yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 1995-2022 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include <stdlib.h> |
| 12 | #include <openssl/objects.h> |
| 13 | #include <openssl/evp.h> |
| 14 | #include <openssl/hmac.h> |
| 15 | #include <openssl/ocsp.h> |
| 16 | #include <openssl/conf.h> |
| 17 | #include <openssl/x509v3.h> |
| 18 | #include <openssl/dh.h> |
| 19 | #include <openssl/bn.h> |
| 20 | #include "internal/nelem.h" |
| 21 | #include "ssl_local.h" |
| 22 | #include <openssl/ct.h> |
| 23 | |
| 24 | static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey); |
| 25 | static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu); |
| 26 | |
| 27 | SSL3_ENC_METHOD const TLSv1_enc_data = { |
| 28 | tls1_enc, |
| 29 | tls1_mac, |
| 30 | tls1_setup_key_block, |
| 31 | tls1_generate_master_secret, |
| 32 | tls1_change_cipher_state, |
| 33 | tls1_final_finish_mac, |
| 34 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, |
| 35 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, |
| 36 | tls1_alert_code, |
| 37 | tls1_export_keying_material, |
| 38 | 0, |
| 39 | ssl3_set_handshake_header, |
| 40 | tls_close_construct_packet, |
| 41 | ssl3_handshake_write |
| 42 | }; |
| 43 | |
| 44 | SSL3_ENC_METHOD const TLSv1_1_enc_data = { |
| 45 | tls1_enc, |
| 46 | tls1_mac, |
| 47 | tls1_setup_key_block, |
| 48 | tls1_generate_master_secret, |
| 49 | tls1_change_cipher_state, |
| 50 | tls1_final_finish_mac, |
| 51 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, |
| 52 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, |
| 53 | tls1_alert_code, |
| 54 | tls1_export_keying_material, |
| 55 | SSL_ENC_FLAG_EXPLICIT_IV, |
| 56 | ssl3_set_handshake_header, |
| 57 | tls_close_construct_packet, |
| 58 | ssl3_handshake_write |
| 59 | }; |
| 60 | |
| 61 | SSL3_ENC_METHOD const TLSv1_2_enc_data = { |
| 62 | tls1_enc, |
| 63 | tls1_mac, |
| 64 | tls1_setup_key_block, |
| 65 | tls1_generate_master_secret, |
| 66 | tls1_change_cipher_state, |
| 67 | tls1_final_finish_mac, |
| 68 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, |
| 69 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, |
| 70 | tls1_alert_code, |
| 71 | tls1_export_keying_material, |
| 72 | SSL_ENC_FLAG_EXPLICIT_IV | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF |
| 73 | | SSL_ENC_FLAG_TLS1_2_CIPHERS, |
| 74 | ssl3_set_handshake_header, |
| 75 | tls_close_construct_packet, |
| 76 | ssl3_handshake_write |
| 77 | }; |
| 78 | |
| 79 | SSL3_ENC_METHOD const TLSv1_3_enc_data = { |
| 80 | tls13_enc, |
| 81 | tls1_mac, |
| 82 | tls13_setup_key_block, |
| 83 | tls13_generate_master_secret, |
| 84 | tls13_change_cipher_state, |
| 85 | tls13_final_finish_mac, |
| 86 | TLS_MD_CLIENT_FINISH_CONST, TLS_MD_CLIENT_FINISH_CONST_SIZE, |
| 87 | TLS_MD_SERVER_FINISH_CONST, TLS_MD_SERVER_FINISH_CONST_SIZE, |
| 88 | tls13_alert_code, |
| 89 | tls13_export_keying_material, |
| 90 | SSL_ENC_FLAG_SIGALGS | SSL_ENC_FLAG_SHA256_PRF, |
| 91 | ssl3_set_handshake_header, |
| 92 | tls_close_construct_packet, |
| 93 | ssl3_handshake_write |
| 94 | }; |
| 95 | |
| 96 | long tls1_default_timeout(void) |
| 97 | { |
| 98 | /* |
| 99 | * 2 hours, the 24 hours mentioned in the TLSv1 spec is way too long for |
| 100 | * http, the cache would over fill |
| 101 | */ |
| 102 | return (60 * 60 * 2); |
| 103 | } |
| 104 | |
| 105 | int tls1_new(SSL *s) |
| 106 | { |
| 107 | if (!ssl3_new(s)) |
| 108 | return 0; |
| 109 | if (!s->method->ssl_clear(s)) |
| 110 | return 0; |
| 111 | |
| 112 | return 1; |
| 113 | } |
| 114 | |
| 115 | void tls1_free(SSL *s) |
| 116 | { |
| 117 | OPENSSL_free(s->ext.session_ticket); |
| 118 | ssl3_free(s); |
| 119 | } |
| 120 | |
| 121 | int tls1_clear(SSL *s) |
| 122 | { |
| 123 | if (!ssl3_clear(s)) |
| 124 | return 0; |
| 125 | |
| 126 | if (s->method->version == TLS_ANY_VERSION) |
| 127 | s->version = TLS_MAX_VERSION; |
| 128 | else |
| 129 | s->version = s->method->version; |
| 130 | |
| 131 | return 1; |
| 132 | } |
| 133 | |
| 134 | #ifndef OPENSSL_NO_EC |
| 135 | |
| 136 | /* |
| 137 | * Table of curve information. |
| 138 | * Do not delete entries or reorder this array! It is used as a lookup |
| 139 | * table: the index of each entry is one less than the TLS curve id. |
| 140 | */ |
| 141 | static const TLS_GROUP_INFO nid_list[] = { |
| 142 | {NID_sect163k1, 80, TLS_CURVE_CHAR2}, /* sect163k1 (1) */ |
| 143 | {NID_sect163r1, 80, TLS_CURVE_CHAR2}, /* sect163r1 (2) */ |
| 144 | {NID_sect163r2, 80, TLS_CURVE_CHAR2}, /* sect163r2 (3) */ |
| 145 | {NID_sect193r1, 80, TLS_CURVE_CHAR2}, /* sect193r1 (4) */ |
| 146 | {NID_sect193r2, 80, TLS_CURVE_CHAR2}, /* sect193r2 (5) */ |
| 147 | {NID_sect233k1, 112, TLS_CURVE_CHAR2}, /* sect233k1 (6) */ |
| 148 | {NID_sect233r1, 112, TLS_CURVE_CHAR2}, /* sect233r1 (7) */ |
| 149 | {NID_sect239k1, 112, TLS_CURVE_CHAR2}, /* sect239k1 (8) */ |
| 150 | {NID_sect283k1, 128, TLS_CURVE_CHAR2}, /* sect283k1 (9) */ |
| 151 | {NID_sect283r1, 128, TLS_CURVE_CHAR2}, /* sect283r1 (10) */ |
| 152 | {NID_sect409k1, 192, TLS_CURVE_CHAR2}, /* sect409k1 (11) */ |
| 153 | {NID_sect409r1, 192, TLS_CURVE_CHAR2}, /* sect409r1 (12) */ |
| 154 | {NID_sect571k1, 256, TLS_CURVE_CHAR2}, /* sect571k1 (13) */ |
| 155 | {NID_sect571r1, 256, TLS_CURVE_CHAR2}, /* sect571r1 (14) */ |
| 156 | {NID_secp160k1, 80, TLS_CURVE_PRIME}, /* secp160k1 (15) */ |
| 157 | {NID_secp160r1, 80, TLS_CURVE_PRIME}, /* secp160r1 (16) */ |
| 158 | {NID_secp160r2, 80, TLS_CURVE_PRIME}, /* secp160r2 (17) */ |
| 159 | {NID_secp192k1, 80, TLS_CURVE_PRIME}, /* secp192k1 (18) */ |
| 160 | {NID_X9_62_prime192v1, 80, TLS_CURVE_PRIME}, /* secp192r1 (19) */ |
| 161 | {NID_secp224k1, 112, TLS_CURVE_PRIME}, /* secp224k1 (20) */ |
| 162 | {NID_secp224r1, 112, TLS_CURVE_PRIME}, /* secp224r1 (21) */ |
| 163 | {NID_secp256k1, 128, TLS_CURVE_PRIME}, /* secp256k1 (22) */ |
| 164 | {NID_X9_62_prime256v1, 128, TLS_CURVE_PRIME}, /* secp256r1 (23) */ |
| 165 | {NID_secp384r1, 192, TLS_CURVE_PRIME}, /* secp384r1 (24) */ |
| 166 | {NID_secp521r1, 256, TLS_CURVE_PRIME}, /* secp521r1 (25) */ |
| 167 | {NID_brainpoolP256r1, 128, TLS_CURVE_PRIME}, /* brainpoolP256r1 (26) */ |
| 168 | {NID_brainpoolP384r1, 192, TLS_CURVE_PRIME}, /* brainpoolP384r1 (27) */ |
| 169 | {NID_brainpoolP512r1, 256, TLS_CURVE_PRIME}, /* brainpool512r1 (28) */ |
| 170 | {EVP_PKEY_X25519, 128, TLS_CURVE_CUSTOM}, /* X25519 (29) */ |
| 171 | {EVP_PKEY_X448, 224, TLS_CURVE_CUSTOM}, /* X448 (30) */ |
| 172 | }; |
| 173 | |
| 174 | static const unsigned char ecformats_default[] = { |
| 175 | TLSEXT_ECPOINTFORMAT_uncompressed, |
| 176 | TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime, |
| 177 | TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2 |
| 178 | }; |
| 179 | |
| 180 | /* The default curves */ |
| 181 | static const uint16_t eccurves_default[] = { |
| 182 | 29, /* X25519 (29) */ |
| 183 | 23, /* secp256r1 (23) */ |
| 184 | 30, /* X448 (30) */ |
| 185 | 25, /* secp521r1 (25) */ |
| 186 | 24, /* secp384r1 (24) */ |
| 187 | }; |
| 188 | |
| 189 | static const uint16_t suiteb_curves[] = { |
| 190 | TLSEXT_curve_P_256, |
| 191 | TLSEXT_curve_P_384 |
| 192 | }; |
| 193 | |
| 194 | const TLS_GROUP_INFO *tls1_group_id_lookup(uint16_t group_id) |
| 195 | { |
| 196 | /* ECC curves from RFC 4492 and RFC 7027 */ |
| 197 | if (group_id < 1 || group_id > OSSL_NELEM(nid_list)) |
| 198 | return NULL; |
| 199 | return &nid_list[group_id - 1]; |
| 200 | } |
| 201 | |
| 202 | static uint16_t tls1_nid2group_id(int nid) |
| 203 | { |
| 204 | size_t i; |
| 205 | for (i = 0; i < OSSL_NELEM(nid_list); i++) { |
| 206 | if (nid_list[i].nid == nid) |
| 207 | return (uint16_t)(i + 1); |
| 208 | } |
| 209 | return 0; |
| 210 | } |
| 211 | |
| 212 | /* |
| 213 | * Set *pgroups to the supported groups list and *pgroupslen to |
| 214 | * the number of groups supported. |
| 215 | */ |
| 216 | void tls1_get_supported_groups(SSL *s, const uint16_t **pgroups, |
| 217 | size_t *pgroupslen) |
| 218 | { |
| 219 | |
| 220 | /* For Suite B mode only include P-256, P-384 */ |
| 221 | switch (tls1_suiteb(s)) { |
| 222 | case SSL_CERT_FLAG_SUITEB_128_LOS: |
| 223 | *pgroups = suiteb_curves; |
| 224 | *pgroupslen = OSSL_NELEM(suiteb_curves); |
| 225 | break; |
| 226 | |
| 227 | case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: |
| 228 | *pgroups = suiteb_curves; |
| 229 | *pgroupslen = 1; |
| 230 | break; |
| 231 | |
| 232 | case SSL_CERT_FLAG_SUITEB_192_LOS: |
| 233 | *pgroups = suiteb_curves + 1; |
| 234 | *pgroupslen = 1; |
| 235 | break; |
| 236 | |
| 237 | default: |
| 238 | if (s->ext.supportedgroups == NULL) { |
| 239 | *pgroups = eccurves_default; |
| 240 | *pgroupslen = OSSL_NELEM(eccurves_default); |
| 241 | } else { |
| 242 | *pgroups = s->ext.supportedgroups; |
| 243 | *pgroupslen = s->ext.supportedgroups_len; |
| 244 | } |
| 245 | break; |
| 246 | } |
| 247 | } |
| 248 | |
| 249 | /* See if curve is allowed by security callback */ |
| 250 | int tls_curve_allowed(SSL *s, uint16_t curve, int op) |
| 251 | { |
| 252 | const TLS_GROUP_INFO *cinfo = tls1_group_id_lookup(curve); |
| 253 | unsigned char ctmp[2]; |
| 254 | |
| 255 | if (cinfo == NULL) |
| 256 | return 0; |
| 257 | # ifdef OPENSSL_NO_EC2M |
| 258 | if (cinfo->flags & TLS_CURVE_CHAR2) |
| 259 | return 0; |
| 260 | # endif |
| 261 | ctmp[0] = curve >> 8; |
| 262 | ctmp[1] = curve & 0xff; |
| 263 | return ssl_security(s, op, cinfo->secbits, cinfo->nid, (void *)ctmp); |
| 264 | } |
| 265 | |
| 266 | /* Return 1 if "id" is in "list" */ |
| 267 | static int tls1_in_list(uint16_t id, const uint16_t *list, size_t listlen) |
| 268 | { |
| 269 | size_t i; |
| 270 | for (i = 0; i < listlen; i++) |
| 271 | if (list[i] == id) |
| 272 | return 1; |
| 273 | return 0; |
| 274 | } |
| 275 | |
| 276 | /*- |
| 277 | * For nmatch >= 0, return the id of the |nmatch|th shared group or 0 |
| 278 | * if there is no match. |
| 279 | * For nmatch == -1, return number of matches |
| 280 | * For nmatch == -2, return the id of the group to use for |
| 281 | * a tmp key, or 0 if there is no match. |
| 282 | */ |
| 283 | uint16_t tls1_shared_group(SSL *s, int nmatch) |
| 284 | { |
| 285 | const uint16_t *pref, *supp; |
| 286 | size_t num_pref, num_supp, i; |
| 287 | int k; |
| 288 | |
| 289 | /* Can't do anything on client side */ |
| 290 | if (s->server == 0) |
| 291 | return 0; |
| 292 | if (nmatch == -2) { |
| 293 | if (tls1_suiteb(s)) { |
| 294 | /* |
| 295 | * For Suite B ciphersuite determines curve: we already know |
| 296 | * these are acceptable due to previous checks. |
| 297 | */ |
| 298 | unsigned long cid = s->s3->tmp.new_cipher->id; |
| 299 | |
| 300 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) |
| 301 | return TLSEXT_curve_P_256; |
| 302 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) |
| 303 | return TLSEXT_curve_P_384; |
| 304 | /* Should never happen */ |
| 305 | return 0; |
| 306 | } |
| 307 | /* If not Suite B just return first preference shared curve */ |
| 308 | nmatch = 0; |
| 309 | } |
| 310 | /* |
| 311 | * If server preference set, our groups are the preference order |
| 312 | * otherwise peer decides. |
| 313 | */ |
| 314 | if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE) { |
| 315 | tls1_get_supported_groups(s, &pref, &num_pref); |
| 316 | tls1_get_peer_groups(s, &supp, &num_supp); |
| 317 | } else { |
| 318 | tls1_get_peer_groups(s, &pref, &num_pref); |
| 319 | tls1_get_supported_groups(s, &supp, &num_supp); |
| 320 | } |
| 321 | |
| 322 | for (k = 0, i = 0; i < num_pref; i++) { |
| 323 | uint16_t id = pref[i]; |
| 324 | |
| 325 | if (!tls1_in_list(id, supp, num_supp) |
| 326 | || !tls_curve_allowed(s, id, SSL_SECOP_CURVE_SHARED)) |
| 327 | continue; |
| 328 | if (nmatch == k) |
| 329 | return id; |
| 330 | k++; |
| 331 | } |
| 332 | if (nmatch == -1) |
| 333 | return k; |
| 334 | /* Out of range (nmatch > k). */ |
| 335 | return 0; |
| 336 | } |
| 337 | |
| 338 | int tls1_set_groups(uint16_t **pext, size_t *pextlen, |
| 339 | int *groups, size_t ngroups) |
| 340 | { |
| 341 | uint16_t *glist; |
| 342 | size_t i; |
| 343 | /* |
| 344 | * Bitmap of groups included to detect duplicates: only works while group |
| 345 | * ids < 32 |
| 346 | */ |
| 347 | unsigned long dup_list = 0; |
| 348 | |
| 349 | if (ngroups == 0) { |
| 350 | SSLerr(SSL_F_TLS1_SET_GROUPS, SSL_R_BAD_LENGTH); |
| 351 | return 0; |
| 352 | } |
| 353 | if ((glist = OPENSSL_malloc(ngroups * sizeof(*glist))) == NULL) { |
| 354 | SSLerr(SSL_F_TLS1_SET_GROUPS, ERR_R_MALLOC_FAILURE); |
| 355 | return 0; |
| 356 | } |
| 357 | for (i = 0; i < ngroups; i++) { |
| 358 | unsigned long idmask; |
| 359 | uint16_t id; |
| 360 | /* TODO(TLS1.3): Convert for DH groups */ |
| 361 | id = tls1_nid2group_id(groups[i]); |
| 362 | idmask = 1L << id; |
| 363 | if (!id || (dup_list & idmask)) { |
| 364 | OPENSSL_free(glist); |
| 365 | return 0; |
| 366 | } |
| 367 | dup_list |= idmask; |
| 368 | glist[i] = id; |
| 369 | } |
| 370 | OPENSSL_free(*pext); |
| 371 | *pext = glist; |
| 372 | *pextlen = ngroups; |
| 373 | return 1; |
| 374 | } |
| 375 | |
| 376 | # define MAX_CURVELIST OSSL_NELEM(nid_list) |
| 377 | |
| 378 | typedef struct { |
| 379 | size_t nidcnt; |
| 380 | int nid_arr[MAX_CURVELIST]; |
| 381 | } nid_cb_st; |
| 382 | |
| 383 | static int nid_cb(const char *elem, int len, void *arg) |
