yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame] | 1 | /* Authors: Karl MacMillan <kmacmillan@tresys.com> |
| 2 | * Frank Mayer <mayerf@tresys.com> |
| 3 | * |
| 4 | * Copyright (C) 2003 - 2004 Tresys Technology, LLC |
| 5 | * This program is free software; you can redistribute it and/or modify |
| 6 | * it under the terms of the GNU General Public License as published by |
| 7 | * the Free Software Foundation, version 2. |
| 8 | */ |
| 9 | |
| 10 | #include <linux/kernel.h> |
| 11 | #include <linux/errno.h> |
| 12 | #include <linux/string.h> |
| 13 | #include <linux/spinlock.h> |
| 14 | #include <linux/slab.h> |
| 15 | |
| 16 | #include "security.h" |
| 17 | #include "conditional.h" |
| 18 | |
| 19 | /* |
| 20 | * cond_evaluate_expr evaluates a conditional expr |
| 21 | * in reverse polish notation. It returns true (1), false (0), |
| 22 | * or undefined (-1). Undefined occurs when the expression |
| 23 | * exceeds the stack depth of COND_EXPR_MAXDEPTH. |
| 24 | */ |
| 25 | static int cond_evaluate_expr(struct policydb *p, struct cond_expr *expr) |
| 26 | { |
| 27 | |
| 28 | struct cond_expr *cur; |
| 29 | int s[COND_EXPR_MAXDEPTH]; |
| 30 | int sp = -1; |
| 31 | |
| 32 | for (cur = expr; cur; cur = cur->next) { |
| 33 | switch (cur->expr_type) { |
| 34 | case COND_BOOL: |
| 35 | if (sp == (COND_EXPR_MAXDEPTH - 1)) |
| 36 | return -1; |
| 37 | sp++; |
| 38 | s[sp] = p->bool_val_to_struct[cur->bool - 1]->state; |
| 39 | break; |
| 40 | case COND_NOT: |
| 41 | if (sp < 0) |
| 42 | return -1; |
| 43 | s[sp] = !s[sp]; |
| 44 | break; |
| 45 | case COND_OR: |
| 46 | if (sp < 1) |
| 47 | return -1; |
| 48 | sp--; |
| 49 | s[sp] |= s[sp + 1]; |
| 50 | break; |
| 51 | case COND_AND: |
| 52 | if (sp < 1) |
| 53 | return -1; |
| 54 | sp--; |
| 55 | s[sp] &= s[sp + 1]; |
| 56 | break; |
| 57 | case COND_XOR: |
| 58 | if (sp < 1) |
| 59 | return -1; |
| 60 | sp--; |
| 61 | s[sp] ^= s[sp + 1]; |
| 62 | break; |
| 63 | case COND_EQ: |
| 64 | if (sp < 1) |
| 65 | return -1; |
| 66 | sp--; |
| 67 | s[sp] = (s[sp] == s[sp + 1]); |
| 68 | break; |
| 69 | case COND_NEQ: |
| 70 | if (sp < 1) |
| 71 | return -1; |
| 72 | sp--; |
| 73 | s[sp] = (s[sp] != s[sp + 1]); |
| 74 | break; |
| 75 | default: |
| 76 | return -1; |
| 77 | } |
| 78 | } |
| 79 | return s[0]; |
| 80 | } |
| 81 | |
| 82 | /* |
| 83 | * evaluate_cond_node evaluates the conditional stored in |
| 84 | * a struct cond_node and if the result is different than the |
| 85 | * current state of the node it sets the rules in the true/false |
| 86 | * list appropriately. If the result of the expression is undefined |
| 87 | * all of the rules are disabled for safety. |
| 88 | */ |
| 89 | int evaluate_cond_node(struct policydb *p, struct cond_node *node) |
| 90 | { |
| 91 | int new_state; |
| 92 | struct cond_av_list *cur; |
