blob: a55353c37b3d387927b855418f6bcd5f53400a66 [file] [log] [blame]
yuezonghe824eb0c2024-06-27 02:32:26 -07001/*
2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
3 * Author: Joerg Roedel <joerg.roedel@amd.com>
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20#include <linux/ratelimit.h>
21#include <linux/pci.h>
22#include <linux/pci-ats.h>
23#include <linux/bitmap.h>
24#include <linux/slab.h>
25#include <linux/debugfs.h>
26#include <linux/scatterlist.h>
27#include <linux/dma-mapping.h>
28#include <linux/iommu-helper.h>
29#include <linux/iommu.h>
30#include <linux/delay.h>
31#include <linux/amd-iommu.h>
32#include <linux/notifier.h>
33#include <linux/export.h>
34#include <asm/msidef.h>
35#include <asm/proto.h>
36#include <asm/iommu.h>
37#include <asm/gart.h>
38#include <asm/dma.h>
39
40#include "amd_iommu_proto.h"
41#include "amd_iommu_types.h"
42
43#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
44
45#define LOOP_TIMEOUT 100000
46
47/*
48 * This bitmap is used to advertise the page sizes our hardware support
49 * to the IOMMU core, which will then use this information to split
50 * physically contiguous memory regions it is mapping into page sizes
51 * that we support.
52 *
53 * Traditionally the IOMMU core just handed us the mappings directly,
54 * after making sure the size is an order of a 4KiB page and that the
55 * mapping has natural alignment.
56 *
57 * To retain this behavior, we currently advertise that we support
58 * all page sizes that are an order of 4KiB.
59 *
60 * If at some point we'd like to utilize the IOMMU core's new behavior,
61 * we could change this to advertise the real page sizes we support.
62 */
63#define AMD_IOMMU_PGSIZES (~0xFFFUL)
64
65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
66
67/* A list of preallocated protection domains */
68static LIST_HEAD(iommu_pd_list);
69static DEFINE_SPINLOCK(iommu_pd_list_lock);
70
71/* List of all available dev_data structures */
72static LIST_HEAD(dev_data_list);
73static DEFINE_SPINLOCK(dev_data_list_lock);
74
75/*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
79static struct protection_domain *pt_domain;
80
81static struct iommu_ops amd_iommu_ops;
82
83static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
84int amd_iommu_max_glx_val = -1;
85
86static struct dma_map_ops amd_iommu_dma_ops;
87
88/*
89 * general struct to manage commands send to an IOMMU
90 */
91struct iommu_cmd {
92 u32 data[4];
93};
94
95static void update_domain(struct protection_domain *domain);
96static int __init alloc_passthrough_domain(void);
97
98/****************************************************************************
99 *
100 * Helper functions
101 *
102 ****************************************************************************/
103
104static struct iommu_dev_data *alloc_dev_data(u16 devid)
105{
106 struct iommu_dev_data *dev_data;
107 unsigned long flags;
108
109 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
110 if (!dev_data)
111 return NULL;
112
113 dev_data->devid = devid;
114 atomic_set(&dev_data->bind, 0);
115
116 spin_lock_irqsave(&dev_data_list_lock, flags);
117 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
118 spin_unlock_irqrestore(&dev_data_list_lock, flags);
119
120 return dev_data;
121}
122
123static void free_dev_data(struct iommu_dev_data *dev_data)
124{
125 unsigned long flags;
126
127 spin_lock_irqsave(&dev_data_list_lock, flags);
128 list_del(&dev_data->dev_data_list);
129 spin_unlock_irqrestore(&dev_data_list_lock, flags);
130
131 kfree(dev_data);
132}
133
134static struct iommu_dev_data *search_dev_data(u16 devid)
135{
136 struct iommu_dev_data *dev_data;
137 unsigned long flags;
138
139 spin_lock_irqsave(&dev_data_list_lock, flags);
140 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
141 if (dev_data->devid == devid)
142 goto out_unlock;
143 }
144
145 dev_data = NULL;
146
147out_unlock:
148 spin_unlock_irqrestore(&dev_data_list_lock, flags);
149
150 return dev_data;
151}
152
153static struct iommu_dev_data *find_dev_data(u16 devid)
154{
155 struct iommu_dev_data *dev_data;
156
157 dev_data = search_dev_data(devid);
158
159 if (dev_data == NULL)
160 dev_data = alloc_dev_data(devid);
161
162 return dev_data;
163}
164
165static inline u16 get_device_id(struct device *dev)
166{
167 struct pci_dev *pdev = to_pci_dev(dev);
168
169 return calc_devid(pdev->bus->number, pdev->devfn);
170}
171
172static struct iommu_dev_data *get_dev_data(struct device *dev)
173{
174 return dev->archdata.iommu;
175}
176
177static bool pci_iommuv2_capable(struct pci_dev *pdev)
178{
179 static const int caps[] = {
180 PCI_EXT_CAP_ID_ATS,
181 PCI_EXT_CAP_ID_PRI,
182 PCI_EXT_CAP_ID_PASID,
183 };
184 int i, pos;
185
186 for (i = 0; i < 3; ++i) {
187 pos = pci_find_ext_capability(pdev, caps[i]);
188 if (pos == 0)
189 return false;
190 }
191
192 return true;
193}
194
195static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
196{
197 struct iommu_dev_data *dev_data;
198
199 dev_data = get_dev_data(&pdev->dev);
200
201 return dev_data->errata & (1 << erratum) ? true : false;
202}
203
204/*
205 * In this function the list of preallocated protection domains is traversed to
206 * find the domain for a specific device
207 */
208static struct dma_ops_domain *find_protection_domain(u16 devid)
209{
210 struct dma_ops_domain *entry, *ret = NULL;
211 unsigned long flags;
212 u16 alias = amd_iommu_alias_table[devid];
213
214 if (list_empty(&iommu_pd_list))
215 return NULL;
216
217 spin_lock_irqsave(&iommu_pd_list_lock, flags);
218
219 list_for_each_entry(entry, &iommu_pd_list, list) {
220 if (entry->target_dev == devid ||
221 entry->target_dev == alias) {
222 ret = entry;
223 break;
224 }
225 }
226
227 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
228
229 return ret;
230}
231
232/*
233 * This function checks if the driver got a valid device from the caller to
234 * avoid dereferencing invalid pointers.
235 */
236static bool check_device(struct device *dev)
237{
238 u16 devid;
239
240 if (!dev || !dev->dma_mask)
241 return false;
242
243 /* No device or no PCI device */
244 if (dev->bus != &pci_bus_type)
245 return false;
246
247 devid = get_device_id(dev);
248
249 /* Out of our scope? */
250 if (devid > amd_iommu_last_bdf)
251 return false;
252
253 if (amd_iommu_rlookup_table[devid] == NULL)
254 return false;
255
256 return true;
257}
258
259static int iommu_init_device(struct device *dev)
260{
261 struct pci_dev *pdev = to_pci_dev(dev);
262 struct iommu_dev_data *dev_data;
263 u16 alias;
264
265 if (dev->archdata.iommu)
266 return 0;
267
268 dev_data = find_dev_data(get_device_id(dev));
269 if (!dev_data)
270 return -ENOMEM;
271
272 alias = amd_iommu_alias_table[dev_data->devid];
273 if (alias != dev_data->devid) {
274 struct iommu_dev_data *alias_data;
275
276 alias_data = find_dev_data(alias);
277 if (alias_data == NULL) {
278 pr_err("AMD-Vi: Warning: Unhandled device %s\n",
279 dev_name(dev));
280 free_dev_data(dev_data);
281 return -ENOTSUPP;
282 }
283 dev_data->alias_data = alias_data;
284 }
285
286 if (pci_iommuv2_capable(pdev)) {
287 struct amd_iommu *iommu;
288
289 iommu = amd_iommu_rlookup_table[dev_data->devid];
290 dev_data->iommu_v2 = iommu->is_iommu_v2;
291 }
292
293 dev->archdata.iommu = dev_data;
294
295 return 0;
296}
297
298static void iommu_ignore_device(struct device *dev)
299{
300 u16 devid, alias;
301
302 devid = get_device_id(dev);
303 alias = amd_iommu_alias_table[devid];
304
305 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
306 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
307
308 amd_iommu_rlookup_table[devid] = NULL;
309 amd_iommu_rlookup_table[alias] = NULL;
310}
311
312static void iommu_uninit_device(struct device *dev)
313{
314 /*
315 * Nothing to do here - we keep dev_data around for unplugged devices
316 * and reuse it when the device is re-plugged - not doing so would
317 * introduce a ton of races.
318 */
319}
320
321void __init amd_iommu_uninit_devices(void)
322{
323 struct iommu_dev_data *dev_data, *n;
324 struct pci_dev *pdev = NULL;
325
326 for_each_pci_dev(pdev) {
327
328 if (!check_device(&pdev->dev))
329 continue;
330
331 iommu_uninit_device(&pdev->dev);
332 }
333
334 /* Free all of our dev_data structures */
335 list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
336 free_dev_data(dev_data);
337}
338
339int __init amd_iommu_init_devices(void)
340{
341 struct pci_dev *pdev = NULL;
342 int ret = 0;
343
344 for_each_pci_dev(pdev) {
345
346 if (!check_device(&pdev->dev))
347 continue;
348
349 ret = iommu_init_device(&pdev->dev);
350 if (ret == -ENOTSUPP)
351 iommu_ignore_device(&pdev->dev);
352 else if (ret)
353 goto out_free;
354 }
355
356 return 0;
357
358out_free:
359
360 amd_iommu_uninit_devices();
361
362 return ret;
363}
364#ifdef CONFIG_AMD_IOMMU_STATS
365
366/*
367 * Initialization code for statistics collection
368 */
369
370DECLARE_STATS_COUNTER(compl_wait);
371DECLARE_STATS_COUNTER(cnt_map_single);
372DECLARE_STATS_COUNTER(cnt_unmap_single);
373DECLARE_STATS_COUNTER(cnt_map_sg);
374DECLARE_STATS_COUNTER(cnt_unmap_sg);
375DECLARE_STATS_COUNTER(cnt_alloc_coherent);
376DECLARE_STATS_COUNTER(cnt_free_coherent);
377DECLARE_STATS_COUNTER(cross_page);
378DECLARE_STATS_COUNTER(domain_flush_single);
379DECLARE_STATS_COUNTER(domain_flush_all);
380DECLARE_STATS_COUNTER(alloced_io_mem);
381DECLARE_STATS_COUNTER(total_map_requests);
382DECLARE_STATS_COUNTER(complete_ppr);
383DECLARE_STATS_COUNTER(invalidate_iotlb);
384DECLARE_STATS_COUNTER(invalidate_iotlb_all);
385DECLARE_STATS_COUNTER(pri_requests);
386
387
388static struct dentry *stats_dir;
389static struct dentry *de_fflush;
390
391static void amd_iommu_stats_add(struct __iommu_counter *cnt)
392{
393 if (stats_dir == NULL)
394 return;
395
396 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
397 &cnt->value);
398}
399
400static void amd_iommu_stats_init(void)
401{
402 stats_dir = debugfs_create_dir("amd-iommu", NULL);
403 if (stats_dir == NULL)
404 return;
405
406 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
407 (u32 *)&amd_iommu_unmap_flush);
408
409 amd_iommu_stats_add(&compl_wait);
410 amd_iommu_stats_add(&cnt_map_single);
411 amd_iommu_stats_add(&cnt_unmap_single);
412 amd_iommu_stats_add(&cnt_map_sg);
413 amd_iommu_stats_add(&cnt_unmap_sg);
414 amd_iommu_stats_add(&cnt_alloc_coherent);
415 amd_iommu_stats_add(&cnt_free_coherent);
416 amd_iommu_stats_add(&cross_page);
417 amd_iommu_stats_add(&domain_flush_single);
418 amd_iommu_stats_add(&domain_flush_all);
419 amd_iommu_stats_add(&alloced_io_mem);
420 amd_iommu_stats_add(&total_map_requests);
421 amd_iommu_stats_add(&complete_ppr);
422 amd_iommu_stats_add(&invalidate_iotlb);
423 amd_iommu_stats_add(&invalidate_iotlb_all);
424 amd_iommu_stats_add(&pri_requests);
425}
426
427#endif
428
429/****************************************************************************
430 *
431 * Interrupt handling functions
432 *
433 ****************************************************************************/
434
435static void dump_dte_entry(u16 devid)
436{
437 int i;
438
439 for (i = 0; i < 4; ++i)
440 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
441 amd_iommu_dev_table[devid].data[i]);
442}
443
444static void dump_command(unsigned long phys_addr)
445{
446 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
447 int i;
448
449 for (i = 0; i < 4; ++i)
450 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
451}
452
453static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
454{
455 int type, devid, domid, flags;
456 volatile u32 *event = __evt;
457 int count = 0;
458 u64 address;
459
460retry:
461 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
462 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
463 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
464 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
465 address = (u64)(((u64)event[3]) << 32) | event[2];
466
467 if (type == 0) {
468 /* Did we hit the erratum? */
469 if (++count == LOOP_TIMEOUT) {
470 pr_err("AMD-Vi: No event written to event log\n");
471 return;
472 }
473 udelay(1);
474 goto retry;
475 }
476
477 printk(KERN_ERR "AMD-Vi: Event logged [");
478
479 switch (type) {
480 case EVENT_TYPE_ILL_DEV:
481 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
482 "address=0x%016llx flags=0x%04x]\n",
483 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
484 address, flags);
485 dump_dte_entry(devid);
486 break;
487 case EVENT_TYPE_IO_FAULT:
488 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
489 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
