blob: 87a43cce8d59dfdc01877e66c3780bf978efc6a0 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * Simple NUMA memory policy for the Linux kernel.
3 *
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
7 *
8 * NUMA policy allows the user to give hints in which node(s) memory should
9 * be allocated.
10 *
11 * Support four policies per VMA and per process:
12 *
13 * The VMA policy has priority over the process policy for a page fault.
14 *
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
20 * is used.
21 *
22 * bind Only allocate memory on a specific set of nodes,
23 * no fallback.
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
27 *
28 * preferred Try a specific node first before normal fallback.
29 * As a special case node -1 here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
32 * process policy.
33 *
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
37 *
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
42 *
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
46 *
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
51 *
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
54 */
55
56/* Notebook:
57 fix mmap readahead to honour policy and enable policy for any page cache
58 object
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
61 first item above.
62 handle mremap for shared memory (currently ignored for the policy)
63 grows down?
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
66*/
67
68#include <linux/mempolicy.h>
69#include <linux/mm.h>
70#include <linux/highmem.h>
71#include <linux/hugetlb.h>
72#include <linux/kernel.h>
73#include <linux/sched.h>
74#include <linux/nodemask.h>
75#include <linux/cpuset.h>
76#include <linux/slab.h>
77#include <linux/string.h>
78#include <linux/export.h>
79#include <linux/nsproxy.h>
80#include <linux/interrupt.h>
81#include <linux/init.h>
82#include <linux/compat.h>
83#include <linux/swap.h>
84#include <linux/seq_file.h>
85#include <linux/proc_fs.h>
86#include <linux/migrate.h>
87#include <linux/ksm.h>
88#include <linux/rmap.h>
89#include <linux/security.h>
90#include <linux/syscalls.h>
91#include <linux/ctype.h>
92#include <linux/mm_inline.h>
93
94#include <asm/tlbflush.h>
95#include <asm/uaccess.h>
96#include <linux/random.h>
97
98#include "internal.h"
99
100/* Internal flags */
101#define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102#define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103
104static struct kmem_cache *policy_cache;
105static struct kmem_cache *sn_cache;
106
107/* Highest zone. An specific allocation for a zone below that is not
108 policied. */
109enum zone_type policy_zone = 0;
110
111/*
112 * run-time system-wide default policy => local allocation
113 */
114static struct mempolicy default_policy = {
115 .refcnt = ATOMIC_INIT(1), /* never free it */
116 .mode = MPOL_PREFERRED,
117 .flags = MPOL_F_LOCAL,
118};
119
120static const struct mempolicy_operations {
121 int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122 /*
123 * If read-side task has no lock to protect task->mempolicy, write-side
124 * task will rebind the task->mempolicy by two step. The first step is
125 * setting all the newly nodes, and the second step is cleaning all the
126 * disallowed nodes. In this way, we can avoid finding no node to alloc
127 * page.
128 * If we have a lock to protect task->mempolicy in read-side, we do
129 * rebind directly.
130 *
131 * step:
132 * MPOL_REBIND_ONCE - do rebind work at once
133 * MPOL_REBIND_STEP1 - set all the newly nodes
134 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135 */
136 void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137 enum mpol_rebind_step step);
138} mpol_ops[MPOL_MAX];
139
140/* Check that the nodemask contains at least one populated zone */
141static int is_valid_nodemask(const nodemask_t *nodemask)
142{
143 int nd, k;
144
145 for_each_node_mask(nd, *nodemask) {
146 struct zone *z;
147
148 for (k = 0; k <= policy_zone; k++) {
149 z = &NODE_DATA(nd)->node_zones[k];
150 if (z->present_pages > 0)
151 return 1;
152 }
153 }
154
155 return 0;
156}
157
158static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159{
160 return pol->flags & MPOL_MODE_FLAGS;
161}
162
163static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164 const nodemask_t *rel)
165{
166 nodemask_t tmp;
167 nodes_fold(tmp, *orig, nodes_weight(*rel));
168 nodes_onto(*ret, tmp, *rel);
169}
170
171static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172{
173 if (nodes_empty(*nodes))
174 return -EINVAL;
175 pol->v.nodes = *nodes;
176 return 0;
177}
178
179static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180{
181 if (!nodes)
182 pol->flags |= MPOL_F_LOCAL; /* local allocation */
183 else if (nodes_empty(*nodes))
184 return -EINVAL; /* no allowed nodes */
185 else
186 pol->v.preferred_node = first_node(*nodes);
187 return 0;
188}
189
190static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191{
192 if (!is_valid_nodemask(nodes))
193 return -EINVAL;
194 pol->v.nodes = *nodes;
195 return 0;
196}
197
198/*
199 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200 * any, for the new policy. mpol_new() has already validated the nodes
201 * parameter with respect to the policy mode and flags. But, we need to
202 * handle an empty nodemask with MPOL_PREFERRED here.
203 *
204 * Must be called holding task's alloc_lock to protect task's mems_allowed
205 * and mempolicy. May also be called holding the mmap_semaphore for write.
206 */
207static int mpol_set_nodemask(struct mempolicy *pol,
208 const nodemask_t *nodes, struct nodemask_scratch *nsc)
209{
210 int ret;
211
212 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213 if (pol == NULL)
214 return 0;
215 /* Check N_HIGH_MEMORY */
216 nodes_and(nsc->mask1,
217 cpuset_current_mems_allowed, node_states[N_HIGH_MEMORY]);
218
219 VM_BUG_ON(!nodes);
220 if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221 nodes = NULL; /* explicit local allocation */
222 else {
223 if (pol->flags & MPOL_F_RELATIVE_NODES)
224 mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225 else
226 nodes_and(nsc->mask2, *nodes, nsc->mask1);
227
228 if (mpol_store_user_nodemask(pol))
229 pol->w.user_nodemask = *nodes;
230 else
231 pol->w.cpuset_mems_allowed =
232 cpuset_current_mems_allowed;
233 }
234
235 if (nodes)
236 ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237 else
238 ret = mpol_ops[pol->mode].create(pol, NULL);
239 return ret;
240}
241
242/*
243 * This function just creates a new policy, does some check and simple
244 * initialization. You must invoke mpol_set_nodemask() to set nodes.
245 */
246static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247 nodemask_t *nodes)
248{
249 struct mempolicy *policy;
250
251 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252 mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253
254 if (mode == MPOL_DEFAULT) {
255 if (nodes && !nodes_empty(*nodes))
256 return ERR_PTR(-EINVAL);
257 return NULL; /* simply delete any existing policy */
258 }
259 VM_BUG_ON(!nodes);
260
261 /*
262 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264 * All other modes require a valid pointer to a non-empty nodemask.
265 */
266 if (mode == MPOL_PREFERRED) {
267 if (nodes_empty(*nodes)) {
268 if (((flags & MPOL_F_STATIC_NODES) ||
269 (flags & MPOL_F_RELATIVE_NODES)))
270 return ERR_PTR(-EINVAL);
271 }
272 } else if (nodes_empty(*nodes))
273 return ERR_PTR(-EINVAL);
274 policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275 if (!policy)
276 return ERR_PTR(-ENOMEM);
277 atomic_set(&policy->refcnt, 1);
278 policy->mode = mode;
279 policy->flags = flags;
280
281 return policy;
282}
283
284/* Slow path of a mpol destructor. */
285void __mpol_put(struct mempolicy *p)
286{
287 if (!atomic_dec_and_test(&p->refcnt))
288 return;
289 kmem_cache_free(policy_cache, p);
290}
291
292static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293 enum mpol_rebind_step step)
294{
295}
296
297/*
298 * step:
299 * MPOL_REBIND_ONCE - do rebind work at once
300 * MPOL_REBIND_STEP1 - set all the newly nodes
301 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302 */
303static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304 enum mpol_rebind_step step)
305{
306 nodemask_t tmp;
307
308 if (pol->flags & MPOL_F_STATIC_NODES)
309 nodes_and(tmp, pol->w.user_nodemask, *nodes);
310 else if (pol->flags & MPOL_F_RELATIVE_NODES)
311 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312 else {
313 /*
314 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315 * result
316 */
317 if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318 nodes_remap(tmp, pol->v.nodes,
319 pol->w.cpuset_mems_allowed, *nodes);
320 pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321 } else if (step == MPOL_REBIND_STEP2) {
322 tmp = pol->w.cpuset_mems_allowed;
323 pol->w.cpuset_mems_allowed = *nodes;
324 } else
325 BUG();
326 }
327
328 if (nodes_empty(tmp))
329 tmp = *nodes;
330
331 if (step == MPOL_REBIND_STEP1)
332 nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333 else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334 pol->v.nodes = tmp;
335 else
336 BUG();
337
338 if (!node_isset(current->il_next, tmp)) {
339 current->il_next = next_node(current->il_next, tmp);
340 if (current->il_next >= MAX_NUMNODES)
341 current->il_next = first_node(tmp);
342 if (current->il_next >= MAX_NUMNODES)
343 current->il_next = numa_node_id();
344 }
345}
346
347static void mpol_rebind_preferred(struct mempolicy *pol,
348 const nodemask_t *nodes,
349 enum mpol_rebind_step step)
350{
351 nodemask_t tmp;
352
353 if (pol->flags & MPOL_F_STATIC_NODES) {
354 int node = first_node(pol->w.user_nodemask);
355
356 if (node_isset(node, *nodes)) {
357 pol->v.preferred_node = node;
358 pol->flags &= ~MPOL_F_LOCAL;
359 } else
360 pol->flags |= MPOL_F_LOCAL;
361 } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362 mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363 pol->v.preferred_node = first_node(tmp);
364 } else if (!(pol->flags & MPOL_F_LOCAL)) {
365 pol->v.preferred_node = node_remap(pol->v.preferred_node,
366 pol->w.cpuset_mems_allowed,
367 *nodes);
368 pol->w.cpuset_mems_allowed = *nodes;
369 }
370}
371
372/*
373 * mpol_rebind_policy - Migrate a policy to a different set of nodes
374 *
375 * If read-side task has no lock to protect task->mempolicy, write-side
376 * task will rebind the task->mempolicy by two step. The first step is
377 * setting all the newly nodes, and the second step is cleaning all the
378 * disallowed nodes. In this way, we can avoid finding no node to alloc
379 * page.