| 93 | |
| 94 | new_state = cond_evaluate_expr(p, node->expr); |
| 95 | if (new_state != node->cur_state) { |
| 96 | node->cur_state = new_state; |
| 97 | if (new_state == -1) |
| 98 | printk(KERN_ERR "SELinux: expression result was undefined - disabling all rules.\n"); |
| 99 | /* turn the rules on or off */ |
| 100 | for (cur = node->true_list; cur; cur = cur->next) { |
| 101 | if (new_state <= 0) |
| 102 | cur->node->key.specified &= ~AVTAB_ENABLED; |
| 103 | else |
| 104 | cur->node->key.specified |= AVTAB_ENABLED; |
| 105 | } |
| 106 | |
| 107 | for (cur = node->false_list; cur; cur = cur->next) { |
| 108 | /* -1 or 1 */ |
| 109 | if (new_state) |
| 110 | cur->node->key.specified &= ~AVTAB_ENABLED; |
| 111 | else |
| 112 | cur->node->key.specified |= AVTAB_ENABLED; |
| 113 | } |
| 114 | } |
| 115 | return 0; |
| 116 | } |
| 117 | |
| 118 | int cond_policydb_init(struct policydb *p) |
| 119 | { |
| 120 | int rc; |
| 121 | |
| 122 | p->bool_val_to_struct = NULL; |
| 123 | p->cond_list = NULL; |
| 124 | |
| 125 | rc = avtab_init(&p->te_cond_avtab); |
| 126 | if (rc) |
| 127 | return rc; |
| 128 | |
| 129 | return 0; |
| 130 | } |
| 131 | |
| 132 | static void cond_av_list_destroy(struct cond_av_list *list) |
| 133 | { |
| 134 | struct cond_av_list *cur, *next; |
| 135 | for (cur = list; cur; cur = next) { |
| 136 | next = cur->next; |
| 137 | /* the avtab_ptr_t node is destroy by the avtab */ |
| 138 | kfree(cur); |
| 139 | } |
| 140 | } |
| 141 | |
| 142 | static void cond_node_destroy(struct cond_node *node) |
| 143 | { |
| 144 | struct cond_expr *cur_expr, *next_expr; |
| 145 | |
| 146 | for (cur_expr = node->expr; cur_expr; cur_expr = next_expr) { |
| 147 | next_expr = cur_expr->next; |
| 148 | kfree(cur_expr); |
| 149 | } |
| 150 | cond_av_list_destroy(node->true_list); |
| 151 | cond_av_list_destroy(node->false_list); |
| 152 | kfree(node); |
| 153 | } |
| 154 | |
| 155 | static void cond_list_destroy(struct cond_node *list) |
| 156 | { |
| 157 | struct cond_node *next, *cur; |
| 158 | |
| 159 | if (list == NULL) |
| 160 | return; |
| 161 | |
| 162 | for (cur = list; cur; cur = next) { |
| 163 | next = cur->next; |
| 164 | cond_node_destroy(cur); |
| 165 | } |
| 166 | } |
| 167 | |
| 168 | void cond_policydb_destroy(struct policydb *p) |
| 169 | { |
| 170 | kfree(p->bool_val_to_struct); |
| 171 | avtab_destroy(&p->te_cond_avtab); |
| 172 | cond_list_destroy(p->cond_list); |
| 173 | } |
| 174 | |
| 175 | int cond_init_bool_indexes(struct policydb *p) |
| 176 | { |
| 177 | kfree(p->bool_val_to_struct); |
| 178 | p->bool_val_to_struct = |
| 179 | kmalloc(p->p_bools.nprim * sizeof(struct cond_bool_datum *), GFP_KERNEL); |
| 180 | if (!p->bool_val_to_struct) |
| 181 | return -ENOMEM; |
| 182 | return 0; |
| 183 | } |
| 184 | |
