blob: 3463f46d49fea7c25c8870a55dbe7f884ef5f351 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34#include <linux/cpu.h>
35#include <linux/export.h>
36#include <linux/percpu.h>
37#include <linux/hrtimer.h>
38#include <linux/notifier.h>
39#include <linux/syscalls.h>
40#include <linux/kallsyms.h>
41#include <linux/interrupt.h>
42#include <linux/tick.h>
43#include <linux/seq_file.h>
44#include <linux/err.h>
45#include <linux/debugobjects.h>
46#include <linux/sched.h>
47#include <linux/timer.h>
48
49#include <asm/uaccess.h>
50
51#include <trace/events/timer.h>
52#include <trace/events/hist.h>
53
54/*
55 * The timer bases:
56 *
57 * There are more clockids then hrtimer bases. Thus, we index
58 * into the timer bases by the hrtimer_base_type enum. When trying
59 * to reach a base using a clockid, hrtimer_clockid_to_base()
60 * is used to convert from clockid to the proper hrtimer_base_type.
61 */
62DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
63{
64
65 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
66 .clock_base =
67 {
68 {
69 .index = HRTIMER_BASE_MONOTONIC,
70 .clockid = CLOCK_MONOTONIC,
71 .get_time = &ktime_get,
72 .resolution = KTIME_LOW_RES,
73 },
74 {
75 .index = HRTIMER_BASE_REALTIME,
76 .clockid = CLOCK_REALTIME,
77 .get_time = &ktime_get_real,
78 .resolution = KTIME_LOW_RES,
79 },
80 {
81 .index = HRTIMER_BASE_BOOTTIME,
82 .clockid = CLOCK_BOOTTIME,
83 .get_time = &ktime_get_boottime,
84 .resolution = KTIME_LOW_RES,
85 },
86 }
87};
88
89static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
90 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
91 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
92 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
93};
94
95static inline int hrtimer_clockid_to_base(clockid_t clock_id)
96{
97 return hrtimer_clock_to_base_table[clock_id];
98}
99
100
101/*
102 * Get the coarse grained time at the softirq based on xtime and
103 * wall_to_monotonic.
104 */
105static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
106{
107 ktime_t xtim, mono, boot;
108 struct timespec xts, tom, slp;
109
110 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
111
112 xtim = timespec_to_ktime(xts);
113 mono = ktime_add(xtim, timespec_to_ktime(tom));
114 boot = ktime_add(mono, timespec_to_ktime(slp));
115 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
116 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
117 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
118}
119
120/*
121 * Functions and macros which are different for UP/SMP systems are kept in a
122 * single place
123 */
124#ifdef CONFIG_SMP
125
126/*
127 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
128 * means that all timers which are tied to this base via timer->base are
129 * locked, and the base itself is locked too.
130 *
131 * So __run_timers/migrate_timers can safely modify all timers which could
132 * be found on the lists/queues.
133 *
134 * When the timer's base is locked, and the timer removed from list, it is
135 * possible to set timer->base = NULL and drop the lock: the timer remains
136 * locked.
137 */
138static
139struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
140 unsigned long *flags)
141{
142 struct hrtimer_clock_base *base;
143
144 for (;;) {
145 base = timer->base;
146 if (likely(base != NULL)) {
147 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
148 if (likely(base == timer->base))
149 return base;
150 /* The timer has migrated to another CPU: */
151 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
152 }
153 cpu_relax();
154 }
155}
156
157
158/*
159 * Get the preferred target CPU for NOHZ
160 */
161static int hrtimer_get_target(int this_cpu, int pinned)
162{
163#ifdef CONFIG_NO_HZ
164 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
165 return get_nohz_timer_target();
166#endif
167 return this_cpu;
168}
169
170/*
171 * With HIGHRES=y we do not migrate the timer when it is expiring
172 * before the next event on the target cpu because we cannot reprogram
173 * the target cpu hardware and we would cause it to fire late.
174 *
175 * Called with cpu_base->lock of target cpu held.
176 */
177static int
178hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
179{
180#ifdef CONFIG_HIGH_RES_TIMERS
181 ktime_t expires;
182
183 if (!new_base->cpu_base->hres_active)
184 return 0;
185
186 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
187 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
188#else
189 return 0;
190#endif
191}
192
193/*
194 * Switch the timer base to the current CPU when possible.
195 */
196static inline struct hrtimer_clock_base *
197switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
198 int pinned)
199{
200 struct hrtimer_clock_base *new_base;
201 struct hrtimer_cpu_base *new_cpu_base;
202 int this_cpu = smp_processor_id();
203 int cpu = hrtimer_get_target(this_cpu, pinned);
204 int basenum = base->index;
205
206again:
207 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
208 new_base = &new_cpu_base->clock_base[basenum];
209
210 if (base != new_base) {
211 /*
212 * We are trying to move timer to new_base.
213 * However we can't change timer's base while it is running,
214 * so we keep it on the same CPU. No hassle vs. reprogramming
215 * the event source in the high resolution case. The softirq
216 * code will take care of this when the timer function has
217 * completed. There is no conflict as we hold the lock until
218 * the timer is enqueued.
219 */
220 if (unlikely(hrtimer_callback_running(timer)))
221 return base;
222
223 /* See the comment in lock_timer_base() */
224 timer->base = NULL;
225 raw_spin_unlock(&base->cpu_base->lock);
226 raw_spin_lock(&new_base->cpu_base->lock);
227
228 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
229 cpu = this_cpu;
230 raw_spin_unlock(&new_base->cpu_base->lock);
231 raw_spin_lock(&base->cpu_base->lock);
232 timer->base = base;
233 goto again;
234 }
235 timer->base = new_base;
236 } else {
237 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
238 cpu = this_cpu;
239 goto again;
240 }
241 }
242 return new_base;
243}
244
245#else /* CONFIG_SMP */
246
247static inline struct hrtimer_clock_base *
248lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
249{
250 struct hrtimer_clock_base *base = timer->base;
251
252 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
253
254 return base;
255}
256
257# define switch_hrtimer_base(t, b, p) (b)
258
259#endif /* !CONFIG_SMP */
260
261/*
262 * Functions for the union type storage format of ktime_t which are
263 * too large for inlining:
264 */
265#if BITS_PER_LONG < 64
266# ifndef CONFIG_KTIME_SCALAR
267/**
268 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
269 * @kt: addend
270 * @nsec: the scalar nsec value to add
271 *
272 * Returns the sum of kt and nsec in ktime_t format
273 */
274ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
275{
276 ktime_t tmp;
277
278 if (likely(nsec < NSEC_PER_SEC)) {
279 tmp.tv64 = nsec;
280 } else {
281 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
282
283 tmp = ktime_set((long)nsec, rem);
284 }
285
286 return ktime_add(kt, tmp);
287}
288
289EXPORT_SYMBOL_GPL(ktime_add_ns);
290
291/**
292 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
293 * @kt: minuend
294 * @nsec: the scalar nsec value to subtract
295 *
296 * Returns the subtraction of @nsec from @kt in ktime_t format
297 */
298ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
299{
300 ktime_t tmp;
301
302 if (likely(nsec < NSEC_PER_SEC)) {
303 tmp.tv64 = nsec;
304 } else {
305 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
306
307 /* Make sure nsec fits into long */
308 if (unlikely(nsec > KTIME_SEC_MAX))
309 return (ktime_t){ .tv64 = KTIME_MAX };
310
311 tmp = ktime_set((long)nsec, rem);
312 }
313
314 return ktime_sub(kt, tmp);
315}
316
317EXPORT_SYMBOL_GPL(ktime_sub_ns);
318# endif /* !CONFIG_KTIME_SCALAR */
319
320/*