380 * If we have a lock to protect task->mempolicy in read-side, we do
381 * rebind directly.
382 *
383 * step:
384 * MPOL_REBIND_ONCE - do rebind work at once
385 * MPOL_REBIND_STEP1 - set all the newly nodes
386 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387 */
388static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389 enum mpol_rebind_step step)
390{
391 if (!pol)
392 return;
393 if (!mpol_store_user_nodemask(pol) && step == 0 &&
394 nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395 return;
396
397 if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398 return;
399
400 if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401 BUG();
402
403 if (step == MPOL_REBIND_STEP1)
404 pol->flags |= MPOL_F_REBINDING;
405 else if (step == MPOL_REBIND_STEP2)
406 pol->flags &= ~MPOL_F_REBINDING;
407 else if (step >= MPOL_REBIND_NSTEP)
408 BUG();
409
410 mpol_ops[pol->mode].rebind(pol, newmask, step);
411}
412
413/*
414 * Wrapper for mpol_rebind_policy() that just requires task
415 * pointer, and updates task mempolicy.
416 *
417 * Called with task's alloc_lock held.
418 */
419
420void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421 enum mpol_rebind_step step)
422{
423 mpol_rebind_policy(tsk->mempolicy, new, step);
424}
425
426/*
427 * Rebind each vma in mm to new nodemask.
428 *
429 * Call holding a reference to mm. Takes mm->mmap_sem during call.
430 */
431
432void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433{
434 struct vm_area_struct *vma;
435
436 down_write(&mm->mmap_sem);
437 for (vma = mm->mmap; vma; vma = vma->vm_next)
438 mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439 up_write(&mm->mmap_sem);
440}
441
442static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443 [MPOL_DEFAULT] = {
444 .rebind = mpol_rebind_default,
445 },
446 [MPOL_INTERLEAVE] = {
447 .create = mpol_new_interleave,
448 .rebind = mpol_rebind_nodemask,
449 },
450 [MPOL_PREFERRED] = {
451 .create = mpol_new_preferred,
452 .rebind = mpol_rebind_preferred,
453 },
454 [MPOL_BIND] = {
455 .create = mpol_new_bind,
456 .rebind = mpol_rebind_nodemask,
457 },
458};
459
460static void migrate_page_add(struct page *page, struct list_head *pagelist,
461 unsigned long flags);
462
463/* Scan through pages checking if pages follow certain conditions. */
464static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465 unsigned long addr, unsigned long end,
466 const nodemask_t *nodes, unsigned long flags,
467 void *private)
468{
469 pte_t *orig_pte;
470 pte_t *pte;
471 spinlock_t *ptl;
472
473 orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474 do {
475 struct page *page;
476 int nid;
477
478 if (!pte_present(*pte))
479 continue;
480 page = vm_normal_page(vma, addr, *pte);
481 if (!page)
482 continue;
483 /*
484 * vm_normal_page() filters out zero pages, but there might
485 * still be PageReserved pages to skip, perhaps in a VDSO.
486 * And we cannot move PageKsm pages sensibly or safely yet.
487 */
488 if (PageReserved(page) || PageKsm(page))
489 continue;
490 nid = page_to_nid(page);
491 if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492 continue;
493
494 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495 migrate_page_add(page, private, flags);
496 else
497 break;
498 } while (pte++, addr += PAGE_SIZE, addr != end);
499 pte_unmap_unlock(orig_pte, ptl);
500 return addr != end;
501}
502
503static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504 unsigned long addr, unsigned long end,
505 const nodemask_t *nodes, unsigned long flags,
506 void *private)
507{
508 pmd_t *pmd;
509 unsigned long next;
510
511 pmd = pmd_offset(pud, addr);
512 do {
513 next = pmd_addr_end(addr, end);
514 split_huge_page_pmd(vma->vm_mm, pmd);
515 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516 continue;
517 if (check_pte_range(vma, pmd, addr, next, nodes,
518 flags, private))
519 return -EIO;
520 } while (pmd++, addr = next, addr != end);
521 return 0;
522}
523
524static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525 unsigned long addr, unsigned long end,
526 const nodemask_t *nodes, unsigned long flags,
527 void *private)
528{
529 pud_t *pud;
530 unsigned long next;
531
532 pud = pud_offset(pgd, addr);
533 do {
534 next = pud_addr_end(addr, end);
535 if (pud_none_or_clear_bad(pud))
536 continue;
537 if (check_pmd_range(vma, pud, addr, next, nodes,
538 flags, private))
539 return -EIO;
540 } while (pud++, addr = next, addr != end);
541 return 0;
542}
543
544static inline int check_pgd_range(struct vm_area_struct *vma,
545 unsigned long addr, unsigned long end,
546 const nodemask_t *nodes, unsigned long flags,
547 void *private)
548{
549 pgd_t *pgd;
550 unsigned long next;
551
552 pgd = pgd_offset(vma->vm_mm, addr);
553 do {
554 next = pgd_addr_end(addr, end);
555 if (pgd_none_or_clear_bad(pgd))
556 continue;
557 if (check_pud_range(vma, pgd, addr, next, nodes,
558 flags, private))
559 return -EIO;
560 } while (pgd++, addr = next, addr != end);
561 return 0;
562}
563
564/*
565 * Check if all pages in a range are on a set of nodes.
566 * If pagelist != NULL then isolate pages from the LRU and
567 * put them on the pagelist.
568 */
569static int
570check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571 const nodemask_t *nodes, unsigned long flags, void *private)
572{
573 int err = 0;
574 struct vm_area_struct *vma, *prev;
575
576
577 vma = find_vma(mm, start);
578 if (!vma)
579 return -EFAULT;
580 prev = NULL;
581 for (; vma && vma->vm_start < end; vma = vma->vm_next) {
582 if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583 if (!vma->vm_next && vma->vm_end < end)
584 return -EFAULT;
585 if (prev && prev->vm_end < vma->vm_start)
586 return -EFAULT;
587 }
588 if (!is_vm_hugetlb_page(vma) &&
589 ((flags & MPOL_MF_STRICT) ||
590 ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591 vma_migratable(vma)))) {
592 unsigned long endvma = vma->vm_end;
593
594 if (endvma > end)
595 endvma = end;
596 if (vma->vm_start > start)
597 start = vma->vm_start;
598 err = check_pgd_range(vma, start, endvma, nodes,
599 flags, private);
600 if (err)
601 break;
602 }
603 prev = vma;
604 }
605 return err;
606}
607
608/*
609 * Apply policy to a single VMA
610 * This must be called with the mmap_sem held for writing.
611 */
612static int vma_replace_policy(struct vm_area_struct *vma,
613 struct mempolicy *pol)
614{
615 int err;
616 struct mempolicy *old;
617 struct mempolicy *new;
618
619 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
620 vma->vm_start, vma->vm_end, vma->vm_pgoff,
621 vma->vm_ops, vma->vm_file,
622 vma->vm_ops ? vma->vm_ops->set_policy : NULL);
623
624 new = mpol_dup(pol);
625 if (IS_ERR(new))
626 return PTR_ERR(new);
627
628 if (vma->vm_ops && vma->vm_ops->set_policy) {
629 err = vma->vm_ops->set_policy(vma, new);
630 if (err)
631 goto err_out;
632 }
633
634 old = vma->vm_policy;
635 vma->vm_policy = new; /* protected by mmap_sem */
636 mpol_put(old);
637
638 return 0;
639 err_out:
640 mpol_put(new);
641 return err;
642}
643
644/* Step 2: apply policy to a range and do splits. */
645static int mbind_range(struct mm_struct *mm, unsigned long start,
646 unsigned long end, struct mempolicy *new_pol)
647{
648 struct vm_area_struct *next;
649 struct vm_area_struct *prev;
650 struct vm_area_struct *vma;
651 int err = 0;
652 pgoff_t pgoff;
653 unsigned long vmstart;
654 unsigned long vmend;
655
656 vma = find_vma(mm, start);
657 if (!vma || vma->vm_start > start)
658 return -EFAULT;
659
660 prev = vma->vm_prev;
661 if (start > vma->vm_start)
662 prev = vma;
663
664 for (; vma && vma->vm_start < end; prev = vma, vma = next) {
665 next = vma->vm_next;
666 vmstart = max(start, vma->vm_start);
667 vmend = min(end, vma->vm_end);
668
669 if (mpol_equal(vma_policy(vma), new_pol))
670 continue;
671
672 pgoff = vma->vm_pgoff +
673 ((vmstart - vma->vm_start) >> PAGE_SHIFT);
674 prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
675 vma->anon_vma, vma->vm_file, pgoff,
676 new_pol);
677 if (prev) {
678 vma = prev;
679 next = vma->vm_next;
680 continue;
681 }
682 if (vma->vm_start != vmstart) {
683 err = split_vma(vma->vm_mm, vma, vmstart, 1);
684 if (err)
685 goto out;
686 }
687 if (vma->vm_end != vmend) {
688 err = split_vma(vma->vm_mm, vma, vmend, 0);
689 if (err)
690 goto out;
691 }
692 err = vma_replace_policy(vma, new_pol);
693 if (err)
694 goto out;
695 }
696
697 out:
698 return err;
699}
700
701/*
702 * Update task->flags PF_MEMPOLICY bit: set iff non-default
703 * mempolicy. Allows more rapid checking of this (combined perhaps
704 * with other PF_* flag bits) on memory allocation hot code paths.
