack an IPAddressOrRanges into canonical form. |
| 790 | */ |
| 791 | static int IPAddressOrRanges_canonize(IPAddressOrRanges *aors, |
| 792 | const unsigned afi) |
| 793 | { |
| 794 | int i, j, length = length_from_afi(afi); |
| 795 | |
| 796 | /* |
| 797 | * Sort the IPAddressOrRanges sequence. |
| 798 | */ |
| 799 | sk_IPAddressOrRange_sort(aors); |
| 800 | |
| 801 | /* |
| 802 | * Clean up representation issues, punt on duplicates or overlaps. |
| 803 | */ |
| 804 | for (i = 0; i < sk_IPAddressOrRange_num(aors) - 1; i++) { |
| 805 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, i); |
| 806 | IPAddressOrRange *b = sk_IPAddressOrRange_value(aors, i + 1); |
| 807 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
| 808 | unsigned char b_min[ADDR_RAW_BUF_LEN], b_max[ADDR_RAW_BUF_LEN]; |
| 809 | |
| 810 | if (!extract_min_max(a, a_min, a_max, length) || |
| 811 | !extract_min_max(b, b_min, b_max, length)) |
| 812 | return 0; |
| 813 | |
| 814 | /* |
| 815 | * Punt inverted ranges. |
| 816 | */ |
| 817 | if (memcmp(a_min, a_max, length) > 0 || |
| 818 | memcmp(b_min, b_max, length) > 0) |
| 819 | return 0; |
| 820 | |
| 821 | /* |
| 822 | * Punt overlaps. |
| 823 | */ |
| 824 | if (memcmp(a_max, b_min, length) >= 0) |
| 825 | return 0; |
| 826 | |
| 827 | /* |
| 828 | * Merge if a and b are adjacent. We check for |
| 829 | * adjacency by subtracting one from b_min first. |
| 830 | */ |
| 831 | for (j = length - 1; j >= 0 && b_min[j]-- == 0x00; j--) ; |
| 832 | if (memcmp(a_max, b_min, length) == 0) { |
| 833 | IPAddressOrRange *merged; |
| 834 | if (!make_addressRange(&merged, a_min, b_max, length)) |
| 835 | return 0; |
| 836 | (void)sk_IPAddressOrRange_set(aors, i, merged); |
| 837 | (void)sk_IPAddressOrRange_delete(aors, i + 1); |
| 838 | IPAddressOrRange_free(a); |
| 839 | IPAddressOrRange_free(b); |
| 840 | --i; |
| 841 | continue; |
| 842 | } |
| 843 | } |
| 844 | |
| 845 | /* |
| 846 | * Check for inverted final range. |
| 847 | */ |
| 848 | j = sk_IPAddressOrRange_num(aors) - 1; |
| 849 | { |
| 850 | IPAddressOrRange *a = sk_IPAddressOrRange_value(aors, j); |
| 851 | if (a != NULL && a->type == IPAddressOrRange_addressRange) { |
| 852 | unsigned char a_min[ADDR_RAW_BUF_LEN], a_max[ADDR_RAW_BUF_LEN]; |
| 853 | if (!extract_min_max(a, a_min, a_max, length)) |
| 854 | return 0; |
| 855 | if (memcmp(a_min, a_max, length) > 0) |
| 856 | return 0; |
| 857 | } |
| 858 | } |
| 859 | |
| 860 | return 1; |
| 861 | } |
| 862 | |
| 863 | /* |
| 864 | * Whack an IPAddrBlocks extension into canonical form. |
| 865 | */ |
| 866 | int X509v3_addr_canonize(IPAddrBlocks *addr) |
| 867 | { |
| 868 | int i; |
| 869 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| 870 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
| 871 | if (f->ipAddressChoice->type == IPAddressChoice_addressesOrRanges && |
| 872 | !IPAddressOrRanges_canonize(f->ipAddressChoice-> |
| 873 | u.addressesOrRanges, |
| 874 | X509v3_addr_get_afi(f))) |
| 875 | return 0; |