| 384 | { |
| 385 | nid_cb_st *narg = arg; |
| 386 | size_t i; |
| 387 | int nid; |
| 388 | char etmp[20]; |
| 389 | if (elem == NULL) |
| 390 | return 0; |
| 391 | if (narg->nidcnt == MAX_CURVELIST) |
| 392 | return 0; |
| 393 | if (len > (int)(sizeof(etmp) - 1)) |
| 394 | return 0; |
| 395 | memcpy(etmp, elem, len); |
| 396 | etmp[len] = 0; |
| 397 | nid = EC_curve_nist2nid(etmp); |
| 398 | if (nid == NID_undef) |
| 399 | nid = OBJ_sn2nid(etmp); |
| 400 | if (nid == NID_undef) |
| 401 | nid = OBJ_ln2nid(etmp); |
| 402 | if (nid == NID_undef) |
| 403 | return 0; |
| 404 | for (i = 0; i < narg->nidcnt; i++) |
| 405 | if (narg->nid_arr[i] == nid) |
| 406 | return 0; |
| 407 | narg->nid_arr[narg->nidcnt++] = nid; |
| 408 | return 1; |
| 409 | } |
| 410 | |
| 411 | /* Set groups based on a colon separate list */ |
| 412 | int tls1_set_groups_list(uint16_t **pext, size_t *pextlen, const char *str) |
| 413 | { |
| 414 | nid_cb_st ncb; |
| 415 | ncb.nidcnt = 0; |
| 416 | if (!CONF_parse_list(str, ':', 1, nid_cb, &ncb)) |
| 417 | return 0; |
| 418 | if (pext == NULL) |
| 419 | return 1; |
| 420 | return tls1_set_groups(pext, pextlen, ncb.nid_arr, ncb.nidcnt); |
| 421 | } |
| 422 | /* Return group id of a key */ |
| 423 | static uint16_t tls1_get_group_id(EVP_PKEY *pkey) |
| 424 | { |
| 425 | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); |
| 426 | const EC_GROUP *grp; |
| 427 | |
| 428 | if (ec == NULL) |
| 429 | return 0; |
| 430 | grp = EC_KEY_get0_group(ec); |
| 431 | return tls1_nid2group_id(EC_GROUP_get_curve_name(grp)); |
| 432 | } |
| 433 | |
| 434 | /* Check a key is compatible with compression extension */ |
| 435 | static int tls1_check_pkey_comp(SSL *s, EVP_PKEY *pkey) |
| 436 | { |
| 437 | const EC_KEY *ec; |
| 438 | const EC_GROUP *grp; |
| 439 | unsigned char comp_id; |
| 440 | size_t i; |
| 441 | |
| 442 | /* If not an EC key nothing to check */ |
| 443 | if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) |
| 444 | return 1; |
| 445 | ec = EVP_PKEY_get0_EC_KEY(pkey); |
| 446 | grp = EC_KEY_get0_group(ec); |
| 447 | |
| 448 | /* Get required compression id */ |
| 449 | if (EC_KEY_get_conv_form(ec) == POINT_CONVERSION_UNCOMPRESSED) { |
| 450 | comp_id = TLSEXT_ECPOINTFORMAT_uncompressed; |
| 451 | } else if (SSL_IS_TLS13(s)) { |
| 452 | /* |
| 453 | * ec_point_formats extension is not used in TLSv1.3 so we ignore |
| 454 | * this check. |
| 455 | */ |
| 456 | return 1; |
| 457 | } else { |
| 458 | int field_type = EC_METHOD_get_field_type(EC_GROUP_method_of(grp)); |
| 459 | |
| 460 | if (field_type == NID_X9_62_prime_field) |
| 461 | comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_prime; |
| 462 | else if (field_type == NID_X9_62_characteristic_two_field) |
| 463 | comp_id = TLSEXT_ECPOINTFORMAT_ansiX962_compressed_char2; |
| 464 | else |
| 465 | return 0; |
| 466 | } |
| 467 | /* |
| 468 | * If point formats extension present check it, otherwise everything is |
| 469 | * supported (see RFC4492). |
| 470 | */ |
| 471 | if (s->ext.peer_ecpointformats == NULL) |
| 472 | return 1; |
| 473 | |
| 474 | for (i = 0; i < s->ext.peer_ecpointformats_len; i++) { |
| 475 | if (s->ext.peer_ecpointformats[i] == comp_id) |
| 476 | return 1; |
| 477 | } |
| 478 | return 0; |
| 479 | } |
| 480 | |
| 481 | /* Check a group id matches preferences */ |
| 482 | int tls1_check_group_id(SSL *s, uint16_t group_id, int check_own_groups) |
| 483 | { |
| 484 | const uint16_t *groups; |
| 485 | size_t groups_len; |
| 486 | |
| 487 | if (group_id == 0) |
| 488 | return 0; |
| 489 | |
| 490 | /* Check for Suite B compliance */ |
| 491 | if (tls1_suiteb(s) && s->s3->tmp.new_cipher != NULL) { |
| 492 | unsigned long cid = s->s3->tmp.new_cipher->id; |
| 493 | |
| 494 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) { |
| 495 | if (group_id != TLSEXT_curve_P_256) |
| 496 | return 0; |
| 497 | } else if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) { |
| 498 | if (group_id != TLSEXT_curve_P_384) |
| 499 | return 0; |
| 500 | } else { |
| 501 | /* Should never happen */ |
| 502 | return 0; |
| 503 | } |
| 504 | } |
| 505 | |
| 506 | if (check_own_groups) { |
| 507 | /* Check group is one of our preferences */ |
| 508 | tls1_get_supported_groups(s, &groups, &groups_len); |
| 509 | if (!tls1_in_list(group_id, groups, groups_len)) |
| 510 | return 0; |
| 511 | } |
| 512 | |
| 513 | if (!tls_curve_allowed(s, group_id, SSL_SECOP_CURVE_CHECK)) |
| 514 | return 0; |
| 515 | |
| 516 | /* For clients, nothing more to check */ |
| 517 | if (!s->server) |
| 518 | return 1; |
| 519 | |
| 520 | /* Check group is one of peers preferences */ |
| 521 | tls1_get_peer_groups(s, &groups, &groups_len); |
| 522 | |
| 523 | /* |
| 524 | * RFC 4492 does not require the supported elliptic curves extension |
| 525 | * so if it is not sent we can just choose any curve. |
| 526 | * It is invalid to send an empty list in the supported groups |
| 527 | * extension, so groups_len == 0 always means no extension. |
| 528 | */ |
| 529 | if (groups_len == 0) |
| 530 | return 1; |
| 531 | return tls1_in_list(group_id, groups, groups_len); |
| 532 | } |
| 533 | |
| 534 | void tls1_get_formatlist(SSL *s, const unsigned char **pformats, |
| 535 | size_t *num_formats) |
| 536 | { |
| 537 | /* |
| 538 | * If we have a custom point format list use it otherwise use default |
| 539 | */ |
| 540 | if (s->ext.ecpointformats) { |
| 541 | *pformats = s->ext.ecpointformats; |
| 542 | *num_formats = s->ext.ecpointformats_len; |
| 543 | } else { |
| 544 | *pformats = ecformats_default; |
| 545 | /* For Suite B we don't support char2 fields */ |
| 546 | if (tls1_suiteb(s)) |
| 547 | *num_formats = sizeof(ecformats_default) - 1; |
| 548 | else |
| 549 | *num_formats = sizeof(ecformats_default); |
| 550 | } |
| 551 | } |
| 552 | |
| 553 | /* |
| 554 | * Check cert parameters compatible with extensions: currently just checks EC |
| 555 | * certificates have compatible curves and compression. |
| 556 | */ |
| 557 | static int tls1_check_cert_param(SSL *s, X509 *x, int check_ee_md) |
| 558 | { |
| 559 | uint16_t group_id; |
| 560 | EVP_PKEY *pkey; |
| 561 | pkey = X509_get0_pubkey(x); |
| 562 | if (pkey == NULL) |
| 563 | return 0; |
| 564 | /* If not EC nothing to do */ |
| 565 | if (EVP_PKEY_id(pkey) != EVP_PKEY_EC) |
| 566 | return 1; |
| 567 | /* Check compression */ |
| 568 | if (!tls1_check_pkey_comp(s, pkey)) |
| 569 | return 0; |
| 570 | group_id = tls1_get_group_id(pkey); |
| 571 | /* |
| 572 | * For a server we allow the certificate to not be in our list of supported |
| 573 | * groups. |
| 574 | */ |
| 575 | if (!tls1_check_group_id(s, group_id, !s->server)) |
| 576 | return 0; |
| 577 | /* |
| 578 | * Special case for suite B. We *MUST* sign using SHA256+P-256 or |
| 579 | * SHA384+P-384. |
| 580 | */ |
| 581 | if (check_ee_md && tls1_suiteb(s)) { |
| 582 | int check_md; |
| 583 | size_t i; |
| 584 | |
| 585 | /* Check to see we have necessary signing algorithm */ |
| 586 | if (group_id == TLSEXT_curve_P_256) |
| 587 | check_md = NID_ecdsa_with_SHA256; |
| 588 | else if (group_id == TLSEXT_curve_P_384) |
| 589 | check_md = NID_ecdsa_with_SHA384; |
| 590 | else |
| 591 | return 0; /* Should never happen */ |
| 592 | for (i = 0; i < s->shared_sigalgslen; i++) { |
| 593 | if (check_md == s->shared_sigalgs[i]->sigandhash) |
| 594 | return 1;; |
| 595 | } |
| 596 | return 0; |
| 597 | } |
| 598 | return 1; |
| 599 | } |
| 600 | |
| 601 | /* |
| 602 | * tls1_check_ec_tmp_key - Check EC temporary key compatibility |
| 603 | * @s: SSL connection |
| 604 | * @cid: Cipher ID we're considering using |
| 605 | * |
| 606 | * Checks that the kECDHE cipher suite we're considering using |
| 607 | * is compatible with the client extensions. |
| 608 | * |
| 609 | * Returns 0 when the cipher can't be used or 1 when it can. |
| 610 | */ |
| 611 | int tls1_check_ec_tmp_key(SSL *s, unsigned long cid) |
| 612 | { |
| 613 | /* If not Suite B just need a shared group */ |
| 614 | if (!tls1_suiteb(s)) |
| 615 | return tls1_shared_group(s, 0) != 0; |
| 616 | /* |
| 617 | * If Suite B, AES128 MUST use P-256 and AES256 MUST use P-384, no other |
| 618 | * curves permitted. |
| 619 | */ |
| 620 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256) |
| 621 | return tls1_check_group_id(s, TLSEXT_curve_P_256, 1); |
| 622 | if (cid == TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384) |
| 623 | return tls1_check_group_id(s, TLSEXT_curve_P_384, 1); |
| 624 | |
| 625 | return 0; |
| 626 | } |
| 627 | |
| 628 | #else |
| 629 | |
| 630 | static int tls1_check_cert_param(SSL *s, X509 *x, int set_ee_md) |
| 631 | { |
| 632 | return 1; |
| 633 | } |
| 634 | |
| 635 | #endif /* OPENSSL_NO_EC */ |
| 636 | |
| 637 | /* Default sigalg schemes */ |
| 638 | static const uint16_t tls12_sigalgs[] = { |
| 639 | #ifndef OPENSSL_NO_EC |
| 640 | TLSEXT_SIGALG_ecdsa_secp256r1_sha256, |
| 641 | TLSEXT_SIGALG_ecdsa_secp384r1_sha384, |
| 642 | TLSEXT_SIGALG_ecdsa_secp521r1_sha512, |
| 643 | TLSEXT_SIGALG_ed25519, |
| 644 | TLSEXT_SIGALG_ed448, |
| 645 | #endif |
| 646 | |
| 647 | TLSEXT_SIGALG_rsa_pss_pss_sha256, |
| 648 | TLSEXT_SIGALG_rsa_pss_pss_sha384, |
| 649 | TLSEXT_SIGALG_rsa_pss_pss_sha512, |
| 650 | TLSEXT_SIGALG_rsa_pss_rsae_sha256, |
| 651 | TLSEXT_SIGALG_rsa_pss_rsae_sha384, |
| 652 | TLSEXT_SIGALG_rsa_pss_rsae_sha512, |
| 653 | |
| 654 | TLSEXT_SIGALG_rsa_pkcs1_sha256, |
| 655 | TLSEXT_SIGALG_rsa_pkcs1_sha384, |
| 656 | TLSEXT_SIGALG_rsa_pkcs1_sha512, |
| 657 | |
| 658 | #ifndef OPENSSL_NO_EC |
| 659 | TLSEXT_SIGALG_ecdsa_sha224, |
| 660 | TLSEXT_SIGALG_ecdsa_sha1, |
| 661 | #endif |
| 662 | TLSEXT_SIGALG_rsa_pkcs1_sha224, |
| 663 | TLSEXT_SIGALG_rsa_pkcs1_sha1, |
| 664 | #ifndef OPENSSL_NO_DSA |
| 665 | TLSEXT_SIGALG_dsa_sha224, |
| 666 | TLSEXT_SIGALG_dsa_sha1, |
| 667 | |
| 668 | TLSEXT_SIGALG_dsa_sha256, |
| 669 | TLSEXT_SIGALG_dsa_sha384, |
| 670 | TLSEXT_SIGALG_dsa_sha512, |
| 671 | #endif |
| 672 | #ifndef OPENSSL_NO_GOST |
| 673 | TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, |
| 674 | TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, |
| 675 | TLSEXT_SIGALG_gostr34102001_gostr3411, |
| 676 | #endif |
| 677 | }; |
| 678 | |
| 679 | #ifndef OPENSSL_NO_EC |
| 680 | static const uint16_t suiteb_sigalgs[] = { |
| 681 | TLSEXT_SIGALG_ecdsa_secp256r1_sha256, |
| 682 | TLSEXT_SIGALG_ecdsa_secp384r1_sha384 |
| 683 | }; |
| 684 | #endif |
| 685 | |
| 686 | static const SIGALG_LOOKUP sigalg_lookup_tbl[] = { |
| 687 | #ifndef OPENSSL_NO_EC |
| 688 | {"ecdsa_secp256r1_sha256", TLSEXT_SIGALG_ecdsa_secp256r1_sha256, |
| 689 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| 690 | NID_ecdsa_with_SHA256, NID_X9_62_prime256v1}, |
| 691 | {"ecdsa_secp384r1_sha384", TLSEXT_SIGALG_ecdsa_secp384r1_sha384, |
| 692 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| 693 | NID_ecdsa_with_SHA384, NID_secp384r1}, |
| 694 | {"ecdsa_secp521r1_sha512", TLSEXT_SIGALG_ecdsa_secp521r1_sha512, |
| 695 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| 696 | NID_ecdsa_with_SHA512, NID_secp521r1}, |
| 697 | {"ed25519", TLSEXT_SIGALG_ed25519, |
| 698 | NID_undef, -1, EVP_PKEY_ED25519, SSL_PKEY_ED25519, |
| 699 | NID_undef, NID_undef}, |
| 700 | {"ed448", TLSEXT_SIGALG_ed448, |
| 701 | NID_undef, -1, EVP_PKEY_ED448, SSL_PKEY_ED448, |
| 702 | NID_undef, NID_undef}, |
| 703 | {NULL, TLSEXT_SIGALG_ecdsa_sha224, |
| 704 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| 705 | NID_ecdsa_with_SHA224, NID_undef}, |
| 706 | {NULL, TLSEXT_SIGALG_ecdsa_sha1, |
| 707 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_EC, SSL_PKEY_ECC, |
| 708 | NID_ecdsa_with_SHA1, NID_undef}, |
| 709 | #endif |
| 710 | {"rsa_pss_rsae_sha256", TLSEXT_SIGALG_rsa_pss_rsae_sha256, |
| 711 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, |
| 712 | NID_undef, NID_undef}, |
| 713 | {"rsa_pss_rsae_sha384", TLSEXT_SIGALG_rsa_pss_rsae_sha384, |
| 714 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, |
| 715 | NID_undef, NID_undef}, |
| 716 | {"rsa_pss_rsae_sha512", TLSEXT_SIGALG_rsa_pss_rsae_sha512, |
| 717 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA, |
| 718 | NID_undef, NID_undef}, |
| 719 | {"rsa_pss_pss_sha256", TLSEXT_SIGALG_rsa_pss_pss_sha256, |
| 720 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, |
| 721 | NID_undef, NID_undef}, |
| 722 | {"rsa_pss_pss_sha384", TLSEXT_SIGALG_rsa_pss_pss_sha384, |
| 723 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, |
| 724 | NID_undef, NID_undef}, |
| 725 | {"rsa_pss_pss_sha512", TLSEXT_SIGALG_rsa_pss_pss_sha512, |
| 726 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA_PSS, SSL_PKEY_RSA_PSS_SIGN, |
| 727 | NID_undef, NID_undef}, |
| 728 | {"rsa_pkcs1_sha256", TLSEXT_SIGALG_rsa_pkcs1_sha256, |
| 729 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| 730 | NID_sha256WithRSAEncryption, NID_undef}, |
| 731 | {"rsa_pkcs1_sha384", TLSEXT_SIGALG_rsa_pkcs1_sha384, |
| 732 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| 733 | NID_sha384WithRSAEncryption, NID_undef}, |
| 734 | {"rsa_pkcs1_sha512", TLSEXT_SIGALG_rsa_pkcs1_sha512, |
| 735 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| 736 | NID_sha512WithRSAEncryption, NID_undef}, |
| 737 | {"rsa_pkcs1_sha224", TLSEXT_SIGALG_rsa_pkcs1_sha224, |
