yuezonghe | 824eb0c | 2024-06-27 02:32:26 -0700 | [diff] [blame^] | 1 | /* |
| 2 | * Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved. |
| 3 | * |
| 4 | * Licensed under the OpenSSL license (the "License"). You may not use |
| 5 | * this file except in compliance with the License. You can obtain a copy |
| 6 | * in the file LICENSE in the source distribution or at |
| 7 | * https://www.openssl.org/source/license.html |
| 8 | */ |
| 9 | |
| 10 | #include <stdio.h> |
| 11 | #include "internal/cryptlib.h" |
| 12 | #include "internal/numbers.h" |
| 13 | #include <limits.h> |
| 14 | #include <openssl/asn1.h> |
| 15 | #include <openssl/bn.h> |
| 16 | #include "asn1_local.h" |
| 17 | |
| 18 | ASN1_INTEGER *ASN1_INTEGER_dup(const ASN1_INTEGER *x) |
| 19 | { |
| 20 | return ASN1_STRING_dup(x); |
| 21 | } |
| 22 | |
| 23 | int ASN1_INTEGER_cmp(const ASN1_INTEGER *x, const ASN1_INTEGER *y) |
| 24 | { |
| 25 | int neg, ret; |
| 26 | /* Compare signs */ |
| 27 | neg = x->type & V_ASN1_NEG; |
| 28 | if (neg != (y->type & V_ASN1_NEG)) { |
| 29 | if (neg) |
| 30 | return -1; |
| 31 | else |
| 32 | return 1; |
| 33 | } |
| 34 | |
| 35 | ret = ASN1_STRING_cmp(x, y); |
| 36 | |
| 37 | if (neg) |
| 38 | return -ret; |
| 39 | else |
| 40 | return ret; |
| 41 | } |
| 42 | |
| 43 | /*- |
| 44 | * This converts a big endian buffer and sign into its content encoding. |
| 45 | * This is used for INTEGER and ENUMERATED types. |
| 46 | * The internal representation is an ASN1_STRING whose data is a big endian |
| 47 | * representation of the value, ignoring the sign. The sign is determined by |
| 48 | * the type: if type & V_ASN1_NEG is true it is negative, otherwise positive. |
| 49 | * |
| 50 | * Positive integers are no problem: they are almost the same as the DER |
| 51 | * encoding, except if the first byte is >= 0x80 we need to add a zero pad. |
| 52 | * |
| 53 | * Negative integers are a bit trickier... |
| 54 | * The DER representation of negative integers is in 2s complement form. |
| 55 | * The internal form is converted by complementing each octet and finally |
| 56 | * adding one to the result. This can be done less messily with a little trick. |
| 57 | * If the internal form has trailing zeroes then they will become FF by the |
| 58 | * complement and 0 by the add one (due to carry) so just copy as many trailing |
| 59 | * zeros to the destination as there are in the source. The carry will add one |
| 60 | * to the last none zero octet: so complement this octet and add one and finally |
| 61 | * complement any left over until you get to the start of the string. |
| 62 | * |
| 63 | * Padding is a little trickier too. If the first bytes is > 0x80 then we pad |
| 64 | * with 0xff. However if the first byte is 0x80 and one of the following bytes |
| 65 | * is non-zero we pad with 0xff. The reason for this distinction is that 0x80 |
| 66 | * followed by optional zeros isn't padded. |
| 67 | */ |
