yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* Copyright (C) 2002-2007, 2008 Free Software Foundation, Inc. |
| 2 | This file is part of the GNU C Library. |
| 3 | Contributed by Ulrich Drepper <drepper@redhat.com>, 2002. |
| 4 | |
| 5 | The GNU C Library is free software; you can redistribute it and/or |
| 6 | modify it under the terms of the GNU Lesser General Public |
| 7 | License as published by the Free Software Foundation; either |
| 8 | version 2.1 of the License, or (at your option) any later version. |
| 9 | |
| 10 | The GNU C Library is distributed in the hope that it will be useful, |
| 11 | but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| 13 | Lesser General Public License for more details. |
| 14 | |
| 15 | You should have received a copy of the GNU Lesser General Public |
| 16 | License along with the GNU C Library; if not, write to the Free |
| 17 | Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA |
| 18 | 02111-1307 USA. */ |
| 19 | |
| 20 | #include <assert.h> |
| 21 | #include <errno.h> |
| 22 | #include <time.h> |
| 23 | #include "pthreadP.h" |
| 24 | #include <lowlevellock.h> |
| 25 | #include <not-cancel.h> |
| 26 | |
| 27 | /* We need to build this function with optimization to avoid |
| 28 | * lll_timedlock erroring out with |
| 29 | * error: can't find a register in class ‘GENERAL_REGS’ while reloading ‘asm’ |
| 30 | */ |
| 31 | int |
| 32 | attribute_optimize("Os") |
| 33 | pthread_mutex_timedlock ( |
| 34 | pthread_mutex_t *mutex, |
| 35 | const struct timespec *abstime) |
| 36 | { |
| 37 | int oldval; |
| 38 | pid_t id = THREAD_GETMEM (THREAD_SELF, tid); |
| 39 | int result = 0; |
| 40 | |
| 41 | /* We must not check ABSTIME here. If the thread does not block |
| 42 | abstime must not be checked for a valid value. */ |
| 43 | |
| 44 | switch (__builtin_expect (PTHREAD_MUTEX_TYPE (mutex), |
| 45 | PTHREAD_MUTEX_TIMED_NP)) |
| 46 | { |
| 47 | /* Recursive mutex. */ |
| 48 | case PTHREAD_MUTEX_RECURSIVE_NP: |
| 49 | /* Check whether we already hold the mutex. */ |
| 50 | if (mutex->__data.__owner == id) |
| 51 | { |
| 52 | /* Just bump the counter. */ |
| 53 | if (__builtin_expect (mutex->__data.__count + 1 == 0, 0)) |
| 54 | /* Overflow of the counter. */ |
| 55 | return EAGAIN; |
| 56 | |
| 57 | ++mutex->__data.__count; |
| 58 | |
| 59 | goto out; |
| 60 | } |
| 61 | |
| 62 | /* We have to get the mutex. */ |
| 63 | result = lll_timedlock (mutex->__data.__lock, abstime, |
| 64 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 65 | |
| 66 | if (result != 0) |
| 67 | goto out; |
| 68 | |
| 69 | /* Only locked once so far. */ |
| 70 | mutex->__data.__count = 1; |
| 71 | break; |
| 72 | |
| 73 | /* Error checking mutex. */ |
| 74 | case PTHREAD_MUTEX_ERRORCHECK_NP: |
| 75 | /* Check whether we already hold the mutex. */ |
| 76 | if (__builtin_expect (mutex->__data.__owner == id, 0)) |
| 77 | return EDEADLK; |
| 78 | |
| 79 | /* FALLTHROUGH */ |
| 80 | |
| 81 | case PTHREAD_MUTEX_TIMED_NP: |
| 82 | simple: |
| 83 | /* Normal mutex. */ |
| 84 | result = lll_timedlock (mutex->__data.__lock, abstime, |
| 85 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 86 | break; |
| 87 | |
| 88 | case PTHREAD_MUTEX_ADAPTIVE_NP: |
