yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2007-2010 Advanced Micro Devices, Inc. |
| 3 | * Author: Joerg Roedel <joerg.roedel@amd.com> |
| 4 | * Leo Duran <leo.duran@amd.com> |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or modify it |
| 7 | * under the terms of the GNU General Public License version 2 as published |
| 8 | * by the Free Software Foundation. |
| 9 | * |
| 10 | * This program is distributed in the hope that it will be useful, |
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 13 | * GNU General Public License for more details. |
| 14 | * |
| 15 | * You should have received a copy of the GNU General Public License |
| 16 | * along with this program; if not, write to the Free Software |
| 17 | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
| 18 | */ |
| 19 | |
| 20 | #include <linux/ratelimit.h> |
| 21 | #include <linux/pci.h> |
| 22 | #include <linux/pci-ats.h> |
| 23 | #include <linux/bitmap.h> |
| 24 | #include <linux/slab.h> |
| 25 | #include <linux/debugfs.h> |
| 26 | #include <linux/scatterlist.h> |
| 27 | #include <linux/dma-mapping.h> |
| 28 | #include <linux/iommu-helper.h> |
| 29 | #include <linux/iommu.h> |
| 30 | #include <linux/delay.h> |
| 31 | #include <linux/amd-iommu.h> |
| 32 | #include <linux/notifier.h> |
| 33 | #include <linux/export.h> |
| 34 | #include <asm/msidef.h> |
| 35 | #include <asm/proto.h> |
| 36 | #include <asm/iommu.h> |
| 37 | #include <asm/gart.h> |
| 38 | #include <asm/dma.h> |
| 39 | |
| 40 | #include "amd_iommu_proto.h" |
| 41 | #include "amd_iommu_types.h" |
| 42 | |
| 43 | #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28)) |
| 44 | |
| 45 | #define LOOP_TIMEOUT 100000 |
| 46 | |
| 47 | /* |
| 48 | * This bitmap is used to advertise the page sizes our hardware support |
| 49 | * to the IOMMU core, which will then use this information to split |
| 50 | * physically contiguous memory regions it is mapping into page sizes |
| 51 | * that we support. |
| 52 | * |
| 53 | * Traditionally the IOMMU core just handed us the mappings directly, |
| 54 | * after making sure the size is an order of a 4KiB page and that the |
| 55 | * mapping has natural alignment. |
| 56 | * |
| 57 | * To retain this behavior, we currently advertise that we support |
| 58 | * all page sizes that are an order of 4KiB. |
| 59 | * |
| 60 | * If at some point we'd like to utilize the IOMMU core's new behavior, |
| 61 | * we could change this to advertise the real page sizes we support. |
| 62 | */ |
| 63 | #define AMD_IOMMU_PGSIZES (~0xFFFUL) |
| 64 | |
| 65 | static DEFINE_RWLOCK(amd_iommu_devtable_lock); |
| 66 | |
| 67 | /* A list of preallocated protection domains */ |
| 68 | static LIST_HEAD(iommu_pd_list); |
| 69 | static DEFINE_SPINLOCK(iommu_pd_list_lock); |
| 70 | |
| 71 | /* List of all available dev_data structures */ |
| 72 | static LIST_HEAD(dev_data_list); |
| 73 | static DEFINE_SPINLOCK(dev_data_list_lock); |
| 74 | |
| 75 | /* |
| 76 | * Domain for untranslated devices - only allocated |
| 77 | * if iommu=pt passed on kernel cmd line. |
| 78 | */ |
| 79 | static struct protection_domain *pt_domain; |
| 80 | |
| 81 | static struct iommu_ops amd_iommu_ops; |
| 82 | |
| 83 | static ATOMIC_NOTIFIER_HEAD(ppr_notifier); |
| 84 | int amd_iommu_max_glx_val = -1; |
| 85 | |
| 86 | static struct dma_map_ops amd_iommu_dma_ops; |
| 87 | |
| 88 | /* |
| 89 | * general struct to manage commands send to an IOMMU |
| 90 | */ |
| 91 | struct iommu_cmd { |
| 92 | u32 data[4]; |
| 93 | }; |
| 94 | |
| 95 | static void update_domain(struct protection_domain *domain); |
| 96 | static int __init alloc_passthrough_domain(void); |
| 97 | |
| 98 | /**************************************************************************** |
| 99 | * |
| 100 | * Helper functions |
| 101 | * |
| 102 | ****************************************************************************/ |
| 103 | |
| 104 | static struct iommu_dev_data *alloc_dev_data(u16 devid) |
| 105 | { |
| 106 | struct iommu_dev_data *dev_data; |
| 107 | unsigned long flags; |
| 108 | |
| 109 | dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL); |
| 110 | if (!dev_data) |
| 111 | return NULL; |
| 112 | |
| 113 | dev_data->devid = devid; |
| 114 | atomic_set(&dev_data->bind, 0); |
| 115 | |
| 116 | spin_lock_irqsave(&dev_data_list_lock, flags); |
| 117 | list_add_tail(&dev_data->dev_data_list, &dev_data_list); |
| 118 | spin_unlock_irqrestore(&dev_data_list_lock, flags); |
| 119 | |
| 120 | return dev_data; |
| 121 | } |
| 122 | |
| 123 | static void free_dev_data(struct iommu_dev_data *dev_data) |
| 124 | { |
| 125 | unsigned long flags; |
| 126 | |
| 127 | spin_lock_irqsave(&dev_data_list_lock, flags); |
| 128 | list_del(&dev_data->dev_data_list); |
| 129 | spin_unlock_irqrestore(&dev_data_list_lock, flags); |
| 130 | |
| 131 | kfree(dev_data); |
| 132 | } |
| 133 | |
| 134 | static struct iommu_dev_data *search_dev_data(u16 devid) |
| 135 | { |
| 136 | struct iommu_dev_data *dev_data; |
| 137 | unsigned long flags; |
| 138 | |
| 139 | spin_lock_irqsave(&dev_data_list_lock, flags); |
| 140 | list_for_each_entry(dev_data, &dev_data_list, dev_data_list) { |
| 141 | if (dev_data->devid == devid) |
| 142 | goto out_unlock; |
| 143 | } |
| 144 | |
| 145 | dev_data = NULL; |
| 146 | |
| 147 | out_unlock: |
| 148 | spin_unlock_irqrestore(&dev_data_list_lock, flags); |
| 149 | |
| 150 | return dev_data; |
| 151 | } |
| 152 | |
| 153 | static struct iommu_dev_data *find_dev_data(u16 devid) |
| 154 | { |
| 155 | struct iommu_dev_data *dev_data; |
| 156 | |
| 157 | dev_data = search_dev_data(devid); |
| 158 | |
| 159 | if (dev_data == NULL) |
| 160 | dev_data = alloc_dev_data(devid); |
| 161 | |
| 162 | return dev_data; |
| 163 | } |
| 164 | |
| 165 | static inline u16 get_device_id(struct device *dev) |
| 166 | { |
| 167 | struct pci_dev *pdev = to_pci_dev(dev); |
| 168 | |
| 169 | return calc_devid(pdev->bus->number, pdev->devfn); |
| 170 | } |
| 171 | |
| 172 | static struct iommu_dev_data *get_dev_data(struct device *dev) |
| 173 | { |
| 174 | return dev->archdata.iommu; |
| 175 | } |
| 176 | |
| 177 | static bool pci_iommuv2_capable(struct pci_dev *pdev) |
| 178 | { |
| 179 | static const int caps[] = { |
| 180 | PCI_EXT_CAP_ID_ATS, |
| 181 | PCI_EXT_CAP_ID_PRI, |
| 182 | PCI_EXT_CAP_ID_PASID, |
| 183 | }; |
| 184 | int i, pos; |
| 185 | |
| 186 | for (i = 0; i < 3; ++i) { |
| 187 | pos = pci_find_ext_capability(pdev, caps[i]); |
| 188 | if (pos == 0) |
| 189 | return false; |
| 190 | } |
| 191 | |
| 192 | return true; |
| 193 | } |
| 194 | |
| 195 | static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum) |
| 196 | { |
| 197 | struct iommu_dev_data *dev_data; |
| 198 | |
| 199 | dev_data = get_dev_data(&pdev->dev); |
| 200 | |
| 201 | return dev_data->errata & (1 << erratum) ? true : false; |
| 202 | } |
| 203 | |
| 204 | /* |
| 205 | * In this function the list of preallocated protection domains is traversed to |
| 206 | * find the domain for a specific device |
| 207 | */ |
| 208 | static struct dma_ops_domain *find_protection_domain(u16 devid) |
| 209 | { |
| 210 | struct dma_ops_domain *entry, *ret = NULL; |
| 211 | unsigned long flags; |
| 212 | u16 alias = amd_iommu_alias_table[devid]; |
| 213 | |
| 214 | if (list_empty(&iommu_pd_list)) |
| 215 | return NULL; |
| 216 | |
| 217 | spin_lock_irqsave(&iommu_pd_list_lock, flags); |
| 218 | |
| 219 | list_for_each_entry(entry, &iommu_pd_list, list) { |
| 220 | if (entry->target_dev == devid || |
| 221 | entry->target_dev == alias) { |
| 222 | ret = entry; |
| 223 | break; |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | spin_unlock_irqrestore(&iommu_pd_list_lock, flags); |
| 228 | |
| 229 | return ret; |
| 230 | } |
| 231 | |
| 232 | /* |
| 233 | * This function checks if the driver got a valid device from the caller to |
| 234 | * avoid dereferencing invalid pointers. |
| 235 | */ |
| 236 | static bool check_device(struct device *dev) |
| 237 | { |
| 238 | u16 devid; |
| 239 | |
| 240 | if (!dev || !dev->dma_mask) |
| 241 | return false; |
| 242 | |
| 243 | /* No device or no PCI device */ |
| 244 | if (dev->bus != &pci_bus_type) |
| 245 | return false; |
| 246 | |
| 247 | devid = get_device_id(dev); |
| 248 | |
| 249 | /* Out of our scope? */ |
| 250 | if (devid > amd_iommu_last_bdf) |
| 251 | return false; |
| 252 | |
| 253 | if (amd_iommu_rlookup_table[devid] == NULL) |
| 254 | return false; |
| 255 | |
| 256 | return true; |
| 257 | } |
| 258 | |
| 259 | static int iommu_init_device(struct device *dev) |
| 260 | { |
| 261 | struct pci_dev *pdev = to_pci_dev(dev); |
| 262 | struct iommu_dev_data *dev_data; |
| 263 | u16 alias; |
| 264 | |
| 265 | if (dev->archdata.iommu) |
| 266 | return 0; |
| 267 | |
| 268 | dev_data = find_dev_data(get_device_id(dev)); |
| 269 | if (!dev_data) |
| 270 | return -ENOMEM; |
| 271 | |
| 272 | alias = amd_iommu_alias_table[dev_data->devid]; |
| 273 | if (alias != dev_data->devid) { |
| 274 | struct iommu_dev_data *alias_data; |
| 275 | |
| 276 | alias_data = find_dev_data(alias); |
| 277 | if (alias_data == NULL) { |
| 278 | pr_err("AMD-Vi: Warning: Unhandled device %s\n", |
| 279 | dev_name(dev)); |
| 280 | free_dev_data(dev_data); |
| 281 | return -ENOTSUPP; |
| 282 | } |
| 283 | dev_data->alias_data = alias_data; |
| 284 | } |
| 285 | |
| 286 | if (pci_iommuv2_capable(pdev)) { |
| 287 | struct amd_iommu *iommu; |
| 288 | |
| 289 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 290 | dev_data->iommu_v2 = iommu->is_iommu_v2; |
| 291 | } |
| 292 | |
| 293 | dev->archdata.iommu = dev_data; |
| 294 | |
| 295 | return 0; |
| 296 | } |
| 297 | |
| 298 | static void iommu_ignore_device(struct device *dev) |
| 299 | { |
| 300 | u16 devid, alias; |
| 301 | |
| 302 | devid = get_device_id(dev); |
| 303 | alias = amd_iommu_alias_table[devid]; |
| 304 | |
| 305 | memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry)); |
| 306 | memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry)); |
| 307 | |
| 308 | amd_iommu_rlookup_table[devid] = NULL; |
| 309 | amd_iommu_rlookup_table[alias] = NULL; |
| 310 | } |
| 311 | |
| 312 | static void iommu_uninit_device(struct device *dev) |
| 313 | { |
| 314 | /* |
| 315 | * Nothing to do here - we keep dev_data around for unplugged devices |
| 316 | * and reuse it when the device is re-plugged - not doing so would |
| 317 | * introduce a ton of races. |
| 318 | */ |
| 319 | } |
| 320 | |
| 321 | void __init amd_iommu_uninit_devices(void) |
| 322 | { |
| 323 | struct iommu_dev_data *dev_data, *n; |
| 324 | struct pci_dev *pdev = NULL; |
| 325 | |
| 326 | for_each_pci_dev(pdev) { |
| 327 | |
| 328 | if (!check_device(&pdev->dev)) |
| 329 | continue; |
| 330 | |
| 331 | iommu_uninit_device(&pdev->dev); |
| 332 | } |
| 333 | |
| 334 | /* Free all of our dev_data structures */ |
| 335 | list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list) |
| 336 | free_dev_data(dev_data); |
| 337 | } |
| 338 | |
| 339 | int __init amd_iommu_init_devices(void) |
| 340 | { |
| 341 | struct pci_dev *pdev = NULL; |
| 342 | int ret = 0; |
| 343 | |
| 344 | for_each_pci_dev(pdev) { |
| 345 | |
| 346 | if (!check_device(&pdev->dev)) |
| 347 | continue; |
| 348 | |
| 349 | ret = iommu_init_device(&pdev->dev); |
| 350 | if (ret == -ENOTSUPP) |
| 351 | iommu_ignore_device(&pdev->dev); |
| 352 | else if (ret) |
| 353 | goto out_free; |
| 354 | } |
| 355 | |
| 356 | return 0; |
| 357 | |
| 358 | out_free: |
| 359 | |
| 360 | amd_iommu_uninit_devices(); |
| 361 | |
| 362 | return ret; |
| 363 | } |
| 364 | #ifdef CONFIG_AMD_IOMMU_STATS |
| 365 | |
| 366 | /* |
| 367 | * Initialization code for statistics collection |
| 368 | */ |
| 369 | |
| 370 | DECLARE_STATS_COUNTER(compl_wait); |
| 371 | DECLARE_STATS_COUNTER(cnt_map_single); |
| 372 | DECLARE_STATS_COUNTER(cnt_unmap_single); |
| 373 | DECLARE_STATS_COUNTER(cnt_map_sg); |
| 374 | DECLARE_STATS_COUNTER(cnt_unmap_sg); |
| 375 | DECLARE_STATS_COUNTER(cnt_alloc_coherent); |
| 376 | DECLARE_STATS_COUNTER(cnt_free_coherent); |
| 377 | DECLARE_STATS_COUNTER(cross_page); |
| 378 | DECLARE_STATS_COUNTER(domain_flush_single); |
| 379 | DECLARE_STATS_COUNTER(domain_flush_all); |
| 380 | DECLARE_STATS_COUNTER(alloced_io_mem); |
| 381 | DECLARE_STATS_COUNTER(total_map_requests); |
| 382 | DECLARE_STATS_COUNTER(complete_ppr); |
| 383 | DECLARE_STATS_COUNTER(invalidate_iotlb); |
| 384 | DECLARE_STATS_COUNTER(invalidate_iotlb_all); |
| 385 | DECLARE_STATS_COUNTER(pri_requests); |
| 386 | |
| 387 | |
| 388 | static struct dentry *stats_dir; |
| 389 | static struct dentry *de_fflush; |
| 390 | |
| 391 | static void amd_iommu_stats_add(struct __iommu_counter *cnt) |
| 392 | { |
| 393 | if (stats_dir == NULL) |
| 394 | return; |
| 395 | |
| 396 | cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir, |
| 397 | &cnt->value); |
| 398 | } |
| 399 | |
| 400 | static void amd_iommu_stats_init(void) |
| 401 | { |
| 402 | stats_dir = debugfs_create_dir("amd-iommu", NULL); |
| 403 | if (stats_dir == NULL) |
| 404 | return; |
| 405 | |
| 406 | de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir, |
| 407 | (u32 *)&amd_iommu_unmap_flush); |
| 408 | |
| 409 | amd_iommu_stats_add(&compl_wait); |
| 410 | amd_iommu_stats_add(&cnt_map_single); |
| 411 | amd_iommu_stats_add(&cnt_unmap_single); |
| 412 | amd_iommu_stats_add(&cnt_map_sg); |
| 413 | amd_iommu_stats_add(&cnt_unmap_sg); |
| 414 | amd_iommu_stats_add(&cnt_alloc_coherent); |
| 415 | amd_iommu_stats_add(&cnt_free_coherent); |
| 416 | amd_iommu_stats_add(&cross_page); |
| 417 | amd_iommu_stats_add(&domain_flush_single); |
| 418 | amd_iommu_stats_add(&domain_flush_all); |
| 419 | amd_iommu_stats_add(&alloced_io_mem); |
| 420 | amd_iommu_stats_add(&total_map_requests); |
| 421 | amd_iommu_stats_add(&complete_ppr); |
| 422 | amd_iommu_stats_add(&invalidate_iotlb); |
| 423 | amd_iommu_stats_add(&invalidate_iotlb_all); |
| 424 | amd_iommu_stats_add(&pri_requests); |
| 425 | } |
| 426 | |
| 427 | #endif |
| 428 | |
| 429 | /**************************************************************************** |
| 430 | * |
| 431 | * Interrupt handling functions |
| 432 | * |
| 433 | ****************************************************************************/ |
| 434 | |
| 435 | static void dump_dte_entry(u16 devid) |
| 436 | { |
| 437 | int i; |
| 438 | |
| 439 | for (i = 0; i < 4; ++i) |
| 440 | pr_err("AMD-Vi: DTE[%d]: %016llx\n", i, |
| 441 | amd_iommu_dev_table[devid].data[i]); |
| 442 | } |
| 443 | |
| 444 | static void dump_command(unsigned long phys_addr) |
| 445 | { |
| 446 | struct iommu_cmd *cmd = phys_to_virt(phys_addr); |
| 447 | int i; |
| 448 | |
| 449 | for (i = 0; i < 4; ++i) |
| 450 | pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]); |
| 451 | } |
| 452 | |
| 453 | static void iommu_print_event(struct amd_iommu *iommu, void *__evt) |
| 454 | { |
| 455 | int type, devid, domid, flags; |
| 456 | volatile u32 *event = __evt; |
| 457 | int count = 0; |
| 458 | u64 address; |
| 459 | |
| 460 | retry: |
| 461 | type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK; |