705 *
706 * If called from outside this file, the task 'p' should -only- be
707 * a newly forked child not yet visible on the task list, because
708 * manipulating the task flags of a visible task is not safe.
709 *
710 * The above limitation is why this routine has the funny name
711 * mpol_fix_fork_child_flag().
712 *
713 * It is also safe to call this with a task pointer of current,
714 * which the static wrapper mpol_set_task_struct_flag() does,
715 * for use within this file.
716 */
717
718void mpol_fix_fork_child_flag(struct task_struct *p)
719{
720 if (p->mempolicy)
721 p->flags |= PF_MEMPOLICY;
722 else
723 p->flags &= ~PF_MEMPOLICY;
724}
725
726static void mpol_set_task_struct_flag(void)
727{
728 mpol_fix_fork_child_flag(current);
729}
730
731/* Set the process memory policy */
732static long do_set_mempolicy(unsigned short mode, unsigned short flags,
733 nodemask_t *nodes)
734{
735 struct mempolicy *new, *old;
736 struct mm_struct *mm = current->mm;
737 NODEMASK_SCRATCH(scratch);
738 int ret;
739
740 if (!scratch)
741 return -ENOMEM;
742
743 new = mpol_new(mode, flags, nodes);
744 if (IS_ERR(new)) {
745 ret = PTR_ERR(new);
746 goto out;
747 }
748 /*
749 * prevent changing our mempolicy while show_numa_maps()
750 * is using it.
751 * Note: do_set_mempolicy() can be called at init time
752 * with no 'mm'.
753 */
754 if (mm)
755 down_write(&mm->mmap_sem);
756 task_lock(current);
757 ret = mpol_set_nodemask(new, nodes, scratch);
758 if (ret) {
759 task_unlock(current);
760 if (mm)
761 up_write(&mm->mmap_sem);
762 mpol_put(new);
763 goto out;
764 }
765 old = current->mempolicy;
766 current->mempolicy = new;
767 mpol_set_task_struct_flag();
768 if (new && new->mode == MPOL_INTERLEAVE &&
769 nodes_weight(new->v.nodes))
770 current->il_next = first_node(new->v.nodes);
771 task_unlock(current);
772 if (mm)
773 up_write(&mm->mmap_sem);
774
775 mpol_put(old);
776 ret = 0;
777out:
778 NODEMASK_SCRATCH_FREE(scratch);
779 return ret;
780}
781
782/*
783 * Return nodemask for policy for get_mempolicy() query
784 *
785 * Called with task's alloc_lock held
786 */
787static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
788{
789 nodes_clear(*nodes);
790 if (p == &default_policy)
791 return;
792
793 switch (p->mode) {
794 case MPOL_BIND:
795 /* Fall through */
796 case MPOL_INTERLEAVE:
797 *nodes = p->v.nodes;
798 break;
799 case MPOL_PREFERRED:
800 if (!(p->flags & MPOL_F_LOCAL))
801 node_set(p->v.preferred_node, *nodes);
802 /* else return empty node mask for local allocation */
803 break;
804 default:
805 BUG();
806 }
807}
808
809static int lookup_node(struct mm_struct *mm, unsigned long addr)
810{
811 struct page *p;
812 int err;
813
814 err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
815 if (err >= 0) {
816 err = page_to_nid(p);
817 put_page(p);
818 }
819 return err;
820}
821
822/* Retrieve NUMA policy */
823static long do_get_mempolicy(int *policy, nodemask_t *nmask,
824 unsigned long addr, unsigned long flags)
825{
826 int err;
827 struct mm_struct *mm = current->mm;
828 struct vm_area_struct *vma = NULL;
829 struct mempolicy *pol = current->mempolicy;
830
831 if (flags &
832 ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
833 return -EINVAL;
834
835 if (flags & MPOL_F_MEMS_ALLOWED) {
836 if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
837 return -EINVAL;
838 *policy = 0; /* just so it's initialized */
839 task_lock(current);
840 *nmask = cpuset_current_mems_allowed;
841 task_unlock(current);
842 return 0;
843 }
844
845 if (flags & MPOL_F_ADDR) {
846 /*
847 * Do NOT fall back to task policy if the
848 * vma/shared policy at addr is NULL. We
849 * want to return MPOL_DEFAULT in this case.
850 */
851 down_read(&mm->mmap_sem);
852 vma = find_vma_intersection(mm, addr, addr+1);
853 if (!vma) {
854 up_read(&mm->mmap_sem);
855 return -EFAULT;
856 }
857 if (vma->vm_ops && vma->vm_ops->get_policy)
858 pol = vma->vm_ops->get_policy(vma, addr);
859 else
860 pol = vma->vm_policy;
861 } else if (addr)
862 return -EINVAL;
863
864 if (!pol)
865 pol = &default_policy; /* indicates default behavior */
866
867 if (flags & MPOL_F_NODE) {
868 if (flags & MPOL_F_ADDR) {
869 err = lookup_node(mm, addr);
870 if (err < 0)
871 goto out;
872 *policy = err;
873 } else if (pol == current->mempolicy &&
874 pol->mode == MPOL_INTERLEAVE) {
875 *policy = current->il_next;
876 } else {
877 err = -EINVAL;
878 goto out;
879 }
880 } else {
881 *policy = pol == &default_policy ? MPOL_DEFAULT :
882 pol->mode;
883 /*
884 * Internal mempolicy flags must be masked off before exposing
885 * the policy to userspace.
886 */
887 *policy |= (pol->flags & MPOL_MODE_FLAGS);
888 }
889
890 if (vma) {
891 up_read(&current->mm->mmap_sem);
892 vma = NULL;
893 }
894
895 err = 0;
896 if (nmask) {
897 if (mpol_store_user_nodemask(pol)) {
898 *nmask = pol->w.user_nodemask;
899 } else {
900 task_lock(current);
901 get_policy_nodemask(pol, nmask);
902 task_unlock(current);
903 }
904 }
905
906 out:
907 mpol_cond_put(pol);
908 if (vma)
909 up_read(&current->mm->mmap_sem);
910 return err;
911}
912
913#ifdef CONFIG_MIGRATION
914/*
915 * page migration
916 */
917static void migrate_page_add(struct page *page, struct list_head *pagelist,
918 unsigned long flags)
919{
920 /*
921 * Avoid migrating a page that is shared with others.
922 */
923 if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
924 if (!isolate_lru_page(page)) {
925 list_add_tail(&page->lru, pagelist);
926 inc_zone_page_state(page, NR_ISOLATED_ANON +
927 page_is_file_cache(page));
928 }
929 }
930}
931
932static struct page *new_node_page(struct page *page, unsigned long node, int **x)
933{
934 return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
935}
936
937/*
938 * Migrate pages from one node to a target node.
939 * Returns error or the number of pages not migrated.
940 */
941static int migrate_to_node(struct mm_struct *mm, int source, int dest,
942 int flags)
943{
944 nodemask_t nmask;
945 LIST_HEAD(pagelist);
946 int err;
947
948 nodes_clear(nmask);
949 node_set(source, nmask);
950
951 err = check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
952 flags | MPOL_MF_DISCONTIG_OK, &pagelist);
953 if (err)
954 return err;
955
956 if (!list_empty(&pagelist)) {
957 err = migrate_pages(&pagelist, new_node_page, dest,
958 false, MIGRATE_SYNC);
959 if (err)
960 putback_lru_pages(&pagelist);
961 }
962
963 return err;
964}
965
966/*
967 * Move pages between the two nodesets so as to preserve the physical
968 * layout as much as possible.
969 *
970 * Returns the number of page that could not be moved.
971 */
972int do_migrate_pages(struct mm_struct *mm,
973 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
974{
975 int busy = 0;
976 int err;
977 nodemask_t tmp;
978
979 err = migrate_prep();
980 if (err)
981 return err;
982
983 down_read(&mm->mmap_sem);
984
985 err = migrate_vmas(mm, from_nodes, to_nodes, flags);
986 if (err)
987 goto out;
988
989 /*
990 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
991 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
992 * bit in 'tmp', and return that <source, dest> pair for migration.
993 * The pair of nodemasks 'to' and 'from' define the map.
994 *
995 * If no pair of bits is found that way, fallback to picking some
996 * pair of 'source' and 'dest' bits that are not the same. If the
997 * 'source' and 'dest' bits are the same, this represents a node
998 * that will be migrating to itself, so no pages need move.
999 *
1000 * If no bits are left in 'tmp', or if all remaining bits left
1001 * in 'tmp' correspond to the same bit in 'to', return false
1002 * (nothing left to migrate).