| 89 | if (! __is_smp) |
| 90 | goto simple; |
| 91 | |
| 92 | if (lll_trylock (mutex->__data.__lock) != 0) |
| 93 | { |
| 94 | int cnt = 0; |
| 95 | int max_cnt = MIN (MAX_ADAPTIVE_COUNT, |
| 96 | mutex->__data.__spins * 2 + 10); |
| 97 | do |
| 98 | { |
| 99 | if (cnt++ >= max_cnt) |
| 100 | { |
| 101 | result = lll_timedlock (mutex->__data.__lock, abstime, |
| 102 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 103 | break; |
| 104 | } |
| 105 | |
| 106 | #ifdef BUSY_WAIT_NOP |
| 107 | BUSY_WAIT_NOP; |
| 108 | #endif |
| 109 | } |
| 110 | while (lll_trylock (mutex->__data.__lock) != 0); |
| 111 | |
| 112 | mutex->__data.__spins += (cnt - mutex->__data.__spins) / 8; |
| 113 | } |
| 114 | break; |
| 115 | |
| 116 | case PTHREAD_MUTEX_ROBUST_RECURSIVE_NP: |
| 117 | case PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP: |
| 118 | case PTHREAD_MUTEX_ROBUST_NORMAL_NP: |
| 119 | case PTHREAD_MUTEX_ROBUST_ADAPTIVE_NP: |
| 120 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 121 | &mutex->__data.__list.__next); |
| 122 | |
| 123 | oldval = mutex->__data.__lock; |
| 124 | do |
| 125 | { |
| 126 | again: |
| 127 | if ((oldval & FUTEX_OWNER_DIED) != 0) |
| 128 | { |
| 129 | /* The previous owner died. Try locking the mutex. */ |
| 130 | int newval = id | (oldval & FUTEX_WAITERS); |
| 131 | |
| 132 | newval |
| 133 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 134 | newval, oldval); |
| 135 | if (newval != oldval) |
| 136 | { |
| 137 | oldval = newval; |
| 138 | goto again; |
| 139 | } |
| 140 | |
| 141 | /* We got the mutex. */ |
| 142 | mutex->__data.__count = 1; |
| 143 | /* But it is inconsistent unless marked otherwise. */ |
| 144 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| 145 | |
| 146 | ENQUEUE_MUTEX (mutex); |
| 147 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 148 | |
| 149 | /* Note that we deliberately exit here. If we fall |
| 150 | through to the end of the function __nusers would be |
| 151 | incremented which is not correct because the old |
| 152 | owner has to be discounted. */ |
| 153 | return EOWNERDEAD; |
| 154 | } |
| 155 | |
| 156 | /* Check whether we already hold the mutex. */ |
| 157 | if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0)) |
| 158 | { |
| 159 | int kind = PTHREAD_MUTEX_TYPE (mutex); |
| 160 | if (kind == PTHREAD_MUTEX_ROBUST_ERRORCHECK_NP) |
| 161 | { |
| 162 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 163 | NULL); |
| 164 | return EDEADLK; |
| 165 | } |
| 166 | |
| 167 | if (kind == PTHREAD_MUTEX_ROBUST_RECURSIVE_NP) |
| 168 | { |
| 169 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 170 | NULL); |
| 171 | |
| 172 | /* Just bump the counter. */ |
| 173 | if (__builtin_expect (mutex->__data.__count + 1 == 0, 0)) |
| 174 | /* Overflow of the counter. */ |
| 175 | return EAGAIN; |
| 176 | |
| 177 | ++mutex->__data.__count; |
| 178 | |
| 179 | return 0; |
| 180 | } |
| 181 | } |
| 182 | |
| 183 | result = lll_robust_timedlock (mutex->__data.__lock, abstime, id, |
| 184 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
| 185 | |
| 186 | if (__builtin_expect (mutex->__data.__owner |
| 187 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| 188 | { |