321 * Divide a ktime value by a nanosecond value
322 */
323u64 ktime_divns(const ktime_t kt, s64 div)
324{
325 u64 dclc;
326 int sft = 0;
327
328 dclc = ktime_to_ns(kt);
329 /* Make sure the divisor is less than 2^32: */
330 while (div >> 32) {
331 sft++;
332 div >>= 1;
333 }
334 dclc >>= sft;
335 do_div(dclc, (unsigned long) div);
336
337 return dclc;
338}
339#endif /* BITS_PER_LONG >= 64 */
340
341/*
342 * Add two ktime values and do a safety check for overflow:
343 */
344ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
345{
346 ktime_t res = ktime_add(lhs, rhs);
347
348 /*
349 * We use KTIME_SEC_MAX here, the maximum timeout which we can
350 * return to user space in a timespec:
351 */
352 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
353 res = ktime_set(KTIME_SEC_MAX, 0);
354
355 return res;
356}
357
358EXPORT_SYMBOL_GPL(ktime_add_safe);
359
360#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
361
362static struct debug_obj_descr hrtimer_debug_descr;
363
364static void *hrtimer_debug_hint(void *addr)
365{
366 return ((struct hrtimer *) addr)->function;
367}
368
369/*
370 * fixup_init is called when:
371 * - an active object is initialized
372 */
373static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
374{
375 struct hrtimer *timer = addr;
376
377 switch (state) {
378 case ODEBUG_STATE_ACTIVE:
379 hrtimer_cancel(timer);
380 debug_object_init(timer, &hrtimer_debug_descr);
381 return 1;
382 default:
383 return 0;
384 }
385}
386
387/*
388 * fixup_activate is called when:
389 * - an active object is activated
390 * - an unknown object is activated (might be a statically initialized object)
391 */
392static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
393{
394 switch (state) {
395
396 case ODEBUG_STATE_NOTAVAILABLE:
397 WARN_ON_ONCE(1);
398 return 0;
399
400 case ODEBUG_STATE_ACTIVE:
401 WARN_ON(1);
402
403 default:
404 return 0;
405 }
406}
407
408/*
409 * fixup_free is called when:
410 * - an active object is freed
411 */
412static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
413{
414 struct hrtimer *timer = addr;
415
416 switch (state) {
417 case ODEBUG_STATE_ACTIVE:
418 hrtimer_cancel(timer);
419 debug_object_free(timer, &hrtimer_debug_descr);
420 return 1;
421 default:
422 return 0;
423 }
424}
425
426static struct debug_obj_descr hrtimer_debug_descr = {
427 .name = "hrtimer",
428 .debug_hint = hrtimer_debug_hint,
429 .fixup_init = hrtimer_fixup_init,
430 .fixup_activate = hrtimer_fixup_activate,
431 .fixup_free = hrtimer_fixup_free,
432};
433
434static inline void debug_hrtimer_init(struct hrtimer *timer)
435{
436 debug_object_init(timer, &hrtimer_debug_descr);
437}
438
439static inline void debug_hrtimer_activate(struct hrtimer *timer)
440{
441 debug_object_activate(timer, &hrtimer_debug_descr);
442}
443
444static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
445{
446 debug_object_deactivate(timer, &hrtimer_debug_descr);
447}
448
449static inline void debug_hrtimer_free(struct hrtimer *timer)
450{
451 debug_object_free(timer, &hrtimer_debug_descr);
452}
453
454static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
455 enum hrtimer_mode mode);
456
457void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
458 enum hrtimer_mode mode)
459{
460 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
461 __hrtimer_init(timer, clock_id, mode);
462}
463EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
464
465void destroy_hrtimer_on_stack(struct hrtimer *timer)
466{
467 debug_object_free(timer, &hrtimer_debug_descr);
468}
469
470#else
471static inline void debug_hrtimer_init(struct hrtimer *timer) { }
472static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
473static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
474#endif
475
476static inline void
477debug_init(struct hrtimer *timer, clockid_t clockid,
478 enum hrtimer_mode mode)
479{
480 debug_hrtimer_init(timer);
481 trace_hrtimer_init(timer, clockid, mode);
482}
483
484static inline void debug_activate(struct hrtimer *timer)
485{
486 debug_hrtimer_activate(timer);
487 trace_hrtimer_start(timer);
488}
489
490static inline void debug_deactivate(struct hrtimer *timer)
491{
492 debug_hrtimer_deactivate(timer);
493 trace_hrtimer_cancel(timer);
494}
495
496/* High resolution timer related functions */
497#ifdef CONFIG_HIGH_RES_TIMERS
498
499/*
500 * High resolution timer enabled ?
501 */
502static int hrtimer_hres_enabled __read_mostly = 1;
503
504/*
505 * Enable / Disable high resolution mode
506 */
507static int __init setup_hrtimer_hres(char *str)
508{
509 if (!strcmp(str, "off"))
510 hrtimer_hres_enabled = 0;
511 else if (!strcmp(str, "on"))
512 hrtimer_hres_enabled = 1;
513 else
514 return 0;
515 return 1;
516}
517
518__setup("highres=", setup_hrtimer_hres);
519
520/*
521 * hrtimer_high_res_enabled - query, if the highres mode is enabled
522 */
523static inline int hrtimer_is_hres_enabled(void)
524{
525 return hrtimer_hres_enabled;
526}
527
528/*
529 * Is the high resolution mode active ?
530 */
531static inline int hrtimer_hres_active(void)
532{
533 return __this_cpu_read(hrtimer_bases.hres_active);
534}
535
536/*
537 * Reprogram the event source with checking both queues for the
538 * next event
539 * Called with interrupts disabled and base->lock held
540 */
541static void
542hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
543{
544 int i;
545 struct hrtimer_clock_base *base = cpu_base->clock_base;
546 ktime_t expires, expires_next;
547
548 expires_next.tv64 = KTIME_MAX;
549
550 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
551 struct hrtimer *timer;
552 struct timerqueue_node *next;
553
554 next = timerqueue_getnext(&base->active);
555 if (!next)
556 continue;
557 timer = container_of(next, struct hrtimer, node);
558
559 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
560 /*
561 * clock_was_set() has changed base->offset so the
562 * result might be negative. Fix it up to prevent a
563 * false positive in clockevents_program_event()
564 */
565 if (expires.tv64 < 0)
566 expires.tv64 = 0;
567 if (expires.tv64 < expires_next.tv64)
568 expires_next = expires;
569 }
570
571 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
572 return;
573
574 cpu_base->expires_next.tv64 = expires_next.tv64;
575
576 /*
577 * If a hang was detected in the last timer interrupt then we
578 * leave the hang delay active in the hardware. We want the
579 * system to make progress. That also prevents the following
580 * scenario:
581 * T1 expires 50ms from now
582 * T2 expires 5s from now
583 *
584 * T1 is removed, so this code is called and would reprogram
585 * the hardware to 5s from now. Any hrtimer_start after that
586 * will not reprogram the hardware due to hang_detected being
587 * set. So we'd effectivly block all timers until the T2 event
588 * fires.
589 */
590 if (cpu_base->hang_detected)
591 return;
592
593 if (cpu_base->expires_next.tv64 != KTIME_MAX)
594 tick_program_event(cpu_base->expires_next, 1);
595}
596
597/*
598 * Shared reprogramming for clock_realtime and clock_monotonic
599 *
600 * When a timer is enqueued and expires earlier than the already enqueued
601 * timers, we have to check, whether it expires earlier than the timer for
602 * which the clock event device was armed.
603 *
604 * Called with interrupts disabled and base->cpu_base.lock held
605 */
606static int hrtimer_reprogram(struct hrtimer *timer,
607 struct hrtimer_clock_base *base)
608{
609 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
610 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
611 int res;
612
613 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
614
615 /*
616 * When the callback is running, we do not reprogram the clock event
617 * device. The timer callback is either running on a different CPU or
618 * the callback is executed in the hrtimer_interrupt context. The
619 * reprogramming is handled at the end of the hrtimer_interrupt.