1003 *
1004 * This lets us pick a pair of nodes to migrate between, such that
1005 * if possible the dest node is not already occupied by some other
1006 * source node, minimizing the risk of overloading the memory on a
1007 * node that would happen if we migrated incoming memory to a node
1008 * before migrating outgoing memory source that same node.
1009 *
1010 * A single scan of tmp is sufficient. As we go, we remember the
1011 * most recent <s, d> pair that moved (s != d). If we find a pair
1012 * that not only moved, but what's better, moved to an empty slot
1013 * (d is not set in tmp), then we break out then, with that pair.
1014 * Otherwise when we finish scanning from_tmp, we at least have the
1015 * most recent <s, d> pair that moved. If we get all the way through
1016 * the scan of tmp without finding any node that moved, much less
1017 * moved to an empty node, then there is nothing left worth migrating.
1018 */
1019
1020 tmp = *from_nodes;
1021 while (!nodes_empty(tmp)) {
1022 int s,d;
1023 int source = -1;
1024 int dest = 0;
1025
1026 for_each_node_mask(s, tmp) {
1027 d = node_remap(s, *from_nodes, *to_nodes);
1028 if (s == d)
1029 continue;
1030
1031 source = s; /* Node moved. Memorize */
1032 dest = d;
1033
1034 /* dest not in remaining from nodes? */
1035 if (!node_isset(dest, tmp))
1036 break;
1037 }
1038 if (source == -1)
1039 break;
1040
1041 node_clear(source, tmp);
1042 err = migrate_to_node(mm, source, dest, flags);
1043 if (err > 0)
1044 busy += err;
1045 if (err < 0)
1046 break;
1047 }
1048out:
1049 up_read(&mm->mmap_sem);
1050 if (err < 0)
1051 return err;
1052 return busy;
1053
1054}
1055
1056/*
1057 * Allocate a new page for page migration based on vma policy.
1058 * Start by assuming the page is mapped by the same vma as contains @start.
1059 * Search forward from there, if not. N.B., this assumes that the
1060 * list of pages handed to migrate_pages()--which is how we get here--
1061 * is in virtual address order.
1062 */
1063static struct page *new_page(struct page *page, unsigned long start, int **x)
1064{
1065 struct vm_area_struct *vma;
1066 unsigned long uninitialized_var(address);
1067
1068 vma = find_vma(current->mm, start);
1069 while (vma) {
1070 address = page_address_in_vma(page, vma);
1071 if (address != -EFAULT)
1072 break;
1073 vma = vma->vm_next;
1074 }
1075
1076 /*
1077 * if !vma, alloc_page_vma() will use task or system default policy
1078 */
1079 return alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1080}
1081#else
1082
1083static void migrate_page_add(struct page *page, struct list_head *pagelist,
1084 unsigned long flags)
1085{
1086}
1087
1088int do_migrate_pages(struct mm_struct *mm,
1089 const nodemask_t *from_nodes, const nodemask_t *to_nodes, int flags)
1090{
1091 return -ENOSYS;
1092}
1093
1094static struct page *new_page(struct page *page, unsigned long start, int **x)
1095{
1096 return NULL;
1097}
1098#endif
1099
1100static long do_mbind(unsigned long start, unsigned long len,
1101 unsigned short mode, unsigned short mode_flags,
1102 nodemask_t *nmask, unsigned long flags)
1103{
1104 struct mm_struct *mm = current->mm;
1105 struct mempolicy *new;
1106 unsigned long end;
1107 int err;
1108 LIST_HEAD(pagelist);
1109
1110 if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1111 MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1112 return -EINVAL;
1113 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1114 return -EPERM;
1115
1116 if (start & ~PAGE_MASK)
1117 return -EINVAL;
1118
1119 if (mode == MPOL_DEFAULT)
1120 flags &= ~MPOL_MF_STRICT;
1121
1122 len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1123 end = start + len;
1124
1125 if (end < start)
1126 return -EINVAL;
1127 if (end == start)
1128 return 0;
1129
1130 new = mpol_new(mode, mode_flags, nmask);
1131 if (IS_ERR(new))
1132 return PTR_ERR(new);
1133
1134 /*
1135 * If we are using the default policy then operation
1136 * on discontinuous address spaces is okay after all
1137 */
1138 if (!new)
1139 flags |= MPOL_MF_DISCONTIG_OK;
1140
1141 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1142 start, start + len, mode, mode_flags,
1143 nmask ? nodes_addr(*nmask)[0] : -1);
1144
1145 if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1146
1147 err = migrate_prep();
1148 if (err)
1149 goto mpol_out;
1150 }
1151 {
1152 NODEMASK_SCRATCH(scratch);
1153 if (scratch) {
1154 down_write(&mm->mmap_sem);
1155 task_lock(current);
1156 err = mpol_set_nodemask(new, nmask, scratch);
1157 task_unlock(current);
1158 if (err)
1159 up_write(&mm->mmap_sem);
1160 } else
1161 err = -ENOMEM;
1162 NODEMASK_SCRATCH_FREE(scratch);
1163 }
1164 if (err)
1165 goto mpol_out;
1166
1167 err = check_range(mm, start, end, nmask,
1168 flags | MPOL_MF_INVERT, &pagelist);
1169
1170 if (!err) {
1171 int nr_failed = 0;
1172
1173 err = mbind_range(mm, start, end, new);
1174
1175 if (!list_empty(&pagelist)) {
1176 nr_failed = migrate_pages(&pagelist, new_page,
1177 start, false, true);
1178 if (nr_failed)
1179 putback_lru_pages(&pagelist);
1180 }
1181
1182 if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1183 err = -EIO;
1184 } else
1185 putback_lru_pages(&pagelist);
1186
1187 up_write(&mm->mmap_sem);
1188 mpol_out:
1189 mpol_put(new);
1190 return err;
1191}
1192
1193/*
1194 * User space interface with variable sized bitmaps for nodelists.
1195 */
1196
1197/* Copy a node mask from user space. */
1198static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1199 unsigned long maxnode)
1200{
1201 unsigned long k;
1202 unsigned long nlongs;
1203 unsigned long endmask;
1204
1205 --maxnode;
1206 nodes_clear(*nodes);
1207 if (maxnode == 0 || !nmask)
1208 return 0;
1209 if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1210 return -EINVAL;
1211
1212 nlongs = BITS_TO_LONGS(maxnode);
1213 if ((maxnode % BITS_PER_LONG) == 0)
1214 endmask = ~0UL;
1215 else
1216 endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1217
1218 /* When the user specified more nodes than supported just check
1219 if the non supported part is all zero. */
1220 if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1221 if (nlongs > PAGE_SIZE/sizeof(long))
1222 return -EINVAL;
1223 for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1224 unsigned long t;
1225 if (get_user(t, nmask + k))
1226 return -EFAULT;
1227 if (k == nlongs - 1) {
1228 if (t & endmask)
1229 return -EINVAL;
1230 } else if (t)
1231 return -EINVAL;
1232 }
1233 nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1234 endmask = ~0UL;
1235 }
1236
1237 if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1238 return -EFAULT;
1239 nodes_addr(*nodes)[nlongs-1] &= endmask;
1240 return 0;
1241}
1242
1243/* Copy a kernel node mask to user space */
1244static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1245 nodemask_t *nodes)
1246{
1247 unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1248 const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1249
1250 if (copy > nbytes) {
1251 if (copy > PAGE_SIZE)
1252 return -EINVAL;
1253 if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1254 return -EFAULT;
1255 copy = nbytes;
1256 }
1257 return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1258}
1259
1260SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1261 unsigned long, mode, unsigned long __user *, nmask,
1262 unsigned long, maxnode, unsigned, flags)
1263{
1264 nodemask_t nodes;
1265 int err;
1266 unsigned short mode_flags;
1267
1268 mode_flags = mode & MPOL_MODE_FLAGS;
1269 mode &= ~MPOL_MODE_FLAGS;
1270 if (mode >= MPOL_MAX)
1271 return -EINVAL;
1272 if ((mode_flags & MPOL_F_STATIC_NODES) &&
1273 (mode_flags & MPOL_F_RELATIVE_NODES))
1274 return -EINVAL;
1275 err = get_nodes(&nodes, nmask, maxnode);
1276 if (err)
1277 return err;
1278 return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1279}
1280
1281/* Set the process memory policy */
1282SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1283 unsigned long, maxnode)
1284{
1285 int err;
1286 nodemask_t nodes;
1287 unsigned short flags;
1288
1289 flags = mode & MPOL_MODE_FLAGS;
1290 mode &= ~MPOL_MODE_FLAGS;
1291 if ((unsigned int)mode >= MPOL_MAX)
1292 return -EINVAL;
1293 if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1294 return -EINVAL;
1295 err = get_nodes(&nodes, nmask, maxnode);
1296 if (err)
1297 return err;
1298 return do_set_mempolicy(mode, flags, &nodes);
1299}
1300
1301SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1302 const unsigned long __user *, old_nodes,
1303 const unsigned long __user *, new_nodes)
1304{
1305 const struct cred *cred = current_cred(), *tcred;
1306 struct mm_struct *mm = NULL;
1307 struct task_struct *task;
1308 nodemask_t task_nodes;
1309 int err;
1310 nodemask_t *old;
1311 nodemask_t *new;
1312 NODEMASK_SCRATCH(scratch);
1313
1314 if (!scratch)
1315 return -ENOMEM;
1316
1317 old = &scratch->mask1;
1318 new = &scratch->mask2;
1319
1320 err = get_nodes(old, old_nodes, maxnode);
1321 if (err)
1322 goto out;
1323
1324 err = get_nodes(new, new_nodes, maxnode);
1325 if (err)
1326 goto out;
1327
1328 /* Find the mm_struct */
1329 rcu_read_lock();
1330 task = pid ? find_task_by_vpid(pid) : current;
1331 if (!task) {
1332 rcu_read_unlock();
1333 err = -ESRCH;
1334 goto out;
1335 }
1336 get_task_struct(task);
1337
1338 err = -EINVAL;
1339
1340 /*
1341 * Check if this process has the right to modify the specified
1342 * process. The right exists if the process has administrative
1343 * capabilities, superuser privileges or the same
1344 * userid as the target process.