| 876 | } |
| 877 | (void)sk_IPAddressFamily_set_cmp_func(addr, IPAddressFamily_cmp); |
| 878 | sk_IPAddressFamily_sort(addr); |
| 879 | if (!ossl_assert(X509v3_addr_is_canonical(addr))) |
| 880 | return 0; |
| 881 | return 1; |
| 882 | } |
| 883 | |
| 884 | /* |
| 885 | * v2i handler for the IPAddrBlocks extension. |
| 886 | */ |
| 887 | static void *v2i_IPAddrBlocks(const struct v3_ext_method *method, |
| 888 | struct v3_ext_ctx *ctx, |
| 889 | STACK_OF(CONF_VALUE) *values) |
| 890 | { |
| 891 | static const char v4addr_chars[] = "0123456789."; |
| 892 | static const char v6addr_chars[] = "0123456789.:abcdefABCDEF"; |
| 893 | IPAddrBlocks *addr = NULL; |
| 894 | char *s = NULL, *t; |
| 895 | int i; |
| 896 | |
| 897 | if ((addr = sk_IPAddressFamily_new(IPAddressFamily_cmp)) == NULL) { |
| 898 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| 899 | return NULL; |
| 900 | } |
| 901 | |
| 902 | for (i = 0; i < sk_CONF_VALUE_num(values); i++) { |
| 903 | CONF_VALUE *val = sk_CONF_VALUE_value(values, i); |
| 904 | unsigned char min[ADDR_RAW_BUF_LEN], max[ADDR_RAW_BUF_LEN]; |
| 905 | unsigned afi, *safi = NULL, safi_; |
| 906 | const char *addr_chars = NULL; |
| 907 | int prefixlen, i1, i2, delim, length; |
| 908 | |
| 909 | if (!name_cmp(val->name, "IPv4")) { |
| 910 | afi = IANA_AFI_IPV4; |
| 911 | } else if (!name_cmp(val->name, "IPv6")) { |
| 912 | afi = IANA_AFI_IPV6; |
| 913 | } else if (!name_cmp(val->name, "IPv4-SAFI")) { |
| 914 | afi = IANA_AFI_IPV4; |
| 915 | safi = &safi_; |
| 916 | } else if (!name_cmp(val->name, "IPv6-SAFI")) { |
| 917 | afi = IANA_AFI_IPV6; |
| 918 | safi = &safi_; |
| 919 | } else { |
| 920 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
| 921 | X509V3_R_EXTENSION_NAME_ERROR); |
| 922 | X509V3_conf_err(val); |
| 923 | goto err; |
| 924 | } |
| 925 | |
| 926 | switch (afi) { |
| 927 | case IANA_AFI_IPV4: |
| 928 | addr_chars = v4addr_chars; |
| 929 | break; |
| 930 | case IANA_AFI_IPV6: |
| 931 | addr_chars = v6addr_chars; |
| 932 | break; |
| 933 | } |
| 934 | |
| 935 | length = length_from_afi(afi); |
| 936 | |
| 937 | /* |
| 938 | * Handle SAFI, if any, and OPENSSL_strdup() so we can null-terminate |
| 939 | * the other input values. |
| 940 | */ |
| 941 | if (safi != NULL) { |
| 942 | *safi = strtoul(val->value, &t, 0); |
| 943 | t += strspn(t, " \t"); |
| 944 | if (*safi > 0xFF || *t++ != ':') { |
| 945 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_SAFI); |
| 946 | X509V3_conf_err(val); |
| 947 | goto err; |
| 948 | } |
| 949 | t += strspn(t, " \t"); |
| 950 | s = OPENSSL_strdup(t); |
| 951 | } else { |
| 952 | s = OPENSSL_strdup(val->value); |
| 953 | } |
| 954 | if (s == NULL) { |
| 955 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| 956 | goto err; |
| 957 | } |
| 958 | |
| 959 | /* |
| 960 | * Check for inheritance. Not worth additional complexity to |
| 961 | * optimize this (seldom-used) case. |
| 962 | */ |
| 963 | if (strcmp(s, "inherit") == 0) { |