620 */
621 if (hrtimer_callback_running(timer))
622 return 0;
623
624 /*
625 * CLOCK_REALTIME timer might be requested with an absolute
626 * expiry time which is less than base->offset. Nothing wrong
627 * about that, just avoid to call into the tick code, which
628 * has now objections against negative expiry values.
629 */
630 if (expires.tv64 < 0)
631 return -ETIME;
632
633 if (expires.tv64 >= cpu_base->expires_next.tv64)
634 return 0;
635
636 /*
637 * If a hang was detected in the last timer interrupt then we
638 * do not schedule a timer which is earlier than the expiry
639 * which we enforced in the hang detection. We want the system
640 * to make progress.
641 */
642 if (cpu_base->hang_detected)
643 return 0;
644
645 /*
646 * Clockevents returns -ETIME, when the event was in the past.
647 */
648 res = tick_program_event(expires, 0);
649 if (!IS_ERR_VALUE(res))
650 cpu_base->expires_next = expires;
651 return res;
652}
653
654static void __run_hrtimer(struct hrtimer *timer, ktime_t *now);
655static int hrtimer_rt_defer(struct hrtimer *timer);
656
657/*
658 * Initialize the high resolution related parts of cpu_base
659 */
660static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
661{
662 base->expires_next.tv64 = KTIME_MAX;
663 base->hres_active = 0;
664}
665
666/*
667 * When High resolution timers are active, try to reprogram. Note, that in case
668 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
669 * check happens. The timer gets enqueued into the rbtree. The reprogramming
670 * and expiry check is done in the hrtimer_interrupt or in the softirq.
671 */
672static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
673 struct hrtimer_clock_base *base)
674{
675 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
676}
677
678static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
679{
680 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
681 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
682
683 return ktime_get_update_offsets(offs_real, offs_boot);
684}
685
686/*
687 * Retrigger next event is called after clock was set
688 *
689 * Called with interrupts disabled via on_each_cpu()
690 */
691static void retrigger_next_event(void *arg)
692{
693 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
694
695 if (!hrtimer_hres_active())
696 return;
697
698 raw_spin_lock(&base->lock);
699 hrtimer_update_base(base);
700 hrtimer_force_reprogram(base, 0);
701 raw_spin_unlock(&base->lock);
702}
703
704/*
705 * Switch to high resolution mode
706 */
707static int hrtimer_switch_to_hres(void)
708{
709 int i, cpu = smp_processor_id();
710 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 unsigned long flags;
712
713 if (base->hres_active)
714 return 1;
715
716 local_irq_save(flags);
717
718 if (tick_init_highres()) {
719 local_irq_restore(flags);
720 printk(KERN_WARNING "Could not switch to high resolution "
721 "mode on CPU %d\n", cpu);
722 return 0;
723 }
724 base->hres_active = 1;
725 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
726 base->clock_base[i].resolution = KTIME_HIGH_RES;
727
728 tick_setup_sched_timer();
729 /* "Retrigger" the interrupt to get things going */
730 retrigger_next_event(NULL);
731 local_irq_restore(flags);
732 return 1;
733}
734
735static void clock_was_set_work(struct work_struct *work)
736{
737 clock_was_set();
738}
739
740static DECLARE_WORK(hrtimer_work, clock_was_set_work);
741
742/*
743 * Called from timekeeping and resume code to reprogramm the hrtimer
744 * interrupt device on all cpus.
745 */
746void clock_was_set_delayed(void)
747{
748 schedule_work(&hrtimer_work);
749}
750
751#else
752
753static inline int hrtimer_hres_active(void) { return 0; }
754static inline int hrtimer_is_hres_enabled(void) { return 0; }
755static inline int hrtimer_switch_to_hres(void) { return 0; }
756static inline void
757hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
758static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
759 struct hrtimer_clock_base *base)
760{
761 return 0;
762}
763static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
764static inline void retrigger_next_event(void *arg) { }
765static inline int hrtimer_reprogram(struct hrtimer *timer,
766 struct hrtimer_clock_base *base)
767{
768 return 0;
769}
770
771#endif /* CONFIG_HIGH_RES_TIMERS */
772
773/*
774 * Clock realtime was set
775 *
776 * Change the offset of the realtime clock vs. the monotonic
777 * clock.
778 *
779 * We might have to reprogram the high resolution timer interrupt. On
780 * SMP we call the architecture specific code to retrigger _all_ high
781 * resolution timer interrupts. On UP we just disable interrupts and
782 * call the high resolution interrupt code.
783 */
784void clock_was_set(void)
785{
786#ifdef CONFIG_HIGH_RES_TIMERS
787 /* Retrigger the CPU local events everywhere */
788 on_each_cpu(retrigger_next_event, NULL, 1);
789#endif
790 timerfd_clock_was_set();
791}
792
793/*
794 * During resume we might have to reprogram the high resolution timer
795 * interrupt (on the local CPU):
796 */
797void hrtimers_resume(void)
798{
799 WARN_ONCE(!irqs_disabled(),
800 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
801
802 /* Retrigger on the local CPU */
803 retrigger_next_event(NULL);
804 /* And schedule a retrigger for all others */
805 clock_was_set_delayed();
806}
807
808static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
809{
810#ifdef CONFIG_TIMER_STATS
811 if (timer->start_site)
812 return;
813 timer->start_site = __builtin_return_address(0);
814 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
815 timer->start_pid = current->pid;
816#endif
817}
818
819static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
820{
821#ifdef CONFIG_TIMER_STATS
822 timer->start_site = NULL;
823#endif
824}
825
826static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
827{
828#ifdef CONFIG_TIMER_STATS
829 if (likely(!timer_stats_active))
830 return;
831 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
832 timer->function, timer->start_comm, 0);
833#endif
834}
835
836/*
837 * Counterpart to lock_hrtimer_base above:
838 */
839static inline
840void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
841{
842 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
843}
844
845/**
846 * hrtimer_forward - forward the timer expiry
847 * @timer: hrtimer to forward
848 * @now: forward past this time
849 * @interval: the interval to forward
850 *
851 * Forward the timer expiry so it will expire in the future.
852 * Returns the number of overruns.
853 */
854u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
855{
856 u64 orun = 1;
857 ktime_t delta;
858
859 delta = ktime_sub(now, hrtimer_get_expires(timer));
860
861 if (delta.tv64 < 0)
862 return 0;
863
864 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED))
865 return 0;
866
867 if (interval.tv64 < timer->base->resolution.tv64)
868 interval.tv64 = timer->base->resolution.tv64;
869
870 if (unlikely(delta.tv64 >= interval.tv64)) {
871 s64 incr = ktime_to_ns(interval);
872
873 orun = ktime_divns(delta, incr);
874 hrtimer_add_expires_ns(timer, incr * orun);
875 if (hrtimer_get_expires_tv64(timer) > now.tv64)
876 return orun;
877 /*
878 * This (and the ktime_add() below) is the
879 * correction for exact:
880 */
881 orun++;
882 }
883 hrtimer_add_expires(timer, interval);
884
885 return orun;
886}
887EXPORT_SYMBOL_GPL(hrtimer_forward);
888
889#ifdef CONFIG_PREEMPT_RT_BASE
890# define wake_up_timer_waiters(b) wake_up(&(b)->wait)
891
892/**
893 * hrtimer_wait_for_timer - Wait for a running timer
894 *
895 * @timer: timer to wait for
896 *
897 * The function waits in case the timers callback function is
898 * currently executed on the waitqueue of the timer base. The
899 * waitqueue is woken up after the timer callback function has
900 * finished execution.