| 189 | /* This mutex is now not recoverable. */ |
| 190 | mutex->__data.__count = 0; |
| 191 | lll_unlock (mutex->__data.__lock, |
| 192 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)); |
| 193 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 194 | return ENOTRECOVERABLE; |
| 195 | } |
| 196 | |
| 197 | if (result == ETIMEDOUT || result == EINVAL) |
| 198 | goto out; |
| 199 | |
| 200 | oldval = result; |
| 201 | } |
| 202 | while ((oldval & FUTEX_OWNER_DIED) != 0); |
| 203 | |
| 204 | mutex->__data.__count = 1; |
| 205 | ENQUEUE_MUTEX (mutex); |
| 206 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 207 | break; |
| 208 | |
| 209 | case PTHREAD_MUTEX_PI_RECURSIVE_NP: |
| 210 | case PTHREAD_MUTEX_PI_ERRORCHECK_NP: |
| 211 | case PTHREAD_MUTEX_PI_NORMAL_NP: |
| 212 | case PTHREAD_MUTEX_PI_ADAPTIVE_NP: |
| 213 | case PTHREAD_MUTEX_PI_ROBUST_RECURSIVE_NP: |
| 214 | case PTHREAD_MUTEX_PI_ROBUST_ERRORCHECK_NP: |
| 215 | case PTHREAD_MUTEX_PI_ROBUST_NORMAL_NP: |
| 216 | case PTHREAD_MUTEX_PI_ROBUST_ADAPTIVE_NP: |
| 217 | { |
| 218 | int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
| 219 | int robust = mutex->__data.__kind & PTHREAD_MUTEX_ROBUST_NORMAL_NP; |
| 220 | |
| 221 | if (robust) |
| 222 | /* Note: robust PI futexes are signaled by setting bit 0. */ |
| 223 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, |
| 224 | (void *) (((uintptr_t) &mutex->__data.__list.__next) |
| 225 | | 1)); |
| 226 | |
| 227 | oldval = mutex->__data.__lock; |
| 228 | |
| 229 | /* Check whether we already hold the mutex. */ |
| 230 | if (__builtin_expect ((oldval & FUTEX_TID_MASK) == id, 0)) |
| 231 | { |
| 232 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| 233 | { |
| 234 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 235 | return EDEADLK; |
| 236 | } |
| 237 | |
| 238 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| 239 | { |
| 240 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 241 | |
| 242 | /* Just bump the counter. */ |
| 243 | if (__builtin_expect (mutex->__data.__count + 1 == 0, 0)) |
| 244 | /* Overflow of the counter. */ |
| 245 | return EAGAIN; |
| 246 | |
| 247 | ++mutex->__data.__count; |
| 248 | |
| 249 | return 0; |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | oldval = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 254 | id, 0); |
| 255 | |
| 256 | if (oldval != 0) |
| 257 | { |
| 258 | /* The mutex is locked. The kernel will now take care of |
| 259 | everything. The timeout value must be a relative value. |
| 260 | Convert it. */ |
| 261 | int private = (robust |
| 262 | ? PTHREAD_ROBUST_MUTEX_PSHARED (mutex) |
| 263 | : PTHREAD_MUTEX_PSHARED (mutex)); |
| 264 | INTERNAL_SYSCALL_DECL (__err); |
| 265 | |
| 266 | int e = INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
| 267 | __lll_private_flag (FUTEX_LOCK_PI, |
| 268 | private), 1, |
| 269 | abstime); |
| 270 | if (INTERNAL_SYSCALL_ERROR_P (e, __err)) |
| 271 | { |
| 272 | if (INTERNAL_SYSCALL_ERRNO (e, __err) == ETIMEDOUT) |
| 273 | return ETIMEDOUT; |
| 274 | |
| 275 | if (INTERNAL_SYSCALL_ERRNO (e, __err) == ESRCH |
| 276 | || INTERNAL_SYSCALL_ERRNO (e, __err) == EDEADLK) |
| 277 | { |
| 278 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != EDEADLK |