| 964 | if (!X509v3_addr_add_inherit(addr, afi, safi)) { |
| 965 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
| 966 | X509V3_R_INVALID_INHERITANCE); |
| 967 | X509V3_conf_err(val); |
| 968 | goto err; |
| 969 | } |
| 970 | OPENSSL_free(s); |
| 971 | s = NULL; |
| 972 | continue; |
| 973 | } |
| 974 | |
| 975 | i1 = strspn(s, addr_chars); |
| 976 | i2 = i1 + strspn(s + i1, " \t"); |
| 977 | delim = s[i2++]; |
| 978 | s[i1] = '\0'; |
| 979 | |
| 980 | if (a2i_ipadd(min, s) != length) { |
| 981 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, X509V3_R_INVALID_IPADDRESS); |
| 982 | X509V3_conf_err(val); |
| 983 | goto err; |
| 984 | } |
| 985 | |
| 986 | switch (delim) { |
| 987 | case '/': |
| 988 | prefixlen = (int)strtoul(s + i2, &t, 10); |
| 989 | if (t == s + i2 || *t != '\0') { |
| 990 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
| 991 | X509V3_R_EXTENSION_VALUE_ERROR); |
| 992 | X509V3_conf_err(val); |
| 993 | goto err; |
| 994 | } |
| 995 | if (!X509v3_addr_add_prefix(addr, afi, safi, min, prefixlen)) { |
| 996 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| 997 | goto err; |
| 998 | } |
| 999 | break; |
| 1000 | case '-': |
| 1001 | i1 = i2 + strspn(s + i2, " \t"); |
| 1002 | i2 = i1 + strspn(s + i1, addr_chars); |
| 1003 | if (i1 == i2 || s[i2] != '\0') { |
| 1004 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
| 1005 | X509V3_R_EXTENSION_VALUE_ERROR); |
| 1006 | X509V3_conf_err(val); |
| 1007 | goto err; |
| 1008 | } |
| 1009 | if (a2i_ipadd(max, s + i1) != length) { |
| 1010 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
| 1011 | X509V3_R_INVALID_IPADDRESS); |
| 1012 | X509V3_conf_err(val); |
| 1013 | goto err; |
| 1014 | } |
| 1015 | if (memcmp(min, max, length_from_afi(afi)) > 0) { |
| 1016 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
| 1017 | X509V3_R_EXTENSION_VALUE_ERROR); |
| 1018 | X509V3_conf_err(val); |
| 1019 | goto err; |
| 1020 | } |
| 1021 | if (!X509v3_addr_add_range(addr, afi, safi, min, max)) { |
| 1022 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| 1023 | goto err; |
| 1024 | } |
| 1025 | break; |
| 1026 | case '\0': |
| 1027 | if (!X509v3_addr_add_prefix(addr, afi, safi, min, length * 8)) { |
| 1028 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, ERR_R_MALLOC_FAILURE); |
| 1029 | goto err; |
| 1030 | } |
| 1031 | break; |
| 1032 | default: |
| 1033 | X509V3err(X509V3_F_V2I_IPADDRBLOCKS, |
| 1034 | X509V3_R_EXTENSION_VALUE_ERROR); |
| 1035 | X509V3_conf_err(val); |
| 1036 | goto err; |
| 1037 | } |
| 1038 | |
| 1039 | OPENSSL_free(s); |
| 1040 | s = NULL; |
| 1041 | } |
| 1042 | |
| 1043 | /* |
| 1044 | * Canonize the result, then we're done. |
| 1045 | */ |
| 1046 | if (!X509v3_addr_canonize(addr)) |
| 1047 | goto err; |
| 1048 | return addr; |
| 1049 | |
| 1050 | err: |
| 1051 | OPENSSL_free(s); |
| 1052 | sk_IPAddressFamily_pop_free(addr, IPAddressFamily_free); |
| 1053 | return NULL; |
| 1054 | } |
| 1055 | |
| 1056 | /* |
| 1057 | * OpenSSL dispatch |