| 462 | devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK; |
| 463 | domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK; |
| 464 | flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK; |
| 465 | address = (u64)(((u64)event[3]) << 32) | event[2]; |
| 466 | |
| 467 | if (type == 0) { |
| 468 | /* Did we hit the erratum? */ |
| 469 | if (++count == LOOP_TIMEOUT) { |
| 470 | pr_err("AMD-Vi: No event written to event log\n"); |
| 471 | return; |
| 472 | } |
| 473 | udelay(1); |
| 474 | goto retry; |
| 475 | } |
| 476 | |
| 477 | printk(KERN_ERR "AMD-Vi: Event logged ["); |
| 478 | |
| 479 | switch (type) { |
| 480 | case EVENT_TYPE_ILL_DEV: |
| 481 | printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x " |
| 482 | "address=0x%016llx flags=0x%04x]\n", |
| 483 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 484 | address, flags); |
| 485 | dump_dte_entry(devid); |
| 486 | break; |
| 487 | case EVENT_TYPE_IO_FAULT: |
| 488 | printk("IO_PAGE_FAULT device=%02x:%02x.%x " |
| 489 | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
| 490 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 491 | domid, address, flags); |
| 492 | break; |
| 493 | case EVENT_TYPE_DEV_TAB_ERR: |
| 494 | printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
| 495 | "address=0x%016llx flags=0x%04x]\n", |
| 496 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 497 | address, flags); |
| 498 | break; |
| 499 | case EVENT_TYPE_PAGE_TAB_ERR: |
| 500 | printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x " |
| 501 | "domain=0x%04x address=0x%016llx flags=0x%04x]\n", |
| 502 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 503 | domid, address, flags); |
| 504 | break; |
| 505 | case EVENT_TYPE_ILL_CMD: |
| 506 | printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address); |
| 507 | dump_command(address); |
| 508 | break; |
| 509 | case EVENT_TYPE_CMD_HARD_ERR: |
| 510 | printk("COMMAND_HARDWARE_ERROR address=0x%016llx " |
| 511 | "flags=0x%04x]\n", address, flags); |
| 512 | break; |
| 513 | case EVENT_TYPE_IOTLB_INV_TO: |
| 514 | printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x " |
| 515 | "address=0x%016llx]\n", |
| 516 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 517 | address); |
| 518 | break; |
| 519 | case EVENT_TYPE_INV_DEV_REQ: |
| 520 | printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x " |
| 521 | "address=0x%016llx flags=0x%04x]\n", |
| 522 | PCI_BUS(devid), PCI_SLOT(devid), PCI_FUNC(devid), |
| 523 | address, flags); |
| 524 | break; |
| 525 | default: |
| 526 | printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type); |
| 527 | } |
| 528 | |
| 529 | memset(__evt, 0, 4 * sizeof(u32)); |
| 530 | } |
| 531 | |
| 532 | static void iommu_poll_events(struct amd_iommu *iommu) |
| 533 | { |
| 534 | u32 head, tail, status; |
| 535 | unsigned long flags; |
| 536 | |
| 537 | spin_lock_irqsave(&iommu->lock, flags); |
| 538 | |
| 539 | /* enable event interrupts again */ |
| 540 | do { |
| 541 | /* |
| 542 | * Workaround for Erratum ERBT1312 |
| 543 | * Clearing the EVT_INT bit may race in the hardware, so read |
| 544 | * it again and make sure it was really cleared |
| 545 | */ |
| 546 | status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| 547 | writel(MMIO_STATUS_EVT_INT_MASK, |
| 548 | iommu->mmio_base + MMIO_STATUS_OFFSET); |
| 549 | } while (status & MMIO_STATUS_EVT_INT_MASK); |
| 550 | |
| 551 | head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| 552 | tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET); |
| 553 | |
| 554 | while (head != tail) { |
| 555 | iommu_print_event(iommu, iommu->evt_buf + head); |
| 556 | head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size; |
| 557 | } |
| 558 | |
| 559 | writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET); |
| 560 | |
| 561 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 562 | } |
| 563 | |
| 564 | static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw) |
| 565 | { |
| 566 | struct amd_iommu_fault fault; |
| 567 | |
| 568 | INC_STATS_COUNTER(pri_requests); |
| 569 | |
| 570 | if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) { |
| 571 | pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n"); |
| 572 | return; |
| 573 | } |
| 574 | |
| 575 | fault.address = raw[1]; |
| 576 | fault.pasid = PPR_PASID(raw[0]); |
| 577 | fault.device_id = PPR_DEVID(raw[0]); |
| 578 | fault.tag = PPR_TAG(raw[0]); |
| 579 | fault.flags = PPR_FLAGS(raw[0]); |
| 580 | |
| 581 | atomic_notifier_call_chain(&ppr_notifier, 0, &fault); |
| 582 | } |
| 583 | |
| 584 | static void iommu_poll_ppr_log(struct amd_iommu *iommu) |
| 585 | { |
| 586 | unsigned long flags; |
| 587 | u32 head, tail, status; |
| 588 | |
| 589 | if (iommu->ppr_log == NULL) |
| 590 | return; |
| 591 | |
| 592 | spin_lock_irqsave(&iommu->lock, flags); |
| 593 | |
| 594 | /* enable ppr interrupts again */ |
| 595 | do { |
| 596 | /* |
| 597 | * Workaround for Erratum ERBT1312 |
| 598 | * Clearing the PPR_INT bit may race in the hardware, so read |
| 599 | * it again and make sure it was really cleared |
| 600 | */ |
| 601 | status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET); |
| 602 | writel(MMIO_STATUS_PPR_INT_MASK, |
| 603 | iommu->mmio_base + MMIO_STATUS_OFFSET); |
| 604 | } while (status & MMIO_STATUS_PPR_INT_MASK); |
| 605 | |
| 606 | head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| 607 | tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
| 608 | |
| 609 | while (head != tail) { |
| 610 | volatile u64 *raw; |
| 611 | u64 entry[2]; |
| 612 | int i; |
| 613 | |
| 614 | raw = (u64 *)(iommu->ppr_log + head); |
| 615 | |
| 616 | /* |
| 617 | * Hardware bug: Interrupt may arrive before the entry is |
| 618 | * written to memory. If this happens we need to wait for the |
| 619 | * entry to arrive. |
| 620 | */ |
| 621 | for (i = 0; i < LOOP_TIMEOUT; ++i) { |
| 622 | if (PPR_REQ_TYPE(raw[0]) != 0) |
| 623 | break; |
| 624 | udelay(1); |
| 625 | } |
| 626 | |
| 627 | /* Avoid memcpy function-call overhead */ |
| 628 | entry[0] = raw[0]; |
| 629 | entry[1] = raw[1]; |
| 630 | |
| 631 | /* |
| 632 | * To detect the hardware bug we need to clear the entry |
| 633 | * back to zero. |
| 634 | */ |
| 635 | raw[0] = raw[1] = 0UL; |
| 636 | |
| 637 | /* Update head pointer of hardware ring-buffer */ |
| 638 | head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE; |
| 639 | writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| 640 | |
| 641 | /* |
| 642 | * Release iommu->lock because ppr-handling might need to |
| 643 | * re-aquire it |
| 644 | */ |
| 645 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 646 | |
| 647 | /* Handle PPR entry */ |
| 648 | iommu_handle_ppr_entry(iommu, entry); |
| 649 | |
| 650 | spin_lock_irqsave(&iommu->lock, flags); |
| 651 | |
| 652 | /* Refresh ring-buffer information */ |
| 653 | head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET); |
| 654 | tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET); |
| 655 | } |
| 656 | |
| 657 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 658 | } |
| 659 | |
| 660 | irqreturn_t amd_iommu_int_thread(int irq, void *data) |
| 661 | { |
| 662 | struct amd_iommu *iommu; |
| 663 | |
| 664 | for_each_iommu(iommu) { |
| 665 | iommu_poll_events(iommu); |
| 666 | iommu_poll_ppr_log(iommu); |
| 667 | } |
| 668 | |
| 669 | return IRQ_HANDLED; |
| 670 | } |
| 671 | |
| 672 | irqreturn_t amd_iommu_int_handler(int irq, void *data) |
| 673 | { |
| 674 | return IRQ_WAKE_THREAD; |
| 675 | } |
| 676 | |
| 677 | /**************************************************************************** |
| 678 | * |
| 679 | * IOMMU command queuing functions |
| 680 | * |
| 681 | ****************************************************************************/ |
| 682 | |
| 683 | static int wait_on_sem(volatile u64 *sem) |
| 684 | { |
| 685 | int i = 0; |
| 686 | |
| 687 | while (*sem == 0 && i < LOOP_TIMEOUT) { |
| 688 | udelay(1); |
| 689 | i += 1; |
| 690 | } |
| 691 | |
| 692 | if (i == LOOP_TIMEOUT) { |
| 693 | pr_alert("AMD-Vi: Completion-Wait loop timed out\n"); |
| 694 | return -EIO; |
| 695 | } |
| 696 | |
| 697 | return 0; |
| 698 | } |
| 699 | |
| 700 | static void copy_cmd_to_buffer(struct amd_iommu *iommu, |
| 701 | struct iommu_cmd *cmd, |
| 702 | u32 tail) |
| 703 | { |
| 704 | u8 *target; |
| 705 | |
| 706 | target = iommu->cmd_buf + tail; |
| 707 | tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; |
| 708 | |
| 709 | /* Copy command to buffer */ |
| 710 | memcpy(target, cmd, sizeof(*cmd)); |
| 711 | |
| 712 | /* Tell the IOMMU about it */ |
| 713 | writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| 714 | } |
| 715 | |
| 716 | static void build_completion_wait(struct iommu_cmd *cmd, u64 address) |
| 717 | { |
| 718 | WARN_ON(address & 0x7ULL); |
| 719 | |
| 720 | memset(cmd, 0, sizeof(*cmd)); |
| 721 | cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK; |
| 722 | cmd->data[1] = upper_32_bits(__pa(address)); |
| 723 | cmd->data[2] = 1; |
| 724 | CMD_SET_TYPE(cmd, CMD_COMPL_WAIT); |
| 725 | } |
| 726 | |
| 727 | static void build_inv_dte(struct iommu_cmd *cmd, u16 devid) |
| 728 | { |
| 729 | memset(cmd, 0, sizeof(*cmd)); |
| 730 | cmd->data[0] = devid; |
| 731 | CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY); |
| 732 | } |
| 733 | |
| 734 | static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address, |
| 735 | size_t size, u16 domid, int pde) |
| 736 | { |
| 737 | u64 pages; |
| 738 | int s; |
| 739 | |
| 740 | pages = iommu_num_pages(address, size, PAGE_SIZE); |
| 741 | s = 0; |
| 742 | |
| 743 | if (pages > 1) { |
| 744 | /* |
| 745 | * If we have to flush more than one page, flush all |
| 746 | * TLB entries for this domain |
| 747 | */ |
| 748 | address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
| 749 | s = 1; |
| 750 | } |
| 751 | |
| 752 | address &= PAGE_MASK; |
| 753 | |
| 754 | memset(cmd, 0, sizeof(*cmd)); |
| 755 | cmd->data[1] |= domid; |
| 756 | cmd->data[2] = lower_32_bits(address); |
| 757 | cmd->data[3] = upper_32_bits(address); |
| 758 | CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
| 759 | if (s) /* size bit - we flush more than one 4kb page */ |
| 760 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| 761 | if (pde) /* PDE bit - we wan't flush everything not only the PTEs */ |
| 762 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
| 763 | } |
| 764 | |
| 765 | static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep, |
| 766 | u64 address, size_t size) |
| 767 | { |
| 768 | u64 pages; |
| 769 | int s; |
| 770 | |
| 771 | pages = iommu_num_pages(address, size, PAGE_SIZE); |
| 772 | s = 0; |
| 773 | |
| 774 | if (pages > 1) { |
| 775 | /* |
| 776 | * If we have to flush more than one page, flush all |
| 777 | * TLB entries for this domain |
| 778 | */ |
| 779 | address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS; |
| 780 | s = 1; |
| 781 | } |
| 782 | |
| 783 | address &= PAGE_MASK; |
| 784 | |
| 785 | memset(cmd, 0, sizeof(*cmd)); |
| 786 | cmd->data[0] = devid; |
| 787 | cmd->data[0] |= (qdep & 0xff) << 24; |
| 788 | cmd->data[1] = devid; |
| 789 | cmd->data[2] = lower_32_bits(address); |
| 790 | cmd->data[3] = upper_32_bits(address); |
| 791 | CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
| 792 | if (s) |
| 793 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| 794 | } |
| 795 | |
| 796 | static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid, |
| 797 | u64 address, bool size) |
| 798 | { |
| 799 | memset(cmd, 0, sizeof(*cmd)); |
| 800 | |
| 801 | address &= ~(0xfffULL); |
| 802 | |
| 803 | cmd->data[0] = pasid & PASID_MASK; |
| 804 | cmd->data[1] = domid; |
| 805 | cmd->data[2] = lower_32_bits(address); |
| 806 | cmd->data[3] = upper_32_bits(address); |
| 807 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK; |
| 808 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
| 809 | if (size) |
| 810 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| 811 | CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES); |
| 812 | } |
| 813 | |
| 814 | static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid, |
| 815 | int qdep, u64 address, bool size) |
| 816 | { |
| 817 | memset(cmd, 0, sizeof(*cmd)); |
| 818 | |
| 819 | address &= ~(0xfffULL); |
| 820 | |
| 821 | cmd->data[0] = devid; |
| 822 | cmd->data[0] |= (pasid & 0xff) << 16; |
| 823 | cmd->data[0] |= (qdep & 0xff) << 24; |
| 824 | cmd->data[1] = devid; |
| 825 | cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16; |
| 826 | cmd->data[2] = lower_32_bits(address); |
| 827 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK; |
| 828 | cmd->data[3] = upper_32_bits(address); |
| 829 | if (size) |
| 830 | cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK; |
| 831 | CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES); |
| 832 | } |
| 833 | |
| 834 | static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid, |
| 835 | int status, int tag, bool gn) |
| 836 | { |
| 837 | memset(cmd, 0, sizeof(*cmd)); |
| 838 | |
| 839 | cmd->data[0] = devid; |
| 840 | if (gn) { |
| 841 | cmd->data[1] = pasid & PASID_MASK; |
| 842 | cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK; |
| 843 | } |
| 844 | cmd->data[3] = tag & 0x1ff; |
| 845 | cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT; |
| 846 | |
| 847 | CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR); |
| 848 | } |
| 849 | |
| 850 | static void build_inv_all(struct iommu_cmd *cmd) |
| 851 | { |
| 852 | memset(cmd, 0, sizeof(*cmd)); |
| 853 | CMD_SET_TYPE(cmd, CMD_INV_ALL); |
| 854 | } |
| 855 | |
| 856 | /* |
| 857 | * Writes the command to the IOMMUs command buffer and informs the |
| 858 | * hardware about the new command. |
| 859 | */ |
| 860 | static int iommu_queue_command_sync(struct amd_iommu *iommu, |
| 861 | struct iommu_cmd *cmd, |
| 862 | bool sync) |
| 863 | { |
| 864 | u32 left, tail, head, next_tail; |
| 865 | unsigned long flags; |
| 866 | |
| 867 | WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED); |
| 868 | |
| 869 | again: |
| 870 | spin_lock_irqsave(&iommu->lock, flags); |
| 871 | |
| 872 | head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET); |
| 873 | tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET); |
| 874 | next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size; |
| 875 | left = (head - next_tail) % iommu->cmd_buf_size; |
| 876 | |
| 877 | if (left <= 2) { |
| 878 | struct iommu_cmd sync_cmd; |
| 879 | volatile u64 sem = 0; |
| 880 | int ret; |
| 881 | |
| 882 | build_completion_wait(&sync_cmd, (u64)&sem); |
| 883 | copy_cmd_to_buffer(iommu, &sync_cmd, tail); |
| 884 | |
| 885 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 886 | |
| 887 | if ((ret = wait_on_sem(&sem)) != 0) |
| 888 | return ret; |
| 889 | |
| 890 | goto again; |
| 891 | } |
| 892 | |
| 893 | copy_cmd_to_buffer(iommu, cmd, tail); |
| 894 | |
| 895 | /* We need to sync now to make sure all commands are processed */ |
| 896 | iommu->need_sync = sync; |
| 897 | |
| 898 | spin_unlock_irqrestore(&iommu->lock, flags); |
| 899 | |
| 900 | return 0; |