1345 */
1346 tcred = __task_cred(task);
1347 if (cred->euid != tcred->suid && cred->euid != tcred->uid &&
1348 cred->uid != tcred->suid && cred->uid != tcred->uid &&
1349 !capable(CAP_SYS_NICE)) {
1350 rcu_read_unlock();
1351 err = -EPERM;
1352 goto out_put;
1353 }
1354 rcu_read_unlock();
1355
1356 task_nodes = cpuset_mems_allowed(task);
1357 /* Is the user allowed to access the target nodes? */
1358 if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1359 err = -EPERM;
1360 goto out_put;
1361 }
1362
1363 if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1364 err = -EINVAL;
1365 goto out_put;
1366 }
1367
1368 err = security_task_movememory(task);
1369 if (err)
1370 goto out_put;
1371
1372 mm = get_task_mm(task);
1373 put_task_struct(task);
1374
1375 if (!mm) {
1376 err = -EINVAL;
1377 goto out;
1378 }
1379
1380 err = do_migrate_pages(mm, old, new,
1381 capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1382
1383 mmput(mm);
1384out:
1385 NODEMASK_SCRATCH_FREE(scratch);
1386
1387 return err;
1388
1389out_put:
1390 put_task_struct(task);
1391 goto out;
1392
1393}
1394
1395
1396/* Retrieve NUMA policy */
1397SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1398 unsigned long __user *, nmask, unsigned long, maxnode,
1399 unsigned long, addr, unsigned long, flags)
1400{
1401 int err;
1402 int uninitialized_var(pval);
1403 nodemask_t nodes;
1404
1405 if (nmask != NULL && maxnode < MAX_NUMNODES)
1406 return -EINVAL;
1407
1408 err = do_get_mempolicy(&pval, &nodes, addr, flags);
1409
1410 if (err)
1411 return err;
1412
1413 if (policy && put_user(pval, policy))
1414 return -EFAULT;
1415
1416 if (nmask)
1417 err = copy_nodes_to_user(nmask, maxnode, &nodes);
1418
1419 return err;
1420}
1421
1422#ifdef CONFIG_COMPAT
1423
1424asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1425 compat_ulong_t __user *nmask,
1426 compat_ulong_t maxnode,
1427 compat_ulong_t addr, compat_ulong_t flags)
1428{
1429 long err;
1430 unsigned long __user *nm = NULL;
1431 unsigned long nr_bits, alloc_size;
1432 DECLARE_BITMAP(bm, MAX_NUMNODES);
1433
1434 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1435 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1436
1437 if (nmask)
1438 nm = compat_alloc_user_space(alloc_size);
1439
1440 err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1441
1442 if (!err && nmask) {
1443 unsigned long copy_size;
1444 copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1445 err = copy_from_user(bm, nm, copy_size);
1446 /* ensure entire bitmap is zeroed */
1447 err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1448 err |= compat_put_bitmap(nmask, bm, nr_bits);
1449 }
1450
1451 return err;
1452}
1453
1454asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1455 compat_ulong_t maxnode)
1456{
1457 long err = 0;
1458 unsigned long __user *nm = NULL;
1459 unsigned long nr_bits, alloc_size;
1460 DECLARE_BITMAP(bm, MAX_NUMNODES);
1461
1462 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1463 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1464
1465 if (nmask) {
1466 err = compat_get_bitmap(bm, nmask, nr_bits);
1467 nm = compat_alloc_user_space(alloc_size);
1468 err |= copy_to_user(nm, bm, alloc_size);
1469 }
1470
1471 if (err)
1472 return -EFAULT;
1473
1474 return sys_set_mempolicy(mode, nm, nr_bits+1);
1475}
1476
1477asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1478 compat_ulong_t mode, compat_ulong_t __user *nmask,
1479 compat_ulong_t maxnode, compat_ulong_t flags)
1480{
1481 long err = 0;
1482 unsigned long __user *nm = NULL;
1483 unsigned long nr_bits, alloc_size;
1484 nodemask_t bm;
1485
1486 nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1487 alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1488
1489 if (nmask) {
1490 err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1491 nm = compat_alloc_user_space(alloc_size);
1492 err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1493 }
1494
1495 if (err)
1496 return -EFAULT;
1497
1498 return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1499}
1500
1501#endif
1502
1503/*
1504 * get_vma_policy(@task, @vma, @addr)
1505 * @task - task for fallback if vma policy == default
1506 * @vma - virtual memory area whose policy is sought
1507 * @addr - address in @vma for shared policy lookup
1508 *
1509 * Returns effective policy for a VMA at specified address.
1510 * Falls back to @task or system default policy, as necessary.
1511 * Current or other task's task mempolicy and non-shared vma policies
1512 * are protected by the task's mmap_sem, which must be held for read by
1513 * the caller.
1514 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1515 * count--added by the get_policy() vm_op, as appropriate--to protect against
1516 * freeing by another task. It is the caller's responsibility to free the
1517 * extra reference for shared policies.
1518 */
1519struct mempolicy *get_vma_policy(struct task_struct *task,
1520 struct vm_area_struct *vma, unsigned long addr)
1521{
1522 struct mempolicy *pol = task->mempolicy;
1523
1524 if (vma) {
1525 if (vma->vm_ops && vma->vm_ops->get_policy) {
1526 struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1527 addr);
1528 if (vpol)
1529 pol = vpol;
1530 } else if (vma->vm_policy) {
1531 pol = vma->vm_policy;
1532
1533 /*
1534 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1535 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1536 * count on these policies which will be dropped by
1537 * mpol_cond_put() later
1538 */
1539 if (mpol_needs_cond_ref(pol))
1540 mpol_get(pol);
1541 }
1542 }
1543 if (!pol)
1544 pol = &default_policy;
1545 return pol;
1546}
1547
1548/*
1549 * Return a nodemask representing a mempolicy for filtering nodes for
1550 * page allocation
1551 */
1552static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1553{
1554 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1555 if (unlikely(policy->mode == MPOL_BIND) &&
1556 gfp_zone(gfp) >= policy_zone &&
1557 cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1558 return &policy->v.nodes;
1559
1560 return NULL;
1561}
1562
1563/* Return a zonelist indicated by gfp for node representing a mempolicy */
1564static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1565 int nd)
1566{
1567 switch (policy->mode) {
1568 case MPOL_PREFERRED:
1569 if (!(policy->flags & MPOL_F_LOCAL))
1570 nd = policy->v.preferred_node;
1571 break;
1572 case MPOL_BIND:
1573 /*
1574 * Normally, MPOL_BIND allocations are node-local within the
1575 * allowed nodemask. However, if __GFP_THISNODE is set and the
1576 * current node isn't part of the mask, we use the zonelist for
1577 * the first node in the mask instead.
1578 */
1579 if (unlikely(gfp & __GFP_THISNODE) &&
1580 unlikely(!node_isset(nd, policy->v.nodes)))
1581 nd = first_node(policy->v.nodes);
1582 break;
1583 default:
1584 BUG();
1585 }
1586 return node_zonelist(nd, gfp);
1587}
1588
1589/* Do dynamic interleaving for a process */
1590static unsigned interleave_nodes(struct mempolicy *policy)
1591{
1592 unsigned nid, next;
1593 struct task_struct *me = current;
1594
1595 nid = me->il_next;
1596 next = next_node(nid, policy->v.nodes);
1597 if (next >= MAX_NUMNODES)
1598 next = first_node(policy->v.nodes);
1599 if (next < MAX_NUMNODES)
1600 me->il_next = next;
1601 return nid;
1602}
1603
1604/*
1605 * Depending on the memory policy provide a node from which to allocate the
1606 * next slab entry.
1607 * @policy must be protected by freeing by the caller. If @policy is
1608 * the current task's mempolicy, this protection is implicit, as only the
1609 * task can change it's policy. The system default policy requires no
1610 * such protection.
1611 */
1612unsigned slab_node(void)
1613{
1614 struct mempolicy *policy;
1615
1616 if (in_interrupt())
1617 return numa_node_id();
1618
1619 policy = current->mempolicy;
1620 if (!policy || policy->flags & MPOL_F_LOCAL)
1621 return numa_node_id();
1622
1623 switch (policy->mode) {
1624 case MPOL_PREFERRED:
1625 /*
1626 * handled MPOL_F_LOCAL above
1627 */
1628 return policy->v.preferred_node;
1629
1630 case MPOL_INTERLEAVE:
1631 return interleave_nodes(policy);
1632
1633 case MPOL_BIND: {
1634 /*
1635 * Follow bind policy behavior and start allocation at the
1636 * first node.