| 738 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| 739 | NID_sha224WithRSAEncryption, NID_undef}, |
| 740 | {"rsa_pkcs1_sha1", TLSEXT_SIGALG_rsa_pkcs1_sha1, |
| 741 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_RSA, SSL_PKEY_RSA, |
| 742 | NID_sha1WithRSAEncryption, NID_undef}, |
| 743 | #ifndef OPENSSL_NO_DSA |
| 744 | {NULL, TLSEXT_SIGALG_dsa_sha256, |
| 745 | NID_sha256, SSL_MD_SHA256_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| 746 | NID_dsa_with_SHA256, NID_undef}, |
| 747 | {NULL, TLSEXT_SIGALG_dsa_sha384, |
| 748 | NID_sha384, SSL_MD_SHA384_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| 749 | NID_undef, NID_undef}, |
| 750 | {NULL, TLSEXT_SIGALG_dsa_sha512, |
| 751 | NID_sha512, SSL_MD_SHA512_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| 752 | NID_undef, NID_undef}, |
| 753 | {NULL, TLSEXT_SIGALG_dsa_sha224, |
| 754 | NID_sha224, SSL_MD_SHA224_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| 755 | NID_undef, NID_undef}, |
| 756 | {NULL, TLSEXT_SIGALG_dsa_sha1, |
| 757 | NID_sha1, SSL_MD_SHA1_IDX, EVP_PKEY_DSA, SSL_PKEY_DSA_SIGN, |
| 758 | NID_dsaWithSHA1, NID_undef}, |
| 759 | #endif |
| 760 | #ifndef OPENSSL_NO_GOST |
| 761 | {NULL, TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, |
| 762 | NID_id_GostR3411_2012_256, SSL_MD_GOST12_256_IDX, |
| 763 | NID_id_GostR3410_2012_256, SSL_PKEY_GOST12_256, |
| 764 | NID_undef, NID_undef}, |
| 765 | {NULL, TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, |
| 766 | NID_id_GostR3411_2012_512, SSL_MD_GOST12_512_IDX, |
| 767 | NID_id_GostR3410_2012_512, SSL_PKEY_GOST12_512, |
| 768 | NID_undef, NID_undef}, |
| 769 | {NULL, TLSEXT_SIGALG_gostr34102001_gostr3411, |
| 770 | NID_id_GostR3411_94, SSL_MD_GOST94_IDX, |
| 771 | NID_id_GostR3410_2001, SSL_PKEY_GOST01, |
| 772 | NID_undef, NID_undef} |
| 773 | #endif |
| 774 | }; |
| 775 | /* Legacy sigalgs for TLS < 1.2 RSA TLS signatures */ |
| 776 | static const SIGALG_LOOKUP legacy_rsa_sigalg = { |
| 777 | "rsa_pkcs1_md5_sha1", 0, |
| 778 | NID_md5_sha1, SSL_MD_MD5_SHA1_IDX, |
| 779 | EVP_PKEY_RSA, SSL_PKEY_RSA, |
| 780 | NID_undef, NID_undef |
| 781 | }; |
| 782 | |
| 783 | /* |
| 784 | * Default signature algorithm values used if signature algorithms not present. |
| 785 | * From RFC5246. Note: order must match certificate index order. |
| 786 | */ |
| 787 | static const uint16_t tls_default_sigalg[] = { |
| 788 | TLSEXT_SIGALG_rsa_pkcs1_sha1, /* SSL_PKEY_RSA */ |
| 789 | 0, /* SSL_PKEY_RSA_PSS_SIGN */ |
| 790 | TLSEXT_SIGALG_dsa_sha1, /* SSL_PKEY_DSA_SIGN */ |
| 791 | TLSEXT_SIGALG_ecdsa_sha1, /* SSL_PKEY_ECC */ |
| 792 | TLSEXT_SIGALG_gostr34102001_gostr3411, /* SSL_PKEY_GOST01 */ |
| 793 | TLSEXT_SIGALG_gostr34102012_256_gostr34112012_256, /* SSL_PKEY_GOST12_256 */ |
| 794 | TLSEXT_SIGALG_gostr34102012_512_gostr34112012_512, /* SSL_PKEY_GOST12_512 */ |
| 795 | 0, /* SSL_PKEY_ED25519 */ |
| 796 | 0, /* SSL_PKEY_ED448 */ |
| 797 | }; |
| 798 | |
| 799 | /* Lookup TLS signature algorithm */ |
| 800 | static const SIGALG_LOOKUP *tls1_lookup_sigalg(uint16_t sigalg) |
| 801 | { |
| 802 | size_t i; |
| 803 | const SIGALG_LOOKUP *s; |
| 804 | |
| 805 | for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); |
| 806 | i++, s++) { |
| 807 | if (s->sigalg == sigalg) |
| 808 | return s; |
| 809 | } |
| 810 | return NULL; |
| 811 | } |
| 812 | /* Lookup hash: return 0 if invalid or not enabled */ |
| 813 | int tls1_lookup_md(const SIGALG_LOOKUP *lu, const EVP_MD **pmd) |
| 814 | { |
| 815 | const EVP_MD *md; |
| 816 | if (lu == NULL) |
| 817 | return 0; |
| 818 | /* lu->hash == NID_undef means no associated digest */ |
| 819 | if (lu->hash == NID_undef) { |
| 820 | md = NULL; |
| 821 | } else { |
| 822 | md = ssl_md(lu->hash_idx); |
| 823 | if (md == NULL) |
| 824 | return 0; |
| 825 | } |
| 826 | if (pmd) |
| 827 | *pmd = md; |
| 828 | return 1; |
| 829 | } |
| 830 | |
| 831 | /* |
| 832 | * Check if key is large enough to generate RSA-PSS signature. |
| 833 | * |
| 834 | * The key must greater than or equal to 2 * hash length + 2. |
| 835 | * SHA512 has a hash length of 64 bytes, which is incompatible |
| 836 | * with a 128 byte (1024 bit) key. |
| 837 | */ |
| 838 | #define RSA_PSS_MINIMUM_KEY_SIZE(md) (2 * EVP_MD_size(md) + 2) |
| 839 | static int rsa_pss_check_min_key_size(const RSA *rsa, const SIGALG_LOOKUP *lu) |
| 840 | { |
| 841 | const EVP_MD *md; |
| 842 | |
| 843 | if (rsa == NULL) |
| 844 | return 0; |
| 845 | if (!tls1_lookup_md(lu, &md) || md == NULL) |
| 846 | return 0; |
| 847 | if (RSA_size(rsa) < RSA_PSS_MINIMUM_KEY_SIZE(md)) |
| 848 | return 0; |
| 849 | return 1; |
| 850 | } |
| 851 | |
| 852 | /* |
| 853 | * Returns a signature algorithm when the peer did not send a list of supported |
| 854 | * signature algorithms. The signature algorithm is fixed for the certificate |
| 855 | * type. |idx| is a certificate type index (SSL_PKEY_*). When |idx| is -1 the |
| 856 | * certificate type from |s| will be used. |
| 857 | * Returns the signature algorithm to use, or NULL on error. |
| 858 | */ |
| 859 | static const SIGALG_LOOKUP *tls1_get_legacy_sigalg(const SSL *s, int idx) |
| 860 | { |
| 861 | if (idx == -1) { |
| 862 | if (s->server) { |
| 863 | size_t i; |
| 864 | |
| 865 | /* Work out index corresponding to ciphersuite */ |
| 866 | for (i = 0; i < SSL_PKEY_NUM; i++) { |
| 867 | const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(i); |
| 868 | |
| 869 | if (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) { |
| 870 | idx = i; |
| 871 | break; |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | /* |
| 876 | * Some GOST ciphersuites allow more than one signature algorithms |
| 877 | * */ |
| 878 | if (idx == SSL_PKEY_GOST01 && s->s3->tmp.new_cipher->algorithm_auth != SSL_aGOST01) { |
| 879 | int real_idx; |
| 880 | |
| 881 | for (real_idx = SSL_PKEY_GOST12_512; real_idx >= SSL_PKEY_GOST01; |
| 882 | real_idx--) { |
| 883 | if (s->cert->pkeys[real_idx].privatekey != NULL) { |
| 884 | idx = real_idx; |
| 885 | break; |
| 886 | } |
| 887 | } |
| 888 | } |
| 889 | } else { |
| 890 | idx = s->cert->key - s->cert->pkeys; |
| 891 | } |
| 892 | } |
| 893 | if (idx < 0 || idx >= (int)OSSL_NELEM(tls_default_sigalg)) |
| 894 | return NULL; |
| 895 | if (SSL_USE_SIGALGS(s) || idx != SSL_PKEY_RSA) { |
| 896 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(tls_default_sigalg[idx]); |
| 897 | |
| 898 | if (!tls1_lookup_md(lu, NULL)) |
| 899 | return NULL; |
| 900 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) |
| 901 | return NULL; |
| 902 | return lu; |
| 903 | } |
| 904 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, &legacy_rsa_sigalg)) |
| 905 | return NULL; |
| 906 | return &legacy_rsa_sigalg; |
| 907 | } |
| 908 | /* Set peer sigalg based key type */ |
| 909 | int tls1_set_peer_legacy_sigalg(SSL *s, const EVP_PKEY *pkey) |
| 910 | { |
| 911 | size_t idx; |
| 912 | const SIGALG_LOOKUP *lu; |
| 913 | |
| 914 | if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) |
| 915 | return 0; |
| 916 | lu = tls1_get_legacy_sigalg(s, idx); |
| 917 | if (lu == NULL) |
| 918 | return 0; |
| 919 | s->s3->tmp.peer_sigalg = lu; |
| 920 | return 1; |
| 921 | } |
| 922 | |
| 923 | size_t tls12_get_psigalgs(SSL *s, int sent, const uint16_t **psigs) |
| 924 | { |
| 925 | /* |
| 926 | * If Suite B mode use Suite B sigalgs only, ignore any other |
| 927 | * preferences. |
| 928 | */ |
| 929 | #ifndef OPENSSL_NO_EC |
| 930 | switch (tls1_suiteb(s)) { |
| 931 | case SSL_CERT_FLAG_SUITEB_128_LOS: |
| 932 | *psigs = suiteb_sigalgs; |
| 933 | return OSSL_NELEM(suiteb_sigalgs); |
| 934 | |
| 935 | case SSL_CERT_FLAG_SUITEB_128_LOS_ONLY: |
| 936 | *psigs = suiteb_sigalgs; |
| 937 | return 1; |
| 938 | |
| 939 | case SSL_CERT_FLAG_SUITEB_192_LOS: |
| 940 | *psigs = suiteb_sigalgs + 1; |
| 941 | return 1; |
| 942 | } |
| 943 | #endif |
| 944 | /* |
| 945 | * We use client_sigalgs (if not NULL) if we're a server |
| 946 | * and sending a certificate request or if we're a client and |
| 947 | * determining which shared algorithm to use. |
| 948 | */ |
| 949 | if ((s->server == sent) && s->cert->client_sigalgs != NULL) { |
| 950 | *psigs = s->cert->client_sigalgs; |
| 951 | return s->cert->client_sigalgslen; |
| 952 | } else if (s->cert->conf_sigalgs) { |
| 953 | *psigs = s->cert->conf_sigalgs; |
| 954 | return s->cert->conf_sigalgslen; |
| 955 | } else { |
| 956 | *psigs = tls12_sigalgs; |
| 957 | return OSSL_NELEM(tls12_sigalgs); |
| 958 | } |
| 959 | } |
| 960 | |
| 961 | #ifndef OPENSSL_NO_EC |
| 962 | /* |
| 963 | * Called by servers only. Checks that we have a sig alg that supports the |
| 964 | * specified EC curve. |
| 965 | */ |
| 966 | int tls_check_sigalg_curve(const SSL *s, int curve) |
| 967 | { |
| 968 | const uint16_t *sigs; |
| 969 | size_t siglen, i; |
| 970 | |
| 971 | if (s->cert->conf_sigalgs) { |
| 972 | sigs = s->cert->conf_sigalgs; |
| 973 | siglen = s->cert->conf_sigalgslen; |
| 974 | } else { |
| 975 | sigs = tls12_sigalgs; |
| 976 | siglen = OSSL_NELEM(tls12_sigalgs); |
| 977 | } |
| 978 | |
| 979 | for (i = 0; i < siglen; i++) { |
| 980 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(sigs[i]); |
| 981 | |
| 982 | if (lu == NULL) |
| 983 | continue; |
| 984 | if (lu->sig == EVP_PKEY_EC |
| 985 | && lu->curve != NID_undef |
| 986 | && curve == lu->curve) |
| 987 | return 1; |
| 988 | } |
| 989 | |
| 990 | return 0; |
| 991 | } |
| 992 | #endif |
| 993 | |
| 994 | /* |
| 995 | * Return the number of security bits for the signature algorithm, or 0 on |
| 996 | * error. |
| 997 | */ |
| 998 | static int sigalg_security_bits(const SIGALG_LOOKUP *lu) |
| 999 | { |
| 1000 | const EVP_MD *md = NULL; |
| 1001 | int secbits = 0; |
| 1002 | |
| 1003 | if (!tls1_lookup_md(lu, &md)) |
| 1004 | return 0; |
| 1005 | if (md != NULL) |
| 1006 | { |
| 1007 | /* Security bits: half digest bits */ |
| 1008 | secbits = EVP_MD_size(md) * 4; |
| 1009 | } else { |
| 1010 | /* Values from https://tools.ietf.org/html/rfc8032#section-8.5 */ |
| 1011 | if (lu->sigalg == TLSEXT_SIGALG_ed25519) |
| 1012 | secbits = 128; |
| 1013 | else if (lu->sigalg == TLSEXT_SIGALG_ed448) |
| 1014 | secbits = 224; |
| 1015 | } |
| 1016 | return secbits; |
| 1017 | } |
| 1018 | |
| 1019 | /* |
| 1020 | * Check signature algorithm is consistent with sent supported signature |
| 1021 | * algorithms and if so set relevant digest and signature scheme in |
| 1022 | * s. |
| 1023 | */ |
| 1024 | int tls12_check_peer_sigalg(SSL *s, uint16_t sig, EVP_PKEY *pkey) |
| 1025 | { |
| 1026 | const uint16_t *sent_sigs; |
| 1027 | const EVP_MD *md = NULL; |
| 1028 | char sigalgstr[2]; |
| 1029 | size_t sent_sigslen, i, cidx; |
| 1030 | int pkeyid = EVP_PKEY_id(pkey); |
| 1031 | const SIGALG_LOOKUP *lu; |
| 1032 | int secbits = 0; |
| 1033 | |
| 1034 | /* Should never happen */ |
| 1035 | if (pkeyid == -1) |
| 1036 | return -1; |
| 1037 | if (SSL_IS_TLS13(s)) { |
| 1038 | /* Disallow DSA for TLS 1.3 */ |
| 1039 | if (pkeyid == EVP_PKEY_DSA) { |
| 1040 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, |
| 1041 | SSL_R_WRONG_SIGNATURE_TYPE); |
| 1042 | return 0; |
| 1043 | } |
| 1044 | /* Only allow PSS for TLS 1.3 */ |
| 1045 | if (pkeyid == EVP_PKEY_RSA) |
| 1046 | pkeyid = EVP_PKEY_RSA_PSS; |
| 1047 | } |
| 1048 | lu = tls1_lookup_sigalg(sig); |
| 1049 | /* |
| 1050 | * Check sigalgs is known. Disallow SHA1/SHA224 with TLS 1.3. Check key type |
| 1051 | * is consistent with signature: RSA keys can be used for RSA-PSS |
| 1052 | */ |
| 1053 | if (lu == NULL |
| 1054 | || (SSL_IS_TLS13(s) && (lu->hash == NID_sha1 || lu->hash == NID_sha224)) |
| 1055 | || (pkeyid != lu->sig |
| 1056 | && (lu->sig != EVP_PKEY_RSA_PSS || pkeyid != EVP_PKEY_RSA))) { |
| 1057 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, |
| 1058 | SSL_R_WRONG_SIGNATURE_TYPE); |
| 1059 | return 0; |
| 1060 | } |
| 1061 | /* Check the sigalg is consistent with the key OID */ |
| 1062 | if (!ssl_cert_lookup_by_nid(EVP_PKEY_id(pkey), &cidx) |
| 1063 | || lu->sig_idx != (int)cidx) { |
| 1064 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_F_TLS12_CHECK_PEER_SIGALG, |
| 1065 | SSL_R_WRONG_SIGNATURE_TYPE); |
| 1066 | return 0; |
| 1067 | } |
| 1068 | |
| 1069 | #ifndef OPENSSL_NO_EC |
| 1070 | if (pkeyid == EVP_PKEY_EC) { |
| 1071 | |
| 1072 | /* Check point compression is permitted */ |
| 1073 | if (!tls1_check_pkey_comp(s, pkey)) { |
| 1074 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, |
| 1075 | SSL_F_TLS12_CHECK_PEER_SIGALG, |
| 1076 | SSL_R_ILLEGAL_POINT_COMPRESSION); |
| 1077 | return 0; |
| 1078 | } |
| 1079 | |
| 1080 | /* For TLS 1.3 or Suite B check curve matches signature algorithm */ |
| 1081 | if (SSL_IS_TLS13(s) || tls1_suiteb(s)) { |
| 1082 | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(pkey); |
| 1083 | int curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); |
| 1084 | |
| 1085 | if (lu->curve != NID_undef && curve != lu->curve) { |
| 1086 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, |
| 1087 | SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); |
| 1088 | return 0; |
| 1089 | } |
| 1090 | } |
| 1091 | if (!SSL_IS_TLS13(s)) { |
| 1092 | /* Check curve matches extensions */ |
| 1093 | if (!tls1_check_group_id(s, tls1_get_group_id(pkey), 1)) { |
| 1094 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, |