| 901 | } |
| 902 | |
| 903 | static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd) |
| 904 | { |
| 905 | return iommu_queue_command_sync(iommu, cmd, true); |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | * This function queues a completion wait command into the command |
| 910 | * buffer of an IOMMU |
| 911 | */ |
| 912 | static int iommu_completion_wait(struct amd_iommu *iommu) |
| 913 | { |
| 914 | struct iommu_cmd cmd; |
| 915 | volatile u64 sem = 0; |
| 916 | int ret; |
| 917 | |
| 918 | if (!iommu->need_sync) |
| 919 | return 0; |
| 920 | |
| 921 | build_completion_wait(&cmd, (u64)&sem); |
| 922 | |
| 923 | ret = iommu_queue_command_sync(iommu, &cmd, false); |
| 924 | if (ret) |
| 925 | return ret; |
| 926 | |
| 927 | return wait_on_sem(&sem); |
| 928 | } |
| 929 | |
| 930 | static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid) |
| 931 | { |
| 932 | struct iommu_cmd cmd; |
| 933 | |
| 934 | build_inv_dte(&cmd, devid); |
| 935 | |
| 936 | return iommu_queue_command(iommu, &cmd); |
| 937 | } |
| 938 | |
| 939 | static void iommu_flush_dte_all(struct amd_iommu *iommu) |
| 940 | { |
| 941 | u32 devid; |
| 942 | |
| 943 | for (devid = 0; devid <= 0xffff; ++devid) |
| 944 | iommu_flush_dte(iommu, devid); |
| 945 | |
| 946 | iommu_completion_wait(iommu); |
| 947 | } |
| 948 | |
| 949 | /* |
| 950 | * This function uses heavy locking and may disable irqs for some time. But |
| 951 | * this is no issue because it is only called during resume. |
| 952 | */ |
| 953 | static void iommu_flush_tlb_all(struct amd_iommu *iommu) |
| 954 | { |
| 955 | u32 dom_id; |
| 956 | |
| 957 | for (dom_id = 0; dom_id <= 0xffff; ++dom_id) { |
| 958 | struct iommu_cmd cmd; |
| 959 | build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
| 960 | dom_id, 1); |
| 961 | iommu_queue_command(iommu, &cmd); |
| 962 | } |
| 963 | |
| 964 | iommu_completion_wait(iommu); |
| 965 | } |
| 966 | |
| 967 | static void iommu_flush_all(struct amd_iommu *iommu) |
| 968 | { |
| 969 | struct iommu_cmd cmd; |
| 970 | |
| 971 | build_inv_all(&cmd); |
| 972 | |
| 973 | iommu_queue_command(iommu, &cmd); |
| 974 | iommu_completion_wait(iommu); |
| 975 | } |
| 976 | |
| 977 | void iommu_flush_all_caches(struct amd_iommu *iommu) |
| 978 | { |
| 979 | if (iommu_feature(iommu, FEATURE_IA)) { |
| 980 | iommu_flush_all(iommu); |
| 981 | } else { |
| 982 | iommu_flush_dte_all(iommu); |
| 983 | iommu_flush_tlb_all(iommu); |
| 984 | } |
| 985 | } |
| 986 | |
| 987 | /* |
| 988 | * Command send function for flushing on-device TLB |
| 989 | */ |
| 990 | static int device_flush_iotlb(struct iommu_dev_data *dev_data, |
| 991 | u64 address, size_t size) |
| 992 | { |
| 993 | struct amd_iommu *iommu; |
| 994 | struct iommu_cmd cmd; |
| 995 | int qdep; |
| 996 | |
| 997 | qdep = dev_data->ats.qdep; |
| 998 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 999 | |
| 1000 | build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size); |
| 1001 | |
| 1002 | return iommu_queue_command(iommu, &cmd); |
| 1003 | } |
| 1004 | |
| 1005 | /* |
| 1006 | * Command send function for invalidating a device table entry |
| 1007 | */ |
| 1008 | static int device_flush_dte(struct iommu_dev_data *dev_data) |
| 1009 | { |
| 1010 | struct amd_iommu *iommu; |
| 1011 | int ret; |
| 1012 | |
| 1013 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 1014 | |
| 1015 | ret = iommu_flush_dte(iommu, dev_data->devid); |
| 1016 | if (ret) |
| 1017 | return ret; |
| 1018 | |
| 1019 | if (dev_data->ats.enabled) |
| 1020 | ret = device_flush_iotlb(dev_data, 0, ~0UL); |
| 1021 | |
| 1022 | return ret; |
| 1023 | } |
| 1024 | |
| 1025 | /* |
| 1026 | * TLB invalidation function which is called from the mapping functions. |
| 1027 | * It invalidates a single PTE if the range to flush is within a single |
| 1028 | * page. Otherwise it flushes the whole TLB of the IOMMU. |
| 1029 | */ |
| 1030 | static void __domain_flush_pages(struct protection_domain *domain, |
| 1031 | u64 address, size_t size, int pde) |
| 1032 | { |
| 1033 | struct iommu_dev_data *dev_data; |
| 1034 | struct iommu_cmd cmd; |
| 1035 | int ret = 0, i; |
| 1036 | |
| 1037 | build_inv_iommu_pages(&cmd, address, size, domain->id, pde); |
| 1038 | |
| 1039 | for (i = 0; i < amd_iommus_present; ++i) { |
| 1040 | if (!domain->dev_iommu[i]) |
| 1041 | continue; |
| 1042 | |
| 1043 | /* |
| 1044 | * Devices of this domain are behind this IOMMU |
| 1045 | * We need a TLB flush |
| 1046 | */ |
| 1047 | ret |= iommu_queue_command(amd_iommus[i], &cmd); |
| 1048 | } |
| 1049 | |
| 1050 | list_for_each_entry(dev_data, &domain->dev_list, list) { |
| 1051 | |
| 1052 | if (!dev_data->ats.enabled) |
| 1053 | continue; |
| 1054 | |
| 1055 | ret |= device_flush_iotlb(dev_data, address, size); |
| 1056 | } |
| 1057 | |
| 1058 | WARN_ON(ret); |
| 1059 | } |
| 1060 | |
| 1061 | static void domain_flush_pages(struct protection_domain *domain, |
| 1062 | u64 address, size_t size) |
| 1063 | { |
| 1064 | __domain_flush_pages(domain, address, size, 0); |
| 1065 | } |
| 1066 | |
| 1067 | /* Flush the whole IO/TLB for a given protection domain */ |
| 1068 | static void domain_flush_tlb(struct protection_domain *domain) |
| 1069 | { |
| 1070 | __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0); |
| 1071 | } |
| 1072 | |
| 1073 | /* Flush the whole IO/TLB for a given protection domain - including PDE */ |
| 1074 | static void domain_flush_tlb_pde(struct protection_domain *domain) |
| 1075 | { |
| 1076 | __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1); |
| 1077 | } |
| 1078 | |
| 1079 | static void domain_flush_complete(struct protection_domain *domain) |
| 1080 | { |
| 1081 | int i; |
| 1082 | |
| 1083 | for (i = 0; i < amd_iommus_present; ++i) { |
| 1084 | if (!domain->dev_iommu[i]) |
| 1085 | continue; |
| 1086 | |
| 1087 | /* |
| 1088 | * Devices of this domain are behind this IOMMU |
| 1089 | * We need to wait for completion of all commands. |
| 1090 | */ |
| 1091 | iommu_completion_wait(amd_iommus[i]); |
| 1092 | } |
| 1093 | } |
| 1094 | |
| 1095 | |
| 1096 | /* |
| 1097 | * This function flushes the DTEs for all devices in domain |
| 1098 | */ |
| 1099 | static void domain_flush_devices(struct protection_domain *domain) |
| 1100 | { |
| 1101 | struct iommu_dev_data *dev_data; |
| 1102 | |
| 1103 | list_for_each_entry(dev_data, &domain->dev_list, list) |
| 1104 | device_flush_dte(dev_data); |
| 1105 | } |
| 1106 | |
| 1107 | /**************************************************************************** |
| 1108 | * |
| 1109 | * The functions below are used the create the page table mappings for |
| 1110 | * unity mapped regions. |
| 1111 | * |
| 1112 | ****************************************************************************/ |
| 1113 | |
| 1114 | /* |
| 1115 | * This function is used to add another level to an IO page table. Adding |
| 1116 | * another level increases the size of the address space by 9 bits to a size up |
| 1117 | * to 64 bits. |
| 1118 | */ |
| 1119 | static bool increase_address_space(struct protection_domain *domain, |
| 1120 | gfp_t gfp) |
| 1121 | { |
| 1122 | u64 *pte; |
| 1123 | |
| 1124 | if (domain->mode == PAGE_MODE_6_LEVEL) |
| 1125 | /* address space already 64 bit large */ |
| 1126 | return false; |
| 1127 | |
| 1128 | pte = (void *)get_zeroed_page(gfp); |
| 1129 | if (!pte) |
| 1130 | return false; |
| 1131 | |
| 1132 | *pte = PM_LEVEL_PDE(domain->mode, |
| 1133 | virt_to_phys(domain->pt_root)); |
| 1134 | domain->pt_root = pte; |
| 1135 | domain->mode += 1; |
| 1136 | domain->updated = true; |
| 1137 | |
| 1138 | return true; |
| 1139 | } |
| 1140 | |
| 1141 | static u64 *alloc_pte(struct protection_domain *domain, |
| 1142 | unsigned long address, |
| 1143 | unsigned long page_size, |
| 1144 | u64 **pte_page, |
| 1145 | gfp_t gfp) |
| 1146 | { |
| 1147 | int level, end_lvl; |
| 1148 | u64 *pte, *page; |
| 1149 | |
| 1150 | BUG_ON(!is_power_of_2(page_size)); |
| 1151 | |
| 1152 | while (address > PM_LEVEL_SIZE(domain->mode)) |
| 1153 | increase_address_space(domain, gfp); |
| 1154 | |
| 1155 | level = domain->mode - 1; |
| 1156 | pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; |
| 1157 | address = PAGE_SIZE_ALIGN(address, page_size); |
| 1158 | end_lvl = PAGE_SIZE_LEVEL(page_size); |
| 1159 | |
| 1160 | while (level > end_lvl) { |
| 1161 | if (!IOMMU_PTE_PRESENT(*pte)) { |
| 1162 | page = (u64 *)get_zeroed_page(gfp); |
| 1163 | if (!page) |
| 1164 | return NULL; |
| 1165 | *pte = PM_LEVEL_PDE(level, virt_to_phys(page)); |
| 1166 | } |
| 1167 | |
| 1168 | /* No level skipping support yet */ |
| 1169 | if (PM_PTE_LEVEL(*pte) != level) |
| 1170 | return NULL; |
| 1171 | |
| 1172 | level -= 1; |
| 1173 | |
| 1174 | pte = IOMMU_PTE_PAGE(*pte); |
| 1175 | |
| 1176 | if (pte_page && level == end_lvl) |
| 1177 | *pte_page = pte; |
| 1178 | |
| 1179 | pte = &pte[PM_LEVEL_INDEX(level, address)]; |
| 1180 | } |
| 1181 | |
| 1182 | return pte; |
| 1183 | } |
| 1184 | |
| 1185 | /* |
| 1186 | * This function checks if there is a PTE for a given dma address. If |
| 1187 | * there is one, it returns the pointer to it. |
| 1188 | */ |
| 1189 | static u64 *fetch_pte(struct protection_domain *domain, unsigned long address) |
| 1190 | { |
| 1191 | int level; |
| 1192 | u64 *pte; |
| 1193 | |
| 1194 | if (address > PM_LEVEL_SIZE(domain->mode)) |
| 1195 | return NULL; |
| 1196 | |
| 1197 | level = domain->mode - 1; |
| 1198 | pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)]; |
| 1199 | |
| 1200 | while (level > 0) { |
| 1201 | |
| 1202 | /* Not Present */ |
| 1203 | if (!IOMMU_PTE_PRESENT(*pte)) |
| 1204 | return NULL; |
| 1205 | |
| 1206 | /* Large PTE */ |
| 1207 | if (PM_PTE_LEVEL(*pte) == 0x07) { |
| 1208 | unsigned long pte_mask, __pte; |
| 1209 | |
| 1210 | /* |
| 1211 | * If we have a series of large PTEs, make |
| 1212 | * sure to return a pointer to the first one. |
| 1213 | */ |
| 1214 | pte_mask = PTE_PAGE_SIZE(*pte); |
| 1215 | pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1); |
| 1216 | __pte = ((unsigned long)pte) & pte_mask; |
| 1217 | |
| 1218 | return (u64 *)__pte; |
| 1219 | } |
| 1220 | |
| 1221 | /* No level skipping support yet */ |
| 1222 | if (PM_PTE_LEVEL(*pte) != level) |
| 1223 | return NULL; |
| 1224 | |
| 1225 | level -= 1; |
| 1226 | |
| 1227 | /* Walk to the next level */ |
| 1228 | pte = IOMMU_PTE_PAGE(*pte); |
| 1229 | pte = &pte[PM_LEVEL_INDEX(level, address)]; |
| 1230 | } |
| 1231 | |
| 1232 | return pte; |
| 1233 | } |
| 1234 | |
| 1235 | /* |
| 1236 | * Generic mapping functions. It maps a physical address into a DMA |
| 1237 | * address space. It allocates the page table pages if necessary. |
| 1238 | * In the future it can be extended to a generic mapping function |
| 1239 | * supporting all features of AMD IOMMU page tables like level skipping |
| 1240 | * and full 64 bit address spaces. |
| 1241 | */ |
| 1242 | static int iommu_map_page(struct protection_domain *dom, |
| 1243 | unsigned long bus_addr, |
| 1244 | unsigned long phys_addr, |
| 1245 | int prot, |
| 1246 | unsigned long page_size) |
| 1247 | { |
| 1248 | u64 __pte, *pte; |
| 1249 | int i, count; |
| 1250 | |
| 1251 | if (!(prot & IOMMU_PROT_MASK)) |
| 1252 | return -EINVAL; |
| 1253 | |
| 1254 | bus_addr = PAGE_ALIGN(bus_addr); |
| 1255 | phys_addr = PAGE_ALIGN(phys_addr); |
| 1256 | count = PAGE_SIZE_PTE_COUNT(page_size); |
| 1257 | pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL); |
| 1258 | |
| 1259 | for (i = 0; i < count; ++i) |
| 1260 | if (IOMMU_PTE_PRESENT(pte[i])) |
| 1261 | return -EBUSY; |
| 1262 | |
| 1263 | if (page_size > PAGE_SIZE) { |
| 1264 | __pte = PAGE_SIZE_PTE(phys_addr, page_size); |
| 1265 | __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC; |
| 1266 | } else |
| 1267 | __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC; |
| 1268 | |
| 1269 | if (prot & IOMMU_PROT_IR) |
| 1270 | __pte |= IOMMU_PTE_IR; |
| 1271 | if (prot & IOMMU_PROT_IW) |
| 1272 | __pte |= IOMMU_PTE_IW; |
| 1273 | |
| 1274 | for (i = 0; i < count; ++i) |
| 1275 | pte[i] = __pte; |
| 1276 | |
| 1277 | update_domain(dom); |
| 1278 | |
| 1279 | return 0; |
| 1280 | } |
| 1281 | |
| 1282 | static unsigned long iommu_unmap_page(struct protection_domain *dom, |
| 1283 | unsigned long bus_addr, |
| 1284 | unsigned long page_size) |
| 1285 | { |
| 1286 | unsigned long long unmap_size, unmapped; |
| 1287 | u64 *pte; |
| 1288 | |
| 1289 | BUG_ON(!is_power_of_2(page_size)); |
| 1290 | |
| 1291 | unmapped = 0; |
| 1292 | |
| 1293 | while (unmapped < page_size) { |
| 1294 | |
| 1295 | pte = fetch_pte(dom, bus_addr); |
| 1296 | |
| 1297 | if (!pte) { |
| 1298 | /* |
| 1299 | * No PTE for this address |
| 1300 | * move forward in 4kb steps |
| 1301 | */ |
| 1302 | unmap_size = PAGE_SIZE; |
| 1303 | } else if (PM_PTE_LEVEL(*pte) == 0) { |
| 1304 | /* 4kb PTE found for this address */ |
| 1305 | unmap_size = PAGE_SIZE; |
| 1306 | *pte = 0ULL; |
| 1307 | } else { |
| 1308 | int count, i; |
| 1309 | |
| 1310 | /* Large PTE found which maps this address */ |
| 1311 | unmap_size = PTE_PAGE_SIZE(*pte); |
| 1312 | |
| 1313 | /* Only unmap from the first pte in the page */ |
| 1314 | if ((unmap_size - 1) & bus_addr) |
| 1315 | break; |
| 1316 | count = PAGE_SIZE_PTE_COUNT(unmap_size); |
| 1317 | for (i = 0; i < count; i++) |
| 1318 | pte[i] = 0ULL; |
| 1319 | } |
| 1320 | |
| 1321 | bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size; |
| 1322 | unmapped += unmap_size; |
| 1323 | } |
| 1324 | |
| 1325 | BUG_ON(unmapped && !is_power_of_2(unmapped)); |
| 1326 | |
| 1327 | return unmapped; |
| 1328 | } |
| 1329 | |
| 1330 | /* |
| 1331 | * This function checks if a specific unity mapping entry is needed for |
| 1332 | * this specific IOMMU. |
| 1333 | */ |
| 1334 | static int iommu_for_unity_map(struct amd_iommu *iommu, |
| 1335 | struct unity_map_entry *entry) |
| 1336 | { |
| 1337 | u16 bdf, i; |
| 1338 | |
| 1339 | for (i = entry->devid_start; i <= entry->devid_end; ++i) { |
| 1340 | bdf = amd_iommu_alias_table[i]; |
| 1341 | if (amd_iommu_rlookup_table[bdf] == iommu) |
| 1342 | return 1; |
| 1343 | } |
| 1344 | |
| 1345 | return 0; |
| 1346 | } |
| 1347 | |
| 1348 | /* |
| 1349 | * This function actually applies the mapping to the page table of the |
| 1350 | * dma_ops domain. |
| 1351 | */ |
| 1352 | static int dma_ops_unity_map(struct dma_ops_domain *dma_dom, |
| 1353 | struct unity_map_entry *e) |
| 1354 | { |
| 1355 | u64 addr; |
| 1356 | int ret; |
| 1357 | |
| 1358 | for (addr = e->address_start; addr < e->address_end; |
| 1359 | addr += PAGE_SIZE) { |
| 1360 | ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot, |
| 1361 | PAGE_SIZE); |
| 1362 | if (ret) |
| 1363 | return ret; |
| 1364 | /* |
| 1365 | * if unity mapping is in aperture range mark the page |
| 1366 | * as allocated in the aperture |
| 1367 | */ |
| 1368 | if (addr < dma_dom->aperture_size) |
| 1369 | __set_bit(addr >> PAGE_SHIFT, |
| 1370 | dma_dom->aperture[0]->bitmap); |
| 1371 | } |
| 1372 | |
| 1373 | return 0; |
| 1374 | } |
| 1375 | |
| 1376 | /* |
| 1377 | * Init the unity mappings for a specific IOMMU in the system |