| 185 | int cond_destroy_bool(void *key, void *datum, void *p) |
| 186 | { |
| 187 | kfree(key); |
| 188 | kfree(datum); |
| 189 | return 0; |
| 190 | } |
| 191 | |
| 192 | int cond_index_bool(void *key, void *datum, void *datap) |
| 193 | { |
| 194 | struct policydb *p; |
| 195 | struct cond_bool_datum *booldatum; |
| 196 | struct flex_array *fa; |
| 197 | |
| 198 | booldatum = datum; |
| 199 | p = datap; |
| 200 | |
| 201 | if (!booldatum->value || booldatum->value > p->p_bools.nprim) |
| 202 | return -EINVAL; |
| 203 | |
| 204 | fa = p->sym_val_to_name[SYM_BOOLS]; |
| 205 | if (flex_array_put_ptr(fa, booldatum->value - 1, key, |
| 206 | GFP_KERNEL | __GFP_ZERO)) |
| 207 | BUG(); |
| 208 | p->bool_val_to_struct[booldatum->value - 1] = booldatum; |
| 209 | |
| 210 | return 0; |
| 211 | } |
| 212 | |
| 213 | static int bool_isvalid(struct cond_bool_datum *b) |
| 214 | { |
| 215 | if (!(b->state == 0 || b->state == 1)) |
| 216 | return 0; |
| 217 | return 1; |
| 218 | } |
| 219 | |
| 220 | int cond_read_bool(struct policydb *p, struct hashtab *h, void *fp) |
| 221 | { |
| 222 | char *key = NULL; |
| 223 | struct cond_bool_datum *booldatum; |
| 224 | __le32 buf[3]; |
| 225 | u32 len; |
| 226 | int rc; |
| 227 | |
| 228 | booldatum = kzalloc(sizeof(struct cond_bool_datum), GFP_KERNEL); |
| 229 | if (!booldatum) |
| 230 | return -ENOMEM; |
| 231 | |
| 232 | rc = next_entry(buf, fp, sizeof buf); |
| 233 | if (rc) |
| 234 | goto err; |
| 235 | |
| 236 | booldatum->value = le32_to_cpu(buf[0]); |
| 237 | booldatum->state = le32_to_cpu(buf[1]); |
| 238 | |
| 239 | rc = -EINVAL; |
| 240 | if (!bool_isvalid(booldatum)) |
| 241 | goto err; |
| 242 | |
| 243 | len = le32_to_cpu(buf[2]); |
| 244 | |
| 245 | rc = -ENOMEM; |
| 246 | key = kmalloc(len + 1, GFP_KERNEL); |
| 247 | if (!key) |
| 248 | goto err; |
| 249 | rc = next_entry(key, fp, len); |
| 250 | if (rc) |
| 251 | goto err; |
| 252 | key[len] = '\0'; |
| 253 | rc = hashtab_insert(h, key, booldatum); |
| 254 | if (rc) |
| 255 | goto err; |
| 256 | |
| 257 | return 0; |
| 258 | err: |
| 259 | cond_destroy_bool(key, booldatum, NULL); |
| 260 | return rc; |
| 261 | } |
| 262 | |
| 263 | struct cond_insertf_data { |
| 264 | struct policydb *p; |
| 265 | struct cond_av_list *other; |
| 266 | struct cond_av_list *head; |
| 267 | struct cond_av_list *tail; |
| 268 | }; |
| 269 | |
| 270 | static int cond_insertf(struct avtab *a, struct avtab_key *k, struct avtab_datum *d, void *ptr) |
| 271 | { |
| 272 | struct cond_insertf_data *data = ptr; |
| 273 | struct policydb *p = data->p; |
| 274 | struct cond_av_list *other = data->other, *list, *cur; |
| 275 | struct avtab_node *node_ptr; |
| 276 | u8 found; |
| 277 | int rc = -EINVAL; |
| 278 | |
| 279 | /* |
| 280 | * For type rules we have to make certain there aren't any |