901 */
902void hrtimer_wait_for_timer(const struct hrtimer *timer)
903{
904 struct hrtimer_clock_base *base = timer->base;
905
906 if (base && base->cpu_base && !timer->irqsafe)
907 wait_event(base->cpu_base->wait,
908 !(timer->state & HRTIMER_STATE_CALLBACK));
909}
910
911#else
912# define wake_up_timer_waiters(b) do { } while (0)
913#endif
914
915/*
916 * enqueue_hrtimer - internal function to (re)start a timer
917 *
918 * The timer is inserted in expiry order. Insertion into the
919 * red black tree is O(log(n)). Must hold the base lock.
920 *
921 * Returns 1 when the new timer is the leftmost timer in the tree.
922 */
923static int enqueue_hrtimer(struct hrtimer *timer,
924 struct hrtimer_clock_base *base)
925{
926 debug_activate(timer);
927
928 timerqueue_add(&base->active, &timer->node);
929 base->cpu_base->active_bases |= 1 << base->index;
930
931 /*
932 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
933 * state of a possibly running callback.
934 */
935 timer->state |= HRTIMER_STATE_ENQUEUED;
936
937 return (&timer->node == base->active.next);
938}
939
940/*
941 * __remove_hrtimer - internal function to remove a timer
942 *
943 * Caller must hold the base lock.
944 *
945 * High resolution timer mode reprograms the clock event device when the
946 * timer is the one which expires next. The caller can disable this by setting
947 * reprogram to zero. This is useful, when the context does a reprogramming
948 * anyway (e.g. timer interrupt)
949 */
950static void __remove_hrtimer(struct hrtimer *timer,
951 struct hrtimer_clock_base *base,
952 unsigned long newstate, int reprogram)
953{
954 struct timerqueue_node *next_timer;
955 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
956 goto out;
957
958 if (unlikely(!list_empty(&timer->cb_entry))) {
959 list_del_init(&timer->cb_entry);
960 goto out;
961 }
962
963 next_timer = timerqueue_getnext(&base->active);
964 timerqueue_del(&base->active, &timer->node);
965 if (&timer->node == next_timer) {
966#ifdef CONFIG_HIGH_RES_TIMERS
967 /* Reprogram the clock event device. if enabled */
968 if (reprogram && hrtimer_hres_active()) {
969 ktime_t expires;
970
971 expires = ktime_sub(hrtimer_get_expires(timer),
972 base->offset);
973 if (base->cpu_base->expires_next.tv64 == expires.tv64)
974 hrtimer_force_reprogram(base->cpu_base, 1);
975 }
976#endif
977 }
978 if (!timerqueue_getnext(&base->active))
979 base->cpu_base->active_bases &= ~(1 << base->index);
980out:
981 timer->state = newstate;
982}
983
984/*
985 * remove hrtimer, called with base lock held
986 */
987static inline int
988remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
989{
990 if (hrtimer_is_queued(timer)) {
991 unsigned long state;
992 int reprogram;
993
994 /*
995 * Remove the timer and force reprogramming when high
996 * resolution mode is active and the timer is on the current
997 * CPU. If we remove a timer on another CPU, reprogramming is
998 * skipped. The interrupt event on this CPU is fired and
999 * reprogramming happens in the interrupt handler. This is a
1000 * rare case and less expensive than a smp call.
1001 */
1002 debug_deactivate(timer);
1003 timer_stats_hrtimer_clear_start_info(timer);
1004 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
1005 /*
1006 * We must preserve the CALLBACK state flag here,
1007 * otherwise we could move the timer base in
1008 * switch_hrtimer_base.
1009 */
1010 state = timer->state & HRTIMER_STATE_CALLBACK;
1011 __remove_hrtimer(timer, base, state, reprogram);
1012 return 1;
1013 }
1014 return 0;
1015}
1016
1017int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1018 unsigned long delta_ns, const enum hrtimer_mode mode,
1019 int wakeup)
1020{
1021 struct hrtimer_clock_base *base, *new_base;
1022 unsigned long flags;
1023 int ret, leftmost;
1024
1025 base = lock_hrtimer_base(timer, &flags);
1026
1027 /* Remove an active timer from the queue: */
1028 ret = remove_hrtimer(timer, base);
1029
1030 if (mode & HRTIMER_MODE_REL) {
1031 tim = ktime_add_safe(tim, base->get_time());
1032 /*
1033 * CONFIG_TIME_LOW_RES is a temporary way for architectures
1034 * to signal that they simply return xtime in
1035 * do_gettimeoffset(). In this case we want to round up by
1036 * resolution when starting a relative timer, to avoid short
1037 * timeouts. This will go away with the GTOD framework.
1038 */
1039#ifdef CONFIG_TIME_LOW_RES
1040 tim = ktime_add_safe(tim, base->resolution);
1041#endif
1042 }
1043
1044 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1045
1046 /* Switch the timer base, if necessary: */
1047 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
1048
1049#ifdef CONFIG_MISSED_TIMER_OFFSETS_HIST
1050 {
1051 ktime_t now = new_base->get_time();
1052
1053 if (ktime_to_ns(tim) < ktime_to_ns(now))
1054 timer->praecox = now;
1055 else
1056 timer->praecox = ktime_set(0, 0);
1057 }
1058#endif
1059
1060 timer_stats_hrtimer_set_start_info(timer);
1061
1062 leftmost = enqueue_hrtimer(timer, new_base);
1063
1064 /*
1065 * Only allow reprogramming if the new base is on this CPU.
1066 * (it might still be on another CPU if the timer was pending)
1067 *
1068 * XXX send_remote_softirq() ?
1069 */
1070 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1071 && hrtimer_enqueue_reprogram(timer, new_base)) {
1072
1073 if (wakeup
1074#ifdef CONFIG_PREEMPT_RT_BASE
1075 /*
1076 * Move softirq based timers away from the rbtree in
1077 * case it expired already. Otherwise we would have a
1078 * stale base->first entry until the softirq runs.
1079 */
1080 && hrtimer_rt_defer(timer)
1081#endif
1082 ) {
1083 /*
1084 * We need to drop cpu_base->lock to avoid a
1085 * lock ordering issue vs. rq->lock.
1086 */
1087 raw_spin_unlock(&new_base->cpu_base->lock);
1088 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1089 local_irq_restore(flags);
1090 return ret;
1091 }
1092
1093 /*
1094 * In case we failed to reprogram the timer (mostly
1095 * because out current timer is already elapsed),
1096 * remove it again and report a failure. This avoids
1097 * stale base->first entries.