| 1378 | * |
| 1379 | * Basically iterates over all unity mapping entries and applies them to |
| 1380 | * the default domain DMA of that IOMMU if necessary. |
| 1381 | */ |
| 1382 | static int iommu_init_unity_mappings(struct amd_iommu *iommu) |
| 1383 | { |
| 1384 | struct unity_map_entry *entry; |
| 1385 | int ret; |
| 1386 | |
| 1387 | list_for_each_entry(entry, &amd_iommu_unity_map, list) { |
| 1388 | if (!iommu_for_unity_map(iommu, entry)) |
| 1389 | continue; |
| 1390 | ret = dma_ops_unity_map(iommu->default_dom, entry); |
| 1391 | if (ret) |
| 1392 | return ret; |
| 1393 | } |
| 1394 | |
| 1395 | return 0; |
| 1396 | } |
| 1397 | |
| 1398 | /* |
| 1399 | * Inits the unity mappings required for a specific device |
| 1400 | */ |
| 1401 | static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom, |
| 1402 | u16 devid) |
| 1403 | { |
| 1404 | struct unity_map_entry *e; |
| 1405 | int ret; |
| 1406 | |
| 1407 | list_for_each_entry(e, &amd_iommu_unity_map, list) { |
| 1408 | if (!(devid >= e->devid_start && devid <= e->devid_end)) |
| 1409 | continue; |
| 1410 | ret = dma_ops_unity_map(dma_dom, e); |
| 1411 | if (ret) |
| 1412 | return ret; |
| 1413 | } |
| 1414 | |
| 1415 | return 0; |
| 1416 | } |
| 1417 | |
| 1418 | /**************************************************************************** |
| 1419 | * |
| 1420 | * The next functions belong to the address allocator for the dma_ops |
| 1421 | * interface functions. They work like the allocators in the other IOMMU |
| 1422 | * drivers. Its basically a bitmap which marks the allocated pages in |
| 1423 | * the aperture. Maybe it could be enhanced in the future to a more |
| 1424 | * efficient allocator. |
| 1425 | * |
| 1426 | ****************************************************************************/ |
| 1427 | |
| 1428 | /* |
| 1429 | * The address allocator core functions. |
| 1430 | * |
| 1431 | * called with domain->lock held |
| 1432 | */ |
| 1433 | |
| 1434 | /* |
| 1435 | * Used to reserve address ranges in the aperture (e.g. for exclusion |
| 1436 | * ranges. |
| 1437 | */ |
| 1438 | static void dma_ops_reserve_addresses(struct dma_ops_domain *dom, |
| 1439 | unsigned long start_page, |
| 1440 | unsigned int pages) |
| 1441 | { |
| 1442 | unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT; |
| 1443 | |
| 1444 | if (start_page + pages > last_page) |
| 1445 | pages = last_page - start_page; |
| 1446 | |
| 1447 | for (i = start_page; i < start_page + pages; ++i) { |
| 1448 | int index = i / APERTURE_RANGE_PAGES; |
| 1449 | int page = i % APERTURE_RANGE_PAGES; |
| 1450 | __set_bit(page, dom->aperture[index]->bitmap); |
| 1451 | } |
| 1452 | } |
| 1453 | |
| 1454 | /* |
| 1455 | * This function is used to add a new aperture range to an existing |
| 1456 | * aperture in case of dma_ops domain allocation or address allocation |
| 1457 | * failure. |
| 1458 | */ |
| 1459 | static int alloc_new_range(struct dma_ops_domain *dma_dom, |
| 1460 | bool populate, gfp_t gfp) |
| 1461 | { |
| 1462 | int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT; |
| 1463 | struct amd_iommu *iommu; |
| 1464 | unsigned long i, old_size; |
| 1465 | |
| 1466 | #ifdef CONFIG_IOMMU_STRESS |
| 1467 | populate = false; |
| 1468 | #endif |
| 1469 | |
| 1470 | if (index >= APERTURE_MAX_RANGES) |
| 1471 | return -ENOMEM; |
| 1472 | |
| 1473 | dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp); |
| 1474 | if (!dma_dom->aperture[index]) |
| 1475 | return -ENOMEM; |
| 1476 | |
| 1477 | dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp); |
| 1478 | if (!dma_dom->aperture[index]->bitmap) |
| 1479 | goto out_free; |
| 1480 | |
| 1481 | dma_dom->aperture[index]->offset = dma_dom->aperture_size; |
| 1482 | |
| 1483 | if (populate) { |
| 1484 | unsigned long address = dma_dom->aperture_size; |
| 1485 | int i, num_ptes = APERTURE_RANGE_PAGES / 512; |
| 1486 | u64 *pte, *pte_page; |
| 1487 | |
| 1488 | for (i = 0; i < num_ptes; ++i) { |
| 1489 | pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE, |
| 1490 | &pte_page, gfp); |
| 1491 | if (!pte) |
| 1492 | goto out_free; |
| 1493 | |
| 1494 | dma_dom->aperture[index]->pte_pages[i] = pte_page; |
| 1495 | |
| 1496 | address += APERTURE_RANGE_SIZE / 64; |
| 1497 | } |
| 1498 | } |
| 1499 | |
| 1500 | old_size = dma_dom->aperture_size; |
| 1501 | dma_dom->aperture_size += APERTURE_RANGE_SIZE; |
| 1502 | |
| 1503 | /* Reserve address range used for MSI messages */ |
| 1504 | if (old_size < MSI_ADDR_BASE_LO && |
| 1505 | dma_dom->aperture_size > MSI_ADDR_BASE_LO) { |
| 1506 | unsigned long spage; |
| 1507 | int pages; |
| 1508 | |
| 1509 | pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE); |
| 1510 | spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT; |
| 1511 | |
| 1512 | dma_ops_reserve_addresses(dma_dom, spage, pages); |
| 1513 | } |
| 1514 | |
| 1515 | /* Initialize the exclusion range if necessary */ |
| 1516 | for_each_iommu(iommu) { |
| 1517 | if (iommu->exclusion_start && |
| 1518 | iommu->exclusion_start >= dma_dom->aperture[index]->offset |
| 1519 | && iommu->exclusion_start < dma_dom->aperture_size) { |
| 1520 | unsigned long startpage; |
| 1521 | int pages = iommu_num_pages(iommu->exclusion_start, |
| 1522 | iommu->exclusion_length, |
| 1523 | PAGE_SIZE); |
| 1524 | startpage = iommu->exclusion_start >> PAGE_SHIFT; |
| 1525 | dma_ops_reserve_addresses(dma_dom, startpage, pages); |
| 1526 | } |
| 1527 | } |
| 1528 | |
| 1529 | /* |
| 1530 | * Check for areas already mapped as present in the new aperture |
| 1531 | * range and mark those pages as reserved in the allocator. Such |
| 1532 | * mappings may already exist as a result of requested unity |
| 1533 | * mappings for devices. |
| 1534 | */ |
| 1535 | for (i = dma_dom->aperture[index]->offset; |
| 1536 | i < dma_dom->aperture_size; |
| 1537 | i += PAGE_SIZE) { |
| 1538 | u64 *pte = fetch_pte(&dma_dom->domain, i); |
| 1539 | if (!pte || !IOMMU_PTE_PRESENT(*pte)) |
| 1540 | continue; |
| 1541 | |
| 1542 | dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1); |
| 1543 | } |
| 1544 | |
| 1545 | update_domain(&dma_dom->domain); |
| 1546 | |
| 1547 | return 0; |
| 1548 | |
| 1549 | out_free: |
| 1550 | update_domain(&dma_dom->domain); |
| 1551 | |
| 1552 | free_page((unsigned long)dma_dom->aperture[index]->bitmap); |
| 1553 | |
| 1554 | kfree(dma_dom->aperture[index]); |
| 1555 | dma_dom->aperture[index] = NULL; |
| 1556 | |
| 1557 | return -ENOMEM; |
| 1558 | } |
| 1559 | |
| 1560 | static unsigned long dma_ops_area_alloc(struct device *dev, |
| 1561 | struct dma_ops_domain *dom, |
| 1562 | unsigned int pages, |
| 1563 | unsigned long align_mask, |
| 1564 | u64 dma_mask, |
| 1565 | unsigned long start) |
| 1566 | { |
| 1567 | unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE; |
| 1568 | int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT; |
| 1569 | int i = start >> APERTURE_RANGE_SHIFT; |
| 1570 | unsigned long boundary_size; |
| 1571 | unsigned long address = -1; |
| 1572 | unsigned long limit; |
| 1573 | |
| 1574 | next_bit >>= PAGE_SHIFT; |
| 1575 | |
| 1576 | boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, |
| 1577 | PAGE_SIZE) >> PAGE_SHIFT; |
| 1578 | |
| 1579 | for (;i < max_index; ++i) { |
| 1580 | unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT; |
| 1581 | |
| 1582 | if (dom->aperture[i]->offset >= dma_mask) |
| 1583 | break; |
| 1584 | |
| 1585 | limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset, |
| 1586 | dma_mask >> PAGE_SHIFT); |
| 1587 | |
| 1588 | address = iommu_area_alloc(dom->aperture[i]->bitmap, |
| 1589 | limit, next_bit, pages, 0, |
| 1590 | boundary_size, align_mask); |
| 1591 | if (address != -1) { |
| 1592 | address = dom->aperture[i]->offset + |
| 1593 | (address << PAGE_SHIFT); |
| 1594 | dom->next_address = address + (pages << PAGE_SHIFT); |
| 1595 | break; |
| 1596 | } |
| 1597 | |
| 1598 | next_bit = 0; |
| 1599 | } |
| 1600 | |
| 1601 | return address; |
| 1602 | } |
| 1603 | |
| 1604 | static unsigned long dma_ops_alloc_addresses(struct device *dev, |
| 1605 | struct dma_ops_domain *dom, |
| 1606 | unsigned int pages, |
| 1607 | unsigned long align_mask, |
| 1608 | u64 dma_mask) |
| 1609 | { |
| 1610 | unsigned long address; |
| 1611 | |
| 1612 | #ifdef CONFIG_IOMMU_STRESS |
| 1613 | dom->next_address = 0; |
| 1614 | dom->need_flush = true; |
| 1615 | #endif |
| 1616 | |
| 1617 | address = dma_ops_area_alloc(dev, dom, pages, align_mask, |
| 1618 | dma_mask, dom->next_address); |
| 1619 | |
| 1620 | if (address == -1) { |
| 1621 | dom->next_address = 0; |
| 1622 | address = dma_ops_area_alloc(dev, dom, pages, align_mask, |
| 1623 | dma_mask, 0); |
| 1624 | dom->need_flush = true; |
| 1625 | } |
| 1626 | |
| 1627 | if (unlikely(address == -1)) |
| 1628 | address = DMA_ERROR_CODE; |
| 1629 | |
| 1630 | WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size); |
| 1631 | |
| 1632 | return address; |
| 1633 | } |
| 1634 | |
| 1635 | /* |
| 1636 | * The address free function. |
| 1637 | * |
| 1638 | * called with domain->lock held |
| 1639 | */ |
| 1640 | static void dma_ops_free_addresses(struct dma_ops_domain *dom, |
| 1641 | unsigned long address, |
| 1642 | unsigned int pages) |
| 1643 | { |
| 1644 | unsigned i = address >> APERTURE_RANGE_SHIFT; |
| 1645 | struct aperture_range *range = dom->aperture[i]; |
| 1646 | |
| 1647 | BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL); |
| 1648 | |
| 1649 | #ifdef CONFIG_IOMMU_STRESS |
| 1650 | if (i < 4) |
| 1651 | return; |
| 1652 | #endif |
| 1653 | |
| 1654 | if (address >= dom->next_address) |
| 1655 | dom->need_flush = true; |
| 1656 | |
| 1657 | address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT; |
| 1658 | |
| 1659 | bitmap_clear(range->bitmap, address, pages); |
| 1660 | |
| 1661 | } |
| 1662 | |
| 1663 | /**************************************************************************** |
| 1664 | * |
| 1665 | * The next functions belong to the domain allocation. A domain is |
| 1666 | * allocated for every IOMMU as the default domain. If device isolation |
| 1667 | * is enabled, every device get its own domain. The most important thing |
| 1668 | * about domains is the page table mapping the DMA address space they |
| 1669 | * contain. |
| 1670 | * |
| 1671 | ****************************************************************************/ |
| 1672 | |
| 1673 | /* |
| 1674 | * This function adds a protection domain to the global protection domain list |
| 1675 | */ |
| 1676 | static void add_domain_to_list(struct protection_domain *domain) |
| 1677 | { |
| 1678 | unsigned long flags; |
| 1679 | |
| 1680 | spin_lock_irqsave(&amd_iommu_pd_lock, flags); |
| 1681 | list_add(&domain->list, &amd_iommu_pd_list); |
| 1682 | spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | * This function removes a protection domain to the global |
| 1687 | * protection domain list |
| 1688 | */ |
| 1689 | static void del_domain_from_list(struct protection_domain *domain) |
| 1690 | { |
| 1691 | unsigned long flags; |
| 1692 | |
| 1693 | spin_lock_irqsave(&amd_iommu_pd_lock, flags); |
| 1694 | list_del(&domain->list); |
| 1695 | spin_unlock_irqrestore(&amd_iommu_pd_lock, flags); |
| 1696 | } |
| 1697 | |
| 1698 | static u16 domain_id_alloc(void) |
| 1699 | { |
| 1700 | unsigned long flags; |
| 1701 | int id; |
| 1702 | |
| 1703 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 1704 | id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID); |
| 1705 | BUG_ON(id == 0); |
| 1706 | if (id > 0 && id < MAX_DOMAIN_ID) |
| 1707 | __set_bit(id, amd_iommu_pd_alloc_bitmap); |
| 1708 | else |
| 1709 | id = 0; |
| 1710 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 1711 | |
| 1712 | return id; |
| 1713 | } |
| 1714 | |
| 1715 | static void domain_id_free(int id) |
| 1716 | { |
| 1717 | unsigned long flags; |
| 1718 | |
| 1719 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 1720 | if (id > 0 && id < MAX_DOMAIN_ID) |
| 1721 | __clear_bit(id, amd_iommu_pd_alloc_bitmap); |
| 1722 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 1723 | } |
| 1724 | |
| 1725 | static void free_pagetable(struct protection_domain *domain) |
| 1726 | { |
| 1727 | int i, j; |
| 1728 | u64 *p1, *p2, *p3; |
| 1729 | |
| 1730 | p1 = domain->pt_root; |
| 1731 | |
| 1732 | if (!p1) |
| 1733 | return; |
| 1734 | |
| 1735 | for (i = 0; i < 512; ++i) { |
| 1736 | if (!IOMMU_PTE_PRESENT(p1[i])) |
| 1737 | continue; |
| 1738 | |
| 1739 | p2 = IOMMU_PTE_PAGE(p1[i]); |
| 1740 | for (j = 0; j < 512; ++j) { |
| 1741 | if (!IOMMU_PTE_PRESENT(p2[j])) |
| 1742 | continue; |
| 1743 | p3 = IOMMU_PTE_PAGE(p2[j]); |
| 1744 | free_page((unsigned long)p3); |
| 1745 | } |
| 1746 | |
| 1747 | free_page((unsigned long)p2); |
| 1748 | } |
| 1749 | |
| 1750 | free_page((unsigned long)p1); |
| 1751 | |
| 1752 | domain->pt_root = NULL; |
| 1753 | } |
| 1754 | |
| 1755 | static void free_gcr3_tbl_level1(u64 *tbl) |
| 1756 | { |
| 1757 | u64 *ptr; |
| 1758 | int i; |
| 1759 | |
| 1760 | for (i = 0; i < 512; ++i) { |
| 1761 | if (!(tbl[i] & GCR3_VALID)) |
| 1762 | continue; |
| 1763 | |
| 1764 | ptr = __va(tbl[i] & PAGE_MASK); |
| 1765 | |
| 1766 | free_page((unsigned long)ptr); |
| 1767 | } |
| 1768 | } |
| 1769 | |
| 1770 | static void free_gcr3_tbl_level2(u64 *tbl) |
| 1771 | { |
| 1772 | u64 *ptr; |
| 1773 | int i; |
| 1774 | |
| 1775 | for (i = 0; i < 512; ++i) { |
| 1776 | if (!(tbl[i] & GCR3_VALID)) |
| 1777 | continue; |
| 1778 | |
| 1779 | ptr = __va(tbl[i] & PAGE_MASK); |
| 1780 | |
| 1781 | free_gcr3_tbl_level1(ptr); |
| 1782 | } |
| 1783 | } |
| 1784 | |
| 1785 | static void free_gcr3_table(struct protection_domain *domain) |
| 1786 | { |
| 1787 | if (domain->glx == 2) |
| 1788 | free_gcr3_tbl_level2(domain->gcr3_tbl); |
| 1789 | else if (domain->glx == 1) |
| 1790 | free_gcr3_tbl_level1(domain->gcr3_tbl); |
| 1791 | else if (domain->glx != 0) |
| 1792 | BUG(); |
| 1793 | |
| 1794 | free_page((unsigned long)domain->gcr3_tbl); |
| 1795 | } |
| 1796 | |
| 1797 | /* |
| 1798 | * Free a domain, only used if something went wrong in the |
| 1799 | * allocation path and we need to free an already allocated page table |
| 1800 | */ |
| 1801 | static void dma_ops_domain_free(struct dma_ops_domain *dom) |
| 1802 | { |
| 1803 | int i; |
| 1804 | |
| 1805 | if (!dom) |
| 1806 | return; |
| 1807 | |
| 1808 | del_domain_from_list(&dom->domain); |
| 1809 | |
| 1810 | free_pagetable(&dom->domain); |
| 1811 | |
| 1812 | for (i = 0; i < APERTURE_MAX_RANGES; ++i) { |
| 1813 | if (!dom->aperture[i]) |
| 1814 | continue; |
| 1815 | free_page((unsigned long)dom->aperture[i]->bitmap); |
| 1816 | kfree(dom->aperture[i]); |
| 1817 | } |
| 1818 | |
| 1819 | kfree(dom); |
| 1820 | } |
| 1821 | |
| 1822 | /* |
| 1823 | * Allocates a new protection domain usable for the dma_ops functions. |
| 1824 | * It also initializes the page table and the address allocator data |
| 1825 | * structures required for the dma_ops interface |
| 1826 | */ |
| 1827 | static struct dma_ops_domain *dma_ops_domain_alloc(void) |
| 1828 | { |
| 1829 | struct dma_ops_domain *dma_dom; |