| 1058 | */ |
| 1059 | const X509V3_EXT_METHOD v3_addr = { |
| 1060 | NID_sbgp_ipAddrBlock, /* nid */ |
| 1061 | 0, /* flags */ |
| 1062 | ASN1_ITEM_ref(IPAddrBlocks), /* template */ |
| 1063 | 0, 0, 0, 0, /* old functions, ignored */ |
| 1064 | 0, /* i2s */ |
| 1065 | 0, /* s2i */ |
| 1066 | 0, /* i2v */ |
| 1067 | v2i_IPAddrBlocks, /* v2i */ |
| 1068 | i2r_IPAddrBlocks, /* i2r */ |
| 1069 | 0, /* r2i */ |
| 1070 | NULL /* extension-specific data */ |
| 1071 | }; |
| 1072 | |
| 1073 | /* |
| 1074 | * Figure out whether extension sues inheritance. |
| 1075 | */ |
| 1076 | int X509v3_addr_inherits(IPAddrBlocks *addr) |
| 1077 | { |
| 1078 | int i; |
| 1079 | if (addr == NULL) |
| 1080 | return 0; |
| 1081 | for (i = 0; i < sk_IPAddressFamily_num(addr); i++) { |
| 1082 | IPAddressFamily *f = sk_IPAddressFamily_value(addr, i); |
| 1083 | if (f->ipAddressChoice->type == IPAddressChoice_inherit) |
| 1084 | return 1; |
| 1085 | } |
| 1086 | return 0; |
| 1087 | } |
| 1088 | |
| 1089 | /* |
| 1090 | * Figure out whether parent contains child. |
| 1091 | */ |
| 1092 | static int addr_contains(IPAddressOrRanges *parent, |
| 1093 | IPAddressOrRanges *child, int length) |
| 1094 | { |
| 1095 | unsigned char p_min[ADDR_RAW_BUF_LEN], p_max[ADDR_RAW_BUF_LEN]; |
| 1096 | unsigned char c_min[ADDR_RAW_BUF_LEN], c_max[ADDR_RAW_BUF_LEN]; |
| 1097 | int p, c; |
| 1098 | |
| 1099 | if (child == NULL || parent == child) |
| 1100 | return 1; |
| 1101 | if (parent == NULL) |
| 1102 | return 0; |
| 1103 | |
| 1104 | p = 0; |
| 1105 | for (c = 0; c < sk_IPAddressOrRange_num(child); c++) { |
| 1106 | if (!extract_min_max(sk_IPAddressOrRange_value(child, c), |
| 1107 | c_min, c_max, length)) |
| 1108 | return -1; |
| 1109 | for (;; p++) { |
| 1110 | if (p >= sk_IPAddressOrRange_num(parent)) |
| 1111 | return 0; |
| 1112 | if (!extract_min_max(sk_IPAddressOrRange_value(parent, p), |
| 1113 | p_min, p_max, length)) |
| 1114 | return 0; |
| 1115 | if (memcmp(p_max, c_max, length) < 0) |
| 1116 | continue; |
| 1117 | if (memcmp(p_min, c_min, length) > 0) |
| 1118 | return 0; |
| 1119 | break; |
| 1120 | } |
| 1121 | } |
| 1122 | |
| 1123 | return 1; |
| 1124 | } |
| 1125 | |
| 1126 | /* |
| 1127 | * Test whether a is a subset of b. |
| 1128 | */ |
| 1129 | int X509v3_addr_subset(IPAddrBlocks *a, IPAddrBlocks *b) |
| 1130 | { |
| 1131 | int i; |
| 1132 | if (a == NULL || a == b) |
| 1133 | return 1; |
| 1134 | if (b == NULL || X509v3_addr_inherits(a) || X509v3_addr_inherits(b)) |
| 1135 | return 0; |
| 1136 | (void)sk_IPAddressFamily_set_cmp_func(b, IPAddressFamily_cmp); |
| 1137 | for (i = 0; i < sk_IPAddressFamily_num(a); i++) { |
| 1138 | IPAddressFamily *fa = sk_IPAddressFamily_value(a, i); |
| 1139 | int j = sk_IPAddressFamily_find(b, fa); |
| 1140 | IPAddressFamily *fb; |
| 1141 | fb = sk_IPAddressFamily_value(b, j); |
| 1142 | if (fb == NULL) |
| 1143 | return 0; |
| 1144 | if (!addr_contains(fb->ipAddressChoice->u.addressesOrRanges, |
| 1145 | fa->ipAddressChoice->u.addressesOrRanges, |