| 1095 | SSL_F_TLS12_CHECK_PEER_SIGALG, SSL_R_WRONG_CURVE); |
| 1096 | return 0; |
| 1097 | } |
| 1098 | if (tls1_suiteb(s)) { |
| 1099 | /* Check sigalg matches a permissible Suite B value */ |
| 1100 | if (sig != TLSEXT_SIGALG_ecdsa_secp256r1_sha256 |
| 1101 | && sig != TLSEXT_SIGALG_ecdsa_secp384r1_sha384) { |
| 1102 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| 1103 | SSL_F_TLS12_CHECK_PEER_SIGALG, |
| 1104 | SSL_R_WRONG_SIGNATURE_TYPE); |
| 1105 | return 0; |
| 1106 | } |
| 1107 | } |
| 1108 | } |
| 1109 | } else if (tls1_suiteb(s)) { |
| 1110 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, |
| 1111 | SSL_R_WRONG_SIGNATURE_TYPE); |
| 1112 | return 0; |
| 1113 | } |
| 1114 | #endif |
| 1115 | |
| 1116 | /* Check signature matches a type we sent */ |
| 1117 | sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); |
| 1118 | for (i = 0; i < sent_sigslen; i++, sent_sigs++) { |
| 1119 | if (sig == *sent_sigs) |
| 1120 | break; |
| 1121 | } |
| 1122 | /* Allow fallback to SHA1 if not strict mode */ |
| 1123 | if (i == sent_sigslen && (lu->hash != NID_sha1 |
| 1124 | || s->cert->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT)) { |
| 1125 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, |
| 1126 | SSL_R_WRONG_SIGNATURE_TYPE); |
| 1127 | return 0; |
| 1128 | } |
| 1129 | if (!tls1_lookup_md(lu, &md)) { |
| 1130 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, |
| 1131 | SSL_R_UNKNOWN_DIGEST); |
| 1132 | return 0; |
| 1133 | } |
| 1134 | /* |
| 1135 | * Make sure security callback allows algorithm. For historical |
| 1136 | * reasons we have to pass the sigalg as a two byte char array. |
| 1137 | */ |
| 1138 | sigalgstr[0] = (sig >> 8) & 0xff; |
| 1139 | sigalgstr[1] = sig & 0xff; |
| 1140 | secbits = sigalg_security_bits(lu); |
| 1141 | if (secbits == 0 || |
| 1142 | !ssl_security(s, SSL_SECOP_SIGALG_CHECK, secbits, |
| 1143 | md != NULL ? EVP_MD_type(md) : NID_undef, |
| 1144 | (void *)sigalgstr)) { |
| 1145 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS12_CHECK_PEER_SIGALG, |
| 1146 | SSL_R_WRONG_SIGNATURE_TYPE); |
| 1147 | return 0; |
| 1148 | } |
| 1149 | /* Store the sigalg the peer uses */ |
| 1150 | s->s3->tmp.peer_sigalg = lu; |
| 1151 | return 1; |
| 1152 | } |
| 1153 | |
| 1154 | int SSL_get_peer_signature_type_nid(const SSL *s, int *pnid) |
| 1155 | { |
| 1156 | if (s->s3->tmp.peer_sigalg == NULL) |
| 1157 | return 0; |
| 1158 | *pnid = s->s3->tmp.peer_sigalg->sig; |
| 1159 | return 1; |
| 1160 | } |
| 1161 | |
| 1162 | int SSL_get_signature_type_nid(const SSL *s, int *pnid) |
| 1163 | { |
| 1164 | if (s->s3->tmp.sigalg == NULL) |
| 1165 | return 0; |
| 1166 | *pnid = s->s3->tmp.sigalg->sig; |
| 1167 | return 1; |
| 1168 | } |
| 1169 | |
| 1170 | /* |
| 1171 | * Set a mask of disabled algorithms: an algorithm is disabled if it isn't |
| 1172 | * supported, doesn't appear in supported signature algorithms, isn't supported |
| 1173 | * by the enabled protocol versions or by the security level. |
| 1174 | * |
| 1175 | * This function should only be used for checking which ciphers are supported |
| 1176 | * by the client. |
| 1177 | * |
| 1178 | * Call ssl_cipher_disabled() to check that it's enabled or not. |
| 1179 | */ |
| 1180 | int ssl_set_client_disabled(SSL *s) |
| 1181 | { |
| 1182 | s->s3->tmp.mask_a = 0; |
| 1183 | s->s3->tmp.mask_k = 0; |
| 1184 | ssl_set_sig_mask(&s->s3->tmp.mask_a, s, SSL_SECOP_SIGALG_MASK); |
| 1185 | if (ssl_get_min_max_version(s, &s->s3->tmp.min_ver, |
| 1186 | &s->s3->tmp.max_ver, NULL) != 0) |
| 1187 | return 0; |
| 1188 | #ifndef OPENSSL_NO_PSK |
| 1189 | /* with PSK there must be client callback set */ |
| 1190 | if (!s->psk_client_callback) { |
| 1191 | s->s3->tmp.mask_a |= SSL_aPSK; |
| 1192 | s->s3->tmp.mask_k |= SSL_PSK; |
| 1193 | } |
| 1194 | #endif /* OPENSSL_NO_PSK */ |
| 1195 | #ifndef OPENSSL_NO_SRP |
| 1196 | if (!(s->srp_ctx.srp_Mask & SSL_kSRP)) { |
| 1197 | s->s3->tmp.mask_a |= SSL_aSRP; |
| 1198 | s->s3->tmp.mask_k |= SSL_kSRP; |
| 1199 | } |
| 1200 | #endif |
| 1201 | return 1; |
| 1202 | } |
| 1203 | |
| 1204 | /* |
| 1205 | * ssl_cipher_disabled - check that a cipher is disabled or not |
| 1206 | * @s: SSL connection that you want to use the cipher on |
| 1207 | * @c: cipher to check |
| 1208 | * @op: Security check that you want to do |
| 1209 | * @ecdhe: If set to 1 then TLSv1 ECDHE ciphers are also allowed in SSLv3 |
| 1210 | * |
| 1211 | * Returns 1 when it's disabled, 0 when enabled. |
| 1212 | */ |
| 1213 | int ssl_cipher_disabled(const SSL *s, const SSL_CIPHER *c, int op, int ecdhe) |
| 1214 | { |
| 1215 | if (c->algorithm_mkey & s->s3->tmp.mask_k |
| 1216 | || c->algorithm_auth & s->s3->tmp.mask_a) |
| 1217 | return 1; |
| 1218 | if (s->s3->tmp.max_ver == 0) |
| 1219 | return 1; |
| 1220 | if (!SSL_IS_DTLS(s)) { |
| 1221 | int min_tls = c->min_tls; |
| 1222 | |
| 1223 | /* |
| 1224 | * For historical reasons we will allow ECHDE to be selected by a server |
| 1225 | * in SSLv3 if we are a client |
| 1226 | */ |
| 1227 | if (min_tls == TLS1_VERSION && ecdhe |
| 1228 | && (c->algorithm_mkey & (SSL_kECDHE | SSL_kECDHEPSK)) != 0) |
| 1229 | min_tls = SSL3_VERSION; |
| 1230 | |
| 1231 | if ((min_tls > s->s3->tmp.max_ver) || (c->max_tls < s->s3->tmp.min_ver)) |
| 1232 | return 1; |
| 1233 | } |
| 1234 | if (SSL_IS_DTLS(s) && (DTLS_VERSION_GT(c->min_dtls, s->s3->tmp.max_ver) |
| 1235 | || DTLS_VERSION_LT(c->max_dtls, s->s3->tmp.min_ver))) |
| 1236 | return 1; |
| 1237 | |
| 1238 | return !ssl_security(s, op, c->strength_bits, 0, (void *)c); |
| 1239 | } |
| 1240 | |
| 1241 | int tls_use_ticket(SSL *s) |
| 1242 | { |
| 1243 | if ((s->options & SSL_OP_NO_TICKET)) |
| 1244 | return 0; |
| 1245 | return ssl_security(s, SSL_SECOP_TICKET, 0, 0, NULL); |
| 1246 | } |
| 1247 | |
| 1248 | int tls1_set_server_sigalgs(SSL *s) |
| 1249 | { |
| 1250 | size_t i; |
| 1251 | |
| 1252 | /* Clear any shared signature algorithms */ |
| 1253 | OPENSSL_free(s->shared_sigalgs); |
| 1254 | s->shared_sigalgs = NULL; |
| 1255 | s->shared_sigalgslen = 0; |
| 1256 | /* Clear certificate validity flags */ |
| 1257 | for (i = 0; i < SSL_PKEY_NUM; i++) |
| 1258 | s->s3->tmp.valid_flags[i] = 0; |
| 1259 | /* |
| 1260 | * If peer sent no signature algorithms check to see if we support |
| 1261 | * the default algorithm for each certificate type |
| 1262 | */ |
| 1263 | if (s->s3->tmp.peer_cert_sigalgs == NULL |
| 1264 | && s->s3->tmp.peer_sigalgs == NULL) { |
| 1265 | const uint16_t *sent_sigs; |
| 1266 | size_t sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); |
| 1267 | |
| 1268 | for (i = 0; i < SSL_PKEY_NUM; i++) { |
| 1269 | const SIGALG_LOOKUP *lu = tls1_get_legacy_sigalg(s, i); |
| 1270 | size_t j; |
| 1271 | |
| 1272 | if (lu == NULL) |
| 1273 | continue; |
| 1274 | /* Check default matches a type we sent */ |
| 1275 | for (j = 0; j < sent_sigslen; j++) { |
| 1276 | if (lu->sigalg == sent_sigs[j]) { |
| 1277 | s->s3->tmp.valid_flags[i] = CERT_PKEY_SIGN; |
| 1278 | break; |
| 1279 | } |
| 1280 | } |
| 1281 | } |
| 1282 | return 1; |
| 1283 | } |
| 1284 | |
| 1285 | if (!tls1_process_sigalgs(s)) { |
| 1286 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, |
| 1287 | SSL_F_TLS1_SET_SERVER_SIGALGS, ERR_R_INTERNAL_ERROR); |
| 1288 | return 0; |
| 1289 | } |
| 1290 | if (s->shared_sigalgs != NULL) |
| 1291 | return 1; |
| 1292 | |
| 1293 | /* Fatal error if no shared signature algorithms */ |
| 1294 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS1_SET_SERVER_SIGALGS, |
| 1295 | SSL_R_NO_SHARED_SIGNATURE_ALGORITHMS); |
| 1296 | return 0; |
| 1297 | } |
| 1298 | |
| 1299 | /*- |
| 1300 | * Gets the ticket information supplied by the client if any. |
| 1301 | * |
| 1302 | * hello: The parsed ClientHello data |
| 1303 | * ret: (output) on return, if a ticket was decrypted, then this is set to |
| 1304 | * point to the resulting session. |
| 1305 | */ |
| 1306 | SSL_TICKET_STATUS tls_get_ticket_from_client(SSL *s, CLIENTHELLO_MSG *hello, |
| 1307 | SSL_SESSION **ret) |
| 1308 | { |
| 1309 | size_t size; |
| 1310 | RAW_EXTENSION *ticketext; |
| 1311 | |
| 1312 | *ret = NULL; |
| 1313 | s->ext.ticket_expected = 0; |
| 1314 | |
| 1315 | /* |
| 1316 | * If tickets disabled or not supported by the protocol version |
| 1317 | * (e.g. TLSv1.3) behave as if no ticket present to permit stateful |
| 1318 | * resumption. |
| 1319 | */ |
| 1320 | if (s->version <= SSL3_VERSION || !tls_use_ticket(s)) |
| 1321 | return SSL_TICKET_NONE; |
| 1322 | |
| 1323 | ticketext = &hello->pre_proc_exts[TLSEXT_IDX_session_ticket]; |
| 1324 | if (!ticketext->present) |
| 1325 | return SSL_TICKET_NONE; |
| 1326 | |
| 1327 | size = PACKET_remaining(&ticketext->data); |
| 1328 | |
| 1329 | return tls_decrypt_ticket(s, PACKET_data(&ticketext->data), size, |
| 1330 | hello->session_id, hello->session_id_len, ret); |
| 1331 | } |
| 1332 | |
| 1333 | /*- |
| 1334 | * tls_decrypt_ticket attempts to decrypt a session ticket. |
| 1335 | * |
| 1336 | * If s->tls_session_secret_cb is set and we're not doing TLSv1.3 then we are |
| 1337 | * expecting a pre-shared key ciphersuite, in which case we have no use for |
| 1338 | * session tickets and one will never be decrypted, nor will |
| 1339 | * s->ext.ticket_expected be set to 1. |
| 1340 | * |
| 1341 | * Side effects: |
| 1342 | * Sets s->ext.ticket_expected to 1 if the server will have to issue |
| 1343 | * a new session ticket to the client because the client indicated support |
| 1344 | * (and s->tls_session_secret_cb is NULL) but the client either doesn't have |
| 1345 | * a session ticket or we couldn't use the one it gave us, or if |
| 1346 | * s->ctx->ext.ticket_key_cb asked to renew the client's ticket. |
| 1347 | * Otherwise, s->ext.ticket_expected is set to 0. |
| 1348 | * |
| 1349 | * etick: points to the body of the session ticket extension. |
| 1350 | * eticklen: the length of the session tickets extension. |
| 1351 | * sess_id: points at the session ID. |
| 1352 | * sesslen: the length of the session ID. |
| 1353 | * psess: (output) on return, if a ticket was decrypted, then this is set to |
| 1354 | * point to the resulting session. |
| 1355 | */ |
| 1356 | SSL_TICKET_STATUS tls_decrypt_ticket(SSL *s, const unsigned char *etick, |
| 1357 | size_t eticklen, const unsigned char *sess_id, |
| 1358 | size_t sesslen, SSL_SESSION **psess) |
| 1359 | { |
| 1360 | SSL_SESSION *sess = NULL; |
| 1361 | unsigned char *sdec; |
| 1362 | const unsigned char *p; |
| 1363 | int slen, renew_ticket = 0, declen; |
| 1364 | SSL_TICKET_STATUS ret = SSL_TICKET_FATAL_ERR_OTHER; |
| 1365 | size_t mlen; |
| 1366 | unsigned char tick_hmac[EVP_MAX_MD_SIZE]; |
| 1367 | HMAC_CTX *hctx = NULL; |
| 1368 | EVP_CIPHER_CTX *ctx = NULL; |
| 1369 | SSL_CTX *tctx = s->session_ctx; |
| 1370 | |
| 1371 | if (eticklen == 0) { |
| 1372 | /* |
| 1373 | * The client will accept a ticket but doesn't currently have |
| 1374 | * one (TLSv1.2 and below), or treated as a fatal error in TLSv1.3 |
| 1375 | */ |
| 1376 | ret = SSL_TICKET_EMPTY; |
| 1377 | goto end; |
| 1378 | } |
| 1379 | if (!SSL_IS_TLS13(s) && s->ext.session_secret_cb) { |
| 1380 | /* |
| 1381 | * Indicate that the ticket couldn't be decrypted rather than |
| 1382 | * generating the session from ticket now, trigger |
| 1383 | * abbreviated handshake based on external mechanism to |
| 1384 | * calculate the master secret later. |
| 1385 | */ |
| 1386 | ret = SSL_TICKET_NO_DECRYPT; |
| 1387 | goto end; |
| 1388 | } |
| 1389 | |
| 1390 | /* Need at least keyname + iv */ |
| 1391 | if (eticklen < TLSEXT_KEYNAME_LENGTH + EVP_MAX_IV_LENGTH) { |
| 1392 | ret = SSL_TICKET_NO_DECRYPT; |
| 1393 | goto end; |
| 1394 | } |
| 1395 | |
| 1396 | /* Initialize session ticket encryption and HMAC contexts */ |
| 1397 | hctx = HMAC_CTX_new(); |
| 1398 | if (hctx == NULL) { |
| 1399 | ret = SSL_TICKET_FATAL_ERR_MALLOC; |
| 1400 | goto end; |
| 1401 | } |
| 1402 | ctx = EVP_CIPHER_CTX_new(); |
| 1403 | if (ctx == NULL) { |
| 1404 | ret = SSL_TICKET_FATAL_ERR_MALLOC; |
| 1405 | goto end; |
| 1406 | } |
| 1407 | if (tctx->ext.ticket_key_cb) { |
| 1408 | unsigned char *nctick = (unsigned char *)etick; |
| 1409 | int rv = tctx->ext.ticket_key_cb(s, nctick, |
| 1410 | nctick + TLSEXT_KEYNAME_LENGTH, |
| 1411 | ctx, hctx, 0); |
| 1412 | if (rv < 0) { |
| 1413 | ret = SSL_TICKET_FATAL_ERR_OTHER; |
| 1414 | goto end; |
| 1415 | } |
| 1416 | if (rv == 0) { |
| 1417 | ret = SSL_TICKET_NO_DECRYPT; |
| 1418 | goto end; |
| 1419 | } |
| 1420 | if (rv == 2) |
| 1421 | renew_ticket = 1; |
| 1422 | } else { |
| 1423 | /* Check key name matches */ |
| 1424 | if (memcmp(etick, tctx->ext.tick_key_name, |
| 1425 | TLSEXT_KEYNAME_LENGTH) != 0) { |
| 1426 | ret = SSL_TICKET_NO_DECRYPT; |
| 1427 | goto end; |
| 1428 | } |
| 1429 | if (HMAC_Init_ex(hctx, tctx->ext.secure->tick_hmac_key, |
| 1430 | sizeof(tctx->ext.secure->tick_hmac_key), |
| 1431 | EVP_sha256(), NULL) <= 0 |
| 1432 | || EVP_DecryptInit_ex(ctx, EVP_aes_256_cbc(), NULL, |
| 1433 | tctx->ext.secure->tick_aes_key, |
| 1434 | etick + TLSEXT_KEYNAME_LENGTH) <= 0) { |
| 1435 | ret = SSL_TICKET_FATAL_ERR_OTHER; |
| 1436 | goto end; |
| 1437 | } |
| 1438 | if (SSL_IS_TLS13(s)) |
| 1439 | renew_ticket = 1; |
| 1440 | } |
| 1441 | /* |
| 1442 | * Attempt to process session ticket, first conduct sanity and integrity |