| 279 | || (kind != PTHREAD_MUTEX_ERRORCHECK_NP |
| 280 | && kind != PTHREAD_MUTEX_RECURSIVE_NP)); |
| 281 | /* ESRCH can happen only for non-robust PI mutexes where |
| 282 | the owner of the lock died. */ |
| 283 | assert (INTERNAL_SYSCALL_ERRNO (e, __err) != ESRCH |
| 284 | || !robust); |
| 285 | |
| 286 | /* Delay the thread until the timeout is reached. |
| 287 | Then return ETIMEDOUT. */ |
| 288 | struct timespec reltime; |
| 289 | struct timespec now; |
| 290 | |
| 291 | INTERNAL_SYSCALL (clock_gettime, __err, 2, CLOCK_REALTIME, |
| 292 | &now); |
| 293 | reltime.tv_sec = abstime->tv_sec - now.tv_sec; |
| 294 | reltime.tv_nsec = abstime->tv_nsec - now.tv_nsec; |
| 295 | if (reltime.tv_nsec < 0) |
| 296 | { |
| 297 | reltime.tv_nsec += 1000000000; |
| 298 | --reltime.tv_sec; |
| 299 | } |
| 300 | if (reltime.tv_sec >= 0) |
| 301 | while (nanosleep_not_cancel (&reltime, &reltime) != 0) |
| 302 | continue; |
| 303 | |
| 304 | return ETIMEDOUT; |
| 305 | } |
| 306 | |
| 307 | return INTERNAL_SYSCALL_ERRNO (e, __err); |
| 308 | } |
| 309 | |
| 310 | oldval = mutex->__data.__lock; |
| 311 | |
| 312 | assert (robust || (oldval & FUTEX_OWNER_DIED) == 0); |
| 313 | } |
| 314 | |
| 315 | if (__builtin_expect (oldval & FUTEX_OWNER_DIED, 0)) |
| 316 | { |
| 317 | atomic_and (&mutex->__data.__lock, ~FUTEX_OWNER_DIED); |
| 318 | |
| 319 | /* We got the mutex. */ |
| 320 | mutex->__data.__count = 1; |
| 321 | /* But it is inconsistent unless marked otherwise. */ |
| 322 | mutex->__data.__owner = PTHREAD_MUTEX_INCONSISTENT; |
| 323 | |
| 324 | ENQUEUE_MUTEX_PI (mutex); |
| 325 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 326 | |
| 327 | /* Note that we deliberately exit here. If we fall |
| 328 | through to the end of the function __nusers would be |
| 329 | incremented which is not correct because the old owner |
| 330 | has to be discounted. */ |
| 331 | return EOWNERDEAD; |
| 332 | } |
| 333 | |
| 334 | if (robust |
| 335 | && __builtin_expect (mutex->__data.__owner |
| 336 | == PTHREAD_MUTEX_NOTRECOVERABLE, 0)) |
| 337 | { |
| 338 | /* This mutex is now not recoverable. */ |
| 339 | mutex->__data.__count = 0; |
| 340 | |
| 341 | INTERNAL_SYSCALL_DECL (__err); |
| 342 | INTERNAL_SYSCALL (futex, __err, 4, &mutex->__data.__lock, |
| 343 | __lll_private_flag (FUTEX_UNLOCK_PI, |
| 344 | PTHREAD_ROBUST_MUTEX_PSHARED (mutex)), |
| 345 | 0, 0); |
| 346 | |
| 347 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 348 | return ENOTRECOVERABLE; |
| 349 | } |
| 350 | |
| 351 | mutex->__data.__count = 1; |
| 352 | if (robust) |
| 353 | { |
| 354 | ENQUEUE_MUTEX_PI (mutex); |
| 355 | THREAD_SETMEM (THREAD_SELF, robust_head.list_op_pending, NULL); |
| 356 | } |
| 357 | } |
| 358 | break; |
| 359 | |
| 360 | case PTHREAD_MUTEX_PP_RECURSIVE_NP: |
| 361 | case PTHREAD_MUTEX_PP_ERRORCHECK_NP: |
| 362 | case PTHREAD_MUTEX_PP_NORMAL_NP: |
| 363 | case PTHREAD_MUTEX_PP_ADAPTIVE_NP: |
| 364 | { |
| 365 | int kind = mutex->__data.__kind & PTHREAD_MUTEX_KIND_MASK_NP; |
| 366 | |
| 367 | oldval = mutex->__data.__lock; |
| 368 | |
| 369 | /* Check whether we already hold the mutex. */ |
| 370 | if (mutex->__data.__owner == id) |
| 371 | { |