1098 */
1099 debug_deactivate(timer);
1100 __remove_hrtimer(timer, new_base,
1101 timer->state & HRTIMER_STATE_CALLBACK, 0);
1102 ret = -ETIME;
1103 }
1104
1105 unlock_hrtimer_base(timer, &flags);
1106
1107 return ret;
1108}
1109
1110/**
1111 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1112 * @timer: the timer to be added
1113 * @tim: expiry time
1114 * @delta_ns: "slack" range for the timer
1115 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1116 *
1117 * Returns:
1118 * 0 on success
1119 * 1 when the timer was active
1120 */
1121int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1122 unsigned long delta_ns, const enum hrtimer_mode mode)
1123{
1124 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1125}
1126EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1127
1128/**
1129 * hrtimer_start - (re)start an hrtimer on the current CPU
1130 * @timer: the timer to be added
1131 * @tim: expiry time
1132 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1133 *
1134 * Returns:
1135 * 0 on success
1136 * 1 when the timer was active
1137 */
1138int
1139hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1140{
1141 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1142}
1143EXPORT_SYMBOL_GPL(hrtimer_start);
1144
1145
1146/**
1147 * hrtimer_try_to_cancel - try to deactivate a timer
1148 * @timer: hrtimer to stop
1149 *
1150 * Returns:
1151 * 0 when the timer was not active
1152 * 1 when the timer was active
1153 * -1 when the timer is currently excuting the callback function and
1154 * cannot be stopped
1155 */
1156int hrtimer_try_to_cancel(struct hrtimer *timer)
1157{
1158 struct hrtimer_clock_base *base;
1159 unsigned long flags;
1160 int ret = -1;
1161
1162 base = lock_hrtimer_base(timer, &flags);
1163
1164 if (!hrtimer_callback_running(timer))
1165 ret = remove_hrtimer(timer, base);
1166
1167 unlock_hrtimer_base(timer, &flags);
1168
1169 return ret;
1170
1171}
1172EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1173
1174/**
1175 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1176 * @timer: the timer to be cancelled
1177 *
1178 * Returns:
1179 * 0 when the timer was not active
1180 * 1 when the timer was active
1181 */
1182int hrtimer_cancel(struct hrtimer *timer)
1183{
1184 for (;;) {
1185 int ret = hrtimer_try_to_cancel(timer);
1186
1187 if (ret >= 0)
1188 return ret;
1189 hrtimer_wait_for_timer(timer);
1190 }
1191}
1192EXPORT_SYMBOL_GPL(hrtimer_cancel);
1193
1194/**
1195 * hrtimer_get_remaining - get remaining time for the timer
1196 * @timer: the timer to read
1197 */
1198ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1199{
1200 unsigned long flags;
1201 ktime_t rem;
1202
1203 lock_hrtimer_base(timer, &flags);
1204 rem = hrtimer_expires_remaining(timer);
1205 unlock_hrtimer_base(timer, &flags);
1206
1207 return rem;
1208}
1209EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1210
1211#ifdef CONFIG_NO_HZ
1212/**
1213 * hrtimer_get_next_event - get the time until next expiry event
1214 *
1215 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1216 * is pending.
1217 */
1218ktime_t hrtimer_get_next_event(void)
1219{
1220 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1221 struct hrtimer_clock_base *base = cpu_base->clock_base;
1222 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1223 unsigned long flags;
1224 int i;
1225
1226 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1227
1228 if (!hrtimer_hres_active()) {
1229 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1230 struct hrtimer *timer;
1231 struct timerqueue_node *next;
1232
1233 next = timerqueue_getnext(&base->active);
1234 if (!next)
1235 continue;
1236
1237 timer = container_of(next, struct hrtimer, node);
1238 delta.tv64 = hrtimer_get_expires_tv64(timer);
1239 delta = ktime_sub(delta, base->get_time());
1240 if (delta.tv64 < mindelta.tv64)
1241 mindelta.tv64 = delta.tv64;
1242 }
1243 }
1244
1245 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1246
1247 if (mindelta.tv64 < 0)
1248 mindelta.tv64 = 0;
1249 return mindelta;
1250}
1251#endif
1252
1253static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1254 enum hrtimer_mode mode)
1255{
1256 struct hrtimer_cpu_base *cpu_base;
1257 int base;
1258
1259 memset(timer, 0, sizeof(struct hrtimer));
1260
1261 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1262
1263 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1264 clock_id = CLOCK_MONOTONIC;
1265
1266 base = hrtimer_clockid_to_base(clock_id);
1267 timer->base = &cpu_base->clock_base[base];
1268 INIT_LIST_HEAD(&timer->cb_entry);
1269 timerqueue_init(&timer->node);
1270
1271#ifdef CONFIG_TIMER_STATS
1272 timer->start_site = NULL;
1273 timer->start_pid = -1;
1274 memset(timer->start_comm, 0, TASK_COMM_LEN);
1275#endif
1276}
1277
1278/**
1279 * hrtimer_init - initialize a timer to the given clock
1280 * @timer: the timer to be initialized
1281 * @clock_id: the clock to be used
1282 * @mode: timer mode abs/rel
1283 */
1284void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1285 enum hrtimer_mode mode)
1286{
1287 debug_init(timer, clock_id, mode);
1288 __hrtimer_init(timer, clock_id, mode);
1289}
1290EXPORT_SYMBOL_GPL(hrtimer_init);
1291
1292/**
1293 * hrtimer_get_res - get the timer resolution for a clock
1294 * @which_clock: which clock to query
1295 * @tp: pointer to timespec variable to store the resolution
1296 *
1297 * Store the resolution of the clock selected by @which_clock in the
1298 * variable pointed to by @tp.
1299 */
1300int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1301{
1302 struct hrtimer_cpu_base *cpu_base;
1303 int base = hrtimer_clockid_to_base(which_clock);
1304
1305 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1306 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1307
1308 return 0;
1309}
1310EXPORT_SYMBOL_GPL(hrtimer_get_res);
1311
1312static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1313{
1314 struct hrtimer_clock_base *base = timer->base;
1315 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1316 enum hrtimer_restart (*fn)(struct hrtimer *);
1317 int restart;
1318
1319 WARN_ON(!irqs_disabled());
1320
1321 debug_deactivate(timer);
1322 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1323 timer_stats_account_hrtimer(timer);
1324 fn = timer->function;
1325
1326 /*
1327 * Because we run timers from hardirq context, there is no chance
1328 * they get migrated to another cpu, therefore its safe to unlock
1329 * the timer base.
1330 */
1331 raw_spin_unlock(&cpu_base->lock);
1332 trace_hrtimer_expire_entry(timer, now);
1333 restart = fn(timer);
1334 trace_hrtimer_expire_exit(timer);
1335 raw_spin_lock(&cpu_base->lock);
1336
1337 /*
1338 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1339 * we do not reprogramm the event hardware. Happens either in
1340 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1341 *
1342 * Note: Because we dropped the cpu_base->lock above,
1343 * hrtimer_start_range_ns() can have popped in and enqueued the timer
1344 * for us already.
1345 */
1346 if (restart != HRTIMER_NORESTART &&
1347 !(timer->state & HRTIMER_STATE_ENQUEUED))
1348 enqueue_hrtimer(timer, base);
1349
1350 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1351
1352 timer->state &= ~HRTIMER_STATE_CALLBACK;
1353}
1354
1355static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer);
1356
1357#ifdef CONFIG_PREEMPT_RT_BASE
1358static void hrtimer_rt_reprogram(int restart, struct hrtimer *timer,
1359 struct hrtimer_clock_base *base)
1360{
1361 /*
1362 * Note, we clear the callback flag before we requeue the
1363 * timer otherwise we trigger the callback_running() check
1364 * in hrtimer_reprogram().
1365 */
1366 timer->state &= ~HRTIMER_STATE_CALLBACK;
1367
1368 if (restart != HRTIMER_NORESTART) {
1369 BUG_ON(hrtimer_active(timer));
1370 /*
1371 * Enqueue the timer, if it's the leftmost timer then
1372 * we need to reprogram it.
1373 */
1374 if (!enqueue_hrtimer(timer, base))
1375 return;
1376
1377#ifndef CONFIG_HIGH_RES_TIMERS
1378 }
1379#else
1380 if (base->cpu_base->hres_active &&
1381 hrtimer_reprogram(timer, base))
1382 goto requeue;
1383
1384 } else if (hrtimer_active(timer)) {
1385 /*
1386 * If the timer was rearmed on another CPU, reprogram
1387 * the event device.
1388 */
1389 if (&timer->node == base->active.next &&
1390 base->cpu_base->hres_active &&
1391 hrtimer_reprogram(timer, base))
1392 goto requeue;
1393 }
1394 return;
1395
1396requeue:
1397 /*
1398 * Timer is expired. Thus move it from tree to pending list
1399 * again.
1400 */
1401 __remove_hrtimer(timer, base, timer->state, 0);
1402 list_add_tail(&timer->cb_entry, &base->expired);
1403#endif
1404}
1405
1406/*
1407 * The changes in mainline which removed the callback modes from
1408 * hrtimer are not yet working with -rt. The non wakeup_process()
1409 * based callbacks which involve sleeping locks need to be treated
1410 * seperately.