1637 */
1638 struct zonelist *zonelist;
1639 struct zone *zone;
1640 enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1641 zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1642 (void)first_zones_zonelist(zonelist, highest_zoneidx,
1643 &policy->v.nodes,
1644 &zone);
1645 return zone ? zone->node : numa_node_id();
1646 }
1647
1648 default:
1649 BUG();
1650 }
1651}
1652
1653/* Do static interleaving for a VMA with known offset. */
1654static unsigned offset_il_node(struct mempolicy *pol,
1655 struct vm_area_struct *vma, unsigned long off)
1656{
1657 unsigned nnodes = nodes_weight(pol->v.nodes);
1658 unsigned target;
1659 int c;
1660 int nid = -1;
1661
1662 if (!nnodes)
1663 return numa_node_id();
1664 target = (unsigned int)off % nnodes;
1665 c = 0;
1666 do {
1667 nid = next_node(nid, pol->v.nodes);
1668 c++;
1669 } while (c <= target);
1670 return nid;
1671}
1672
1673/* Determine a node number for interleave */
1674static inline unsigned interleave_nid(struct mempolicy *pol,
1675 struct vm_area_struct *vma, unsigned long addr, int shift)
1676{
1677 if (vma) {
1678 unsigned long off;
1679
1680 /*
1681 * for small pages, there is no difference between
1682 * shift and PAGE_SHIFT, so the bit-shift is safe.
1683 * for huge pages, since vm_pgoff is in units of small
1684 * pages, we need to shift off the always 0 bits to get
1685 * a useful offset.
1686 */
1687 BUG_ON(shift < PAGE_SHIFT);
1688 off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1689 off += (addr - vma->vm_start) >> shift;
1690 return offset_il_node(pol, vma, off);
1691 } else
1692 return interleave_nodes(pol);
1693}
1694
1695/*
1696 * Return the bit number of a random bit set in the nodemask.
1697 * (returns -1 if nodemask is empty)
1698 */
1699int node_random(const nodemask_t *maskp)
1700{
1701 int w, bit = -1;
1702
1703 w = nodes_weight(*maskp);
1704 if (w)
1705 bit = bitmap_ord_to_pos(maskp->bits,
1706 get_random_int() % w, MAX_NUMNODES);
1707 return bit;
1708}
1709
1710#ifdef CONFIG_HUGETLBFS
1711/*
1712 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1713 * @vma = virtual memory area whose policy is sought
1714 * @addr = address in @vma for shared policy lookup and interleave policy
1715 * @gfp_flags = for requested zone
1716 * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1717 * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1718 *
1719 * Returns a zonelist suitable for a huge page allocation and a pointer
1720 * to the struct mempolicy for conditional unref after allocation.
1721 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1722 * @nodemask for filtering the zonelist.
1723 *
1724 * Must be protected by get_mems_allowed()
1725 */
1726struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1727 gfp_t gfp_flags, struct mempolicy **mpol,
1728 nodemask_t **nodemask)
1729{
1730 struct zonelist *zl;
1731
1732 *mpol = get_vma_policy(current, vma, addr);
1733 *nodemask = NULL; /* assume !MPOL_BIND */
1734
1735 if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1736 zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1737 huge_page_shift(hstate_vma(vma))), gfp_flags);
1738 } else {
1739 zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1740 if ((*mpol)->mode == MPOL_BIND)
1741 *nodemask = &(*mpol)->v.nodes;
1742 }
1743 return zl;
1744}
1745
1746/*
1747 * init_nodemask_of_mempolicy
1748 *
1749 * If the current task's mempolicy is "default" [NULL], return 'false'
1750 * to indicate default policy. Otherwise, extract the policy nodemask
1751 * for 'bind' or 'interleave' policy into the argument nodemask, or
1752 * initialize the argument nodemask to contain the single node for
1753 * 'preferred' or 'local' policy and return 'true' to indicate presence
1754 * of non-default mempolicy.
1755 *
1756 * We don't bother with reference counting the mempolicy [mpol_get/put]
1757 * because the current task is examining it's own mempolicy and a task's
1758 * mempolicy is only ever changed by the task itself.
1759 *
1760 * N.B., it is the caller's responsibility to free a returned nodemask.
1761 */
1762bool init_nodemask_of_mempolicy(nodemask_t *mask)
1763{
1764 struct mempolicy *mempolicy;
1765 int nid;
1766
1767 if (!(mask && current->mempolicy))
1768 return false;
1769
1770 task_lock(current);
1771 mempolicy = current->mempolicy;
1772 switch (mempolicy->mode) {
1773 case MPOL_PREFERRED:
1774 if (mempolicy->flags & MPOL_F_LOCAL)
1775 nid = numa_node_id();
1776 else
1777 nid = mempolicy->v.preferred_node;
1778 init_nodemask_of_node(mask, nid);
1779 break;
1780
1781 case MPOL_BIND:
1782 /* Fall through */
1783 case MPOL_INTERLEAVE:
1784 *mask = mempolicy->v.nodes;
1785 break;
1786
1787 default:
1788 BUG();
1789 }
1790 task_unlock(current);
1791
1792 return true;
1793}
1794#endif
1795
1796/*
1797 * mempolicy_nodemask_intersects
1798 *
1799 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1800 * policy. Otherwise, check for intersection between mask and the policy
1801 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1802 * policy, always return true since it may allocate elsewhere on fallback.
1803 *
1804 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1805 */
1806bool mempolicy_nodemask_intersects(struct task_struct *tsk,
1807 const nodemask_t *mask)
1808{
1809 struct mempolicy *mempolicy;
1810 bool ret = true;
1811
1812 if (!mask)
1813 return ret;
1814 task_lock(tsk);
1815 mempolicy = tsk->mempolicy;
1816 if (!mempolicy)
1817 goto out;
1818
1819 switch (mempolicy->mode) {
1820 case MPOL_PREFERRED:
1821 /*
1822 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1823 * allocate from, they may fallback to other nodes when oom.
1824 * Thus, it's possible for tsk to have allocated memory from
1825 * nodes in mask.
1826 */
1827 break;
1828 case MPOL_BIND:
1829 case MPOL_INTERLEAVE:
1830 ret = nodes_intersects(mempolicy->v.nodes, *mask);
1831 break;
1832 default:
1833 BUG();
1834 }
1835out:
1836 task_unlock(tsk);
1837 return ret;
1838}
1839
1840/* Allocate a page in interleaved policy.
1841 Own path because it needs to do special accounting. */
1842static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1843 unsigned nid)
1844{
1845 struct zonelist *zl;
1846 struct page *page;
1847
1848 zl = node_zonelist(nid, gfp);
1849 page = __alloc_pages(gfp, order, zl);
1850 if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1851 inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1852 return page;
1853}
1854
1855/**
1856 * alloc_pages_vma - Allocate a page for a VMA.
1857 *
1858 * @gfp:
1859 * %GFP_USER user allocation.
1860 * %GFP_KERNEL kernel allocations,
1861 * %GFP_HIGHMEM highmem/user allocations,
1862 * %GFP_FS allocation should not call back into a file system.
1863 * %GFP_ATOMIC don't sleep.
1864 *
1865 * @order:Order of the GFP allocation.
1866 * @vma: Pointer to VMA or NULL if not available.
1867 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1868 *
1869 * This function allocates a page from the kernel page pool and applies
1870 * a NUMA policy associated with the VMA or the current process.
1871 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1872 * mm_struct of the VMA to prevent it from going away. Should be used for
1873 * all allocations for pages that will be mapped into
1874 * user space. Returns NULL when no page can be allocated.
1875 *
1876 * Should be called with the mm_sem of the vma hold.
1877 */
1878struct page *
1879alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1880 unsigned long addr, int node)
1881{
1882 struct mempolicy *pol;
1883 struct zonelist *zl;
1884 struct page *page;
1885 unsigned int cpuset_mems_cookie;
1886
1887retry_cpuset:
1888 pol = get_vma_policy(current, vma, addr);
1889 cpuset_mems_cookie = get_mems_allowed();
1890
1891 if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1892 unsigned nid;
1893
1894 nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1895 mpol_cond_put(pol);
1896 page = alloc_page_interleave(gfp, order, nid);
1897 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1898 goto retry_cpuset;
1899
1900 return page;
1901 }
1902 zl = policy_zonelist(gfp, pol, node);
1903 if (unlikely(mpol_needs_cond_ref(pol))) {
1904 /*
1905 * slow path: ref counted shared policy
1906 */
1907 struct page *page = __alloc_pages_nodemask(gfp, order,
1908 zl, policy_nodemask(gfp, pol));
1909 __mpol_put(pol);
1910 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1911 goto retry_cpuset;
1912 return page;
1913 }
1914 /*
1915 * fast path: default or task policy
1916 */
1917 page = __alloc_pages_nodemask(gfp, order, zl,
1918 policy_nodemask(gfp, pol));
1919 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1920 goto retry_cpuset;
1921 return page;
1922}
1923
1924/**
1925 * alloc_pages_current - Allocate pages.
1926 *
1927 * @gfp:
1928 * %GFP_USER user allocation,
1929 * %GFP_KERNEL kernel allocation,
1930 * %GFP_HIGHMEM highmem allocation,
1931 * %GFP_FS don't call back into a file system.
1932 * %GFP_ATOMIC don't sleep.
1933 * @order: Power of two of allocation size in pages. 0 is a single page.
1934 *
1935 * Allocate a page from the kernel page pool. When not in
1936 * interrupt context and apply the current process NUMA policy.
1937 * Returns NULL when no page can be allocated.
1938 *
1939 * Don't call cpuset_update_task_memory_state() unless
1940 * 1) it's ok to take cpuset_sem (can WAIT), and
1941 * 2) allocating for current task (not interrupt).