| 1146 | length_from_afi(X509v3_addr_get_afi(fb)))) |
| 1147 | return 0; |
| 1148 | } |
| 1149 | return 1; |
| 1150 | } |
| 1151 | |
| 1152 | /* |
| 1153 | * Validation error handling via callback. |
| 1154 | */ |
| 1155 | #define validation_err(_err_) \ |
| 1156 | do { \ |
| 1157 | if (ctx != NULL) { \ |
| 1158 | ctx->error = _err_; \ |
| 1159 | ctx->error_depth = i; \ |
| 1160 | ctx->current_cert = x; \ |
| 1161 | ret = ctx->verify_cb(0, ctx); \ |
| 1162 | } else { \ |
| 1163 | ret = 0; \ |
| 1164 | } \ |
| 1165 | if (!ret) \ |
| 1166 | goto done; \ |
| 1167 | } while (0) |
| 1168 | |
| 1169 | /* |
| 1170 | * Core code for RFC 3779 2.3 path validation. |
| 1171 | * |
| 1172 | * Returns 1 for success, 0 on error. |
| 1173 | * |
| 1174 | * When returning 0, ctx->error MUST be set to an appropriate value other than |
| 1175 | * X509_V_OK. |
| 1176 | */ |
| 1177 | static int addr_validate_path_internal(X509_STORE_CTX *ctx, |
| 1178 | STACK_OF(X509) *chain, |
| 1179 | IPAddrBlocks *ext) |
| 1180 | { |
| 1181 | IPAddrBlocks *child = NULL; |
| 1182 | int i, j, ret = 1; |
| 1183 | X509 *x; |
| 1184 | |
| 1185 | if (!ossl_assert(chain != NULL && sk_X509_num(chain) > 0) |
| 1186 | || !ossl_assert(ctx != NULL || ext != NULL) |
| 1187 | || !ossl_assert(ctx == NULL || ctx->verify_cb != NULL)) { |
| 1188 | if (ctx != NULL) |
| 1189 | ctx->error = X509_V_ERR_UNSPECIFIED; |
| 1190 | return 0; |
| 1191 | } |
| 1192 | |
| 1193 | /* |
| 1194 | * Figure out where to start. If we don't have an extension to |
| 1195 | * check, we're done. Otherwise, check canonical form and |
| 1196 | * set up for walking up the chain. |
| 1197 | */ |
| 1198 | if (ext != NULL) { |
| 1199 | i = -1; |
| 1200 | x = NULL; |
| 1201 | } else { |
| 1202 | i = 0; |
| 1203 | x = sk_X509_value(chain, i); |
| 1204 | if ((ext = x->rfc3779_addr) == NULL) |
| 1205 | goto done; |
| 1206 | } |
| 1207 | if (!X509v3_addr_is_canonical(ext)) |
| 1208 | validation_err(X509_V_ERR_INVALID_EXTENSION); |
| 1209 | (void)sk_IPAddressFamily_set_cmp_func(ext, IPAddressFamily_cmp); |
| 1210 | if ((child = sk_IPAddressFamily_dup(ext)) == NULL) { |
| 1211 | X509V3err(X509V3_F_ADDR_VALIDATE_PATH_INTERNAL, |
| 1212 | ERR_R_MALLOC_FAILURE); |
| 1213 | if (ctx != NULL) |
| 1214 | ctx->error = X509_V_ERR_OUT_OF_MEM; |
| 1215 | ret = 0; |
| 1216 | goto done; |
| 1217 | } |
| 1218 | |
| 1219 | /* |
| 1220 | * Now walk up the chain. No cert may list resources that its |
| 1221 | * parent doesn't list. |
| 1222 | */ |
| 1223 | for (i++; i < sk_X509_num(chain); i++) { |
| 1224 | x = sk_X509_value(chain, i); |
| 1225 | if (!X509v3_addr_is_canonical(x->rfc3779_addr)) |
| 1226 | validation_err(X509_V_ERR_INVALID_EXTENSION); |
| 1227 | if (x->rfc3779_addr == NULL) { |
| 1228 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { |
| 1229 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); |
| 1230 | if (fc->ipAddressChoice->type != IPAddressChoice_inherit) { |
| 1231 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