| 1830 | |
| 1831 | dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL); |
| 1832 | if (!dma_dom) |
| 1833 | return NULL; |
| 1834 | |
| 1835 | spin_lock_init(&dma_dom->domain.lock); |
| 1836 | |
| 1837 | dma_dom->domain.id = domain_id_alloc(); |
| 1838 | if (dma_dom->domain.id == 0) |
| 1839 | goto free_dma_dom; |
| 1840 | INIT_LIST_HEAD(&dma_dom->domain.dev_list); |
| 1841 | dma_dom->domain.mode = PAGE_MODE_2_LEVEL; |
| 1842 | dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
| 1843 | dma_dom->domain.flags = PD_DMA_OPS_MASK; |
| 1844 | dma_dom->domain.priv = dma_dom; |
| 1845 | if (!dma_dom->domain.pt_root) |
| 1846 | goto free_dma_dom; |
| 1847 | |
| 1848 | dma_dom->need_flush = false; |
| 1849 | dma_dom->target_dev = 0xffff; |
| 1850 | |
| 1851 | add_domain_to_list(&dma_dom->domain); |
| 1852 | |
| 1853 | if (alloc_new_range(dma_dom, true, GFP_KERNEL)) |
| 1854 | goto free_dma_dom; |
| 1855 | |
| 1856 | /* |
| 1857 | * mark the first page as allocated so we never return 0 as |
| 1858 | * a valid dma-address. So we can use 0 as error value |
| 1859 | */ |
| 1860 | dma_dom->aperture[0]->bitmap[0] = 1; |
| 1861 | dma_dom->next_address = 0; |
| 1862 | |
| 1863 | |
| 1864 | return dma_dom; |
| 1865 | |
| 1866 | free_dma_dom: |
| 1867 | dma_ops_domain_free(dma_dom); |
| 1868 | |
| 1869 | return NULL; |
| 1870 | } |
| 1871 | |
| 1872 | /* |
| 1873 | * little helper function to check whether a given protection domain is a |
| 1874 | * dma_ops domain |
| 1875 | */ |
| 1876 | static bool dma_ops_domain(struct protection_domain *domain) |
| 1877 | { |
| 1878 | return domain->flags & PD_DMA_OPS_MASK; |
| 1879 | } |
| 1880 | |
| 1881 | static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats) |
| 1882 | { |
| 1883 | u64 pte_root = 0; |
| 1884 | u64 flags = 0; |
| 1885 | |
| 1886 | if (domain->mode != PAGE_MODE_NONE) |
| 1887 | pte_root = virt_to_phys(domain->pt_root); |
| 1888 | |
| 1889 | pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK) |
| 1890 | << DEV_ENTRY_MODE_SHIFT; |
| 1891 | pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV; |
| 1892 | |
| 1893 | flags = amd_iommu_dev_table[devid].data[1]; |
| 1894 | |
| 1895 | if (ats) |
| 1896 | flags |= DTE_FLAG_IOTLB; |
| 1897 | |
| 1898 | if (domain->flags & PD_IOMMUV2_MASK) { |
| 1899 | u64 gcr3 = __pa(domain->gcr3_tbl); |
| 1900 | u64 glx = domain->glx; |
| 1901 | u64 tmp; |
| 1902 | |
| 1903 | pte_root |= DTE_FLAG_GV; |
| 1904 | pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT; |
| 1905 | |
| 1906 | /* First mask out possible old values for GCR3 table */ |
| 1907 | tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B; |
| 1908 | flags &= ~tmp; |
| 1909 | |
| 1910 | tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C; |
| 1911 | flags &= ~tmp; |
| 1912 | |
| 1913 | /* Encode GCR3 table into DTE */ |
| 1914 | tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A; |
| 1915 | pte_root |= tmp; |
| 1916 | |
| 1917 | tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B; |
| 1918 | flags |= tmp; |
| 1919 | |
| 1920 | tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C; |
| 1921 | flags |= tmp; |
| 1922 | } |
| 1923 | |
| 1924 | flags &= ~(0xffffUL); |
| 1925 | flags |= domain->id; |
| 1926 | |
| 1927 | amd_iommu_dev_table[devid].data[1] = flags; |
| 1928 | amd_iommu_dev_table[devid].data[0] = pte_root; |
| 1929 | } |
| 1930 | |
| 1931 | static void clear_dte_entry(u16 devid) |
| 1932 | { |
| 1933 | /* remove entry from the device table seen by the hardware */ |
| 1934 | amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV; |
| 1935 | amd_iommu_dev_table[devid].data[1] = 0; |
| 1936 | |
| 1937 | amd_iommu_apply_erratum_63(devid); |
| 1938 | } |
| 1939 | |
| 1940 | static void do_attach(struct iommu_dev_data *dev_data, |
| 1941 | struct protection_domain *domain) |
| 1942 | { |
| 1943 | struct amd_iommu *iommu; |
| 1944 | bool ats; |
| 1945 | |
| 1946 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 1947 | ats = dev_data->ats.enabled; |
| 1948 | |
| 1949 | /* Update data structures */ |
| 1950 | dev_data->domain = domain; |
| 1951 | list_add(&dev_data->list, &domain->dev_list); |
| 1952 | set_dte_entry(dev_data->devid, domain, ats); |
| 1953 | |
| 1954 | /* Do reference counting */ |
| 1955 | domain->dev_iommu[iommu->index] += 1; |
| 1956 | domain->dev_cnt += 1; |
| 1957 | |
| 1958 | /* Flush the DTE entry */ |
| 1959 | device_flush_dte(dev_data); |
| 1960 | } |
| 1961 | |
| 1962 | static void do_detach(struct iommu_dev_data *dev_data) |
| 1963 | { |
| 1964 | struct amd_iommu *iommu; |
| 1965 | |
| 1966 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 1967 | |
| 1968 | /* decrease reference counters */ |
| 1969 | dev_data->domain->dev_iommu[iommu->index] -= 1; |
| 1970 | dev_data->domain->dev_cnt -= 1; |
| 1971 | |
| 1972 | /* Update data structures */ |
| 1973 | dev_data->domain = NULL; |
| 1974 | list_del(&dev_data->list); |
| 1975 | clear_dte_entry(dev_data->devid); |
| 1976 | |
| 1977 | /* Flush the DTE entry */ |
| 1978 | device_flush_dte(dev_data); |
| 1979 | } |
| 1980 | |
| 1981 | /* |
| 1982 | * If a device is not yet associated with a domain, this function does |
| 1983 | * assigns it visible for the hardware |
| 1984 | */ |
| 1985 | static int __attach_device(struct iommu_dev_data *dev_data, |
| 1986 | struct protection_domain *domain) |
| 1987 | { |
| 1988 | int ret; |
| 1989 | |
| 1990 | /* lock domain */ |
| 1991 | spin_lock(&domain->lock); |
| 1992 | |
| 1993 | if (dev_data->alias_data != NULL) { |
| 1994 | struct iommu_dev_data *alias_data = dev_data->alias_data; |
| 1995 | |
| 1996 | /* Some sanity checks */ |
| 1997 | ret = -EBUSY; |
| 1998 | if (alias_data->domain != NULL && |
| 1999 | alias_data->domain != domain) |
| 2000 | goto out_unlock; |
| 2001 | |
| 2002 | if (dev_data->domain != NULL && |
| 2003 | dev_data->domain != domain) |
| 2004 | goto out_unlock; |
| 2005 | |
| 2006 | /* Do real assignment */ |
| 2007 | if (alias_data->domain == NULL) |
| 2008 | do_attach(alias_data, domain); |
| 2009 | |
| 2010 | atomic_inc(&alias_data->bind); |
| 2011 | } |
| 2012 | |
| 2013 | if (dev_data->domain == NULL) |
| 2014 | do_attach(dev_data, domain); |
| 2015 | |
| 2016 | atomic_inc(&dev_data->bind); |
| 2017 | |
| 2018 | ret = 0; |
| 2019 | |
| 2020 | out_unlock: |
| 2021 | |
| 2022 | /* ready */ |
| 2023 | spin_unlock(&domain->lock); |
| 2024 | |
| 2025 | return ret; |
| 2026 | } |
| 2027 | |
| 2028 | |
| 2029 | static void pdev_iommuv2_disable(struct pci_dev *pdev) |
| 2030 | { |
| 2031 | pci_disable_ats(pdev); |
| 2032 | pci_disable_pri(pdev); |
| 2033 | pci_disable_pasid(pdev); |
| 2034 | } |
| 2035 | |
| 2036 | /* FIXME: Change generic reset-function to do the same */ |
| 2037 | static int pri_reset_while_enabled(struct pci_dev *pdev) |
| 2038 | { |
| 2039 | u16 control; |
| 2040 | int pos; |
| 2041 | |
| 2042 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| 2043 | if (!pos) |
| 2044 | return -EINVAL; |
| 2045 | |
| 2046 | pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control); |
| 2047 | control |= PCI_PRI_CTRL_RESET; |
| 2048 | pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control); |
| 2049 | |
| 2050 | return 0; |
| 2051 | } |
| 2052 | |
| 2053 | static int pdev_iommuv2_enable(struct pci_dev *pdev) |
| 2054 | { |
| 2055 | bool reset_enable; |
| 2056 | int reqs, ret; |
| 2057 | |
| 2058 | /* FIXME: Hardcode number of outstanding requests for now */ |
| 2059 | reqs = 32; |
| 2060 | if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE)) |
| 2061 | reqs = 1; |
| 2062 | reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET); |
| 2063 | |
| 2064 | /* Only allow access to user-accessible pages */ |
| 2065 | ret = pci_enable_pasid(pdev, 0); |
| 2066 | if (ret) |
| 2067 | goto out_err; |
| 2068 | |
| 2069 | /* First reset the PRI state of the device */ |
| 2070 | ret = pci_reset_pri(pdev); |
| 2071 | if (ret) |
| 2072 | goto out_err; |
| 2073 | |
| 2074 | /* Enable PRI */ |
| 2075 | ret = pci_enable_pri(pdev, reqs); |
| 2076 | if (ret) |
| 2077 | goto out_err; |
| 2078 | |
| 2079 | if (reset_enable) { |
| 2080 | ret = pri_reset_while_enabled(pdev); |
| 2081 | if (ret) |
| 2082 | goto out_err; |
| 2083 | } |
| 2084 | |
| 2085 | ret = pci_enable_ats(pdev, PAGE_SHIFT); |
| 2086 | if (ret) |
| 2087 | goto out_err; |
| 2088 | |
| 2089 | return 0; |
| 2090 | |
| 2091 | out_err: |
| 2092 | pci_disable_pri(pdev); |
| 2093 | pci_disable_pasid(pdev); |
| 2094 | |
| 2095 | return ret; |
| 2096 | } |
| 2097 | |
| 2098 | /* FIXME: Move this to PCI code */ |
| 2099 | #define PCI_PRI_TLP_OFF (1 << 15) |
| 2100 | |
| 2101 | bool pci_pri_tlp_required(struct pci_dev *pdev) |
| 2102 | { |
| 2103 | u16 status; |
| 2104 | int pos; |
| 2105 | |
| 2106 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| 2107 | if (!pos) |
| 2108 | return false; |
| 2109 | |
| 2110 | pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status); |
| 2111 | |
| 2112 | return (status & PCI_PRI_TLP_OFF) ? true : false; |
| 2113 | } |
| 2114 | |
| 2115 | /* |
| 2116 | * If a device is not yet associated with a domain, this function does |
| 2117 | * assigns it visible for the hardware |
| 2118 | */ |
| 2119 | static int attach_device(struct device *dev, |
| 2120 | struct protection_domain *domain) |
| 2121 | { |
| 2122 | struct pci_dev *pdev = to_pci_dev(dev); |
| 2123 | struct iommu_dev_data *dev_data; |
| 2124 | unsigned long flags; |
| 2125 | int ret; |
| 2126 | |
| 2127 | dev_data = get_dev_data(dev); |
| 2128 | |
| 2129 | if (domain->flags & PD_IOMMUV2_MASK) { |
| 2130 | if (!dev_data->iommu_v2 || !dev_data->passthrough) |
| 2131 | return -EINVAL; |
| 2132 | |
| 2133 | if (pdev_iommuv2_enable(pdev) != 0) |
| 2134 | return -EINVAL; |
| 2135 | |
| 2136 | dev_data->ats.enabled = true; |
| 2137 | dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
| 2138 | dev_data->pri_tlp = pci_pri_tlp_required(pdev); |
| 2139 | } else if (amd_iommu_iotlb_sup && |
| 2140 | pci_enable_ats(pdev, PAGE_SHIFT) == 0) { |
| 2141 | dev_data->ats.enabled = true; |
| 2142 | dev_data->ats.qdep = pci_ats_queue_depth(pdev); |
| 2143 | } |
| 2144 | |
| 2145 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 2146 | ret = __attach_device(dev_data, domain); |
| 2147 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 2148 | |
| 2149 | /* |
| 2150 | * We might boot into a crash-kernel here. The crashed kernel |
| 2151 | * left the caches in the IOMMU dirty. So we have to flush |
| 2152 | * here to evict all dirty stuff. |
| 2153 | */ |
| 2154 | domain_flush_tlb_pde(domain); |
| 2155 | |
| 2156 | return ret; |
| 2157 | } |
| 2158 | |
| 2159 | /* |
| 2160 | * Removes a device from a protection domain (unlocked) |
| 2161 | */ |
| 2162 | static void __detach_device(struct iommu_dev_data *dev_data) |
| 2163 | { |
| 2164 | struct protection_domain *domain; |
| 2165 | unsigned long flags; |
| 2166 | |
| 2167 | BUG_ON(!dev_data->domain); |
| 2168 | |
| 2169 | domain = dev_data->domain; |
| 2170 | |
| 2171 | spin_lock_irqsave(&domain->lock, flags); |
| 2172 | |
| 2173 | if (dev_data->alias_data != NULL) { |
| 2174 | struct iommu_dev_data *alias_data = dev_data->alias_data; |
| 2175 | |
| 2176 | if (atomic_dec_and_test(&alias_data->bind)) |
| 2177 | do_detach(alias_data); |
| 2178 | } |
| 2179 | |
| 2180 | if (atomic_dec_and_test(&dev_data->bind)) |
| 2181 | do_detach(dev_data); |
| 2182 | |
| 2183 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2184 | |
| 2185 | /* |
| 2186 | * If we run in passthrough mode the device must be assigned to the |
| 2187 | * passthrough domain if it is detached from any other domain. |
| 2188 | * Make sure we can deassign from the pt_domain itself. |
| 2189 | */ |
| 2190 | if (dev_data->passthrough && |
| 2191 | (dev_data->domain == NULL && domain != pt_domain)) |
| 2192 | __attach_device(dev_data, pt_domain); |
| 2193 | } |
| 2194 | |
| 2195 | /* |
| 2196 | * Removes a device from a protection domain (with devtable_lock held) |
| 2197 | */ |
| 2198 | static void detach_device(struct device *dev) |
| 2199 | { |
| 2200 | struct protection_domain *domain; |
| 2201 | struct iommu_dev_data *dev_data; |
| 2202 | unsigned long flags; |
| 2203 | |
| 2204 | dev_data = get_dev_data(dev); |
| 2205 | domain = dev_data->domain; |
| 2206 | |
| 2207 | /* lock device table */ |
| 2208 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 2209 | __detach_device(dev_data); |
| 2210 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 2211 | |
| 2212 | if (domain->flags & PD_IOMMUV2_MASK) |
| 2213 | pdev_iommuv2_disable(to_pci_dev(dev)); |
| 2214 | else if (dev_data->ats.enabled) |
| 2215 | pci_disable_ats(to_pci_dev(dev)); |
| 2216 | |
| 2217 | dev_data->ats.enabled = false; |
| 2218 | } |
| 2219 | |
| 2220 | /* |
| 2221 | * Find out the protection domain structure for a given PCI device. This |
| 2222 | * will give us the pointer to the page table root for example. |
| 2223 | */ |
| 2224 | static struct protection_domain *domain_for_device(struct device *dev) |
| 2225 | { |
| 2226 | struct iommu_dev_data *dev_data; |
| 2227 | struct protection_domain *dom = NULL; |
| 2228 | unsigned long flags; |
| 2229 | |
| 2230 | dev_data = get_dev_data(dev); |
| 2231 | |
| 2232 | if (dev_data->domain) |
| 2233 | return dev_data->domain; |
| 2234 | |
| 2235 | if (dev_data->alias_data != NULL) { |
| 2236 | struct iommu_dev_data *alias_data = dev_data->alias_data; |
| 2237 | |
| 2238 | read_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 2239 | if (alias_data->domain != NULL) { |
| 2240 | __attach_device(dev_data, alias_data->domain); |
| 2241 | dom = alias_data->domain; |
| 2242 | } |
| 2243 | read_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 2244 | } |
| 2245 | |
| 2246 | return dom; |
| 2247 | } |
| 2248 | |
| 2249 | static int device_change_notifier(struct notifier_block *nb, |
| 2250 | unsigned long action, void *data) |
| 2251 | { |
| 2252 | struct dma_ops_domain *dma_domain; |
| 2253 | struct protection_domain *domain; |
| 2254 | struct iommu_dev_data *dev_data; |
| 2255 | struct device *dev = data; |
| 2256 | struct amd_iommu *iommu; |
| 2257 | unsigned long flags; |
| 2258 | u16 devid; |
| 2259 | |
| 2260 | if (!check_device(dev)) |
| 2261 | return 0; |
| 2262 | |
| 2263 | devid = get_device_id(dev); |
| 2264 | iommu = amd_iommu_rlookup_table[devid]; |
| 2265 | dev_data = get_dev_data(dev); |
| 2266 | |
| 2267 | switch (action) { |
| 2268 | case BUS_NOTIFY_UNBOUND_DRIVER: |
| 2269 | |
| 2270 | domain = domain_for_device(dev); |
| 2271 | |
| 2272 | if (!domain) |
| 2273 | goto out; |
| 2274 | if (dev_data->passthrough) |
| 2275 | break; |
| 2276 | detach_device(dev); |
| 2277 | break; |
| 2278 | case BUS_NOTIFY_ADD_DEVICE: |
| 2279 | |
| 2280 | iommu_init_device(dev); |
| 2281 | |
| 2282 | /* |
| 2283 | * dev_data is still NULL and |
| 2284 | * got initialized in iommu_init_device |
| 2285 | */ |
| 2286 | dev_data = get_dev_data(dev); |
| 2287 | |
| 2288 | if (iommu_pass_through || dev_data->iommu_v2) { |
| 2289 | dev_data->passthrough = true; |
| 2290 | attach_device(dev, pt_domain); |
| 2291 | break; |