| 68 | |
| 69 | /* |
| 70 | * If |pad| is zero, the operation is effectively reduced to memcpy, |
| 71 | * and if |pad| is 0xff, then it performs two's complement, ~dst + 1. |
| 72 | * Note that in latter case sequence of zeros yields itself, and so |
| 73 | * does 0x80 followed by any number of zeros. These properties are |
| 74 | * used elsewhere below... |
| 75 | */ |
| 76 | static void twos_complement(unsigned char *dst, const unsigned char *src, |
| 77 | size_t len, unsigned char pad) |
| 78 | { |
| 79 | unsigned int carry = pad & 1; |
| 80 | |
| 81 | /* Begin at the end of the encoding */ |
| 82 | dst += len; |
| 83 | src += len; |
| 84 | /* two's complement value: ~value + 1 */ |
| 85 | while (len-- != 0) { |
| 86 | *(--dst) = (unsigned char)(carry += *(--src) ^ pad); |
| 87 | carry >>= 8; |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | static size_t i2c_ibuf(const unsigned char *b, size_t blen, int neg, |
| 92 | unsigned char **pp) |
| 93 | { |
| 94 | unsigned int pad = 0; |
| 95 | size_t ret, i; |
| 96 | unsigned char *p, pb = 0; |
| 97 | |
| 98 | if (b != NULL && blen) { |
| 99 | ret = blen; |
| 100 | i = b[0]; |
| 101 | if (!neg && (i > 127)) { |
| 102 | pad = 1; |
| 103 | pb = 0; |
| 104 | } else if (neg) { |
| 105 | pb = 0xFF; |
| 106 | if (i > 128) { |
| 107 | pad = 1; |
| 108 | } else if (i == 128) { |
| 109 | /* |
| 110 | * Special case [of minimal negative for given length]: |
| 111 | * if any other bytes non zero we pad, otherwise we don't. |
| 112 | */ |
| 113 | for (pad = 0, i = 1; i < blen; i++) |
| 114 | pad |= b[i]; |
| 115 | pb = pad != 0 ? 0xffU : 0; |
| 116 | pad = pb & 1; |
| 117 | } |
| 118 | } |
| 119 | ret += pad; |
| 120 | } else { |
| 121 | ret = 1; |
| 122 | blen = 0; /* reduce '(b == NULL || blen == 0)' to '(blen == 0)' */ |
| 123 | } |
| 124 | |
| 125 | if (pp == NULL || (p = *pp) == NULL) |
| 126 | return ret; |
| 127 | |
| 128 | /* |
| 129 | * This magically handles all corner cases, such as '(b == NULL || |
| 130 | * blen == 0)', non-negative value, "negative" zero, 0x80 followed |
| 131 | * by any number of zeros... |
| 132 | */ |
| 133 | *p = pb; |
| 134 | p += pad; /* yes, p[0] can be written twice, but it's little |
| 135 | * price to pay for eliminated branches */ |
| 136 | twos_complement(p, b, blen, pb); |
| 137 | |
| 138 | *pp += ret; |
| 139 | return ret; |
| 140 | } |
| 141 | |
| 142 | /* |
| 143 | * convert content octets into a big endian buffer. Returns the length |
| 144 | * of buffer or 0 on error: for malformed INTEGER. If output buffer is |
| 145 | * NULL just return length. |
| 146 | */ |
| 147 | |
| 148 | static size_t c2i_ibuf(unsigned char *b, int *pneg, |
| 149 | const unsigned char *p, size_t plen) |
| 150 | { |
| 151 | int neg, pad; |
| 152 | /* Zero content length is illegal */ |
| 153 | if (plen == 0) { |
| 154 | ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_ZERO_CONTENT); |
| 155 | return 0; |
| 156 | } |