| 1232 | break; |
| 1233 | } |
| 1234 | } |
| 1235 | continue; |
| 1236 | } |
| 1237 | (void)sk_IPAddressFamily_set_cmp_func(x->rfc3779_addr, |
| 1238 | IPAddressFamily_cmp); |
| 1239 | for (j = 0; j < sk_IPAddressFamily_num(child); j++) { |
| 1240 | IPAddressFamily *fc = sk_IPAddressFamily_value(child, j); |
| 1241 | int k = sk_IPAddressFamily_find(x->rfc3779_addr, fc); |
| 1242 | IPAddressFamily *fp = |
| 1243 | sk_IPAddressFamily_value(x->rfc3779_addr, k); |
| 1244 | if (fp == NULL) { |
| 1245 | if (fc->ipAddressChoice->type == |
| 1246 | IPAddressChoice_addressesOrRanges) { |
| 1247 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
| 1248 | break; |
| 1249 | } |
| 1250 | continue; |
| 1251 | } |
| 1252 | if (fp->ipAddressChoice->type == |
| 1253 | IPAddressChoice_addressesOrRanges) { |
| 1254 | if (fc->ipAddressChoice->type == IPAddressChoice_inherit |
| 1255 | || addr_contains(fp->ipAddressChoice->u.addressesOrRanges, |
| 1256 | fc->ipAddressChoice->u.addressesOrRanges, |
| 1257 | length_from_afi(X509v3_addr_get_afi(fc)))) |
| 1258 | sk_IPAddressFamily_set(child, j, fp); |
| 1259 | else |
| 1260 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
| 1261 | } |
| 1262 | } |
| 1263 | } |
| 1264 | |
| 1265 | /* |
| 1266 | * Trust anchor can't inherit. |
| 1267 | */ |
| 1268 | if (x->rfc3779_addr != NULL) { |
| 1269 | for (j = 0; j < sk_IPAddressFamily_num(x->rfc3779_addr); j++) { |
| 1270 | IPAddressFamily *fp = |
| 1271 | sk_IPAddressFamily_value(x->rfc3779_addr, j); |
| 1272 | if (fp->ipAddressChoice->type == IPAddressChoice_inherit |
| 1273 | && sk_IPAddressFamily_find(child, fp) >= 0) |
| 1274 | validation_err(X509_V_ERR_UNNESTED_RESOURCE); |
| 1275 | } |
| 1276 | } |
| 1277 | |
| 1278 | done: |
| 1279 | sk_IPAddressFamily_free(child); |
| 1280 | return ret; |
| 1281 | } |
| 1282 | |
| 1283 | #undef validation_err |
| 1284 | |
| 1285 | /* |
| 1286 | * RFC 3779 2.3 path validation -- called from X509_verify_cert(). |
| 1287 | */ |
| 1288 | int X509v3_addr_validate_path(X509_STORE_CTX *ctx) |
| 1289 | { |
| 1290 | if (ctx->chain == NULL |
| 1291 | || sk_X509_num(ctx->chain) == 0 |
| 1292 | || ctx->verify_cb == NULL) { |
| 1293 | ctx->error = X509_V_ERR_UNSPECIFIED; |
| 1294 | return 0; |
| 1295 | } |
| 1296 | return addr_validate_path_internal(ctx, ctx->chain, NULL); |
| 1297 | } |
| 1298 | |
| 1299 | /* |
| 1300 | * RFC 3779 2.3 path validation of an extension. |
| 1301 | * Test whether chain covers extension. |
| 1302 | */ |
| 1303 | int X509v3_addr_validate_resource_set(STACK_OF(X509) *chain, |
| 1304 | IPAddrBlocks *ext, int allow_inheritance) |
| 1305 | { |
| 1306 | if (ext == NULL) |
| 1307 | return 1; |
| 1308 | if (chain == NULL || sk_X509_num(chain) == 0) |
| 1309 | return 0; |
| 1310 | if (!allow_inheritance && X509v3_addr_inherits(ext)) |
| 1311 | return 0; |
| 1312 | return addr_validate_path_internal(NULL, chain, ext); |
| 1313 | } |
| 1314 | |
| 1315 | #endif /* OPENSSL_NO_RFC3779 */ |