| 2292 | } |
| 2293 | |
| 2294 | domain = domain_for_device(dev); |
| 2295 | |
| 2296 | /* allocate a protection domain if a device is added */ |
| 2297 | dma_domain = find_protection_domain(devid); |
| 2298 | if (!dma_domain) { |
| 2299 | dma_domain = dma_ops_domain_alloc(); |
| 2300 | if (!dma_domain) |
| 2301 | goto out; |
| 2302 | dma_domain->target_dev = devid; |
| 2303 | |
| 2304 | spin_lock_irqsave(&iommu_pd_list_lock, flags); |
| 2305 | list_add_tail(&dma_domain->list, &iommu_pd_list); |
| 2306 | spin_unlock_irqrestore(&iommu_pd_list_lock, flags); |
| 2307 | } |
| 2308 | |
| 2309 | dev->archdata.dma_ops = &amd_iommu_dma_ops; |
| 2310 | |
| 2311 | break; |
| 2312 | case BUS_NOTIFY_DEL_DEVICE: |
| 2313 | |
| 2314 | iommu_uninit_device(dev); |
| 2315 | |
| 2316 | default: |
| 2317 | goto out; |
| 2318 | } |
| 2319 | |
| 2320 | iommu_completion_wait(iommu); |
| 2321 | |
| 2322 | out: |
| 2323 | return 0; |
| 2324 | } |
| 2325 | |
| 2326 | static struct notifier_block device_nb = { |
| 2327 | .notifier_call = device_change_notifier, |
| 2328 | }; |
| 2329 | |
| 2330 | void amd_iommu_init_notifier(void) |
| 2331 | { |
| 2332 | bus_register_notifier(&pci_bus_type, &device_nb); |
| 2333 | } |
| 2334 | |
| 2335 | /***************************************************************************** |
| 2336 | * |
| 2337 | * The next functions belong to the dma_ops mapping/unmapping code. |
| 2338 | * |
| 2339 | *****************************************************************************/ |
| 2340 | |
| 2341 | /* |
| 2342 | * In the dma_ops path we only have the struct device. This function |
| 2343 | * finds the corresponding IOMMU, the protection domain and the |
| 2344 | * requestor id for a given device. |
| 2345 | * If the device is not yet associated with a domain this is also done |
| 2346 | * in this function. |
| 2347 | */ |
| 2348 | static struct protection_domain *get_domain(struct device *dev) |
| 2349 | { |
| 2350 | struct protection_domain *domain; |
| 2351 | struct dma_ops_domain *dma_dom; |
| 2352 | u16 devid = get_device_id(dev); |
| 2353 | |
| 2354 | if (!check_device(dev)) |
| 2355 | return ERR_PTR(-EINVAL); |
| 2356 | |
| 2357 | domain = domain_for_device(dev); |
| 2358 | if (domain != NULL && !dma_ops_domain(domain)) |
| 2359 | return ERR_PTR(-EBUSY); |
| 2360 | |
| 2361 | if (domain != NULL) |
| 2362 | return domain; |
| 2363 | |
| 2364 | /* Device not bount yet - bind it */ |
| 2365 | dma_dom = find_protection_domain(devid); |
| 2366 | if (!dma_dom) |
| 2367 | dma_dom = amd_iommu_rlookup_table[devid]->default_dom; |
| 2368 | attach_device(dev, &dma_dom->domain); |
| 2369 | DUMP_printk("Using protection domain %d for device %s\n", |
| 2370 | dma_dom->domain.id, dev_name(dev)); |
| 2371 | |
| 2372 | return &dma_dom->domain; |
| 2373 | } |
| 2374 | |
| 2375 | static void update_device_table(struct protection_domain *domain) |
| 2376 | { |
| 2377 | struct iommu_dev_data *dev_data; |
| 2378 | |
| 2379 | list_for_each_entry(dev_data, &domain->dev_list, list) |
| 2380 | set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled); |
| 2381 | } |
| 2382 | |
| 2383 | static void update_domain(struct protection_domain *domain) |
| 2384 | { |
| 2385 | if (!domain->updated) |
| 2386 | return; |
| 2387 | |
| 2388 | update_device_table(domain); |
| 2389 | |
| 2390 | domain_flush_devices(domain); |
| 2391 | domain_flush_tlb_pde(domain); |
| 2392 | |
| 2393 | domain->updated = false; |
| 2394 | } |
| 2395 | |
| 2396 | /* |
| 2397 | * This function fetches the PTE for a given address in the aperture |
| 2398 | */ |
| 2399 | static u64* dma_ops_get_pte(struct dma_ops_domain *dom, |
| 2400 | unsigned long address) |
| 2401 | { |
| 2402 | struct aperture_range *aperture; |
| 2403 | u64 *pte, *pte_page; |
| 2404 | |
| 2405 | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; |
| 2406 | if (!aperture) |
| 2407 | return NULL; |
| 2408 | |
| 2409 | pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; |
| 2410 | if (!pte) { |
| 2411 | pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page, |
| 2412 | GFP_ATOMIC); |
| 2413 | aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page; |
| 2414 | } else |
| 2415 | pte += PM_LEVEL_INDEX(0, address); |
| 2416 | |
| 2417 | update_domain(&dom->domain); |
| 2418 | |
| 2419 | return pte; |
| 2420 | } |
| 2421 | |
| 2422 | /* |
| 2423 | * This is the generic map function. It maps one 4kb page at paddr to |
| 2424 | * the given address in the DMA address space for the domain. |
| 2425 | */ |
| 2426 | static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom, |
| 2427 | unsigned long address, |
| 2428 | phys_addr_t paddr, |
| 2429 | int direction) |
| 2430 | { |
| 2431 | u64 *pte, __pte; |
| 2432 | |
| 2433 | WARN_ON(address > dom->aperture_size); |
| 2434 | |
| 2435 | paddr &= PAGE_MASK; |
| 2436 | |
| 2437 | pte = dma_ops_get_pte(dom, address); |
| 2438 | if (!pte) |
| 2439 | return DMA_ERROR_CODE; |
| 2440 | |
| 2441 | __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC; |
| 2442 | |
| 2443 | if (direction == DMA_TO_DEVICE) |
| 2444 | __pte |= IOMMU_PTE_IR; |
| 2445 | else if (direction == DMA_FROM_DEVICE) |
| 2446 | __pte |= IOMMU_PTE_IW; |
| 2447 | else if (direction == DMA_BIDIRECTIONAL) |
| 2448 | __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW; |
| 2449 | |
| 2450 | WARN_ON(*pte); |
| 2451 | |
| 2452 | *pte = __pte; |
| 2453 | |
| 2454 | return (dma_addr_t)address; |
| 2455 | } |
| 2456 | |
| 2457 | /* |
| 2458 | * The generic unmapping function for on page in the DMA address space. |
| 2459 | */ |
| 2460 | static void dma_ops_domain_unmap(struct dma_ops_domain *dom, |
| 2461 | unsigned long address) |
| 2462 | { |
| 2463 | struct aperture_range *aperture; |
| 2464 | u64 *pte; |
| 2465 | |
| 2466 | if (address >= dom->aperture_size) |
| 2467 | return; |
| 2468 | |
| 2469 | aperture = dom->aperture[APERTURE_RANGE_INDEX(address)]; |
| 2470 | if (!aperture) |
| 2471 | return; |
| 2472 | |
| 2473 | pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)]; |
| 2474 | if (!pte) |
| 2475 | return; |
| 2476 | |
| 2477 | pte += PM_LEVEL_INDEX(0, address); |
| 2478 | |
| 2479 | WARN_ON(!*pte); |
| 2480 | |
| 2481 | *pte = 0ULL; |
| 2482 | } |
| 2483 | |
| 2484 | /* |
| 2485 | * This function contains common code for mapping of a physically |
| 2486 | * contiguous memory region into DMA address space. It is used by all |
| 2487 | * mapping functions provided with this IOMMU driver. |
| 2488 | * Must be called with the domain lock held. |
| 2489 | */ |
| 2490 | static dma_addr_t __map_single(struct device *dev, |
| 2491 | struct dma_ops_domain *dma_dom, |
| 2492 | phys_addr_t paddr, |
| 2493 | size_t size, |
| 2494 | int dir, |
| 2495 | bool align, |
| 2496 | u64 dma_mask) |
| 2497 | { |
| 2498 | dma_addr_t offset = paddr & ~PAGE_MASK; |
| 2499 | dma_addr_t address, start, ret; |
| 2500 | unsigned int pages; |
| 2501 | unsigned long align_mask = 0; |
| 2502 | int i; |
| 2503 | |
| 2504 | pages = iommu_num_pages(paddr, size, PAGE_SIZE); |
| 2505 | paddr &= PAGE_MASK; |
| 2506 | |
| 2507 | INC_STATS_COUNTER(total_map_requests); |
| 2508 | |
| 2509 | if (pages > 1) |
| 2510 | INC_STATS_COUNTER(cross_page); |
| 2511 | |
| 2512 | if (align) |
| 2513 | align_mask = (1UL << get_order(size)) - 1; |
| 2514 | |
| 2515 | retry: |
| 2516 | address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask, |
| 2517 | dma_mask); |
| 2518 | if (unlikely(address == DMA_ERROR_CODE)) { |
| 2519 | /* |
| 2520 | * setting next_address here will let the address |
| 2521 | * allocator only scan the new allocated range in the |
| 2522 | * first run. This is a small optimization. |
| 2523 | */ |
| 2524 | dma_dom->next_address = dma_dom->aperture_size; |
| 2525 | |
| 2526 | if (alloc_new_range(dma_dom, false, GFP_ATOMIC)) |
| 2527 | goto out; |
| 2528 | |
| 2529 | /* |
| 2530 | * aperture was successfully enlarged by 128 MB, try |
| 2531 | * allocation again |
| 2532 | */ |
| 2533 | goto retry; |
| 2534 | } |
| 2535 | |
| 2536 | start = address; |
| 2537 | for (i = 0; i < pages; ++i) { |
| 2538 | ret = dma_ops_domain_map(dma_dom, start, paddr, dir); |
| 2539 | if (ret == DMA_ERROR_CODE) |
| 2540 | goto out_unmap; |
| 2541 | |
| 2542 | paddr += PAGE_SIZE; |
| 2543 | start += PAGE_SIZE; |
| 2544 | } |
| 2545 | address += offset; |
| 2546 | |
| 2547 | ADD_STATS_COUNTER(alloced_io_mem, size); |
| 2548 | |
| 2549 | if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) { |
| 2550 | domain_flush_tlb(&dma_dom->domain); |
| 2551 | dma_dom->need_flush = false; |
| 2552 | } else if (unlikely(amd_iommu_np_cache)) |
| 2553 | domain_flush_pages(&dma_dom->domain, address, size); |
| 2554 | |
| 2555 | out: |
| 2556 | return address; |
| 2557 | |
| 2558 | out_unmap: |
| 2559 | |
| 2560 | for (--i; i >= 0; --i) { |
| 2561 | start -= PAGE_SIZE; |
| 2562 | dma_ops_domain_unmap(dma_dom, start); |
| 2563 | } |
| 2564 | |
| 2565 | dma_ops_free_addresses(dma_dom, address, pages); |
| 2566 | |
| 2567 | return DMA_ERROR_CODE; |
| 2568 | } |
| 2569 | |
| 2570 | /* |
| 2571 | * Does the reverse of the __map_single function. Must be called with |
| 2572 | * the domain lock held too |
| 2573 | */ |
| 2574 | static void __unmap_single(struct dma_ops_domain *dma_dom, |
| 2575 | dma_addr_t dma_addr, |
| 2576 | size_t size, |
| 2577 | int dir) |
| 2578 | { |
| 2579 | dma_addr_t flush_addr; |
| 2580 | dma_addr_t i, start; |
| 2581 | unsigned int pages; |
| 2582 | |
| 2583 | if ((dma_addr == DMA_ERROR_CODE) || |
| 2584 | (dma_addr + size > dma_dom->aperture_size)) |
| 2585 | return; |
| 2586 | |
| 2587 | flush_addr = dma_addr; |
| 2588 | pages = iommu_num_pages(dma_addr, size, PAGE_SIZE); |
| 2589 | dma_addr &= PAGE_MASK; |
| 2590 | start = dma_addr; |
| 2591 | |
| 2592 | for (i = 0; i < pages; ++i) { |
| 2593 | dma_ops_domain_unmap(dma_dom, start); |
| 2594 | start += PAGE_SIZE; |
| 2595 | } |
| 2596 | |
| 2597 | SUB_STATS_COUNTER(alloced_io_mem, size); |
| 2598 | |
| 2599 | dma_ops_free_addresses(dma_dom, dma_addr, pages); |
| 2600 | |
| 2601 | if (amd_iommu_unmap_flush || dma_dom->need_flush) { |
| 2602 | domain_flush_pages(&dma_dom->domain, flush_addr, size); |
| 2603 | dma_dom->need_flush = false; |
| 2604 | } |
| 2605 | } |
| 2606 | |
| 2607 | /* |
| 2608 | * The exported map_single function for dma_ops. |
| 2609 | */ |
| 2610 | static dma_addr_t map_page(struct device *dev, struct page *page, |
| 2611 | unsigned long offset, size_t size, |
| 2612 | enum dma_data_direction dir, |
| 2613 | struct dma_attrs *attrs) |
| 2614 | { |
| 2615 | unsigned long flags; |
| 2616 | struct protection_domain *domain; |
| 2617 | dma_addr_t addr; |
| 2618 | u64 dma_mask; |
| 2619 | phys_addr_t paddr = page_to_phys(page) + offset; |
| 2620 | |
| 2621 | INC_STATS_COUNTER(cnt_map_single); |
| 2622 | |
| 2623 | domain = get_domain(dev); |
| 2624 | if (PTR_ERR(domain) == -EINVAL) |
| 2625 | return (dma_addr_t)paddr; |
| 2626 | else if (IS_ERR(domain)) |
| 2627 | return DMA_ERROR_CODE; |
| 2628 | |
| 2629 | dma_mask = *dev->dma_mask; |
| 2630 | |
| 2631 | spin_lock_irqsave(&domain->lock, flags); |
| 2632 | |
| 2633 | addr = __map_single(dev, domain->priv, paddr, size, dir, false, |
| 2634 | dma_mask); |
| 2635 | if (addr == DMA_ERROR_CODE) |
| 2636 | goto out; |
| 2637 | |
| 2638 | domain_flush_complete(domain); |
| 2639 | |
| 2640 | out: |
| 2641 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2642 | |
| 2643 | return addr; |
| 2644 | } |
| 2645 | |
| 2646 | /* |
| 2647 | * The exported unmap_single function for dma_ops. |
| 2648 | */ |
| 2649 | static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size, |
| 2650 | enum dma_data_direction dir, struct dma_attrs *attrs) |
| 2651 | { |
| 2652 | unsigned long flags; |
| 2653 | struct protection_domain *domain; |
| 2654 | |
| 2655 | INC_STATS_COUNTER(cnt_unmap_single); |
| 2656 | |
| 2657 | domain = get_domain(dev); |
| 2658 | if (IS_ERR(domain)) |
| 2659 | return; |
| 2660 | |
| 2661 | spin_lock_irqsave(&domain->lock, flags); |
| 2662 | |
| 2663 | __unmap_single(domain->priv, dma_addr, size, dir); |
| 2664 | |
| 2665 | domain_flush_complete(domain); |
| 2666 | |
| 2667 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2668 | } |
| 2669 | |
| 2670 | /* |
| 2671 | * This is a special map_sg function which is used if we should map a |
| 2672 | * device which is not handled by an AMD IOMMU in the system. |
| 2673 | */ |
| 2674 | static int map_sg_no_iommu(struct device *dev, struct scatterlist *sglist, |
| 2675 | int nelems, int dir) |
| 2676 | { |
| 2677 | struct scatterlist *s; |
| 2678 | int i; |
| 2679 | |
| 2680 | for_each_sg(sglist, s, nelems, i) { |
| 2681 | s->dma_address = (dma_addr_t)sg_phys(s); |
| 2682 | s->dma_length = s->length; |
| 2683 | } |
| 2684 | |
| 2685 | return nelems; |
| 2686 | } |
| 2687 | |
| 2688 | /* |
| 2689 | * The exported map_sg function for dma_ops (handles scatter-gather |
| 2690 | * lists). |
| 2691 | */ |
| 2692 | static int map_sg(struct device *dev, struct scatterlist *sglist, |
| 2693 | int nelems, enum dma_data_direction dir, |
| 2694 | struct dma_attrs *attrs) |
| 2695 | { |
| 2696 | unsigned long flags; |
| 2697 | struct protection_domain *domain; |
| 2698 | int i; |
| 2699 | struct scatterlist *s; |
| 2700 | phys_addr_t paddr; |
| 2701 | int mapped_elems = 0; |
| 2702 | u64 dma_mask; |
| 2703 | |
| 2704 | INC_STATS_COUNTER(cnt_map_sg); |
| 2705 | |
| 2706 | domain = get_domain(dev); |
| 2707 | if (PTR_ERR(domain) == -EINVAL) |
| 2708 | return map_sg_no_iommu(dev, sglist, nelems, dir); |
| 2709 | else if (IS_ERR(domain)) |
| 2710 | return 0; |
| 2711 | |
| 2712 | dma_mask = *dev->dma_mask; |
| 2713 | |
| 2714 | spin_lock_irqsave(&domain->lock, flags); |
| 2715 | |
| 2716 | for_each_sg(sglist, s, nelems, i) { |
| 2717 | paddr = sg_phys(s); |
| 2718 | |
| 2719 | s->dma_address = __map_single(dev, domain->priv, |
| 2720 | paddr, s->length, dir, false, |
| 2721 | dma_mask); |
| 2722 | |
| 2723 | if (s->dma_address) { |
| 2724 | s->dma_length = s->length; |
| 2725 | mapped_elems++; |
| 2726 | } else |
| 2727 | goto unmap; |
| 2728 | } |
| 2729 | |
| 2730 | domain_flush_complete(domain); |
| 2731 | |
| 2732 | out: |
| 2733 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2734 | |
| 2735 | return mapped_elems; |
| 2736 | unmap: |
| 2737 | for_each_sg(sglist, s, mapped_elems, i) { |
| 2738 | if (s->dma_address) |
| 2739 | __unmap_single(domain->priv, s->dma_address, |
| 2740 | s->dma_length, dir); |
| 2741 | s->dma_address = s->dma_length = 0; |
| 2742 | } |
| 2743 | |
| 2744 | mapped_elems = 0; |
| 2745 | |
| 2746 | goto out; |
| 2747 | } |
| 2748 | |
| 2749 | /* |
| 2750 | * The exported map_sg function for dma_ops (handles scatter-gather |
| 2751 | * lists). |
| 2752 | */ |
| 2753 | static void unmap_sg(struct device *dev, struct scatterlist *sglist, |
| 2754 | int nelems, enum dma_data_direction dir, |
| 2755 | struct dma_attrs *attrs) |
| 2756 | { |
| 2757 | unsigned long flags; |
| 2758 | struct protection_domain *domain; |
| 2759 | struct scatterlist *s; |
| 2760 | int i; |
| 2761 | |
| 2762 | INC_STATS_COUNTER(cnt_unmap_sg); |