| 157 | neg = p[0] & 0x80; |
| 158 | if (pneg) |
| 159 | *pneg = neg; |
| 160 | /* Handle common case where length is 1 octet separately */ |
| 161 | if (plen == 1) { |
| 162 | if (b != NULL) { |
| 163 | if (neg) |
| 164 | b[0] = (p[0] ^ 0xFF) + 1; |
| 165 | else |
| 166 | b[0] = p[0]; |
| 167 | } |
| 168 | return 1; |
| 169 | } |
| 170 | |
| 171 | pad = 0; |
| 172 | if (p[0] == 0) { |
| 173 | pad = 1; |
| 174 | } else if (p[0] == 0xFF) { |
| 175 | size_t i; |
| 176 | |
| 177 | /* |
| 178 | * Special case [of "one less minimal negative" for given length]: |
| 179 | * if any other bytes non zero it was padded, otherwise not. |
| 180 | */ |
| 181 | for (pad = 0, i = 1; i < plen; i++) |
| 182 | pad |= p[i]; |
| 183 | pad = pad != 0 ? 1 : 0; |
| 184 | } |
| 185 | /* reject illegal padding: first two octets MSB can't match */ |
| 186 | if (pad && (neg == (p[1] & 0x80))) { |
| 187 | ASN1err(ASN1_F_C2I_IBUF, ASN1_R_ILLEGAL_PADDING); |
| 188 | return 0; |
| 189 | } |
| 190 | |
| 191 | /* skip over pad */ |
| 192 | p += pad; |
| 193 | plen -= pad; |
| 194 | |
| 195 | if (b != NULL) |
| 196 | twos_complement(b, p, plen, neg ? 0xffU : 0); |
| 197 | |
| 198 | return plen; |
| 199 | } |
| 200 | |
| 201 | int i2c_ASN1_INTEGER(ASN1_INTEGER *a, unsigned char **pp) |
| 202 | { |
| 203 | return i2c_ibuf(a->data, a->length, a->type & V_ASN1_NEG, pp); |
| 204 | } |
| 205 | |
| 206 | /* Convert big endian buffer into uint64_t, return 0 on error */ |
| 207 | static int asn1_get_uint64(uint64_t *pr, const unsigned char *b, size_t blen) |
| 208 | { |
| 209 | size_t i; |
| 210 | uint64_t r; |
| 211 | |
| 212 | if (blen > sizeof(*pr)) { |
| 213 | ASN1err(ASN1_F_ASN1_GET_UINT64, ASN1_R_TOO_LARGE); |
| 214 | return 0; |
| 215 | } |
| 216 | if (b == NULL) |
| 217 | return 0; |
| 218 | for (r = 0, i = 0; i < blen; i++) { |
| 219 | r <<= 8; |
| 220 | r |= b[i]; |
| 221 | } |
| 222 | *pr = r; |
| 223 | return 1; |
| 224 | } |
| 225 | |
| 226 | /* |
| 227 | * Write uint64_t to big endian buffer and return offset to first |
| 228 | * written octet. In other words it returns offset in range from 0 |
| 229 | * to 7, with 0 denoting 8 written octets and 7 - one. |
| 230 | */ |
| 231 | static size_t asn1_put_uint64(unsigned char b[sizeof(uint64_t)], uint64_t r) |
| 232 | { |
| 233 | size_t off = sizeof(uint64_t); |
| 234 | |
| 235 | do { |
| 236 | b[--off] = (unsigned char)r; |
| 237 | } while (r >>= 8); |
| 238 | |
| 239 | return off; |
| 240 | } |
| 241 | |
| 242 | /* |
| 243 | * Absolute value of INT64_MIN: we can't just use -INT64_MIN as gcc produces |
| 244 | * overflow warnings. |
| 245 | */ |
| 246 | #define ABS_INT64_MIN ((uint64_t)INT64_MAX + (-(INT64_MIN + INT64_MAX))) |
| 247 | |
| 248 | /* signed version of asn1_get_uint64 */ |
| 249 | static int asn1_get_int64(int64_t *pr, const unsigned char *b, size_t blen, |
| 250 | int neg) |
| 251 | { |
| 252 | uint64_t r; |
| 253 | if (asn1_get_uint64(&r, b, blen) == 0) |