| 1443 | * checks on ticket. |
| 1444 | */ |
| 1445 | mlen = HMAC_size(hctx); |
| 1446 | if (mlen == 0) { |
| 1447 | ret = SSL_TICKET_FATAL_ERR_OTHER; |
| 1448 | goto end; |
| 1449 | } |
| 1450 | |
| 1451 | /* Sanity check ticket length: must exceed keyname + IV + HMAC */ |
| 1452 | if (eticklen <= |
| 1453 | TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx) + mlen) { |
| 1454 | ret = SSL_TICKET_NO_DECRYPT; |
| 1455 | goto end; |
| 1456 | } |
| 1457 | eticklen -= mlen; |
| 1458 | /* Check HMAC of encrypted ticket */ |
| 1459 | if (HMAC_Update(hctx, etick, eticklen) <= 0 |
| 1460 | || HMAC_Final(hctx, tick_hmac, NULL) <= 0) { |
| 1461 | ret = SSL_TICKET_FATAL_ERR_OTHER; |
| 1462 | goto end; |
| 1463 | } |
| 1464 | |
| 1465 | if (CRYPTO_memcmp(tick_hmac, etick + eticklen, mlen)) { |
| 1466 | ret = SSL_TICKET_NO_DECRYPT; |
| 1467 | goto end; |
| 1468 | } |
| 1469 | /* Attempt to decrypt session data */ |
| 1470 | /* Move p after IV to start of encrypted ticket, update length */ |
| 1471 | p = etick + TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); |
| 1472 | eticklen -= TLSEXT_KEYNAME_LENGTH + EVP_CIPHER_CTX_iv_length(ctx); |
| 1473 | sdec = OPENSSL_malloc(eticklen); |
| 1474 | if (sdec == NULL || EVP_DecryptUpdate(ctx, sdec, &slen, p, |
| 1475 | (int)eticklen) <= 0) { |
| 1476 | OPENSSL_free(sdec); |
| 1477 | ret = SSL_TICKET_FATAL_ERR_OTHER; |
| 1478 | goto end; |
| 1479 | } |
| 1480 | if (EVP_DecryptFinal(ctx, sdec + slen, &declen) <= 0) { |
| 1481 | OPENSSL_free(sdec); |
| 1482 | ret = SSL_TICKET_NO_DECRYPT; |
| 1483 | goto end; |
| 1484 | } |
| 1485 | slen += declen; |
| 1486 | p = sdec; |
| 1487 | |
| 1488 | sess = d2i_SSL_SESSION(NULL, &p, slen); |
| 1489 | slen -= p - sdec; |
| 1490 | OPENSSL_free(sdec); |
| 1491 | if (sess) { |
| 1492 | /* Some additional consistency checks */ |
| 1493 | if (slen != 0) { |
| 1494 | SSL_SESSION_free(sess); |
| 1495 | sess = NULL; |
| 1496 | ret = SSL_TICKET_NO_DECRYPT; |
| 1497 | goto end; |
| 1498 | } |
| 1499 | /* |
| 1500 | * The session ID, if non-empty, is used by some clients to detect |
| 1501 | * that the ticket has been accepted. So we copy it to the session |
| 1502 | * structure. If it is empty set length to zero as required by |
| 1503 | * standard. |
| 1504 | */ |
| 1505 | if (sesslen) { |
| 1506 | memcpy(sess->session_id, sess_id, sesslen); |
| 1507 | sess->session_id_length = sesslen; |
| 1508 | } |
| 1509 | if (renew_ticket) |
| 1510 | ret = SSL_TICKET_SUCCESS_RENEW; |
| 1511 | else |
| 1512 | ret = SSL_TICKET_SUCCESS; |
| 1513 | goto end; |
| 1514 | } |
| 1515 | ERR_clear_error(); |
| 1516 | /* |
| 1517 | * For session parse failure, indicate that we need to send a new ticket. |
| 1518 | */ |
| 1519 | ret = SSL_TICKET_NO_DECRYPT; |
| 1520 | |
| 1521 | end: |
| 1522 | EVP_CIPHER_CTX_free(ctx); |
| 1523 | HMAC_CTX_free(hctx); |
| 1524 | |
| 1525 | /* |
| 1526 | * If set, the decrypt_ticket_cb() is called unless a fatal error was |
| 1527 | * detected above. The callback is responsible for checking |ret| before it |
| 1528 | * performs any action |
| 1529 | */ |
| 1530 | if (s->session_ctx->decrypt_ticket_cb != NULL |
| 1531 | && (ret == SSL_TICKET_EMPTY |
| 1532 | || ret == SSL_TICKET_NO_DECRYPT |
| 1533 | || ret == SSL_TICKET_SUCCESS |
| 1534 | || ret == SSL_TICKET_SUCCESS_RENEW)) { |
| 1535 | size_t keyname_len = eticklen; |
| 1536 | int retcb; |
| 1537 | |
| 1538 | if (keyname_len > TLSEXT_KEYNAME_LENGTH) |
| 1539 | keyname_len = TLSEXT_KEYNAME_LENGTH; |
| 1540 | retcb = s->session_ctx->decrypt_ticket_cb(s, sess, etick, keyname_len, |
| 1541 | ret, |
| 1542 | s->session_ctx->ticket_cb_data); |
| 1543 | switch (retcb) { |
| 1544 | case SSL_TICKET_RETURN_ABORT: |
| 1545 | ret = SSL_TICKET_FATAL_ERR_OTHER; |
| 1546 | break; |
| 1547 | |
| 1548 | case SSL_TICKET_RETURN_IGNORE: |
| 1549 | ret = SSL_TICKET_NONE; |
| 1550 | SSL_SESSION_free(sess); |
| 1551 | sess = NULL; |
| 1552 | break; |
| 1553 | |
| 1554 | case SSL_TICKET_RETURN_IGNORE_RENEW: |
| 1555 | if (ret != SSL_TICKET_EMPTY && ret != SSL_TICKET_NO_DECRYPT) |
| 1556 | ret = SSL_TICKET_NO_DECRYPT; |
| 1557 | /* else the value of |ret| will already do the right thing */ |
| 1558 | SSL_SESSION_free(sess); |
| 1559 | sess = NULL; |
| 1560 | break; |
| 1561 | |
| 1562 | case SSL_TICKET_RETURN_USE: |
| 1563 | case SSL_TICKET_RETURN_USE_RENEW: |
| 1564 | if (ret != SSL_TICKET_SUCCESS |
| 1565 | && ret != SSL_TICKET_SUCCESS_RENEW) |
| 1566 | ret = SSL_TICKET_FATAL_ERR_OTHER; |
| 1567 | else if (retcb == SSL_TICKET_RETURN_USE) |
| 1568 | ret = SSL_TICKET_SUCCESS; |
| 1569 | else |
| 1570 | ret = SSL_TICKET_SUCCESS_RENEW; |
| 1571 | break; |
| 1572 | |
| 1573 | default: |
| 1574 | ret = SSL_TICKET_FATAL_ERR_OTHER; |
| 1575 | } |
| 1576 | } |
| 1577 | |
| 1578 | if (s->ext.session_secret_cb == NULL || SSL_IS_TLS13(s)) { |
| 1579 | switch (ret) { |
| 1580 | case SSL_TICKET_NO_DECRYPT: |
| 1581 | case SSL_TICKET_SUCCESS_RENEW: |
| 1582 | case SSL_TICKET_EMPTY: |
| 1583 | s->ext.ticket_expected = 1; |
| 1584 | } |
| 1585 | } |
| 1586 | |
| 1587 | *psess = sess; |
| 1588 | |
| 1589 | return ret; |
| 1590 | } |
| 1591 | |
| 1592 | /* Check to see if a signature algorithm is allowed */ |
| 1593 | static int tls12_sigalg_allowed(const SSL *s, int op, const SIGALG_LOOKUP *lu) |
| 1594 | { |
| 1595 | unsigned char sigalgstr[2]; |
| 1596 | int secbits; |
| 1597 | |
| 1598 | /* See if sigalgs is recognised and if hash is enabled */ |
| 1599 | if (!tls1_lookup_md(lu, NULL)) |
| 1600 | return 0; |
| 1601 | /* DSA is not allowed in TLS 1.3 */ |
| 1602 | if (SSL_IS_TLS13(s) && lu->sig == EVP_PKEY_DSA) |
| 1603 | return 0; |
| 1604 | /* TODO(OpenSSL1.2) fully axe DSA/etc. in ClientHello per TLS 1.3 spec */ |
| 1605 | if (!s->server && !SSL_IS_DTLS(s) && s->s3->tmp.min_ver >= TLS1_3_VERSION |
| 1606 | && (lu->sig == EVP_PKEY_DSA || lu->hash_idx == SSL_MD_SHA1_IDX |
| 1607 | || lu->hash_idx == SSL_MD_MD5_IDX |
| 1608 | || lu->hash_idx == SSL_MD_SHA224_IDX)) |
| 1609 | return 0; |
| 1610 | |
| 1611 | /* See if public key algorithm allowed */ |
| 1612 | if (ssl_cert_is_disabled(lu->sig_idx)) |
| 1613 | return 0; |
| 1614 | |
| 1615 | if (lu->sig == NID_id_GostR3410_2012_256 |
| 1616 | || lu->sig == NID_id_GostR3410_2012_512 |
| 1617 | || lu->sig == NID_id_GostR3410_2001) { |
| 1618 | /* We never allow GOST sig algs on the server with TLSv1.3 */ |
| 1619 | if (s->server && SSL_IS_TLS13(s)) |
| 1620 | return 0; |
| 1621 | if (!s->server |
| 1622 | && s->method->version == TLS_ANY_VERSION |
| 1623 | && s->s3->tmp.max_ver >= TLS1_3_VERSION) { |
| 1624 | int i, num; |
| 1625 | STACK_OF(SSL_CIPHER) *sk; |
| 1626 | |
| 1627 | /* |
| 1628 | * We're a client that could negotiate TLSv1.3. We only allow GOST |
| 1629 | * sig algs if we could negotiate TLSv1.2 or below and we have GOST |
| 1630 | * ciphersuites enabled. |
| 1631 | */ |
| 1632 | |
| 1633 | if (s->s3->tmp.min_ver >= TLS1_3_VERSION) |
| 1634 | return 0; |
| 1635 | |
| 1636 | sk = SSL_get_ciphers(s); |
| 1637 | num = sk != NULL ? sk_SSL_CIPHER_num(sk) : 0; |
| 1638 | for (i = 0; i < num; i++) { |
| 1639 | const SSL_CIPHER *c; |
| 1640 | |
| 1641 | c = sk_SSL_CIPHER_value(sk, i); |
| 1642 | /* Skip disabled ciphers */ |
| 1643 | if (ssl_cipher_disabled(s, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) |
| 1644 | continue; |
| 1645 | |
| 1646 | if ((c->algorithm_mkey & SSL_kGOST) != 0) |
| 1647 | break; |
| 1648 | } |
| 1649 | if (i == num) |
| 1650 | return 0; |
| 1651 | } |
| 1652 | } |
| 1653 | |
| 1654 | /* Finally see if security callback allows it */ |
| 1655 | secbits = sigalg_security_bits(lu); |
| 1656 | sigalgstr[0] = (lu->sigalg >> 8) & 0xff; |
| 1657 | sigalgstr[1] = lu->sigalg & 0xff; |
| 1658 | return ssl_security(s, op, secbits, lu->hash, (void *)sigalgstr); |
| 1659 | } |
| 1660 | |
| 1661 | /* |
| 1662 | * Get a mask of disabled public key algorithms based on supported signature |
| 1663 | * algorithms. For example if no signature algorithm supports RSA then RSA is |
| 1664 | * disabled. |
| 1665 | */ |
| 1666 | |
| 1667 | void ssl_set_sig_mask(uint32_t *pmask_a, SSL *s, int op) |
| 1668 | { |
| 1669 | const uint16_t *sigalgs; |
| 1670 | size_t i, sigalgslen; |
| 1671 | uint32_t disabled_mask = SSL_aRSA | SSL_aDSS | SSL_aECDSA; |
| 1672 | /* |
| 1673 | * Go through all signature algorithms seeing if we support any |
| 1674 | * in disabled_mask. |
| 1675 | */ |
| 1676 | sigalgslen = tls12_get_psigalgs(s, 1, &sigalgs); |
| 1677 | for (i = 0; i < sigalgslen; i++, sigalgs++) { |
| 1678 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*sigalgs); |
| 1679 | const SSL_CERT_LOOKUP *clu; |
| 1680 | |
| 1681 | if (lu == NULL) |
| 1682 | continue; |
| 1683 | |
| 1684 | clu = ssl_cert_lookup_by_idx(lu->sig_idx); |
| 1685 | if (clu == NULL) |
| 1686 | continue; |
| 1687 | |
| 1688 | /* If algorithm is disabled see if we can enable it */ |
| 1689 | if ((clu->amask & disabled_mask) != 0 |
| 1690 | && tls12_sigalg_allowed(s, op, lu)) |
| 1691 | disabled_mask &= ~clu->amask; |
| 1692 | } |
| 1693 | *pmask_a |= disabled_mask; |
| 1694 | } |
| 1695 | |
| 1696 | int tls12_copy_sigalgs(SSL *s, WPACKET *pkt, |
| 1697 | const uint16_t *psig, size_t psiglen) |
| 1698 | { |
| 1699 | size_t i; |
| 1700 | int rv = 0; |
| 1701 | |
| 1702 | for (i = 0; i < psiglen; i++, psig++) { |
| 1703 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*psig); |
| 1704 | |
| 1705 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SUPPORTED, lu)) |
| 1706 | continue; |
| 1707 | if (!WPACKET_put_bytes_u16(pkt, *psig)) |
| 1708 | return 0; |
| 1709 | /* |
| 1710 | * If TLS 1.3 must have at least one valid TLS 1.3 message |
| 1711 | * signing algorithm: i.e. neither RSA nor SHA1/SHA224 |
| 1712 | */ |
| 1713 | if (rv == 0 && (!SSL_IS_TLS13(s) |
| 1714 | || (lu->sig != EVP_PKEY_RSA |
| 1715 | && lu->hash != NID_sha1 |
| 1716 | && lu->hash != NID_sha224))) |
| 1717 | rv = 1; |
| 1718 | } |
| 1719 | if (rv == 0) |
| 1720 | SSLerr(SSL_F_TLS12_COPY_SIGALGS, SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| 1721 | return rv; |
| 1722 | } |
| 1723 | |
| 1724 | /* Given preference and allowed sigalgs set shared sigalgs */ |
| 1725 | static size_t tls12_shared_sigalgs(SSL *s, const SIGALG_LOOKUP **shsig, |
| 1726 | const uint16_t *pref, size_t preflen, |
| 1727 | const uint16_t *allow, size_t allowlen) |
| 1728 | { |
| 1729 | const uint16_t *ptmp, *atmp; |
| 1730 | size_t i, j, nmatch = 0; |
| 1731 | for (i = 0, ptmp = pref; i < preflen; i++, ptmp++) { |
| 1732 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*ptmp); |
| 1733 | |
| 1734 | /* Skip disabled hashes or signature algorithms */ |
| 1735 | if (!tls12_sigalg_allowed(s, SSL_SECOP_SIGALG_SHARED, lu)) |
| 1736 | continue; |
| 1737 | for (j = 0, atmp = allow; j < allowlen; j++, atmp++) { |
| 1738 | if (*ptmp == *atmp) { |
| 1739 | nmatch++; |
| 1740 | if (shsig) |
| 1741 | *shsig++ = lu; |
| 1742 | break; |
| 1743 | } |
| 1744 | } |
| 1745 | } |
| 1746 | return nmatch; |
| 1747 | } |
| 1748 | |
| 1749 | /* Set shared signature algorithms for SSL structures */ |
| 1750 | static int tls1_set_shared_sigalgs(SSL *s) |
| 1751 | { |
| 1752 | const uint16_t *pref, *allow, *conf; |
| 1753 | size_t preflen, allowlen, conflen; |
| 1754 | size_t nmatch; |
| 1755 | const SIGALG_LOOKUP **salgs = NULL; |
| 1756 | CERT *c = s->cert; |
| 1757 | unsigned int is_suiteb = tls1_suiteb(s); |
| 1758 | |
| 1759 | OPENSSL_free(s->shared_sigalgs); |
| 1760 | s->shared_sigalgs = NULL; |
| 1761 | s->shared_sigalgslen = 0; |
| 1762 | /* If client use client signature algorithms if not NULL */ |
| 1763 | if (!s->server && c->client_sigalgs && !is_suiteb) { |
| 1764 | conf = c->client_sigalgs; |
| 1765 | conflen = c->client_sigalgslen; |
| 1766 | } else if (c->conf_sigalgs && !is_suiteb) { |
| 1767 | conf = c->conf_sigalgs; |
| 1768 | conflen = c->conf_sigalgslen; |
| 1769 | } else |
| 1770 | conflen = tls12_get_psigalgs(s, 0, &conf); |
| 1771 | if (s->options & SSL_OP_CIPHER_SERVER_PREFERENCE || is_suiteb) { |
| 1772 | pref = conf; |
| 1773 | preflen = conflen; |
| 1774 | allow = s->s3->tmp.peer_sigalgs; |
| 1775 | allowlen = s->s3->tmp.peer_sigalgslen; |
| 1776 | } else { |
| 1777 | allow = conf; |
| 1778 | allowlen = conflen; |
| 1779 | pref = s->s3->tmp.peer_sigalgs; |
| 1780 | preflen = s->s3->tmp.peer_sigalgslen; |
| 1781 | } |
| 1782 | nmatch = tls12_shared_sigalgs(s, NULL, pref, preflen, allow, allowlen); |
| 1783 | if (nmatch) { |
| 1784 | if ((salgs = OPENSSL_malloc(nmatch * sizeof(*salgs))) == NULL) { |
| 1785 | SSLerr(SSL_F_TLS1_SET_SHARED_SIGALGS, ERR_R_MALLOC_FAILURE); |
| 1786 | return 0; |
| 1787 | } |
| 1788 | nmatch = tls12_shared_sigalgs(s, salgs, pref, preflen, allow, allowlen); |
| 1789 | } else { |
| 1790 | salgs = NULL; |
| 1791 | } |
| 1792 | s->shared_sigalgs = salgs; |
| 1793 | s->shared_sigalgslen = nmatch; |
| 1794 | return 1; |
| 1795 | } |
| 1796 | |
| 1797 | int tls1_save_u16(PACKET *pkt, uint16_t **pdest, size_t *pdestlen) |
| 1798 | { |
| 1799 | unsigned int stmp; |
| 1800 | size_t size, i; |
| 1801 | uint16_t *buf; |
| 1802 | |
| 1803 | size = PACKET_remaining(pkt); |
| 1804 | |
| 1805 | /* Invalid data length */ |
| 1806 | if (size == 0 || (size & 1) != 0) |
| 1807 | return 0; |
| 1808 | |
| 1809 | size >>= 1; |
| 1810 | |