1411 */
1412static void hrtimer_rt_run_pending(void)
1413{
1414 enum hrtimer_restart (*fn)(struct hrtimer *);
1415 struct hrtimer_cpu_base *cpu_base;
1416 struct hrtimer_clock_base *base;
1417 struct hrtimer *timer;
1418 int index, restart;
1419
1420 local_irq_disable();
1421 cpu_base = &per_cpu(hrtimer_bases, smp_processor_id());
1422
1423 raw_spin_lock(&cpu_base->lock);
1424
1425 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1426 base = &cpu_base->clock_base[index];
1427
1428 while (!list_empty(&base->expired)) {
1429 timer = list_first_entry(&base->expired,
1430 struct hrtimer, cb_entry);
1431
1432 /*
1433 * Same as the above __run_hrtimer function
1434 * just we run with interrupts enabled.
1435 */
1436 debug_hrtimer_deactivate(timer);
1437 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1438 timer_stats_account_hrtimer(timer);
1439 fn = timer->function;
1440
1441 raw_spin_unlock_irq(&cpu_base->lock);
1442 restart = fn(timer);
1443 raw_spin_lock_irq(&cpu_base->lock);
1444
1445 hrtimer_rt_reprogram(restart, timer, base);
1446 }
1447 }
1448
1449 raw_spin_unlock_irq(&cpu_base->lock);
1450
1451 wake_up_timer_waiters(cpu_base);
1452}
1453
1454static int hrtimer_rt_defer(struct hrtimer *timer)
1455{
1456 if (timer->irqsafe)
1457 return 0;
1458
1459 __remove_hrtimer(timer, timer->base, timer->state, 0);
1460 list_add_tail(&timer->cb_entry, &timer->base->expired);
1461 return 1;
1462}
1463
1464#else
1465
1466static inline void hrtimer_rt_run_pending(void)
1467{
1468 hrtimer_peek_ahead_timers();
1469}
1470
1471static inline int hrtimer_rt_defer(struct hrtimer *timer) { return 0; }
1472
1473#endif
1474
1475#ifdef CONFIG_HIGH_RES_TIMERS
1476
1477/*
1478 * High resolution timer interrupt
1479 * Called with interrupts disabled
1480 */
1481void hrtimer_interrupt(struct clock_event_device *dev)
1482{
1483 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1484 ktime_t expires_next, now, entry_time, delta;
1485 int i, retries = 0, raise = 0;
1486
1487 BUG_ON(!cpu_base->hres_active);
1488 cpu_base->nr_events++;
1489 dev->next_event.tv64 = KTIME_MAX;
1490
1491 raw_spin_lock(&cpu_base->lock);
1492 entry_time = now = hrtimer_update_base(cpu_base);
1493retry:
1494 expires_next.tv64 = KTIME_MAX;
1495 /*
1496 * We set expires_next to KTIME_MAX here with cpu_base->lock
1497 * held to prevent that a timer is enqueued in our queue via
1498 * the migration code. This does not affect enqueueing of
1499 * timers which run their callback and need to be requeued on
1500 * this CPU.
1501 */
1502 cpu_base->expires_next.tv64 = KTIME_MAX;
1503
1504 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1505 struct hrtimer_clock_base *base;
1506 struct timerqueue_node *node;
1507 ktime_t basenow;
1508
1509 if (!(cpu_base->active_bases & (1 << i)))
1510 continue;
1511
1512 base = cpu_base->clock_base + i;
1513 basenow = ktime_add(now, base->offset);
1514
1515 while ((node = timerqueue_getnext(&base->active))) {
1516 struct hrtimer *timer;
1517
1518 timer = container_of(node, struct hrtimer, node);
1519
1520 trace_hrtimer_interrupt(raw_smp_processor_id(),
1521 ktime_to_ns(ktime_sub(ktime_to_ns(timer->praecox) ?
1522 timer->praecox : hrtimer_get_expires(timer),
1523 basenow)),
1524 current,
1525 timer->function == hrtimer_wakeup ?
1526 container_of(timer, struct hrtimer_sleeper,
1527 timer)->task : NULL);
1528
1529 /*
1530 * The immediate goal for using the softexpires is
1531 * minimizing wakeups, not running timers at the
1532 * earliest interrupt after their soft expiration.
1533 * This allows us to avoid using a Priority Search
1534 * Tree, which can answer a stabbing querry for
1535 * overlapping intervals and instead use the simple
1536 * BST we already have.
1537 * We don't add extra wakeups by delaying timers that
1538 * are right-of a not yet expired timer, because that
1539 * timer will have to trigger a wakeup anyway.
1540 */
1541
1542 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1543 ktime_t expires;
1544
1545 expires = ktime_sub(hrtimer_get_expires(timer),
1546 base->offset);
1547 if (expires.tv64 < 0)
1548 expires.tv64 = KTIME_MAX;
1549 if (expires.tv64 < expires_next.tv64)
1550 expires_next = expires;
1551 break;
1552 }
1553
1554 if (!hrtimer_rt_defer(timer))
1555 __run_hrtimer(timer, &basenow);
1556 else
1557 raise = 1;
1558 }
1559 }
1560
1561 /*
1562 * Store the new expiry value so the migration code can verify
1563 * against it.
1564 */
1565 cpu_base->expires_next = expires_next;
1566 raw_spin_unlock(&cpu_base->lock);
1567
1568 /* Reprogramming necessary ? */
1569 if (expires_next.tv64 == KTIME_MAX ||
1570 !tick_program_event(expires_next, 0)) {
1571 cpu_base->hang_detected = 0;
1572 goto out;
1573 }
1574
1575 /*
1576 * The next timer was already expired due to:
1577 * - tracing
1578 * - long lasting callbacks
1579 * - being scheduled away when running in a VM
1580 *
1581 * We need to prevent that we loop forever in the hrtimer
1582 * interrupt routine. We give it 3 attempts to avoid
1583 * overreacting on some spurious event.
1584 *
1585 * Acquire base lock for updating the offsets and retrieving
1586 * the current time.
1587 */
1588 raw_spin_lock(&cpu_base->lock);
1589 now = hrtimer_update_base(cpu_base);
1590 cpu_base->nr_retries++;
1591 if (++retries < 3)
1592 goto retry;
1593 /*
1594 * Give the system a chance to do something else than looping
1595 * here. We stored the entry time, so we know exactly how long
1596 * we spent here. We schedule the next event this amount of
1597 * time away.
1598 */
1599 cpu_base->nr_hangs++;
1600 cpu_base->hang_detected = 1;
1601 raw_spin_unlock(&cpu_base->lock);
1602 delta = ktime_sub(now, entry_time);
1603 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1604 cpu_base->max_hang_time = delta;
1605 /*
1606 * Limit it to a sensible value as we enforce a longer
1607 * delay. Give the CPU at least 100ms to catch up.
1608 */
1609 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1610 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1611 else
1612 expires_next = ktime_add(now, delta);
1613 tick_program_event(expires_next, 1);
1614 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1615 ktime_to_ns(delta));
1616out:
1617 if (raise)
1618 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1619}
1620
1621/*
1622 * local version of hrtimer_peek_ahead_timers() called with interrupts
1623 * disabled.
1624 */
1625static void __hrtimer_peek_ahead_timers(void)
1626{
1627 struct tick_device *td;
1628
1629 if (!hrtimer_hres_active())
1630 return;
1631
1632 td = &__get_cpu_var(tick_cpu_device);
1633 if (td && td->evtdev)
1634 hrtimer_interrupt(td->evtdev);
1635}
1636
1637/**
1638 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1639 *
1640 * hrtimer_peek_ahead_timers will peek at the timer queue of
1641 * the current cpu and check if there are any timers for which
1642 * the soft expires time has passed. If any such timers exist,
1643 * they are run immediately and then removed from the timer queue.