| 254 | return 0; |
| 255 | if (neg) { |
| 256 | if (r <= INT64_MAX) { |
| 257 | /* Most significant bit is guaranteed to be clear, negation |
| 258 | * is guaranteed to be meaningful in platform-neutral sense. */ |
| 259 | *pr = -(int64_t)r; |
| 260 | } else if (r == ABS_INT64_MIN) { |
| 261 | /* This never happens if INT64_MAX == ABS_INT64_MIN, e.g. |
| 262 | * on ones'-complement system. */ |
| 263 | *pr = (int64_t)(0 - r); |
| 264 | } else { |
| 265 | ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_SMALL); |
| 266 | return 0; |
| 267 | } |
| 268 | } else { |
| 269 | if (r <= INT64_MAX) { |
| 270 | *pr = (int64_t)r; |
| 271 | } else { |
| 272 | ASN1err(ASN1_F_ASN1_GET_INT64, ASN1_R_TOO_LARGE); |
| 273 | return 0; |
| 274 | } |
| 275 | } |
| 276 | return 1; |
| 277 | } |
| 278 | |
| 279 | /* Convert ASN1 INTEGER content octets to ASN1_INTEGER structure */ |
| 280 | ASN1_INTEGER *c2i_ASN1_INTEGER(ASN1_INTEGER **a, const unsigned char **pp, |
| 281 | long len) |
| 282 | { |
| 283 | ASN1_INTEGER *ret = NULL; |
| 284 | size_t r; |
| 285 | int neg; |
| 286 | |
| 287 | r = c2i_ibuf(NULL, NULL, *pp, len); |
| 288 | |
| 289 | if (r == 0) |
| 290 | return NULL; |
| 291 | |
| 292 | if ((a == NULL) || ((*a) == NULL)) { |
| 293 | ret = ASN1_INTEGER_new(); |
| 294 | if (ret == NULL) |
| 295 | return NULL; |
| 296 | ret->type = V_ASN1_INTEGER; |
| 297 | } else |
| 298 | ret = *a; |
| 299 | |
| 300 | if (ASN1_STRING_set(ret, NULL, r) == 0) |
| 301 | goto err; |
| 302 | |
| 303 | c2i_ibuf(ret->data, &neg, *pp, len); |
| 304 | |
| 305 | if (neg) |
| 306 | ret->type |= V_ASN1_NEG; |
| 307 | |
| 308 | *pp += len; |
| 309 | if (a != NULL) |
| 310 | (*a) = ret; |
| 311 | return ret; |
| 312 | err: |
| 313 | ASN1err(ASN1_F_C2I_ASN1_INTEGER, ERR_R_MALLOC_FAILURE); |
| 314 | if ((a == NULL) || (*a != ret)) |
| 315 | ASN1_INTEGER_free(ret); |
| 316 | return NULL; |
| 317 | } |
| 318 | |
| 319 | static int asn1_string_get_int64(int64_t *pr, const ASN1_STRING *a, int itype) |
| 320 | { |
| 321 | if (a == NULL) { |
| 322 | ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ERR_R_PASSED_NULL_PARAMETER); |
| 323 | return 0; |
| 324 | } |
| 325 | if ((a->type & ~V_ASN1_NEG) != itype) { |
| 326 | ASN1err(ASN1_F_ASN1_STRING_GET_INT64, ASN1_R_WRONG_INTEGER_TYPE); |
| 327 | return 0; |
| 328 | } |
| 329 | return asn1_get_int64(pr, a->data, a->length, a->type & V_ASN1_NEG); |
| 330 | } |
| 331 | |
| 332 | static int asn1_string_set_int64(ASN1_STRING *a, int64_t r, int itype) |
| 333 | { |
| 334 | unsigned char tbuf[sizeof(r)]; |
| 335 | size_t off; |
| 336 | |
| 337 | a->type = itype; |
| 338 | if (r < 0) { |
| 339 | /* Most obvious '-r' triggers undefined behaviour for most |
| 340 | * common INT64_MIN. Even though below '0 - (uint64_t)r' can |
| 341 | * appear two's-complement centric, it does produce correct/ |
| 342 | * expected result even on one's-complement. This is because |