1942 */
1943struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1944{
1945 struct mempolicy *pol = current->mempolicy;
1946 struct page *page;
1947 unsigned int cpuset_mems_cookie;
1948
1949 if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1950 pol = &default_policy;
1951
1952retry_cpuset:
1953 cpuset_mems_cookie = get_mems_allowed();
1954
1955 /*
1956 * No reference counting needed for current->mempolicy
1957 * nor system default_policy
1958 */
1959 if (pol->mode == MPOL_INTERLEAVE)
1960 page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1961 else
1962 page = __alloc_pages_nodemask(gfp, order,
1963 policy_zonelist(gfp, pol, numa_node_id()),
1964 policy_nodemask(gfp, pol));
1965
1966 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1967 goto retry_cpuset;
1968
1969 return page;
1970}
1971EXPORT_SYMBOL(alloc_pages_current);
1972
1973/*
1974 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
1975 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
1976 * with the mems_allowed returned by cpuset_mems_allowed(). This
1977 * keeps mempolicies cpuset relative after its cpuset moves. See
1978 * further kernel/cpuset.c update_nodemask().
1979 *
1980 * current's mempolicy may be rebinded by the other task(the task that changes
1981 * cpuset's mems), so we needn't do rebind work for current task.
1982 */
1983
1984/* Slow path of a mempolicy duplicate */
1985struct mempolicy *__mpol_dup(struct mempolicy *old)
1986{
1987 struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
1988
1989 if (!new)
1990 return ERR_PTR(-ENOMEM);
1991
1992 /* task's mempolicy is protected by alloc_lock */
1993 if (old == current->mempolicy) {
1994 task_lock(current);
1995 *new = *old;
1996 task_unlock(current);
1997 } else
1998 *new = *old;
1999
2000 if (current_cpuset_is_being_rebound()) {
2001 nodemask_t mems = cpuset_mems_allowed(current);
2002 if (new->flags & MPOL_F_REBINDING)
2003 mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2004 else
2005 mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2006 }
2007 atomic_set(&new->refcnt, 1);
2008 return new;
2009}
2010
2011/* Slow path of a mempolicy comparison */
2012bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2013{
2014 if (!a || !b)
2015 return false;
2016 if (a->mode != b->mode)
2017 return false;
2018 if (a->flags != b->flags)
2019 return false;
2020 if (mpol_store_user_nodemask(a))
2021 if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2022 return false;
2023
2024 switch (a->mode) {
2025 case MPOL_BIND:
2026 /* Fall through */
2027 case MPOL_INTERLEAVE:
2028 return !!nodes_equal(a->v.nodes, b->v.nodes);
2029 case MPOL_PREFERRED:
2030 return a->v.preferred_node == b->v.preferred_node;
2031 default:
2032 BUG();
2033 return false;
2034 }
2035}
2036
2037/*
2038 * Shared memory backing store policy support.
2039 *
2040 * Remember policies even when nobody has shared memory mapped.
2041 * The policies are kept in Red-Black tree linked from the inode.
2042 * They are protected by the sp->lock spinlock, which should be held
2043 * for any accesses to the tree.
2044 */
2045
2046/* lookup first element intersecting start-end */
2047/* Caller holds sp->mutex */
2048static struct sp_node *
2049sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2050{
2051 struct rb_node *n = sp->root.rb_node;
2052
2053 while (n) {
2054 struct sp_node *p = rb_entry(n, struct sp_node, nd);
2055
2056 if (start >= p->end)
2057 n = n->rb_right;
2058 else if (end <= p->start)
2059 n = n->rb_left;
2060 else
2061 break;
2062 }
2063 if (!n)
2064 return NULL;
2065 for (;;) {
2066 struct sp_node *w = NULL;
2067 struct rb_node *prev = rb_prev(n);
2068 if (!prev)
2069 break;
2070 w = rb_entry(prev, struct sp_node, nd);
2071 if (w->end <= start)
2072 break;
2073 n = prev;
2074 }
2075 return rb_entry(n, struct sp_node, nd);
2076}
2077
2078/* Insert a new shared policy into the list. */
2079/* Caller holds sp->lock */
2080static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2081{
2082 struct rb_node **p = &sp->root.rb_node;
2083 struct rb_node *parent = NULL;
2084 struct sp_node *nd;
2085
2086 while (*p) {
2087 parent = *p;
2088 nd = rb_entry(parent, struct sp_node, nd);
2089 if (new->start < nd->start)
2090 p = &(*p)->rb_left;
2091 else if (new->end > nd->end)
2092 p = &(*p)->rb_right;
2093 else
2094 BUG();
2095 }
2096 rb_link_node(&new->nd, parent, p);
2097 rb_insert_color(&new->nd, &sp->root);
2098 pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2099 new->policy ? new->policy->mode : 0);
2100}
2101
2102/* Find shared policy intersecting idx */
2103struct mempolicy *
2104mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2105{
2106 struct mempolicy *pol = NULL;
2107 struct sp_node *sn;
2108
2109 if (!sp->root.rb_node)
2110 return NULL;
2111 mutex_lock(&sp->mutex);
2112 sn = sp_lookup(sp, idx, idx+1);
2113 if (sn) {
2114 mpol_get(sn->policy);
2115 pol = sn->policy;
2116 }
2117 mutex_unlock(&sp->mutex);
2118 return pol;
2119}
2120
2121static void sp_free(struct sp_node *n)
2122{
2123 mpol_put(n->policy);
2124 kmem_cache_free(sn_cache, n);
2125}
2126
2127static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2128{
2129 pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2130 rb_erase(&n->nd, &sp->root);
2131 sp_free(n);
2132}
2133
2134static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2135 struct mempolicy *pol)
2136{
2137 struct sp_node *n;
2138 struct mempolicy *newpol;
2139
2140 n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2141 if (!n)
2142 return NULL;
2143
2144 newpol = mpol_dup(pol);
2145 if (IS_ERR(newpol)) {
2146 kmem_cache_free(sn_cache, n);
2147 return NULL;
2148 }
2149 newpol->flags |= MPOL_F_SHARED;
2150
2151 n->start = start;
2152 n->end = end;
2153 n->policy = newpol;
2154
2155 return n;
2156}
2157
2158/* Replace a policy range. */
2159static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2160 unsigned long end, struct sp_node *new)
2161{
2162 struct sp_node *n;
2163 int ret = 0;
2164
2165 mutex_lock(&sp->mutex);
2166 n = sp_lookup(sp, start, end);
2167 /* Take care of old policies in the same range. */
2168 while (n && n->start < end) {
2169 struct rb_node *next = rb_next(&n->nd);
2170 if (n->start >= start) {
2171 if (n->end <= end)
2172 sp_delete(sp, n);
2173 else
2174 n->start = end;
2175 } else {
2176 /* Old policy spanning whole new range. */
2177 if (n->end > end) {
2178 struct sp_node *new2;
2179 new2 = sp_alloc(end, n->end, n->policy);
2180 if (!new2) {
2181 ret = -ENOMEM;
2182 goto out;
2183 }
2184 n->end = start;
2185 sp_insert(sp, new2);
2186 break;
2187 } else
2188 n->end = start;
2189 }
2190 if (!next)
2191 break;
2192 n = rb_entry(next, struct sp_node, nd);
2193 }
2194 if (new)
2195 sp_insert(sp, new);
2196out:
2197 mutex_unlock(&sp->mutex);
2198 return ret;
2199}
2200
2201/**
2202 * mpol_shared_policy_init - initialize shared policy for inode
2203 * @sp: pointer to inode shared policy
2204 * @mpol: struct mempolicy to install
2205 *
2206 * Install non-NULL @mpol in inode's shared policy rb-tree.
2207 * On entry, the current task has a reference on a non-NULL @mpol.
2208 * This must be released on exit.
2209 * This is called at get_inode() calls and we can use GFP_KERNEL.