490 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
491 domid, address, flags);
492 break;
493 case EVENT_TYPE_DEV_TAB_ERR:
494 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
495 "address=0x%016llx flags=0x%04x]\n",
496 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
497 address, flags);
498 break;
499 case EVENT_TYPE_PAGE_TAB_ERR:
500 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
501 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
502 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
503 domid, address, flags);
504 break;
505 case EVENT_TYPE_ILL_CMD:
506 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
507 dump_command(address);
508 break;
509 case EVENT_TYPE_CMD_HARD_ERR:
510 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
511 "flags=0x%04x]\n", address, flags);
512 break;
513 case EVENT_TYPE_IOTLB_INV_TO:
514 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
515 "address=0x%016llx]\n",
516 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
517 address);
518 break;
519 case EVENT_TYPE_INV_DEV_REQ:
520 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
521 "address=0x%016llx flags=0x%04x]\n",
522 PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid),
523 address, flags);
524 break;
525 default:
526 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
527 }
528
529 memset(__evt, 0, 4 * sizeof(u32));
530}
531
532static void iommu_poll_events(struct amd_iommu *iommu)
533{
534 u32 head, tail, status;
535 unsigned long flags;
536
537 spin_lock_irqsave(&iommu->lock, flags);
538
539 /* enable event interrupts again */
540 do {
541 /*
542 * Workaround for Erratum ERBT1312
543 * Clearing the EVT_INT bit may race in the hardware, so read
544 * it again and make sure it was really cleared
545 */
546 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
547 writel(MMIO_STATUS_EVT_INT_MASK,
548 iommu->mmio_base + MMIO_STATUS_OFFSET);
549 } while (status & MMIO_STATUS_EVT_INT_MASK);
550
551 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
552 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
553
554 while (head != tail) {
555 iommu_print_event(iommu, iommu->evt_buf + head);
556 head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
557 }
558
559 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
560
561 spin_unlock_irqrestore(&iommu->lock, flags);
562}
563
564static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
565{
566 struct amd_iommu_fault fault;
567
568 INC_STATS_COUNTER(pri_requests);
569
570 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
571 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
572 return;
573 }
574
575 fault.address = raw[1];
576 fault.pasid = PPR_PASID(raw[0]);
577 fault.device_id = PPR_DEVID(raw[0]);
578 fault.tag = PPR_TAG(raw[0]);
579 fault.flags = PPR_FLAGS(raw[0]);
580
581 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
582}
583
584static void iommu_poll_ppr_log(struct amd_iommu *iommu)
585{
586 unsigned long flags;
587 u32 head, tail, status;
588
589 if (iommu->ppr_log == NULL)
590 return;
591
592 spin_lock_irqsave(&iommu->lock, flags);
593
594 /* enable ppr interrupts again */
595 do {
596 /*
597 * Workaround for Erratum ERBT1312
598 * Clearing the PPR_INT bit may race in the hardware, so read
599 * it again and make sure it was really cleared
600 */
601 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
602 writel(MMIO_STATUS_PPR_INT_MASK,
603 iommu->mmio_base + MMIO_STATUS_OFFSET);
604 } while (status & MMIO_STATUS_PPR_INT_MASK);
605
606 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
607 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
608
609 while (head != tail) {
610 volatile u64 *raw;
611 u64 entry[2];
612 int i;
613
614 raw = (u64 *)(iommu->ppr_log + head);
615
616 /*
617 * Hardware bug: Interrupt may arrive before the entry is
618 * written to memory. If this happens we need to wait for the
619 * entry to arrive.
620 */
621 for (i = 0; i < LOOP_TIMEOUT; ++i) {
622 if (PPR_REQ_TYPE(raw[0]) != 0)
623 break;
624 udelay(1);
625 }
626
627 /* Avoid memcpy function-call overhead */
628 entry[0] = raw[0];
629 entry[1] = raw[1];
630
631 /*
632 * To detect the hardware bug we need to clear the entry
633 * back to zero.
634 */
635 raw[0] = raw[1] = 0UL;
636
637 /* Update head pointer of hardware ring-buffer */
638 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
639 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
640
641 /*
642 * Release iommu->lock because ppr-handling might need to
643 * re-aquire it
644 */
645 spin_unlock_irqrestore(&iommu->lock, flags);
646
647 /* Handle PPR entry */
648 iommu_handle_ppr_entry(iommu, entry);
649
650 spin_lock_irqsave(&iommu->lock, flags);
651
652 /* Refresh ring-buffer information */
653 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
654 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
655 }
656
657 spin_unlock_irqrestore(&iommu->lock, flags);
658}
659
660irqreturn_t amd_iommu_int_thread(int irq, void *data)
661{
662 struct amd_iommu *iommu;
663
664 for_each_iommu(iommu) {
665 iommu_poll_events(iommu);
666 iommu_poll_ppr_log(iommu);
667 }
668
669 return IRQ_HANDLED;
670}
671
672irqreturn_t amd_iommu_int_handler(int irq, void *data)
673{
674 return IRQ_WAKE_THREAD;
675}
676
677/****************************************************************************
678 *
679 * IOMMU command queuing functions
680 *
681 ****************************************************************************/
682
683static int wait_on_sem(volatile u64 *sem)
684{
685 int i = 0;
686
687 while (*sem == 0 && i < LOOP_TIMEOUT) {
688 udelay(1);
689 i += 1;
690 }
691
692 if (i == LOOP_TIMEOUT) {
693 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
694 return -EIO;
695 }
696
697 return 0;
698}
699
700static void copy_cmd_to_buffer(struct amd_iommu *iommu,
701 struct iommu_cmd *cmd,
702 u32 tail)
703{
704 u8 *target;
705
706 target = iommu->cmd_buf + tail;
707 tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
708
709 /* Copy command to buffer */
710 memcpy(target, cmd, sizeof(*cmd));
711
712 /* Tell the IOMMU about it */
713 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
714}
715
716static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
717{
718 WARN_ON(address & 0x7ULL);
719
720 memset(cmd, 0, sizeof(*cmd));
721 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
722 cmd->data[1] = upper_32_bits(__pa(address));
723 cmd->data[2] = 1;
724 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
725}
726
727static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
728{
729 memset(cmd, 0, sizeof(*cmd));
730 cmd->data[0] = devid;
731 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
732}
733
734static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
735 size_t size, u16 domid, int pde)
736{
737 u64 pages;
738 int s;
739
740 pages = iommu_num_pages(address, size, PAGE_SIZE);
741 s = 0;
742
743 if (pages > 1) {
744 /*
745 * If we have to flush more than one page, flush all
746 * TLB entries for this domain
747 */
748 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
749 s = 1;
750 }
751
752 address &= PAGE_MASK;
753
754 memset(cmd, 0, sizeof(*cmd));
755 cmd->data[1] |= domid;
756 cmd->data[2] = lower_32_bits(address);
757 cmd->data[3] = upper_32_bits(address);
758 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
759 if (s) /* size bit - we flush more than one 4kb page */
760 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
761 if (pde) /* PDE bit - we wan't flush everything not only the PTEs */
762 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
763}
764
765static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
766 u64 address, size_t size)
767{
768 u64 pages;
769 int s;
770
771 pages = iommu_num_pages(address, size, PAGE_SIZE);
772 s = 0;
773
774 if (pages > 1) {
775 /*
776 * If we have to flush more than one page, flush all
777 * TLB entries for this domain
778 */
779 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
780 s = 1;
781 }
782
783 address &= PAGE_MASK;
784
785 memset(cmd, 0, sizeof(*cmd));
786 cmd->data[0] = devid;
787 cmd->data[0] |= (qdep & 0xff) << 24;
788 cmd->data[1] = devid;
789 cmd->data[2] = lower_32_bits(address);
790 cmd->data[3] = upper_32_bits(address);
791 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
792 if (s)
793 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
794}
795
796static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
797 u64 address, bool size)
798{
799 memset(cmd, 0, sizeof(*cmd));
800
801 address &= ~(0xfffULL);
802
803 cmd->data[0] = pasid & PASID_MASK;
804 cmd->data[1] = domid;
805 cmd->data[2] = lower_32_bits(address);
806 cmd->data[3] = upper_32_bits(address);
807 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
808 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
809 if (size)
810 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
811 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
812}
813
814static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
815 int qdep, u64 address, bool size)
816{
817 memset(cmd, 0, sizeof(*cmd));
818
819 address &= ~(0xfffULL);
820
821 cmd->data[0] = devid;
822 cmd->data[0] |= (pasid & 0xff) << 16;
823 cmd->data[0] |= (qdep & 0xff) << 24;
824 cmd->data[1] = devid;
825 cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
826 cmd->data[2] = lower_32_bits(address);
827 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
828 cmd->data[3] = upper_32_bits(address);
829 if (size)
830 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
831 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
832}
833
834static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
835 int status, int tag, bool gn)
836{
837 memset(cmd, 0, sizeof(*cmd));
838
839 cmd->data[0] = devid;
840 if (gn) {
841 cmd->data[1] = pasid & PASID_MASK;
842 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
843 }
844 cmd->data[3] = tag & 0x1ff;
845 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
846
847 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
848}
849
850static void build_inv_all(struct iommu_cmd *cmd)
851{
852 memset(cmd, 0, sizeof(*cmd));
853 CMD_SET_TYPE(cmd, CMD_INV_ALL);
854}
855
856/*
857 * Writes the command to the IOMMUs command buffer and informs the
858 * hardware about the new command.
859 */
860static int iommu_queue_command_sync(struct amd_iommu *iommu,
861 struct iommu_cmd *cmd,
862 bool sync)
863{
864 u32 left, tail, head, next_tail;
865 unsigned long flags;
866
867 WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
868
869again:
870 spin_lock_irqsave(&iommu->lock, flags);
871
872 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
873 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
874 next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
875 left = (head - next_tail) % iommu->cmd_buf_size;
876
877 if (left <= 2) {
878 struct iommu_cmd sync_cmd;
879 volatile u64 sem = 0;
880 int ret;
881
882 build_completion_wait(&sync_cmd, (u64)&sem);
883 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
884
885 spin_unlock_irqrestore(&iommu->lock, flags);
886
887 if ((ret = wait_on_sem(&sem)) != 0)
888 return ret;
889
890 goto again;
891 }
892
893 copy_cmd_to_buffer(iommu, cmd, tail);
894
895 /* We need to sync now to make sure all commands are processed */
896 iommu->need_sync = sync;
897
898 spin_unlock_irqrestore(&iommu->lock, flags);
899
900 return 0;
901}
902
903static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
904{
905 return iommu_queue_command_sync(iommu, cmd, true);
906}
907
908/*
909 * This function queues a completion wait command into the command
910 * buffer of an IOMMU
911 */
912static int iommu_completion_wait(struct amd_iommu *iommu)
913{
914 struct iommu_cmd cmd;
915 volatile u64 sem = 0;
916 int ret;
917
918 if (!iommu->need_sync)
919 return 0;
920
921 build_completion_wait(&cmd, (u64)&sem);
922
923 ret = iommu_queue_command_sync(iommu, &cmd, false);
924 if (ret)
925 return ret;
926
927 return wait_on_sem(&sem);
928}
929
930static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
931{
932 struct iommu_cmd cmd;
933
934 build_inv_dte(&cmd, devid);
935
936 return iommu_queue_command(iommu, &cmd);
937}
938
939static void iommu_flush_dte_all(struct amd_iommu *iommu)
940{
941 u32 devid;
942
943 for (devid = 0; devid <= 0xffff; ++devid)
944 iommu_flush_dte(iommu, devid);
945
946 iommu_completion_wait(iommu);
947}
948
949/*
950 * This function uses heavy locking and may disable irqs for some time. But
951 * this is no issue because it is only called during resume.