| 343 | * cast to unsigned has to change bit pattern... */ |
| 344 | off = asn1_put_uint64(tbuf, 0 - (uint64_t)r); |
| 345 | a->type |= V_ASN1_NEG; |
| 346 | } else { |
| 347 | off = asn1_put_uint64(tbuf, r); |
| 348 | a->type &= ~V_ASN1_NEG; |
| 349 | } |
| 350 | return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); |
| 351 | } |
| 352 | |
| 353 | static int asn1_string_get_uint64(uint64_t *pr, const ASN1_STRING *a, |
| 354 | int itype) |
| 355 | { |
| 356 | if (a == NULL) { |
| 357 | ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ERR_R_PASSED_NULL_PARAMETER); |
| 358 | return 0; |
| 359 | } |
| 360 | if ((a->type & ~V_ASN1_NEG) != itype) { |
| 361 | ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_WRONG_INTEGER_TYPE); |
| 362 | return 0; |
| 363 | } |
| 364 | if (a->type & V_ASN1_NEG) { |
| 365 | ASN1err(ASN1_F_ASN1_STRING_GET_UINT64, ASN1_R_ILLEGAL_NEGATIVE_VALUE); |
| 366 | return 0; |
| 367 | } |
| 368 | return asn1_get_uint64(pr, a->data, a->length); |
| 369 | } |
| 370 | |
| 371 | static int asn1_string_set_uint64(ASN1_STRING *a, uint64_t r, int itype) |
| 372 | { |
| 373 | unsigned char tbuf[sizeof(r)]; |
| 374 | size_t off; |
| 375 | |
| 376 | a->type = itype; |
| 377 | off = asn1_put_uint64(tbuf, r); |
| 378 | return ASN1_STRING_set(a, tbuf + off, sizeof(tbuf) - off); |
| 379 | } |
| 380 | |
| 381 | /* |
| 382 | * This is a version of d2i_ASN1_INTEGER that ignores the sign bit of ASN1 |
| 383 | * integers: some broken software can encode a positive INTEGER with its MSB |
| 384 | * set as negative (it doesn't add a padding zero). |
| 385 | */ |
| 386 | |
| 387 | ASN1_INTEGER *d2i_ASN1_UINTEGER(ASN1_INTEGER **a, const unsigned char **pp, |
| 388 | long length) |
| 389 | { |
| 390 | ASN1_INTEGER *ret = NULL; |
| 391 | const unsigned char *p; |
| 392 | unsigned char *s; |
| 393 | long len; |
| 394 | int inf, tag, xclass; |
| 395 | int i; |
| 396 | |
| 397 | if ((a == NULL) || ((*a) == NULL)) { |
| 398 | if ((ret = ASN1_INTEGER_new()) == NULL) |
| 399 | return NULL; |
| 400 | ret->type = V_ASN1_INTEGER; |
| 401 | } else |
| 402 | ret = (*a); |
| 403 | |
| 404 | p = *pp; |
| 405 | inf = ASN1_get_object(&p, &len, &tag, &xclass, length); |
| 406 | if (inf & 0x80) { |
| 407 | i = ASN1_R_BAD_OBJECT_HEADER; |
| 408 | goto err; |
| 409 | } |
| 410 | |
| 411 | if (tag != V_ASN1_INTEGER) { |
| 412 | i = ASN1_R_EXPECTING_AN_INTEGER; |
| 413 | goto err; |
| 414 | } |
| 415 | |
| 416 | /* |
| 417 | * We must OPENSSL_malloc stuff, even for 0 bytes otherwise it signifies |
| 418 | * a missing NULL parameter. |
| 419 | */ |
| 420 | s = OPENSSL_malloc((int)len + 1); |
| 421 | if (s == NULL) { |
| 422 | i = ERR_R_MALLOC_FAILURE; |
| 423 | goto err; |
| 424 | } |
| 425 | ret->type = V_ASN1_INTEGER; |
| 426 | if (len) { |
| 427 | if ((*p == 0) && (len != 1)) { |
| 428 | p++; |
| 429 | len--; |
| 430 | } |
| 431 | memcpy(s, p, (int)len); |
| 432 | p += len; |
| 433 | } |
| 434 | |
| 435 | OPENSSL_free(ret->data); |