| 281 | * conflicting rules by searching the te_avtab and the |
| 282 | * cond_te_avtab. |
| 283 | */ |
| 284 | if (k->specified & AVTAB_TYPE) { |
| 285 | if (avtab_search(&p->te_avtab, k)) { |
| 286 | printk(KERN_ERR "SELinux: type rule already exists outside of a conditional.\n"); |
| 287 | goto err; |
| 288 | } |
| 289 | /* |
| 290 | * If we are reading the false list other will be a pointer to |
| 291 | * the true list. We can have duplicate entries if there is only |
| 292 | * 1 other entry and it is in our true list. |
| 293 | * |
| 294 | * If we are reading the true list (other == NULL) there shouldn't |
| 295 | * be any other entries. |
| 296 | */ |
| 297 | if (other) { |
| 298 | node_ptr = avtab_search_node(&p->te_cond_avtab, k); |
| 299 | if (node_ptr) { |
| 300 | if (avtab_search_node_next(node_ptr, k->specified)) { |
| 301 | printk(KERN_ERR "SELinux: too many conflicting type rules.\n"); |
| 302 | goto err; |
| 303 | } |
| 304 | found = 0; |
| 305 | for (cur = other; cur; cur = cur->next) { |
| 306 | if (cur->node == node_ptr) { |
| 307 | found = 1; |
| 308 | break; |
| 309 | } |
| 310 | } |
| 311 | if (!found) { |
| 312 | printk(KERN_ERR "SELinux: conflicting type rules.\n"); |
| 313 | goto err; |
| 314 | } |
| 315 | } |
| 316 | } else { |
| 317 | if (avtab_search(&p->te_cond_avtab, k)) { |
| 318 | printk(KERN_ERR "SELinux: conflicting type rules when adding type rule for true.\n"); |
| 319 | goto err; |
| 320 | } |
| 321 | } |
| 322 | } |
| 323 | |
| 324 | node_ptr = avtab_insert_nonunique(&p->te_cond_avtab, k, d); |
| 325 | if (!node_ptr) { |
| 326 | printk(KERN_ERR "SELinux: could not insert rule.\n"); |
| 327 | rc = -ENOMEM; |
| 328 | goto err; |
| 329 | } |
| 330 | |
| 331 | list = kzalloc(sizeof(struct cond_av_list), GFP_KERNEL); |
| 332 | if (!list) { |
| 333 | rc = -ENOMEM; |
| 334 | goto err; |
| 335 | } |
| 336 | |
| 337 | list->node = node_ptr; |
| 338 | if (!data->head) |
| 339 | data->head = list; |
| 340 | else |
| 341 | data->tail->next = list; |
| 342 | data->tail = list; |
| 343 | return 0; |
| 344 | |
| 345 | err: |
| 346 | cond_av_list_destroy(data->head); |
| 347 | data->head = NULL; |
| 348 | return rc; |
| 349 | } |
| 350 | |
| 351 | static int cond_read_av_list(struct policydb *p, void *fp, struct cond_av_list **ret_list, struct cond_av_list *other) |
| 352 | { |
| 353 | int i, rc; |
| 354 | __le32 buf[1]; |
| 355 | u32 len; |
| 356 | struct cond_insertf_data data; |
| 357 | |
| 358 | *ret_list = NULL; |
| 359 | |
| 360 | len = 0; |
| 361 | rc = next_entry(buf, fp, sizeof(u32)); |
| 362 | if (rc) |
| 363 | return rc; |
| 364 | |
| 365 | len = le32_to_cpu(buf[0]); |
| 366 | if (len == 0) |
| 367 | return 0; |
| 368 | |
| 369 | data.p = p; |
| 370 | data.other = other; |
| 371 | data.head = NULL; |
| 372 | data.tail = NULL; |