952 */
953static void iommu_flush_tlb_all(struct amd_iommu *iommu)
954{
955 u32 dom_id;
956
957 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
958 struct iommu_cmd cmd;
959 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
960 dom_id, 1);
961 iommu_queue_command(iommu, &cmd);
962 }
963
964 iommu_completion_wait(iommu);
965}
966
967static void iommu_flush_all(struct amd_iommu *iommu)
968{
969 struct iommu_cmd cmd;
970
971 build_inv_all(&cmd);
972
973 iommu_queue_command(iommu, &cmd);
974 iommu_completion_wait(iommu);
975}
976
977void iommu_flush_all_caches(struct amd_iommu *iommu)
978{
979 if (iommu_feature(iommu, FEATURE_IA)) {
980 iommu_flush_all(iommu);
981 } else {
982 iommu_flush_dte_all(iommu);
983 iommu_flush_tlb_all(iommu);
984 }
985}
986
987/*
988 * Command send function for flushing on-device TLB
989 */
990static int device_flush_iotlb(struct iommu_dev_data *dev_data,
991 u64 address, size_t size)
992{
993 struct amd_iommu *iommu;
994 struct iommu_cmd cmd;
995 int qdep;
996
997 qdep = dev_data->ats.qdep;
998 iommu = amd_iommu_rlookup_table[dev_data->devid];
999
1000 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1001
1002 return iommu_queue_command(iommu, &cmd);
1003}
1004
1005/*
1006 * Command send function for invalidating a device table entry
1007 */
1008static int device_flush_dte(struct iommu_dev_data *dev_data)
1009{
1010 struct amd_iommu *iommu;
1011 int ret;
1012
1013 iommu = amd_iommu_rlookup_table[dev_data->devid];
1014
1015 ret = iommu_flush_dte(iommu, dev_data->devid);
1016 if (ret)
1017 return ret;
1018
1019 if (dev_data->ats.enabled)
1020 ret = device_flush_iotlb(dev_data, 0, ~0UL);
1021
1022 return ret;
1023}
1024
1025/*
1026 * TLB invalidation function which is called from the mapping functions.
1027 * It invalidates a single PTE if the range to flush is within a single
1028 * page. Otherwise it flushes the whole TLB of the IOMMU.
1029 */
1030static void __domain_flush_pages(struct protection_domain *domain,
1031 u64 address, size_t size, int pde)
1032{
1033 struct iommu_dev_data *dev_data;
1034 struct iommu_cmd cmd;
1035 int ret = 0, i;
1036
1037 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1038
1039 for (i = 0; i < amd_iommus_present; ++i) {
1040 if (!domain->dev_iommu[i])
1041 continue;
1042
1043 /*
1044 * Devices of this domain are behind this IOMMU
1045 * We need a TLB flush
1046 */
1047 ret |= iommu_queue_command(amd_iommus[i], &cmd);
1048 }
1049
1050 list_for_each_entry(dev_data, &domain->dev_list, list) {
1051
1052 if (!dev_data->ats.enabled)
1053 continue;
1054
1055 ret |= device_flush_iotlb(dev_data, address, size);
1056 }
1057
1058 WARN_ON(ret);
1059}
1060
1061static void domain_flush_pages(struct protection_domain *domain,
1062 u64 address, size_t size)
1063{
1064 __domain_flush_pages(domain, address, size, 0);
1065}
1066
1067/* Flush the whole IO/TLB for a given protection domain */
1068static void domain_flush_tlb(struct protection_domain *domain)
1069{
1070 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1071}
1072
1073/* Flush the whole IO/TLB for a given protection domain - including PDE */
1074static void domain_flush_tlb_pde(struct protection_domain *domain)
1075{
1076 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1077}
1078
1079static void domain_flush_complete(struct protection_domain *domain)
1080{
1081 int i;
1082
1083 for (i = 0; i < amd_iommus_present; ++i) {
1084 if (!domain->dev_iommu[i])
1085 continue;
1086
1087 /*
1088 * Devices of this domain are behind this IOMMU
1089 * We need to wait for completion of all commands.
1090 */
1091 iommu_completion_wait(amd_iommus[i]);
1092 }
1093}
1094
1095
1096/*
1097 * This function flushes the DTEs for all devices in domain
1098 */
1099static void domain_flush_devices(struct protection_domain *domain)
1100{
1101 struct iommu_dev_data *dev_data;
1102
1103 list_for_each_entry(dev_data, &domain->dev_list, list)
1104 device_flush_dte(dev_data);
1105}
1106
1107/****************************************************************************
1108 *
1109 * The functions below are used the create the page table mappings for
1110 * unity mapped regions.
1111 *
1112 ****************************************************************************/
1113
1114/*
1115 * This function is used to add another level to an IO page table. Adding
1116 * another level increases the size of the address space by 9 bits to a size up
1117 * to 64 bits.
1118 */
1119static bool increase_address_space(struct protection_domain *domain,
1120 gfp_t gfp)
1121{
1122 u64 *pte;
1123
1124 if (domain->mode == PAGE_MODE_6_LEVEL)
1125 /* address space already 64 bit large */
1126 return false;
1127
1128 pte = (void *)get_zeroed_page(gfp);
1129 if (!pte)
1130 return false;
1131
1132 *pte = PM_LEVEL_PDE(domain->mode,
1133 virt_to_phys(domain->pt_root));
1134 domain->pt_root = pte;
1135 domain->mode += 1;
1136 domain->updated = true;
1137
1138 return true;
1139}
1140
1141static u64 *alloc_pte(struct protection_domain *domain,
1142 unsigned long address,
1143 unsigned long page_size,
1144 u64 **pte_page,
1145 gfp_t gfp)
1146{
1147 int level, end_lvl;
1148 u64 *pte, *page;
1149
1150 BUG_ON(!is_power_of_2(page_size));
1151
1152 while (address > PM_LEVEL_SIZE(domain->mode))
1153 increase_address_space(domain, gfp);
1154
1155 level = domain->mode - 1;
1156 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1157 address = PAGE_SIZE_ALIGN(address, page_size);
1158 end_lvl = PAGE_SIZE_LEVEL(page_size);
1159
1160 while (level > end_lvl) {
1161 if (!IOMMU_PTE_PRESENT(*pte)) {
1162 page = (u64 *)get_zeroed_page(gfp);
1163 if (!page)
1164 return NULL;
1165 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1166 }
1167
1168 /* No level skipping support yet */
1169 if (PM_PTE_LEVEL(*pte) != level)
1170 return NULL;
1171
1172 level -= 1;
1173
1174 pte = IOMMU_PTE_PAGE(*pte);
1175
1176 if (pte_page && level == end_lvl)
1177 *pte_page = pte;
1178
1179 pte = &pte[PM_LEVEL_INDEX(level, address)];
1180 }
1181
1182 return pte;
1183}
1184
1185/*
1186 * This function checks if there is a PTE for a given dma address. If
1187 * there is one, it returns the pointer to it.
1188 */
1189static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1190{
1191 int level;
1192 u64 *pte;
1193
1194 if (address > PM_LEVEL_SIZE(domain->mode))
1195 return NULL;
1196
1197 level = domain->mode - 1;
1198 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1199
1200 while (level > 0) {
1201
1202 /* Not Present */
1203 if (!IOMMU_PTE_PRESENT(*pte))
1204 return NULL;
1205
1206 /* Large PTE */
1207 if (PM_PTE_LEVEL(*pte) == 0x07) {
1208 unsigned long pte_mask, __pte;
1209
1210 /*
1211 * If we have a series of large PTEs, make
1212 * sure to return a pointer to the first one.
1213 */
1214 pte_mask = PTE_PAGE_SIZE(*pte);
1215 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1216 __pte = ((unsigned long)pte) & pte_mask;
1217
1218 return (u64 *)__pte;
1219 }
1220
1221 /* No level skipping support yet */
1222 if (PM_PTE_LEVEL(*pte) != level)
1223 return NULL;
1224
1225 level -= 1;
1226
1227 /* Walk to the next level */
1228 pte = IOMMU_PTE_PAGE(*pte);
1229 pte = &pte[PM_LEVEL_INDEX(level, address)];
1230 }
1231
1232 return pte;
1233}
1234
1235/*
1236 * Generic mapping functions. It maps a physical address into a DMA
1237 * address space. It allocates the page table pages if necessary.
1238 * In the future it can be extended to a generic mapping function
1239 * supporting all features of AMD IOMMU page tables like level skipping
1240 * and full 64 bit address spaces.
1241 */
1242static int iommu_map_page(struct protection_domain *dom,
1243 unsigned long bus_addr,
1244 unsigned long phys_addr,
1245 int prot,
1246 unsigned long page_size)
1247{
1248 u64 __pte, *pte;
1249 int i, count;
1250
1251 if (!(prot & IOMMU_PROT_MASK))
1252 return -EINVAL;
1253
1254 bus_addr = PAGE_ALIGN(bus_addr);
1255 phys_addr = PAGE_ALIGN(phys_addr);
1256 count = PAGE_SIZE_PTE_COUNT(page_size);
1257 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1258
1259 for (i = 0; i < count; ++i)
1260 if (IOMMU_PTE_PRESENT(pte[i]))
1261 return -EBUSY;
1262
1263 if (page_size > PAGE_SIZE) {
1264 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1265 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1266 } else
1267 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1268
1269 if (prot & IOMMU_PROT_IR)
1270 __pte |= IOMMU_PTE_IR;
1271 if (prot & IOMMU_PROT_IW)
1272 __pte |= IOMMU_PTE_IW;
1273
1274 for (i = 0; i < count; ++i)
1275 pte[i] = __pte;
1276
1277 update_domain(dom);
1278
1279 return 0;
1280}
1281
1282static unsigned long iommu_unmap_page(struct protection_domain *dom,
1283 unsigned long bus_addr,
1284 unsigned long page_size)
1285{
1286 unsigned long long unmap_size, unmapped;
1287 u64 *pte;
1288
1289 BUG_ON(!is_power_of_2(page_size));
1290
1291 unmapped = 0;
1292
1293 while (unmapped < page_size) {
1294
1295 pte = fetch_pte(dom, bus_addr);
1296
1297 if (!pte) {
1298 /*
1299 * No PTE for this address
1300 * move forward in 4kb steps
1301 */
1302 unmap_size = PAGE_SIZE;
1303 } else if (PM_PTE_LEVEL(*pte) == 0) {
1304 /* 4kb PTE found for this address */
1305 unmap_size = PAGE_SIZE;
1306 *pte = 0ULL;
1307 } else {
1308 int count, i;
1309
1310 /* Large PTE found which maps this address */
1311 unmap_size = PTE_PAGE_SIZE(*pte);
1312
1313 /* Only unmap from the first pte in the page */
1314 if ((unmap_size - 1) & bus_addr)
1315 break;
1316 count = PAGE_SIZE_PTE_COUNT(unmap_size);
1317 for (i = 0; i < count; i++)
1318 pte[i] = 0ULL;
1319 }
1320
1321 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1322 unmapped += unmap_size;
1323 }
1324
1325 BUG_ON(unmapped && !is_power_of_2(unmapped));
1326
1327 return unmapped;
1328}
1329
1330/*
1331 * This function checks if a specific unity mapping entry is needed for
1332 * this specific IOMMU.
1333 */
1334static int iommu_for_unity_map(struct amd_iommu *iommu,
1335 struct unity_map_entry *entry)
1336{
1337 u16 bdf, i;
1338
1339 for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1340 bdf = amd_iommu_alias_table[i];
1341 if (amd_iommu_rlookup_table[bdf] == iommu)
1342 return 1;
1343 }
1344
1345 return 0;
1346}
1347
1348/*
1349 * This function actually applies the mapping to the page table of the
1350 * dma_ops domain.
1351 */
1352static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1353 struct unity_map_entry *e)
1354{
1355 u64 addr;
1356 int ret;
1357
1358 for (addr = e->address_start; addr < e->address_end;
1359 addr += PAGE_SIZE) {
1360 ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1361 PAGE_SIZE);
1362 if (ret)
1363 return ret;
1364 /*
1365 * if unity mapping is in aperture range mark the page
1366 * as allocated in the aperture
1367 */
1368 if (addr < dma_dom->aperture_size)
1369 __set_bit(addr >> PAGE_SHIFT,
1370 dma_dom->aperture[0]->bitmap);
1371 }
1372
1373 return 0;
1374}
1375
1376/*
1377 * Init the unity mappings for a specific IOMMU in the system
1378 *
1379 * Basically iterates over all unity mapping entries and applies them to
1380 * the default domain DMA of that IOMMU if necessary.
1381 */
1382static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1383{
1384 struct unity_map_entry *entry;
1385 int ret;
1386
1387 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1388 if (!iommu_for_unity_map(iommu, entry))
1389 continue;
1390 ret = dma_ops_unity_map(iommu->default_dom, entry);
1391 if (ret)
1392 return ret;
1393 }
1394
1395 return 0;
1396}
1397
1398/*
1399 * Inits the unity mappings required for a specific device
1400 */
1401static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1402 u16 devid)
1403{
1404 struct unity_map_entry *e;
1405 int ret;
1406
1407 list_for_each_entry(e, &amd_iommu_unity_map, list) {
1408 if (!(devid >= e->devid_start && devid <= e->devid_end))
1409 continue;
1410 ret = dma_ops_unity_map(dma_dom, e);
1411 if (ret)
1412 return ret;
1413 }
1414
1415 return 0;
1416}
1417
1418/****************************************************************************
1419 *
1420 * The next functions belong to the address allocator for the dma_ops
1421 * interface functions. They work like the allocators in the other IOMMU
1422 * drivers. Its basically a bitmap which marks the allocated pages in
1423 * the aperture. Maybe it could be enhanced in the future to a more
1424 * efficient allocator.