| 2763 | |
| 2764 | domain = get_domain(dev); |
| 2765 | if (IS_ERR(domain)) |
| 2766 | return; |
| 2767 | |
| 2768 | spin_lock_irqsave(&domain->lock, flags); |
| 2769 | |
| 2770 | for_each_sg(sglist, s, nelems, i) { |
| 2771 | __unmap_single(domain->priv, s->dma_address, |
| 2772 | s->dma_length, dir); |
| 2773 | s->dma_address = s->dma_length = 0; |
| 2774 | } |
| 2775 | |
| 2776 | domain_flush_complete(domain); |
| 2777 | |
| 2778 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2779 | } |
| 2780 | |
| 2781 | /* |
| 2782 | * The exported alloc_coherent function for dma_ops. |
| 2783 | */ |
| 2784 | static void *alloc_coherent(struct device *dev, size_t size, |
| 2785 | dma_addr_t *dma_addr, gfp_t flag, |
| 2786 | struct dma_attrs *attrs) |
| 2787 | { |
| 2788 | unsigned long flags; |
| 2789 | void *virt_addr; |
| 2790 | struct protection_domain *domain; |
| 2791 | phys_addr_t paddr; |
| 2792 | u64 dma_mask = dev->coherent_dma_mask; |
| 2793 | |
| 2794 | INC_STATS_COUNTER(cnt_alloc_coherent); |
| 2795 | |
| 2796 | domain = get_domain(dev); |
| 2797 | if (PTR_ERR(domain) == -EINVAL) { |
| 2798 | virt_addr = (void *)__get_free_pages(flag, get_order(size)); |
| 2799 | *dma_addr = __pa(virt_addr); |
| 2800 | return virt_addr; |
| 2801 | } else if (IS_ERR(domain)) |
| 2802 | return NULL; |
| 2803 | |
| 2804 | dma_mask = dev->coherent_dma_mask; |
| 2805 | flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32); |
| 2806 | flag |= __GFP_ZERO; |
| 2807 | |
| 2808 | virt_addr = (void *)__get_free_pages(flag, get_order(size)); |
| 2809 | if (!virt_addr) |
| 2810 | return NULL; |
| 2811 | |
| 2812 | paddr = virt_to_phys(virt_addr); |
| 2813 | |
| 2814 | if (!dma_mask) |
| 2815 | dma_mask = *dev->dma_mask; |
| 2816 | |
| 2817 | spin_lock_irqsave(&domain->lock, flags); |
| 2818 | |
| 2819 | *dma_addr = __map_single(dev, domain->priv, paddr, |
| 2820 | size, DMA_BIDIRECTIONAL, true, dma_mask); |
| 2821 | |
| 2822 | if (*dma_addr == DMA_ERROR_CODE) { |
| 2823 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2824 | goto out_free; |
| 2825 | } |
| 2826 | |
| 2827 | domain_flush_complete(domain); |
| 2828 | |
| 2829 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2830 | |
| 2831 | return virt_addr; |
| 2832 | |
| 2833 | out_free: |
| 2834 | |
| 2835 | free_pages((unsigned long)virt_addr, get_order(size)); |
| 2836 | |
| 2837 | return NULL; |
| 2838 | } |
| 2839 | |
| 2840 | /* |
| 2841 | * The exported free_coherent function for dma_ops. |
| 2842 | */ |
| 2843 | static void free_coherent(struct device *dev, size_t size, |
| 2844 | void *virt_addr, dma_addr_t dma_addr, |
| 2845 | struct dma_attrs *attrs) |
| 2846 | { |
| 2847 | unsigned long flags; |
| 2848 | struct protection_domain *domain; |
| 2849 | |
| 2850 | INC_STATS_COUNTER(cnt_free_coherent); |
| 2851 | |
| 2852 | domain = get_domain(dev); |
| 2853 | if (IS_ERR(domain)) |
| 2854 | goto free_mem; |
| 2855 | |
| 2856 | spin_lock_irqsave(&domain->lock, flags); |
| 2857 | |
| 2858 | __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL); |
| 2859 | |
| 2860 | domain_flush_complete(domain); |
| 2861 | |
| 2862 | spin_unlock_irqrestore(&domain->lock, flags); |
| 2863 | |
| 2864 | free_mem: |
| 2865 | free_pages((unsigned long)virt_addr, get_order(size)); |
| 2866 | } |
| 2867 | |
| 2868 | /* |
| 2869 | * This function is called by the DMA layer to find out if we can handle a |
| 2870 | * particular device. It is part of the dma_ops. |
| 2871 | */ |
| 2872 | static int amd_iommu_dma_supported(struct device *dev, u64 mask) |
| 2873 | { |
| 2874 | return check_device(dev); |
| 2875 | } |
| 2876 | |
| 2877 | /* |
| 2878 | * The function for pre-allocating protection domains. |
| 2879 | * |
| 2880 | * If the driver core informs the DMA layer if a driver grabs a device |
| 2881 | * we don't need to preallocate the protection domains anymore. |
| 2882 | * For now we have to. |
| 2883 | */ |
| 2884 | static void __init prealloc_protection_domains(void) |
| 2885 | { |
| 2886 | struct iommu_dev_data *dev_data; |
| 2887 | struct dma_ops_domain *dma_dom; |
| 2888 | struct pci_dev *dev = NULL; |
| 2889 | u16 devid; |
| 2890 | |
| 2891 | for_each_pci_dev(dev) { |
| 2892 | |
| 2893 | /* Do we handle this device? */ |
| 2894 | if (!check_device(&dev->dev)) |
| 2895 | continue; |
| 2896 | |
| 2897 | dev_data = get_dev_data(&dev->dev); |
| 2898 | if (!amd_iommu_force_isolation && dev_data->iommu_v2) { |
| 2899 | /* Make sure passthrough domain is allocated */ |
| 2900 | alloc_passthrough_domain(); |
| 2901 | dev_data->passthrough = true; |
| 2902 | attach_device(&dev->dev, pt_domain); |
| 2903 | pr_info("AMD-Vi: Using passthough domain for device %s\n", |
| 2904 | dev_name(&dev->dev)); |
| 2905 | } |
| 2906 | |
| 2907 | /* Is there already any domain for it? */ |
| 2908 | if (domain_for_device(&dev->dev)) |
| 2909 | continue; |
| 2910 | |
| 2911 | devid = get_device_id(&dev->dev); |
| 2912 | |
| 2913 | dma_dom = dma_ops_domain_alloc(); |
| 2914 | if (!dma_dom) |
| 2915 | continue; |
| 2916 | init_unity_mappings_for_device(dma_dom, devid); |
| 2917 | dma_dom->target_dev = devid; |
| 2918 | |
| 2919 | attach_device(&dev->dev, &dma_dom->domain); |
| 2920 | |
| 2921 | list_add_tail(&dma_dom->list, &iommu_pd_list); |
| 2922 | } |
| 2923 | } |
| 2924 | |
| 2925 | static struct dma_map_ops amd_iommu_dma_ops = { |
| 2926 | .alloc = alloc_coherent, |
| 2927 | .free = free_coherent, |
| 2928 | .map_page = map_page, |
| 2929 | .unmap_page = unmap_page, |
| 2930 | .map_sg = map_sg, |
| 2931 | .unmap_sg = unmap_sg, |
| 2932 | .dma_supported = amd_iommu_dma_supported, |
| 2933 | }; |
| 2934 | |
| 2935 | static unsigned device_dma_ops_init(void) |
| 2936 | { |
| 2937 | struct iommu_dev_data *dev_data; |
| 2938 | struct pci_dev *pdev = NULL; |
| 2939 | unsigned unhandled = 0; |
| 2940 | |
| 2941 | for_each_pci_dev(pdev) { |
| 2942 | if (!check_device(&pdev->dev)) { |
| 2943 | |
| 2944 | iommu_ignore_device(&pdev->dev); |
| 2945 | |
| 2946 | unhandled += 1; |
| 2947 | continue; |
| 2948 | } |
| 2949 | |
| 2950 | dev_data = get_dev_data(&pdev->dev); |
| 2951 | |
| 2952 | if (!dev_data->passthrough) |
| 2953 | pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops; |
| 2954 | else |
| 2955 | pdev->dev.archdata.dma_ops = &nommu_dma_ops; |
| 2956 | } |
| 2957 | |
| 2958 | return unhandled; |
| 2959 | } |
| 2960 | |
| 2961 | /* |
| 2962 | * The function which clues the AMD IOMMU driver into dma_ops. |
| 2963 | */ |
| 2964 | |
| 2965 | void __init amd_iommu_init_api(void) |
| 2966 | { |
| 2967 | bus_set_iommu(&pci_bus_type, &amd_iommu_ops); |
| 2968 | } |
| 2969 | |
| 2970 | int __init amd_iommu_init_dma_ops(void) |
| 2971 | { |
| 2972 | struct amd_iommu *iommu; |
| 2973 | int ret, unhandled; |
| 2974 | |
| 2975 | /* |
| 2976 | * first allocate a default protection domain for every IOMMU we |
| 2977 | * found in the system. Devices not assigned to any other |
| 2978 | * protection domain will be assigned to the default one. |
| 2979 | */ |
| 2980 | for_each_iommu(iommu) { |
| 2981 | iommu->default_dom = dma_ops_domain_alloc(); |
| 2982 | if (iommu->default_dom == NULL) |
| 2983 | return -ENOMEM; |
| 2984 | iommu->default_dom->domain.flags |= PD_DEFAULT_MASK; |
| 2985 | ret = iommu_init_unity_mappings(iommu); |
| 2986 | if (ret) |
| 2987 | goto free_domains; |
| 2988 | } |
| 2989 | |
| 2990 | /* |
| 2991 | * Pre-allocate the protection domains for each device. |
| 2992 | */ |
| 2993 | prealloc_protection_domains(); |
| 2994 | |
| 2995 | iommu_detected = 1; |
| 2996 | swiotlb = 0; |
| 2997 | |
| 2998 | /* Make the driver finally visible to the drivers */ |
| 2999 | unhandled = device_dma_ops_init(); |
| 3000 | if (unhandled && max_pfn > MAX_DMA32_PFN) { |
| 3001 | /* There are unhandled devices - initialize swiotlb for them */ |
| 3002 | swiotlb = 1; |
| 3003 | } |
| 3004 | |
| 3005 | amd_iommu_stats_init(); |
| 3006 | |
| 3007 | return 0; |
| 3008 | |
| 3009 | free_domains: |
| 3010 | |
| 3011 | for_each_iommu(iommu) { |
| 3012 | if (iommu->default_dom) |
| 3013 | dma_ops_domain_free(iommu->default_dom); |
| 3014 | } |
| 3015 | |
| 3016 | return ret; |
| 3017 | } |
| 3018 | |
| 3019 | /***************************************************************************** |
| 3020 | * |
| 3021 | * The following functions belong to the exported interface of AMD IOMMU |
| 3022 | * |
| 3023 | * This interface allows access to lower level functions of the IOMMU |
| 3024 | * like protection domain handling and assignement of devices to domains |
| 3025 | * which is not possible with the dma_ops interface. |
| 3026 | * |
| 3027 | *****************************************************************************/ |
| 3028 | |
| 3029 | static void cleanup_domain(struct protection_domain *domain) |
| 3030 | { |
| 3031 | struct iommu_dev_data *entry; |
| 3032 | unsigned long flags; |
| 3033 | |
| 3034 | write_lock_irqsave(&amd_iommu_devtable_lock, flags); |
| 3035 | |
| 3036 | while (!list_empty(&domain->dev_list)) { |
| 3037 | entry = list_first_entry(&domain->dev_list, |
| 3038 | struct iommu_dev_data, list); |
| 3039 | __detach_device(entry); |
| 3040 | atomic_set(&entry->bind, 0); |
| 3041 | } |
| 3042 | |
| 3043 | write_unlock_irqrestore(&amd_iommu_devtable_lock, flags); |
| 3044 | } |
| 3045 | |
| 3046 | static void protection_domain_free(struct protection_domain *domain) |
| 3047 | { |
| 3048 | if (!domain) |
| 3049 | return; |
| 3050 | |
| 3051 | del_domain_from_list(domain); |
| 3052 | |
| 3053 | if (domain->id) |
| 3054 | domain_id_free(domain->id); |
| 3055 | |
| 3056 | kfree(domain); |
| 3057 | } |
| 3058 | |
| 3059 | static struct protection_domain *protection_domain_alloc(void) |
| 3060 | { |
| 3061 | struct protection_domain *domain; |
| 3062 | |
| 3063 | domain = kzalloc(sizeof(*domain), GFP_KERNEL); |
| 3064 | if (!domain) |
| 3065 | return NULL; |
| 3066 | |
| 3067 | spin_lock_init(&domain->lock); |
| 3068 | mutex_init(&domain->api_lock); |
| 3069 | domain->id = domain_id_alloc(); |
| 3070 | if (!domain->id) |
| 3071 | goto out_err; |
| 3072 | INIT_LIST_HEAD(&domain->dev_list); |
| 3073 | |
| 3074 | add_domain_to_list(domain); |
| 3075 | |
| 3076 | return domain; |
| 3077 | |
| 3078 | out_err: |
| 3079 | kfree(domain); |
| 3080 | |
| 3081 | return NULL; |
| 3082 | } |
| 3083 | |
| 3084 | static int __init alloc_passthrough_domain(void) |
| 3085 | { |
| 3086 | if (pt_domain != NULL) |
| 3087 | return 0; |
| 3088 | |
| 3089 | /* allocate passthrough domain */ |
| 3090 | pt_domain = protection_domain_alloc(); |
| 3091 | if (!pt_domain) |
| 3092 | return -ENOMEM; |
| 3093 | |
| 3094 | pt_domain->mode = PAGE_MODE_NONE; |
| 3095 | |
| 3096 | return 0; |
| 3097 | } |
| 3098 | static int amd_iommu_domain_init(struct iommu_domain *dom) |
| 3099 | { |
| 3100 | struct protection_domain *domain; |
| 3101 | |
| 3102 | domain = protection_domain_alloc(); |
| 3103 | if (!domain) |
| 3104 | goto out_free; |
| 3105 | |
| 3106 | domain->mode = PAGE_MODE_3_LEVEL; |
| 3107 | domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL); |
| 3108 | if (!domain->pt_root) |
| 3109 | goto out_free; |
| 3110 | |
| 3111 | domain->iommu_domain = dom; |
| 3112 | |
| 3113 | dom->priv = domain; |
| 3114 | |
| 3115 | return 0; |
| 3116 | |
| 3117 | out_free: |
| 3118 | protection_domain_free(domain); |
| 3119 | |
| 3120 | return -ENOMEM; |
| 3121 | } |
| 3122 | |
| 3123 | static void amd_iommu_domain_destroy(struct iommu_domain *dom) |
| 3124 | { |
| 3125 | struct protection_domain *domain = dom->priv; |
| 3126 | |
| 3127 | if (!domain) |
| 3128 | return; |
| 3129 | |
| 3130 | if (domain->dev_cnt > 0) |
| 3131 | cleanup_domain(domain); |
| 3132 | |
| 3133 | BUG_ON(domain->dev_cnt != 0); |
| 3134 | |
| 3135 | if (domain->mode != PAGE_MODE_NONE) |
| 3136 | free_pagetable(domain); |
| 3137 | |
| 3138 | if (domain->flags & PD_IOMMUV2_MASK) |
| 3139 | free_gcr3_table(domain); |
| 3140 | |
| 3141 | protection_domain_free(domain); |
| 3142 | |
| 3143 | dom->priv = NULL; |
| 3144 | } |
| 3145 | |
| 3146 | static void amd_iommu_detach_device(struct iommu_domain *dom, |
| 3147 | struct device *dev) |
| 3148 | { |
| 3149 | struct iommu_dev_data *dev_data = dev->archdata.iommu; |
| 3150 | struct amd_iommu *iommu; |
| 3151 | u16 devid; |
| 3152 | |
| 3153 | if (!check_device(dev)) |
| 3154 | return; |
| 3155 | |
| 3156 | devid = get_device_id(dev); |
| 3157 | |
| 3158 | if (dev_data->domain != NULL) |
| 3159 | detach_device(dev); |
| 3160 | |
| 3161 | iommu = amd_iommu_rlookup_table[devid]; |
| 3162 | if (!iommu) |
| 3163 | return; |
| 3164 | |
| 3165 | iommu_completion_wait(iommu); |
| 3166 | } |
| 3167 | |
| 3168 | static int amd_iommu_attach_device(struct iommu_domain *dom, |
| 3169 | struct device *dev) |
| 3170 | { |
| 3171 | struct protection_domain *domain = dom->priv; |
| 3172 | struct iommu_dev_data *dev_data; |
| 3173 | struct amd_iommu *iommu; |
| 3174 | int ret; |
| 3175 | |
| 3176 | if (!check_device(dev)) |
| 3177 | return -EINVAL; |
| 3178 | |
| 3179 | dev_data = dev->archdata.iommu; |
| 3180 | |
| 3181 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 3182 | if (!iommu) |
| 3183 | return -EINVAL; |
| 3184 | |
| 3185 | if (dev_data->domain) |
| 3186 | detach_device(dev); |
| 3187 | |
| 3188 | ret = attach_device(dev, domain); |
| 3189 | |
| 3190 | iommu_completion_wait(iommu); |
| 3191 | |
| 3192 | return ret; |
| 3193 | } |
| 3194 | |
| 3195 | static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova, |
| 3196 | phys_addr_t paddr, size_t page_size, int iommu_prot) |
| 3197 | { |
| 3198 | struct protection_domain *domain = dom->priv; |
| 3199 | int prot = 0; |
| 3200 | int ret; |
| 3201 | |
| 3202 | if (domain->mode == PAGE_MODE_NONE) |
| 3203 | return -EINVAL; |
| 3204 | |
| 3205 | if (iommu_prot & IOMMU_READ) |
| 3206 | prot |= IOMMU_PROT_IR; |
| 3207 | if (iommu_prot & IOMMU_WRITE) |
| 3208 | prot |= IOMMU_PROT_IW; |
| 3209 | |
| 3210 | mutex_lock(&domain->api_lock); |
| 3211 | ret = iommu_map_page(domain, iova, paddr, prot, page_size); |
| 3212 | mutex_unlock(&domain->api_lock); |
| 3213 | |
| 3214 | return ret; |
| 3215 | } |
| 3216 | |
| 3217 | static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova, |
| 3218 | size_t page_size) |
| 3219 | { |
| 3220 | struct protection_domain *domain = dom->priv; |
| 3221 | size_t unmap_size; |
| 3222 | |
| 3223 | if (domain->mode == PAGE_MODE_NONE) |
| 3224 | return -EINVAL; |
| 3225 | |
| 3226 | mutex_lock(&domain->api_lock); |
| 3227 | unmap_size = iommu_unmap_page(domain, iova, page_size); |
| 3228 | mutex_unlock(&domain->api_lock); |
| 3229 | |
| 3230 | domain_flush_tlb_pde(domain); |
| 3231 | |
| 3232 | return unmap_size; |
| 3233 | } |
| 3234 | |
| 3235 | static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom, |
| 3236 | unsigned long iova) |
| 3237 | { |
| 3238 | struct protection_domain *domain = dom->priv; |
| 3239 | unsigned long offset_mask; |
| 3240 | phys_addr_t paddr; |
| 3241 | u64 *pte, __pte; |
| 3242 | |
| 3243 | if (domain->mode == PAGE_MODE_NONE) |
| 3244 | return iova; |
| 3245 | |
| 3246 | pte = fetch_pte(domain, iova); |