| 1811 | if ((buf = OPENSSL_malloc(size * sizeof(*buf))) == NULL) { |
| 1812 | SSLerr(SSL_F_TLS1_SAVE_U16, ERR_R_MALLOC_FAILURE); |
| 1813 | return 0; |
| 1814 | } |
| 1815 | for (i = 0; i < size && PACKET_get_net_2(pkt, &stmp); i++) |
| 1816 | buf[i] = stmp; |
| 1817 | |
| 1818 | if (i != size) { |
| 1819 | OPENSSL_free(buf); |
| 1820 | return 0; |
| 1821 | } |
| 1822 | |
| 1823 | OPENSSL_free(*pdest); |
| 1824 | *pdest = buf; |
| 1825 | *pdestlen = size; |
| 1826 | |
| 1827 | return 1; |
| 1828 | } |
| 1829 | |
| 1830 | int tls1_save_sigalgs(SSL *s, PACKET *pkt, int cert) |
| 1831 | { |
| 1832 | /* Extension ignored for inappropriate versions */ |
| 1833 | if (!SSL_USE_SIGALGS(s)) |
| 1834 | return 1; |
| 1835 | /* Should never happen */ |
| 1836 | if (s->cert == NULL) |
| 1837 | return 0; |
| 1838 | |
| 1839 | if (cert) |
| 1840 | return tls1_save_u16(pkt, &s->s3->tmp.peer_cert_sigalgs, |
| 1841 | &s->s3->tmp.peer_cert_sigalgslen); |
| 1842 | else |
| 1843 | return tls1_save_u16(pkt, &s->s3->tmp.peer_sigalgs, |
| 1844 | &s->s3->tmp.peer_sigalgslen); |
| 1845 | |
| 1846 | } |
| 1847 | |
| 1848 | /* Set preferred digest for each key type */ |
| 1849 | |
| 1850 | int tls1_process_sigalgs(SSL *s) |
| 1851 | { |
| 1852 | size_t i; |
| 1853 | uint32_t *pvalid = s->s3->tmp.valid_flags; |
| 1854 | |
| 1855 | if (!tls1_set_shared_sigalgs(s)) |
| 1856 | return 0; |
| 1857 | |
| 1858 | for (i = 0; i < SSL_PKEY_NUM; i++) |
| 1859 | pvalid[i] = 0; |
| 1860 | |
| 1861 | for (i = 0; i < s->shared_sigalgslen; i++) { |
| 1862 | const SIGALG_LOOKUP *sigptr = s->shared_sigalgs[i]; |
| 1863 | int idx = sigptr->sig_idx; |
| 1864 | |
| 1865 | /* Ignore PKCS1 based sig algs in TLSv1.3 */ |
| 1866 | if (SSL_IS_TLS13(s) && sigptr->sig == EVP_PKEY_RSA) |
| 1867 | continue; |
| 1868 | /* If not disabled indicate we can explicitly sign */ |
| 1869 | if (pvalid[idx] == 0 && !ssl_cert_is_disabled(idx)) |
| 1870 | pvalid[idx] = CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; |
| 1871 | } |
| 1872 | return 1; |
| 1873 | } |
| 1874 | |
| 1875 | int SSL_get_sigalgs(SSL *s, int idx, |
| 1876 | int *psign, int *phash, int *psignhash, |
| 1877 | unsigned char *rsig, unsigned char *rhash) |
| 1878 | { |
| 1879 | uint16_t *psig = s->s3->tmp.peer_sigalgs; |
| 1880 | size_t numsigalgs = s->s3->tmp.peer_sigalgslen; |
| 1881 | if (psig == NULL || numsigalgs > INT_MAX) |
| 1882 | return 0; |
| 1883 | if (idx >= 0) { |
| 1884 | const SIGALG_LOOKUP *lu; |
| 1885 | |
| 1886 | if (idx >= (int)numsigalgs) |
| 1887 | return 0; |
| 1888 | psig += idx; |
| 1889 | if (rhash != NULL) |
| 1890 | *rhash = (unsigned char)((*psig >> 8) & 0xff); |
| 1891 | if (rsig != NULL) |
| 1892 | *rsig = (unsigned char)(*psig & 0xff); |
| 1893 | lu = tls1_lookup_sigalg(*psig); |
| 1894 | if (psign != NULL) |
| 1895 | *psign = lu != NULL ? lu->sig : NID_undef; |
| 1896 | if (phash != NULL) |
| 1897 | *phash = lu != NULL ? lu->hash : NID_undef; |
| 1898 | if (psignhash != NULL) |
| 1899 | *psignhash = lu != NULL ? lu->sigandhash : NID_undef; |
| 1900 | } |
| 1901 | return (int)numsigalgs; |
| 1902 | } |
| 1903 | |
| 1904 | int SSL_get_shared_sigalgs(SSL *s, int idx, |
| 1905 | int *psign, int *phash, int *psignhash, |
| 1906 | unsigned char *rsig, unsigned char *rhash) |
| 1907 | { |
| 1908 | const SIGALG_LOOKUP *shsigalgs; |
| 1909 | if (s->shared_sigalgs == NULL |
| 1910 | || idx < 0 |
| 1911 | || idx >= (int)s->shared_sigalgslen |
| 1912 | || s->shared_sigalgslen > INT_MAX) |
| 1913 | return 0; |
| 1914 | shsigalgs = s->shared_sigalgs[idx]; |
| 1915 | if (phash != NULL) |
| 1916 | *phash = shsigalgs->hash; |
| 1917 | if (psign != NULL) |
| 1918 | *psign = shsigalgs->sig; |
| 1919 | if (psignhash != NULL) |
| 1920 | *psignhash = shsigalgs->sigandhash; |
| 1921 | if (rsig != NULL) |
| 1922 | *rsig = (unsigned char)(shsigalgs->sigalg & 0xff); |
| 1923 | if (rhash != NULL) |
| 1924 | *rhash = (unsigned char)((shsigalgs->sigalg >> 8) & 0xff); |
| 1925 | return (int)s->shared_sigalgslen; |
| 1926 | } |
| 1927 | |
| 1928 | /* Maximum possible number of unique entries in sigalgs array */ |
| 1929 | #define TLS_MAX_SIGALGCNT (OSSL_NELEM(sigalg_lookup_tbl) * 2) |
| 1930 | |
| 1931 | typedef struct { |
| 1932 | size_t sigalgcnt; |
| 1933 | /* TLSEXT_SIGALG_XXX values */ |
| 1934 | uint16_t sigalgs[TLS_MAX_SIGALGCNT]; |
| 1935 | } sig_cb_st; |
| 1936 | |
| 1937 | static void get_sigorhash(int *psig, int *phash, const char *str) |
| 1938 | { |
| 1939 | if (strcmp(str, "RSA") == 0) { |
| 1940 | *psig = EVP_PKEY_RSA; |
| 1941 | } else if (strcmp(str, "RSA-PSS") == 0 || strcmp(str, "PSS") == 0) { |
| 1942 | *psig = EVP_PKEY_RSA_PSS; |
| 1943 | } else if (strcmp(str, "DSA") == 0) { |
| 1944 | *psig = EVP_PKEY_DSA; |
| 1945 | } else if (strcmp(str, "ECDSA") == 0) { |
| 1946 | *psig = EVP_PKEY_EC; |
| 1947 | } else { |
| 1948 | *phash = OBJ_sn2nid(str); |
| 1949 | if (*phash == NID_undef) |
| 1950 | *phash = OBJ_ln2nid(str); |
| 1951 | } |
| 1952 | } |
| 1953 | /* Maximum length of a signature algorithm string component */ |
| 1954 | #define TLS_MAX_SIGSTRING_LEN 40 |
| 1955 | |
| 1956 | static int sig_cb(const char *elem, int len, void *arg) |
| 1957 | { |
| 1958 | sig_cb_st *sarg = arg; |
| 1959 | size_t i; |
| 1960 | const SIGALG_LOOKUP *s; |
| 1961 | char etmp[TLS_MAX_SIGSTRING_LEN], *p; |
| 1962 | int sig_alg = NID_undef, hash_alg = NID_undef; |
| 1963 | if (elem == NULL) |
| 1964 | return 0; |
| 1965 | if (sarg->sigalgcnt == TLS_MAX_SIGALGCNT) |
| 1966 | return 0; |
| 1967 | if (len > (int)(sizeof(etmp) - 1)) |
| 1968 | return 0; |
| 1969 | memcpy(etmp, elem, len); |
| 1970 | etmp[len] = 0; |
| 1971 | p = strchr(etmp, '+'); |
| 1972 | /* |
| 1973 | * We only allow SignatureSchemes listed in the sigalg_lookup_tbl; |
| 1974 | * if there's no '+' in the provided name, look for the new-style combined |
| 1975 | * name. If not, match both sig+hash to find the needed SIGALG_LOOKUP. |
| 1976 | * Just sig+hash is not unique since TLS 1.3 adds rsa_pss_pss_* and |
| 1977 | * rsa_pss_rsae_* that differ only by public key OID; in such cases |
| 1978 | * we will pick the _rsae_ variant, by virtue of them appearing earlier |
| 1979 | * in the table. |
| 1980 | */ |
| 1981 | if (p == NULL) { |
| 1982 | for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); |
| 1983 | i++, s++) { |
| 1984 | if (s->name != NULL && strcmp(etmp, s->name) == 0) { |
| 1985 | sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; |
| 1986 | break; |
| 1987 | } |
| 1988 | } |
| 1989 | if (i == OSSL_NELEM(sigalg_lookup_tbl)) |
| 1990 | return 0; |
| 1991 | } else { |
| 1992 | *p = 0; |
| 1993 | p++; |
| 1994 | if (*p == 0) |
| 1995 | return 0; |
| 1996 | get_sigorhash(&sig_alg, &hash_alg, etmp); |
| 1997 | get_sigorhash(&sig_alg, &hash_alg, p); |
| 1998 | if (sig_alg == NID_undef || hash_alg == NID_undef) |
| 1999 | return 0; |
| 2000 | for (i = 0, s = sigalg_lookup_tbl; i < OSSL_NELEM(sigalg_lookup_tbl); |
| 2001 | i++, s++) { |
| 2002 | if (s->hash == hash_alg && s->sig == sig_alg) { |
| 2003 | sarg->sigalgs[sarg->sigalgcnt++] = s->sigalg; |
| 2004 | break; |
| 2005 | } |
| 2006 | } |
| 2007 | if (i == OSSL_NELEM(sigalg_lookup_tbl)) |
| 2008 | return 0; |
| 2009 | } |
| 2010 | |
| 2011 | /* Reject duplicates */ |
| 2012 | for (i = 0; i < sarg->sigalgcnt - 1; i++) { |
| 2013 | if (sarg->sigalgs[i] == sarg->sigalgs[sarg->sigalgcnt - 1]) { |
| 2014 | sarg->sigalgcnt--; |
| 2015 | return 0; |
| 2016 | } |
| 2017 | } |
| 2018 | return 1; |
| 2019 | } |
| 2020 | |
| 2021 | /* |
| 2022 | * Set supported signature algorithms based on a colon separated list of the |
| 2023 | * form sig+hash e.g. RSA+SHA512:DSA+SHA512 |
| 2024 | */ |
| 2025 | int tls1_set_sigalgs_list(CERT *c, const char *str, int client) |
| 2026 | { |
| 2027 | sig_cb_st sig; |
| 2028 | sig.sigalgcnt = 0; |
| 2029 | if (!CONF_parse_list(str, ':', 1, sig_cb, &sig)) |
| 2030 | return 0; |
| 2031 | if (c == NULL) |
| 2032 | return 1; |
| 2033 | return tls1_set_raw_sigalgs(c, sig.sigalgs, sig.sigalgcnt, client); |
| 2034 | } |
| 2035 | |
| 2036 | int tls1_set_raw_sigalgs(CERT *c, const uint16_t *psigs, size_t salglen, |
| 2037 | int client) |
| 2038 | { |
| 2039 | uint16_t *sigalgs; |
| 2040 | |
| 2041 | if ((sigalgs = OPENSSL_malloc(salglen * sizeof(*sigalgs))) == NULL) { |
| 2042 | SSLerr(SSL_F_TLS1_SET_RAW_SIGALGS, ERR_R_MALLOC_FAILURE); |
| 2043 | return 0; |
| 2044 | } |
| 2045 | memcpy(sigalgs, psigs, salglen * sizeof(*sigalgs)); |
| 2046 | |
| 2047 | if (client) { |
| 2048 | OPENSSL_free(c->client_sigalgs); |
| 2049 | c->client_sigalgs = sigalgs; |
| 2050 | c->client_sigalgslen = salglen; |
| 2051 | } else { |
| 2052 | OPENSSL_free(c->conf_sigalgs); |
| 2053 | c->conf_sigalgs = sigalgs; |
| 2054 | c->conf_sigalgslen = salglen; |
| 2055 | } |
| 2056 | |
| 2057 | return 1; |
| 2058 | } |
| 2059 | |
| 2060 | int tls1_set_sigalgs(CERT *c, const int *psig_nids, size_t salglen, int client) |
| 2061 | { |
| 2062 | uint16_t *sigalgs, *sptr; |
| 2063 | size_t i; |
| 2064 | |
| 2065 | if (salglen & 1) |
| 2066 | return 0; |
| 2067 | if ((sigalgs = OPENSSL_malloc((salglen / 2) * sizeof(*sigalgs))) == NULL) { |
| 2068 | SSLerr(SSL_F_TLS1_SET_SIGALGS, ERR_R_MALLOC_FAILURE); |
| 2069 | return 0; |
| 2070 | } |
| 2071 | for (i = 0, sptr = sigalgs; i < salglen; i += 2) { |
| 2072 | size_t j; |
| 2073 | const SIGALG_LOOKUP *curr; |
| 2074 | int md_id = *psig_nids++; |
| 2075 | int sig_id = *psig_nids++; |
| 2076 | |
| 2077 | for (j = 0, curr = sigalg_lookup_tbl; j < OSSL_NELEM(sigalg_lookup_tbl); |
| 2078 | j++, curr++) { |
| 2079 | if (curr->hash == md_id && curr->sig == sig_id) { |
| 2080 | *sptr++ = curr->sigalg; |
| 2081 | break; |
| 2082 | } |
| 2083 | } |
| 2084 | |
| 2085 | if (j == OSSL_NELEM(sigalg_lookup_tbl)) |
| 2086 | goto err; |
| 2087 | } |
| 2088 | |
| 2089 | if (client) { |
| 2090 | OPENSSL_free(c->client_sigalgs); |
| 2091 | c->client_sigalgs = sigalgs; |
| 2092 | c->client_sigalgslen = salglen / 2; |
| 2093 | } else { |
| 2094 | OPENSSL_free(c->conf_sigalgs); |
| 2095 | c->conf_sigalgs = sigalgs; |
| 2096 | c->conf_sigalgslen = salglen / 2; |
| 2097 | } |
| 2098 | |
| 2099 | return 1; |
| 2100 | |
| 2101 | err: |
| 2102 | OPENSSL_free(sigalgs); |
| 2103 | return 0; |
| 2104 | } |
| 2105 | |
| 2106 | static int tls1_check_sig_alg(SSL *s, X509 *x, int default_nid) |
| 2107 | { |
| 2108 | int sig_nid, use_pc_sigalgs = 0; |
| 2109 | size_t i; |
| 2110 | const SIGALG_LOOKUP *sigalg; |
| 2111 | size_t sigalgslen; |
| 2112 | if (default_nid == -1) |
| 2113 | return 1; |
| 2114 | sig_nid = X509_get_signature_nid(x); |
| 2115 | if (default_nid) |
| 2116 | return sig_nid == default_nid ? 1 : 0; |
| 2117 | |
| 2118 | if (SSL_IS_TLS13(s) && s->s3->tmp.peer_cert_sigalgs != NULL) { |
| 2119 | /* |
| 2120 | * If we're in TLSv1.3 then we only get here if we're checking the |
| 2121 | * chain. If the peer has specified peer_cert_sigalgs then we use them |
| 2122 | * otherwise we default to normal sigalgs. |
| 2123 | */ |
| 2124 | sigalgslen = s->s3->tmp.peer_cert_sigalgslen; |
| 2125 | use_pc_sigalgs = 1; |
| 2126 | } else { |
| 2127 | sigalgslen = s->shared_sigalgslen; |
| 2128 | } |
| 2129 | for (i = 0; i < sigalgslen; i++) { |
| 2130 | sigalg = use_pc_sigalgs |
| 2131 | ? tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]) |
| 2132 | : s->shared_sigalgs[i]; |
| 2133 | if (sigalg != NULL && sig_nid == sigalg->sigandhash) |
| 2134 | return 1; |
| 2135 | } |
| 2136 | return 0; |
| 2137 | } |
| 2138 | |
| 2139 | /* Check to see if a certificate issuer name matches list of CA names */ |
| 2140 | static int ssl_check_ca_name(STACK_OF(X509_NAME) *names, X509 *x) |
| 2141 | { |
| 2142 | X509_NAME *nm; |
| 2143 | int i; |
| 2144 | nm = X509_get_issuer_name(x); |
| 2145 | for (i = 0; i < sk_X509_NAME_num(names); i++) { |
| 2146 | if (!X509_NAME_cmp(nm, sk_X509_NAME_value(names, i))) |
| 2147 | return 1; |
| 2148 | } |
| 2149 | return 0; |
| 2150 | } |
| 2151 | |
| 2152 | /* |
| 2153 | * Check certificate chain is consistent with TLS extensions and is usable by |
| 2154 | * server. This servers two purposes: it allows users to check chains before |
| 2155 | * passing them to the server and it allows the server to check chains before |
| 2156 | * attempting to use them. |
| 2157 | */ |
| 2158 | |
| 2159 | /* Flags which need to be set for a certificate when strict mode not set */ |
| 2160 | |
| 2161 | #define CERT_PKEY_VALID_FLAGS \ |
| 2162 | (CERT_PKEY_EE_SIGNATURE|CERT_PKEY_EE_PARAM) |
| 2163 | /* Strict mode flags */ |
| 2164 | #define CERT_PKEY_STRICT_FLAGS \ |
| 2165 | (CERT_PKEY_VALID_FLAGS|CERT_PKEY_CA_SIGNATURE|CERT_PKEY_CA_PARAM \ |
| 2166 | | CERT_PKEY_ISSUER_NAME|CERT_PKEY_CERT_TYPE) |
| 2167 | |
| 2168 | int tls1_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain, |
| 2169 | int idx) |
| 2170 | { |
| 2171 | int i; |
| 2172 | int rv = 0; |
| 2173 | int check_flags = 0, strict_mode; |
| 2174 | CERT_PKEY *cpk = NULL; |
| 2175 | CERT *c = s->cert; |
| 2176 | uint32_t *pvalid; |
| 2177 | unsigned int suiteb_flags = tls1_suiteb(s); |
| 2178 | /* idx == -1 means checking server chains */ |
| 2179 | if (idx != -1) { |
| 2180 | /* idx == -2 means checking client certificate chains */ |
| 2181 | if (idx == -2) { |
| 2182 | cpk = c->key; |
| 2183 | idx = (int)(cpk - c->pkeys); |