1644 *
1645 */
1646void hrtimer_peek_ahead_timers(void)
1647{
1648 unsigned long flags;
1649
1650 local_irq_save(flags);
1651 __hrtimer_peek_ahead_timers();
1652 local_irq_restore(flags);
1653}
1654
1655#else /* CONFIG_HIGH_RES_TIMERS */
1656
1657static inline void __hrtimer_peek_ahead_timers(void) { }
1658
1659#endif /* !CONFIG_HIGH_RES_TIMERS */
1660
1661static void run_hrtimer_softirq(struct softirq_action *h)
1662{
1663 hrtimer_rt_run_pending();
1664}
1665
1666/*
1667 * Called from timer softirq every jiffy, expire hrtimers:
1668 *
1669 * For HRT its the fall back code to run the softirq in the timer
1670 * softirq context in case the hrtimer initialization failed or has
1671 * not been done yet.
1672 */
1673void hrtimer_run_pending(void)
1674{
1675 if (hrtimer_hres_active())
1676 return;
1677
1678 /*
1679 * This _is_ ugly: We have to check in the softirq context,
1680 * whether we can switch to highres and / or nohz mode. The
1681 * clocksource switch happens in the timer interrupt with
1682 * xtime_lock held. Notification from there only sets the
1683 * check bit in the tick_oneshot code, otherwise we might
1684 * deadlock vs. xtime_lock.
1685 */
1686 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1687 hrtimer_switch_to_hres();
1688}
1689
1690/*
1691 * Called from hardirq context every jiffy
1692 */
1693void hrtimer_run_queues(void)
1694{
1695 struct timerqueue_node *node;
1696 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1697 struct hrtimer_clock_base *base;
1698 int index, gettime = 1, raise = 0;
1699
1700 if (hrtimer_hres_active())
1701 return;
1702
1703 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1704 base = &cpu_base->clock_base[index];
1705 if (!timerqueue_getnext(&base->active))
1706 continue;
1707
1708 if (gettime) {
1709 hrtimer_get_softirq_time(cpu_base);
1710 gettime = 0;
1711 }
1712
1713 raw_spin_lock(&cpu_base->lock);
1714
1715 while ((node = timerqueue_getnext(&base->active))) {
1716 struct hrtimer *timer;
1717
1718 timer = container_of(node, struct hrtimer, node);
1719 if (base->softirq_time.tv64 <=
1720 hrtimer_get_expires_tv64(timer))
1721 break;
1722
1723 if (!hrtimer_rt_defer(timer))
1724 __run_hrtimer(timer, &base->softirq_time);
1725 else
1726 raise = 1;
1727 }
1728 raw_spin_unlock(&cpu_base->lock);
1729 }
1730
1731 if (raise)
1732 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1733}
1734
1735/*
1736 * Sleep related functions:
1737 */
1738static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1739{
1740 struct hrtimer_sleeper *t =
1741 container_of(timer, struct hrtimer_sleeper, timer);
1742 struct task_struct *task = t->task;
1743
1744 t->task = NULL;
1745 if (task)
1746 wake_up_process(task);
1747
1748 return HRTIMER_NORESTART;
1749}
1750
1751void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1752{
1753 sl->timer.function = hrtimer_wakeup;
1754 sl->timer.irqsafe = 1;
1755 sl->task = task;
1756}
1757EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1758
1759static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode,
1760 unsigned long state)
1761{
1762 hrtimer_init_sleeper(t, current);
1763
1764 do {
1765 set_current_state(state);
1766 hrtimer_start_expires(&t->timer, mode);
1767 if (!hrtimer_active(&t->timer))
1768 t->task = NULL;
1769
1770 if (likely(t->task))
1771 schedule();
1772
1773 hrtimer_cancel(&t->timer);
1774 mode = HRTIMER_MODE_ABS;
1775
1776 } while (t->task && !signal_pending(current));
1777
1778 __set_current_state(TASK_RUNNING);
1779
1780 return t->task == NULL;
1781}
1782
1783static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1784{
1785 struct timespec rmt;
1786 ktime_t rem;
1787
1788 rem = hrtimer_expires_remaining(timer);
1789 if (rem.tv64 <= 0)
1790 return 0;
1791 rmt = ktime_to_timespec(rem);
1792
1793 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1794 return -EFAULT;
1795
1796 return 1;
1797}
1798
1799long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1800{
1801 struct hrtimer_sleeper t;
1802 struct timespec __user *rmtp;
1803 int ret = 0;
1804
1805 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1806 HRTIMER_MODE_ABS);
1807 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1808
1809 /* cpu_chill() does not care about restart state. */
1810 if (do_nanosleep(&t, HRTIMER_MODE_ABS, TASK_INTERRUPTIBLE))
1811 goto out;
1812
1813 rmtp = restart->nanosleep.rmtp;
1814 if (rmtp) {
1815 ret = update_rmtp(&t.timer, rmtp);
1816 if (ret <= 0)
1817 goto out;
1818 }
1819
1820 /* The other values in restart are already filled in */
1821 ret = -ERESTART_RESTARTBLOCK;
1822out:
1823 destroy_hrtimer_on_stack(&t.timer);
1824 return ret;
1825}
1826
1827static long
1828__hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1829 const enum hrtimer_mode mode, const clockid_t clockid,
1830 unsigned long state)
1831{
1832 struct restart_block *restart;
1833 struct hrtimer_sleeper t;
1834 int ret = 0;
1835 unsigned long slack;
1836
1837 slack = current->timer_slack_ns;
1838 if (rt_task(current))
1839 slack = 0;
1840
1841 hrtimer_init_on_stack(&t.timer, clockid, mode);
1842 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1843 if (do_nanosleep(&t, mode, state))
1844 goto out;
1845
1846 /* Absolute timers do not update the rmtp value and restart: */
1847 if (mode == HRTIMER_MODE_ABS) {
1848 ret = -ERESTARTNOHAND;
1849 goto out;
1850 }
1851
1852 if (rmtp) {
1853 ret = update_rmtp(&t.timer, rmtp);
1854 if (ret <= 0)
1855 goto out;
1856 }
1857
1858 restart = &current_thread_info()->restart_block;
1859 restart->fn = hrtimer_nanosleep_restart;
1860 restart->nanosleep.clockid = t.timer.base->clockid;
1861 restart->nanosleep.rmtp = rmtp;
1862 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1863
1864 ret = -ERESTART_RESTARTBLOCK;
1865out:
1866 destroy_hrtimer_on_stack(&t.timer);
1867 return ret;
1868}
1869
1870long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1871 const enum hrtimer_mode mode, const clockid_t clockid)
1872{
1873 return __hrtimer_nanosleep(rqtp, rmtp, mode, clockid, TASK_INTERRUPTIBLE);
1874}
1875
1876SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1877 struct timespec __user *, rmtp)
1878{
1879 struct timespec tu;
1880
1881 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1882 return -EFAULT;
1883
1884 if (!timespec_valid(&tu))
1885 return -EINVAL;
1886
1887 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1888}
1889
1890#ifdef CONFIG_PREEMPT_RT_FULL
1891/*
1892 * Sleep for 1 ms in hope whoever holds what we want will let it go.