| 373 | for (i = 0; i < len; i++) { |
| 374 | rc = avtab_read_item(&p->te_cond_avtab, fp, p, cond_insertf, |
| 375 | &data); |
| 376 | if (rc) |
| 377 | return rc; |
| 378 | } |
| 379 | |
| 380 | *ret_list = data.head; |
| 381 | return 0; |
| 382 | } |
| 383 | |
| 384 | static int expr_isvalid(struct policydb *p, struct cond_expr *expr) |
| 385 | { |
| 386 | if (expr->expr_type <= 0 || expr->expr_type > COND_LAST) { |
| 387 | printk(KERN_ERR "SELinux: conditional expressions uses unknown operator.\n"); |
| 388 | return 0; |
| 389 | } |
| 390 | |
| 391 | if (expr->bool > p->p_bools.nprim) { |
| 392 | printk(KERN_ERR "SELinux: conditional expressions uses unknown bool.\n"); |
| 393 | return 0; |
| 394 | } |
| 395 | return 1; |
| 396 | } |
| 397 | |
| 398 | static int cond_read_node(struct policydb *p, struct cond_node *node, void *fp) |
| 399 | { |
| 400 | __le32 buf[2]; |
| 401 | u32 len, i; |
| 402 | int rc; |
| 403 | struct cond_expr *expr = NULL, *last = NULL; |
| 404 | |
| 405 | rc = next_entry(buf, fp, sizeof(u32)); |
| 406 | if (rc) |
| 407 | return rc; |
| 408 | |
| 409 | node->cur_state = le32_to_cpu(buf[0]); |
| 410 | |
| 411 | len = 0; |
| 412 | rc = next_entry(buf, fp, sizeof(u32)); |
| 413 | if (rc) |
| 414 | return rc; |
| 415 | |
| 416 | /* expr */ |
| 417 | len = le32_to_cpu(buf[0]); |
| 418 | |
| 419 | for (i = 0; i < len; i++) { |
| 420 | rc = next_entry(buf, fp, sizeof(u32) * 2); |
| 421 | if (rc) |
| 422 | goto err; |
| 423 | |
| 424 | rc = -ENOMEM; |
| 425 | expr = kzalloc(sizeof(struct cond_expr), GFP_KERNEL); |
| 426 | if (!expr) |
| 427 | goto err; |
| 428 | |
| 429 | expr->expr_type = le32_to_cpu(buf[0]); |
| 430 | expr->bool = le32_to_cpu(buf[1]); |
| 431 | |
| 432 | if (!expr_isvalid(p, expr)) { |
| 433 | rc = -EINVAL; |
| 434 | kfree(expr); |
| 435 | goto err; |
| 436 | } |
| 437 | |
| 438 | if (i == 0) |
| 439 | node->expr = expr; |
| 440 | else |
| 441 | last->next = expr; |
| 442 | last = expr; |
| 443 | } |
| 444 | |
| 445 | rc = cond_read_av_list(p, fp, &node->true_list, NULL); |
| 446 | if (rc) |
| 447 | goto err; |
| 448 | rc = cond_read_av_list(p, fp, &node->false_list, node->true_list); |
| 449 | if (rc) |
| 450 | goto err; |
| 451 | return 0; |
| 452 | err: |
| 453 | cond_node_destroy(node); |
| 454 | return rc; |
| 455 | } |
| 456 | |
| 457 | int cond_read_list(struct policydb *p, void *fp) |
| 458 | { |
| 459 | struct cond_node *node, *last = NULL; |
| 460 | __le32 buf[1]; |
| 461 | u32 i, len; |
| 462 | int rc; |
| 463 | |
| 464 | rc = next_entry(buf, fp, sizeof buf); |
| 465 | if (rc) |
| 466 | return rc; |
| 467 | |
| 468 | len = le32_to_cpu(buf[0]); |
| 469 | |
| 470 | rc = avtab_alloc(&(p->te_cond_avtab), p->te_avtab.nel); |
| 471 | if (rc) |
| 472 | goto err; |
| 473 | |
| 474 | for (i = 0; i < len; i++) { |
| 475 | rc = -ENOMEM; |