| 3247 | |
| 3248 | if (!pte || !IOMMU_PTE_PRESENT(*pte)) |
| 3249 | return 0; |
| 3250 | |
| 3251 | if (PM_PTE_LEVEL(*pte) == 0) |
| 3252 | offset_mask = PAGE_SIZE - 1; |
| 3253 | else |
| 3254 | offset_mask = PTE_PAGE_SIZE(*pte) - 1; |
| 3255 | |
| 3256 | __pte = *pte & PM_ADDR_MASK; |
| 3257 | paddr = (__pte & ~offset_mask) | (iova & offset_mask); |
| 3258 | |
| 3259 | return paddr; |
| 3260 | } |
| 3261 | |
| 3262 | static int amd_iommu_domain_has_cap(struct iommu_domain *domain, |
| 3263 | unsigned long cap) |
| 3264 | { |
| 3265 | switch (cap) { |
| 3266 | case IOMMU_CAP_CACHE_COHERENCY: |
| 3267 | return 1; |
| 3268 | } |
| 3269 | |
| 3270 | return 0; |
| 3271 | } |
| 3272 | |
| 3273 | static int amd_iommu_device_group(struct device *dev, unsigned int *groupid) |
| 3274 | { |
| 3275 | struct iommu_dev_data *dev_data = dev->archdata.iommu; |
| 3276 | struct pci_dev *pdev = to_pci_dev(dev); |
| 3277 | u16 devid; |
| 3278 | |
| 3279 | if (!dev_data) |
| 3280 | return -ENODEV; |
| 3281 | |
| 3282 | if (pdev->is_virtfn || !iommu_group_mf) |
| 3283 | devid = dev_data->devid; |
| 3284 | else |
| 3285 | devid = calc_devid(pdev->bus->number, |
| 3286 | PCI_DEVFN(PCI_SLOT(pdev->devfn), 0)); |
| 3287 | |
| 3288 | *groupid = amd_iommu_alias_table[devid]; |
| 3289 | |
| 3290 | return 0; |
| 3291 | } |
| 3292 | |
| 3293 | static struct iommu_ops amd_iommu_ops = { |
| 3294 | .domain_init = amd_iommu_domain_init, |
| 3295 | .domain_destroy = amd_iommu_domain_destroy, |
| 3296 | .attach_dev = amd_iommu_attach_device, |
| 3297 | .detach_dev = amd_iommu_detach_device, |
| 3298 | .map = amd_iommu_map, |
| 3299 | .unmap = amd_iommu_unmap, |
| 3300 | .iova_to_phys = amd_iommu_iova_to_phys, |
| 3301 | .domain_has_cap = amd_iommu_domain_has_cap, |
| 3302 | .device_group = amd_iommu_device_group, |
| 3303 | .pgsize_bitmap = AMD_IOMMU_PGSIZES, |
| 3304 | }; |
| 3305 | |
| 3306 | /***************************************************************************** |
| 3307 | * |
| 3308 | * The next functions do a basic initialization of IOMMU for pass through |
| 3309 | * mode |
| 3310 | * |
| 3311 | * In passthrough mode the IOMMU is initialized and enabled but not used for |
| 3312 | * DMA-API translation. |
| 3313 | * |
| 3314 | *****************************************************************************/ |
| 3315 | |
| 3316 | int __init amd_iommu_init_passthrough(void) |
| 3317 | { |
| 3318 | struct iommu_dev_data *dev_data; |
| 3319 | struct pci_dev *dev = NULL; |
| 3320 | struct amd_iommu *iommu; |
| 3321 | u16 devid; |
| 3322 | int ret; |
| 3323 | |
| 3324 | ret = alloc_passthrough_domain(); |
| 3325 | if (ret) |
| 3326 | return ret; |
| 3327 | |
| 3328 | for_each_pci_dev(dev) { |
| 3329 | if (!check_device(&dev->dev)) |
| 3330 | continue; |
| 3331 | |
| 3332 | dev_data = get_dev_data(&dev->dev); |
| 3333 | dev_data->passthrough = true; |
| 3334 | |
| 3335 | devid = get_device_id(&dev->dev); |
| 3336 | |
| 3337 | iommu = amd_iommu_rlookup_table[devid]; |
| 3338 | if (!iommu) |
| 3339 | continue; |
| 3340 | |
| 3341 | attach_device(&dev->dev, pt_domain); |
| 3342 | } |
| 3343 | |
| 3344 | amd_iommu_stats_init(); |
| 3345 | |
| 3346 | pr_info("AMD-Vi: Initialized for Passthrough Mode\n"); |
| 3347 | |
| 3348 | return 0; |
| 3349 | } |
| 3350 | |
| 3351 | /* IOMMUv2 specific functions */ |
| 3352 | int amd_iommu_register_ppr_notifier(struct notifier_block *nb) |
| 3353 | { |
| 3354 | return atomic_notifier_chain_register(&ppr_notifier, nb); |
| 3355 | } |
| 3356 | EXPORT_SYMBOL(amd_iommu_register_ppr_notifier); |
| 3357 | |
| 3358 | int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb) |
| 3359 | { |
| 3360 | return atomic_notifier_chain_unregister(&ppr_notifier, nb); |
| 3361 | } |
| 3362 | EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier); |
| 3363 | |
| 3364 | void amd_iommu_domain_direct_map(struct iommu_domain *dom) |
| 3365 | { |
| 3366 | struct protection_domain *domain = dom->priv; |
| 3367 | unsigned long flags; |
| 3368 | |
| 3369 | spin_lock_irqsave(&domain->lock, flags); |
| 3370 | |
| 3371 | /* Update data structure */ |
| 3372 | domain->mode = PAGE_MODE_NONE; |
| 3373 | domain->updated = true; |
| 3374 | |
| 3375 | /* Make changes visible to IOMMUs */ |
| 3376 | update_domain(domain); |
| 3377 | |
| 3378 | /* Page-table is not visible to IOMMU anymore, so free it */ |
| 3379 | free_pagetable(domain); |
| 3380 | |
| 3381 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3382 | } |
| 3383 | EXPORT_SYMBOL(amd_iommu_domain_direct_map); |
| 3384 | |
| 3385 | int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids) |
| 3386 | { |
| 3387 | struct protection_domain *domain = dom->priv; |
| 3388 | unsigned long flags; |
| 3389 | int levels, ret; |
| 3390 | |
| 3391 | if (pasids <= 0 || pasids > (PASID_MASK + 1)) |
| 3392 | return -EINVAL; |
| 3393 | |
| 3394 | /* Number of GCR3 table levels required */ |
| 3395 | for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9) |
| 3396 | levels += 1; |
| 3397 | |
| 3398 | if (levels > amd_iommu_max_glx_val) |
| 3399 | return -EINVAL; |
| 3400 | |
| 3401 | spin_lock_irqsave(&domain->lock, flags); |
| 3402 | |
| 3403 | /* |
| 3404 | * Save us all sanity checks whether devices already in the |
| 3405 | * domain support IOMMUv2. Just force that the domain has no |
| 3406 | * devices attached when it is switched into IOMMUv2 mode. |
| 3407 | */ |
| 3408 | ret = -EBUSY; |
| 3409 | if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK) |
| 3410 | goto out; |
| 3411 | |
| 3412 | ret = -ENOMEM; |
| 3413 | domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC); |
| 3414 | if (domain->gcr3_tbl == NULL) |
| 3415 | goto out; |
| 3416 | |
| 3417 | domain->glx = levels; |
| 3418 | domain->flags |= PD_IOMMUV2_MASK; |
| 3419 | domain->updated = true; |
| 3420 | |
| 3421 | update_domain(domain); |
| 3422 | |
| 3423 | ret = 0; |
| 3424 | |
| 3425 | out: |
| 3426 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3427 | |
| 3428 | return ret; |
| 3429 | } |
| 3430 | EXPORT_SYMBOL(amd_iommu_domain_enable_v2); |
| 3431 | |
| 3432 | static int __flush_pasid(struct protection_domain *domain, int pasid, |
| 3433 | u64 address, bool size) |
| 3434 | { |
| 3435 | struct iommu_dev_data *dev_data; |
| 3436 | struct iommu_cmd cmd; |
| 3437 | int i, ret; |
| 3438 | |
| 3439 | if (!(domain->flags & PD_IOMMUV2_MASK)) |
| 3440 | return -EINVAL; |
| 3441 | |
| 3442 | build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size); |
| 3443 | |
| 3444 | /* |
| 3445 | * IOMMU TLB needs to be flushed before Device TLB to |
| 3446 | * prevent device TLB refill from IOMMU TLB |
| 3447 | */ |
| 3448 | for (i = 0; i < amd_iommus_present; ++i) { |
| 3449 | if (domain->dev_iommu[i] == 0) |
| 3450 | continue; |
| 3451 | |
| 3452 | ret = iommu_queue_command(amd_iommus[i], &cmd); |
| 3453 | if (ret != 0) |
| 3454 | goto out; |
| 3455 | } |
| 3456 | |
| 3457 | /* Wait until IOMMU TLB flushes are complete */ |
| 3458 | domain_flush_complete(domain); |
| 3459 | |
| 3460 | /* Now flush device TLBs */ |
| 3461 | list_for_each_entry(dev_data, &domain->dev_list, list) { |
| 3462 | struct amd_iommu *iommu; |
| 3463 | int qdep; |
| 3464 | |
| 3465 | BUG_ON(!dev_data->ats.enabled); |
| 3466 | |
| 3467 | qdep = dev_data->ats.qdep; |
| 3468 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 3469 | |
| 3470 | build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid, |
| 3471 | qdep, address, size); |
| 3472 | |
| 3473 | ret = iommu_queue_command(iommu, &cmd); |
| 3474 | if (ret != 0) |
| 3475 | goto out; |
| 3476 | } |
| 3477 | |
| 3478 | /* Wait until all device TLBs are flushed */ |
| 3479 | domain_flush_complete(domain); |
| 3480 | |
| 3481 | ret = 0; |
| 3482 | |
| 3483 | out: |
| 3484 | |
| 3485 | return ret; |
| 3486 | } |
| 3487 | |
| 3488 | static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid, |
| 3489 | u64 address) |
| 3490 | { |
| 3491 | INC_STATS_COUNTER(invalidate_iotlb); |
| 3492 | |
| 3493 | return __flush_pasid(domain, pasid, address, false); |
| 3494 | } |
| 3495 | |
| 3496 | int amd_iommu_flush_page(struct iommu_domain *dom, int pasid, |
| 3497 | u64 address) |
| 3498 | { |
| 3499 | struct protection_domain *domain = dom->priv; |
| 3500 | unsigned long flags; |
| 3501 | int ret; |
| 3502 | |
| 3503 | spin_lock_irqsave(&domain->lock, flags); |
| 3504 | ret = __amd_iommu_flush_page(domain, pasid, address); |
| 3505 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3506 | |
| 3507 | return ret; |
| 3508 | } |
| 3509 | EXPORT_SYMBOL(amd_iommu_flush_page); |
| 3510 | |
| 3511 | static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid) |
| 3512 | { |
| 3513 | INC_STATS_COUNTER(invalidate_iotlb_all); |
| 3514 | |
| 3515 | return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, |
| 3516 | true); |
| 3517 | } |
| 3518 | |
| 3519 | int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid) |
| 3520 | { |
| 3521 | struct protection_domain *domain = dom->priv; |
| 3522 | unsigned long flags; |
| 3523 | int ret; |
| 3524 | |
| 3525 | spin_lock_irqsave(&domain->lock, flags); |
| 3526 | ret = __amd_iommu_flush_tlb(domain, pasid); |
| 3527 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3528 | |
| 3529 | return ret; |
| 3530 | } |
| 3531 | EXPORT_SYMBOL(amd_iommu_flush_tlb); |
| 3532 | |
| 3533 | static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc) |
| 3534 | { |
| 3535 | int index; |
| 3536 | u64 *pte; |
| 3537 | |
| 3538 | while (true) { |
| 3539 | |
| 3540 | index = (pasid >> (9 * level)) & 0x1ff; |
| 3541 | pte = &root[index]; |
| 3542 | |
| 3543 | if (level == 0) |
| 3544 | break; |
| 3545 | |
| 3546 | if (!(*pte & GCR3_VALID)) { |
| 3547 | if (!alloc) |
| 3548 | return NULL; |
| 3549 | |
| 3550 | root = (void *)get_zeroed_page(GFP_ATOMIC); |
| 3551 | if (root == NULL) |
| 3552 | return NULL; |
| 3553 | |
| 3554 | *pte = __pa(root) | GCR3_VALID; |
| 3555 | } |
| 3556 | |
| 3557 | root = __va(*pte & PAGE_MASK); |
| 3558 | |
| 3559 | level -= 1; |
| 3560 | } |
| 3561 | |
| 3562 | return pte; |
| 3563 | } |
| 3564 | |
| 3565 | static int __set_gcr3(struct protection_domain *domain, int pasid, |
| 3566 | unsigned long cr3) |
| 3567 | { |
| 3568 | u64 *pte; |
| 3569 | |
| 3570 | if (domain->mode != PAGE_MODE_NONE) |
| 3571 | return -EINVAL; |
| 3572 | |
| 3573 | pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true); |
| 3574 | if (pte == NULL) |
| 3575 | return -ENOMEM; |
| 3576 | |
| 3577 | *pte = (cr3 & PAGE_MASK) | GCR3_VALID; |
| 3578 | |
| 3579 | return __amd_iommu_flush_tlb(domain, pasid); |
| 3580 | } |
| 3581 | |
| 3582 | static int __clear_gcr3(struct protection_domain *domain, int pasid) |
| 3583 | { |
| 3584 | u64 *pte; |
| 3585 | |
| 3586 | if (domain->mode != PAGE_MODE_NONE) |
| 3587 | return -EINVAL; |
| 3588 | |
| 3589 | pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false); |
| 3590 | if (pte == NULL) |
| 3591 | return 0; |
| 3592 | |
| 3593 | *pte = 0; |
| 3594 | |
| 3595 | return __amd_iommu_flush_tlb(domain, pasid); |
| 3596 | } |
| 3597 | |
| 3598 | int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid, |
| 3599 | unsigned long cr3) |
| 3600 | { |
| 3601 | struct protection_domain *domain = dom->priv; |
| 3602 | unsigned long flags; |
| 3603 | int ret; |
| 3604 | |
| 3605 | spin_lock_irqsave(&domain->lock, flags); |
| 3606 | ret = __set_gcr3(domain, pasid, cr3); |
| 3607 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3608 | |
| 3609 | return ret; |
| 3610 | } |
| 3611 | EXPORT_SYMBOL(amd_iommu_domain_set_gcr3); |
| 3612 | |
| 3613 | int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid) |
| 3614 | { |
| 3615 | struct protection_domain *domain = dom->priv; |
| 3616 | unsigned long flags; |
| 3617 | int ret; |
| 3618 | |
| 3619 | spin_lock_irqsave(&domain->lock, flags); |
| 3620 | ret = __clear_gcr3(domain, pasid); |
| 3621 | spin_unlock_irqrestore(&domain->lock, flags); |
| 3622 | |
| 3623 | return ret; |
| 3624 | } |
| 3625 | EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3); |
| 3626 | |
| 3627 | int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid, |
| 3628 | int status, int tag) |
| 3629 | { |
| 3630 | struct iommu_dev_data *dev_data; |
| 3631 | struct amd_iommu *iommu; |
| 3632 | struct iommu_cmd cmd; |
| 3633 | |
| 3634 | INC_STATS_COUNTER(complete_ppr); |
| 3635 | |
| 3636 | dev_data = get_dev_data(&pdev->dev); |
| 3637 | iommu = amd_iommu_rlookup_table[dev_data->devid]; |
| 3638 | |
| 3639 | build_complete_ppr(&cmd, dev_data->devid, pasid, status, |
| 3640 | tag, dev_data->pri_tlp); |
| 3641 | |
| 3642 | return iommu_queue_command(iommu, &cmd); |
| 3643 | } |
| 3644 | EXPORT_SYMBOL(amd_iommu_complete_ppr); |
| 3645 | |
| 3646 | struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev) |
| 3647 | { |
| 3648 | struct protection_domain *domain; |
| 3649 | |
| 3650 | domain = get_domain(&pdev->dev); |
| 3651 | if (IS_ERR(domain)) |
| 3652 | return NULL; |
| 3653 | |
| 3654 | /* Only return IOMMUv2 domains */ |
| 3655 | if (!(domain->flags & PD_IOMMUV2_MASK)) |
| 3656 | return NULL; |
| 3657 | |
| 3658 | return domain->iommu_domain; |
| 3659 | } |
| 3660 | EXPORT_SYMBOL(amd_iommu_get_v2_domain); |
| 3661 | |
| 3662 | void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum) |
| 3663 | { |
| 3664 | struct iommu_dev_data *dev_data; |
| 3665 | |
| 3666 | if (!amd_iommu_v2_supported()) |
| 3667 | return; |
| 3668 | |
| 3669 | dev_data = get_dev_data(&pdev->dev); |
| 3670 | dev_data->errata |= (1 << erratum); |
| 3671 | } |
| 3672 | EXPORT_SYMBOL(amd_iommu_enable_device_erratum); |
| 3673 | |
| 3674 | int amd_iommu_device_info(struct pci_dev *pdev, |
| 3675 | struct amd_iommu_device_info *info) |
| 3676 | { |
| 3677 | int max_pasids; |
| 3678 | int pos; |
| 3679 | |
| 3680 | if (pdev == NULL || info == NULL) |
| 3681 | return -EINVAL; |
| 3682 | |
| 3683 | if (!amd_iommu_v2_supported()) |
| 3684 | return -EINVAL; |
| 3685 | |
| 3686 | memset(info, 0, sizeof(*info)); |
| 3687 | |
| 3688 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS); |
| 3689 | if (pos) |
| 3690 | info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP; |
| 3691 | |
| 3692 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI); |
| 3693 | if (pos) |
| 3694 | info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP; |
| 3695 | |
| 3696 | pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID); |
| 3697 | if (pos) { |
| 3698 | int features; |
| 3699 | |
| 3700 | max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1)); |
| 3701 | max_pasids = min(max_pasids, (1 << 20)); |
| 3702 | |
| 3703 | info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP; |
| 3704 | info->max_pasids = min(pci_max_pasids(pdev), max_pasids); |
| 3705 | |
| 3706 | features = pci_pasid_features(pdev); |
| 3707 | if (features & PCI_PASID_CAP_EXEC) |
| 3708 | info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP; |
| 3709 | if (features & PCI_PASID_CAP_PRIV) |
| 3710 | info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP; |
| 3711 | } |
| 3712 | |
| 3713 | return 0; |
| 3714 | } |
| 3715 | EXPORT_SYMBOL(amd_iommu_device_info); |