| 436 | ret->data = s; |
| 437 | ret->length = (int)len; |
| 438 | if (a != NULL) |
| 439 | (*a) = ret; |
| 440 | *pp = p; |
| 441 | return ret; |
| 442 | err: |
| 443 | ASN1err(ASN1_F_D2I_ASN1_UINTEGER, i); |
| 444 | if ((a == NULL) || (*a != ret)) |
| 445 | ASN1_INTEGER_free(ret); |
| 446 | return NULL; |
| 447 | } |
| 448 | |
| 449 | static ASN1_STRING *bn_to_asn1_string(const BIGNUM *bn, ASN1_STRING *ai, |
| 450 | int atype) |
| 451 | { |
| 452 | ASN1_INTEGER *ret; |
| 453 | int len; |
| 454 | |
| 455 | if (ai == NULL) { |
| 456 | ret = ASN1_STRING_type_new(atype); |
| 457 | } else { |
| 458 | ret = ai; |
| 459 | ret->type = atype; |
| 460 | } |
| 461 | |
| 462 | if (ret == NULL) { |
| 463 | ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_NESTED_ASN1_ERROR); |
| 464 | goto err; |
| 465 | } |
| 466 | |
| 467 | if (BN_is_negative(bn) && !BN_is_zero(bn)) |
| 468 | ret->type |= V_ASN1_NEG_INTEGER; |
| 469 | |
| 470 | len = BN_num_bytes(bn); |
| 471 | |
| 472 | if (len == 0) |
| 473 | len = 1; |
| 474 | |
| 475 | if (ASN1_STRING_set(ret, NULL, len) == 0) { |
| 476 | ASN1err(ASN1_F_BN_TO_ASN1_STRING, ERR_R_MALLOC_FAILURE); |
| 477 | goto err; |
| 478 | } |
| 479 | |
| 480 | /* Correct zero case */ |
| 481 | if (BN_is_zero(bn)) |
| 482 | ret->data[0] = 0; |
| 483 | else |
| 484 | len = BN_bn2bin(bn, ret->data); |
| 485 | ret->length = len; |
| 486 | return ret; |
| 487 | err: |
| 488 | if (ret != ai) |
| 489 | ASN1_INTEGER_free(ret); |
| 490 | return NULL; |
| 491 | } |
| 492 | |
| 493 | static BIGNUM *asn1_string_to_bn(const ASN1_INTEGER *ai, BIGNUM *bn, |
| 494 | int itype) |
| 495 | { |
| 496 | BIGNUM *ret; |
| 497 | |
| 498 | if ((ai->type & ~V_ASN1_NEG) != itype) { |
| 499 | ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_WRONG_INTEGER_TYPE); |
| 500 | return NULL; |
| 501 | } |
| 502 | |
| 503 | ret = BN_bin2bn(ai->data, ai->length, bn); |
| 504 | if (ret == NULL) { |
| 505 | ASN1err(ASN1_F_ASN1_STRING_TO_BN, ASN1_R_BN_LIB); |
| 506 | return NULL; |
| 507 | } |
| 508 | if (ai->type & V_ASN1_NEG) |
| 509 | BN_set_negative(ret, 1); |
| 510 | return ret; |
| 511 | } |
| 512 | |
| 513 | int ASN1_INTEGER_get_int64(int64_t *pr, const ASN1_INTEGER *a) |
| 514 | { |
| 515 | return asn1_string_get_int64(pr, a, V_ASN1_INTEGER); |
| 516 | } |
| 517 | |
| 518 | int ASN1_INTEGER_set_int64(ASN1_INTEGER *a, int64_t r) |
| 519 | { |
| 520 | return asn1_string_set_int64(a, r, V_ASN1_INTEGER); |
| 521 | } |
| 522 | |
| 523 | int ASN1_INTEGER_get_uint64(uint64_t *pr, const ASN1_INTEGER *a) |
| 524 | { |
| 525 | return asn1_string_get_uint64(pr, a, V_ASN1_INTEGER); |
| 526 | } |
| 527 | |
| 528 | int ASN1_INTEGER_set_uint64(ASN1_INTEGER *a, uint64_t r) |
| 529 | { |
| 530 | return asn1_string_set_uint64(a, r, V_ASN1_INTEGER); |
| 531 | } |
| 532 | |
| 533 | int ASN1_INTEGER_set(ASN1_INTEGER *a, long v) |
| 534 | { |
| 535 | return ASN1_INTEGER_set_int64(a, v); |
| 536 | } |
| 537 | |