| 476 | node = kzalloc(sizeof(struct cond_node), GFP_KERNEL); |
| 477 | if (!node) |
| 478 | goto err; |
| 479 | |
| 480 | rc = cond_read_node(p, node, fp); |
| 481 | if (rc) |
| 482 | goto err; |
| 483 | |
| 484 | if (i == 0) |
| 485 | p->cond_list = node; |
| 486 | else |
| 487 | last->next = node; |
| 488 | last = node; |
| 489 | } |
| 490 | return 0; |
| 491 | err: |
| 492 | cond_list_destroy(p->cond_list); |
| 493 | p->cond_list = NULL; |
| 494 | return rc; |
| 495 | } |
| 496 | |
| 497 | int cond_write_bool(void *vkey, void *datum, void *ptr) |
| 498 | { |
| 499 | char *key = vkey; |
| 500 | struct cond_bool_datum *booldatum = datum; |
| 501 | struct policy_data *pd = ptr; |
| 502 | void *fp = pd->fp; |
| 503 | __le32 buf[3]; |
| 504 | u32 len; |
| 505 | int rc; |
| 506 | |
| 507 | len = strlen(key); |
| 508 | buf[0] = cpu_to_le32(booldatum->value); |
| 509 | buf[1] = cpu_to_le32(booldatum->state); |
| 510 | buf[2] = cpu_to_le32(len); |
| 511 | rc = put_entry(buf, sizeof(u32), 3, fp); |
| 512 | if (rc) |
| 513 | return rc; |
| 514 | rc = put_entry(key, 1, len, fp); |
| 515 | if (rc) |
| 516 | return rc; |
| 517 | return 0; |
| 518 | } |
| 519 | |
| 520 | /* |
| 521 | * cond_write_cond_av_list doesn't write out the av_list nodes. |
| 522 | * Instead it writes out the key/value pairs from the avtab. This |
| 523 | * is necessary because there is no way to uniquely identifying rules |
| 524 | * in the avtab so it is not possible to associate individual rules |
| 525 | * in the avtab with a conditional without saving them as part of |
| 526 | * the conditional. This means that the avtab with the conditional |
| 527 | * rules will not be saved but will be rebuilt on policy load. |
| 528 | */ |
| 529 | static int cond_write_av_list(struct policydb *p, |
| 530 | struct cond_av_list *list, struct policy_file *fp) |
| 531 | { |
| 532 | __le32 buf[1]; |
| 533 | struct cond_av_list *cur_list; |
| 534 | u32 len; |
| 535 | int rc; |
| 536 | |
| 537 | len = 0; |
| 538 | for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) |
| 539 | len++; |
| 540 | |
| 541 | buf[0] = cpu_to_le32(len); |
| 542 | rc = put_entry(buf, sizeof(u32), 1, fp); |
| 543 | if (rc) |
| 544 | return rc; |
| 545 | |
| 546 | if (len == 0) |
| 547 | return 0; |
| 548 | |
| 549 | for (cur_list = list; cur_list != NULL; cur_list = cur_list->next) { |
| 550 | rc = avtab_write_item(p, cur_list->node, fp); |
| 551 | if (rc) |
| 552 | return rc; |
| 553 | } |
| 554 | |
| 555 | return 0; |
| 556 | } |
| 557 | |
| 558 | static int cond_write_node(struct policydb *p, struct cond_node *node, |
| 559 | struct policy_file *fp) |
| 560 | { |
| 561 | struct cond_expr *cur_expr; |
| 562 | __le32 buf[2]; |
| 563 | int rc; |
| 564 | u32 len = 0; |
| 565 | |
| 566 | buf[0] = cpu_to_le32(node->cur_state); |