2210 */
2211void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2212{
2213 int ret;
2214
2215 sp->root = RB_ROOT; /* empty tree == default mempolicy */
2216 mutex_init(&sp->mutex);
2217
2218 if (mpol) {
2219 struct vm_area_struct pvma;
2220 struct mempolicy *new;
2221 NODEMASK_SCRATCH(scratch);
2222
2223 if (!scratch)
2224 goto put_mpol;
2225 /* contextualize the tmpfs mount point mempolicy */
2226 new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2227 if (IS_ERR(new))
2228 goto free_scratch; /* no valid nodemask intersection */
2229
2230 task_lock(current);
2231 ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2232 task_unlock(current);
2233 if (ret)
2234 goto put_new;
2235
2236 /* Create pseudo-vma that contains just the policy */
2237 memset(&pvma, 0, sizeof(struct vm_area_struct));
2238 pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2239 mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2240
2241put_new:
2242 mpol_put(new); /* drop initial ref */
2243free_scratch:
2244 NODEMASK_SCRATCH_FREE(scratch);
2245put_mpol:
2246 mpol_put(mpol); /* drop our incoming ref on sb mpol */
2247 }
2248}
2249
2250int mpol_set_shared_policy(struct shared_policy *info,
2251 struct vm_area_struct *vma, struct mempolicy *npol)
2252{
2253 int err;
2254 struct sp_node *new = NULL;
2255 unsigned long sz = vma_pages(vma);
2256
2257 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2258 vma->vm_pgoff,
2259 sz, npol ? npol->mode : -1,
2260 npol ? npol->flags : -1,
2261 npol ? nodes_addr(npol->v.nodes)[0] : -1);
2262
2263 if (npol) {
2264 new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2265 if (!new)
2266 return -ENOMEM;
2267 }
2268 err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2269 if (err && new)
2270 sp_free(new);
2271 return err;
2272}
2273
2274/* Free a backing policy store on inode delete. */
2275void mpol_free_shared_policy(struct shared_policy *p)
2276{
2277 struct sp_node *n;
2278 struct rb_node *next;
2279
2280 if (!p->root.rb_node)
2281 return;
2282 mutex_lock(&p->mutex);
2283 next = rb_first(&p->root);
2284 while (next) {
2285 n = rb_entry(next, struct sp_node, nd);
2286 next = rb_next(&n->nd);
2287 sp_delete(p, n);
2288 }
2289 mutex_unlock(&p->mutex);
2290}
2291
2292/* assumes fs == KERNEL_DS */
2293void __init numa_policy_init(void)
2294{
2295 nodemask_t interleave_nodes;
2296 unsigned long largest = 0;
2297 int nid, prefer = 0;
2298
2299 policy_cache = kmem_cache_create("numa_policy",
2300 sizeof(struct mempolicy),
2301 0, SLAB_PANIC, NULL);
2302
2303 sn_cache = kmem_cache_create("shared_policy_node",
2304 sizeof(struct sp_node),
2305 0, SLAB_PANIC, NULL);
2306
2307 /*
2308 * Set interleaving policy for system init. Interleaving is only
2309 * enabled across suitably sized nodes (default is >= 16MB), or
2310 * fall back to the largest node if they're all smaller.
2311 */
2312 nodes_clear(interleave_nodes);
2313 for_each_node_state(nid, N_HIGH_MEMORY) {
2314 unsigned long total_pages = node_present_pages(nid);
2315
2316 /* Preserve the largest node */
2317 if (largest < total_pages) {
2318 largest = total_pages;
2319 prefer = nid;
2320 }
2321
2322 /* Interleave this node? */
2323 if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2324 node_set(nid, interleave_nodes);
2325 }
2326
2327 /* All too small, use the largest */
2328 if (unlikely(nodes_empty(interleave_nodes)))
2329 node_set(prefer, interleave_nodes);
2330
2331 if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2332 printk("numa_policy_init: interleaving failed\n");
2333}
2334
2335/* Reset policy of current process to default */
2336void numa_default_policy(void)
2337{
2338 do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2339}
2340
2341/*
2342 * Parse and format mempolicy from/to strings
2343 */
2344
2345/*
2346 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2347 */
2348#define MPOL_LOCAL MPOL_MAX
2349static const char * const policy_modes[] =
2350{
2351 [MPOL_DEFAULT] = "default",
2352 [MPOL_PREFERRED] = "prefer",
2353 [MPOL_BIND] = "bind",
2354 [MPOL_INTERLEAVE] = "interleave",
2355 [MPOL_LOCAL] = "local"
2356};
2357
2358
2359#ifdef CONFIG_TMPFS
2360/**
2361 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2362 * @str: string containing mempolicy to parse
2363 * @mpol: pointer to struct mempolicy pointer, returned on success.
2364 * @unused: redundant argument, to be removed later.
2365 *
2366 * Format of input:
2367 * <mode>[=<flags>][:<nodelist>]
2368 *
2369 * On success, returns 0, else 1
2370 */
2371int mpol_parse_str(char *str, struct mempolicy **mpol, int unused)
2372{
2373 struct mempolicy *new = NULL;
2374 unsigned short mode;
2375 unsigned short mode_flags;
2376 nodemask_t nodes;
2377 char *nodelist = strchr(str, ':');
2378 char *flags = strchr(str, '=');
2379 int err = 1;
2380
2381 if (nodelist) {
2382 /* NUL-terminate mode or flags string */
2383 *nodelist++ = '\0';
2384 if (nodelist_parse(nodelist, nodes))
2385 goto out;
2386 if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2387 goto out;
2388 } else
2389 nodes_clear(nodes);
2390
2391 if (flags)
2392 *flags++ = '\0'; /* terminate mode string */
2393
2394 for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2395 if (!strcmp(str, policy_modes[mode])) {
2396 break;
2397 }
2398 }
2399 if (mode > MPOL_LOCAL)
2400 goto out;
2401
2402 switch (mode) {
2403 case MPOL_PREFERRED:
2404 /*
2405 * Insist on a nodelist of one node only
2406 */
2407 if (nodelist) {
2408 char *rest = nodelist;
2409 while (isdigit(*rest))
2410 rest++;
2411 if (*rest)
2412 goto out;
2413 }
2414 break;
2415 case MPOL_INTERLEAVE:
2416 /*
2417 * Default to online nodes with memory if no nodelist
2418 */
2419 if (!nodelist)
2420 nodes = node_states[N_HIGH_MEMORY];
2421 break;
2422 case MPOL_LOCAL:
2423 /*
2424 * Don't allow a nodelist; mpol_new() checks flags
2425 */
2426 if (nodelist)
2427 goto out;
2428 mode = MPOL_PREFERRED;
2429 break;
2430 case MPOL_DEFAULT:
2431 /*
2432 * Insist on a empty nodelist
2433 */
2434 if (!nodelist)
2435 err = 0;
2436 goto out;
2437 case MPOL_BIND:
2438 /*
2439 * Insist on a nodelist
2440 */
2441 if (!nodelist)
2442 goto out;
2443 }
2444
2445 mode_flags = 0;
2446 if (flags) {
2447 /*
2448 * Currently, we only support two mutually exclusive
2449 * mode flags.
2450 */
2451 if (!strcmp(flags, "static"))
2452 mode_flags |= MPOL_F_STATIC_NODES;
2453 else if (!strcmp(flags, "relative"))
2454 mode_flags |= MPOL_F_RELATIVE_NODES;
2455 else
2456 goto out;
2457 }
2458
2459 new = mpol_new(mode, mode_flags, &nodes);
2460 if (IS_ERR(new))
2461 goto out;
2462
2463 /*
2464 * Save nodes for mpol_to_str() to show the tmpfs mount options
2465 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2466 */
2467 if (mode != MPOL_PREFERRED)
2468 new->v.nodes = nodes;
2469 else if (nodelist)
2470 new->v.preferred_node = first_node(nodes);
2471 else
2472 new->flags |= MPOL_F_LOCAL;
2473
2474 /*
2475 * Save nodes for contextualization: this will be used to "clone"
2476 * the mempolicy in a specific context [cpuset] at a later time.
2477 */
2478 new->w.user_nodemask = nodes;
2479
2480 err = 0;
2481
2482out:
2483 /* Restore string for error message */
2484 if (nodelist)
2485 *--nodelist = ':';
2486 if (flags)
2487 *--flags = '=';
2488 if (!err)
2489 *mpol = new;
2490 return err;
2491}
2492#endif /* CONFIG_TMPFS */
2493
2494/**
2495 * mpol_to_str - format a mempolicy structure for printing
2496 * @buffer: to contain formatted mempolicy string
2497 * @maxlen: length of @buffer
2498 * @pol: pointer to mempolicy to be formatted
2499 * @unused: redundant argument, to be removed later.
2500 *
2501 * Convert a mempolicy into a string.
2502 * Returns the number of characters in buffer (if positive)
2503 * or an error (negative)
2504 */
2505int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int unused)
2506{
2507 char *p = buffer;
2508 int l;
2509 nodemask_t nodes;
2510 unsigned short mode;
2511 unsigned short flags = pol ? pol->flags : 0;
2512
2513 /*
2514 * Sanity check: room for longest mode, flag and some nodes
2515 */
2516 VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2517
2518 if (!pol || pol == &default_policy)
2519 mode = MPOL_DEFAULT;
2520 else
2521 mode = pol->mode;
2522
2523 switch (mode) {
2524 case MPOL_DEFAULT:
2525 nodes_clear(nodes);
2526 break;
2527
2528 case MPOL_PREFERRED:
2529 nodes_clear(nodes);
2530 if (flags & MPOL_F_LOCAL)
2531 mode = MPOL_LOCAL;
2532 else
2533 node_set(pol->v.preferred_node, nodes);
2534 break;
2535
2536 case MPOL_BIND:
2537 /* Fall through */
2538 case MPOL_INTERLEAVE:
2539 nodes = pol->v.nodes;
2540 break;
2541
2542 default:
2543 return -EINVAL;
2544 }
2545
2546 l = strlen(policy_modes[mode]);
2547 if (buffer + maxlen < p + l + 1)
2548 return -ENOSPC;
2549
2550 strcpy(p, policy_modes[mode]);
2551 p += l;
2552
2553 if (flags & MPOL_MODE_FLAGS) {
2554 if (buffer + maxlen < p + 2)
2555 return -ENOSPC;
2556 *p++ = '=';
2557
2558 /*
2559 * Currently, the only defined flags are mutually exclusive
2560 */
2561 if (flags & MPOL_F_STATIC_NODES)
2562 p += snprintf(p, buffer + maxlen - p, "static");
2563 else if (flags & MPOL_F_RELATIVE_NODES)
2564 p += snprintf(p, buffer + maxlen - p, "relative");
2565 }
2566
2567 if (!nodes_empty(nodes)) {
2568 if (buffer + maxlen < p + 2)
2569 return -ENOSPC;
2570 *p++ = ':';
2571 p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2572 }
2573 return p - buffer;
2574}