1425 *
1426 ****************************************************************************/
1427
1428/*
1429 * The address allocator core functions.
1430 *
1431 * called with domain->lock held
1432 */
1433
1434/*
1435 * Used to reserve address ranges in the aperture (e.g. for exclusion
1436 * ranges.
1437 */
1438static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1439 unsigned long start_page,
1440 unsigned int pages)
1441{
1442 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1443
1444 if (start_page + pages > last_page)
1445 pages = last_page - start_page;
1446
1447 for (i = start_page; i < start_page + pages; ++i) {
1448 int index = i / APERTURE_RANGE_PAGES;
1449 int page = i % APERTURE_RANGE_PAGES;
1450 __set_bit(page, dom->aperture[index]->bitmap);
1451 }
1452}
1453
1454/*
1455 * This function is used to add a new aperture range to an existing
1456 * aperture in case of dma_ops domain allocation or address allocation
1457 * failure.
1458 */
1459static int alloc_new_range(struct dma_ops_domain *dma_dom,
1460 bool populate, gfp_t gfp)
1461{
1462 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1463 struct amd_iommu *iommu;
1464 unsigned long i, old_size;
1465
1466#ifdef CONFIG_IOMMU_STRESS
1467 populate = false;
1468#endif
1469
1470 if (index >= APERTURE_MAX_RANGES)
1471 return -ENOMEM;
1472
1473 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1474 if (!dma_dom->aperture[index])
1475 return -ENOMEM;
1476
1477 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1478 if (!dma_dom->aperture[index]->bitmap)
1479 goto out_free;
1480
1481 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1482
1483 if (populate) {
1484 unsigned long address = dma_dom->aperture_size;
1485 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1486 u64 *pte, *pte_page;
1487
1488 for (i = 0; i < num_ptes; ++i) {
1489 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1490 &pte_page, gfp);
1491 if (!pte)
1492 goto out_free;
1493
1494 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1495
1496 address += APERTURE_RANGE_SIZE / 64;
1497 }
1498 }
1499
1500 old_size = dma_dom->aperture_size;
1501 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1502
1503 /* Reserve address range used for MSI messages */
1504 if (old_size < MSI_ADDR_BASE_LO &&
1505 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1506 unsigned long spage;
1507 int pages;
1508
1509 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1510 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1511
1512 dma_ops_reserve_addresses(dma_dom, spage, pages);
1513 }
1514
1515 /* Initialize the exclusion range if necessary */
1516 for_each_iommu(iommu) {
1517 if (iommu->exclusion_start &&
1518 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1519 && iommu->exclusion_start < dma_dom->aperture_size) {
1520 unsigned long startpage;
1521 int pages = iommu_num_pages(iommu->exclusion_start,
1522 iommu->exclusion_length,
1523 PAGE_SIZE);
1524 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1525 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1526 }
1527 }
1528
1529 /*
1530 * Check for areas already mapped as present in the new aperture
1531 * range and mark those pages as reserved in the allocator. Such
1532 * mappings may already exist as a result of requested unity
1533 * mappings for devices.
1534 */
1535 for (i = dma_dom->aperture[index]->offset;
1536 i < dma_dom->aperture_size;
1537 i += PAGE_SIZE) {
1538 u64 *pte = fetch_pte(&dma_dom->domain, i);
1539 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1540 continue;
1541
1542 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1543 }
1544
1545 update_domain(&dma_dom->domain);
1546
1547 return 0;
1548
1549out_free:
1550 update_domain(&dma_dom->domain);
1551
1552 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1553
1554 kfree(dma_dom->aperture[index]);
1555 dma_dom->aperture[index] = NULL;
1556
1557 return -ENOMEM;
1558}
1559
1560static unsigned long dma_ops_area_alloc(struct device *dev,
1561 struct dma_ops_domain *dom,
1562 unsigned int pages,
1563 unsigned long align_mask,
1564 u64 dma_mask,
1565 unsigned long start)
1566{
1567 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1568 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1569 int i = start >> APERTURE_RANGE_SHIFT;
1570 unsigned long boundary_size;
1571 unsigned long address = -1;
1572 unsigned long limit;
1573
1574 next_bit >>= PAGE_SHIFT;
1575
1576 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1577 PAGE_SIZE) >> PAGE_SHIFT;
1578
1579 for (;i < max_index; ++i) {
1580 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1581
1582 if (dom->aperture[i]->offset >= dma_mask)
1583 break;
1584
1585 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1586 dma_mask >> PAGE_SHIFT);
1587
1588 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1589 limit, next_bit, pages, 0,
1590 boundary_size, align_mask);
1591 if (address != -1) {
1592 address = dom->aperture[i]->offset +
1593 (address << PAGE_SHIFT);
1594 dom->next_address = address + (pages << PAGE_SHIFT);
1595 break;
1596 }
1597
1598 next_bit = 0;
1599 }
1600
1601 return address;
1602}
1603
1604static unsigned long dma_ops_alloc_addresses(struct device *dev,
1605 struct dma_ops_domain *dom,
1606 unsigned int pages,
1607 unsigned long align_mask,
1608 u64 dma_mask)
1609{
1610 unsigned long address;
1611
1612#ifdef CONFIG_IOMMU_STRESS
1613 dom->next_address = 0;
1614 dom->need_flush = true;
1615#endif
1616
1617 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1618 dma_mask, dom->next_address);
1619
1620 if (address == -1) {
1621 dom->next_address = 0;
1622 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1623 dma_mask, 0);
1624 dom->need_flush = true;
1625 }
1626
1627 if (unlikely(address == -1))
1628 address = DMA_ERROR_CODE;
1629
1630 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1631
1632 return address;
1633}
1634
1635/*
1636 * The address free function.
1637 *
1638 * called with domain->lock held
1639 */
1640static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1641 unsigned long address,
1642 unsigned int pages)
1643{
1644 unsigned i = address >> APERTURE_RANGE_SHIFT;
1645 struct aperture_range *range = dom->aperture[i];
1646
1647 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1648
1649#ifdef CONFIG_IOMMU_STRESS
1650 if (i < 4)
1651 return;
1652#endif
1653
1654 if (address >= dom->next_address)
1655 dom->need_flush = true;
1656
1657 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1658
1659 bitmap_clear(range->bitmap, address, pages);
1660
1661}
1662
1663/****************************************************************************
1664 *
1665 * The next functions belong to the domain allocation. A domain is
1666 * allocated for every IOMMU as the default domain. If device isolation
1667 * is enabled, every device get its own domain. The most important thing
1668 * about domains is the page table mapping the DMA address space they
1669 * contain.
1670 *
1671 ****************************************************************************/
1672
1673/*
1674 * This function adds a protection domain to the global protection domain list
1675 */
1676static void add_domain_to_list(struct protection_domain *domain)
1677{
1678 unsigned long flags;
1679
1680 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1681 list_add(&domain->list, &amd_iommu_pd_list);
1682 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1683}
1684
1685/*
1686 * This function removes a protection domain to the global
1687 * protection domain list
1688 */
1689static void del_domain_from_list(struct protection_domain *domain)
1690{
1691 unsigned long flags;
1692
1693 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1694 list_del(&domain->list);
1695 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1696}
1697
1698static u16 domain_id_alloc(void)
1699{
1700 unsigned long flags;
1701 int id;
1702
1703 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1704 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1705 BUG_ON(id == 0);
1706 if (id > 0 && id < MAX_DOMAIN_ID)
1707 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1708 else
1709 id = 0;
1710 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1711
1712 return id;
1713}
1714
1715static void domain_id_free(int id)
1716{
1717 unsigned long flags;
1718
1719 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1720 if (id > 0 && id < MAX_DOMAIN_ID)
1721 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1722 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1723}
1724
1725static void free_pagetable(struct protection_domain *domain)
1726{
1727 int i, j;
1728 u64 *p1, *p2, *p3;
1729
1730 p1 = domain->pt_root;
1731
1732 if (!p1)
1733 return;
1734
1735 for (i = 0; i < 512; ++i) {
1736 if (!IOMMU_PTE_PRESENT(p1[i]))
1737 continue;
1738
1739 p2 = IOMMU_PTE_PAGE(p1[i]);
1740 for (j = 0; j < 512; ++j) {
1741 if (!IOMMU_PTE_PRESENT(p2[j]))
1742 continue;
1743 p3 = IOMMU_PTE_PAGE(p2[j]);
1744 free_page((unsigned long)p3);
1745 }
1746
1747 free_page((unsigned long)p2);
1748 }
1749
1750 free_page((unsigned long)p1);
1751
1752 domain->pt_root = NULL;
1753}
1754
1755static void free_gcr3_tbl_level1(u64 *tbl)
1756{
1757 u64 *ptr;
1758 int i;
1759
1760 for (i = 0; i < 512; ++i) {
1761 if (!(tbl[i] & GCR3_VALID))
1762 continue;
1763
1764 ptr = __va(tbl[i] & PAGE_MASK);
1765
1766 free_page((unsigned long)ptr);
1767 }
1768}
1769
1770static void free_gcr3_tbl_level2(u64 *tbl)
1771{
1772 u64 *ptr;
1773 int i;
1774
1775 for (i = 0; i < 512; ++i) {
1776 if (!(tbl[i] & GCR3_VALID))
1777 continue;
1778
1779 ptr = __va(tbl[i] & PAGE_MASK);
1780
1781 free_gcr3_tbl_level1(ptr);
1782 }
1783}
1784
1785static void free_gcr3_table(struct protection_domain *domain)
1786{
1787 if (domain->glx == 2)
1788 free_gcr3_tbl_level2(domain->gcr3_tbl);
1789 else if (domain->glx == 1)
1790 free_gcr3_tbl_level1(domain->gcr3_tbl);
1791 else if (domain->glx != 0)
1792 BUG();
1793
1794 free_page((unsigned long)domain->gcr3_tbl);
1795}
1796
1797/*
1798 * Free a domain, only used if something went wrong in the
1799 * allocation path and we need to free an already allocated page table
1800 */
1801static void dma_ops_domain_free(struct dma_ops_domain *dom)
1802{
1803 int i;
1804
1805 if (!dom)
1806 return;
1807
1808 del_domain_from_list(&dom->domain);
1809
1810 free_pagetable(&dom->domain);
1811
1812 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1813 if (!dom->aperture[i])
1814 continue;
1815 free_page((unsigned long)dom->aperture[i]->bitmap);
1816 kfree(dom->aperture[i]);
1817 }
1818
1819 kfree(dom);
1820}
1821
1822/*
1823 * Allocates a new protection domain usable for the dma_ops functions.