| 2184 | } else |
| 2185 | cpk = c->pkeys + idx; |
| 2186 | pvalid = s->s3->tmp.valid_flags + idx; |
| 2187 | x = cpk->x509; |
| 2188 | pk = cpk->privatekey; |
| 2189 | chain = cpk->chain; |
| 2190 | strict_mode = c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT; |
| 2191 | /* If no cert or key, forget it */ |
| 2192 | if (!x || !pk) |
| 2193 | goto end; |
| 2194 | } else { |
| 2195 | size_t certidx; |
| 2196 | |
| 2197 | if (!x || !pk) |
| 2198 | return 0; |
| 2199 | |
| 2200 | if (ssl_cert_lookup_by_pkey(pk, &certidx) == NULL) |
| 2201 | return 0; |
| 2202 | idx = certidx; |
| 2203 | pvalid = s->s3->tmp.valid_flags + idx; |
| 2204 | |
| 2205 | if (c->cert_flags & SSL_CERT_FLAGS_CHECK_TLS_STRICT) |
| 2206 | check_flags = CERT_PKEY_STRICT_FLAGS; |
| 2207 | else |
| 2208 | check_flags = CERT_PKEY_VALID_FLAGS; |
| 2209 | strict_mode = 1; |
| 2210 | } |
| 2211 | |
| 2212 | if (suiteb_flags) { |
| 2213 | int ok; |
| 2214 | if (check_flags) |
| 2215 | check_flags |= CERT_PKEY_SUITEB; |
| 2216 | ok = X509_chain_check_suiteb(NULL, x, chain, suiteb_flags); |
| 2217 | if (ok == X509_V_OK) |
| 2218 | rv |= CERT_PKEY_SUITEB; |
| 2219 | else if (!check_flags) |
| 2220 | goto end; |
| 2221 | } |
| 2222 | |
| 2223 | /* |
| 2224 | * Check all signature algorithms are consistent with signature |
| 2225 | * algorithms extension if TLS 1.2 or later and strict mode. |
| 2226 | */ |
| 2227 | if (TLS1_get_version(s) >= TLS1_2_VERSION && strict_mode) { |
| 2228 | int default_nid; |
| 2229 | int rsign = 0; |
| 2230 | if (s->s3->tmp.peer_cert_sigalgs != NULL |
| 2231 | || s->s3->tmp.peer_sigalgs != NULL) { |
| 2232 | default_nid = 0; |
| 2233 | /* If no sigalgs extension use defaults from RFC5246 */ |
| 2234 | } else { |
| 2235 | switch (idx) { |
| 2236 | case SSL_PKEY_RSA: |
| 2237 | rsign = EVP_PKEY_RSA; |
| 2238 | default_nid = NID_sha1WithRSAEncryption; |
| 2239 | break; |
| 2240 | |
| 2241 | case SSL_PKEY_DSA_SIGN: |
| 2242 | rsign = EVP_PKEY_DSA; |
| 2243 | default_nid = NID_dsaWithSHA1; |
| 2244 | break; |
| 2245 | |
| 2246 | case SSL_PKEY_ECC: |
| 2247 | rsign = EVP_PKEY_EC; |
| 2248 | default_nid = NID_ecdsa_with_SHA1; |
| 2249 | break; |
| 2250 | |
| 2251 | case SSL_PKEY_GOST01: |
| 2252 | rsign = NID_id_GostR3410_2001; |
| 2253 | default_nid = NID_id_GostR3411_94_with_GostR3410_2001; |
| 2254 | break; |
| 2255 | |
| 2256 | case SSL_PKEY_GOST12_256: |
| 2257 | rsign = NID_id_GostR3410_2012_256; |
| 2258 | default_nid = NID_id_tc26_signwithdigest_gost3410_2012_256; |
| 2259 | break; |
| 2260 | |
| 2261 | case SSL_PKEY_GOST12_512: |
| 2262 | rsign = NID_id_GostR3410_2012_512; |
| 2263 | default_nid = NID_id_tc26_signwithdigest_gost3410_2012_512; |
| 2264 | break; |
| 2265 | |
| 2266 | default: |
| 2267 | default_nid = -1; |
| 2268 | break; |
| 2269 | } |
| 2270 | } |
| 2271 | /* |
| 2272 | * If peer sent no signature algorithms extension and we have set |
| 2273 | * preferred signature algorithms check we support sha1. |
| 2274 | */ |
| 2275 | if (default_nid > 0 && c->conf_sigalgs) { |
| 2276 | size_t j; |
| 2277 | const uint16_t *p = c->conf_sigalgs; |
| 2278 | for (j = 0; j < c->conf_sigalgslen; j++, p++) { |
| 2279 | const SIGALG_LOOKUP *lu = tls1_lookup_sigalg(*p); |
| 2280 | |
| 2281 | if (lu != NULL && lu->hash == NID_sha1 && lu->sig == rsign) |
| 2282 | break; |
| 2283 | } |
| 2284 | if (j == c->conf_sigalgslen) { |
| 2285 | if (check_flags) |
| 2286 | goto skip_sigs; |
| 2287 | else |
| 2288 | goto end; |
| 2289 | } |
| 2290 | } |
| 2291 | /* Check signature algorithm of each cert in chain */ |
| 2292 | if (SSL_IS_TLS13(s)) { |
| 2293 | /* |
| 2294 | * We only get here if the application has called SSL_check_chain(), |
| 2295 | * so check_flags is always set. |
| 2296 | */ |
| 2297 | if (find_sig_alg(s, x, pk) != NULL) |
| 2298 | rv |= CERT_PKEY_EE_SIGNATURE; |
| 2299 | } else if (!tls1_check_sig_alg(s, x, default_nid)) { |
| 2300 | if (!check_flags) |
| 2301 | goto end; |
| 2302 | } else |
| 2303 | rv |= CERT_PKEY_EE_SIGNATURE; |
| 2304 | rv |= CERT_PKEY_CA_SIGNATURE; |
| 2305 | for (i = 0; i < sk_X509_num(chain); i++) { |
| 2306 | if (!tls1_check_sig_alg(s, sk_X509_value(chain, i), default_nid)) { |
| 2307 | if (check_flags) { |
| 2308 | rv &= ~CERT_PKEY_CA_SIGNATURE; |
| 2309 | break; |
| 2310 | } else |
| 2311 | goto end; |
| 2312 | } |
| 2313 | } |
| 2314 | } |
| 2315 | /* Else not TLS 1.2, so mark EE and CA signing algorithms OK */ |
| 2316 | else if (check_flags) |
| 2317 | rv |= CERT_PKEY_EE_SIGNATURE | CERT_PKEY_CA_SIGNATURE; |
| 2318 | skip_sigs: |
| 2319 | /* Check cert parameters are consistent */ |
| 2320 | if (tls1_check_cert_param(s, x, 1)) |
| 2321 | rv |= CERT_PKEY_EE_PARAM; |
| 2322 | else if (!check_flags) |
| 2323 | goto end; |
| 2324 | if (!s->server) |
| 2325 | rv |= CERT_PKEY_CA_PARAM; |
| 2326 | /* In strict mode check rest of chain too */ |
| 2327 | else if (strict_mode) { |
| 2328 | rv |= CERT_PKEY_CA_PARAM; |
| 2329 | for (i = 0; i < sk_X509_num(chain); i++) { |
| 2330 | X509 *ca = sk_X509_value(chain, i); |
| 2331 | if (!tls1_check_cert_param(s, ca, 0)) { |
| 2332 | if (check_flags) { |
| 2333 | rv &= ~CERT_PKEY_CA_PARAM; |
| 2334 | break; |
| 2335 | } else |
| 2336 | goto end; |
| 2337 | } |
| 2338 | } |
| 2339 | } |
| 2340 | if (!s->server && strict_mode) { |
| 2341 | STACK_OF(X509_NAME) *ca_dn; |
| 2342 | int check_type = 0; |
| 2343 | switch (EVP_PKEY_id(pk)) { |
| 2344 | case EVP_PKEY_RSA: |
| 2345 | check_type = TLS_CT_RSA_SIGN; |
| 2346 | break; |
| 2347 | case EVP_PKEY_DSA: |
| 2348 | check_type = TLS_CT_DSS_SIGN; |
| 2349 | break; |
| 2350 | case EVP_PKEY_EC: |
| 2351 | check_type = TLS_CT_ECDSA_SIGN; |
| 2352 | break; |
| 2353 | } |
| 2354 | if (check_type) { |
| 2355 | const uint8_t *ctypes = s->s3->tmp.ctype; |
| 2356 | size_t j; |
| 2357 | |
| 2358 | for (j = 0; j < s->s3->tmp.ctype_len; j++, ctypes++) { |
| 2359 | if (*ctypes == check_type) { |
| 2360 | rv |= CERT_PKEY_CERT_TYPE; |
| 2361 | break; |
| 2362 | } |
| 2363 | } |
| 2364 | if (!(rv & CERT_PKEY_CERT_TYPE) && !check_flags) |
| 2365 | goto end; |
| 2366 | } else { |
| 2367 | rv |= CERT_PKEY_CERT_TYPE; |
| 2368 | } |
| 2369 | |
| 2370 | ca_dn = s->s3->tmp.peer_ca_names; |
| 2371 | |
| 2372 | if (ca_dn == NULL |
| 2373 | || sk_X509_NAME_num(ca_dn) == 0 |
| 2374 | || ssl_check_ca_name(ca_dn, x)) |
| 2375 | rv |= CERT_PKEY_ISSUER_NAME; |
| 2376 | else |
| 2377 | for (i = 0; i < sk_X509_num(chain); i++) { |
| 2378 | X509 *xtmp = sk_X509_value(chain, i); |
| 2379 | |
| 2380 | if (ssl_check_ca_name(ca_dn, xtmp)) { |
| 2381 | rv |= CERT_PKEY_ISSUER_NAME; |
| 2382 | break; |
| 2383 | } |
| 2384 | } |
| 2385 | |
| 2386 | if (!check_flags && !(rv & CERT_PKEY_ISSUER_NAME)) |
| 2387 | goto end; |
| 2388 | } else |
| 2389 | rv |= CERT_PKEY_ISSUER_NAME | CERT_PKEY_CERT_TYPE; |
| 2390 | |
| 2391 | if (!check_flags || (rv & check_flags) == check_flags) |
| 2392 | rv |= CERT_PKEY_VALID; |
| 2393 | |
| 2394 | end: |
| 2395 | |
| 2396 | if (TLS1_get_version(s) >= TLS1_2_VERSION) |
| 2397 | rv |= *pvalid & (CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN); |
| 2398 | else |
| 2399 | rv |= CERT_PKEY_SIGN | CERT_PKEY_EXPLICIT_SIGN; |
| 2400 | |
| 2401 | /* |
| 2402 | * When checking a CERT_PKEY structure all flags are irrelevant if the |
| 2403 | * chain is invalid. |
| 2404 | */ |
| 2405 | if (!check_flags) { |
| 2406 | if (rv & CERT_PKEY_VALID) { |
| 2407 | *pvalid = rv; |
| 2408 | } else { |
| 2409 | /* Preserve sign and explicit sign flag, clear rest */ |
| 2410 | *pvalid &= CERT_PKEY_EXPLICIT_SIGN | CERT_PKEY_SIGN; |
| 2411 | return 0; |
| 2412 | } |
| 2413 | } |
| 2414 | return rv; |
| 2415 | } |
| 2416 | |
| 2417 | /* Set validity of certificates in an SSL structure */ |
| 2418 | void tls1_set_cert_validity(SSL *s) |
| 2419 | { |
| 2420 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA); |
| 2421 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_RSA_PSS_SIGN); |
| 2422 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_DSA_SIGN); |
| 2423 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ECC); |
| 2424 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST01); |
| 2425 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_256); |
| 2426 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_GOST12_512); |
| 2427 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED25519); |
| 2428 | tls1_check_chain(s, NULL, NULL, NULL, SSL_PKEY_ED448); |
| 2429 | } |
| 2430 | |
| 2431 | /* User level utility function to check a chain is suitable */ |
| 2432 | int SSL_check_chain(SSL *s, X509 *x, EVP_PKEY *pk, STACK_OF(X509) *chain) |
| 2433 | { |
| 2434 | return tls1_check_chain(s, x, pk, chain, -1); |
| 2435 | } |
| 2436 | |
| 2437 | #ifndef OPENSSL_NO_DH |
| 2438 | DH *ssl_get_auto_dh(SSL *s) |
| 2439 | { |
| 2440 | DH *dhp = NULL; |
| 2441 | BIGNUM *p = NULL, *g = NULL; |
| 2442 | int dh_secbits = 80, sec_level_bits; |
| 2443 | |
| 2444 | if (s->cert->dh_tmp_auto != 2) { |
| 2445 | if (s->s3->tmp.new_cipher->algorithm_auth & (SSL_aNULL | SSL_aPSK)) { |
| 2446 | if (s->s3->tmp.new_cipher->strength_bits == 256) |
| 2447 | dh_secbits = 128; |
| 2448 | else |
| 2449 | dh_secbits = 80; |
| 2450 | } else { |
| 2451 | if (s->s3->tmp.cert == NULL) |
| 2452 | return NULL; |
| 2453 | dh_secbits = EVP_PKEY_security_bits(s->s3->tmp.cert->privatekey); |
| 2454 | } |
| 2455 | } |
| 2456 | |
| 2457 | dhp = DH_new(); |
| 2458 | if (dhp == NULL) |
| 2459 | return NULL; |
| 2460 | g = BN_new(); |
| 2461 | if (g == NULL || !BN_set_word(g, 2)) { |
| 2462 | DH_free(dhp); |
| 2463 | BN_free(g); |
| 2464 | return NULL; |
| 2465 | } |
| 2466 | |
| 2467 | /* Do not pick a prime that is too weak for the current security level */ |
| 2468 | sec_level_bits = ssl_get_security_level_bits(s, NULL, NULL); |
| 2469 | if (dh_secbits < sec_level_bits) |
| 2470 | dh_secbits = sec_level_bits; |
| 2471 | |
| 2472 | if (dh_secbits >= 192) |
| 2473 | p = BN_get_rfc3526_prime_8192(NULL); |
| 2474 | else if (dh_secbits >= 152) |
| 2475 | p = BN_get_rfc3526_prime_4096(NULL); |
| 2476 | else if (dh_secbits >= 128) |
| 2477 | p = BN_get_rfc3526_prime_3072(NULL); |
| 2478 | else if (dh_secbits >= 112) |
| 2479 | p = BN_get_rfc3526_prime_2048(NULL); |
| 2480 | else |
| 2481 | p = BN_get_rfc2409_prime_1024(NULL); |
| 2482 | if (p == NULL || !DH_set0_pqg(dhp, p, NULL, g)) { |
| 2483 | DH_free(dhp); |
| 2484 | BN_free(p); |
| 2485 | BN_free(g); |
| 2486 | return NULL; |
| 2487 | } |
| 2488 | return dhp; |
| 2489 | } |
| 2490 | #endif |
| 2491 | |
| 2492 | static int ssl_security_cert_key(SSL *s, SSL_CTX *ctx, X509 *x, int op) |
| 2493 | { |
| 2494 | int secbits = -1; |
| 2495 | EVP_PKEY *pkey = X509_get0_pubkey(x); |
| 2496 | if (pkey) { |
| 2497 | /* |
| 2498 | * If no parameters this will return -1 and fail using the default |
| 2499 | * security callback for any non-zero security level. This will |
| 2500 | * reject keys which omit parameters but this only affects DSA and |
| 2501 | * omission of parameters is never (?) done in practice. |
| 2502 | */ |
| 2503 | secbits = EVP_PKEY_security_bits(pkey); |
| 2504 | } |
| 2505 | if (s) |
| 2506 | return ssl_security(s, op, secbits, 0, x); |
| 2507 | else |
| 2508 | return ssl_ctx_security(ctx, op, secbits, 0, x); |
| 2509 | } |
| 2510 | |
| 2511 | static int ssl_security_cert_sig(SSL *s, SSL_CTX *ctx, X509 *x, int op) |
| 2512 | { |
| 2513 | /* Lookup signature algorithm digest */ |
| 2514 | int secbits, nid, pknid; |
| 2515 | /* Don't check signature if self signed */ |
| 2516 | if ((X509_get_extension_flags(x) & EXFLAG_SS) != 0) |
| 2517 | return 1; |
| 2518 | if (!X509_get_signature_info(x, &nid, &pknid, &secbits, NULL)) |
| 2519 | secbits = -1; |
| 2520 | /* If digest NID not defined use signature NID */ |
| 2521 | if (nid == NID_undef) |
| 2522 | nid = pknid; |
| 2523 | if (s) |
| 2524 | return ssl_security(s, op, secbits, nid, x); |
| 2525 | else |
| 2526 | return ssl_ctx_security(ctx, op, secbits, nid, x); |
| 2527 | } |
| 2528 | |
| 2529 | int ssl_security_cert(SSL *s, SSL_CTX *ctx, X509 *x, int vfy, int is_ee) |
| 2530 | { |
| 2531 | if (vfy) |
| 2532 | vfy = SSL_SECOP_PEER; |
| 2533 | if (is_ee) { |
| 2534 | if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_EE_KEY | vfy)) |
| 2535 | return SSL_R_EE_KEY_TOO_SMALL; |
| 2536 | } else { |
| 2537 | if (!ssl_security_cert_key(s, ctx, x, SSL_SECOP_CA_KEY | vfy)) |
| 2538 | return SSL_R_CA_KEY_TOO_SMALL; |
| 2539 | } |
| 2540 | if (!ssl_security_cert_sig(s, ctx, x, SSL_SECOP_CA_MD | vfy)) |
| 2541 | return SSL_R_CA_MD_TOO_WEAK; |
| 2542 | return 1; |
| 2543 | } |
| 2544 | |
| 2545 | /* |
| 2546 | * Check security of a chain, if |sk| includes the end entity certificate then |
| 2547 | * |x| is NULL. If |vfy| is 1 then we are verifying a peer chain and not sending |
| 2548 | * one to the peer. Return values: 1 if ok otherwise error code to use |
| 2549 | */ |
| 2550 | |
| 2551 | int ssl_security_cert_chain(SSL *s, STACK_OF(X509) *sk, X509 *x, int vfy) |
| 2552 | { |
| 2553 | int rv, start_idx, i; |
| 2554 | if (x == NULL) { |
| 2555 | x = sk_X509_value(sk, 0); |
| 2556 | if (x == NULL) |
| 2557 | return ERR_R_INTERNAL_ERROR; |
| 2558 | start_idx = 1; |
| 2559 | } else |
| 2560 | start_idx = 0; |
| 2561 | |
| 2562 | rv = ssl_security_cert(s, NULL, x, vfy, 1); |
| 2563 | if (rv != 1) |