| 538 | long ASN1_INTEGER_get(const ASN1_INTEGER *a) |
| 539 | { |
| 540 | int i; |
| 541 | int64_t r; |
| 542 | if (a == NULL) |
| 543 | return 0; |
| 544 | i = ASN1_INTEGER_get_int64(&r, a); |
| 545 | if (i == 0) |
| 546 | return -1; |
| 547 | if (r > LONG_MAX || r < LONG_MIN) |
| 548 | return -1; |
| 549 | return (long)r; |
| 550 | } |
| 551 | |
| 552 | ASN1_INTEGER *BN_to_ASN1_INTEGER(const BIGNUM *bn, ASN1_INTEGER *ai) |
| 553 | { |
| 554 | return bn_to_asn1_string(bn, ai, V_ASN1_INTEGER); |
| 555 | } |
| 556 | |
| 557 | BIGNUM *ASN1_INTEGER_to_BN(const ASN1_INTEGER *ai, BIGNUM *bn) |
| 558 | { |
| 559 | return asn1_string_to_bn(ai, bn, V_ASN1_INTEGER); |
| 560 | } |
| 561 | |
| 562 | int ASN1_ENUMERATED_get_int64(int64_t *pr, const ASN1_ENUMERATED *a) |
| 563 | { |
| 564 | return asn1_string_get_int64(pr, a, V_ASN1_ENUMERATED); |
| 565 | } |
| 566 | |
| 567 | int ASN1_ENUMERATED_set_int64(ASN1_ENUMERATED *a, int64_t r) |
| 568 | { |
| 569 | return asn1_string_set_int64(a, r, V_ASN1_ENUMERATED); |
| 570 | } |
| 571 | |
| 572 | int ASN1_ENUMERATED_set(ASN1_ENUMERATED *a, long v) |
| 573 | { |
| 574 | return ASN1_ENUMERATED_set_int64(a, v); |
| 575 | } |
| 576 | |
| 577 | long ASN1_ENUMERATED_get(const ASN1_ENUMERATED *a) |
| 578 | { |
| 579 | int i; |
| 580 | int64_t r; |
| 581 | if (a == NULL) |
| 582 | return 0; |
| 583 | if ((a->type & ~V_ASN1_NEG) != V_ASN1_ENUMERATED) |
| 584 | return -1; |
| 585 | if (a->length > (int)sizeof(long)) |
| 586 | return 0xffffffffL; |
| 587 | i = ASN1_ENUMERATED_get_int64(&r, a); |
| 588 | if (i == 0) |
| 589 | return -1; |
| 590 | if (r > LONG_MAX || r < LONG_MIN) |
| 591 | return -1; |
| 592 | return (long)r; |
| 593 | } |
| 594 | |
| 595 | ASN1_ENUMERATED *BN_to_ASN1_ENUMERATED(const BIGNUM *bn, ASN1_ENUMERATED *ai) |
| 596 | { |
| 597 | return bn_to_asn1_string(bn, ai, V_ASN1_ENUMERATED); |
| 598 | } |
| 599 | |
| 600 | BIGNUM *ASN1_ENUMERATED_to_BN(const ASN1_ENUMERATED *ai, BIGNUM *bn) |
| 601 | { |
| 602 | return asn1_string_to_bn(ai, bn, V_ASN1_ENUMERATED); |
| 603 | } |
| 604 | |
| 605 | /* Internal functions used by x_int64.c */ |
| 606 | int c2i_uint64_int(uint64_t *ret, int *neg, const unsigned char **pp, long len) |
| 607 | { |
| 608 | unsigned char buf[sizeof(uint64_t)]; |
| 609 | size_t buflen; |
| 610 | |
| 611 | buflen = c2i_ibuf(NULL, NULL, *pp, len); |
| 612 | if (buflen == 0) |
| 613 | return 0; |
| 614 | if (buflen > sizeof(uint64_t)) { |
| 615 | ASN1err(ASN1_F_C2I_UINT64_INT, ASN1_R_TOO_LARGE); |
| 616 | return 0; |
| 617 | } |
| 618 | (void)c2i_ibuf(buf, neg, *pp, len); |
| 619 | return asn1_get_uint64(ret, buf, buflen); |
| 620 | } |
| 621 | |
| 622 | int i2c_uint64_int(unsigned char *p, uint64_t r, int neg) |
| 623 | { |
| 624 | unsigned char buf[sizeof(uint64_t)]; |
| 625 | size_t off; |
| 626 | |
| 627 | off = asn1_put_uint64(buf, r); |
| 628 | return i2c_ibuf(buf + off, sizeof(buf) - off, neg, &p); |
| 629 | } |
| 630 | |