1824 * It also initializes the page table and the address allocator data
1825 * structures required for the dma_ops interface
1826 */
1827static struct dma_ops_domain *dma_ops_domain_alloc(void)
1828{
1829 struct dma_ops_domain *dma_dom;
1830
1831 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1832 if (!dma_dom)
1833 return NULL;
1834
1835 spin_lock_init(&dma_dom->domain.lock);
1836
1837 dma_dom->domain.id = domain_id_alloc();
1838 if (dma_dom->domain.id == 0)
1839 goto free_dma_dom;
1840 INIT_LIST_HEAD(&dma_dom->domain.dev_list);
1841 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
1842 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
1843 dma_dom->domain.flags = PD_DMA_OPS_MASK;
1844 dma_dom->domain.priv = dma_dom;
1845 if (!dma_dom->domain.pt_root)
1846 goto free_dma_dom;
1847
1848 dma_dom->need_flush = false;
1849 dma_dom->target_dev = 0xffff;
1850
1851 add_domain_to_list(&dma_dom->domain);
1852
1853 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
1854 goto free_dma_dom;
1855
1856 /*
1857 * mark the first page as allocated so we never return 0 as
1858 * a valid dma-address. So we can use 0 as error value
1859 */
1860 dma_dom->aperture[0]->bitmap[0] = 1;
1861 dma_dom->next_address = 0;
1862
1863
1864 return dma_dom;
1865
1866free_dma_dom:
1867 dma_ops_domain_free(dma_dom);
1868
1869 return NULL;
1870}
1871
1872/*
1873 * little helper function to check whether a given protection domain is a
1874 * dma_ops domain
1875 */
1876static bool dma_ops_domain(struct protection_domain *domain)
1877{
1878 return domain->flags & PD_DMA_OPS_MASK;
1879}
1880
1881static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
1882{
1883 u64 pte_root = 0;
1884 u64 flags = 0;
1885
1886 if (domain->mode != PAGE_MODE_NONE)
1887 pte_root = virt_to_phys(domain->pt_root);
1888
1889 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1890 << DEV_ENTRY_MODE_SHIFT;
1891 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
1892
1893 flags = amd_iommu_dev_table[devid].data[1];
1894
1895 if (ats)
1896 flags |= DTE_FLAG_IOTLB;
1897
1898 if (domain->flags & PD_IOMMUV2_MASK) {
1899 u64 gcr3 = __pa(domain->gcr3_tbl);
1900 u64 glx = domain->glx;
1901 u64 tmp;
1902
1903 pte_root |= DTE_FLAG_GV;
1904 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1905
1906 /* First mask out possible old values for GCR3 table */
1907 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1908 flags &= ~tmp;
1909
1910 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1911 flags &= ~tmp;
1912
1913 /* Encode GCR3 table into DTE */
1914 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1915 pte_root |= tmp;
1916
1917 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1918 flags |= tmp;
1919
1920 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1921 flags |= tmp;
1922 }
1923
1924 flags &= ~(0xffffUL);
1925 flags |= domain->id;
1926
1927 amd_iommu_dev_table[devid].data[1] = flags;
1928 amd_iommu_dev_table[devid].data[0] = pte_root;
1929}
1930
1931static void clear_dte_entry(u16 devid)
1932{
1933 /* remove entry from the device table seen by the hardware */
1934 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1935 amd_iommu_dev_table[devid].data[1] = 0;
1936
1937 amd_iommu_apply_erratum_63(devid);
1938}
1939
1940static void do_attach(struct iommu_dev_data *dev_data,
1941 struct protection_domain *domain)
1942{
1943 struct amd_iommu *iommu;
1944 bool ats;
1945
1946 iommu = amd_iommu_rlookup_table[dev_data->devid];
1947 ats = dev_data->ats.enabled;
1948
1949 /* Update data structures */
1950 dev_data->domain = domain;
1951 list_add(&dev_data->list, &domain->dev_list);
1952 set_dte_entry(dev_data->devid, domain, ats);
1953
1954 /* Do reference counting */
1955 domain->dev_iommu[iommu->index] += 1;
1956 domain->dev_cnt += 1;
1957
1958 /* Flush the DTE entry */
1959 device_flush_dte(dev_data);
1960}
1961
1962static void do_detach(struct iommu_dev_data *dev_data)
1963{
1964 struct amd_iommu *iommu;
1965
1966 iommu = amd_iommu_rlookup_table[dev_data->devid];
1967
1968 /* decrease reference counters */
1969 dev_data->domain->dev_iommu[iommu->index] -= 1;
1970 dev_data->domain->dev_cnt -= 1;
1971
1972 /* Update data structures */
1973 dev_data->domain = NULL;
1974 list_del(&dev_data->list);
1975 clear_dte_entry(dev_data->devid);
1976
1977 /* Flush the DTE entry */
1978 device_flush_dte(dev_data);
1979}
1980
1981/*
1982 * If a device is not yet associated with a domain, this function does
1983 * assigns it visible for the hardware
1984 */
1985static int __attach_device(struct iommu_dev_data *dev_data,
1986 struct protection_domain *domain)
1987{
1988 int ret;
1989
1990 /* lock domain */
1991 spin_lock(&domain->lock);
1992
1993 if (dev_data->alias_data != NULL) {
1994 struct iommu_dev_data *alias_data = dev_data->alias_data;
1995
1996 /* Some sanity checks */
1997 ret = -EBUSY;
1998 if (alias_data->domain != NULL &&
1999 alias_data->domain != domain)
2000 goto out_unlock;
2001
2002 if (dev_data->domain != NULL &&
2003 dev_data->domain != domain)
2004 goto out_unlock;
2005
2006 /* Do real assignment */
2007 if (alias_data->domain == NULL)
2008 do_attach(alias_data, domain);
2009
2010 atomic_inc(&alias_data->bind);
2011 }
2012
2013 if (dev_data->domain == NULL)
2014 do_attach(dev_data, domain);
2015
2016 atomic_inc(&dev_data->bind);
2017
2018 ret = 0;
2019
2020out_unlock:
2021
2022 /* ready */
2023 spin_unlock(&domain->lock);
2024
2025 return ret;
2026}
2027
2028
2029static void pdev_iommuv2_disable(struct pci_dev *pdev)
2030{
2031 pci_disable_ats(pdev);
2032 pci_disable_pri(pdev);
2033 pci_disable_pasid(pdev);
2034}
2035
2036/* FIXME: Change generic reset-function to do the same */
2037static int pri_reset_while_enabled(struct pci_dev *pdev)
2038{
2039 u16 control;
2040 int pos;
2041
2042 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2043 if (!pos)
2044 return -EINVAL;
2045
2046 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2047 control |= PCI_PRI_CTRL_RESET;
2048 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2049
2050 return 0;
2051}
2052
2053static int pdev_iommuv2_enable(struct pci_dev *pdev)
2054{
2055 bool reset_enable;
2056 int reqs, ret;
2057
2058 /* FIXME: Hardcode number of outstanding requests for now */
2059 reqs = 32;
2060 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2061 reqs = 1;
2062 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2063
2064 /* Only allow access to user-accessible pages */
2065 ret = pci_enable_pasid(pdev, 0);
2066 if (ret)
2067 goto out_err;
2068
2069 /* First reset the PRI state of the device */
2070 ret = pci_reset_pri(pdev);
2071 if (ret)
2072 goto out_err;
2073
2074 /* Enable PRI */
2075 ret = pci_enable_pri(pdev, reqs);
2076 if (ret)
2077 goto out_err;
2078
2079 if (reset_enable) {
2080 ret = pri_reset_while_enabled(pdev);
2081 if (ret)
2082 goto out_err;
2083 }
2084
2085 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2086 if (ret)
2087 goto out_err;
2088
2089 return 0;
2090
2091out_err:
2092 pci_disable_pri(pdev);
2093 pci_disable_pasid(pdev);
2094
2095 return ret;
2096}
2097
2098/* FIXME: Move this to PCI code */
2099#define PCI_PRI_TLP_OFF (1 << 15)
2100
2101bool pci_pri_tlp_required(struct pci_dev *pdev)
2102{
2103 u16 status;
2104 int pos;
2105
2106 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2107 if (!pos)
2108 return false;
2109
2110 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2111
2112 return (status & PCI_PRI_TLP_OFF) ? true : false;
2113}
2114
2115/*
2116 * If a device is not yet associated with a domain, this function does
2117 * assigns it visible for the hardware
2118 */
2119static int attach_device(struct device *dev,
2120 struct protection_domain *domain)
2121{
2122 struct pci_dev *pdev = to_pci_dev(dev);
2123 struct iommu_dev_data *dev_data;
2124 unsigned long flags;
2125 int ret;
2126
2127 dev_data = get_dev_data(dev);
2128
2129 if (domain->flags & PD_IOMMUV2_MASK) {
2130 if (!dev_data->iommu_v2 || !dev_data->passthrough)
2131 return -EINVAL;
2132
2133 if (pdev_iommuv2_enable(pdev) != 0)
2134 return -EINVAL;
2135
2136 dev_data->ats.enabled = true;
2137 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2138 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2139 } else if (amd_iommu_iotlb_sup &&
2140 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2141 dev_data->ats.enabled = true;
2142 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2143 }
2144
2145 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2146 ret = __attach_device(dev_data, domain);
2147 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2148
2149 /*
2150 * We might boot into a crash-kernel here. The crashed kernel
2151 * left the caches in the IOMMU dirty. So we have to flush
2152 * here to evict all dirty stuff.
2153 */
2154 domain_flush_tlb_pde(domain);
2155
2156 return ret;
2157}
2158
2159/*
2160 * Removes a device from a protection domain (unlocked)
2161 */
2162static void __detach_device(struct iommu_dev_data *dev_data)
2163{
2164 struct protection_domain *domain;
2165 unsigned long flags;
2166
2167 BUG_ON(!dev_data->domain);
2168
2169 domain = dev_data->domain;
2170
2171 spin_lock_irqsave(&domain->lock, flags);
2172
2173 if (dev_data->alias_data != NULL) {
2174 struct iommu_dev_data *alias_data = dev_data->alias_data;
2175
2176 if (atomic_dec_and_test(&alias_data->bind))
2177 do_detach(alias_data);
2178 }
2179
2180 if (atomic_dec_and_test(&dev_data->bind))
2181 do_detach(dev_data);
2182
2183 spin_unlock_irqrestore(&domain->lock, flags);
2184
2185 /*
2186 * If we run in passthrough mode the device must be assigned to the
2187 * passthrough domain if it is detached from any other domain.
2188 * Make sure we can deassign from the pt_domain itself.
2189 */
2190 if (dev_data->passthrough &&
2191 (dev_data->domain == NULL && domain != pt_domain))
2192 __attach_device(dev_data, pt_domain);
2193}
2194
2195/*
2196 * Removes a device from a protection domain (with devtable_lock held)
2197 */
2198static void detach_device(struct device *dev)
2199{
2200 struct protection_domain *domain;
2201 struct iommu_dev_data *dev_data;
2202 unsigned long flags;
2203
2204 dev_data = get_dev_data(dev);
2205 domain = dev_data->domain;
2206
2207 /* lock device table */
2208 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2209 __detach_device(dev_data);
2210 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2211
2212 if (domain->flags & PD_IOMMUV2_MASK)
2213 pdev_iommuv2_disable(to_pci_dev(dev));
2214 else if (dev_data->ats.enabled)
2215 pci_disable_ats(to_pci_dev(dev));
2216
2217 dev_data->ats.enabled = false;
2218}
2219
2220/*
2221 * Find out the protection domain structure for a given PCI device. This
2222 * will give us the pointer to the page table root for example.
2223 */
2224static struct protection_domain *domain_for_device(struct device *dev)
2225{
2226 struct iommu_dev_data *dev_data;
2227 struct protection_domain *dom = NULL;
2228 unsigned long flags;
2229
2230 dev_data = get_dev_data(dev);
2231
2232 if (dev_data->domain)
2233 return dev_data->domain;
2234
2235 if (dev_data->alias_data != NULL) {
2236 struct iommu_dev_data *alias_data = dev_data->alias_data;
2237
2238 read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2239 if (alias_data->domain != NULL) {
2240 __attach_device(dev_data, alias_data->domain);
2241 dom = alias_data->domain;
2242 }
2243 read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2244 }
2245
2246 return dom;
2247}
2248
2249static int device_change_notifier(struct notifier_block *nb,
2250 unsigned long action, void *data)
2251{
2252 struct dma_ops_domain *dma_domain;
2253 struct protection_domain *domain;
2254 struct iommu_dev_data *dev_data;
2255 struct device *dev = data;
2256 struct amd_iommu *iommu;
2257 unsigned long flags;
2258 u16 devid;
2259
2260 if (!check_device(dev))
2261 return 0;
2262
2263 devid = get_device_id(dev);
2264 iommu = amd_iommu_rlookup_table[devid];
2265 dev_data = get_dev_data(dev);
2266
2267 switch (action) {
2268 case BUS_NOTIFY_UNBOUND_DRIVER:
2269
2270 domain = domain_for_device(dev);
2271
2272 if (!domain)
2273 goto out;
2274 if (dev_data->passthrough)
2275 break;
2276 detach_device(dev);
2277 break;
2278 case BUS_NOTIFY_ADD_DEVICE:
2279
2280 iommu_init_device(dev);
2281
2282 /*
2283 * dev_data is still NULL and
2284 * got initialized in iommu_init_device
2285 */
2286 dev_data = get_dev_data(dev);
2287
2288 if (iommu_pass_through || dev_data->iommu_v2) {
2289 dev_data->passthrough = true;
2290 attach_device(dev, pt_domain);
2291 break;
2292 }
2293
2294 domain = domain_for_device(dev);
2295
2296 /* allocate a protection domain if a device is added */
2297 dma_domain = find_protection_domain(devid);
2298 if (!dma_domain) {
2299 dma_domain = dma_ops_domain_alloc();
2300 if (!dma_domain)
2301 goto out;
2302 dma_domain->target_dev = devid;
2303
2304 spin_lock_irqsave(&iommu_pd_list_lock, flags);
2305 list_add_tail(&dma_domain->list, &iommu_pd_list);
2306 spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2307 }
2308
2309 dev->archdata.dma_ops = &amd_iommu_dma_ops;
2310
2311 break;
2312 case BUS_NOTIFY_DEL_DEVICE:
2313
2314 iommu_uninit_device(dev);
2315
2316 default:
2317 goto out;
2318 }
2319
2320 iommu_completion_wait(iommu);
2321
2322out:
2323 return 0;
2324}
2325
2326static struct notifier_block device_nb = {
2327 .notifier_call = device_change_notifier,
2328};
2329
2330void amd_iommu_init_notifier(void)
2331{
2332 bus_register_notifier(&pci_bus_type, &device_nb);
2333}
2334
2335/*****************************************************************************
2336 *
2337 * The next functions belong to the dma_ops mapping/unmapping code.