| 372 | if (kind == PTHREAD_MUTEX_ERRORCHECK_NP) |
| 373 | return EDEADLK; |
| 374 | |
| 375 | if (kind == PTHREAD_MUTEX_RECURSIVE_NP) |
| 376 | { |
| 377 | /* Just bump the counter. */ |
| 378 | if (__builtin_expect (mutex->__data.__count + 1 == 0, 0)) |
| 379 | /* Overflow of the counter. */ |
| 380 | return EAGAIN; |
| 381 | |
| 382 | ++mutex->__data.__count; |
| 383 | |
| 384 | return 0; |
| 385 | } |
| 386 | } |
| 387 | |
| 388 | int oldprio = -1, ceilval; |
| 389 | do |
| 390 | { |
| 391 | int ceiling = (oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) |
| 392 | >> PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| 393 | |
| 394 | if (__pthread_current_priority () > ceiling) |
| 395 | { |
| 396 | result = EINVAL; |
| 397 | failpp: |
| 398 | if (oldprio != -1) |
| 399 | __pthread_tpp_change_priority (oldprio, -1); |
| 400 | return result; |
| 401 | } |
| 402 | |
| 403 | result = __pthread_tpp_change_priority (oldprio, ceiling); |
| 404 | if (result) |
| 405 | return result; |
| 406 | |
| 407 | ceilval = ceiling << PTHREAD_MUTEX_PRIO_CEILING_SHIFT; |
| 408 | oldprio = ceiling; |
| 409 | |
| 410 | oldval |
| 411 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 412 | ceilval | 1, ceilval); |
| 413 | |
| 414 | if (oldval == ceilval) |
| 415 | break; |
| 416 | |
| 417 | do |
| 418 | { |
| 419 | oldval |
| 420 | = atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 421 | ceilval | 2, |
| 422 | ceilval | 1); |
| 423 | |
| 424 | if ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval) |
| 425 | break; |
| 426 | |
| 427 | if (oldval != ceilval) |
| 428 | { |
| 429 | /* Reject invalid timeouts. */ |
| 430 | if (abstime->tv_nsec < 0 || abstime->tv_nsec >= 1000000000) |
| 431 | { |
| 432 | result = EINVAL; |
| 433 | goto failpp; |
| 434 | } |
| 435 | |
| 436 | struct timeval tv; |
| 437 | struct timespec rt; |
| 438 | |
| 439 | /* Get the current time. */ |
| 440 | (void) gettimeofday (&tv, NULL); |
| 441 | |
| 442 | /* Compute relative timeout. */ |
| 443 | rt.tv_sec = abstime->tv_sec - tv.tv_sec; |
| 444 | rt.tv_nsec = abstime->tv_nsec - tv.tv_usec * 1000; |
| 445 | if (rt.tv_nsec < 0) |
| 446 | { |
| 447 | rt.tv_nsec += 1000000000; |
| 448 | --rt.tv_sec; |
| 449 | } |
| 450 | |
| 451 | /* Already timed out? */ |
| 452 | if (rt.tv_sec < 0) |
| 453 | { |
| 454 | result = ETIMEDOUT; |
| 455 | goto failpp; |
| 456 | } |
| 457 | |
| 458 | lll_futex_timed_wait (&mutex->__data.__lock, |
| 459 | ceilval | 2, &rt, |
| 460 | PTHREAD_MUTEX_PSHARED (mutex)); |
| 461 | } |
| 462 | } |
| 463 | while (atomic_compare_and_exchange_val_acq (&mutex->__data.__lock, |
| 464 | ceilval | 2, ceilval) |
| 465 | != ceilval); |
| 466 | } |
| 467 | while ((oldval & PTHREAD_MUTEX_PRIO_CEILING_MASK) != ceilval); |
| 468 | |
| 469 | assert (mutex->__data.__owner == 0); |
| 470 | mutex->__data.__count = 1; |
| 471 | } |
| 472 | break; |
| 473 | |
| 474 | default: |
| 475 | /* Correct code cannot set any other type. */ |
| 476 | return EINVAL; |
| 477 | } |
| 478 | |
| 479 | if (result == 0) |
| 480 | { |
| 481 | /* Record the ownership. */ |
| 482 | mutex->__data.__owner = id; |
| 483 | ++mutex->__data.__nusers; |
| 484 | } |
| 485 | |
| 486 | out: |
| 487 | return result; |
| 488 | } |