| 2564 | return rv; |
| 2565 | |
| 2566 | for (i = start_idx; i < sk_X509_num(sk); i++) { |
| 2567 | x = sk_X509_value(sk, i); |
| 2568 | rv = ssl_security_cert(s, NULL, x, vfy, 0); |
| 2569 | if (rv != 1) |
| 2570 | return rv; |
| 2571 | } |
| 2572 | return 1; |
| 2573 | } |
| 2574 | |
| 2575 | /* |
| 2576 | * For TLS 1.2 servers check if we have a certificate which can be used |
| 2577 | * with the signature algorithm "lu" and return index of certificate. |
| 2578 | */ |
| 2579 | |
| 2580 | static int tls12_get_cert_sigalg_idx(const SSL *s, const SIGALG_LOOKUP *lu) |
| 2581 | { |
| 2582 | int sig_idx = lu->sig_idx; |
| 2583 | const SSL_CERT_LOOKUP *clu = ssl_cert_lookup_by_idx(sig_idx); |
| 2584 | |
| 2585 | /* If not recognised or not supported by cipher mask it is not suitable */ |
| 2586 | if (clu == NULL |
| 2587 | || (clu->amask & s->s3->tmp.new_cipher->algorithm_auth) == 0 |
| 2588 | || (clu->nid == EVP_PKEY_RSA_PSS |
| 2589 | && (s->s3->tmp.new_cipher->algorithm_mkey & SSL_kRSA) != 0)) |
| 2590 | return -1; |
| 2591 | |
| 2592 | return s->s3->tmp.valid_flags[sig_idx] & CERT_PKEY_VALID ? sig_idx : -1; |
| 2593 | } |
| 2594 | |
| 2595 | /* |
| 2596 | * Checks the given cert against signature_algorithm_cert restrictions sent by |
| 2597 | * the peer (if any) as well as whether the hash from the sigalg is usable with |
| 2598 | * the key. |
| 2599 | * Returns true if the cert is usable and false otherwise. |
| 2600 | */ |
| 2601 | static int check_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, |
| 2602 | EVP_PKEY *pkey) |
| 2603 | { |
| 2604 | const SIGALG_LOOKUP *lu; |
| 2605 | int mdnid, pknid, default_mdnid; |
| 2606 | size_t i; |
| 2607 | |
| 2608 | /* If the EVP_PKEY reports a mandatory digest, allow nothing else. */ |
| 2609 | ERR_set_mark(); |
| 2610 | if (EVP_PKEY_get_default_digest_nid(pkey, &default_mdnid) == 2 && |
| 2611 | sig->hash != default_mdnid) |
| 2612 | return 0; |
| 2613 | |
| 2614 | /* If it didn't report a mandatory NID, for whatever reasons, |
| 2615 | * just clear the error and allow all hashes to be used. */ |
| 2616 | ERR_pop_to_mark(); |
| 2617 | |
| 2618 | if (s->s3->tmp.peer_cert_sigalgs != NULL) { |
| 2619 | for (i = 0; i < s->s3->tmp.peer_cert_sigalgslen; i++) { |
| 2620 | lu = tls1_lookup_sigalg(s->s3->tmp.peer_cert_sigalgs[i]); |
| 2621 | if (lu == NULL |
| 2622 | || !X509_get_signature_info(x, &mdnid, &pknid, NULL, NULL)) |
| 2623 | continue; |
| 2624 | /* |
| 2625 | * TODO this does not differentiate between the |
| 2626 | * rsa_pss_pss_* and rsa_pss_rsae_* schemes since we do not |
| 2627 | * have a chain here that lets us look at the key OID in the |
| 2628 | * signing certificate. |
| 2629 | */ |
| 2630 | if (mdnid == lu->hash && pknid == lu->sig) |
| 2631 | return 1; |
| 2632 | } |
| 2633 | return 0; |
| 2634 | } |
| 2635 | return 1; |
| 2636 | } |
| 2637 | |
| 2638 | /* |
| 2639 | * Returns true if |s| has a usable certificate configured for use |
| 2640 | * with signature scheme |sig|. |
| 2641 | * "Usable" includes a check for presence as well as applying |
| 2642 | * the signature_algorithm_cert restrictions sent by the peer (if any). |
| 2643 | * Returns false if no usable certificate is found. |
| 2644 | */ |
| 2645 | static int has_usable_cert(SSL *s, const SIGALG_LOOKUP *sig, int idx) |
| 2646 | { |
| 2647 | /* TLS 1.2 callers can override sig->sig_idx, but not TLS 1.3 callers. */ |
| 2648 | if (idx == -1) |
| 2649 | idx = sig->sig_idx; |
| 2650 | if (!ssl_has_cert(s, idx)) |
| 2651 | return 0; |
| 2652 | |
| 2653 | return check_cert_usable(s, sig, s->cert->pkeys[idx].x509, |
| 2654 | s->cert->pkeys[idx].privatekey); |
| 2655 | } |
| 2656 | |
| 2657 | /* |
| 2658 | * Returns true if the supplied cert |x| and key |pkey| is usable with the |
| 2659 | * specified signature scheme |sig|, or false otherwise. |
| 2660 | */ |
| 2661 | static int is_cert_usable(SSL *s, const SIGALG_LOOKUP *sig, X509 *x, |
| 2662 | EVP_PKEY *pkey) |
| 2663 | { |
| 2664 | size_t idx; |
| 2665 | |
| 2666 | if (ssl_cert_lookup_by_pkey(pkey, &idx) == NULL) |
| 2667 | return 0; |
| 2668 | |
| 2669 | /* Check the key is consistent with the sig alg */ |
| 2670 | if ((int)idx != sig->sig_idx) |
| 2671 | return 0; |
| 2672 | |
| 2673 | return check_cert_usable(s, sig, x, pkey); |
| 2674 | } |
| 2675 | |
| 2676 | /* |
| 2677 | * Find a signature scheme that works with the supplied certificate |x| and key |
| 2678 | * |pkey|. |x| and |pkey| may be NULL in which case we additionally look at our |
| 2679 | * available certs/keys to find one that works. |
| 2680 | */ |
| 2681 | static const SIGALG_LOOKUP *find_sig_alg(SSL *s, X509 *x, EVP_PKEY *pkey) |
| 2682 | { |
| 2683 | const SIGALG_LOOKUP *lu = NULL; |
| 2684 | size_t i; |
| 2685 | #ifndef OPENSSL_NO_EC |
| 2686 | int curve = -1; |
| 2687 | #endif |
| 2688 | EVP_PKEY *tmppkey; |
| 2689 | |
| 2690 | /* Look for a shared sigalgs matching possible certificates */ |
| 2691 | for (i = 0; i < s->shared_sigalgslen; i++) { |
| 2692 | lu = s->shared_sigalgs[i]; |
| 2693 | |
| 2694 | /* Skip SHA1, SHA224, DSA and RSA if not PSS */ |
| 2695 | if (lu->hash == NID_sha1 |
| 2696 | || lu->hash == NID_sha224 |
| 2697 | || lu->sig == EVP_PKEY_DSA |
| 2698 | || lu->sig == EVP_PKEY_RSA) |
| 2699 | continue; |
| 2700 | /* Check that we have a cert, and signature_algorithms_cert */ |
| 2701 | if (!tls1_lookup_md(lu, NULL)) |
| 2702 | continue; |
| 2703 | if ((pkey == NULL && !has_usable_cert(s, lu, -1)) |
| 2704 | || (pkey != NULL && !is_cert_usable(s, lu, x, pkey))) |
| 2705 | continue; |
| 2706 | |
| 2707 | tmppkey = (pkey != NULL) ? pkey |
| 2708 | : s->cert->pkeys[lu->sig_idx].privatekey; |
| 2709 | |
| 2710 | if (lu->sig == EVP_PKEY_EC) { |
| 2711 | #ifndef OPENSSL_NO_EC |
| 2712 | if (curve == -1) { |
| 2713 | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(tmppkey); |
| 2714 | curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); |
| 2715 | } |
| 2716 | if (lu->curve != NID_undef && curve != lu->curve) |
| 2717 | continue; |
| 2718 | #else |
| 2719 | continue; |
| 2720 | #endif |
| 2721 | } else if (lu->sig == EVP_PKEY_RSA_PSS) { |
| 2722 | /* validate that key is large enough for the signature algorithm */ |
| 2723 | if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(tmppkey), lu)) |
| 2724 | continue; |
| 2725 | } |
| 2726 | break; |
| 2727 | } |
| 2728 | |
| 2729 | if (i == s->shared_sigalgslen) |
| 2730 | return NULL; |
| 2731 | |
| 2732 | return lu; |
| 2733 | } |
| 2734 | |
| 2735 | /* |
| 2736 | * Choose an appropriate signature algorithm based on available certificates |
| 2737 | * Sets chosen certificate and signature algorithm. |
| 2738 | * |
| 2739 | * For servers if we fail to find a required certificate it is a fatal error, |
| 2740 | * an appropriate error code is set and a TLS alert is sent. |
| 2741 | * |
| 2742 | * For clients fatalerrs is set to 0. If a certificate is not suitable it is not |
| 2743 | * a fatal error: we will either try another certificate or not present one |
| 2744 | * to the server. In this case no error is set. |
| 2745 | */ |
| 2746 | int tls_choose_sigalg(SSL *s, int fatalerrs) |
| 2747 | { |
| 2748 | const SIGALG_LOOKUP *lu = NULL; |
| 2749 | int sig_idx = -1; |
| 2750 | |
| 2751 | s->s3->tmp.cert = NULL; |
| 2752 | s->s3->tmp.sigalg = NULL; |
| 2753 | |
| 2754 | if (SSL_IS_TLS13(s)) { |
| 2755 | lu = find_sig_alg(s, NULL, NULL); |
| 2756 | if (lu == NULL) { |
| 2757 | if (!fatalerrs) |
| 2758 | return 1; |
| 2759 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_F_TLS_CHOOSE_SIGALG, |
| 2760 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| 2761 | return 0; |
| 2762 | } |
| 2763 | } else { |
| 2764 | /* If ciphersuite doesn't require a cert nothing to do */ |
| 2765 | if (!(s->s3->tmp.new_cipher->algorithm_auth & SSL_aCERT)) |
| 2766 | return 1; |
| 2767 | if (!s->server && !ssl_has_cert(s, s->cert->key - s->cert->pkeys)) |
| 2768 | return 1; |
| 2769 | |
| 2770 | if (SSL_USE_SIGALGS(s)) { |
| 2771 | size_t i; |
| 2772 | if (s->s3->tmp.peer_sigalgs != NULL) { |
| 2773 | #ifndef OPENSSL_NO_EC |
| 2774 | int curve; |
| 2775 | |
| 2776 | /* For Suite B need to match signature algorithm to curve */ |
| 2777 | if (tls1_suiteb(s)) { |
| 2778 | EC_KEY *ec = EVP_PKEY_get0_EC_KEY(s->cert->pkeys[SSL_PKEY_ECC].privatekey); |
| 2779 | curve = EC_GROUP_get_curve_name(EC_KEY_get0_group(ec)); |
| 2780 | } else { |
| 2781 | curve = -1; |
| 2782 | } |
| 2783 | #endif |
| 2784 | |
| 2785 | /* |
| 2786 | * Find highest preference signature algorithm matching |
| 2787 | * cert type |
| 2788 | */ |
| 2789 | for (i = 0; i < s->shared_sigalgslen; i++) { |
| 2790 | lu = s->shared_sigalgs[i]; |
| 2791 | |
| 2792 | if (s->server) { |
| 2793 | if ((sig_idx = tls12_get_cert_sigalg_idx(s, lu)) == -1) |
| 2794 | continue; |
| 2795 | } else { |
| 2796 | int cc_idx = s->cert->key - s->cert->pkeys; |
| 2797 | |
| 2798 | sig_idx = lu->sig_idx; |
| 2799 | if (cc_idx != sig_idx) |
| 2800 | continue; |
| 2801 | } |
| 2802 | /* Check that we have a cert, and sig_algs_cert */ |
| 2803 | if (!has_usable_cert(s, lu, sig_idx)) |
| 2804 | continue; |
| 2805 | if (lu->sig == EVP_PKEY_RSA_PSS) { |
| 2806 | /* validate that key is large enough for the signature algorithm */ |
| 2807 | EVP_PKEY *pkey = s->cert->pkeys[sig_idx].privatekey; |
| 2808 | |
| 2809 | if (!rsa_pss_check_min_key_size(EVP_PKEY_get0(pkey), lu)) |
| 2810 | continue; |
| 2811 | } |
| 2812 | #ifndef OPENSSL_NO_EC |
| 2813 | if (curve == -1 || lu->curve == curve) |
| 2814 | #endif |
| 2815 | break; |
| 2816 | } |
| 2817 | #ifndef OPENSSL_NO_GOST |
| 2818 | /* |
| 2819 | * Some Windows-based implementations do not send GOST algorithms indication |
| 2820 | * in supported_algorithms extension, so when we have GOST-based ciphersuite, |
| 2821 | * we have to assume GOST support. |
| 2822 | */ |
| 2823 | if (i == s->shared_sigalgslen && s->s3->tmp.new_cipher->algorithm_auth & (SSL_aGOST01 | SSL_aGOST12)) { |
| 2824 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { |
| 2825 | if (!fatalerrs) |
| 2826 | return 1; |
| 2827 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| 2828 | SSL_F_TLS_CHOOSE_SIGALG, |
| 2829 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| 2830 | return 0; |
| 2831 | } else { |
| 2832 | i = 0; |
| 2833 | sig_idx = lu->sig_idx; |
| 2834 | } |
| 2835 | } |
| 2836 | #endif |
| 2837 | if (i == s->shared_sigalgslen) { |
| 2838 | if (!fatalerrs) |
| 2839 | return 1; |
| 2840 | SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, |
| 2841 | SSL_F_TLS_CHOOSE_SIGALG, |
| 2842 | SSL_R_NO_SUITABLE_SIGNATURE_ALGORITHM); |
| 2843 | return 0; |
| 2844 | } |
| 2845 | } else { |
| 2846 | /* |
| 2847 | * If we have no sigalg use defaults |
| 2848 | */ |
| 2849 | const uint16_t *sent_sigs; |
| 2850 | size_t sent_sigslen; |
| 2851 | |
| 2852 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { |
| 2853 | if (!fatalerrs) |
| 2854 | return 1; |
| 2855 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, |
| 2856 | ERR_R_INTERNAL_ERROR); |
| 2857 | return 0; |
| 2858 | } |
| 2859 | |
| 2860 | /* Check signature matches a type we sent */ |
| 2861 | sent_sigslen = tls12_get_psigalgs(s, 1, &sent_sigs); |
| 2862 | for (i = 0; i < sent_sigslen; i++, sent_sigs++) { |
| 2863 | if (lu->sigalg == *sent_sigs |
| 2864 | && has_usable_cert(s, lu, lu->sig_idx)) |
| 2865 | break; |
| 2866 | } |
| 2867 | if (i == sent_sigslen) { |
| 2868 | if (!fatalerrs) |
| 2869 | return 1; |
| 2870 | SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, |
| 2871 | SSL_F_TLS_CHOOSE_SIGALG, |
| 2872 | SSL_R_WRONG_SIGNATURE_TYPE); |
| 2873 | return 0; |
| 2874 | } |
| 2875 | } |
| 2876 | } else { |
| 2877 | if ((lu = tls1_get_legacy_sigalg(s, -1)) == NULL) { |
| 2878 | if (!fatalerrs) |
| 2879 | return 1; |
| 2880 | SSLfatal(s, SSL_AD_INTERNAL_ERROR, SSL_F_TLS_CHOOSE_SIGALG, |
| 2881 | ERR_R_INTERNAL_ERROR); |
| 2882 | return 0; |
| 2883 | } |
| 2884 | } |
| 2885 | } |
| 2886 | if (sig_idx == -1) |
| 2887 | sig_idx = lu->sig_idx; |
| 2888 | s->s3->tmp.cert = &s->cert->pkeys[sig_idx]; |
| 2889 | s->cert->key = s->s3->tmp.cert; |
| 2890 | s->s3->tmp.sigalg = lu; |
| 2891 | return 1; |
| 2892 | } |
| 2893 | |
| 2894 | int SSL_CTX_set_tlsext_max_fragment_length(SSL_CTX *ctx, uint8_t mode) |
| 2895 | { |
| 2896 | if (mode != TLSEXT_max_fragment_length_DISABLED |
| 2897 | && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { |
| 2898 | SSLerr(SSL_F_SSL_CTX_SET_TLSEXT_MAX_FRAGMENT_LENGTH, |
| 2899 | SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); |
| 2900 | return 0; |
| 2901 | } |
| 2902 | |
| 2903 | ctx->ext.max_fragment_len_mode = mode; |
| 2904 | return 1; |
| 2905 | } |
| 2906 | |
| 2907 | int SSL_set_tlsext_max_fragment_length(SSL *ssl, uint8_t mode) |
| 2908 | { |
| 2909 | if (mode != TLSEXT_max_fragment_length_DISABLED |
| 2910 | && !IS_MAX_FRAGMENT_LENGTH_EXT_VALID(mode)) { |
| 2911 | SSLerr(SSL_F_SSL_SET_TLSEXT_MAX_FRAGMENT_LENGTH, |
| 2912 | SSL_R_SSL3_EXT_INVALID_MAX_FRAGMENT_LENGTH); |
| 2913 | return 0; |
| 2914 | } |
| 2915 | |
| 2916 | ssl->ext.max_fragment_len_mode = mode; |
| 2917 | return 1; |
| 2918 | } |
| 2919 | |
| 2920 | uint8_t SSL_SESSION_get_max_fragment_length(const SSL_SESSION *session) |
| 2921 | { |
| 2922 | return session->ext.max_fragment_len_mode; |
| 2923 | } |