2338 *
2339 *****************************************************************************/
2340
2341/*
2342 * In the dma_ops path we only have the struct device. This function
2343 * finds the corresponding IOMMU, the protection domain and the
2344 * requestor id for a given device.
2345 * If the device is not yet associated with a domain this is also done
2346 * in this function.
2347 */
2348static struct protection_domain *get_domain(struct device *dev)
2349{
2350 struct protection_domain *domain;
2351 struct dma_ops_domain *dma_dom;
2352 u16 devid = get_device_id(dev);
2353
2354 if (!check_device(dev))
2355 return ERR_PTR(-EINVAL);
2356
2357 domain = domain_for_device(dev);
2358 if (domain != NULL && !dma_ops_domain(domain))
2359 return ERR_PTR(-EBUSY);
2360
2361 if (domain != NULL)
2362 return domain;
2363
2364 /* Device not bount yet - bind it */
2365 dma_dom = find_protection_domain(devid);
2366 if (!dma_dom)
2367 dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2368 attach_device(dev, &dma_dom->domain);
2369 DUMP_printk("Using protection domain %d for device %s\n",
2370 dma_dom->domain.id, dev_name(dev));
2371
2372 return &dma_dom->domain;
2373}
2374
2375static void update_device_table(struct protection_domain *domain)
2376{
2377 struct iommu_dev_data *dev_data;
2378
2379 list_for_each_entry(dev_data, &domain->dev_list, list)
2380 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2381}
2382
2383static void update_domain(struct protection_domain *domain)
2384{
2385 if (!domain->updated)
2386 return;
2387
2388 update_device_table(domain);
2389
2390 domain_flush_devices(domain);
2391 domain_flush_tlb_pde(domain);
2392
2393 domain->updated = false;
2394}
2395
2396/*
2397 * This function fetches the PTE for a given address in the aperture
2398 */
2399static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2400 unsigned long address)
2401{
2402 struct aperture_range *aperture;
2403 u64 *pte, *pte_page;
2404
2405 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2406 if (!aperture)
2407 return NULL;
2408
2409 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2410 if (!pte) {
2411 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2412 GFP_ATOMIC);
2413 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2414 } else
2415 pte += PM_LEVEL_INDEX(0, address);
2416
2417 update_domain(&dom->domain);
2418
2419 return pte;
2420}
2421
2422/*
2423 * This is the generic map function. It maps one 4kb page at paddr to
2424 * the given address in the DMA address space for the domain.
2425 */
2426static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2427 unsigned long address,
2428 phys_addr_t paddr,
2429 int direction)
2430{
2431 u64 *pte, __pte;
2432
2433 WARN_ON(address > dom->aperture_size);
2434
2435 paddr &= PAGE_MASK;
2436
2437 pte = dma_ops_get_pte(dom, address);
2438 if (!pte)
2439 return DMA_ERROR_CODE;
2440
2441 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2442
2443 if (direction == DMA_TO_DEVICE)
2444 __pte |= IOMMU_PTE_IR;
2445 else if (direction == DMA_FROM_DEVICE)
2446 __pte |= IOMMU_PTE_IW;
2447 else if (direction == DMA_BIDIRECTIONAL)
2448 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2449
2450 WARN_ON(*pte);
2451
2452 *pte = __pte;
2453
2454 return (dma_addr_t)address;
2455}
2456
2457/*
2458 * The generic unmapping function for on page in the DMA address space.
2459 */
2460static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2461 unsigned long address)
2462{
2463 struct aperture_range *aperture;
2464 u64 *pte;
2465
2466 if (address >= dom->aperture_size)
2467 return;
2468
2469 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2470 if (!aperture)
2471 return;
2472
2473 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2474 if (!pte)
2475 return;
2476
2477 pte += PM_LEVEL_INDEX(0, address);
2478
2479 WARN_ON(!*pte);
2480
2481 *pte = 0ULL;
2482}
2483
2484/*
2485 * This function contains common code for mapping of a physically
2486 * contiguous memory region into DMA address space. It is used by all
2487 * mapping functions provided with this IOMMU driver.
2488 * Must be called with the domain lock held.
2489 */
2490static dma_addr_t __map_single(struct device *dev,
2491 struct dma_ops_domain *dma_dom,
2492 phys_addr_t paddr,
2493 size_t size,
2494 int dir,
2495 bool align,
2496 u64 dma_mask)
2497{
2498 dma_addr_t offset = paddr & ~PAGE_MASK;
2499 dma_addr_t address, start, ret;
2500 unsigned int pages;
2501 unsigned long align_mask = 0;
2502 int i;
2503
2504 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2505 paddr &= PAGE_MASK;
2506
2507 INC_STATS_COUNTER(total_map_requests);
2508
2509 if (pages > 1)
2510 INC_STATS_COUNTER(cross_page);
2511
2512 if (align)
2513 align_mask = (1UL << get_order(size)) - 1;
2514
2515retry:
2516 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2517 dma_mask);
2518 if (unlikely(address == DMA_ERROR_CODE)) {
2519 /*
2520 * setting next_address here will let the address
2521 * allocator only scan the new allocated range in the
2522 * first run. This is a small optimization.
2523 */
2524 dma_dom->next_address = dma_dom->aperture_size;
2525
2526 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2527 goto out;
2528
2529 /*
2530 * aperture was successfully enlarged by 128 MB, try
2531 * allocation again
2532 */
2533 goto retry;
2534 }
2535
2536 start = address;
2537 for (i = 0; i < pages; ++i) {
2538 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2539 if (ret == DMA_ERROR_CODE)
2540 goto out_unmap;
2541
2542 paddr += PAGE_SIZE;
2543 start += PAGE_SIZE;
2544 }
2545 address += offset;
2546
2547 ADD_STATS_COUNTER(alloced_io_mem, size);
2548
2549 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2550 domain_flush_tlb(&dma_dom->domain);
2551 dma_dom->need_flush = false;
2552 } else if (unlikely(amd_iommu_np_cache))
2553 domain_flush_pages(&dma_dom->domain, address, size);
2554
2555out:
2556 return address;
2557
2558out_unmap:
2559
2560 for (--i; i >= 0; --i) {
2561 start -= PAGE_SIZE;
2562 dma_ops_domain_unmap(dma_dom, start);
2563 }
2564
2565 dma_ops_free_addresses(dma_dom, address, pages);
2566
2567 return DMA_ERROR_CODE;
2568}
2569
2570/*
2571 * Does the reverse of the __map_single function. Must be called with
2572 * the domain lock held too
2573 */
2574static void __unmap_single(struct dma_ops_domain *dma_dom,
2575 dma_addr_t dma_addr,
2576 size_t size,
2577 int dir)
2578{
2579 dma_addr_t flush_addr;
2580 dma_addr_t i, start;
2581 unsigned int pages;
2582
2583 if ((dma_addr == DMA_ERROR_CODE) ||
2584 (dma_addr + size > dma_dom->aperture_size))
2585 return;
2586
2587 flush_addr = dma_addr;
2588 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2589 dma_addr &= PAGE_MASK;
2590 start = dma_addr;
2591
2592 for (i = 0; i < pages; ++i) {
2593 dma_ops_domain_unmap(dma_dom, start);
2594 start += PAGE_SIZE;
2595 }
2596
2597 SUB_STATS_COUNTER(alloced_io_mem, size);
2598
2599 dma_ops_free_addresses(dma_dom, dma_addr, pages);
2600
2601 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2602 domain_flush_pages(&dma_dom->domain, flush_addr, size);
2603 dma_dom->need_flush = false;
2604 }
2605}
2606
2607/*
2608 * The exported map_single function for dma_ops.
2609 */
2610static dma_addr_t map_page(struct device *dev, struct page *page,
2611 unsigned long offset, size_t size,
2612 enum dma_data_direction dir,
2613 struct dma_attrs *attrs)
2614{
2615 unsigned long flags;
2616 struct protection_domain *domain;
2617 dma_addr_t addr;
2618 u64 dma_mask;
2619 phys_addr_t paddr = page_to_phys(page) + offset;
2620
2621 INC_STATS_COUNTER(cnt_map_single);
2622
2623 domain = get_domain(dev);
2624 if (PTR_ERR(domain) == -EINVAL)
2625 return (dma_addr_t)paddr;
2626 else if (IS_ERR(domain))
2627 return DMA_ERROR_CODE;
2628
2629 dma_mask = *dev->dma_mask;
2630
2631 spin_lock_irqsave(&domain->lock, flags);
2632
2633 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2634 dma_mask);
2635 if (addr == DMA_ERROR_CODE)
2636 goto out;
2637
2638 domain_flush_complete(domain);
2639
2640out:
2641 spin_unlock_irqrestore(&domain->lock, flags);
2642
2643 return addr;
2644}
2645
2646/*
2647 * The exported unmap_single function for dma_ops.
2648 */
2649static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2650 enum dma_data_direction dir, struct dma_attrs *attrs)
2651{
2652 unsigned long flags;
2653 struct protection_domain *domain;
2654
2655 INC_STATS_COUNTER(cnt_unmap_single);
2656
2657 domain = get_domain(dev);
2658 if (IS_ERR(domain))
2659 return;
2660
2661 spin_lock_irqsave(&domain->lock, flags);
2662
2663 __unmap_single(domain->priv, dma_addr, size, dir);
2664
2665 domain_flush_complete(domain);
2666
2667 spin_unlock_irqrestore(&domain->lock, flags);
2668}
2669
2670/*
2671 * This is a special map_sg function which is used if we should map a
2672 * device which is not handled by an AMD IOMMU in the system.
2673 */
2674static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist,
2675 int nelems, int dir)
2676{
2677 struct scatterlist *s;
2678 int i;
2679
2680 for_each_sg(sglist, s, nelems, i) {
2681 s->dma_address = (dma_addr_t)sg_phys(s);
2682 s->dma_length = s->length;
2683 }
2684
2685 return nelems;
2686}
2687
2688/*
2689 * The exported map_sg function for dma_ops (handles scatter-gather
2690 * lists).
2691 */
2692static int map_sg(struct device *dev, struct scatterlist *sglist,
2693 int nelems, enum dma_data_direction dir,
2694 struct dma_attrs *attrs)
2695{
2696 unsigned long flags;
2697 struct protection_domain *domain;
2698 int i;
2699 struct scatterlist *s;
2700 phys_addr_t paddr;
2701 int mapped_elems = 0;
2702 u64 dma_mask;
2703
2704 INC_STATS_COUNTER(cnt_map_sg);
2705
2706 domain = get_domain(dev);
2707 if (PTR_ERR(domain) == -EINVAL)
2708 return map_sg_no_iommu(dev, sglist, nelems, dir);
2709 else if (IS_ERR(domain))
2710 return 0;
2711
2712 dma_mask = *dev->dma_mask;
2713
2714 spin_lock_irqsave(&domain->lock, flags);
2715
2716 for_each_sg(sglist, s, nelems, i) {
2717 paddr = sg_phys(s);
2718
2719 s->dma_address = __map_single(dev, domain->priv,
2720 paddr, s->length, dir, false,
2721 dma_mask);
2722
2723 if (s->dma_address) {
2724 s->dma_length = s->length;
2725 mapped_elems++;
2726 } else
2727 goto unmap;
2728 }
2729
2730 domain_flush_complete(domain);
2731
2732out:
2733 spin_unlock_irqrestore(&domain->lock, flags);
2734
2735 return mapped_elems;
2736unmap:
2737 for_each_sg(sglist, s, mapped_elems, i) {
2738 if (s->dma_address)
2739 __unmap_single(domain->priv, s->dma_address,
2740 s->dma_length, dir);
2741 s->dma_address = s->dma_length = 0;
2742 }
2743
2744 mapped_elems = 0;
2745
2746 goto out;
2747}
2748
2749/*
2750 * The exported map_sg function for dma_ops (handles scatter-gather
2751 * lists).
2752 */
2753static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2754 int nelems, enum dma_data_direction dir,
2755 struct dma_attrs *attrs)
2756{
2757 unsigned long flags;
2758 struct protection_domain *domain;
2759 struct scatterlist *s;
2760 int i;
2761
2762 INC_STATS_COUNTER(cnt_unmap_sg);
2763
2764 domain = get_domain(dev);
2765 if (IS_ERR(domain))
2766 return;
2767
2768 spin_lock_irqsave(&domain->lock, flags);
2769
2770 for_each_sg(sglist, s, nelems, i) {
2771 __unmap_single(domain->priv, s->dma_address,
2772 s->dma_length, dir);
2773 s->dma_address = s->dma_length = 0;
2774 }
2775
2776 domain_flush_complete(domain);
2777
2778 spin_unlock_irqrestore(&domain->lock, flags);
2779}
2780
2781/*
2782 * The exported alloc_coherent function for dma_ops.