| 567 | rc = put_entry(buf, sizeof(u32), 1, fp); |
| 568 | if (rc) |
| 569 | return rc; |
| 570 | |
| 571 | for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) |
| 572 | len++; |
| 573 | |
| 574 | buf[0] = cpu_to_le32(len); |
| 575 | rc = put_entry(buf, sizeof(u32), 1, fp); |
| 576 | if (rc) |
| 577 | return rc; |
| 578 | |
| 579 | for (cur_expr = node->expr; cur_expr != NULL; cur_expr = cur_expr->next) { |
| 580 | buf[0] = cpu_to_le32(cur_expr->expr_type); |
| 581 | buf[1] = cpu_to_le32(cur_expr->bool); |
| 582 | rc = put_entry(buf, sizeof(u32), 2, fp); |
| 583 | if (rc) |
| 584 | return rc; |
| 585 | } |
| 586 | |
| 587 | rc = cond_write_av_list(p, node->true_list, fp); |
| 588 | if (rc) |
| 589 | return rc; |
| 590 | rc = cond_write_av_list(p, node->false_list, fp); |
| 591 | if (rc) |
| 592 | return rc; |
| 593 | |
| 594 | return 0; |
| 595 | } |
| 596 | |
| 597 | int cond_write_list(struct policydb *p, struct cond_node *list, void *fp) |
| 598 | { |
| 599 | struct cond_node *cur; |
| 600 | u32 len; |
| 601 | __le32 buf[1]; |
| 602 | int rc; |
| 603 | |
| 604 | len = 0; |
| 605 | for (cur = list; cur != NULL; cur = cur->next) |
| 606 | len++; |
| 607 | buf[0] = cpu_to_le32(len); |
| 608 | rc = put_entry(buf, sizeof(u32), 1, fp); |
| 609 | if (rc) |
| 610 | return rc; |
| 611 | |
| 612 | for (cur = list; cur != NULL; cur = cur->next) { |
| 613 | rc = cond_write_node(p, cur, fp); |
| 614 | if (rc) |
| 615 | return rc; |
| 616 | } |
| 617 | |
| 618 | return 0; |
| 619 | } |
| 620 | /* Determine whether additional permissions are granted by the conditional |
| 621 | * av table, and if so, add them to the result |
| 622 | */ |
| 623 | void cond_compute_av(struct avtab *ctab, struct avtab_key *key, struct av_decision *avd) |
| 624 | { |
| 625 | struct avtab_node *node; |
| 626 | |
| 627 | if (!ctab || !key || !avd) |
| 628 | return; |
| 629 | |
| 630 | for (node = avtab_search_node(ctab, key); node; |
| 631 | node = avtab_search_node_next(node, key->specified)) { |
| 632 | if ((u16)(AVTAB_ALLOWED|AVTAB_ENABLED) == |
| 633 | (node->key.specified & (AVTAB_ALLOWED|AVTAB_ENABLED))) |
| 634 | avd->allowed |= node->datum.data; |
| 635 | if ((u16)(AVTAB_AUDITDENY|AVTAB_ENABLED) == |
| 636 | (node->key.specified & (AVTAB_AUDITDENY|AVTAB_ENABLED))) |
| 637 | /* Since a '0' in an auditdeny mask represents a |
| 638 | * permission we do NOT want to audit (dontaudit), we use |
| 639 | * the '&' operand to ensure that all '0's in the mask |
| 640 | * are retained (much unlike the allow and auditallow cases). |
| 641 | */ |
| 642 | avd->auditdeny &= node->datum.data; |
| 643 | if ((u16)(AVTAB_AUDITALLOW|AVTAB_ENABLED) == |
| 644 | (node->key.specified & (AVTAB_AUDITALLOW|AVTAB_ENABLED))) |
| 645 | avd->auditallow |= node->datum.data; |
| 646 | } |
| 647 | return; |
| 648 | } |