1893 */
1894void cpu_chill(void)
1895{
1896 struct timespec tu = {
1897 .tv_nsec = NSEC_PER_MSEC,
1898 };
1899 unsigned int freeze_flag = current->flags & PF_NOFREEZE;
1900
1901 current->flags |= PF_NOFREEZE;
1902 __hrtimer_nanosleep(&tu, NULL, HRTIMER_MODE_REL, CLOCK_MONOTONIC,
1903 TASK_UNINTERRUPTIBLE);
1904 if (!freeze_flag)
1905 current->flags &= ~PF_NOFREEZE;
1906}
1907EXPORT_SYMBOL(cpu_chill);
1908#endif
1909
1910/*
1911 * Functions related to boot-time initialization:
1912 */
1913static void __cpuinit init_hrtimers_cpu(int cpu)
1914{
1915 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1916 int i;
1917
1918 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1919 cpu_base->clock_base[i].cpu_base = cpu_base;
1920 timerqueue_init_head(&cpu_base->clock_base[i].active);
1921 INIT_LIST_HEAD(&cpu_base->clock_base[i].expired);
1922 }
1923
1924 hrtimer_init_hres(cpu_base);
1925#ifdef CONFIG_PREEMPT_RT_BASE
1926 init_waitqueue_head(&cpu_base->wait);
1927#endif
1928}
1929
1930#ifdef CONFIG_HOTPLUG_CPU
1931
1932static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1933 struct hrtimer_clock_base *new_base)
1934{
1935 struct hrtimer *timer;
1936 struct timerqueue_node *node;
1937
1938 while ((node = timerqueue_getnext(&old_base->active))) {
1939 timer = container_of(node, struct hrtimer, node);
1940 BUG_ON(hrtimer_callback_running(timer));
1941 debug_deactivate(timer);
1942
1943 /*
1944 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1945 * timer could be seen as !active and just vanish away
1946 * under us on another CPU
1947 */
1948 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1949 timer->base = new_base;
1950 /*
1951 * Enqueue the timers on the new cpu. This does not
1952 * reprogram the event device in case the timer
1953 * expires before the earliest on this CPU, but we run
1954 * hrtimer_interrupt after we migrated everything to
1955 * sort out already expired timers and reprogram the
1956 * event device.
1957 */
1958 enqueue_hrtimer(timer, new_base);
1959
1960 /* Clear the migration state bit */
1961 timer->state &= ~HRTIMER_STATE_MIGRATE;
1962 }
1963}
1964
1965static void migrate_hrtimers(int scpu)
1966{
1967 struct hrtimer_cpu_base *old_base, *new_base;
1968 int i;
1969
1970 BUG_ON(cpu_online(scpu));
1971 tick_cancel_sched_timer(scpu);
1972
1973 local_irq_disable();
1974 old_base = &per_cpu(hrtimer_bases, scpu);
1975 new_base = &__get_cpu_var(hrtimer_bases);
1976 /*
1977 * The caller is globally serialized and nobody else
1978 * takes two locks at once, deadlock is not possible.
1979 */
1980 raw_spin_lock(&new_base->lock);
1981 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1982
1983 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1984 migrate_hrtimer_list(&old_base->clock_base[i],
1985 &new_base->clock_base[i]);
1986 }
1987
1988 raw_spin_unlock(&old_base->lock);
1989 raw_spin_unlock(&new_base->lock);
1990
1991 /* Check, if we got expired work to do */
1992 __hrtimer_peek_ahead_timers();
1993 local_irq_enable();
1994}
1995
1996#endif /* CONFIG_HOTPLUG_CPU */
1997
1998static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1999 unsigned long action, void *hcpu)
2000{
2001 int scpu = (long)hcpu;
2002
2003 switch (action) {
2004
2005 case CPU_UP_PREPARE:
2006 case CPU_UP_PREPARE_FROZEN:
2007 init_hrtimers_cpu(scpu);
2008 break;
2009
2010#ifdef CONFIG_HOTPLUG_CPU
2011 case CPU_DYING:
2012 case CPU_DYING_FROZEN:
2013 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
2014 break;
2015 case CPU_DEAD:
2016 case CPU_DEAD_FROZEN:
2017 {
2018 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
2019 migrate_hrtimers(scpu);
2020 break;
2021 }
2022#endif
2023
2024 default:
2025 break;
2026 }
2027
2028 return NOTIFY_OK;
2029}
2030
2031static struct notifier_block __cpuinitdata hrtimers_nb = {
2032 .notifier_call = hrtimer_cpu_notify,
2033};
2034
2035void __init hrtimers_init(void)
2036{
2037 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
2038 (void *)(long)smp_processor_id());
2039 register_cpu_notifier(&hrtimers_nb);
2040 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
2041}
2042
2043/**
2044 * schedule_hrtimeout_range_clock - sleep until timeout
2045 * @expires: timeout value (ktime_t)
2046 * @delta: slack in expires timeout (ktime_t)
2047 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
2048 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
2049 */
2050int __sched
2051schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
2052 const enum hrtimer_mode mode, int clock)
2053{
2054 struct hrtimer_sleeper t;
2055
2056 /*
2057 * Optimize when a zero timeout value is given. It does not
2058 * matter whether this is an absolute or a relative time.
2059 */
2060 if (expires && !expires->tv64) {
2061 __set_current_state(TASK_RUNNING);
2062 return 0;
2063 }
2064
2065 /*
2066 * A NULL parameter means "infinite"
2067 */
2068 if (!expires) {
2069 schedule();
2070 __set_current_state(TASK_RUNNING);
2071 return -EINTR;
2072 }
2073
2074 hrtimer_init_on_stack(&t.timer, clock, mode);
2075 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
2076
2077 hrtimer_init_sleeper(&t, current);
2078
2079 hrtimer_start_expires(&t.timer, mode);
2080 if (!hrtimer_active(&t.timer))
2081 t.task = NULL;
2082
2083 if (likely(t.task))
2084 schedule();
2085
2086 hrtimer_cancel(&t.timer);
2087 destroy_hrtimer_on_stack(&t.timer);
2088
2089 __set_current_state(TASK_RUNNING);
2090
2091 return !t.task ? 0 : -EINTR;
2092}
2093
2094/**
2095 * schedule_hrtimeout_range - sleep until timeout
2096 * @expires: timeout value (ktime_t)
2097 * @delta: slack in expires timeout (ktime_t)
2098 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
2099 *
2100 * Make the current task sleep until the given expiry time has
2101 * elapsed. The routine will return immediately unless
2102 * the current task state has been set (see set_current_state()).
2103 *
2104 * The @delta argument gives the kernel the freedom to schedule the
2105 * actual wakeup to a time that is both power and performance friendly.
2106 * The kernel give the normal best effort behavior for "@expires+@delta",
2107 * but may decide to fire the timer earlier, but no earlier than @expires.
2108 *
2109 * You can set the task state as follows -
2110 *
2111 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2112 * pass before the routine returns.
2113 *
2114 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2115 * delivered to the current task.
2116 *
2117 * The current task state is guaranteed to be TASK_RUNNING when this
2118 * routine returns.
2119 *
2120 * Returns 0 when the timer has expired otherwise -EINTR
2121 */
2122int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
2123 const enum hrtimer_mode mode)
2124{
2125 return schedule_hrtimeout_range_clock(expires, delta, mode,
2126 CLOCK_MONOTONIC);
2127}
2128EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
2129
2130/**
2131 * schedule_hrtimeout - sleep until timeout
2132 * @expires: timeout value (ktime_t)
2133 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
2134 *
2135 * Make the current task sleep until the given expiry time has
2136 * elapsed. The routine will return immediately unless
2137 * the current task state has been set (see set_current_state()).
2138 *
2139 * You can set the task state as follows -
2140 *
2141 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
2142 * pass before the routine returns.
2143 *
2144 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2145 * delivered to the current task.
2146 *
2147 * The current task state is guaranteed to be TASK_RUNNING when this
2148 * routine returns.
2149 *
2150 * Returns 0 when the timer has expired otherwise -EINTR
2151 */
2152int __sched schedule_hrtimeout(ktime_t *expires,
2153 const enum hrtimer_mode mode)
2154{
2155 return schedule_hrtimeout_range(expires, 0, mode);
2156}
2157EXPORT_SYMBOL_GPL(schedule_hrtimeout);