2783 */
2784static void *alloc_coherent(struct device *dev, size_t size,
2785 dma_addr_t *dma_addr, gfp_t flag,
2786 struct dma_attrs *attrs)
2787{
2788 unsigned long flags;
2789 void *virt_addr;
2790 struct protection_domain *domain;
2791 phys_addr_t paddr;
2792 u64 dma_mask = dev->coherent_dma_mask;
2793
2794 INC_STATS_COUNTER(cnt_alloc_coherent);
2795
2796 domain = get_domain(dev);
2797 if (PTR_ERR(domain) == -EINVAL) {
2798 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2799 *dma_addr = __pa(virt_addr);
2800 return virt_addr;
2801 } else if (IS_ERR(domain))
2802 return NULL;
2803
2804 dma_mask = dev->coherent_dma_mask;
2805 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2806 flag |= __GFP_ZERO;
2807
2808 virt_addr = (void *)__get_free_pages(flag, get_order(size));
2809 if (!virt_addr)
2810 return NULL;
2811
2812 paddr = virt_to_phys(virt_addr);
2813
2814 if (!dma_mask)
2815 dma_mask = *dev->dma_mask;
2816
2817 spin_lock_irqsave(&domain->lock, flags);
2818
2819 *dma_addr = __map_single(dev, domain->priv, paddr,
2820 size, DMA_BIDIRECTIONAL, true, dma_mask);
2821
2822 if (*dma_addr == DMA_ERROR_CODE) {
2823 spin_unlock_irqrestore(&domain->lock, flags);
2824 goto out_free;
2825 }
2826
2827 domain_flush_complete(domain);
2828
2829 spin_unlock_irqrestore(&domain->lock, flags);
2830
2831 return virt_addr;
2832
2833out_free:
2834
2835 free_pages((unsigned long)virt_addr, get_order(size));
2836
2837 return NULL;
2838}
2839
2840/*
2841 * The exported free_coherent function for dma_ops.
2842 */
2843static void free_coherent(struct device *dev, size_t size,
2844 void *virt_addr, dma_addr_t dma_addr,
2845 struct dma_attrs *attrs)
2846{
2847 unsigned long flags;
2848 struct protection_domain *domain;
2849
2850 INC_STATS_COUNTER(cnt_free_coherent);
2851
2852 domain = get_domain(dev);
2853 if (IS_ERR(domain))
2854 goto free_mem;
2855
2856 spin_lock_irqsave(&domain->lock, flags);
2857
2858 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
2859
2860 domain_flush_complete(domain);
2861
2862 spin_unlock_irqrestore(&domain->lock, flags);
2863
2864free_mem:
2865 free_pages((unsigned long)virt_addr, get_order(size));
2866}
2867
2868/*
2869 * This function is called by the DMA layer to find out if we can handle a
2870 * particular device. It is part of the dma_ops.
2871 */
2872static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2873{
2874 return check_device(dev);
2875}
2876
2877/*
2878 * The function for pre-allocating protection domains.
2879 *
2880 * If the driver core informs the DMA layer if a driver grabs a device
2881 * we don't need to preallocate the protection domains anymore.
2882 * For now we have to.
2883 */
2884static void __init prealloc_protection_domains(void)
2885{
2886 struct iommu_dev_data *dev_data;
2887 struct dma_ops_domain *dma_dom;
2888 struct pci_dev *dev = NULL;
2889 u16 devid;
2890
2891 for_each_pci_dev(dev) {
2892
2893 /* Do we handle this device? */
2894 if (!check_device(&dev->dev))
2895 continue;
2896
2897 dev_data = get_dev_data(&dev->dev);
2898 if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
2899 /* Make sure passthrough domain is allocated */
2900 alloc_passthrough_domain();
2901 dev_data->passthrough = true;
2902 attach_device(&dev->dev, pt_domain);
2903 pr_info("AMD-Vi: Using passthough domain for device %s\n",
2904 dev_name(&dev->dev));
2905 }
2906
2907 /* Is there already any domain for it? */
2908 if (domain_for_device(&dev->dev))
2909 continue;
2910
2911 devid = get_device_id(&dev->dev);
2912
2913 dma_dom = dma_ops_domain_alloc();
2914 if (!dma_dom)
2915 continue;
2916 init_unity_mappings_for_device(dma_dom, devid);
2917 dma_dom->target_dev = devid;
2918
2919 attach_device(&dev->dev, &dma_dom->domain);
2920
2921 list_add_tail(&dma_dom->list, &iommu_pd_list);
2922 }
2923}
2924
2925static struct dma_map_ops amd_iommu_dma_ops = {
2926 .alloc = alloc_coherent,
2927 .free = free_coherent,
2928 .map_page = map_page,
2929 .unmap_page = unmap_page,
2930 .map_sg = map_sg,
2931 .unmap_sg = unmap_sg,
2932 .dma_supported = amd_iommu_dma_supported,
2933};
2934
2935static unsigned device_dma_ops_init(void)
2936{
2937 struct iommu_dev_data *dev_data;
2938 struct pci_dev *pdev = NULL;
2939 unsigned unhandled = 0;
2940
2941 for_each_pci_dev(pdev) {
2942 if (!check_device(&pdev->dev)) {
2943
2944 iommu_ignore_device(&pdev->dev);
2945
2946 unhandled += 1;
2947 continue;
2948 }
2949
2950 dev_data = get_dev_data(&pdev->dev);
2951
2952 if (!dev_data->passthrough)
2953 pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
2954 else
2955 pdev->dev.archdata.dma_ops = &nommu_dma_ops;
2956 }
2957
2958 return unhandled;
2959}
2960
2961/*
2962 * The function which clues the AMD IOMMU driver into dma_ops.
2963 */
2964
2965void __init amd_iommu_init_api(void)
2966{
2967 bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
2968}
2969
2970int __init amd_iommu_init_dma_ops(void)
2971{
2972 struct amd_iommu *iommu;
2973 int ret, unhandled;
2974
2975 /*
2976 * first allocate a default protection domain for every IOMMU we
2977 * found in the system. Devices not assigned to any other
2978 * protection domain will be assigned to the default one.
2979 */
2980 for_each_iommu(iommu) {
2981 iommu->default_dom = dma_ops_domain_alloc();
2982 if (iommu->default_dom == NULL)
2983 return -ENOMEM;
2984 iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
2985 ret = iommu_init_unity_mappings(iommu);
2986 if (ret)
2987 goto free_domains;
2988 }
2989
2990 /*
2991 * Pre-allocate the protection domains for each device.
2992 */
2993 prealloc_protection_domains();
2994
2995 iommu_detected = 1;
2996 swiotlb = 0;
2997
2998 /* Make the driver finally visible to the drivers */
2999 unhandled = device_dma_ops_init();
3000 if (unhandled && max_pfn > MAX_DMA32_PFN) {
3001 /* There are unhandled devices - initialize swiotlb for them */
3002 swiotlb = 1;
3003 }
3004
3005 amd_iommu_stats_init();
3006
3007 return 0;
3008
3009free_domains:
3010
3011 for_each_iommu(iommu) {
3012 if (iommu->default_dom)
3013 dma_ops_domain_free(iommu->default_dom);
3014 }
3015
3016 return ret;
3017}
3018
3019/*****************************************************************************
3020 *
3021 * The following functions belong to the exported interface of AMD IOMMU
3022 *
3023 * This interface allows access to lower level functions of the IOMMU
3024 * like protection domain handling and assignement of devices to domains
3025 * which is not possible with the dma_ops interface.
3026 *
3027 *****************************************************************************/
3028
3029static void cleanup_domain(struct protection_domain *domain)
3030{
3031 struct iommu_dev_data *entry;
3032 unsigned long flags;
3033
3034 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3035
3036 while (!list_empty(&domain->dev_list)) {
3037 entry = list_first_entry(&domain->dev_list,
3038 struct iommu_dev_data, list);
3039 __detach_device(entry);
3040 atomic_set(&entry->bind, 0);
3041 }
3042
3043 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3044}
3045
3046static void protection_domain_free(struct protection_domain *domain)
3047{
3048 if (!domain)
3049 return;
3050
3051 del_domain_from_list(domain);
3052
3053 if (domain->id)
3054 domain_id_free(domain->id);
3055
3056 kfree(domain);
3057}
3058
3059static struct protection_domain *protection_domain_alloc(void)
3060{
3061 struct protection_domain *domain;
3062
3063 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3064 if (!domain)
3065 return NULL;
3066
3067 spin_lock_init(&domain->lock);
3068 mutex_init(&domain->api_lock);
3069 domain->id = domain_id_alloc();
3070 if (!domain->id)
3071 goto out_err;
3072 INIT_LIST_HEAD(&domain->dev_list);
3073
3074 add_domain_to_list(domain);
3075
3076 return domain;
3077
3078out_err:
3079 kfree(domain);
3080
3081 return NULL;
3082}
3083
3084static int __init alloc_passthrough_domain(void)
3085{
3086 if (pt_domain != NULL)
3087 return 0;
3088
3089 /* allocate passthrough domain */
3090 pt_domain = protection_domain_alloc();
3091 if (!pt_domain)
3092 return -ENOMEM;
3093
3094 pt_domain->mode = PAGE_MODE_NONE;
3095
3096 return 0;
3097}
3098static int amd_iommu_domain_init(struct iommu_domain *dom)
3099{
3100 struct protection_domain *domain;
3101
3102 domain = protection_domain_alloc();
3103 if (!domain)
3104 goto out_free;
3105
3106 domain->mode = PAGE_MODE_3_LEVEL;
3107 domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3108 if (!domain->pt_root)
3109 goto out_free;
3110
3111 domain->iommu_domain = dom;
3112
3113 dom->priv = domain;
3114
3115 return 0;
3116
3117out_free:
3118 protection_domain_free(domain);
3119
3120 return -ENOMEM;
3121}
3122
3123static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3124{
3125 struct protection_domain *domain = dom->priv;
3126
3127 if (!domain)
3128 return;
3129
3130 if (domain->dev_cnt > 0)
3131 cleanup_domain(domain);
3132
3133 BUG_ON(domain->dev_cnt != 0);
3134
3135 if (domain->mode != PAGE_MODE_NONE)
3136 free_pagetable(domain);
3137
3138 if (domain->flags & PD_IOMMUV2_MASK)
3139 free_gcr3_table(domain);
3140
3141 protection_domain_free(domain);
3142
3143 dom->priv = NULL;
3144}
3145
3146static void amd_iommu_detach_device(struct iommu_domain *dom,
3147 struct device *dev)
3148{
3149 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3150 struct amd_iommu *iommu;
3151 u16 devid;
3152
3153 if (!check_device(dev))
3154 return;
3155
3156 devid = get_device_id(dev);
3157
3158 if (dev_data->domain != NULL)
3159 detach_device(dev);
3160
3161 iommu = amd_iommu_rlookup_table[devid];
3162 if (!iommu)
3163 return;
3164
3165 iommu_completion_wait(iommu);
3166}
3167
3168static int amd_iommu_attach_device(struct iommu_domain *dom,
3169 struct device *dev)
3170{
3171 struct protection_domain *domain = dom->priv;
3172 struct iommu_dev_data *dev_data;
3173 struct amd_iommu *iommu;
3174 int ret;
3175
3176 if (!check_device(dev))
3177 return -EINVAL;
3178
3179 dev_data = dev->archdata.iommu;
3180
3181 iommu = amd_iommu_rlookup_table[dev_data->devid];
3182 if (!iommu)
3183 return -EINVAL;
3184
3185 if (dev_data->domain)
3186 detach_device(dev);
3187
3188 ret = attach_device(dev, domain);
3189
3190 iommu_completion_wait(iommu);
3191
3192 return ret;
3193}
3194
3195static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3196 phys_addr_t paddr, size_t page_size, int iommu_prot)
3197{
3198 struct protection_domain *domain = dom->priv;
3199 int prot = 0;
3200 int ret;
3201
3202 if (domain->mode == PAGE_MODE_NONE)
3203 return -EINVAL;
3204
3205 if (iommu_prot & IOMMU_READ)
3206 prot |= IOMMU_PROT_IR;
3207 if (iommu_prot & IOMMU_WRITE)
3208 prot |= IOMMU_PROT_IW;
3209
3210 mutex_lock(&domain->api_lock);
3211 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3212 mutex_unlock(&domain->api_lock);
3213
3214 return ret;
3215}
3216
3217static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3218 size_t page_size)
3219{
3220 struct protection_domain *domain = dom->priv;
3221 size_t unmap_size;
3222
3223 if (domain->mode == PAGE_MODE_NONE)
3224 return -EINVAL;
3225
3226 mutex_lock(&domain->api_lock);
3227 unmap_size = iommu_unmap_page(domain, iova, page_size);
3228 mutex_unlock(&domain->api_lock);
3229
3230 domain_flush_tlb_pde(domain);
3231
3232 return unmap_size;
3233}
3234
3235static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3236 unsigned long iova)
3237{
3238 struct protection_domain *domain = dom->priv;
3239 unsigned long offset_mask;
3240 phys_addr_t paddr;
3241 u64 *pte, __pte;
3242
3243 if (domain->mode == PAGE_MODE_NONE)
3244 return iova;
3245
3246 pte = fetch_pte(domain, iova);
3247
3248 if (!pte || !IOMMU_PTE_PRESENT(*pte))
3249 return 0;
3250
3251 if (PM_PTE_LEVEL(*pte) == 0)
3252 offset_mask = PAGE_SIZE - 1;
3253 else
3254 offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3255
3256 __pte = *pte & PM_ADDR_MASK;
3257 paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3258
3259 return paddr;
3260}
3261
3262static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3263 unsigned long cap)
3264{
3265 switch (cap) {
3266 case IOMMU_CAP_CACHE_COHERENCY:
3267 return 1;
3268 }
3269
3270 return 0;
3271}
3272
3273static int amd_iommu_device_group(struct device *dev, unsigned int *groupid)
3274{
3275 struct iommu_dev_data *dev_data = dev->archdata.iommu;
3276 struct pci_dev *pdev = to_pci_dev(dev);
3277 u16 devid;
3278
3279 if (!dev_data)
3280 return -ENODEV;
3281
3282 if (pdev->is_virtfn || !iommu_group_mf)
3283 devid = dev_data->devid;
3284 else
3285 devid = calc_devid(pdev->bus->number,
3286 PCI_DEVFN(PCI_SLOT(pdev->devfn), 0));
3287
3288 *groupid = amd_iommu_alias_table[devid];
3289
3290 return 0;
3291}
3292
3293static struct iommu_ops amd_iommu_ops = {
3294 .domain_init = amd_iommu_domain_init,
3295 .domain_destroy = amd_iommu_domain_destroy,
3296 .attach_dev = amd_iommu_attach_device,
3297 .detach_dev = amd_iommu_detach_device,
3298 .map = amd_iommu_map,
3299 .unmap = amd_iommu_unmap,
3300 .iova_to_phys = amd_iommu_iova_to_phys,
3301 .domain_has_cap = amd_iommu_domain_has_cap,
3302 .device_group = amd_iommu_device_group,
3303 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
3304};
3305
3306/*****************************************************************************
3307 *
3308 * The next functions do a basic initialization of IOMMU for pass through
3309 * mode
3310 *
3311 * In passthrough mode the IOMMU is initialized and enabled but not used for
3312 * DMA-API translation.
3313 *
3314 *****************************************************************************/
3315
3316int __init amd_iommu_init_passthrough(void)
3317{
3318 struct iommu_dev_data *dev_data;
3319 struct pci_dev *dev = NULL;
3320 struct amd_iommu *iommu;
3321 u16 devid;
3322 int ret;
3323
3324 ret = alloc_passthrough_domain();
3325 if (ret)
3326 return ret;
3327
3328 for_each_pci_dev(dev) {
3329 if (!check_device(&dev->dev))
3330 continue;
3331
3332 dev_data = get_dev_data(&dev->dev);
3333 dev_data->passthrough = true;
3334
3335 devid = get_device_id(&dev->dev);
3336
3337 iommu = amd_iommu_rlookup_table[devid];
3338 if (!iommu)
3339 continue;
3340
3341 attach_device(&dev->dev, pt_domain);
3342 }
3343
3344 amd_iommu_stats_init();
3345
3346 pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3347
3348 return 0;
3349}
3350
3351/* IOMMUv2 specific functions */
3352int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3353{
3354 return atomic_notifier_chain_register(&ppr_notifier, nb);
3355}
3356EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3357
3358int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3359{
3360 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3361}
3362EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3363
3364void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3365{
3366 struct protection_domain *domain = dom->priv;
3367 unsigned long flags;
3368
3369 spin_lock_irqsave(&domain->lock, flags);
3370
3371 /* Update data structure */
3372 domain->mode = PAGE_MODE_NONE;
3373 domain->updated = true;
3374
3375 /* Make changes visible to IOMMUs */
3376 update_domain(domain);
3377
3378 /* Page-table is not visible to IOMMU anymore, so free it */
3379 free_pagetable(domain);
3380
3381 spin_unlock_irqrestore(&domain->lock, flags);
3382}
3383EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3384
3385int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3386{
3387 struct protection_domain *domain = dom->priv;
3388 unsigned long flags;
3389 int levels, ret;
3390
3391 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3392 return -EINVAL;
3393
3394 /* Number of GCR3 table levels required */
3395 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3396 levels += 1;
3397
3398 if (levels > amd_iommu_max_glx_val)
3399 return -EINVAL;
3400
3401 spin_lock_irqsave(&domain->lock, flags);
3402
3403 /*
3404 * Save us all sanity checks whether devices already in the
3405 * domain support IOMMUv2. Just force that the domain has no
3406 * devices attached when it is switched into IOMMUv2 mode.
3407 */
3408 ret = -EBUSY;
3409 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3410 goto out;
3411
3412 ret = -ENOMEM;
3413 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3414 if (domain->gcr3_tbl == NULL)
3415 goto out;
3416
3417 domain->glx = levels;
3418 domain->flags |= PD_IOMMUV2_MASK;
3419 domain->updated = true;
3420
3421 update_domain(domain);
3422
3423 ret = 0;
3424
3425out:
3426 spin_unlock_irqrestore(&domain->lock, flags);
3427
3428 return ret;
3429}
3430EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3431
3432static int __flush_pasid(struct protection_domain *domain, int pasid,
3433 u64 address, bool size)
3434{
3435 struct iommu_dev_data *dev_data;
3436 struct iommu_cmd cmd;
3437 int i, ret;
3438
3439 if (!(domain->flags & PD_IOMMUV2_MASK))
3440 return -EINVAL;
3441
3442 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3443
3444 /*
3445 * IOMMU TLB needs to be flushed before Device TLB to
3446 * prevent device TLB refill from IOMMU TLB
3447 */
3448 for (i = 0; i < amd_iommus_present; ++i) {
3449 if (domain->dev_iommu[i] == 0)
3450 continue;
3451
3452 ret = iommu_queue_command(amd_iommus[i], &cmd);
3453 if (ret != 0)
3454 goto out;
3455 }
3456
3457 /* Wait until IOMMU TLB flushes are complete */
3458 domain_flush_complete(domain);
3459
3460 /* Now flush device TLBs */
3461 list_for_each_entry(dev_data, &domain->dev_list, list) {
3462 struct amd_iommu *iommu;
3463 int qdep;
3464
3465 BUG_ON(!dev_data->ats.enabled);
3466
3467 qdep = dev_data->ats.qdep;
3468 iommu = amd_iommu_rlookup_table[dev_data->devid];
3469
3470 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3471 qdep, address, size);
3472
3473 ret = iommu_queue_command(iommu, &cmd);
3474 if (ret != 0)
3475 goto out;
3476 }
3477
3478 /* Wait until all device TLBs are flushed */
3479 domain_flush_complete(domain);
3480
3481 ret = 0;
3482
3483out:
3484
3485 return ret;
3486}
3487
3488static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3489 u64 address)
3490{
3491 INC_STATS_COUNTER(invalidate_iotlb);
3492
3493 return __flush_pasid(domain, pasid, address, false);
3494}
3495
3496int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3497 u64 address)
3498{
3499 struct protection_domain *domain = dom->priv;
3500 unsigned long flags;
3501 int ret;
3502
3503 spin_lock_irqsave(&domain->lock, flags);
3504 ret = __amd_iommu_flush_page(domain, pasid, address);
3505 spin_unlock_irqrestore(&domain->lock, flags);
3506
3507 return ret;
3508}
3509EXPORT_SYMBOL(amd_iommu_flush_page);
3510
3511static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3512{
3513 INC_STATS_COUNTER(invalidate_iotlb_all);
3514
3515 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3516 true);
3517}
3518
3519int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3520{
3521 struct protection_domain *domain = dom->priv;
3522 unsigned long flags;
3523 int ret;
3524
3525 spin_lock_irqsave(&domain->lock, flags);
3526 ret = __amd_iommu_flush_tlb(domain, pasid);
3527 spin_unlock_irqrestore(&domain->lock, flags);
3528
3529 return ret;
3530}
3531EXPORT_SYMBOL(amd_iommu_flush_tlb);
3532
3533static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3534{
3535 int index;
3536 u64 *pte;
3537
3538 while (true) {
3539
3540 index = (pasid >> (9 * level)) & 0x1ff;
3541 pte = &root[index];
3542
3543 if (level == 0)
3544 break;
3545
3546 if (!(*pte & GCR3_VALID)) {
3547 if (!alloc)
3548 return NULL;
3549
3550 root = (void *)get_zeroed_page(GFP_ATOMIC);
3551 if (root == NULL)
3552 return NULL;
3553
3554 *pte = __pa(root) | GCR3_VALID;
3555 }
3556
3557 root = __va(*pte & PAGE_MASK);
3558
3559 level -= 1;
3560 }
3561
3562 return pte;
3563}
3564
3565static int __set_gcr3(struct protection_domain *domain, int pasid,
3566 unsigned long cr3)
3567{
3568 u64 *pte;
3569
3570 if (domain->mode != PAGE_MODE_NONE)
3571 return -EINVAL;
3572
3573 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3574 if (pte == NULL)
3575 return -ENOMEM;
3576
3577 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3578
3579 return __amd_iommu_flush_tlb(domain, pasid);
3580}
3581
3582static int __clear_gcr3(struct protection_domain *domain, int pasid)
3583{
3584 u64 *pte;
3585
3586 if (domain->mode != PAGE_MODE_NONE)
3587 return -EINVAL;
3588
3589 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3590 if (pte == NULL)
3591 return 0;
3592
3593 *pte = 0;
3594
3595 return __amd_iommu_flush_tlb(domain, pasid);
3596}
3597
3598int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3599 unsigned long cr3)
3600{
3601 struct protection_domain *domain = dom->priv;
3602 unsigned long flags;
3603 int ret;
3604
3605 spin_lock_irqsave(&domain->lock, flags);
3606 ret = __set_gcr3(domain, pasid, cr3);
3607 spin_unlock_irqrestore(&domain->lock, flags);
3608
3609 return ret;
3610}
3611EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3612
3613int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3614{
3615 struct protection_domain *domain = dom->priv;
3616 unsigned long flags;
3617 int ret;
3618
3619 spin_lock_irqsave(&domain->lock, flags);
3620 ret = __clear_gcr3(domain, pasid);
3621 spin_unlock_irqrestore(&domain->lock, flags);
3622
3623 return ret;
3624}
3625EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3626
3627int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3628 int status, int tag)
3629{
3630 struct iommu_dev_data *dev_data;
3631 struct amd_iommu *iommu;
3632 struct iommu_cmd cmd;
3633
3634 INC_STATS_COUNTER(complete_ppr);
3635
3636 dev_data = get_dev_data(&pdev->dev);
3637 iommu = amd_iommu_rlookup_table[dev_data->devid];
3638
3639 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3640 tag, dev_data->pri_tlp);
3641
3642 return iommu_queue_command(iommu, &cmd);
3643}
3644EXPORT_SYMBOL(amd_iommu_complete_ppr);
3645
3646struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3647{
3648 struct protection_domain *domain;
3649
3650 domain = get_domain(&pdev->dev);
3651 if (IS_ERR(domain))
3652 return NULL;
3653
3654 /* Only return IOMMUv2 domains */
3655 if (!(domain->flags & PD_IOMMUV2_MASK))
3656 return NULL;
3657
3658 return domain->iommu_domain;
3659}
3660EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3661
3662void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3663{
3664 struct iommu_dev_data *dev_data;
3665
3666 if (!amd_iommu_v2_supported())
3667 return;
3668
3669 dev_data = get_dev_data(&pdev->dev);
3670 dev_data->errata |= (1 << erratum);
3671}
3672EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3673
3674int amd_iommu_device_info(struct pci_dev *pdev,
3675 struct amd_iommu_device_info *info)
3676{
3677 int max_pasids;
3678 int pos;
3679
3680 if (pdev == NULL || info == NULL)
3681 return -EINVAL;
3682
3683 if (!amd_iommu_v2_supported())
3684 return -EINVAL;
3685
3686 memset(info, 0, sizeof(*info));
3687
3688 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3689 if (pos)
3690 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3691
3692 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3693 if (pos)
3694 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3695
3696 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3697 if (pos) {
3698 int features;
3699
3700 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3701 max_pasids = min(max_pasids, (1 << 20));
3702
3703 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3704 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3705
3706 features = pci_pasid_features(pdev);
3707 if (features & PCI_PASID_CAP_EXEC)
3708 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3709 if (features & PCI_PASID_CAP_PRIV)
3710 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3711 }
3712
3713 return 0;
3714}
3715EXPORT_SYMBOL(amd_iommu_device_info);